151
|
Cai J, Culley MK, Zhao Y, Zhao J. The role of ubiquitination and deubiquitination in the regulation of cell junctions. Protein Cell 2017; 9:754-769. [PMID: 29080116 PMCID: PMC6107491 DOI: 10.1007/s13238-017-0486-3] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Accepted: 10/09/2017] [Indexed: 12/11/2022] Open
Abstract
Maintenance of cell junctions plays a crucial role in the regulation of cellular functions including cell proliferation, permeability, and cell death. Disruption of cell junctions is implicated in a variety of human disorders, such as inflammatory diseases and cancers. Understanding molecular regulation of cell junctions is important for development of therapeutic strategies for intervention of human diseases. Ubiquitination is an important type of post-translational modification that primarily regulates endogenous protein stability, receptor internalization, enzyme activity, and protein-protein interactions. Ubiquitination is tightly regulated by ubiquitin E3 ligases and can be reversed by deubiquitinating enzymes. Recent studies have been focusing on investigating the effect of protein stability in the regulation of cell-cell junctions. Ubiquitination and degradation of cadherins, claudins, and their interacting proteins are implicated in epithelial and endothelial barrier disruption. Recent studies have revealed that ubiquitination is involved in regulation of Rho GTPases’ biological activities. Taken together these studies, ubiquitination plays a critical role in modulating cell junctions and motility. In this review, we will discuss the effects of ubiquitination and deubiquitination on protein stability and expression of key proteins in the cell-cell junctions, including junction proteins, their interacting proteins, and small Rho GTPases. We provide an overview of protein stability in modulation of epithelial and endothelial barrier integrity and introduce potential future search directions to better understand the effects of ubiquitination on human disorders caused by dysfunction of cell junctions.
Collapse
Affiliation(s)
- Junting Cai
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.,Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Miranda K Culley
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yutong Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Jing Zhao
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Asthma, and Critical Care Medicine, Department of Medicine, The University of Pittsburgh, Pittsburgh, PA, 15213, USA.
| |
Collapse
|
152
|
Ungaro F, Rubbino F, Danese S, D'Alessio S. Actors and Factors in the Resolution of Intestinal Inflammation: Lipid Mediators As a New Approach to Therapy in Inflammatory Bowel Diseases. Front Immunol 2017; 8:1331. [PMID: 29109724 PMCID: PMC5660440 DOI: 10.3389/fimmu.2017.01331] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Accepted: 09/29/2017] [Indexed: 12/15/2022] Open
Abstract
In the last few decades, the pathogenesis of inflammatory bowel disease (IBD) in genetically predisposed subjects susceptible to specific environmental factors has been attributed to disturbance of both the immune and non-immune system and/or to the imbalanced interactions with microbes. However, increasing evidences support the idea that defects in pro-resolving pathways might strongly contribute to IBD onset. The resolution of inflammation is now recognized as a dynamic event coordinated by specialized pro-resolving lipid mediators (LMs), which dampen inflammation-sustaining events, such as angiogenesis, release of pro-inflammatory cytokines, clearance of apoptotic cells, and microorganisms. Among these pro-resolving molecules, those derived from essential polyunsaturated fatty acids (PUFAs) have been shown to induce favorable effects on a plethora of human inflammatory disorders, including IBD. Here, we offer a summary of mechanisms involving both cellular and molecular components of the immune response and underlying the anti-inflammatory and pro-resolving properties of PUFAs and their derivatives in the gut, focusing on both ω-3 and ω-6 LMs. These fatty acids may influence IBD progression by: reducing neutrophil transmigration across the intestinal vasculature and the epithelium, preventing the release of pro-inflammatory cytokines and the up-regulation of adhesion molecules, and finally by promoting the production of other pro-resolving molecules. We also discuss the numerous attempts in using pro-resolving PUFAs to ameliorate intestinal inflammation, both in patients with IBD and mouse models. Although their effects in reducing inflammation is incontestable, results from previous works describing the effects of PUFA administration to prevent or treat IBD are controversial. Therefore, more efforts are needed not only to identify and explain the physiological functions of PUFAs in the gut, but also to unveil novel biosynthetic pathways of these pro-resolving LMs that may be dysregulated in these gut-related disorders. We suppose that either PUFAs or new medications specifically promoting resolution-regulating mediators and pathways will be much better tolerated by patients with IBD, with the advantage of avoiding immune suppression.
Collapse
Affiliation(s)
- Federica Ungaro
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Federica Rubbino
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| | - Silvio Danese
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy.,Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, IBD Center, Rozzano, Italy
| | - Silvia D'Alessio
- Department of Biomedical Sciences, Humanitas University, Rozzano, Italy
| |
Collapse
|
153
|
Barmeyer C, Erko I, Awad K, Fromm A, Bojarski C, Meissner S, Loddenkemper C, Kerick M, Siegmund B, Fromm M, Schweiger MR, Schulzke JD. Epithelial barrier dysfunction in lymphocytic colitis through cytokine-dependent internalization of claudin-5 and -8. J Gastroenterol 2017; 52:1090-1100. [PMID: 28138755 DOI: 10.1007/s00535-017-1309-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/12/2017] [Indexed: 02/04/2023]
Abstract
BACKGROUND Watery diarrhea is the cardinal symptom of lymphocytic colitis (LC). We have previously shown that colonic Na malabsorption is one of the major pathologic alterations of LC and found evidence for an epithelial barrier defect. On these grounds, this study aimed to identify the inherent mechanisms of this epithelial barrier dysfunction and its regulatory features. METHODS Epithelial resistance (R epi) was determined by one-path impedance spectroscopy and 3H-mannitol fluxes were performed on biopsies from sigmoid colon in miniaturized Ussing chambers. Tight junction proteins were analyzed by Western blot and confocal microscopy. Inflammatory signaling was characterized in HT-29/B6 cells. Apoptosis and mucosal surface parameters were quantified morphologically. RESULTS R epi was reduced to 53% and 3H-mannitol fluxes increased 1.7-fold in LC due to lower expression of claudin-4, -5, and -8 and altered subcellular claudin-5 and -8 distributions off the tight junction. TNFα and IFNγ could mimic subcellular redistribution in HT-29/B6 cells, a process which was independent on MLCK activation. Epithelial apoptosis did not contribute to barrier dysfunction in LC and mucosal surface area was unchanged. CONCLUSIONS Epithelial barrier dysfunction in LC occurs through downregulation of claudin-4, -5, and -8, and redistribution of claudin-5 and -8 off the tight junction, which contributes to diarrhea by a leak-flux mechanism. The key effector cytokines TNFα and IFNγ turned out to be the trigger for redistribution of claudin-5 and -8. Thus, alongside sodium malabsorption, leak-flux is yet another important diarrheal mechanism in LC.
Collapse
Affiliation(s)
- Christian Barmeyer
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Berlin, Germany
- Institute of Clinical Physiology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Irene Erko
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Karem Awad
- Institute of Clinical Physiology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Anja Fromm
- Institute of Clinical Physiology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Christian Bojarski
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Svenja Meissner
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Christoph Loddenkemper
- Institute of Pathology, Charité, Campus Benjamin Franklin, Berlin, Germany
- Institute of Pathology PathoTres, Berlin, Germany
| | - Martin Kerick
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany
| | - Michal R Schweiger
- Max Planck Institute for Molecular Genetics, Berlin, Germany
- Cologne Center for Genomics, University of Cologne, Cologne, Germany
| | - Jörg-Dieter Schulzke
- Department of Gastroenterology, Infectious Diseases and Rheumatology, Charité, Campus Benjamin Franklin, Berlin, Germany.
- Institute of Clinical Physiology, Charité, Campus Benjamin Franklin, Hindenburgdamm 30, 12203, Berlin, Germany.
| |
Collapse
|
154
|
Kim Y, Kessler SP, Obery DR, Homer CR, McDonald C, de la Motte CA. Hyaluronan 35kDa treatment protects mice from Citrobacter rodentium infection and induces epithelial tight junction protein ZO-1 in vivo. Matrix Biol 2017; 62:28-39. [PMID: 27845198 PMCID: PMC5427001 DOI: 10.1016/j.matbio.2016.11.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/03/2016] [Accepted: 11/04/2016] [Indexed: 12/20/2022]
Abstract
Maintaining a healthy intestinal barrier, the primary physical barrier between intestinal microbiota and the underlying lamina propria, is critical for optimal health. Epithelial integrity is essential for the prevention of the entrance of luminal contents, such as bacteria and their products, through the large intestinal barrier. In this study, we investigated the protective functions of biosynthetic, specific sized, hyaluronan around 35kDa (HA35) on intestinal epithelium in healthy mice, as well as mice infected Citrobacter rodentium, an established model that mimics infection with a serious human pathogen, enteropathogenic E. coli (EPEC). Our results reveal that treatment with HA35 protects mice from Citrobacter infection and enhances the epithelial barrier function. In particular, we have found that HA35 induces the expression of tight junction protein zonula occludens (ZO)-1 in both healthy and Citrobacter infected mice, as demonstrated by immunoflurorescence and Western blot analyses. Furthermore, we determined that HA35 treatment enhances ZO-1 expression and reduces intestinal permeability at the early stages of dextran sulfate sodium (DSS)-induced colitis in mice. Together, our data demonstrate that the expression and functionality of tight junctions, are increased by HA35 treatment, suggesting a novel mechanism for the protection from Citrobacter infection.
Collapse
Affiliation(s)
- Yeojung Kim
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sean P Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Dana R Obery
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Craig R Homer
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Carol A de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
155
|
Kim Y, West GA, Ray G, Kessler SP, Petrey AC, Fiocchi C, McDonald C, Longworth MS, Nagy LE, de la Motte CA. Layilin is critical for mediating hyaluronan 35kDa-induced intestinal epithelial tight junction protein ZO-1 in vitro and in vivo. Matrix Biol 2017; 66:93-109. [PMID: 28978412 DOI: 10.1016/j.matbio.2017.09.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/14/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023]
Abstract
Tight junction proteins are critical in maintaining homeostatic intestinal permeability. Multiple intestinal inflammatory diseases are correlated with reduced expression of tight junction proteins. We have recently reported that oral treatment of mice with Hyaluronan 35kDa (HA35) increases colonic expression of tight junction protein zonula occludens-1 (ZO-1). Here, we investigate whether HA35 treatment enhances ZO-1 expression by direct interaction with intestinal epithelium in vitro and have identified the HA receptor responsible for HA35-mediated ZO-1 induction in colonic epithelium in vitro and in vivo. Our results reveal that HA35 treatment increases ZO-1 expression in mouse intestinal epithelial organoids, while large HA 2000kDa is not internalized into the cells. Our immunofluorescence data indicate that layilin, but neither toll-like receptor-4 (TLR-4) nor CD44, mediate the HA35-induced ZO-1 expression in colonic epithelium in vitro and in vivo. Additionally, using layilin null mice we have determined that layilin mediates HA35 induction of ZO-1 in healthy mice and during dextran sulfate sodium (DSS)-induced colitis. Furthermore, we find that while ZO-1 expression levels are reduced, layilin expression levels are equivalent in inflammatory bowel disease (IBD) patients and non-IBD controls. Together, our data suggest that layilin is an important HA receptor, that mediates the effect of oral HA35 treatment on intestinal epithelium. HA35 holds promise as a simple dietary supplement to strengthen gut barrier defense.
Collapse
Affiliation(s)
- Yeojung Kim
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Gail A West
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Greeshma Ray
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Sean P Kessler
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Aaron C Petrey
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Claudio Fiocchi
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Christine McDonald
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Michelle S Longworth
- Department of Molecular Genetics, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Laura E Nagy
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA
| | - Carol A de la Motte
- Department of Pathobiology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| |
Collapse
|
156
|
Gleaning Insights from Fecal Microbiota Transplantation and Probiotic Studies for the Rational Design of Combination Microbial Therapies. Clin Microbiol Rev 2017; 30:191-231. [PMID: 27856521 DOI: 10.1128/cmr.00049-16] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microorganisms hold promise for the treatment of numerous gastrointestinal diseases. The transfer of whole microbiota via fecal transplantation has already been shown to ameliorate the severity of diseases such as Clostridium difficile infection, inflammatory bowel disease, and others. However, the exact mechanisms of fecal microbiota transplant efficacy and the particular strains conferring this benefit are still unclear. Rationally designed combinations of microbial preparations may enable more efficient and effective treatment approaches tailored to particular diseases. Here we use an infectious disease, C. difficile infection, and an inflammatory disorder, the inflammatory bowel disease ulcerative colitis, as examples to facilitate the discussion of how microbial therapy might be rationally designed for specific gastrointestinal diseases. Fecal microbiota transplantation has already shown some efficacy in the treatment of both these disorders; detailed comparisons of studies evaluating commensal and probiotic organisms in the context of these disparate gastrointestinal diseases may shed light on potential protective mechanisms and elucidate how future microbial therapies can be tailored to particular diseases.
Collapse
|
157
|
Zhou GX, Liu ZJ. Potential roles of neutrophils in regulating intestinal mucosal inflammation of inflammatory bowel disease. J Dig Dis 2017; 18:495-503. [PMID: 28857501 DOI: 10.1111/1751-2980.12540] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/15/2017] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD), comprising of ulcerative colitis and Crohn's disease, are inflammatory disorders of the gastrointestinal tract characterized by chronically relapsing mucosal inflammation. Neutrophils, as the effector cells of acute inflammation, have long been reported to play a role in the maintenance of intestinal homeostasis and pathogenesis of IBD. At the early stage of mucosal inflammation in patients with IBD, neutrophils flood into intestinal mucosa, phagocytose pathogenic microbes, and promote mucosal healing and resolution of inflammation. However, large numbers of neutrophils infiltrating in the inflamed mucosa and accumulating in the epithelia cause damage of mucosal architecture, compromised epithelial barrier and production of inflammatory mediators. In this review we discuss the critical roles of neutrophils in modulating innate and adaptive immune responses in intestinal mucosa, and, importantly, clarify the potential roles of neutrophils related to their production of inflammatory mediators, transenthothelial and transepithelial migration into intestinal mucosa, and the underlying mechanisms in regulating mucosal inflammation of IBD. Moreover, we also describe a new subset of neutrophils (i.e., CD177+ neutrophils) and illustrate its protective role in modulating intestinal mucosal immune responses in IBD.
Collapse
Affiliation(s)
- Guang Xi Zhou
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| | - Zhan Ju Liu
- Department of Gastroenterology, The Shanghai Tenth People's Hospital of Tongji University, Shanghai, China
| |
Collapse
|
158
|
He L, Zhou X, Huang N, Li H, Cui Z, Tian J, Jiang Q, Liu S, Wu J, Li T, Yao K, Yin Y. Administration of alpha-ketoglutarate improves epithelial restitution under stress injury in early-weaning piglets. Oncotarget 2017; 8:91965-91978. [PMID: 29190890 PMCID: PMC5696156 DOI: 10.18632/oncotarget.20555] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 08/07/2017] [Indexed: 12/21/2022] Open
Abstract
Alpha-ketoglutarate (AKG) is an important cellular metabolite that participates in energy production and amino acid metabolism. However, the protective effects and mechanism of AKG on mucosal lesions have not been well understood. This study was conducted to investigate the effects of dietary AKG supplementation on epithelial restitution in early-weaning piglets under Escherichia coli lipopolysaccharide (LPS) induction. A total of 32 weaned piglets were used in a 2 × 2 factorial design; the major factors were dietary treatment (basal diet or AKG diet) and inflammatory challenge (LPS or saline). The results showed that AKG supplementation improved the growth performance and intestinal morphology in the LPS-induced early-weaning piglets. Compared with the basal diet, the AKG diet remarkably decreased the concentration and mRNA expression of intestinal inflammatory cytokines (IL-1β, IL-6, and IL-12) in the LPS-induced piglets. Moreover, AKG administration upregulated the mRNA expression of nutrient-sensing transporters (GLUT-2, SGLT-1, PEPT-1, I-FABP2) in the small intestine of both saline- and LPS-treated piglets, and improved the distribution and expression of tight-junction genes andproteins (ZO-1, Occludin, Claudins, E-cadherin). Collectively, our findings indicate that AKG has the potential to alleviate intestinal inflammatory response and improve epithelial restitution and nutrient-sensing ability under stress injury in early-weaning piglets, and it also provides an experimental basis for enteral use of AKG in swine production and clinical application to prevent intestinal epithelial damage.
Collapse
Affiliation(s)
- Liuqin He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Xihong Zhou
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Niu Huang
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Huan Li
- College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan, 410128, China
| | - Zhijie Cui
- Xiangtan University, Xiangtan, Hunan 411105, China
| | - Junquan Tian
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Qian Jiang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Shaojuan Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Jian Wu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of Chinese Academy of Sciences, Beijing, 10039, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Kang Yao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Scientific Observing and Experimental Station of Animal Nutrition and Feed Science in South-Central, Ministry of Agriculture, Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Co-Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China.,Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha, Hunan, 410006, China
| |
Collapse
|
159
|
Oertel S, Scholich K, Weigert A, Thomas D, Schmetzer J, Trautmann S, Wegner MS, Radeke HH, Filmann N, Brüne B, Geisslinger G, Tegeder I, Grösch S. Ceramide synthase 2 deficiency aggravates AOM-DSS-induced colitis in mice: role of colon barrier integrity. Cell Mol Life Sci 2017; 74:3039-3055. [PMID: 28405720 PMCID: PMC11107765 DOI: 10.1007/s00018-017-2518-9] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 03/30/2017] [Accepted: 04/03/2017] [Indexed: 02/07/2023]
Abstract
Loss of intestinal barrier functions is a hallmark of inflammatory bowel disease like ulcerative colitis. The molecular mechanisms are not well understood, but likely involve dysregulation of membrane composition, fluidity, and permeability, which are all essentially regulated by sphingolipids, including ceramides of different chain length and saturation. Here, we used a loss-of-function model (CerS2+/+ and CerS2-/- mice) to investigate the impact of ceramide synthase 2, a key enzyme in the generation of very long-chain ceramides, in the dextran sodium salt (DSS) evoked model of UC. CerS2-/- mice developed more severe disease than CerS2+/+ mice in acute DSS and chronic AOM/DSS colitis. Deletion of CerS2 strongly reduced very long-chain ceramides (Cer24:0, 24:1) but concomitantly increased long-chain ceramides and sphinganine in plasma and colon tissue. In naive CerS2-/- mice, the expression of tight junction proteins including ZO-1 was almost completely lost in the colon epithelium, leading to increased membrane permeability. This could also be observed in vitro in CerS2 depleted Caco-2 cells. The increase in membrane permeability in CerS2-/- mice did not manifest with apparent clinical symptoms in naive mice, but with slight inflammatory signs such as an increase in monocytes and IL-10. AOM/DSS and DSS treatment alone led to a further deterioration of membrane integrity and to severe clinical symptoms of the disease. This was associated with stronger upregulation of cytokines in CerS2-/- mice and increased infiltration of the colon wall by immune cells, particularly monocytes, CD4+ and Th17+ T-cells, and an increase in tumor burden. In conclusion, CerS2 is crucial for the maintenance of colon barrier function and epithelial integrity. CerS2 knockdown, and associated changes in several sphingolipids such as a drop in very long-chain ceramides/(dh)-ceramides, an increase in long-chain ceramides/(dh)-ceramides, and sphinganine in the colon, may weaken endogenous defense against the endogenous microbiome.
Collapse
Affiliation(s)
- Stephanie Oertel
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Klaus Scholich
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Andreas Weigert
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Dominique Thomas
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Julia Schmetzer
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sandra Trautmann
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Marthe-Susanna Wegner
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Heinfried H Radeke
- Institute of General Pharmacology and Toxicology, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Natalie Filmann
- Institute of Biostatistics and Mathematical Modeling Faculty of Medicine, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Bernhard Brüne
- Institute of Biochemistry I-Pathobiochemistry, Faculty of Medicine, Goethe-University Frankfurt, Frankfurt am Main, Germany
| | - Gerd Geisslinger
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Project Group Translational Medicine and Pharmacology (TMP), Frankfurt am Main, Germany
| | - Irmgard Tegeder
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Sabine Grösch
- Institute of Clinical Pharmacology, Faculty of Medicine, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany.
| |
Collapse
|
160
|
Abstract
Polymorphonuclear neutrophils (PMNs) are innate immune system cells that play an essential role in eradicating invading pathogens. PMN migration to sites of infection/inflammation requires exiting the microcirculation and subsequent crossing of epithelial barriers in mucosa-lined organs such as the lungs and intestines. Although these processes usually occur without significant damage to surrounding host tissues, dysregulated/excessive PMN transmigration and resultant bystander-tissue damage are characteristic of numerous mucosal inflammatory disorders. Mechanisms controlling PMN extravasation have been well characterized, but the molecular details regarding regulation of PMN migration across mucosal epithelia are poorly understood. Given that PMN migration across mucosal epithelia is strongly correlated with disease symptoms in many inflammatory mucosal disorders, enhanced understanding of the mechanisms regulating PMN transepithelial migration should provide insights into clinically relevant tissue-targeted therapies aimed at ameliorating PMN-mediated bystander-tissue damage. This review will highlight current understanding of the molecular interactions between PMNs and mucosal epithelia and the associated functional consequences.
Collapse
Affiliation(s)
- Jennifer C Brazil
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
161
|
Kim DG, Lee MR, Yoo JM, Park KI, Ma JY. Fermented herbal formula KIOM-MA-128 protects against acute colitis induced by dextran sodium sulfate in mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2017; 17:354. [PMID: 28679372 PMCID: PMC5499052 DOI: 10.1186/s12906-017-1855-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/22/2017] [Indexed: 12/15/2022]
Abstract
BACKGROUND Colitis is a well-known subtype of inflammatory bowel disease and is caused by diverse factors. Previous research has shown that KIOM-MA elicits anti-inflammatory and anti-allergic effects on various diseases. KIOM-MA-128, our novel herbal formula, was generated from KIOM-MA using probiotics to improve the therapeutic efficacy. We investigated whether KIOM-MA-128 has protective activity in a mouse model of acute colitis induced by dextran sodium sulfate (DSS). METHODS Colitis was induced by DSS administered to ICR mice in drinking water. KIOM-MA-128 (125 or 250 mg/kg) was orally administered once per day. The body weights of the mice were measured daily, and colonic endoscopies were performed at 5 and 8 days. Colon length as well as histological and cytokine changes were observed at the end of drug administration. RESULTS KIOM-MA-128 has pharmacological activity in an acute colitis model. KIOM-MA-128 reduced the loss of body weight and disease activity index (DAI) and inhibited the abnormally short colon lengths and the colonic damage in this mouse model of acute colitis. Moreover, KIOM-MA-128 suppressed pro-inflammatory cytokine expression and maintained the integrity of the tight junctions during DSS-induced colitis. CONCLUSION The results indicated that KIOM-MA-128 protects against DSS-induced colitis in mice and suggested that this formula might be a candidate treatment for inflammatory bowel disease (IBD).
Collapse
Affiliation(s)
- Dong-Gun Kim
- Korea Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu, 41062 Republic of Korea
| | - Mi-Ra Lee
- Korea Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu, 41062 Republic of Korea
| | - Jae-Myung Yoo
- Korea Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu, 41062 Republic of Korea
| | - Kwang-Il Park
- Korea Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu, 41062 Republic of Korea
| | - Jin-Yeul Ma
- Korea Medicine (KM)-Application Center, Korea Institute of Oriental Medicine, 70 Cheomdan-ro, Dong-gu, Daegu, 41062 Republic of Korea
| |
Collapse
|
162
|
Brazil JC, Sumagin R, Stowell SR, Lee G, Louis NA, Cummings RD, Parkos CA. Expression of Lewis-a glycans on polymorphonuclear leukocytes augments function by increasing transmigration. J Leukoc Biol 2017; 102:753-762. [PMID: 28600306 DOI: 10.1189/jlb.1ma0117-013r] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/31/2017] [Accepted: 04/09/2017] [Indexed: 12/17/2022] Open
Abstract
PMN-expressed fucosylated glycans from the Lewis glycan family, including Lewis-x (Lex) and sialyl Lewis-x (sLex), have previously been implicated in the regulation of important PMN functions, including selectin-mediated trafficking across vascular endothelium. Although glycans, such as Lex and sLex, which are based on the type 2 sequence (Galβ1-4GlcNAc-R), are abundant on PMNs, the presence of type 1 Galβ1-3GlcNAc-R glycans required for PMN expression of the closely related stereoisomer of Lex, termed Lewis-A (Lea), has not, to our knowledge, been reported. Here, we show that Lea is abundantly expressed by human PMNs and functionally regulates PMN migration. Using mAbs whose precise epitopes were determined using glycan array technology, Lea function was probed using Lea-selective mAbs and lectins, revealing increased PMN transmigration across model intestinal epithelia, which was independent of epithelial-expressed Lea Analyses of glycan synthetic machinery in PMNs revealed expression of β1-3 galactosyltransferase and α1-4 fucosyltransferase, which are required for Lea synthesis. Specificity of functional effects observed after ligation of Lea was confirmed by failure of anti-Lea mAbs to enhance migration using PMNs from individuals deficient in α1-4 fucosylation. These results demonstrate that Lea is expressed on human PMNs, and its specific engagement enhances PMN migration responses. We propose that PMN Lea represents a new target for modulating inflammation and regulating intestinal, innate immunity.
Collapse
Affiliation(s)
- Jennifer C Brazil
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA; .,Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Ronen Sumagin
- Department of Pathology, Emory University, Atlanta, Georgia, USA.,Department of Pathology, Northwestern University; Chicago, Illinois, USA
| | - Sean R Stowell
- Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Goo Lee
- Department of Pathology, Emory University, Atlanta, Georgia, USA
| | - Nancy A Louis
- Department of Neonatal-Perinatal Medicine, Emory University, Atlanta, Georgia, USA; and
| | - Richard D Cummings
- Department of Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Pathology, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
163
|
Zhang Z, Shen P, Lu X, Li Y, Liu J, Liu B, Fu Y, Cao Y, Zhang N. In Vivo and In Vitro Study on the Efficacy of Terpinen-4-ol in Dextran Sulfate Sodium-Induced Mice Experimental Colitis. Front Immunol 2017; 8:558. [PMID: 28553294 PMCID: PMC5427085 DOI: 10.3389/fimmu.2017.00558] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/25/2017] [Indexed: 12/19/2022] Open
Abstract
The purpose of this study was to investigate the protective effects of Terpinen-4-ol (TER) on dextran sulfate sodium (DSS)-induced experimental colitis and clarify the possible mechanisms. In vivo, an acute colitis model was used to confirm the anti-inflammatory activity and the possible mechanisms of TER in C57BL/6 and NLRP3-/- mice. In vitro, we performed further study, using RAW264.7 cells and Caco-2 cells, to confirm the molecular mechanisms of TER on inflammatory response. In C57BL/6 mice, TER alleviated DSS-induced disease activity index (DAI), colon length shortening, colonic pathological damage, and myeloperoxidase (MPO) activities. The production of pro-inflammatory mediators was significantly decreased by TER. Furthermore, TER inhibited NF-κB and NLRP3 inflammasome activation. Surprisingly, TER reduced the plasmatic lipopolysaccharide (LPS) concentration and re-balanced Escherichia coli (E. coli) and Lactobacillus levels. In addition, TER prevented the impairment of colon epithelium barrier by regulating the expression of zonula occludens-1 and occludin. In vitro, the results showed that TER significantly suppressed NLRP3 inflammasome activation in LPS-stimulated RAW264.7 cells, as indicated by decreased expression of NLRP3 and caspase-1, and lowered interleukin-1β secretion. In contrast, mice deficient for NLRP3 were less sensitive to DSS-induced acute colitis, and TER treatment exerted little protective effect on DSS-induced intestinal inflammation in NLRP3-/- mice. The protective effect of TER may be largely attributed to its inhibition of NLRP3 inflammasome activation in colon. Taken together, our findings showed that TER might be a potential agent for the treatment of ulcerative colitis.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Peng Shen
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xiaojie Lu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yanxin Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jiuxi Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Bo Liu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yunhe Fu
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Naisheng Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
164
|
Bibi S, Kang Y, Du M, Zhu MJ. Maternal high-fat diet consumption enhances offspring susceptibility to DSS-induced colitis in mice. Obesity (Silver Spring) 2017; 25:901-908. [PMID: 28339172 PMCID: PMC6461699 DOI: 10.1002/oby.21816] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2016] [Accepted: 02/08/2017] [Indexed: 12/30/2022]
Abstract
OBJECTIVE Maternal high-fat diet (HFD) may alter the offspring intestinal immune system, thereby enhancing susceptibility toward inflammatory bowel disease. The objective of the current study was to investigate the impact of maternal HFD on offspring intestinal health using a mouse model of dextran sulfate sodium (DSS)-induced colitis. METHODS Dams were provided with either HFD (60%) or control diet. After weaning, female offspring from both groups were kept on 45% HFD. At 14 weeks of age, offspring were subjected to 2.5% DSS in drinking water for 5 days, followed by 5 days of recovery. RESULTS Offspring from maternal HFD had higher body weight gain before DSS induction and had higher liver and fat weights with increased adipocyte size at necropsy. When subjected to DSS treatment, HFD offspring had accelerated body weight loss and exaggerated disease activity index. HFD offspring had an elevated histopathological score and interleukin (IL)-1β, IL-6, and IL-17 expression with upregulated NF-κB signaling. Maternal HFD resulted in enhanced neutrophil infiltration associated with elevated expression of monocyte chemoattractant protein-1. Furthermore, maternal HFD suppressed AMP-activated protein kinase activity and decreased sirtuin 1 and p53 protein contents in offspring gut. CONCLUSIONS Maternal HFD consumption predisposes offspring to a higher susceptibility to develop inflammatory bowel disease.
Collapse
Affiliation(s)
- Shima Bibi
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Yifei Kang
- School of Food Science, Washington State University, Pullman, WA 99164, USA
| | - Min Du
- Department of Animal Science, Washington State University, Pullman, WA 99164, USA
| | - Mei-Jun Zhu
- School of Food Science, Washington State University, Pullman, WA 99164, USA
- Corresponding author: Meijun Zhu, Ph.D., Associate Professor, School of Food Science, Washington State University, Pullman, WA 99163; Phone: (509) 335-4016; Fax: (509) 335-4815;
| |
Collapse
|
165
|
Zhang LC, Wang Y, Tong LC, Sun S, Liu WY, Zhang S, Wang RM, Wang ZB, Li L. Berberine alleviates dextran sodium sulfate-induced colitis by improving intestinal barrier function and reducing inflammation and oxidative stress. Exp Ther Med 2017; 13:3374-3382. [PMID: 28587416 PMCID: PMC5450762 DOI: 10.3892/etm.2017.4402] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 01/06/2017] [Indexed: 12/21/2022] Open
Abstract
Berberine has demonstrated efficacy in alleviating experimental colitis in vivo and in vitro. However, the anti-colitis mechanisms of berberine that enable it to promote intestinal barrier function in vivo remain unclear. The present study aimed to evaluate the effect of berberine on intestinal epithelial barrier function, expression of tight junction proteins and the levels of inflammatory and oxidative stress factors in the intestinal mucosa of dextran sulfate sodium (DSS)-induced colitis mice. Berberine (100 mg/kg) was administered for five days to mice with established colitis, induced by administration of DSS (3% w/v) for six days. Intestinal barrier function and the presence of proinflammatory factors, oxidative stress and active signaling pathways in the colon were determined principally by western blotting and reverse transcription-quantitative polymerase chain reaction. It was observed that berberine reduced weight loss, shortening of the colon and colon damage in DSS-colitis mice. In addition, berberine significantly inhibited the increase of fluorescein isothiocyanate-dextran in serum and the decrease of zonula occluden-1 (also known as tight junction protein-1), occludin and epithelial cadherin expression in colonic tissue, relative to a DSS-treated control group. Berberine also significantly inhibited the expression of interleukin (IL)-1β, IL-6 and tumor necrosis factor-α mRNA and phosphorylation of signal transducer and activator of transcription 3. Furthermore, berberine reduced the levels of myeloperoxidase and increased the levels of superoxide dismutase and catalase in colon and serum samples relative to the control group. The expression of cluster of differentiation 68 in the colon of colitis mice was also reduced by berberine. Collectively, these data suggest that berberine alleviates colitis principally by improving intestinal barrier function and promoting anti-inflammatory and antioxidative stress responses. In turn these effects inhibit macrophage infiltration into the colon and thus may be central to the anti-colitis activity of berberine.
Collapse
Affiliation(s)
- Li-Chao Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200071, P.R. China
| | - Yue Wang
- Department of Pharmacy, Ningxia Medical University, Yinchuan, Ningxia 750004, P.R. China
| | - Ling-Chang Tong
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Sheng Sun
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Wei-Ye Liu
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Su Zhang
- Department of Pharmacy, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai 200071, P.R. China.,Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Rong-Mei Wang
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Zhi-Bin Wang
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| | - Ling Li
- Department of Pharmacology, College of Pharmacy, The Second Military Medical University, Shanghai 200433, P.R. China
| |
Collapse
|
166
|
Zhang Z, Shen P, Liu J, Gu C, Lu X, Li Y, Cao Y, Liu B, Fu Y, Zhang N. In Vivo Study of the Efficacy of the Essential Oil of Zanthoxylum bungeanum Pericarp in Dextran Sulfate Sodium-Induced Murine Experimental Colitis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3311-3319. [PMID: 28368613 DOI: 10.1021/acs.jafc.7b01323] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The purpose of this study was to investigate the protective effects and mechanisms of the essential oil of Zanthoxylum bungeanum pericarp (ZBEO) on dextran sulfate sodium (DSS)-induced experimental colitis in mice. ZBEO decreased DSS-induced body weight loss, the disease activity index, colon length shortening, colonic pathological damage, and myeloperoxidase activities. The production of pro-inflammatory mediators was significantly alleviated by ZBEO. Further mechanistic analysis showed that ZBEO inhibited inflammation by regulating NF-κB and PPARγ pathways. ZBEO also inhibited NLRP3 activation in colitis in mice. Furthermore, ZBEO contributed to the maintenance of tight junction architecture by regulating the expression of zonula occludens-1 during colitis. Surprisingly, treatment with ZBEO increased levels of the commensal bacteria containing Lactobacillus and Bifidobacteria but reduced Escherichia coli levels in the feces of mice. These results suggested that supplementation with ZBEO might provide a new dietary strategy for the prevention of ulcerative colitis.
Collapse
Affiliation(s)
- Zecai Zhang
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Peng Shen
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Jiuxi Liu
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Cong Gu
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Xiaojie Lu
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Yanxin Li
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Yongguo Cao
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Bo Liu
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Yunhe Fu
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| | - Naisheng Zhang
- College of Veterinary Medicine, Jilin University , Changchun 130062, People's Republic of China
| |
Collapse
|
167
|
Lechuga S, Ivanov AI. Disruption of the epithelial barrier during intestinal inflammation: Quest for new molecules and mechanisms. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017; 1864:1183-1194. [PMID: 28322932 DOI: 10.1016/j.bbamcr.2017.03.007] [Citation(s) in RCA: 180] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Revised: 03/13/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023]
Abstract
The intestinal epithelium forms a key protective barrier that separates internal organs from the harmful environment of the gut lumen. Increased permeability of the gut barrier is a common manifestation of different inflammatory disorders contributing to the severity of disease. Barrier permeability is controlled by epithelial adherens junctions and tight junctions. Junctional assembly and integrity depend on fundamental homeostatic processes such as cell differentiation, rearrangements of the cytoskeleton, and vesicle trafficking. Alterations of intestinal epithelial homeostasis during mucosal inflammation may impair structure and remodeling of apical junctions, resulting in increased permeability of the gut barrier. In this review, we summarize recent advances in our understanding of how altered epithelial homeostasis affects the structure and function of adherens junctions and tight junctions in the inflamed gut. Specifically, we focus on the transcription reprogramming of the cell, alterations in the actin cytoskeleton, and junctional endocytosis and exocytosis. We pay special attention to knockout mouse model studies and discuss the relevance of these mechanisms to human gastrointestinal disorders.
Collapse
Affiliation(s)
- Susana Lechuga
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Andrei I Ivanov
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA 23298, USA; Virginia Institute of Molecular Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA; Massey Cancer Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
168
|
Ahmad R, Sorrell MF, Batra SK, Dhawan P, Singh AB. Gut permeability and mucosal inflammation: bad, good or context dependent. Mucosal Immunol 2017; 10:307-317. [PMID: 28120842 PMCID: PMC6171348 DOI: 10.1038/mi.2016.128] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 11/29/2016] [Indexed: 02/04/2023]
Abstract
Inflammatory bowel disease (IBD) is a multifactorial disease. A breach in the mucosal barrier, otherwise known as "leaky gut," is alleged to promote mucosal inflammation by intensifying immune activation. However, interaction between the luminal antigen and mucosal immune system is necessary to maintain mucosal homeostasis. Furthermore, manipulations leading to deregulated gut permeability have resulted in susceptibility in mice to colitis as well as to creating adaptive immunity. These findings implicate a complex but dynamic association between mucosal permeability and immune homeostasis; however, they also emphasize that compromised gut permeability alone may not be sufficient to induce colitis. Emerging evidence further supports the role(s) of proteins associated with the mucosal barrier in epithelial injury and repair: manipulations of associated proteins also modified epithelial differentiation, proliferation, and apoptosis. Taken together, the role of gut permeability and proteins associated in regulating mucosal inflammatory diseases appears to be more complex than previously thought. Herein, we review outcomes from recent mouse models where gut permeability was altered by direct and indirect effects of manipulating mucosal barrier-associated proteins, to highlight the significance of mucosal permeability and the non-barrier-related roles of these proteins in regulating chronic mucosal inflammatory conditions.
Collapse
Affiliation(s)
- R Ahmad
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, Nebraska, USA
| | - MF Sorrell
- Department of Internal Medicine, Omaha, Nebraska, USA
| | - SK Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, Nebraska, USA.,Eppley Institute for Research in Cancer and Allied Diseases, Omaha, Nebraska, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska USA and VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska USA
| | - P Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, Nebraska, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska USA and VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska USA.,VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska USA
| | - AB Singh
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, 985870 Nebraska Medical Center, Omaha, Nebraska, USA.,Fred and Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, Nebraska USA and VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska USA.,VA Nebraska-Western Iowa Health Care System, Omaha, Nebraska USA
| |
Collapse
|
169
|
Enteric Pathogens and Their Toxin-Induced Disruption of the Intestinal Barrier through Alteration of Tight Junctions in Chickens. Toxins (Basel) 2017; 9:toxins9020060. [PMID: 28208612 PMCID: PMC5331439 DOI: 10.3390/toxins9020060] [Citation(s) in RCA: 276] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/11/2022] Open
Abstract
Maintaining a healthy gut environment is a prerequisite for sustainable animal production. The gut plays a key role in the digestion and absorption of nutrients and constitutes an initial organ exposed to external factors influencing bird’s health. The intestinal epithelial barrier serves as the first line of defense between the host and the luminal environment. It consists of a continuous monolayer of intestinal epithelial cells connected by intercellular junctional complexes which shrink the space between adjacent cells. Consequently, free passing of solutes and water via the paracellular pathway is prevented. Tight junctions (TJs) are multi-protein complexes which are crucial for the integrity and function of the epithelial barrier as they not only link cells but also form channels allowing permeation between cells, resulting in epithelial surfaces of different tightness. Tight junction’s molecular composition, ultrastructure, and function are regulated differently with regard to physiological and pathological stimuli. Both in vivo and in vitro studies suggest that reduced tight junction integrity greatly results in a condition commonly known as “leaky gut”. A loss of barrier integrity allows the translocation of luminal antigens (microbes, toxins) via the mucosa to access the whole body which are normally excluded and subsequently destroys the gut mucosal homeostasis, coinciding with an increased susceptibility to systemic infection, chronic inflammation and malabsorption. There is considerable evidence that the intestinal barrier dysfunction is an important factor contributing to the pathogenicity of some enteric bacteria. It has been shown that some enteric pathogens can induce permeability defects in gut epithelia by altering tight junction proteins, mediated by their toxins. Resolving the strategies that microorganisms use to hijack the functions of tight junctions is important for our understanding of microbial pathogenesis, because some pathogens can utilize tight junction proteins as receptors for attachment and subsequent internalization, while others modify or destroy the tight junction proteins by different pathways and thereby provide a gateway to the underlying tissue. This review aims to deliver an overview of the tight junction structures and function, and its role in enteric bacterial pathogenesis with a special focus on chickens. A main conclusion will be that the molecular mechanisms used by enteric pathogens to disrupt epithelial barrier function in chickens needs a much better understanding, explicitly highlighted for Campylobacter jejuni, Salmonella enterica and Clostridium perfringens. This is a requirement in order to assist in discovering new strategies to avoid damages of the intestinal barrier or to minimize consequences from infections.
Collapse
|
170
|
Soy protein concentrate mitigates markers of colonic inflammation and loss of gut barrier function in vitro and in vivo. J Nutr Biochem 2017; 40:201-208. [DOI: 10.1016/j.jnutbio.2016.11.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 11/18/2016] [Accepted: 11/23/2016] [Indexed: 02/08/2023]
|
171
|
Muthas D, Reznichenko A, Balendran CA, Böttcher G, Clausen IG, Kärrman Mårdh C, Ottosson T, Uddin M, MacDonald TT, Danese S, Berner Hansen M. Neutrophils in ulcerative colitis: a review of selected biomarkers and their potential therapeutic implications. Scand J Gastroenterol 2017; 52:125-135. [PMID: 27610713 DOI: 10.1080/00365521.2016.1235224] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVES This review article describes the role of neutrophils in mucosal injury and the resulting crypt abscesses characteristic of ulcerative colitis. We also review selected biomarkers for monitoring neutrophil presence and activity in the mucosa as well as their potential as therapeutic targets. MATERIAL We have collated and selectively reviewed data on the most prominent well-established and emerging neutrophil-related biomarkers and potential therapeutic targets (calprotectin, lactoferrin, CXCR1, CXCR2, MMP-9, NGAL, elafin, HNE, pANCAs, MPO, CD16, CD177, CD64, HNPs, SLPI and PTX3) in ulcerative colitis. RESULTS Systemic and intestinal neutrophil activity increases substantially in active ulcerative colitis, driving tissue damage and extra-intestinal manifestations. Calprotectin is a robust neutrophil and disease biomarker, and a few neutrophil-related targets are being clinically explored as therapeutic targets. CONCLUSION We propose that targeting neutrophils and their inflammatory mediators per se is an opportunity that should be explored to identify new effective medical therapies. The overall clinical goal for neutrophil-targeted therapy will be to modulate, but not completely silence, neutrophil activity, thereby abolishing the destructive inflammation with associated acute and chronic tissue damage without compromising host-defense.
Collapse
Affiliation(s)
- Daniel Muthas
- a Department of Respiratory , Inflammation and Autoimmunity, AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Anna Reznichenko
- b Department of Cardiovascular and Metabolic Diseases , AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Clare A Balendran
- c Department of Personalised HealthCare & Biomarkers , AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Gerhard Böttcher
- d Department of Drug Safety and Metabolism , AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Ib Groth Clausen
- a Department of Respiratory , Inflammation and Autoimmunity, AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Carina Kärrman Mårdh
- a Department of Respiratory , Inflammation and Autoimmunity, AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Tomas Ottosson
- a Department of Respiratory , Inflammation and Autoimmunity, AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Mohib Uddin
- c Department of Personalised HealthCare & Biomarkers , AstraZeneca R&D Gothenburg , Mölndal , Sweden
| | - Thomas T MacDonald
- e Blizard Institute, Barts and the London School of Medicine and Dentistry, QMUL , London , UK
| | - Silvio Danese
- f Department of Gastroenterology , IBD Center, Humanitas Research Hospital , Milan , Italy
| | - Mark Berner Hansen
- a Department of Respiratory , Inflammation and Autoimmunity, AstraZeneca R&D Gothenburg , Mölndal , Sweden.,g Digestive Disease Center K, Bispebjerg Hospital, University of Copenhagen , Copenhagen , Denmark
| |
Collapse
|
172
|
Hansberry DR, Shah K, Agarwal P, Agarwal N. Fecal Myeloperoxidase as a Biomarker for Inflammatory Bowel Disease. Cureus 2017; 9:e1004. [PMID: 28286723 PMCID: PMC5332167 DOI: 10.7759/cureus.1004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic condition involving the inflammation of the colon and small intestine. IBD affects as many as 1.4 million people in the U.S. alone and costs the health care industry over $1.7 billion annually. Managing IBD normally requires invasive and often discomforting diagnostic tests. In an effort to alleviate the painful and costly nature of traditional diagnosis, there has been increasing research initiative focused on noninvasive biomarkers. PubMed, provided by the United States National Library of Medicine (NLM) at the National Institutes of Health, was utilized with the following search terms: 1) myeloperoxidase (MPO) 2), inflammatory bowel disease (IBD), and 3) neutrophils. The following terms were used interchangeably with search terms 1-3: 4) costs, 5) biomarkers, 6) review, and 7) etiology. In the context of IBD, myeloperoxidase (MPO), a lysosomal protein found in neutrophils, may serve as a viable biomarker for assessing disease status. Several studies demonstrated increased levels of neutrophils in patients with active IBD. Furthermore, studies have found significantly higher levels of MPO in patients with active IBD compared to patients without IBD as well as patients with inactive IBD. MPO is also expressed in higher concentrations in patients with more severe forms of IBD. When measuring treatment efficacy, MPO levels are indicative of the quality of response. MPO may serve as an important diagnostic and prognostic tool in assessing IBD status.
Collapse
Affiliation(s)
| | - Kush Shah
- Gastroenterology, Rowan University School of Osteopathic Medicine
| | - Prateek Agarwal
- Neurosurgery, Perelman School of Medicine at the University of Pennsylvania
| | - Nitin Agarwal
- Department of Neurological Surgery, University of Pittsburgh Medical Center
| |
Collapse
|
173
|
Substance-P protects intestinal epithelium against dextran sulfate sodium-induced toxicity in vitro. Mol Cell Toxicol 2017. [DOI: 10.1007/s13273-016-0043-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
174
|
Shawki A, McCole DF. Mechanisms of Intestinal Epithelial Barrier Dysfunction by Adherent-Invasive Escherichia coli. Cell Mol Gastroenterol Hepatol 2017; 3:41-50. [PMID: 28174756 PMCID: PMC5247418 DOI: 10.1016/j.jcmgh.2016.10.004] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Accepted: 10/14/2016] [Indexed: 12/12/2022]
Abstract
Pathobiont expansion, such as that of adherent-invasive Escherichia coli (AIEC), is an emerging factor associated with inflammatory bowel disease. The intestinal epithelial barrier is the first line of defense against these pathogens. Inflammation plays a critical role in altering the epithelial barrier and is a major factor involved in promoting the expansion and pathogenesis of AIEC. AIEC in turn can exacerbate intestinal epithelial barrier dysfunction by targeting multiple elements of the barrier. One critical element of the epithelial barrier is the tight junction. Increasing evidence suggests that AIEC may selectively target protein components of tight junctions, leading to increased barrier permeability. This may represent one mechanism by which AIEC could contribute to the development of inflammatory bowel disease. This review article discusses potential mechanisms by which AIEC can disrupt epithelial tight junction function and intestinal barrier function.
Collapse
Key Words
- AIEC, adherent-invasive Escherichia coli
- AJ, adherens junction
- AJC, apical junctional complex
- BP, bacterial peptidoglycans
- CD, Crohn’s disease
- CEACAM6, carcinoembryonic antigen–related cell-adhesion molecule
- IBD, inflammatory bowel disease
- IEC, intestinal epithelial cell
- IFN, interferon
- IL, interleukin
- Inflammatory Bowel Disease
- Intestinal Permeability
- JAM-A, junctional adhesion molecule-A
- LPF, long polar fimbriae
- MLC, myosin light chain
- MLCK, myosin light chain kinase
- NF-κB, nuclear factor-κB
- NOD2, nucleotide-binding oligomerization domain 2
- PDZ, PSD95-DlgA-zonula occludens-1 homology domain
- TJ, tight junction
- TNF, tumor necrosis factor
- Tight Junctions
- UC, ulcerative colitis
- ZO, zonula occludens
Collapse
Affiliation(s)
| | - Declan F. McCole
- Division of Biomedical Sciences, University of California Riverside, Riverside, California
| |
Collapse
|
175
|
Woo JK, Choi S, Kang JH, Kim DE, Hurh BS, Jeon JE, Kim SY, Oh SH. Fermented barley and soybean (BS) mixture enhances intestinal barrier function in dextran sulfate sodium (DSS)-induced colitis mouse model. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:498. [PMID: 27912750 PMCID: PMC5135811 DOI: 10.1186/s12906-016-1479-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 11/09/2016] [Indexed: 12/23/2022]
Abstract
BACKGROUND Inflammatory bowel disease (IBD) is characterized by chronic or relapsing immune system activation and inflammation within the gastrointestinal tract. The lack of safety and efficacy of standard therapies, the use of food supplements for managing IBD is increasing, and many studies have reported that various food supplements provide many beneficial effects for the IBD. METHODS This study aimed to evaluate the anti-colitis effects of dietary supplementation with a fermented barley and soybean mixture (BS) on intestinal inflammation using a murine model of IBD. Female C57BL/6 mice were administered with either BS (100 and 200 mg/kg/day) or vehicle (PBS) control through oral gavages for 3 days and received 5% dextran sulfate sodium (DSS) drinking water to induce colitis. Mice body weight was measured every two days and disease activity index (DAI) score was determined on Day 15; mice were sacrificed and colons were analyzed by H & E staining and RT-PCR. We also measured intestinal barrier function in vitro using DSS-treated Caco-2 cells by assessing ZO-1 immunofluorescence staining and Western blotting and in vivo by measuring serum level of FITC-Dextran and by performing bacteria culture from mesenteric lymph nodes (MLN) extract. The gut microbiota was examined by real time PCR using fecal DNA. RESULTS We found that BS alleviated the severity of colitis in a DSS-induced colitis mouse model, and suppressed levels of pro-inflammatory cytokines in colonic tissue. Moreover, BS prevented epithelial barrier dysfunction, inducing an increase of tight junction protein levels in colonic tissues, BS also inhibited FITC-dextran permeability, and suppressed bacterial translocation to MLNs. In addition, BS increased the levels of Lactobacilli and Bacteroides, which have anti-inflammatory properties. CONCLUSION Our study suggests that BS has protective roles against inflammatory bowel disease through changes in inflammatory activity, tight junction protein expression, and gut microbiota composition in DSS-induced colitis.
Collapse
Affiliation(s)
- Jong Kyu Woo
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21999, Republic of Korea
- Laboratory of Developmental Biology and Genomics, College of Veterinary Medicine, Seoul National University, Seoul, 08826, Republic of Korea
| | - Seungho Choi
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21999, Republic of Korea
| | - Ju-Hee Kang
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21999, Republic of Korea
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, 410-769, Republic of Korea
| | - Dae Eung Kim
- Sempio Fermentation Research Center, Osong, 363-954, Republic of Korea
| | - Byung-Serk Hurh
- Sempio Fermentation Research Center, Osong, 363-954, Republic of Korea
| | - Jong-Eun Jeon
- Sempio Fermentation Research Center, Osong, 363-954, Republic of Korea
| | - Sun Yeou Kim
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21999, Republic of Korea
| | - Seung Hyun Oh
- Gachon Institute of Pharmaceutical Sciences, Gachon University, Incheon, 21999, Republic of Korea.
- College of Pharmacy, Gachon University, 191 Hambakmoero, Yeonsu-gu, Incheon, 21999, Republic of Korea.
| |
Collapse
|
176
|
Barmeyer C, Fromm M, Schulzke JD. Active and passive involvement of claudins in the pathophysiology of intestinal inflammatory diseases. Pflugers Arch 2016; 469:15-26. [PMID: 27904960 DOI: 10.1007/s00424-016-1914-6] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 11/20/2016] [Accepted: 11/22/2016] [Indexed: 12/18/2022]
Abstract
Intestinal inflammatory diseases, four of which are discussed here, are associated with alterations of claudins. In ulcerative colitis, diarrhea and antigen entry into the mucosa occurs. Claudin-2 is upregulated but data on other claudins are still limited or vary (e.g., claudin-1 and -4). Apart from that, tight junction changes contribute to diarrhea via a leak flux mechanism, while protection against antigen entry disappears behind epithelial gross lesions (erosions) and apoptotic foci. Crohn's disease is additionally characterized by a claudin-5 and claudin-8 reduction which plays an active role in antigen uptake already before gross lesions appear. In microscopic colitis (MC), upregulation of claudin-2 expression is weak and a reduction in claudin-4 may be only passively involved, while sodium malabsorption represents the main diarrheal mechanism. However, claudin-5 is removed from MC tight junctions which may be an active trigger for inflammation through antigen uptake along the so-called leaky gut concept. In celiac disease, primary barrier defects are discussed in the context of candidate genes as PARD3 which regulate cell polarity and tight junctions. The loss of claudin-5 allows small antigens to invade, while the reductions in others like claudin-3 are rather passive events. Taken together, the specific role of single tight junction proteins for the onset and perpetuation of inflammation and the recovery from these diseases is far from being fully understood and is clearly dependent on the stage of the disease, the background of the other tight junction components, the transport activity of the mucosa, and the presence of other barrier features like gross lesions, an orchestral interplay which is discussed in this article.
Collapse
Affiliation(s)
- Christian Barmeyer
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Michael Fromm
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany
| | - Jörg-Dieter Schulzke
- Institute of Clinical Physiology, Charité-Universitätsmedizin Berlin, 12203, Berlin, Germany.
| |
Collapse
|
177
|
Analysis of the Impact of Isoquinoline Alkaloids, Derived from Macleaya cordata Extract, on the Development and Innate Immune Response in Swine and Poultry. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1352146. [PMID: 28042566 PMCID: PMC5155115 DOI: 10.1155/2016/1352146] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/24/2016] [Indexed: 11/17/2022]
Abstract
Medicinal extract has been chronicled extensively in traditional Chinese medicine. Isoquinoline alkaloids, extract of Macleaya cordata (Willd.) R. Br., have been used as feed additive in both swine and poultry. Dietary supplementation with isoquinoline alkaloids increases feed intake and weight gain. In addition, recent researches have demonstrated that isoquinoline alkaloids can regulate metabolic processes, innate immune system, and digestive functioning in animals. This review summarizes the latest scientific researches on isoquinoline alkaloids which are extracted from Macleaya cordata (Willd.) R. Br. This review specifically focuses on its role as a feed supplement and its associated impact on growth performance and innate immune system, as well as its capacity to act as a substitute for oral antibiotics.
Collapse
|
178
|
Cazarin CBB, Rodriguez-Nogales A, Algieri F, Utrilla MP, Rodríguez-Cabezas ME, Garrido-Mesa J, Guerra-Hernández E, Braga PADC, Reyes FGR, Maróstica MR, Gálvez J. Intestinal anti-inflammatory effects of Passiflora edulis peel in the dextran sodium sulphate model of mouse colitis. J Funct Foods 2016. [DOI: 10.1016/j.jff.2016.08.020] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
179
|
Luissint AC, Parkos CA, Nusrat A. Inflammation and the Intestinal Barrier: Leukocyte-Epithelial Cell Interactions, Cell Junction Remodeling, and Mucosal Repair. Gastroenterology 2016; 151:616-32. [PMID: 27436072 PMCID: PMC5317033 DOI: 10.1053/j.gastro.2016.07.008] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Revised: 06/13/2016] [Accepted: 07/06/2016] [Indexed: 02/06/2023]
Abstract
The intestinal tract is lined by a single layer of columnar epithelial cells that forms a dynamic, permeable barrier allowing for selective absorption of nutrients, while restricting access to pathogens and food-borne antigens. Precise regulation of epithelial barrier function is therefore required for maintaining mucosal homeostasis and depends, in part, on barrier-forming elements within the epithelium and a balance between pro- and anti-inflammatory factors in the mucosa. Pathologic states, such as inflammatory bowel disease, are associated with a leaky epithelial barrier, resulting in excessive exposure to microbial antigens, recruitment of leukocytes, release of soluble mediators, and ultimately mucosal damage. An inflammatory microenvironment affects epithelial barrier properties and mucosal homeostasis by altering the structure and function of epithelial intercellular junctions through direct and indirect mechanisms. We review our current understanding of complex interactions between the intestinal epithelium and immune cells, with a focus on pathologic mucosal inflammation and mechanisms of epithelial repair. We discuss leukocyte-epithelial interactions, as well as inflammatory mediators that affect the epithelial barrier and mucosal repair. Increased knowledge of communication networks between the epithelium and immune system will lead to tissue-specific strategies for treating pathologic intestinal inflammation.
Collapse
Affiliation(s)
- Anny-Claude Luissint
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
180
|
Nour SA, Abdelmalak NS, Naguib MJ. Novel chewable colon targeted tablets of bumadizone calcium for treatment of ulcerative colitis: Formulation and optimization. J Drug Deliv Sci Technol 2016. [DOI: 10.1016/j.jddst.2016.06.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
181
|
Cifarelli V, Ivanov S, Xie Y, Son NH, Saunders BT, Pietka TA, Shew TM, Yoshino J, Sundaresan S, Davidson NO, Goldberg IJ, Gelman AE, Zinselmeyer BH, Randolph GJ, Abumrad NA. CD36 deficiency impairs the small intestinal barrier and induces subclinical inflammation in mice. Cell Mol Gastroenterol Hepatol 2016; 3:82-98. [PMID: 28066800 PMCID: PMC5217470 DOI: 10.1016/j.jcmgh.2016.09.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND & AIMS CD36 has immuno-metabolic actions and is abundant in the small intestine on epithelial, endothelial and immune cells. We examined the role of CD36 in gut homeostasis using mice null for CD36 (CD36KO) and with CD36 deletion specific to enterocytes (Ent-CD36KO) or endothelial cells (EC-CD36KO). METHODS Intestinal morphology was evaluated using immunohistochemistry and electron microscopy (EM). Intestinal inflammation was determined from neutrophil infiltration and expression of cytokines, toll-like receptors and COX-2. Barrier integrity was assessed from circulating lipopolysaccharide (LPS) and dextran administered intragastrically. Epithelial permeability to luminal dextran was visualized using two photon microscopy. RESULTS The small intestines of CD36KO mice fed a chow diet showed several abnormalities including extracellular matrix (ECM) accumulation with increased expression of ECM proteins, evidence of neutrophil infiltration, inflammation and compromised barrier function. EM showed shortened desmosomes with decreased desmocollin 2 expression. Systemically, leukocytosis and neutrophilia were present together with 80% reduction of anti-inflammatory Ly6Clow monocytes. Bone marrow transplants supported the primary contribution of non-hematopoietic cells to the inflammatory phenotype. Specific deletion of endothelial but not of enterocyte CD36 reproduced many of the gut phenotypes of germline CD36KO mice including fibronectin deposition, increased interleukin 6, neutrophil infiltration, desmosome shortening and impaired epithelial barrier function. CONCLUSIONS CD36 loss results in chronic neutrophil infiltration of the gut, impairs barrier integrity and systemically causes subclinical inflammation. Endothelial cell CD36 deletion reproduces the major intestinal phenotypes. The findings suggest an important role of the endothelium in etiology of gut inflammation and loss of epithelial barrier integrity.
Collapse
Affiliation(s)
- Vincenza Cifarelli
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri,Reprint requests Address requests for reprints to: Nada A. Abumrad, PhD, or Vincenza Cifarelli, PhD, Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Campus Box 8031, St. Louis, Missouri 63110. fax: (314) 362-8230.Department of MedicineCenter for Human NutritionWashington University School of MedicineCampus Box 8031St. LouisMissouri 63110
| | - Stoyan Ivanov
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Yan Xie
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Ni-Huiping Son
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, New York
| | - Brian T. Saunders
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Terri A. Pietka
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri
| | - Trevor M. Shew
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri
| | - Jun Yoshino
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri
| | - Sinju Sundaresan
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri
| | - Nicholas O. Davidson
- Department of Medicine, Division of Gastroenterology, Washington University School of Medicine, St Louis, Missouri
| | - Ira J. Goldberg
- Department of Medicine, Division of Endocrinology, Diabetes and Metabolism, New York University Langone Medical Center, New York, New York
| | - Andrew E. Gelman
- Department of Surgery, Washington University School of Medicine, St Louis, Missouri
| | - Bernd H. Zinselmeyer
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Nada A. Abumrad
- Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, St Louis, Missouri,Reprint requests Address requests for reprints to: Nada A. Abumrad, PhD, or Vincenza Cifarelli, PhD, Department of Medicine, Center for Human Nutrition, Washington University School of Medicine, Campus Box 8031, St. Louis, Missouri 63110. fax: (314) 362-8230.Department of MedicineCenter for Human NutritionWashington University School of MedicineCampus Box 8031St. LouisMissouri 63110
| |
Collapse
|
182
|
Butin-Israeli V, Houser MC, Feng M, Thorp EB, Nusrat A, Parkos CA, Sumagin R. Deposition of microparticles by neutrophils onto inflamed epithelium: a new mechanism to disrupt epithelial intercellular adhesions and promote transepithelial migration. FASEB J 2016; 30:4007-4020. [PMID: 27553226 DOI: 10.1096/fj.201600734r] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Neutrophil [polymorphonuclear leukocyte (PMN)] transepithelial migration (TEM) is a hallmark of inflammatory mucosal disorders. PMN TEM is associated with epithelial injury; however, mechanisms involved in this process are not well defined. The current work describes a new mechanism whereby deposition of PMN membrane-derived microparticles (PMN-MPs) onto intestinal epithelial cells (IECs) during TEM leads to loss of epithelial cadherins, thus promoting epithelial injury and increased PMN recruitment. PMN-MPs secreted by activated PMNs during TEM displayed a high level of enzymatically active matrix metalloproteinase 9 (MMP-9), and were capable of mediating potent effects on IEC integrity. Isolated PMN-MPs efficiently bound to IEC monolayers and induced cleavage of desmoglein-2 (DSG-2) but not E-cadherin, leading to disruption of IEC intercellular adhesions. Furthermore, PMN-MP binding to intestinal epithelium in vitro in transwell assays and in vivo in ligated intestinal loop preparations facilitated increases in PMN TEM. These effects were MMP-9 dependent and were reversed in the presence of specific pharmacological inhibitors. Finally, we demonstrated that IEC Dsg-2 serves as a barrier for migrating PMNs, and its removal by PMN-MP-associated MMP-9 facilitates PMN trafficking across epithelial layers. Our findings thus implicate PMN-MPs in PMN-mediated inflammation and epithelial damage, as observed in inflammatory disorders of mucosal surfaces.-Butin-Israeli, V., Houser, M. C., Feng, M., Thorp, E. B., Nusrat, A., Parkos, C. A, Sumagin, R. Deposition of microparticles by neutrophils onto inflamed epithelium: a new mechanism to disrupt epithelial intercellular adhesions and promote transepithelial migration.
Collapse
Affiliation(s)
- Veronika Butin-Israeli
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Madelyn C Houser
- Department of Physiology, Emory University School of Medicine, Atlanta, Georgia, USA; and
| | - Mingli Feng
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Edward B Thorp
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Asma Nusrat
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Ronen Sumagin
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA;
| |
Collapse
|
183
|
Macleaya cordata Extract Decreased Diarrhea Score and Enhanced Intestinal Barrier Function in Growing Piglets. BIOMED RESEARCH INTERNATIONAL 2016; 2016:1069585. [PMID: 27525260 PMCID: PMC4976178 DOI: 10.1155/2016/1069585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/16/2016] [Indexed: 11/20/2022]
Abstract
Macleaya cordata extract is of great scientific and practical interest to researchers, due to its antimicrobial and anti-inflammatory responses within experimental animals. This study was designed to determine the diarrhea score and innate immunity of growing piglets after they had received Macleaya cordata extract supplements. A total of 240 growing pigs were randomly assigned to one of three dietary treatments, with 8 replicates per treatment and 10 piglets per replicate. All pigs received a basal diet containing similar amounts of nutrients. The three treatments were a control (no additive), an antibiotic (200 mg/kg colistin), and the Macleaya cordata extract supplement group (40 mg/kg Macleaya cordata extract). The diarrhea score was calculated after D 28. The jejunal samples were obtained from five piglets selected randomly from each treatment on D 28. In comparison with the control group, the dietary Macleaya cordata extract and colistin group demonstrated a substantially decreased diarrhea score. The introduction of Macleaya cordata extract supplements to the diet significantly increased volumes of ZO-1 and claudin-1, particularly in comparison with the pigs in the control group (P < 0.05). The findings indicate that Macleaya cordata extract does enhance intestinal barrier function in growing piglets and that it could be used as a viable substitute for antibiotics.
Collapse
|
184
|
Souza-Fonseca-Guimaraes F, Krasnova Y, Putoczki T, Miles K, MacDonald KP, Town L, Shi W, Gobe GC, McDade L, Mielke LA, Tye H, Masters SL, Belz GT, Huntington ND, Radford-Smith G, Smyth MJ. Granzyme M has a critical role in providing innate immune protection in ulcerative colitis. Cell Death Dis 2016; 7:e2302. [PMID: 27441655 PMCID: PMC4973354 DOI: 10.1038/cddis.2016.215] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 12/14/2022]
Abstract
Inflammatory bowel disease (IBD) is an immunoregulatory disorder, associated with a chronic and inappropriate mucosal immune response to commensal bacteria, underlying disease states such as ulcerative colitis (UC) and Crohn's disease (CD) in humans. Granzyme M (GrzM) is a serine protease expressed by cytotoxic lymphocytes, in particular natural killer (NK) cells. Granzymes are thought to be involved in triggering cell death in eukaryotic target cells; however, some evidence supports their role in inflammation. The role of GrzM in the innate immune response to mucosal inflammation has never been examined. Here, we discover that patients with UC, unlike patients with CD, display high levels of GrzM mRNA expression in the inflamed colon. By taking advantage of well-established models of experimental UC, we revealed that GrzM-deficient mice have greater levels of inflammatory indicators during dextran sulfate sodium (DSS)-induced IBD, including increased weight loss, greater colon length reduction and more severe intestinal histopathology. The absence of GrzM expression also had effects on gut permeability, tissue cytokine/chemokine dynamics, and neutrophil infiltration during disease. These findings demonstrate, for the first time, that GrzM has a critical role during early stages of inflammation in UC, and that in its absence colonic inflammation is enhanced.
Collapse
Affiliation(s)
- F Souza-Fonseca-Guimaraes
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,Faculty of Medicine, Dentistry and Health Sciences, University of Melbourne, Melbourne, Victoria 3010, Australia.,Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - Y Krasnova
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia
| | - T Putoczki
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - K Miles
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - K P MacDonald
- Antigen Presentation and Immunoregulation Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - L Town
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - W Shi
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - G C Gobe
- Centre for Kidney Disease Research, School of Medicine, University of Queensland at Translational Research Institute, St Lucia, Queensland 4006, Australia
| | - L McDade
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia
| | - L A Mielke
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - H Tye
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - S L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - G T Belz
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - N D Huntington
- Division of Molecular Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria 3052, Australia
| | - G Radford-Smith
- Inflammatory Bowel Disease Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,Department of Gastroenterology, Royal Brisbane and Women's Hospital, Herston, Queensland 4006, Australia
| | - M J Smyth
- Immunology in Cancer and Infection Laboratory, QIMR Berghofer Medical Research Institute, Herston, Queensland 4006, Australia.,School of Medicine, University of Queensland, St Lucia, Queensland 4006, Australia
| |
Collapse
|
185
|
Al-Ghadban S, Kaissi S, Homaidan FR, Naim HY, El-Sabban ME. Cross-talk between intestinal epithelial cells and immune cells in inflammatory bowel disease. Sci Rep 2016; 6:29783. [PMID: 27417573 PMCID: PMC4945922 DOI: 10.1038/srep29783] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 06/20/2016] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) involves functional impairment of intestinal epithelial cells (IECs), concomitant with the infiltration of the lamina propria by inflammatory cells. We explored the reciprocal paracrine and direct interaction between human IECs and macrophages (MΦ) in a co-culture system that mimics some aspects of IBD. We investigated the expression of intercellular junctional proteins in cultured IECs under inflammatory conditions and in tissues from IBD patients. IECs establish functional gap junctions with IECs and MΦ, respectively. Connexin (Cx26) and Cx43 expression in cultured IECs is augmented under inflammatory conditions; while, Cx43-associated junctional complexes partners, E-cadherin, ZO-1, and β-catenin expression is decreased. The expression of Cx26 and Cx43 in IBD tissues is redistributed to the basal membrane of IEC, which is associated with decrease in junctional complex proteins' expression, collagen type IV expression and infiltration of MΦ. These data support the notion that the combination of paracrine and hetero-cellular communication between IECs and MΦs may regulate epithelial cell function through the establishment of junctional complexes between inflammatory cells and IECs, which ultimately contribute to the dys-regulation of intestinal epithelial barrier.
Collapse
Affiliation(s)
- Sara Al-Ghadban
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American university of Beirut, Beirut, Lebanon
| | - Samira Kaissi
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American university of Beirut, Beirut, Lebanon
| | - Fadia R Homaidan
- Inflammation group-Nature Conservation Center (NCC) for Sustainable Futures, American University of Beirut, Lebanon
| | - Hassan Y Naim
- Department of Physiological Chemistry, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Marwan E El-Sabban
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American university of Beirut, Beirut, Lebanon
| |
Collapse
|
186
|
Abnormal cannabidiol attenuates experimental colitis in mice, promotes wound healing and inhibits neutrophil recruitment. JOURNAL OF INFLAMMATION-LONDON 2016; 13:21. [PMID: 27418880 PMCID: PMC4944257 DOI: 10.1186/s12950-016-0129-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 06/15/2016] [Indexed: 12/30/2022]
Abstract
Background Non-psychotropic atypical cannabinoids have therapeutic potential in a variety of inflammatory conditions including those of the gastrointestinal tract. Here we examined the effects of the atypical cannabinoid abnormal cannabidiol (Abn-CBD) on wound healing, inflammatory cell recruitment and colitis in mice. Methods Colitis was induced in CD1 mice by a single intrarectal administration of trinitrobenzene sulfonic acid (TNBS, 4 mg/100 μl in 30 % ethanol) and Abn-CBD and/or the antagonists O-1918 (Abd-CBD), AM251 (CB1 receptor) and AM630 (CB2 receptor), were administered intraperitoneally (all 5 mg/kg, twice daily for 3 days). The degree of colitis was assessed macro- and microscopically and tissue myeloperoxidase activity was determined. The effects of Abn-CBD on wound healing of endothelial and epithelial cells (LoVo) were assessed in a scratch injury assay. Human neutrophils were employed in Transwell assays or perfused over human umbilical vein endothelial cells (HUVEC) to study the effect of Abn-CBD on neutrophil accumulation and transmigration. Results TNBS-induced colitis was attenuated by treatment with Abn-CBD. Histological, macroscopic colitis scores and tissue myeloperoxidase activity were significantly reduced. These effects were inhibited by O-1918, but not by AM630, and only in part by AM251. Wound healing of both HUVEC and LoVo cells was enhanced by Abn-CBD. Abn-CBD inhibited neutrophil migration towards IL-8, and dose-dependently inhibited accumulation of neutrophils on HUVEC. Conclusions Abn-CBD is protective against TNBS-induced colitis, promotes wound healing of endothelial and epithelial cells and inhibits neutrophil accumulation on HUVEC monolayers. Thus, the atypical cannabinoid Abn-CBD represents a novel potential therapeutic in the treatment of intestinal inflammatory diseases. Electronic supplementary material The online version of this article (doi:10.1186/s12950-016-0129-0) contains supplementary material, which is available to authorized users.
Collapse
|
187
|
de Bruyn M, Vandooren J, Ugarte-Berzal E, Arijs I, Vermeire S, Opdenakker G. The molecular biology of matrix metalloproteinases and tissue inhibitors of metalloproteinases in inflammatory bowel diseases. Crit Rev Biochem Mol Biol 2016; 51:295-358. [PMID: 27362691 DOI: 10.1080/10409238.2016.1199535] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
188
|
Chen F, Cao A, Yao S, Evans-Marin HL, Liu H, Wu W, Carlsen ED, Dann SM, Soong L, Sun J, Zhao Q, Cong Y. mTOR Mediates IL-23 Induction of Neutrophil IL-17 and IL-22 Production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2016; 196:4390-9. [PMID: 27067005 PMCID: PMC4868807 DOI: 10.4049/jimmunol.1501541] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 03/11/2016] [Indexed: 12/31/2022]
Abstract
It has been shown recently that neutrophils are able to produce IL-22 and IL-17, which differentially regulate the pathogenesis of inflammatory bowel disease. However, it is still largely unknown how the neutrophil production of IL-22 and IL-17 is regulated, and their role in the pathogenesis of inflammatory bowel disease. In this study, we found that IL-23 promoted neutrophil production of IL-17 and IL-22. IL-23 stimulated the neutrophil expression of IL-23R as well as rorc and ahr. Retinoid acid receptor-related orphan receptor γ t and aryl-hydrocarbon receptor differentially regulated IL-23 induction of neutrophil IL-17 and IL-22. In addition, IL-23 induced the activation of mTOR in neutrophils. Blockade of the mTOR pathway inhibited IL-23-induced expression of rorc and ahr, as well as IL-17 and IL-22 production. By using a microbiota Ag-specific T cell-mediated colitis model, we demonstrated that depletion of neutrophils, as well as blockade of IL-22, resulted in a significant increase in the severity of colitis, thereby indicating a protective role of neutrophils and IL-22 in chronic colitis. Collectively, our data revealed that neutrophils negatively regulate microbiota Ag-specific T cell induction of colitis, and IL-23 induces neutrophil production of IL-22 and IL-17 through induction of rorc and ahr, which is mediated by the mTOR pathway.
Collapse
MESH Headings
- Animals
- Cecum/pathology
- Cell Differentiation
- Colitis/immunology
- Colitis/pathology
- Colon/pathology
- Interleukin-17/biosynthesis
- Interleukin-23/metabolism
- Interleukin-23/pharmacology
- Interleukins/biosynthesis
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neutrophils/metabolism
- Nuclear Receptor Subfamily 1, Group F, Member 3/genetics
- Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism
- Phosphatidylinositol 3-Kinases/metabolism
- Receptors, Aryl Hydrocarbon/genetics
- Receptors, Aryl Hydrocarbon/metabolism
- Receptors, Interleukin/genetics
- Receptors, Interleukin/metabolism
- Signal Transduction
- TOR Serine-Threonine Kinases/genetics
- Th17 Cells/immunology
- Interleukin-22
Collapse
Affiliation(s)
- Feidi Chen
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555
| | - Anthony Cao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Suxia Yao
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Heather L Evans-Marin
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Han Liu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; Department of Gastroenterology, The Qilu Hospital, Shandong University, Shandong 250012, China
| | - Wei Wu
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; Department of Gastroenterology, The Shanghai Tenth People's Hospital, Tongji University, Shanghai 200072, China
| | - Eric D Carlsen
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555; Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Sara M Dann
- Department of Medicine, University of Texas Medical Branch, Galveston, TX 77555; and
| | - Lynn Soong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | - Jiaren Sun
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555
| | | | - Yingzi Cong
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555; Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555;
| |
Collapse
|
189
|
Herb-partitioned moxibustion upregulated the expression of colonic epithelial tight junction-related proteins in Crohn's disease model rats. Chin Med 2016; 11:20. [PMID: 27118991 PMCID: PMC4845475 DOI: 10.1186/s13020-016-0090-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 04/14/2016] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Herb-partitioned moxibustion (HPM) at Tianshu (ST25) and Qihai (RN6) has been used to treat Crohn's disease (CD). Injury to intestinal epithelial tight junctions (TJs) is the leading cause of CD onset with under expression of TJ-related proteins such as occludin, claudin-1, and zonula occludens protein-1 (ZO-1). This study aimed to investigate whether HPM can change the permeability of the intestinal epithelial barrier by affecting the expression of colonic epithelial TJ-related proteins in vitro. METHODS Forty-eight male Sprague-Dawley rats were randomly divided into four groups of twelve rats: normal control (NC) group; model control (MC) group; herb-partitioned moxibustion (HPM) group; and mesalazine control (MESA) group. The rats in the latter three groups were given trinitrobenzene sulfonic acid (TNBS) enemas to establish CD models. The HPM group was treated with HPM at Tianshu (ST25) and Qihai (RN6) once daily for 14 consecutive days, while the MESA group was given mesalazine solution (at the proportion of 0.018:1) by lavage twice daily for the same period. After the treatment period, the colon tissues from all groups were partly processed for macroscopic damage assessment and histological observation, and partly purified and cultured in vitro to examine the permeability of the intestinal epithelial cell barrier by trans-epithelial electrical resistance (TEER). Western blot and fluorescence quantitative polymerase chain reaction (FQ-PCR) analyses were performed to observe the expression of occludin, claudin-1, and ZO-1 proteins and mRNAs, respectively. RESULTS In the HPM and MESA groups, the typical CD macroscopic damage, i.e., inflammatory cell infiltration in colonic mucosa and submucosa, submucosal lymphoid follicular hyperplasia, hyperemia and edema, and morphological changes were improved to different degrees in the colonic tissues (HPM, MESA vs. MC for macroscopic score of colonic damage: all P < 0.001). The decreasing tendencies were minor for colonic TEER values (HPM, MESA vs. MC: all P < 0.001), and expression of intestinal epithelial TJ-related proteins (HPM, MESA vs. MC: all P < 0.05) and mRNAs (HPM, MESA vs. MC: all P < 0.05), especially in the HPM group (HPM vs. MESA for TEER values: P < 0.001). CONCLUSIONS HPM at Tianshu (ST25) and Qihai (RN6) upregulated the expression of occludin, claudin-1, and ZO-1 in TNBS-induced CD model rats.
Collapse
|
190
|
Intestinal barrier dysfunction: implications for chronic inflammatory conditions of the bowel. Nutr Res Rev 2016; 29:40-59. [DOI: 10.1017/s0954422416000019] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AbstractThe intestinal epithelium of adult humans acts as a differentially permeable barrier that separates the potentially harmful contents of the lumen from the underlying tissues. Any dysfunction of this boundary layer that disturbs the homeostatic equilibrium between the internal and external environments may initiate and sustain a biochemical cascade that results in inflammation of the intestine. Key to such dysfunction are genetic, microbial and other environmental factors that, singularly or in combination, result in chronic inflammation that is symptomatic of inflammatory bowel disease (IBD). The aim of the present review is to assess the scientific evidence to support the hypothesis that defective transepithelial transport mechanisms and the heightened absorption of intact antigenic proinflammatory oligopeptides are important contributing factors in the pathogenesis of IBD.
Collapse
|
191
|
Parkos CA. Neutrophil-Epithelial Interactions: A Double-Edged Sword. THE AMERICAN JOURNAL OF PATHOLOGY 2016; 186:1404-16. [PMID: 27083514 DOI: 10.1016/j.ajpath.2016.02.001] [Citation(s) in RCA: 82] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 01/25/2016] [Accepted: 02/01/2016] [Indexed: 02/07/2023]
Abstract
In recent years, it has become clear that innate immune cells termed neutrophils act as double-edged swords by playing essential roles in clearing infection but also causing tissue damage, yet being critical for wound healing. Neutrophil recruitment to sites of injured tissue or infection has been well studied, and many of the molecular events that regulate passage of leukocytes out of the microcirculation are now understood. However, after exiting the circulation, the molecular details that regulate neutrophil passage to end targets, such mucosal surfaces, are just beginning to be appreciated. Given that migration of neutrophils across mucosal epithelia is associated with disease symptoms and disruption of critical barrier function in disorders such as inflammatory bowel disease, there has been long-standing interest in understanding the molecular basis and functional consequences of neutrophil-epithelial interactions. It is a great honor that my work was recognized by the Rous-Whipple Award this past year, giving me the opportunity to summarize what we have learned during the past few decades about leukocyte interactions with epithelial cells.
Collapse
Affiliation(s)
- Charles A Parkos
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan.
| |
Collapse
|
192
|
Landy J, Ronde E, English N, Clark SK, Hart AL, Knight SC, Ciclitira PJ, Al-Hassi HO. Tight junctions in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer. World J Gastroenterol 2016; 22:3117-3126. [PMID: 27003989 PMCID: PMC4789987 DOI: 10.3748/wjg.v22.i11.3117] [Citation(s) in RCA: 348] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 09/19/2015] [Accepted: 12/21/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases are characterised by inflammation that compromises the integrity of the epithelial barrier. The intestinal epithelium is not only a static barrier but has evolved complex mechanisms to control and regulate bacterial interactions with the mucosal surface. Apical tight junction proteins are critical in the maintenance of epithelial barrier function and control of paracellular permeability. The characterisation of alterations in tight junction proteins as key players in epithelial barrier function in inflammatory bowel diseases is rapidly enhancing our understanding of critical mechanisms in disease pathogenesis as well as novel therapeutic opportunities. Here we give an overview of recent literature focusing on the role of tight junction proteins, in particular claudins, in inflammatory bowel diseases and inflammatory bowel disease associated colorectal cancer.
Collapse
|
193
|
Lin X, Jiang S, Jiang Z, Zheng C, Gou Z. Effects of equol on H2O2-induced oxidative stress in primary chicken intestinal epithelial cells. Poult Sci 2016; 95:1380-6. [PMID: 26994190 DOI: 10.3382/ps/pew034] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 01/04/2016] [Indexed: 11/20/2022] Open
Abstract
This experiment investigated the antioxidant effects of equol on oxidative stress induced by H2O2 in chicken intestinal epithelial cells (IEC). IEC, from Lingnan yellow broiler chick embryos at embryonic day 18, were cultured in Dulbecco's modified Eagle's medium/F12. Cells were pretreated with 0, 10, 100, or 500 nM equol for 24 h before exposure to 300 μM H2O2 during a further 24 h. Oxidative damage was assessed by photomicrographs of cells, measuring cell proliferation, malondialdehyde (MDA) content, and antioxidative capacity from cellular total superoxide dismutase (T-SOD) activity, as well as the relative expressions of Nrf2, Bcl-2, SOD-1, GSH-Px3, Claudin-1 Treatment with 300 μM H2O2 caused serious damage to cells, with fewer normal intestinal epithelial cells, revealed by photomicroscopy. Treatment with 300 μM H2O2 significantly decreased live cell numbers compared with controls and prior treatment with equol had no effect in offsetting this action of H2O2 (P > 0.05). Compared with the cells treated just with H2O2, pre-treatment with 10, 100 and 500 nM equol significantly enhanced T-SOD activity (P < 0.05), while 10 and 100 nM equol before H2O2 significantly enhanced T-SOD activity compared with the untreated controls (P < 0.05). In cells pre-treated with 100 nM equol, the relative abundance of Nrf2 transcripts increased from the controls (P < 0.05) but expressions of Bcl-2, GSH-Px3, or SOD-1 were unaffected (P > 0.05). Pre-treatment with 10 and 100 nM equol significantly increased the transcript abundance of Claudin-1 (P < 0.05). Equol is shown here to protect IECs from oxidative damage by promoting the expression of antioxidant genes, increasing the activities of antioxidant enzymes, and by enhancing antioxidant capacity; 100 nM equol appeared to be the most effective concentration.
Collapse
Affiliation(s)
- Xiajing Lin
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Shouqun Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zongyong Jiang
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Chuntian Zheng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| | - Zhongyong Gou
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Livestock and Poultry Breeding, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture, Guangdong Public Laboratory of Animal Breeding and Nutrition, Guangdong Key Laboratory of Animal Breeding and Nutrition, Guangzhou 510640, China
| |
Collapse
|
194
|
Di Liddo R, Bertalot T, Schuster A, Schrenk S, Müller O, Apfel J, Reischmann P, Rajendran S, Sfriso R, Gasparella M, Parnigotto PP, Conconi MT, Schäfer KH. Fluorescence-based gene reporter plasmid to track canonical Wnt signaling in ENS inflammation. Am J Physiol Gastrointest Liver Physiol 2016; 310:G337-46. [PMID: 26767983 DOI: 10.1152/ajpgi.00191.2015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Accepted: 12/29/2015] [Indexed: 01/31/2023]
Abstract
In several gut inflammatory or cancer diseases, cell-cell interactions are compromised, and an increased cytoplasmic expression of β-catenin is observed. Over the last decade, numerous studies provided compelling experimental evidence that the loss of cadherin-mediated cell adhesion can promote β-catenin release and signaling without any specific activation of the canonical Wnt pathway. In the present work, we took advantage of the ability of lipofectamine-like reagent to cause a synchronous dissociation of adherent junctions in cells isolated from the rat enteric nervous system (ENS) for obtaining an in vitro model of deregulated β-catenin signaling. Under these experimental conditions, a green fluorescent protein Wnt reporter plasmid called ΔTop_EGFP3a was successfully tested to screen β-catenin stabilization at resting and primed conditions with exogenous Wnt3a or lipopolysaccharide (LPS). ΔTop_EGFP3a provided a reliable and strong fluorescent signal that was easily measurable and at the same time highly sensitive to modulations of Wnt signaling following Wnt3a and LPS stimulation. The reporter gene was useful to demonstrate that Wnt3a exerts a protective activity in the ENS from overstimulated Wnt signaling by promoting a downregulation of the total β-catenin level. Based on this evidence, the use of ΔTop_EGFP3a reporter plasmid could represent a more reliable tool for the investigation of Wnt and cross-talking pathways in ENS inflammation.
Collapse
Affiliation(s)
- Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy;
| | - Thomas Bertalot
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Anne Schuster
- Department of Biotechnology, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany
| | - Sandra Schrenk
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Oliver Müller
- Department of Biochemistry, University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Johanna Apfel
- Department of Biochemistry, University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Patricia Reischmann
- Department of Biochemistry, University of Applied Sciences Kaiserslautern, Kaiserslautern, Germany
| | - Senthilkumar Rajendran
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Riccardo Sfriso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Marco Gasparella
- Department of Woman and Child Health, University of Padova, Padova, Italy
| | - Pier Paolo Parnigotto
- Tissue Engineering and Signaling-Onlus, Caselle di Selvazzano Dentro, Padova, Italy; and
| | - Maria Teresa Conconi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Karl Herbert Schäfer
- Department of Biotechnology, University of Applied Sciences Kaiserslautern/Zweibrücken, Germany; Medical Faculty Mannheim, Department of Pediatric Surgery, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
195
|
Morales Fénero CI, Colombo Flores AA, Câmara NOS. Inflammatory diseases modelling in zebrafish. World J Exp Med 2016; 6:9-20. [PMID: 26929916 PMCID: PMC4759353 DOI: 10.5493/wjem.v6.i1.9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 10/20/2015] [Accepted: 12/18/2015] [Indexed: 02/06/2023] Open
Abstract
The ingest of diets with high content of fats and carbohydrates, low or no physical exercise and a stressful routine are part of the everyday lifestyle of most people in the western world. These conditions are triggers for different diseases with complex interactions between the host genetics, the metabolism, the immune system and the microbiota, including inflammatory bowel diseases (IBD), obesity and diabetes. The incidence of these disorders is growing worldwide; therefore, new strategies for its study are needed. Nowadays, the majority of researches are in use of murine models for understand the genetics, physiopathology and interaction between cells and signaling pathways to find therapeutic solutions to these diseases. The zebrafish, a little tropical water fish, shares 70% of our genes and conserves anatomic and physiological characteristics, as well as metabolical pathways, with mammals, and is rising as a new complementary model for the study of metabolic and inflammatory diseases. Its high fecundity, fast development, transparency, versatility and low cost of maintenance makes the zebrafish an interesting option for new researches. In this review, we offer a discussion of the existing genetic and induced zebrafish models of two important Western diseases that have a strong inflammatory component, the IBD and the obesity.
Collapse
|
196
|
Jin Y, Lin Y, Lin L, Sun Y, Zheng C. Carcinoembryonic antigen related cellular adhesion molecule 1 alleviates dextran sulfate sodium-induced ulcerative colitis in mice. Life Sci 2016; 149:120-8. [PMID: 26898127 DOI: 10.1016/j.lfs.2016.02.065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 02/15/2016] [Accepted: 02/16/2016] [Indexed: 12/12/2022]
Abstract
AIMS To investigate the effects of exogenous carcinoembryonic antigen related cellular adhesion molecule 1 (CEACAM1) on ulcerative colitis (UC) in a dextran sulfate sodium (DSS)-induced mouse model. MAIN METHODS UC mice model was induced by administration of DSS in drinking water for 7days. Treatment of CEACAM1 was performed by a transrectal injection of CEACAM1 gene packed adenovirus in the mice. The severity of UC was evaluated using disease activity index and colon length. Histological changes were observed after hematoxylin and eosin staining. ELISA was used to measure secretion of pro-inflammatory cytokines in the colon tissue. The expression of mRNA and protein were detected using real-time PCR and western blotting. The effect of CEACAM1 on epithelial cell restitution was evaluated using wound-healing test in Caco-2 cells. KEY FINDINGS CEACAM1 overexpression attenuated the symptoms of UC as evidenced by decreased DAI score, increased colon length and histopathologic score. In addition, exogenous CEACAM1 reduced the levels of inflammatory cytokines and downregulated COX-2 and iNOS expression levels. Moreover, CEACAM1 overexpression decreased colonic permeability by upregulating expression of tight junction proteins. In the in vitro study, exogenous CEACAM1 promoted proliferation and migration of Caco-2 cell. SIGNIFICANCE Exogenous CEACAM1 effectively rescues the symptoms of UC in DSS mice through preventing inflammatory responses, improving epithelial barrier and promoting epithelial cells restitution.
Collapse
Affiliation(s)
- Yu Jin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, People's Republic of China
| | - Yan Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, People's Republic of China
| | - Lianjie Lin
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, People's Republic of China
| | - Yan Sun
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, People's Republic of China
| | - Changqing Zheng
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang 110022, People's Republic of China.
| |
Collapse
|
197
|
Fan P, Tan Y, Jin K, Lin C, Xia S, Han B, Zhang F, Wu L, Ma X. Supplemental lipoic acid relieves post-weaning diarrhoea by decreasing intestinal permeability in rats. J Anim Physiol Anim Nutr (Berl) 2015; 101:136-146. [PMID: 26717901 DOI: 10.1111/jpn.12427] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 09/30/2015] [Indexed: 12/19/2022]
Abstract
Lipoic acid (LA) is a naturally existing substance which widely distributed in the cellular membranes and cytosol of animal cells. Its intracellular functions include quenching of free radicals and repairing oxidized proteins. The purpose of this study was to evaluate the effects of LA on post-weaning diarrhoea using a rat model. Sixty weaned rats were fed either a basal diet or a LA-supplemented diet, or a zinc oxide (ZnO)-supplemented diet as a positive control. Rats in the LA and ZnO groups had better performance and reduced incidence of diarrhoea (p < 0.05). Both LA and ZnO treatments enhanced intestinal homeostatic and architecture, significantly decreased urinary lactulose to mannitol ratios (p < 0.05) and increased the expression of the intestinal mucosal tight junction proteins occludin (OCLN) and zonula occludens protein-1 (ZO-1) (p < 0.05). LA significantly increased the activities of antioxidant enzymes, and reduced glutathione while decreasing the levels of oxidative glutathione and malondialdehyde in the intestinal mucosa (p < 0.05). Furthermore, an in vitro study indicated that supplementation with LA in IEC-6 intestinal epithelial cells significantly enhanced the expression of OCLN and ZO-1 under hydrogen peroxide-induced oxidative stress. Collectively, these results suggest that LA relieves post-weaning diarrhoea by reducing intestinal permeability and improving antioxidant indices.
Collapse
Affiliation(s)
- P Fan
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - Y Tan
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - K Jin
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - C Lin
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - S Xia
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - B Han
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - F Zhang
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China
| | - L Wu
- Key laboratory of Carcinogenesis and Translational Research (Ministry of Education), Central Laboratory, Peking University Cancer Hospital & Institute, Beijing, China
| | - X Ma
- State Key Lab of Animal Nutrition, China Agricultural University, Beijing, China.,Department of Internal Medicine, Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
198
|
Gong Y, Li H, Li Y. Effects of Bacillus subtilis on Epithelial Tight Junctions of Mice with Inflammatory Bowel Disease. J Interferon Cytokine Res 2015; 36:75-85. [PMID: 26720180 DOI: 10.1089/jir.2015.0030] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Intestinal mucosal barrier dysfunction associated with inflammatory bowel disease (IBD). Effects of Bacillus subtilis on epithelial tight junctions (TJs) and intrinsic regulatory mechanisms of the intestine were studied in pursuit of better treatments for IBD. Fifty Balb/c mice given 5% dextran sulfate sodium (DSS) in tap water ad libitum over a 7-day period (to induce colitis) were randomly assigned to 4 test groups [DSS, DSS+B. subtilis, DSS+5 amino salicylic acid (5ASA), and DSS+B. subtilis+5ASA] to compare with normal controls. In the test groups DSS was administered daily by oral gavage in normal saline (0.2 mL), adding B. subtilis (1 × 10(8) CFU), 5ASA (6 mg), or both for respective test groups. Defecation, body weight, colitis score, pathological features, epithelial TJs proteins [claudin-1, occludin, junctional adhesion molecule (JAM)-A, and zona occludens (ZO)-1], and various cytokines [interleukin (IL)-6, IL-17, IL-23, and tissue necrosis factor (TNF)-α] were evaluated. Relative to the DSS group, disease activity index scores, and graded histologic damage were all significantly reduced by B. subtilis intake. All parameters declined even further when B. subtilis and 5ASA were combined. Analytic testing (immunohistochemical, western blot, and PCR) revealed progressive increase in TJ protein (claudin-1, occludin, JAM-A, and ZO-1) expression in DSS, DSS+B. subtilis, DSS+5ASA, DSS+B. subtilis+5ASA, and normal control groups (P < 0.05), whereas cytokine (IL-6, IL-17, IL-23, and TNF-α) expression similarly declined (P < 0.05). B. subtilis intake upregulated expression of TJ proteins (claudin-1, occludin, JAM-A, and ZO-1), for improved barrier function, and downregulated cytokine expression (IL-6, IL-17, IL-23, and TNF-α) to reduce intestinal epithelial damage.
Collapse
Affiliation(s)
- Yi Gong
- Department of Gastroenterology, Shengjing Hospital, China Medical University , Shenyang, China
| | - Hui Li
- Department of Gastroenterology, Shengjing Hospital, China Medical University , Shenyang, China
| | - Yan Li
- Department of Gastroenterology, Shengjing Hospital, China Medical University , Shenyang, China
| |
Collapse
|
199
|
Huang C, Song P, Fan P, Hou C, Thacker P, Ma X. Dietary Sodium Butyrate Decreases Postweaning Diarrhea by Modulating Intestinal Permeability and Changing the Bacterial Communities in Weaned Piglets. J Nutr 2015; 145:2774-80. [PMID: 26491121 DOI: 10.3945/jn.115.217406] [Citation(s) in RCA: 190] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/29/2015] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND The vast majority of substances used as alternatives to antibiotics produce inconsistent results and rarely equal the effectiveness of in-feed antibiotics. OBJECTIVE This study evaluated the effects of the combined use of sodium butyrate (SB) and reduced antibiotics in a piglet diet in promoting performance and to control weaning diarrhea. METHODS Piglets weaned at 28 d were randomly assigned to a corn-soybean meal control ration [negative control (NC)]; a similar ration with 50 mg kitasamycin/kg, 20 mg colistin sulfate/kg, and 1000 mg encapsulated SB/kg [reduced antibiotics + SB (ASB)]; or to a ration with 100 mg kitasamycin/kg and 40 mg colistin sulfate/kg [positive control (PC)] for 28 d. Performance, diarrhea incidence, intestinal permeability, and changes in the bacterial communities in the ileum and colon were determined. RESULTS Weight gain and the ratio of weight gain to feed intake were significantly greater in the ASB and PC piglets than in the NC piglets (P < 0.05). Diarrhea incidence was lower in the ASB and PC piglets than in the NC piglets (P < 0.05). Urinary lactulose to mannitol ratios were 25% and 30% lower, respectively, whereas jejunal and colonic occludin protein expressions were significantly greater in the ASB and PC piglets compared with the NC piglets (P < 0.05). In the intestinal mucosa, malondialdehyde was lower in the ASB and PC piglets (by 42% and 43%, respectively), whereas tumor necrosis factor α (TNF-α) was 63% lower in the ASB piglets and 59% lower in the PC piglets compared with the NC piglets (P < 0.05). 16S ribosomal RNA gene sequence analysis revealed a higher colonic Shannon index and a lower colonic Simpson index in the ASB and PC piglets than in the NC piglets. In addition, the ASB and PC treatments caused a striking decrease in Lactobacillaceae and a noticeable increase in Clostridiaceae in the ileal and colonic lumen, as well as increases in Ruminococcaceae, Lachnospiraceae, and Bacteroidetes in the colonic lumen. CONCLUSION Collectively, our results support an important role for SB in improving performance and decreasing diarrhea incidence in weaned piglets by modulation of intestinal permeability and the bacterial communities in the ileum and colon.
Collapse
Affiliation(s)
- Chang Huang
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Peixia Song
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Peixin Fan
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Chengli Hou
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China
| | - Phil Thacker
- Department of Animal and Poultry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada; and
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, China Agricultural University, Beijing, China; Department of Internal Medicine, Center for Autophagy Research, University of Texas Southwestern Medical Center, Dallas, TX
| |
Collapse
|
200
|
Pharmaceutical Activation or Genetic Absence of ClC-2 Alters Tight Junctions During Experimental Colitis. Inflamm Bowel Dis 2015; 21:2747-57. [PMID: 26332307 DOI: 10.1097/mib.0000000000000550] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
BACKGROUND We have previously reported that the ClC-2 chloride channel has an important role in regulation of tight junction barrier function during experimental colitis, and the pharmaceutical ClC-2 activator lubiprostone initiates intestinal barrier repair in ischemic-injured intestine. Thus, we hypothesized that pharmaceutical ClC-2 activation would have a protective and therapeutic effect in murine models of colitis, which would be absent in ClC-2 mice. METHODS We administered lubiprostone to wild-type or ClC-2 mice with dextran sulfate sodium (DSS) or 2, 4, 5-trinitrobenzene sulfonic acid-induced colitis. We determined the severity of colitis and assessed intestinal permeability. Selected tight junction proteins were analyzed by Western blotting and immunofluorescence/confocal microscopy, whereas proliferative and differentiated cells were examined with special staining and immunohistochemistry. RESULTS Oral preventive or therapeutic administration of lubiprostone significantly reduced the severity of colitis and reduced intestinal permeability in both DSS and trinitrobenzene sulfonic acid-induced colitis. Preventive treatment with lubiprostone induced significant recovery of the expression and distribution of selected sealing tight junction proteins in mice with DSS-induced colitis. In addition, lubiprostone reduced crypt proliferation and increased the number of differentiated epithelial cells. Alternatively, when lubiprostone was administered to ClC-2 mice, the protective effect against DSS colitis was limited. CONCLUSIONS This study suggests a central role for ClC-2 in restoration of barrier function and tight junction architecture in experimental murine colitis, which can be therapeutically targeted with lubiprostone.
Collapse
|