151
|
Takeda K, Iizuka M, Watanabe T, Nakagawa J, Kawasaki S, Niimura Y. Synechocystis DrgA protein functioning as nitroreductase and ferric reductase is capable of catalyzing the Fenton reaction. FEBS J 2007; 274:1318-27. [PMID: 17298443 DOI: 10.1111/j.1742-4658.2007.05680.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
In order to identify an enzyme capable of Fenton reaction in Synechocystis, we purified an enzyme catalyzing one-electron reduction of t-butyl hydroperoxide in the presence of FAD and Fe(III)-EDTA. The enzyme was a 26 kDa protein, and its N-terminal amino acid sequencing revealed it to be DrgA protein previously reported as quinone reductase [Matsuo M, Endo T and Asada K (1998) Plant Cell Physiol39, 751-755]. The DrgA protein exhibited potent quinone reductase activity and, furthermore, we newly found that it contained FMN and highly catalyzed nitroreductase, flavin reductase and ferric reductase activities. This is the first demonstration of nitroreductase activity of DrgA protein previously identified by a drgA mutant phenotype. DrgA protein strongly catalyzed the Fenton reaction in the presence of synthetic chelate compounds, but did so poorly in the presence of natural chelate compounds. Its ferric reductase activity was observed with both natural and synthetic chelate compounds with a better efficiency with the latter. In addition to small molecular-weight chemical chelators, an iron transporter protein, transferrin, and an iron storage protein, ferritin, turned out to be substrates of the DrgA protein, suggesting it might play a role in iron metabolism under physiological conditions and possibly catalyze the Fenton reaction under hyper-reductive conditions in this microorganism.
Collapse
Affiliation(s)
- Kouji Takeda
- Department of Bioscience, Tokyo University of Agriculture, 10101 Sakuragaoka, Setagaya-ku, Tokyo 156-8502, Japan.
| | | | | | | | | | | |
Collapse
|
152
|
Bellomio A, Vincent PA, de Arcuri BF, Farías RN, Morero RD. Microcin J25 has dual and independent mechanisms of action in Escherichia coli: RNA polymerase inhibition and increased superoxide production. J Bacteriol 2007; 189:4180-6. [PMID: 17400747 PMCID: PMC1913388 DOI: 10.1128/jb.00206-07] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Microcin J25 (MccJ25) uptake by Escherichia coli requires the outer membrane receptor FhuA and the inner membrane proteins TonB, ExbD, ExbB, and SbmA. MccJ25 appears to have two intracellular targets: (i) RNA polymerase (RNAP), which has been described in E. coli and Salmonella enterica serovars, and (ii) the respiratory chain, reported only in S. enterica serovars. In the current study, it is shown that the observed difference between the actions of microcin on the respiratory chain in E. coli and S. enterica is due to the relatively low microcin uptake via the chromosomally encoded FhuA. Higher expression by a plasmid-encoded FhuA allowed greater uptake of MccJ25 by E. coli strains and the consequent inhibition of oxygen consumption. The two mechanisms, inhibition of RNAP and oxygen consumption, are independent of each other. Further analysis revealed for the first time that MccJ25 stimulates the production of reactive oxygen species (O(2)(*-)) in bacterial cells, which could be the main reason for the damage produced on the membrane respiratory chain.
Collapse
Affiliation(s)
- Augusto Bellomio
- Departamento de Bioquímica de la Nutrición, Instituto Superior de Investigaciones Biológicas, 4000-Tucumán, Argentina
| | | | | | | | | |
Collapse
|
153
|
Zeller T, Mraheil MA, Moskvin OV, Li K, Gomelsky M, Klug G. Regulation of hydrogen peroxide-dependent gene expression in Rhodobacter sphaeroides: regulatory functions of OxyR. J Bacteriol 2007; 189:3784-92. [PMID: 17351037 PMCID: PMC1913319 DOI: 10.1128/jb.01795-06] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genome-wide transcriptome profiling was used to reveal hydrogen peroxide (H(2)O(2))-dependent regulatory mechanisms in the facultatively photosynthetic bacterium Rhodobacter sphaeroides. In this study we focused on the role of the OxyR protein, a known regulator of the H(2)O(2) response in bacteria. The transcriptome profiles of R. sphaeroides wild-type and oxyR mutant strains that were exposed to 1 mM H(2)O(2) for 7 min or were not exposed to H(2)O(2) were analyzed. Three classes of OxyR-dependent genes were identified based on their expression patterns in the wild type of oxyR mutant strains with differing predicted roles of oxidized and reduced OxyR as activators of transcription. DNA binding studies revealed that OxyR binds upstream of class I genes, which are induced by H(2)O(2) and exhibit similar basal levels of expression in the wild-type and oxyR mutant strains. The effect of OxyR on class II genes, which are also induced by H(2)O(2) but exhibit significantly lower basal levels of expression in the wild-type strain than in the mutant, is indirect. Interestingly, reduced OxyR also activates expression of few genes (class III). The role of reduced OxyR as an activator is shown for the first time. Our data reveal that the OxyR-mediated response is fast and transient. In addition, we found that additional regulatory pathways are involved in the H(2)O(2) response.
Collapse
Affiliation(s)
- Tanja Zeller
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Giessen, Germany
| | | | | | | | | | | |
Collapse
|
154
|
Jacques JF, Jang S, Prévost K, Desnoyers G, Desmarais M, Imlay J, Massé E. RyhB small RNA modulates the free intracellular iron pool and is essential for normal growth during iron limitation in Escherichia coli. Mol Microbiol 2007; 62:1181-90. [PMID: 17078818 DOI: 10.1111/j.1365-2958.2006.05439.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The small RNA RyhB has recently been shown to negatively regulate a number of mRNAs encoding dispensable iron-using proteins in Escherichia coli. The resulting decrease in the synthesis of iron-using proteins is thought to spare iron in order to ensure its availability for iron-requiring proteins that are indispensable. Indeed, the expression of RyhB from a heterologous promoter activates the iron-sensing repressor Fur, which suggests an increase in the pool of free intracellular iron (iron-sparing). In accordance with these observations, we report here that RyhB expression increases the concentration of free intracellular iron, as shown by direct measurements of the metal in whole cells by electron paramagnetic resonance spectroscopy. Our data also suggest that iron-sparing originates from rapid uptake of extracellular iron and not from already internalized metal. Furthermore, RyhB is shown to be essential for normal bacterial growth and survival during iron starvation, which is consistent with previous data describing the function of the small RNA. Overall, our data demonstrate that, by regulating synthesis of nonessential iron-using proteins, the small RNA RyhB ensures that the iron is directed towards the iron-requiring enzymes that are indispensable.
Collapse
Affiliation(s)
- Jean-François Jacques
- Département de Biochimie, Faculté de Médecine et des Sciences de la Santé, Groupe ARN. Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | |
Collapse
|
155
|
Crack JC, Green J, Cheesman MR, Le Brun NE, Thomson AJ. Superoxide-mediated amplification of the oxygen-induced switch from [4Fe-4S] to [2Fe-2S] clusters in the transcriptional regulator FNR. Proc Natl Acad Sci U S A 2007; 104:2092-7. [PMID: 17267605 PMCID: PMC1892919 DOI: 10.1073/pnas.0609514104] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2006] [Indexed: 11/18/2022] Open
Abstract
In Escherichia coli, the switch between aerobic and anaerobic metabolism is controlled primarily by FNR (regulator of fumarate and nitrate reduction), the protein that regulates the transcription of >100 genes in response to oxygen. Under oxygen-limiting conditions, FNR binds a [4Fe-4S]2+ cluster, generating a transcriptionally active dimeric form. Upon exposure to oxygen the cluster converts to a [2Fe-2S]2+ form, leading to dissociation of the protein into monomers, which are incapable of binding DNA with high affinity. The mechanism of cluster conversion together with the nature of the products of conversion is of considerable current interest. Here, we demonstrate that [4Fe-4S]2+ to [2Fe-2S]2+ cluster conversion, in both native and reconstituted [4Fe-4S] FNR, proceeds via a one electron oxidation of the cluster, to give a [3Fe-4S]1+ cluster intermediate, with the release of one Fe2+ ion and a superoxide ion. The cluster intermediate subsequently rearranges spontaneously to form the [2Fe-2S]2+ cluster, with the release of a Fe3+ ion and, as previously shown, two sulfide ions. Superoxide ion undergoes dismutation to hydrogen peroxide and oxygen. This mechanism, a one electron activation of the cluster, coupled to catalytic recycling of the resulting superoxide ion back to oxygen, provides a means of amplifying the sensitivity of [4Fe-4S] FNR to its signal molecule.
Collapse
Affiliation(s)
- Jason C Crack
- Centre for Metalloprotein Spectroscopy and Biology, School of Chemical Sciences and Pharmacy, University of East Anglia, Norwich NR4 7TJ, United Kingdom
| | | | | | | | | |
Collapse
|
156
|
Yamashita T, Nakamaru-Ogiso E, Miyoshi H, Matsuno-Yagi A, Yagi T. Roles of bound quinone in the single subunit NADH-quinone oxidoreductase (Ndi1) from Saccharomyces cerevisiae. J Biol Chem 2007; 282:6012-20. [PMID: 17200125 DOI: 10.1074/jbc.m610646200] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To understand the biochemical basis for the function of the rotenone-insensitive internal NADH-quinone (Q) oxidoreductase (Ndi1), we have overexpressed mature Ndi1 in Escherichia coli membranes. The Ndi1 purified from the membranes contained one FAD and showed enzymatic activities comparable with the original Ndi1 isolated from Saccharomyces cerevisiae. When extracted with Triton X-100, the isolated Ndi1 did not contain Q. The Q-bound form was easily reconstituted by incubation of the Q-free Ndi1 enzyme with ubiquinone-6. We compared the properties of Q-bound Ndi1 enzyme with those of Q-free Ndi1 enzyme, with higher activity found in the Q-bound enzyme. Although both are inhibited by low concentrations of AC0-11 (IC(50) = 0.2 microm), the inhibitory mode of AC0-11 on Q-bound Ndi1 was distinct from that of Q-free Ndi1. The bound Q was slowly released from Ndi1 by treatment with NADH or dithionite under anaerobic conditions. This release of Q was prevented when Ndi1 was kept in the reduced state by NADH. When Ndi1 was incorporated into bovine heart submitochondrial particles, the Q-bound form, but not the Q-free form, established the NADH-linked respiratory activity, which was insensitive to piericidin A but inhibited by KCN. Furthermore, Ndi1 produces H(2)O(2) as isolated regardless of the presence of bound Q, and this H(2)O(2) was eliminated when the Q-bound Ndi1, but not the Q-free Ndi1, was incorporated into submitochondrial particles. The data suggest that Ndi1 bears at least two distinct Q sites: one for bound Q and the other for catalytic Q.
Collapse
Affiliation(s)
- Tetsuo Yamashita
- Division of Biochemistry, Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, USA
| | | | | | | | | |
Collapse
|
157
|
Gonzalez-Reyes RE, Gutierrez-Alvarez AM, Moreno CB. Manganese and epilepsy: a systematic review of the literature. ACTA ACUST UNITED AC 2006; 53:332-6. [PMID: 17166592 DOI: 10.1016/j.brainresrev.2006.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Revised: 10/23/2006] [Accepted: 10/24/2006] [Indexed: 10/23/2022]
Abstract
Manganese is an essential trace element for the development and function of the central nervous system. Alterations in manganese concentrations, whether excessive or deficient, can be accompanied by convulsions. This article represents a systematic review of available quantitative evidence that might clarify this issue. We searched The Cochrane Library, Medline and LILACS databases from January 1966 through June 2006 and reviewed all resulting English and Spanish language publications, as well as those possibly relevant in other languages based on their abstracts. The final selection included for this review comprises all investigations in humans and animals that compared manganese levels in any tissue of a group with spontaneous or induced convulsions (with or without antiepileptic treatment) and a convulsion-free control group. The literature search identified thirteen publications since then relevant to the issue, four of which failed to meet our criteria for inclusion. Of the remaining nine, six were in humans and three in rodents. At present, there is no satisfactory explanation for the relationship between low manganese levels and the presence of convulsions. There is a documented correlation between low blood manganese levels and the presence of convulsions in both humans and animals. The lack of evidence indicating whether this is a cause or an effect of the convulsions clearly justifies more detailed follow-up investigations in humans.
Collapse
|
158
|
Zhao Z, Rothery RA, Weiner JH. Effects of site-directed mutations inEscherichia colisuccinate dehydrogenase on the enzyme activity and production of superoxide radicalsThis paper is one of a selection of papers published in this Special Issue, entitled CSBMCB — Membrane Proteins in Health and Disease. Biochem Cell Biol 2006; 84:1013-21. [PMID: 17215887 DOI: 10.1139/o06-188] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Escherichia coli succinate dehydrogenase (SdhCDAB) catalyzes the oxidation of succinate to fumarate in the Krebs cycle, and during turnover, it produces superoxide radicals. SdhCDAB is a good model system for the succinate dehydrogenase (Sdh) found in the mitochondrial respiratory chain (complex II), as the subunits are structural homologues. Although mutations in sdh genes are reportedly associated with a variety of mitochondria-related diseases, the molecular mechanism of these diseases is poorly understood. We have investigated the effects of site-directed mutations around the heme (SdhD-H71L and SdhC-H91L), and at the ubiquinone-binding site (Q site; SdhC-I28E), on enzyme activity and production of superoxide radicals. The mutations SdhD-H71L and SdhC-I28E, but not SdhC-H91L, significantly reduce the succinate–ubiquinone reductase activity of the enzyme. All 3 mutant enzymes produce more superoxide than the wild-type enzyme, indicating that disturbance of the heme or the Q site can enhance superoxide production. The presence of a Q-site inhibitor reduces superoxide production significantly. Furthermore, the yield of superoxide is substrate dependent and increases with succinate concentration from 0.1 to 10 mmol/L. Our results indicate that, in SdhCDAB, the Q site with bound ubiquinone is an important source of superoxide radicals.
Collapse
Affiliation(s)
- Zhongwei Zhao
- Membrane Protein Research Group, Department of Biochemistry, 474 Medical Sciences Building, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | | | |
Collapse
|
159
|
Fernandes DC, Wosniak J, Pescatore LA, Bertoline MA, Liberman M, Laurindo FRM, Santos CXC. Analysis of DHE-derived oxidation products by HPLC in the assessment of superoxide production and NADPH oxidase activity in vascular systems. Am J Physiol Cell Physiol 2006; 292:C413-22. [PMID: 16971501 DOI: 10.1152/ajpcell.00188.2006] [Citation(s) in RCA: 163] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Dihydroethidium (DHE) is a widely used sensitive superoxide (O2(*-)) probe. However, DHE oxidation yields at least two fluorescent products, 2-hydroxyethidium (EOH), known to be more specific for O2(*-), and the less-specific product ethidium. We validated HPLC methods to allow quantification of DHE products in usual vascular experimental situations. Studies in vitro showed that xanthine/xanthine oxidase, and to a lesser degree peroxynitrite/carbon dioxide system led to EOH and ethidium formation. Peroxidase/H2O2 but not H2O2 alone yielded ethidium as the main product. In vascular smooth muscle cells incubated with ANG II (100 nM, 4 h), we showed a 60% increase in EOH/DHE ratio, prevented by PEG-SOD or SOD1 overexpression. We further validated a novel DHE-based NADPH oxidase assay in vascular smooth muscle cell membrane fractions, showing that EOH was uniquely increased after ANG II. This assay was also adapted to a fluorescence microplate reader, providing results in line with HPLC results. In injured artery slices, shown to exhibit increased DHE-derived fluorescence at microscopy, there was approximately 1.5- to 2-fold increase in EOH/DHE and ethidium/DHE ratios after injury, and PEG-SOD inhibited only EOH formation. We found that the amount of ethidium product and EOH/ethidium ratios are influenced by factors such as cell density and ambient light. In addition, we indirectly disclosed potential roles of heme groups and peroxidase activity in ethidium generation. Thus HPLC analysis of DHE-derived oxidation products can improve assessment of O2(*-) production or NADPH oxidase activity in many vascular experimental studies.
Collapse
Affiliation(s)
- Denise C Fernandes
- Vascular Biology Laboratory, Heart Institute (InCor), University of São Paulo School of Medicine, Av. Eneas Carvalho Aguiar, 44 CEP, 05403-000 São Paulo, Brazil
| | | | | | | | | | | | | |
Collapse
|
160
|
Korshunov S, Imlay JA. Detection and quantification of superoxide formed within the periplasm of Escherichia coli. J Bacteriol 2006; 188:6326-34. [PMID: 16923900 PMCID: PMC1595388 DOI: 10.1128/jb.00554-06] [Citation(s) in RCA: 136] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2006] [Accepted: 06/12/2006] [Indexed: 11/20/2022] Open
Abstract
Many gram-negative bacteria harbor a copper/zinc-containing superoxide dismutase (CuZnSOD) in their periplasms. In pathogenic bacteria, one role of this enzyme may be to protect periplasmic biomolecules from superoxide that is released by host phagocytic cells. However, the enzyme is also present in many nonpathogens and/or free-living bacteria, including Escherichia coli. In this study we were able to detect superoxide being released into the medium from growing cultures of E. coli. Exponential-phase cells do not normally synthesize CuZnSOD, which is specifically induced in stationary phase. However, the engineered expression of CuZnSOD in growing cells eliminated superoxide release, confirming that this superoxide was formed within the periplasm. The rate of periplasmic superoxide production was surprisingly high and approximated the estimated rate of cytoplasmic superoxide formation when both were normalized to the volume of the compartment. The rate increased in proportion to oxygen concentration, suggesting that the superoxide is generated by the adventitious oxidation of an electron carrier. Mutations that eliminated menaquinone synthesis eradicated the superoxide formation, while mutations in genes encoding respiratory complexes affected it only insofar as they are likely to affect the redox state of menaquinone. We infer that the adventitious autoxidation of dihydromenaquinone in the cytoplasmic membrane releases a steady flux of superoxide into the periplasm of E. coli. This endogenous superoxide may create oxidative stress in that compartment and be a primary substrate of CuZnSOD.
Collapse
Affiliation(s)
- Sergei Korshunov
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
161
|
Seib KL, Wu HJ, Kidd SP, Apicella MA, Jennings MP, McEwan AG. Defenses against oxidative stress in Neisseria gonorrhoeae: a system tailored for a challenging environment. Microbiol Mol Biol Rev 2006; 70:344-61. [PMID: 16760307 PMCID: PMC1489540 DOI: 10.1128/mmbr.00044-05] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Neisseria gonorrhoeae is a host-adapted pathogen that colonizes primarily the human genitourinary tract. This bacterium encounters reactive oxygen and reactive nitrogen species as a consequence of localized inflammatory responses in the urethra of males and endocervix of females and also of the activity of commensal lactobacilli in the vaginal flora. This review describes recent advances in the understanding of defense systems against oxidative stress in N. gonorrhoeae and shows that while some of its defenses have similarities to the paradigm established with Escherichia coli, there are also some key differences. These differences include the presence of a defense system against superoxide based on manganese ions and a glutathione-dependent system for defense against nitric oxide which is under the control of a novel MerR-like transcriptional regulator. An understanding of the defenses against oxidative stress in N. gonorrhoeae and their regulation may provide new insights into the ways in which this bacterium survives challenges from polymorphonuclear leukocytes and urogenital epithelial cells.
Collapse
Affiliation(s)
- Kate L Seib
- The School of Molecular and Microbial Sciences, The University of Queensland, Brisbane 4072, Australia
| | | | | | | | | | | |
Collapse
|
162
|
Krishnan N, Becker DF. Oxygen reactivity of PutA from Helicobacter species and proline-linked oxidative stress. J Bacteriol 2006; 188:1227-35. [PMID: 16452403 PMCID: PMC1367249 DOI: 10.1128/jb.188.4.1227-1235.2006] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Proline is converted to glutamate in two successive steps by the proline utilization A (PutA) flavoenzyme in gram-negative bacteria. PutA contains a proline dehydrogenase domain that catalyzes the flavin adenine dinucleotide (FAD)-dependent oxidation of proline to delta1-pyrroline-5-carboxylate (P5C) and a P5C dehydrogenase domain that catalyzes the NAD+-dependent oxidation of P5C to glutamate. Here, we characterize PutA from Helicobacter hepaticus (PutA(Hh)) and Helicobacter pylori (PutA(Hp)) to provide new insights into proline metabolism in these gastrointestinal pathogens. Both PutA(Hh) and PutA(Hp) lack DNA binding activity, in contrast to PutA from Escherichia coli (PutA(Ec)), which both regulates and catalyzes proline utilization. PutA(Hh) and PutA(Hp) display catalytic activities similar to that of PutA(Ec) but have higher oxygen reactivity. PutA(Hh) and PutA(Hp) exhibit 100-fold-higher turnover numbers (approximately 30 min(-1)) than PutA(Ec) (<0. 3 min(-1)) using oxygen as an electron acceptor during catalytic turnover with proline. Consistent with increased oxygen reactivity, PutA(Hh) forms a reversible FAD-sulfite adduct. The significance of increased oxygen reactivity in PutA(Hh) and PutA(Hp) was probed by oxidative stress studies in E. coli. Expression of PutA(Ec) and PutA from Bradyrhizobium japonicum, which exhibit low oxygen reactivity, does not diminish stress survival rates of E. coli cell cultures. In contrast, PutA(Hp) and PutA(Hh) expression dramatically reduces E. coli cell survival and is correlated with relatively lower proline levels and increased hydrogen peroxide formation. The discovery of reduced oxygen species formation by PutA suggests that proline catabolism may influence redox homeostasis in the ecological niches of these Helicobacter species.
Collapse
Affiliation(s)
- Navasona Krishnan
- Department of Biochemistry, University of Nebraska, N258 Beadle Center, Lincoln, Nebraska 68588, USA
| | | |
Collapse
|
163
|
Zeller T, Klug G. Thioredoxins in bacteria: functions in oxidative stress response and regulation of thioredoxin genes. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2006; 93:259-66. [PMID: 16555095 DOI: 10.1007/s00114-006-0106-1] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Thioredoxins fulfill a number of different important cellular functions in all living organisms. In bacteria, thioredoxin genes are often regulated by external factors. In turn, thioredoxins influence the expression of many other genes. The multiple and important functions of thioredoxins in cells necessitate to appropriately adjust their level. This review outlines different strategies that have evolved for the regulation of bacterial thioredoxin genes. It also summarizes effects of thioredoxins on gene regulation and presents a recent model for a redox-dependent gene regulation that is mediated by thioredoxins.
Collapse
Affiliation(s)
- Tanja Zeller
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | | |
Collapse
|
164
|
Voeikov VL. Reactive Oxygen Species—(ROS) Pathogens or Sources of Vital Energy? Part 1. ROS in Normal and Pathologic Physiology of Living Systems. J Altern Complement Med 2006; 12:111-8. [PMID: 16566669 DOI: 10.1089/acm.2006.12.111] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Free radicals and reactive oxygen species (ROS) are considered to be dangerous pathogens as they may damage key molecular constituents of cells. However this concept approach does not take into account vital functions of ROS in normal physiology. Information has emerged that a substantial share of oxygen consumed by aerobic organisms is used for ROS production and that ROS are indispensable for regulation of multiple functions of living cells. Yet, each cell is equipped with powerful means to eliminate ROS immediately. Explanations of the mechanisms of regulatory action of ROS upon a wide spectrum of biochemical and physiologic reactions and of ROS therapeutic efficacy raise serious problems in the framework of the conventional biochemical paradigm. Here data concerning ROS production and utilization are considered with an emphasis on an apparent paradox: Why does the body produce a lot of ROS and then eliminate them as soon as they appear?
Collapse
|
165
|
Aydin S. Antioxidant status, alpha-amylase production, growth, and survival of hemoglobin bearing Escherichia coli exposed to hypochlorous acid. BIOCHEMISTRY. BIOKHIMIIA 2005; 70:1369-1376. [PMID: 16417460 DOI: 10.1007/s10541-005-0271-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the present work, two matched strains of E. coli that bear a recombinant R-amylase gene (MK57) or the R-amylase gene and vgb (MK79-hemoglobin expressing strain) were exposed to HOCl. In these cells, glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), alpha-amylase production, growth and lethality were assessed in the presence and absence of HOCl. It was observed that the hemoglobin makes cells highly susceptible to killing by HOCl. The maximum survival for both strains was with stationary phase cells at any concentration of HOCl. Both strains grown in the presence of 0.0125-0.075 mg/liter HOCl showed a substantial increase in SOD activity and GSH level, with MK79 being the most increased strain in this respect, while the level of CAT activity was decreased in a dose depended manner. Growth of MK57 and MK79 strains decreased as HOCl concentration increased. However, HOCl at concentration above zero enhanced alpha-amylase production (about 2-fold) in both MK79 and MK57. Furthermore, total amylase production (at all HOCl concentrations) by MK79 was always greater than that by MK57. The results indicate that except for survival, the hemoglobin helps cells to grow better and produces more recombinant products and activates general defense systems more in response to oxidative stress when compared with the non-hemoglobin-containing counterpart.
Collapse
Affiliation(s)
- S Aydin
- Department of Biochemistry and Clinical Biochemistry, Firat University, Faculty of Medicine, Elazig, 23119, Turkey.
| |
Collapse
|
166
|
Zeller T, Moskvin OV, Li K, Klug G, Gomelsky M. Transcriptome and physiological responses to hydrogen peroxide of the facultatively phototrophic bacterium Rhodobacter sphaeroides. J Bacteriol 2005; 187:7232-42. [PMID: 16237007 PMCID: PMC1272974 DOI: 10.1128/jb.187.21.7232-7242.2005] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The transcriptome responses to hydrogen peroxide, H2O2, of the facultatively phototrophic bacterium Rhodobacter sphaeroides grown under semiaerobic conditions were investigated. At 7 min after the addition of 1 mM H2O2, the expression of approximately 9% of all genes (total, 394) was changed reliably by at least twofold. At 30 min, the number of genes (total, 88) and the magnitude of expression changes were much lower, indicating rapid recovery from stress. Two types of responses were observed: (i) an H2O2 stress response per se and (ii) a shift to high-oxygen metabolism. The former response involved the upregulation of genes for H2O2 detoxification, protein folding and proteolysis, DNA damage repair, iron transport and storage, iron-sulfur cluster repair, and the downregulation of genes for protein translation, motility, and cell wall and lipopolysaccharide synthesis. The shift to high-oxygen metabolism was evident from the differential regulation of genes for aerobic electron transport chain components and the downregulation of tetrapyrrole biosynthesis and photosystem genes. The abundance of photosynthetic complexes was decreased upon prolonged exposure of R. sphaeroides to H2O2, thus confirming the physiological significance of the transcriptome data. The regulatory pathways mediating the shift to high-oxygen metabolism were investigated. They involved the anaerobic activator FnrL and the antirepressor-repressor AppA-PpsR system. The transcription of FnrL-dependent genes was down at 7 min, apparently due to the transient inactivation by H2O2 of the iron-sulfur cluster of FnrL. The transcription of the AppA-PpsR-dependent genes was down at 30 min, apparently due to the significant decrease in appA mRNA.
Collapse
Affiliation(s)
- Tanja Zeller
- Institut für Mikrobiologie und Molekularbiologie, University of Giessen, Germany
| | | | | | | | | |
Collapse
|
167
|
Affiliation(s)
- Hugo Aguilaniu
- Molecular and Cell Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | | |
Collapse
|
168
|
Semchyshyn H, Bagnyukova T, Lushchak V. Involvement of soxRS Regulon in Response of Escherichia coli to Oxidative Stress Induced by Hydrogen Peroxide. BIOCHEMISTRY (MOSCOW) 2005; 70:1238-44. [PMID: 16336183 DOI: 10.1007/s10541-005-0253-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The effect of hydrogen peroxide on the activity of soxRS and oxyR regulon enzymes in different strains of Escherichia coli has been studied. Treatment of bacteria with 20 microM H2O2 caused an increase in catalase and peroxidase activities (oxyR regulon) in all strains investigated. It is shown for the first time that oxidative stress induced by hydrogen peroxide causes in some E. coli strains a small increase in activity of superoxide dismutase and glucose-6-phosphate dehydrogenase (soxRS regulon). This effect is cancelled by chloramphenicol, an inhibitor of protein synthesis in prokaryotes. The increase in soxRS regulon enzyme activities was not found in the strain lacking the soxR gene. These results provide evidence for the involvement of the soxRS regulon in the adaptive response of E. coli to oxidative stress induced by hydrogen peroxide.
Collapse
Affiliation(s)
- H Semchyshyn
- Department of Biochemistry, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, 76025, Ukraine
| | | | | |
Collapse
|
169
|
Johnson JE, Choksi K, Widger WR. NADH-Ubiquinone oxidoreductase: substrate-dependent oxygen turnover to superoxide anion as a function of flavin mononucleotide. Mitochondrion 2005; 3:97-110. [PMID: 16120348 DOI: 10.1016/s1567-7249(03)00084-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2002] [Revised: 06/17/2003] [Accepted: 06/19/2003] [Indexed: 11/23/2022]
Abstract
Bovine heart mitochondrial NADH-ubiquinone oxidoreductase (complex I) catalyzed NADH- and ubiquinone-1-dependent oxygen (O2) turnover to hydrogen peroxide that was stimulated by piericidin A and superoxide dismutase (SOD), but was insensitive to antimycin A, myxothiazol, and potassium cyanide. The extent of O2 consumption as a function of ubiquinone-1 did not correlate with piericidin A-sensitive rates of ubiquinone reduction. Decylubiquinone did not stimulate O2 consumption, but did initiate an SOD-sensitive cytochrome c reduction when complex I was isolated away from ubiquinol-cytochrome c oxidoreductase. Rates and extent of O2 turnover (ROS production) and ubiquinone reduction were higher than previously reported for submitochondrial particles (SMP) and isolated complex I. This ROS production was shown to co-isolate with complex I flavin.
Collapse
Affiliation(s)
- Jerry E Johnson
- Department of Biology and Biochemistry, University of Houston, 369 Science and Research Building 2, Houston, TX 77204-5001, USA
| | | | | |
Collapse
|
170
|
Koga K, Harada T, Shimizu H, Tanaka K. Bacterial luciferase activity and the intracellular redox pool in Escherichia coli. Mol Genet Genomics 2005; 274:180-8. [PMID: 16047200 DOI: 10.1007/s00438-005-0008-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Accepted: 04/26/2005] [Indexed: 11/30/2022]
Abstract
In this study, we analyzed the activity of a bacterial luciferase (LuxAB of Vibrio fischeri) expressed under the control of a consensus-type promoter, lacUV5, in Escherichia coli, and found that activity declines abruptly upon entry into the stationary growth phase. Since this decline was reproducibly observed in strains cultured in various growth media, we refer to this phenomenon as ADLA (Abrupt Decline of Luciferase Activity) and define the time point when activity begins to decline as T (0). Because the levels of luciferase proteins (LuxA and LuxB) remained constant before and after T (0), ADLA cannot be due to the repression of luciferase gene expression. Further analyses suggested that a decline in the supply of intracellular reducing power for luciferase was responsible for ADLA. We also found that ADLA was alleviated or did not occur in several mutants deficient in nucleoid proteins, suggesting that ADLA is a genetically controlled process involved in intracellular redox flow.
Collapse
Affiliation(s)
- K Koga
- Institute of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | |
Collapse
|
171
|
Abrashev R, Dolashka P, Christova R, Stefanova L, Angelova M. Role of antioxidant enzymes in survival of conidiospores of Aspergillus niger 26 under conditions of temperature stress. J Appl Microbiol 2005; 99:902-9. [PMID: 16162242 DOI: 10.1111/j.1365-2672.2005.02669.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
AIMS A better understanding of the role of antioxidant enzymes, superoxide dismutase (SOD) and catalase (CAT) in the protection of Aspergillus niger spores against thermal stress. METHODS AND RESULTS Conidiospores from A. niger 26 were subjected to wide range of temperatures (30, 50, 60 and 80 degrees C). The stress response was investigated by the determination of spore germination and mycelial growth of survivors under submerged cultivation. Exposure to any temperature above the optimal value induced an increase in SOD and CAT activities. PAGE demonstrated enhanced level of Cu/ZnSOD under stress conditions. We compared the influence of heat shock and superoxide-generating agent paraquat on growth and antioxidant enzyme defence and found different response to the both type of stresses. CONCLUSIONS Heat stress elicits the enhanced synthesis of enzymes whose functions are to scavenge reactive oxygen species. These results suggested an association between thermal and oxidative stress. SIGNIFICANCE AND IMPACT OF THE STUDY Evidence is provided for the possibility that oxidative stress plays a major role in the effect of heat in low eucaryotes such as A. niger. This knowledge may be of importance in controlling both fermentation and pathogenicity.
Collapse
Affiliation(s)
- R Abrashev
- Institute of Microbiology, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | | | | | | | | |
Collapse
|
172
|
Rea SL. Metabolism in the Caenorhabditis elegans Mit mutants. Exp Gerontol 2005; 40:841-9. [PMID: 16137850 DOI: 10.1016/j.exger.2005.06.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 06/09/2005] [Accepted: 06/14/2005] [Indexed: 11/21/2022]
Abstract
In many eukaryotes oxidative phosphorylation via the mitochondrial electron transport chain provides the major means of ATP production. Complete removal of this capacity often results in premature death. Recent studies using the nematode Caenorhabditis elegans are surprising because they have revealed that disruption of many of the key components of the normal mitochondrial energy-generating machinery do not result in death, rather they result in adult life span extension. Such mutants have been collectively termed Mit mutants. In this short review, the potential use of alternate metabolic pathways for energy generation by Mit mutants will be considered. The effects of using such pathways on residual mitochondrial functionality, reactive radical species production, and longevity will also be explored.
Collapse
Affiliation(s)
- Shane L Rea
- Institute for Behavioral Genetics, University of Colorado, Campus Box 447, Boulder, CO 80309-0447, USA.
| |
Collapse
|
173
|
Kim JH, Suh KH. Light-dependent expression of superoxide dismutase from cyanobacterium Synechocystis sp. strain PCC 6803. Arch Microbiol 2005; 183:218-23. [PMID: 15744484 DOI: 10.1007/s00203-005-0766-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2004] [Revised: 02/07/2005] [Accepted: 02/08/2005] [Indexed: 10/25/2022]
Abstract
The oxygenic phototrophic cyanobacterium Synechocystis sp. strain PCC 6803 inevitably evolves superoxide during photosynthesis. Synechocystis 6803 contains only one type of superoxide dismutase, designated as SodB; therefore, this protein plays an important role in preventing oxidative damages caused by light. Because there was no direct evidence that SodB in Synechocystis 6803 could be regulated by light, the relationship between SodB and light was investigated in the present study. The activity of SodB from the cells grown in continuous light culture was about 3.5-fold higher than that from the cells cultivated in continuous dark. Illumination maximally activated SodB within 12 h. The level of sodB mRNA increased 12-fold by light, and that of SodB protein proportionally. Therefore, the expression and activity of SodB from Synechocystis 6803 were dependent on the light.
Collapse
Affiliation(s)
- Jae-Hyun Kim
- Department of Biochemistry and Biotechnology Bio-Med RRC, Paichai University, 439-6 Doma 2-dong Seo-gu, Daejon 302-735, Korea
| | | |
Collapse
|
174
|
Smirnova GV, Torkhova OA, Oktyabr’skii ON. The role of antioxidant systems in the response of Escherichia coli to acetamidophenol and some antibiotics. Microbiology (Reading) 2005. [DOI: 10.1007/s11021-005-0040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
|
175
|
Sutton VR, Mettert EL, Beinert H, Kiley PJ. Kinetic analysis of the oxidative conversion of the [4Fe-4S]2+ cluster of FNR to a [2Fe-2S]2+ Cluster. J Bacteriol 2004; 186:8018-25. [PMID: 15547274 PMCID: PMC529072 DOI: 10.1128/jb.186.23.8018-8025.2004] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The ability of FNR to sense and respond to cellular O(2) levels depends on its [4Fe-4S](2+) cluster. In the presence of O(2), the [4Fe-4S](2+) cluster is converted to a [2Fe-2S](2+) cluster, which inactivates FNR as a transcriptional regulator. In this study, we demonstrate that approximately 2 Fe(2+) ions are released from the reaction of O(2) with the [4Fe-4S](2+) cluster. Fe(2+) release was then used as an assay of reaction progress to investigate the rate of [4Fe-4S](2+) to [2Fe-2S](2+) cluster conversion in vitro. We also found that there was no detectable difference in the rate of O(2)-induced cluster conversion for FNR free in solution compared to its DNA-bound form. In addition, the rate of FNR inactivation was monitored in vivo by measuring the rate at which transcriptional regulation by FNR is lost upon the exposure of cells to O(2); a comparison of the in vitro and in vivo rates of conversion suggests that O(2)-induced cluster conversion is sufficient to explain FNR inactivation in cells. FNR protein levels were also compared for cells grown under aerobic and anaerobic conditions.
Collapse
Affiliation(s)
- Victoria R Sutton
- Program in Cellular & Molecular Biology, University of Wisconsin, Madison, WI 53706, USA
| | | | | | | |
Collapse
|
176
|
Patel M. Mitochondrial dysfunction and oxidative stress: cause and consequence of epileptic seizures. Free Radic Biol Med 2004; 37:1951-62. [PMID: 15544915 DOI: 10.1016/j.freeradbiomed.2004.08.021] [Citation(s) in RCA: 264] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2004] [Revised: 08/27/2004] [Accepted: 08/27/2004] [Indexed: 11/27/2022]
Abstract
Mitochondrial dysfunction has been implicated as a contributing factor in diverse acute and chronic neurological disorders. However, its role in the epilepsies has only recently emerged. Animal studies show that epileptic seizures result in free radical production and oxidative damage to cellular proteins, lipids, and DNA. Mitochondria contribute to the majority of seizure-induced free radical production. Seizure-induced mitochondrial superoxide production, consequent inactivation of susceptible iron-sulfur enzymes, e.g., aconitase, and resultant iron-mediated toxicity may mediate seizure-induced neuronal death. Epileptic seizures are a common feature of mitochondrial dysfunction associated with mitochondrial encephalopathies. Recent work suggests that chronic mitochondrial oxidative stress and resultant dysfunction can render the brain more susceptible to epileptic seizures. This review focuses on the emerging role of oxidative stress and mitochondrial dysfunction both as a consequence and as a cause of epileptic seizures.
Collapse
Affiliation(s)
- Manisha Patel
- Department of Pharmaceutical Sciences, University of Colorado Health Sciences Center, 4200 East Ninth Avenue, Denver, CO 80262, USA.
| |
Collapse
|
177
|
Abstract
The endogenous synthesis of peroxynitrite (ONOO(-)) has been implicated in a number of diseases, but assessments of its cytotoxicity and genotoxicity have been hampered by its extremely short half-life under physiological conditions (<20 ms) and the consequent difficulty in exposing cells to known concentrations of it over at least several hours. Two methods for peroxynitrite delivery to cell cultures were investigated, one involving steady infusion of preformed ONOO(-) and the other based on the continuous in situ synthesis of ONOO(-) from NO and O(2)(-). In the latter, NO was supplied by diffusion through gas permeable tubing and O(2)(-) was generated using the hypoxanthine-xanthine oxidase reaction. The performance of both methods was assessed by measuring the rates of formation of tyrosine derivatives (dityrosine and nitrotyrosine) that are commonly employed as biomarkers for peroxynitrite. Experimental results in the absence of cells were compared in each case with predictions from kinetic models. In the infusion system, the measured dityrosine and nitrotyrosine yields were in excellent agreement with those predicted from the model. To characterize the other system, experiments were performed first to determine the kinetics of hypoxanthine oxidation by xanthine oxidase and uric acid oxidation by uricase. Simulations of the complex reaction network in the complete synthesis system suggested that dityrosine should be the major product there, that the yields of both tyrosine derivatives should be very sensitive to the relative rates of NO and O(2)(-) delivery, and that equal rates for NO and O(2)(-) should maximize those yields. Experiments performed under the predicted optimal conditions showed much lower levels of dityrosine than expected and no detectable nitrotyrosine. The unexpectedly low yields of tyrosine products could be explained largely by the partial inactivation of both xanthine oxidase and uricase by peroxynitrite-derived NO(2) and CO(3)(-) radicals. We conclude that continuous infusion of peroxynitrite is the more promising approach.
Collapse
Affiliation(s)
- Chen Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | |
Collapse
|
178
|
Krishnakumar R, Craig M, Imlay JA, Slauch JM. Differences in enzymatic properties allow SodCI but not SodCII to contribute to virulence in Salmonella enterica serovar Typhimurium strain 14028. J Bacteriol 2004; 186:5230-8. [PMID: 15292124 PMCID: PMC490929 DOI: 10.1128/jb.186.16.5230-5238.2004] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Salmonella enterica serovar Typhimurium produces two Cu/Zn cofactored periplasmic superoxide dismutases, SodCI and SodCII. While mutations in sodCI attenuate virulence eightfold, loss of SodCII does not confer a virulence phenotype, nor does it enhance the defect observed in a sodCI background. Despite this in vivo phenotype, SodCI and SodCII are expressed at similar levels in vitro during the stationary phase of growth. By exchanging the open reading frames of sodCI and sodCII, we found that SodCI contributes to virulence when placed under the control of the sodCII promoter. In contrast, SodCII does not contribute to virulence even when expressed from the sodCI promoter. Thus, the disparity in virulence phenotypes is due primarily to some physical difference between the two enzymes. In an attempt to identify the unique property of SodCI, we have tested factors that might affect enzyme activity inside a phagosome. We found no significant difference between SodCI and SodCII in their resistance to acid, resistance to hydrogen peroxide, or ability to obtain copper in a copper-limiting environment. Both enzymes are synthesized as apoenzymes in the absence of copper and can be fully remetallated when copper is added. The one striking difference that we noted is that, whereas SodCII is released normally by an osmotic shock, SodCI is "tethered" within the periplasm by an apparently noncovalent interaction. We propose that this novel property of SodCI is crucial to its ability to contribute to virulence in serovar Typhimurium.
Collapse
|
179
|
Seaver LC, Imlay JA. Are respiratory enzymes the primary sources of intracellular hydrogen peroxide? J Biol Chem 2004; 279:48742-50. [PMID: 15361522 DOI: 10.1074/jbc.m408754200] [Citation(s) in RCA: 163] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Endogenous H2O2 is believed to be a source of chronic damage in aerobic organisms. To quantify H2O2 formation, we have generated strains of Escherichia coli that lack intracellular scavenging enzymes. The H2O2 that is formed within these mutants diffuses out into the medium, where it can be measured. We sought to test the prevailing hypothesis that this H2O2 is primarily generated by the autoxidation of redox enzymes within the respiratory chain. The rate of H2O2 production increased when oxygen levels were raised, confirming that H2O2 is formed by an adventitious chemical process. However, mutants that lacked NADH dehydrogenase II and fumarate reductase, the most oxidizable components of the respiratory chain in vitro, continued to form H2O2 at normal rates. NADH dehydrogenase II did generate substantial H2O2 when it was when overproduced or quinones were absent, forcing electrons to accumulate on the enzyme. Mutants that lacked both NADH dehydrogenases respired very slowly, as expected; however, these mutants showed no diminution of H2O2 excretion, suggesting that H2O2 is primarily formed by a source outside the respiratory chain. That source has not yet been identified. In respiring cells the rate of H2O2 production was approximately 0.5% the rate of total oxygen consumption, with only modest changes when cells used different carbon sources.
Collapse
Affiliation(s)
- Lauren Costa Seaver
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
180
|
Rezaïki L, Cesselin B, Yamamoto Y, Vido K, van West E, Gaudu P, Gruss A. Respiration metabolism reduces oxidative and acid stress to improve long-term survival of Lactococcus lactis. Mol Microbiol 2004; 53:1331-42. [PMID: 15387813 DOI: 10.1111/j.1365-2958.2004.04217.x] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The impact of oxygen on a cell is strongly dependent on its metabolic state: survival in oxygen of free-living Lactococcus lactis, best known as a fermenting, acidifying bacterium, is generally poor. In contrast, if haem is present, L. lactis uses oxygen to switch from fermentation to respiration metabolism late in growth, resulting in spectacularly improved long-term survival. Oxygen is thus beneficial rather than detrimental for survival if haem is provided. We examined the effects of respiration on oxygen toxicity by comparing integrity of stationary phase cells after aerated growth without and with added haem. Aeration (no haem) growth caused considerable cellular protein and chromosomal DNA damage, increased spontaneous mutation frequencies and poor survival of recA mutants. These phenotypes were greatly diminished when haem was present, indicating that respiration constitutes an efficient barrier against oxidative stress. Using the green fluorescent protein as an indicator of intracellular oxidation state, we showed that aeration growth provokes significantly greater oxidation than respiration growth. Iron was identified as a main contributor to mortality and DNA degradation in aeration growth. Our results point to two features of respiration growth in lactococci that are responsible for maintaining low oxidative damage: One is a more reduced intracellular state, which is because of efficient oxygen elimination by respiration. The other is a higher pH resulting from the shift from acid-forming fermentation to respiration metabolism. These results have relevance to other bacteria whose respiration capacity depends on addition of exogenous haem.
Collapse
Affiliation(s)
- Lahcen Rezaïki
- Génétique Appliquée--URLGA, Institut National de la Recherche Agronomique, Domaine de Vilvert, 78352 Jouy en Josas cedex, France
| | | | | | | | | | | | | |
Collapse
|
181
|
Sutton VR, Stubna A, Patschkowski T, Münck E, Beinert H, Kiley PJ. Superoxide destroys the [2Fe-2S]2+ cluster of FNR from Escherichia coli. Biochemistry 2004; 43:791-8. [PMID: 14730984 DOI: 10.1021/bi0357053] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The oxygen sensing ability of the transcription factor FNR depends on the presence of a [4Fe-4S]2+ cluster. In the presence of O2, conversion of the [4Fe-4S]2+ cluster to a [2Fe-2S]2+ cluster inactivates FNR, but the fate of the [2Fe-2S]2+ cluster in cells grown under aerobic conditions is unknown. The present study shows that the predominant form of FNR in aerobic cells is apo-FNR (cluster-less FNR) indicating that the [2Fe-2S]2+ cluster, like the [4Fe-4S]2+ cluster, is not stable under these conditions. By quantifying the amount of [2Fe-2S]2+ cluster in 2Fe-FNR in vitro in the presence of various reductants and oxidants (GSH, DTT, cysteine, O2, hydrogen peroxide, and superoxide), we found that superoxide, a byproduct of aerobic metabolism, significantly destabilized the [2Fe-2S]2+ cluster. Mössbauer spectroscopy was used to monitor the effects of superoxide on 2Fe-FNR in vivo; under cellular conditions that favored superoxide production, we observed the disappearance of the signal representative of the [2Fe-2S]2+ cluster. We conclude that the [2Fe-2S]2+ cluster of FNR is labile to superoxide both in vitro and in vivo. This lability may explain the absence of the [2Fe-2S]2+ cluster form of FNR under aerobic growth conditions.
Collapse
Affiliation(s)
- Victoria R Sutton
- Program in Cellular & Molecular Biology, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | | | |
Collapse
|
182
|
Janiszewski M, Do Carmo AO, Pedro MA, Silva E, Knobel E, Laurindo FRM. Platelet-derived exosomes of septic individuals possess proapoptotic NAD(P)H oxidase activity: A novel vascular redox pathway. Crit Care Med 2004; 32:818-25. [PMID: 15090968 DOI: 10.1097/01.ccm.0000114829.17746.19] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE Vascular dysfunction in sepsis may involve apoptosis of vascular cells through redox signaling mechanisms, which are still poorly investigated. Platelets have been shown to produce reactive oxygen species and to release microparticles, related to thrombotic and inflammatory processes. The present study was undertaken to investigate whether, in severe sepsis, platelet-derived microparticles could produce reactive oxygen species through a phagocyte-type nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and if such particles may induce vascular cell apoptosis through a reactive oxygen species-dependent mechanism. DESIGN Experimental study. SETTING Molecular and cell biology laboratories related to tertiary hospitals. SUBJECTS Microparticles obtained from septic patients and from healthy individuals were investigated concerning their biochemical properties and their effects on vascular endothelial and smooth muscle cells in culture. INTERVENTIONS Microparticle surface antigens were studied by flow cytometry and the presence of NADPH oxidase subunits by Western blot analysis. Microparticle reactive oxygen species generation was investigated through superoxide dismutase-inhibitable cytochrome c reduction and 5 microM lucigenin chemiluminescence. The effects of microparticles on vascular cell apoptosis rates were analyzed by immunofluorescence microscopy based on annexin V-fluorescein 5(6)-isothiocyanate assay. MEASUREMENTS AND MAIN RESULTS Flow cytometry analysis of microparticles obtained from septic patients and healthy individuals showed a surface antigenic pattern similar to exosomes and strongly suggestive of platelet origin. Those microparticles also displayed the p22 and gp91 subunits of phagocyte-simile NADPH oxidase and exhibited intrinsic reactive oxygen species production. Incubation of endothelial and vascular smooth muscle cells with microparticles enhanced apoptosis rates. Reactive oxygen species generation and apoptosis-inducing activity were markedly greater with exosomes from septic individuals than with exosomes from healthy subjects. These effects were diminished by the addition of superoxide dismutase or the NADPH oxidase inhibitors diphenylene iodonium and phenilarsine oxide. CONCLUSIONS Platelet-derived exosome NADPH oxidase activity seems to contribute to vascular cell apoptosis and may represent a new vascular redox-signaling pathway involved in the pathophysiology of sepsis.
Collapse
Affiliation(s)
- Mariano Janiszewski
- Cellular Biology Laboratory, Instituto de Ensino e Pesquisa, Hospital Israelita Albert Einstein, Avenida Albert Einstein, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
183
|
Mostertz J, Scharf C, Hecker M, Homuth G. Transcriptome and proteome analysis of Bacillus subtilis gene expression in response to superoxide and peroxide stress. MICROBIOLOGY-SGM 2004; 150:497-512. [PMID: 14766928 DOI: 10.1099/mic.0.26665-0] [Citation(s) in RCA: 188] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The Gram-positive soil bacterium Bacillus subtilis responds to oxidative stress by the activation of different cellular defence mechanisms. These are composed of scavenging enzymes as well as protection and repair systems organized in highly sophisticated networks. In this study, the peroxide and the superoxide stress stimulons of B. subtilis were characterized by means of transcriptomics and proteomics. The results demonstrate that oxidative-stress-responsive genes can be classified into two groups. One group encompasses genes which show similar expression patterns in the presence of both reactive oxygen species. Examples are members of the PerR and the Fur regulon which were induced by peroxide and superoxide stress. Similarly, both kinds of stress stimulated the activation of the stringent response. The second group is composed of genes primarily responding to one stimulus, like the members of the SOS regulon which were particularly upregulated in the presence of peroxide, and many genes involved in sulfate assimilation and methionine biosynthesis which were only induced by superoxide. Several genes encoding proteins of unknown function could be assigned to one of these groups.
Collapse
Affiliation(s)
- Jörg Mostertz
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | - Christian Scharf
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | - Michael Hecker
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| | - Georg Homuth
- Institut für Mikrobiologie und Molekularbiologie, Ernst-Moritz-Arndt-Universität Greifswald, D-17487 Greifswald, Germany
| |
Collapse
|
184
|
Abstract
The phenomenon of oxygen toxicity is universal, but only recently have we begun to understand its basis in molecular terms. Redox enzymes are notoriously nonspecific, transferring electrons to any good acceptor with which they make electronic contact. This poses a problem for aerobic organisms, since molecular oxygen is small enough to penetrate all but the most shielded active sites of redox enzymes. Adventitious electron transfers to oxygen create superoxide and hydrogen peroxide, which are partially reduced species that can oxidize biomolecules with which oxygen itself reacts poorly. This review attempts to present our still-incomplete understanding of how reactive oxygen species are formed inside cells and the mechanisms by which they damage specific target molecules. The vulnerability of cells to oxidation lies at the root of obligate anaerobiosis, spontaneous mutagenesis, and the use of oxidative stress as a biological weapon.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA.
| |
Collapse
|
185
|
Abstract
The frequently quoted figure for the fractional univalent reduction of oxygen to superoxide in mitochondria is certainly too high by at least one order of magnitude. This is so because the higher number (2%) was derived from mitochondria whose cytochrome c oxidase was blocked with cyanide. Nevertheless, even the more correct number (0.1%) means that the production of O(2)(-) and H(2)O(2) in mitochondria is large and apt to result in damage to macromolecules in spite of such defensive enzymes as superoxide dismutases and glutathione peroxidase. The data available for nematodes and flies provide a compelling case for the view that the accumulation of oxidative damage to specific mitochondrial proteins leads to the progressive dysfunction that we see as senescence. The data available from work with mammals are much weaker and do not yet allow a strong position to be taken.
Collapse
Affiliation(s)
- Irwin Fridovich
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA.
| |
Collapse
|
186
|
Guo J, Lemire BD. The ubiquinone-binding site of the Saccharomyces cerevisiae succinate-ubiquinone oxidoreductase is a source of superoxide. J Biol Chem 2003; 278:47629-35. [PMID: 13129931 DOI: 10.1074/jbc.m306312200] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mitochondrial succinate dehydrogenase (SDH) is a tetrameric iron-sulfur flavoprotein of the Krebs cycle and of the respiratory chain. A number of mutations in human SDH genes are responsible for the development of paragangliomas, cancers of the head and neck region. The mev-1 mutation in the Caenorhabditis elegans gene encoding the homolog of the SDHC subunit results in premature aging and hypersensitivity to oxidative stress. It also increases the production of superoxide radicals by the enzyme. In this work, we used the yeast succinate dehydrogenase to investigate the molecular and catalytic effects of paraganglioma- and mev-1-like mutations. We mutated Pro-190 of the yeast Sdh2p subunit to Gln (P190Q) and recreated the C. elegans mev-1 mutation by converting Ser-94 in the Sdh3p subunit into a glutamate residue (S94E). The P190Q and S94E mutants have reduced succinate-ubiquinone oxidoreductase activities and are hypersensitive to oxygen and paraquat. Although the mutant enzymes have lower turnover numbers for ubiquinol reduction, larger fractions of the remaining activities are diverted toward superoxide production. The P190Q and S94E mutations are located near the proximal ubiquinone-binding site, suggesting that the superoxide radicals may originate from a ubisemiquinone intermediate formed at this site during the catalytic cycle. We suggest that certain mutations in SDH can make it a significant source of superoxide production in mitochondria, which may contribute directly to disease progression. Our data also challenge the dogma that superoxide production by SDH is a flavin-mediated event rather than a quinone-mediated one.
Collapse
Affiliation(s)
- Jing Guo
- Canadian Institutes of Health, Membrane Protein Research Group, Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | | |
Collapse
|
187
|
Emerson JP, Coulter ED, Phillips RS, Kurtz DM. Kinetics of the superoxide reductase catalytic cycle. J Biol Chem 2003; 278:39662-8. [PMID: 12900405 DOI: 10.1074/jbc.m306488200] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The steady state kinetics of a Desulfovibrio (D.) vulgaris superoxide reductase (SOR) turnover cycle, in which superoxide is catalytically reduced to hydrogen peroxide at a [Fe(His)4(Cys)] active site, are reported. A proximal electron donor, rubredoxin, was used to supply reducing equivalents from NADPH via ferredoxin: NADP+ oxidoreductase, and xanthine/xanthine oxidase was used to provide a calibrated flux of superoxide. SOR turnover in this system was well coupled, i.e. approximately 2O*2 reduced:NADPH oxidized over a 10-fold range of superoxide flux. The reduction of the ferric SOR active site by reduced rubredoxin was independently measured to have a second-order rate constant of approximately 1 x 10(6) m-1 s-1. Analysis of the kinetics showed that: (i) 1 microM SOR can convert a 10 microM/min superoxide flux to a steady state superoxide concentration of 10(-10) m, during which SOR turns over about once every 6 s, (ii) the diffusion-controlled reaction of reduced SOR with superoxide is the slowest process during turnover, and (iii) neither ligation nor deligation of the active site carboxylate of SOR limits the turnover rate. An intracellular SOR concentration on the order of 10 microM is estimated to be the minimum required for lowering superoxide to sublethal levels in aerobically growing SOD knockout mutants of Escherichia coli. SORs from Desulfovibrio gigas and Treponema pallidum showed similar turnover rates when substituted for the D. vulgaris SOR, whereas superoxide dismutases showed no SOR activity in our assay. These results provide quantitative support for previous suggestions that, in times of oxidative stress, SORs efficiently divert intracellular reducing equivalents to superoxide.
Collapse
Affiliation(s)
- Joseph P Emerson
- Department of Chemistry and Center for Metalloenzyme Studies, University of Georgia, Athens, Georgia 30602, USA
| | | | | | | |
Collapse
|
188
|
Bai Z, Harvey LM, McNeil B. Elevated temperature effects on the oxidant/antioxidant balance in submerged batch cultures of the filamentous fungus Aspergillus niger B1-D. Biotechnol Bioeng 2003; 83:772-9. [PMID: 12889017 DOI: 10.1002/bit.10726] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In the present study the relationship between oxidative stress and elevated culture temperature was examined in an industrially relevant fungal culture, Aspergillus niger B1-D. For the first time, both the intracellular levels of the main stressor species (superoxide radical [O(2) (.-)]) and activities of cellular defensive enzymes (superoxide dismutase [SOD], catalase [CAT], and glutathione peroxide [GPx]) were quantified at varying temperature (25, 30, 35, 40 degrees C) to more fully characterize culture response in different growth phases. Elevated culture temperature led to increased O(2) (.-) levels in various culture phases. In the exponential phase this was due to an enhanced generation of O(2) (.-), whereas in stationary phase a decreased dismutation rate may also have contributed. CAT activities generally increased with culture temperature, whereas GPx activity changed little as temperature rose, indicating that GPx played only a minor role in destroying H(2)O(2) in this A. niger. The combination of elevated temperature (35 degrees C) and increased O(2) supply (50% enrichment) led to decreased levels of O(2) (.-) compared to the cultivation at 35 degrees C gassed with air, probably due to enhanced activity of the alternative fungal respiratory pathway. Our findings indicate that while elevated cultivation temperature does clearly induce oxidative stress events, mechanistically, it does so by a rather more complex route than previous studies indicate. Elevated temperature caused a marked disparity in the activities of SOD and CAT, very distinct from the integrated increase in activity of these enzymes in response to oxidative stress.
Collapse
Affiliation(s)
- Zhonghu Bai
- Strathclyde Fermentation Centre, Strathclyde University, Royal College Building, 204 George Street, Glasgow G1 1XW, Scotland, United Kingdom
| | | | | |
Collapse
|
189
|
Mostertz J, Hecker M. Patterns of protein carbonylation following oxidative stress in wild-type and sigB Bacillus subtilis cells. Mol Genet Genomics 2003; 269:640-8. [PMID: 12845527 DOI: 10.1007/s00438-003-0877-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2003] [Accepted: 06/01/2003] [Indexed: 10/26/2022]
Abstract
Oxidative stress causes damage to nucleic acids, membrane lipids and proteins. One striking effect is the metal-catalyzed, site-specific carbonylation of proteins. In the gram-positive soil bacterium Bacillus subtilis, the PerR-dependent specific stress response and the sigmaB-dependent general stress response act together to make cells more resistant to oxidative stress. In this study, we analyzed the carbonylation of cytoplasmic proteins in response to hydrogen peroxide stress in B. subtilis. Furthermore, we asked whether the sigmaB-dependent response to oxidative stress also confers protection against protein carbonylation. To monitor the amount and specificity of protein damage, carbonyls were derivatized with 2,4-dinitrophenylhydrazine, and the resulting stable hydrazones were detected by immunoanalysis of proteins separated by one- or two-dimensional gel electrophoresis. The overall level of protein carbonylation increased strongly in cells treated with hydrogen peroxide. Several proteins, including the elongation factors EF-G, TufA and EF-Ts, were found to be highly carbonylated. Induction of the peroxide specific stress response by treatment with sub-lethal peroxide concentrations, prior to exposure to otherwise lethal levels of peroxide, markedly reduced the degree of protein carbonylation. Cells starved for glucose also showed only minor amounts of peroxide-mediated protein carbonylation compared to exponentially growing cells. We could not detect any differences between wild-type and deltasigB cells starved for glucose or preadapted by heat treatment with respect to the amount or specificity of protein damage incurred upon subsequent exposure to peroxide stress. However, artificial preloading with proteins that are normally induced by sigmaB-dependent mechanisms resulted in a lower level of protein carbonylation when cells were later subjected to oxidative stress.
Collapse
Affiliation(s)
- J Mostertz
- Institut für Mikrobiologie, Ernst-Moritz-Arndt-Universität Greifswald, F.-L.-Jahnstr. 15, 17489 Greifswald, Germany
| | | |
Collapse
|
190
|
Gralnick JA, Downs DM. The YggX protein of Salmonella enterica is involved in Fe(II) trafficking and minimizes the DNA damage caused by hydroxyl radicals: residue CYS-7 is essential for YggX function. J Biol Chem 2003; 278:20708-15. [PMID: 12670952 DOI: 10.1074/jbc.m301577200] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Previous work from our laboratory identified YggX as a protein whose accumulation increased the resistance of Salmonella enterica to superoxide stress, reversed defects attributed to oxidized [Fe-S] clusters, and decreased the spontaneous mutation frequency of the cells. Here we present work aimed at determining why the accumulation of YggX correlates with reduced mutation frequency. Genetic and biochemical data showed that accumulation of YggX reduced the damage to DNA by hydroxyl radicals. The ability of purified YggX to protect DNA from Fenton chemistry mediated damage in vitro and to decrease the concentration of Fe(II) ions in solution available for chelation provided a framework for the interpretation of data obtained from in vivo experiments. The interpretation of in vitro assay results, within the context of the in vivo phenotypes, was validated by a mutant variant of YggX (C7S) that was unable to function in vivo or in vitro. We propose a model, based on data presented here and reported earlier, that suggests YggX is a player in Fe(II) trafficking in bacteria.
Collapse
Affiliation(s)
- Jeffrey A Gralnick
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | | |
Collapse
|
191
|
Liochev SI, Fridovich I. Mutant Cu,Zn superoxide dismutases and familial amyotrophic lateral sclerosis: evaluation of oxidative hypotheses. Free Radic Biol Med 2003; 34:1383-9. [PMID: 12757848 DOI: 10.1016/s0891-5849(03)00153-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
FALS-associated missense mutations of SOD1 exhibit a toxic gain of function that leads to the death of motor neurons. The explanations for this toxicity fall into two broad categories. One involves a gain of some oxidative activity, while the second involves a gain of protein: protein interactions. Among the postulated oxidative activities are the following: (i) peroxidase action; (ii) superoxide reductase action; and, (iii) the enhancement of production of O2- by partial reversal of the normal SOD activity, which then leads to increased formation of ONOO(-). We will herein concentrate on evaluating the relative merits of these oxidative hypotheses and consider whether the experiments with transgenic animals that purport to disprove these oxidative explanations really do so.
Collapse
Affiliation(s)
- Stefan I Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
192
|
Abstract
Reversal of the superoxide dismutase (SOD) reaction was measured in terms of the reduction of tetranitromethane (TNM) by O2-. Cu,ZnSOD caused a biphasic reduction of TNM by H2O2. The rapid initial phase was stoichiometric with the enzyme and was followed by a slower catalytic phase that was oxygen dependent and was augmented by HCO3-. The reaction scheme explaining this behavior is presented and a rate constant for the reduction of O2 by the cuprous enzyme is estimated. This rate constant is so low that it precludes significant O2- production by the reduced enzyme under the conditions explored.
Collapse
Affiliation(s)
- Stefan I Liochev
- Department of Biochemistry, Duke University Medical Center, Durham, NC 27710, USA
| | | |
Collapse
|
193
|
Desnues B, Cuny C, Grégori G, Dukan S, Aguilaniu H, Nyström T. Differential oxidative damage and expression of stress defence regulons in culturable and non-culturable Escherichia coli cells. EMBO Rep 2003; 4:400-4. [PMID: 12671690 PMCID: PMC1319155 DOI: 10.1038/sj.embor.embor799] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2002] [Revised: 01/21/2003] [Accepted: 01/24/2003] [Indexed: 11/09/2022] Open
Abstract
Potentially pathogenic bacteria, such as Escherichia coli and Vibrio cholerae, become non-culturable during stasis. The analysis of such cells has been hampered by difficulties in studying bacterial population heterogeneity. Using in situ detection of protein oxidation in single E. coli cells, and using a density-gradient centrifugation technique to separate culturable and non-culturable cells, we show that the proteins in non-culturable cells show increased and irreversible oxidative damage, which affects various bacterial compartments and proteins. The levels of expression of specific stress regulons are higher in non-culturable cells, confirming increased defects relating to oxidative damage and the occurrence of aberrant, such as by amino-acid misincorporation, proteins. Our data suggest that non-culturable cells are produced due to stochastic deterioration, rather than an adaptive programme, and pinpoint oxidation management as the 'Achilles heel' of these cells.
Collapse
Affiliation(s)
- Benoît Desnues
- Laboratoire de Microbiologie Marine, CNRS–INSU–UMR 6117, Université de la Méditerranée, Campus de Luminy Case 907, 163 Avenue de Luminy, F-13288 Marseille Cedex 09, France
| | - Caroline Cuny
- Laboratoire de Microbiologie Marine, CNRS–INSU–UMR 6117, Université de la Méditerranée, Campus de Luminy Case 907, 163 Avenue de Luminy, F-13288 Marseille Cedex 09, France
| | - Gérald Grégori
- Department of Cell and Molecular Biology—Microbiology, Göteborg University, Medicinaregatan 9C, 413 90 Göteborg, Sweden
- Department of Microbiology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Sam Dukan
- Laboratoire de Microbiologie Marine, CNRS–INSU–UMR 6117, Université de la Méditerranée, Campus de Luminy Case 907, 163 Avenue de Luminy, F-13288 Marseille Cedex 09, France
- Present address: Laboratoire de Chimie Bactérienne, CNRS UPR9043-31, Chemin Joseph Aiguier,13402 Marseille Cedex 20, France
| | - Hugo Aguilaniu
- Department of Cell and Molecular Biology—Microbiology, Göteborg University, Medicinaregatan 9C, 413 90 Göteborg, Sweden
- Department of Microbiology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| | - Thomas Nyström
- Department of Cell and Molecular Biology—Microbiology, Göteborg University, Medicinaregatan 9C, 413 90 Göteborg, Sweden
- Department of Microbiology, Lund University, Sölvegatan 12, 223 62 Lund, Sweden
| |
Collapse
|
194
|
Park S, Imlay JA. High levels of intracellular cysteine promote oxidative DNA damage by driving the fenton reaction. J Bacteriol 2003; 185:1942-50. [PMID: 12618458 PMCID: PMC150142 DOI: 10.1128/jb.185.6.1942-1950.2003] [Citation(s) in RCA: 356] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli is generally resistant to H(2)O(2), with >75% of cells surviving a 3-min challenge with 2.5 mM H(2)O(2). However, when cells were cultured with poor sulfur sources and then exposed to cystine, they transiently exhibited a greatly increased susceptibility to H(2)O(2), with <1% surviving the challenge. Cell death was due to an unusually rapid rate of DNA damage, as indicated by their filamentation, a high rate of mutation among the survivors, and DNA lesions by a direct assay. Cell-permeable iron chelators eliminated sensitivity, indicating that intracellular free iron mediated the conversion of H(2)O(2) into a hydroxyl radical, the direct effector of DNA damage. The cystine treatment caused a temporary loss of cysteine homeostasis, with intracellular pools increasing about eightfold. In vitro analysis demonstrated that cysteine reduces ferric iron with exceptional speed. This action permits free iron to redox cycle rapidly in the presence of H(2)O(2), thereby augmenting the rate at which hydroxyl radicals are formed. During routine growth, cells maintain small cysteine pools, and cysteine is not a major contributor to DNA damage. Thus, the homeostatic control of cysteine levels is important in conferring resistance to oxidants. More generally, this study provides a new example of a situation in which the vulnerability of cells to oxidative DNA damage is strongly affected by their physiological state.
Collapse
Affiliation(s)
- Sunny Park
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
195
|
Chapter 2 Recovery of stressed microorganisms. ACTA ACUST UNITED AC 2003. [DOI: 10.1016/s0079-6352(03)80005-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
196
|
Varghese S, Tang Y, Imlay JA. Contrasting sensitivities of Escherichia coli aconitases A and B to oxidation and iron depletion. J Bacteriol 2003; 185:221-30. [PMID: 12486059 PMCID: PMC141816 DOI: 10.1128/jb.185.1.221-230.2003] [Citation(s) in RCA: 167] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Superoxide damages dehydratases that contain catalytic [4Fe-4S](2+) clusters. Aconitases are members of that enzyme family, and previous work showed that most aconitase activity is lost when Escherichia coli is exposed to superoxide stress. More recently it was determined that E. coli synthesizes at least two isozymes of aconitase, AcnA and AcnB. Synthesis of AcnA, the less-abundant enzyme, is positively controlled by SoxS, a protein that is activated in the presence of superoxide-generating chemicals. We have determined that this arrangement exists because AcnA is resistant to superoxide in vivo. Surprisingly, purified AcnA is extremely sensitive to superoxide and other chemical oxidants unless it is combined with an uncharacterized factor that is present in cell extracts. In contrast, AcnB is highly sensitive to a variety of chemical oxidants in vivo, in extracts, and in its purified form. Thus, the induction of AcnA during oxidative stress provides a mechanism to circumvent a block in the tricarboxylic acid cycle. AcnA appears to be as catalytically competent as AcnB, so the retention of the latter as the primary housekeeping enzyme must provide some other advantage. We observed that the [4Fe-4S] cluster of AcnB is in dynamic equilibrium with the surrounding iron pool, so that AcnB is rapidly demetallated when intracellular iron pools drop. AcnA and other dehydratases do not show this trait. Demetallated AcnB is known to bind its cognate mRNA. The absence of AcnB activity also causes the accumulation and excretion of citrate, an iron chelator for which E. coli synthesizes a transport system. Thus, AcnB may be retained as the primary aconitase because the lability of its exposed cluster allows E. coli to sense and respond to iron depletion.
Collapse
Affiliation(s)
- Shery Varghese
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
197
|
Abstract
The orbital structure of molecular oxygen constrains it to accept electrons one at a time, and its unfavourable univalent reduction potential ensures that it can do so only with low-potential redox partners. In E. coli, this restriction prevents oxygen from oxidizing structural molecules. Instead, it primarily oxidizes reduced flavins, a reaction that is harmful only in that it generates superoxide and hydrogen peroxide as products. These species are stronger oxidants than is oxygen itself. They can oxidize dehydratase iron-sulphur clusters and sulphydryls, respectively, and thereby inactivate enzymes that are dependent upon these functional groups. Hydrogen peroxide also oxidizes free iron, generating hydroxyl radicals. Because hydroxyl radicals react with virtually any biomolecules they encounter, their reactivity is broadly dissipated, and only their reactions with DNA are known to have an important physiological impact. E. coli elaborates scavenging and repair systems to minimize the impact of this adventitious chemistry; mutants that lack these defences grow poorly in aerobic habitats. Some of the growth deficits of these mutants cannot be easily ascribed to sulphydryl, cluster, or DNA damage, indicating that important aspects of oxidative stress still lack a biochemical explanation. Obligate anaerobes cannot tolerate oxygen because they utilize metabolic schemes built around enzymes that react with oxidants. The reliance upon low-potential flavoproteins for anaerobic respiration probably causes substantial superoxide and hydrogen peroxide to be produced when anaerobes are exposed to air. These species then generate damage of the same type that they produce in aerotolerant bacteria. However, obligate anaerobes also utilize several classes of dioxygen-sensitive enzymes that are not needed by aerobes. These enzymes are used for processes that help maintain the redox balance during anaerobic fermentations. They catalyse reactions that are chemically difficult, and the reaction mechanisms require the solvent exposure of radicals or low-potential metal clusters that can react rapidly with oxygen. Recent work has uncovered adaptive strategies by which obligate anaerobes seek to minimize the damage done by superoxide and hydrogen peroxide. Their failure to divest themselves of enzymes that can be directly damaged by molecular oxygen suggests that evolution has not yet provided economical options to them.
Collapse
Affiliation(s)
- James A Imlay
- Department of Microbiology, University of Illinois, Urbana, IL 61801, USA
| |
Collapse
|
198
|
Abstract
Oxidation can damage all biological macromolecules, and the survival of a cell therefore depends on its ability to control the level of oxidants. Microbes possess an astonishing variety of antioxidant defences, ranging from small, oxidant-scavenging molecules to self-regulating, homeostatic gene networks. Most often these antioxidant defences are activated by exposure to specific classes of oxidants. Interestingly, the isolation of pleiotropic mutations that impair or exacerbate the expression of subsets of oxidant-responsive genes led to the identification of global regulators. In a few, well-characterized cases, these regulators can transduce oxidative damage into gene regulation. Recently, the application of genomic tools to study the antioxidant responses of E. coli has both confirmed previous observations and provided evidence for a wealth of putative new anti-oxidant functions. Here, we review the remarkable diversity of antioxidant defence mechanisms, with emphasis on signal transduction by global regulator proteins and the corresponding genetic networks that protect the microbial cell against oxidative stress.
Collapse
Affiliation(s)
- Pablo J Pomposiello
- Department of Cancer Cell Biology, Harvard School of Public Health, Boston, MA 02115, USA
| | | |
Collapse
|
199
|
Messner KR, Imlay JA. Mechanism of superoxide and hydrogen peroxide formation by fumarate reductase, succinate dehydrogenase, and aspartate oxidase. J Biol Chem 2002; 277:42563-71. [PMID: 12200425 DOI: 10.1074/jbc.m204958200] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Oxidative stress is created in aerobic organisms when molecular oxygen chemically oxidizes redox enzymes, forming superoxide (O2*-) and hydrogen peroxide (H2O2). Prior work identified several flavoenzymes from Escherichia coli that tend to autoxidize. Of these, fumarate reductase (Frd) is notable both for its high turnover number and for its production of substantial O2*- in addition to H2O2. We have sought to identify characteristics of Frd that predispose it to this behavior. The ability of excess succinate to block autoxidation and the inhibitory effect of lowering the flavin potential indicate that all detectable autoxidation occurs from its FAD site, rather than from iron-sulfur clusters or bound quinones. The flavin adenine dinucleotide (FAD) moiety of Frd is unusually solvent-exposed, as evidenced by its ability to bind sulfite, and this may make it more likely to react adventitiously with O2*-. The autoxidizing species is apparently fully reduced flavin rather than flavosemiquinone, since treatments that more fully reduce the enzyme do not slow its turnover number. They do, however, switch the major product from O2*- to H2O2. A similar effect is achieved by lowering the potential of the proximal [2Fe-2S] cluster. These data suggest that Frd releases O2*- into bulk solution if this cluster is available to sequester the semiquinone electron; otherwise, that electron is rapidly transferred to the nascent superoxide, and H2O2 is the product that leaves the active site. This model is supported by the behavior of "aspartate oxidase" (aspartate:fumarate oxidoreductase), an Frd homologue that lacks Fe-S clusters. Its dihydroflavin also reacts avidly with oxygen, and H2O2 is the predominant product. In contrast, succinate dehydrogenase, with high potential clusters, generates O2*- exclusively. The identities of enzyme autoxidation products are significant because O2*- and H2O2 damage cells in different ways.
Collapse
Affiliation(s)
- Kevin R Messner
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801, USA
| | | |
Collapse
|
200
|
Frey AD, Farrés J, Bollinger CJT, Kallio PT. Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coli. Appl Environ Microbiol 2002; 68:4835-40. [PMID: 12324328 PMCID: PMC126413 DOI: 10.1128/aem.68.10.4835-4840.2002] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli MG1655 cells expressing novel bacterial hemoglobin and flavohemoglobin genes from a medium-copy-number plasmid were grown in shake flask cultures under nitrosative and oxidative stress. E. coli cells expressing these proteins display enhanced resistance against the NO(.) releaser sodium nitroprusside (SNP) relative to that of the control strain bearing the parental plasmid. Expression of bacterial hemoglobins originating from Campylobacter jejuni (CHb) and Vitreoscilla sp. (VHb) conferred resistance on SNP-challenged cells. In addition, it has been shown that NO(.) detoxification is also a common feature of flavohemoglobins originating from different taxonomic groups and can be transferred to a heterologous host. These observations have been confirmed in a specific in vitro NO(.) consumption assay. Protein extracts isolated from E. coli strains overexpressing flavohemoglobins consumed authentic NO(.) more readily than protein extracts from the wild-type strain. Oxidative challenge to the cells evoked nonuniform responses from the various cell cultures. Improved oxidative-stress-sustaining properties had also been observed when the flavohemoglobins from E. coli, Klebsiella pneumoniae, Deinococcus radiodurans, and Pseudomonas aeruginosa were expressed in E. coli.
Collapse
Affiliation(s)
- Alexander D Frey
- Institute of Biotechnology, ETH Zürich, CH-8093 Zürich, Switzerland
| | | | | | | |
Collapse
|