151
|
Grassmé H, Riehle A, Wilker B, Gulbins E. Rhinoviruses infect human epithelial cells via ceramide-enriched membrane platforms. J Biol Chem 2005; 280:26256-62. [PMID: 15888438 DOI: 10.1074/jbc.m500835200] [Citation(s) in RCA: 162] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The cell membrane contains very small distinct membrane domains enriched of sphingomyelin and cholesterol that are named rafts. We have shown that the formation of ceramide via activation of the acid sphingomyelinase transforms rafts into ceramide-enriched membrane platforms. These platforms are required for infection of mammalian cells with Pseudomonas aeruginosa, Staphylococcus aureus, or Neisseriae gonorrhoeae. In the present study we determined whether the acid sphingomyelinase, ceramide, and ceramide-enriched membrane platforms are also involved in the infection of human cells with pathogenic rhinoviruses. We demonstrate that infection of human epithelial cells with several rhinovirus strains triggers a rapid activation of the acid sphingomyelinase correlating with microtubules- and microfilament-mediated translocation of the enzyme from an intracellular compartment onto the extracellular leaflet of the cell membrane. The activity of the acid sphingomyelinase results in the formation of ceramide in the cell membrane and, finally, large ceramide-enriched membrane platforms. Rhinoviruses colocalize with ceramide-enriched membrane platforms during the infection. The significance of ceramide-enriched membrane platforms for rhinoviral uptake is demonstrated by the finding that genetic deficiency or pharmacological inhibition of the acid sphingomyelinase prevented infection of human epithelial cells by rhinoviruses. The data identify the acid sphingomyelinase and ceramide as key molecules for the infection of human cells with rhinoviruses.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
152
|
Xu X, Dong Y, Abraham EG, Kocan A, Srinivasan P, Ghosh AK, Sinden RE, Ribeiro JMC, Jacobs-Lorena M, Kafatos FC, Dimopoulos G. Transcriptome analysis of Anopheles stephensi-Plasmodium berghei interactions. Mol Biochem Parasitol 2005; 142:76-87. [PMID: 15907562 DOI: 10.1016/j.molbiopara.2005.02.013] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2004] [Revised: 02/23/2005] [Accepted: 02/25/2005] [Indexed: 11/28/2022]
Abstract
Simultaneous microarray-based transcription analysis of 4987 Anopheles stephensi midgut and Plasmodium berghei infection stage specific cDNAs was done at seven successive time points: 6, 20 and 40h, and 4, 8, 14 and 20 days after ingestion of malaria infected blood. The study reveals the molecular components of several Anopheles processes relating to blood digestion, midgut expansion and response to Plasmodium-infected blood such as digestive enzymes, transporters, cytoskeletal and structural components and stress and immune responsive factors. In parallel, the analysis provide detailed expression patterns of Plasmodium genes encoding essential developmental and metabolic factors and proteins implicated in interaction with the mosquito vector and vertebrate host such as kinases, transcription and translational factors, cytoskeletal components and a variety of surface proteins, some of which are potent vaccine targets. Temporal correlation between transcription profiles of both organisms identifies putative gene clusters of interacting processes, such as Plasmodium invasion of the midgut epithelium, Anopheles immune responses to Plasmodium infection, and apoptosis and expulsion of invaded midgut cells from the epithelium. Intriguing transcription patterns for highly variable Plasmodium surface antigens may indicate parasite strategies to avoid recognition by the mosquito's immune surveillance system.
Collapse
Affiliation(s)
- Xiaojin Xu
- Department of Biological Sciences, Imperial College, London SW7 2AZ, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Summers SA, Nelson DH. A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing's syndrome. Diabetes 2005; 54:591-602. [PMID: 15734832 DOI: 10.2337/diabetes.54.3.591] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Metabolic syndrome X and type 2 diabetes share many metabolic and morphological similarities with Cushing's syndrome, a rare disorder caused by systemic glucocorticoid excess. Pathologies frequently associated with these diseases include insulin resistance, atherosclerosis, susceptibility to infection, poor wound healing, and hypertension. The similarity of the clinical profiles associated with these disorders suggests the influence of a common molecular mechanism for disease onset. Interestingly, numerous studies identify ceramides and other sphingolipids as potential contributors to these sequelae. Herein we review studies demonstrating that aberrant ceramide accumulation contributes to the development of the deleterious clinical manifestations associated with these diseases.
Collapse
Affiliation(s)
- Scott A Summers
- Division of Endocrinology, Metabolism and Diabetes, Department of Internal Medicine, University of Utah, Salt Lake City, UT 84132, USA.
| | | |
Collapse
|
154
|
Haynes A, Rumbaugh KP, Park PW, Hamood AN, Griswold JA. Protamine sulfate reduces the susceptibility of thermally injured mice to Pseudomonas aeruginosa infection. J Surg Res 2005; 123:109-17. [PMID: 15652958 DOI: 10.1016/j.jss.2004.07.251] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2004] [Indexed: 10/26/2022]
Abstract
BACKGROUND In this study, we investigated the ability of protamine sulfate, at sub-bactericidal dosing, to interfere with the in vivo virulence of Pseudomonas aeruginosa (PAO1) during burn wound infection. MATERIALS AND METHODS The study was conducted using the murine model of thermal injury. Preliminary experiments determined a protocol for administration of protamine sulfate that had no in vivo bactericidal effects. Based on this, the effect of local injection of protamine sulfate on the in vivo virulence of PAO1 was assessed using these parameters: (1) the percent mortality among PAO1-infected, thermally injured mice; (2) the local proliferation and spread of PAO1 within the infected burned tissue; (3) the systemic spread of PAO1 within thermally injured/infected mice; and (4) the local cytokine response elicited by PAO1 thermally injured/infected mice. RESULTS Injection of protamine sulfate into the thermally injured tissue of PAO1-infected/thermally injured mice significantly decreased the percent mortality and inhibited the systemic dissemination of PAO1 microorganisms to the liver and spleen. It had no effect, however, on the ability of the bacteria to proliferate and spread within the thermally injured tissue. It also was determined that protamine sulfate was ineffective at preventing mouse death at the dose administered if injected intramuscularly instead of directly into burned tissue. Protamine sulfate reduced the expression of the proinflammatory cytokines IL-6 and LIF in the injured/infected tissue. Heparan sulfate given in conjunction with protamine sulfate returned mortality levels to those of untreated mice. CONCLUSIONS Our results suggest that: (1) local injection of sub-bactericidal doses of protamine sulfate reduces the virulence of P. aeruginosa; (2) this effect is due to interference with the systemic rather than local spread of P. aeruginosa; and (3) local application of protamine sulfate may have potential as supportive therapy for prevention of systemic P. aeruginosa infection in severely burned patients.
Collapse
Affiliation(s)
- Allan Haynes
- University of Washington Health Sciences Center, 1959 NE Pacific St., Seattle, WA 98195, USA
| | | | | | | | | |
Collapse
|
155
|
Szabò I, Bock J, Jekle A, Soddemann M, Adams C, Lang F, Zoratti M, Gulbins E. A novel potassium channel in lymphocyte mitochondria. J Biol Chem 2005; 280:12790-8. [PMID: 15632141 DOI: 10.1074/jbc.m413548200] [Citation(s) in RCA: 166] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The margatoxin-sensitive Kv1.3 is the major potassium channel in the plasma membrane of T lymphocytes. Electron microscopy, patch clamp, and immunological studies identified the potassium channel Kv1.3, thought to be localized exclusively in the cell membrane, in the inner mitochondrial membrane of T lymphocytes. Patch clamp of mitoplasts and mitochondrial membrane potential measurements disclose the functional expression of a mitochondrial margatoxin-sensitive potassium channel. To identify unambiguously the mitochondrial localization of Kv1.3, we employed a genetic model and stably transfected CTLL-2 cells, which are genetically deficient for this channel, with Kv1.3. Mitochondria isolated from Kv1.3-reconstituted CTLL-2 expressed the channel protein and displayed an activity, which was identical to that observed in Jurkat mitochondria, whereas mitochondria of mock-transfected cells lacked a channel with the characteristics of Kv1.3. Our data provide the first molecular identification of a mitochondrial potassium conductance.
Collapse
Affiliation(s)
- Ildikò Szabò
- Department of Biology, University of Padova, 35121 Padova, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
156
|
Falcone S, Perrotta C, De Palma C, Pisconti A, Sciorati C, Capobianco A, Rovere-Querini P, Manfredi AA, Clementi E. Activation of acid sphingomyelinase and its inhibition by the nitric oxide/cyclic guanosine 3',5'-monophosphate pathway: key events in Escherichia coli-elicited apoptosis of dendritic cells. THE JOURNAL OF IMMUNOLOGY 2004; 173:4452-63. [PMID: 15383576 DOI: 10.4049/jimmunol.173.7.4452] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Depletion of dendritic cells (DCs) via apoptosis contributes to sepsis-induced immune suppression. The mechanisms leading to DC apoptosis during sepsis are not known. In this study we report that immature DCs undergo apoptosis when treated with high numbers of Escherichia coli. This effect was mimicked by high concentrations of LPS. Apoptosis was accompanied by generation of ceramide through activation of acid sphingomyelinase (A-SMase), was prevented by inhibitors of this enzyme, and was restored by exogenous ceramide. Compared with immature DCs, mature DCs expressed significantly reduced levels of A-SMase, did not generate ceramide in response to E. coli or LPS, and were insensitive to E. coli- and LPS-triggered apoptosis. However, sensitivity to apoptosis was restored by addition of exogenous A-SMase or ceramide. Furthermore, inhibition of A-SMase activation and ceramide generation was found to be the mechanism through which the immune-modulating messenger NO protects immature DCs from the apoptogenic effects of E. coli and LPS. NO acted through formation of cGMP and stimulation of the cGMP-dependent protein kinase. The relevance of A-SMase and its inhibition by NO/cGMP were confirmed in a mouse model of LPS-induced sepsis. DC apoptosis was significantly higher in inducible NO synthase-deficient mice than in wild-type animals and was significantly reduced by treatment ex vivo with NO, cGMP, or the A-SMase inhibitor imipramine. Thus, A-SMase plays a central role in E. coli/LPS-induced DC apoptosis and its inhibition by NO, and it might be a target of new therapeutic approaches to sepsis.
Collapse
Affiliation(s)
- Sestina Falcone
- Vita-Salute University and Stem Cell Research Institute, San Raffaele, Milan, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Edwards JL, Apicella MA. The molecular mechanisms used by Neisseria gonorrhoeae to initiate infection differ between men and women. Clin Microbiol Rev 2004; 17:965-81, table of contents. [PMID: 15489357 PMCID: PMC523569 DOI: 10.1128/cmr.17.4.965-981.2004] [Citation(s) in RCA: 198] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The molecular mechanisms used by the gonococcus to initiate infection exhibit gender specificity. The clinical presentations of disease are also strikingly different upon comparison of gonococcal urethritis to gonococcal cervicitis. An intimate association occurs between the gonococcus and the urethral epithelium and is mediated by the asialoglycoprotein receptor. Gonococcal interaction with the urethral epithelia cell triggers cytokine release, which promotes neutrophil influx and an inflammatory response. Similarly, gonococcal infection of the upper female genital tract also results in inflammation. Gonococci invade the nonciliated epithelia, and the ciliated cells are subjected to the cytotoxic effects of tumor necrosis factor alpha induced by gonococcal peptidoglycan and lipooligosaccharide. In contrast, gonococcal infection of the lower female genital tract is typically asymptomatic. This is in part the result of the ability of the gonococcus to subvert the alternative pathway of complement present in the lower female genital tract. Gonococcal engagement of complement receptor 3 on the cervical epithelia results in membrane ruffling and does not promote inflammation. A model of gonococcal pathogenesis is presented in the context of the male and female human urogenital tracts.
Collapse
Affiliation(s)
- Jennifer L Edwards
- Department of Microbiology, The University of Iowa, 51 Newton Rd., BSB 3-403, Iowa City, IA 52242, USA
| | | |
Collapse
|
158
|
Abdel Shakor AB, Kwiatkowska K, Sobota A. Cell Surface Ceramide Generation Precedes and Controls FcγRII Clustering and Phosphorylation in Rafts. J Biol Chem 2004; 279:36778-87. [PMID: 15194692 DOI: 10.1074/jbc.m402170200] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Despite the role of sphingolipid/cholesterol rafts as signaling platforms for Fcgamma receptor II (FcgammaRII), the mechanism governing translocation of an activated receptor toward the rafts is unknown. We show that at the onset of FcgammaRII cross-linking acid sphingomyelinase is rapidly activated. This enzyme is extruded from intracellular compartments to the cell surface, and concomitantly, exofacially oriented ceramide is produced. Both non-raft and, to a lesser extent, raft sphingomyelin pools were hydrolyzed at the onset of FcgammaRII cross-linking. The time course of ceramide production preceded the recruitment of FcgammaRII to rafts and the receptor phosphorylation. Exogenous C(16)-ceramide facilitated clustering of FcgammaRII and its association with rafts. In contrast, inhibition of acid sphingomyelinase diminished both the ceramide generation and clustering of cross-linked FcgammaRII. Under these conditions, tyrosine phosphorylation of FcgammaRII and receptor-accompanying proteins was also reduced. All the inhibitory effects were bypassed by treatment of cells with exogenous ceramide. These data provide evidence that the generation of cell surface ceramide is a prerequisite for fusion of cross-linked FcgammaRII and rafts, which triggers the receptor tyrosine phosphorylation and signaling.
Collapse
Affiliation(s)
- Abo Bakr Abdel Shakor
- Nencki Institute of Experimental Biology, the Department of Cell Biology, 3 Pasteur St., 02-093 Warsaw, Poland
| | | | | |
Collapse
|
159
|
Castañeda-Roldán EI, Avelino-Flores F, Dall'Agnol M, Freer E, Cedillo L, Dornand J, Girón JA. Adherence of Brucella to human epithelial cells and macrophages is mediated by sialic acid residues. Cell Microbiol 2004; 6:435-45. [PMID: 15056214 DOI: 10.1111/j.1462-5822.2004.00372.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The basis for the interaction of Brucella species with the surface of epithelial cells before migration in the host within polymorphonuclear leucocytes is largely unknown. Here, we studied the ability of Brucella abortus and Brucella melitensis to adhere to cultured epithelial (HeLa and HEp-2) cells and THP-1-derived macrophages, and to bind extracellular matrix proteins (ECM). The brucellae adhered to epithelial cells forming localized bacterial microcolonies on the cell surface, and this process was inhibited significantly by pretreatment of epithelial cells with neuraminidase and sodium periodate and by preincubation of the bacteria with heparan sulphate and N-acetylneuraminic acid. Trypsinization of epithelial cells yielded increased adherence, suggesting unmasking of target sites on host cells. Notably, the brucellae also adhered to cultured THP-1 cells, and this event was greatly reduced upon removal of sialic acid residues from these cells with neuraminidase. B. abortus bound in a dose-dependent manner to immobilized fibronectin and vitronectin and, to a lesser extent, to chondroitin sulphate, collagen and laminin. In sum, our data strongly suggest that the adherence mechanism of brucellae to epithelial cells and macrophages is mediated by cellular receptors containing sialic acid and sulphated residues. The recognition of ECM (fibronectin and vitronectin) by the brucellae may represent a mechanism for spread within the host tissues. These are novel findings that offer new insights into understanding the interplay between Brucella and host cells.
Collapse
Affiliation(s)
- Elsa I Castañeda-Roldán
- Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, Edificio 76, Complejo de Ciencias, Puebla, México
| | | | | | | | | | | | | |
Collapse
|
160
|
McCaw SE, Liao EH, Gray-Owen SD. Engulfment of Neisseria gonorrhoeae: revealing distinct processes of bacterial entry by individual carcinoembryonic antigen-related cellular adhesion molecule family receptors. Infect Immun 2004; 72:2742-52. [PMID: 15102784 PMCID: PMC387857 DOI: 10.1128/iai.72.5.2742-2752.2004] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Individual Neisseria gonorrhoeae colony opacity-associated (Opa) protein variants can bind up to four different carcinoembryonic antigen-related cellular adhesion molecule (CEACAM) receptors. Most human cells encountered by gonococci express a combination of CEACAM receptors, thereby complicating the elucidation of intracellular signaling pathways triggered by individual receptors. Here, we compare the process of bacterial engulfment by a panel of stably transfected HeLa epithelial cell lines expressing each CEACAM receptor in isolation. CEACAM1 and CEACAM3 each contain proteinaceous transmembrane and cytoplasmic domains; however, the processes of neisserial uptake mediated by these receptors differ with respect to their susceptibilities to both tyrosine kinase inhibitors and the actin microfilament-disrupting agent cytochalasin D. Neisserial uptake mediated by glycosylphosphatidylinositol (GPI)-anchored CEACAM5 and CEACAM6 was not significantly affected by any of a broad spectrum of inhibitors tested. However, cleavage of the GPI anchor by phosphatidylinositol-specific phospholipase C reduced bacterial uptake by HeLa cells expressing CEACAM5, consistent with a single zipper-like mechanism of uptake mediated by this receptor. Regardless of the CEACAM receptor expressed, internalized gonococci were effectively killed by a microtubule-dependent process that required acidification of the bacterium-containing phagosome. Given the phase-variable nature of neisserial Opa proteins, these results indicate that the mechanism of bacterial engulfment and the cellular response to gonococcal infection depend on both the receptor specificities of the neisserial Opa protein variants expressed and the spectrum of CEACAM receptors present on target cells, each of which determines the combination of receptors ultimately engaged.
Collapse
Affiliation(s)
- Shannon E McCaw
- Department of Medical Genetics and Microbiology, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | | | | |
Collapse
|
161
|
Szabò I, Adams C, Gulbins E. Ion channels and membrane rafts in apoptosis. Pflugers Arch 2004; 448:304-12. [PMID: 15071744 DOI: 10.1007/s00424-004-1259-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2004] [Accepted: 02/19/2004] [Indexed: 10/26/2022]
Abstract
Ion channels have been demonstrated to be a central element in the induction and the execution of apoptosis. In particular, mitochondrial ion channels, including not only the permeability transition pore but also a mitochondrial, ATP-sensitive (mKATP) channel as well as a mitochondrial calcium-activated potassium channel are involved critically in apoptotic changes in mitochondria. Ion channels in the cell membrane that are altered by induction of apoptosis include potassium, chloride and calcium channels. The Kv1.3 potassium channel belongs to the best-characterized ion channels involved in apoptosis and a genetic model of cells deficient for Kv1.3 has indicated a critical role for Kv1.3, at least in some forms of apoptosis. The mechanisms regulating ion channels during apoptosis are, however, still poorly defined. Recent studies have suggested a function for distinct membrane domains, termed rafts, in the cell membrane for the regulation of ion channels during apoptosis. Small sphingolipid- and cholesterol-enriched membrane domains are modified by many apoptotic stimuli to form large ceramide-enriched membrane platforms. These platforms serve to cluster receptor molecules, to re-organize intracellular signalling molecules including ion channels, to bring ion channels into close contact with their regulators and/or to separate proteins from a specific ion channel. Finally, the lipid composition of the cell membrane might be involved directly in ion channel regulation.
Collapse
Affiliation(s)
- I Szabò
- Department of Biology, University of Padua, Via Colombo 6, 35121 Padua, Italy
| | | | | |
Collapse
|
162
|
London E. Ceramide selectively displaces cholesterol from ordered lipid domains (rafts): implications for lipid raft structure and function. J Biol Chem 2003; 279:9997-10004. [PMID: 14699154 DOI: 10.1074/jbc.m309992200] [Citation(s) in RCA: 336] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide is a membrane lipid involved in a number of crucial biological processes. Recent evidence suggests that ceramide is likely to reside and function within lipid rafts; ordered sphingolipid and cholesterol-rich lipid domains believed to exist within many eukaryotic cell membranes. Using lipid vesicles containing co-existing raft domains and disordered fluid domains, we find that natural and saturated synthetic ceramides displace sterols from rafts. Other raft lipids remain raft-associated in the presence of ceramide, showing displacement is relatively specific for sterols. Like cholesterol-containing rafts, ceramide-rich "rafts" remain in a highly ordered state. Comparison of the sterol-displacing abilities of natural ceramides with those of saturated diglycerides and an unsaturated ceramide demonstrates that tight lipid packing is critical for sterol displacement by ceramide. Based on these results, and the fact that cholesterol and ceramides both have small polar headgroups, we propose that ceramides and cholesterol compete for association with rafts because of a limited capacity of raft lipids with large headgroups to accommodate small headgroup lipids in a manner that prevents unfavorable contact between the hydrocarbon groups of the small headgroup lipids and the surrounding aqueous environment. Minimizing the exposure of cholesterol and ceramide to water may be a strong driving force for the association of other molecules with rafts. Furthermore, displacement of sterol from rafts by ceramide is very likely to have marked effects upon raft structure and function, altering liquid ordered properties as well as molecular composition. In this regard, certain previously observed physiological processes may be a result of displacement. In particular, a direct connection to the previously observed sphingomyelinase-induced displacement of cholesterol from plasma membranes in cells is proposed.
Collapse
|
163
|
Abstract
Ceramide, generated by the action of acid sphingomyelinase (ASM), has emerged as a biochemical mediator of stimuli as diverse as ionizing radiation, chemotherapy, UVA light, heat, CD95, reperfusion injury, as well as infection with some pathogenic bacteria and viruses. ASM activity is also crucial for developmental programmed cell death of oocytes by apoptosis. Recently, we proposed a comprehensive model that might explain these diverse functions of ceramide: Upon contacting the relevant stimuli, ASM translocates into and generates ceramide within distinct plasma membrane sphingolipid-enriched microdomains termed rafts. Ceramide, which manifests a unique biophysical property, the capability to self-associate through hydrogen bonding, provides the driving force that results in the coalescence of microscopic rafts into large-membrane macrodomains. These structures serve as platforms for protein concentration and oligomerization, transmitting signals across the plasma membrane. Preliminary data suggest that manipulation of ceramide metabolism and/or the function of ceramide-enriched membrane platforms may present novel therapeutic opportunities for the treatment of cancer, degenerative disorders, pathogenic infections or cardiovascular diseases.
Collapse
Affiliation(s)
- Erich Gulbins
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, Essen 45122, Germany.
| | | |
Collapse
|
164
|
Contreras FX, Villar AV, Alonso A, Kolesnick RN, Goñi FM. Sphingomyelinase activity causes transbilayer lipid translocation in model and cell membranes. J Biol Chem 2003; 278:37169-74. [PMID: 12855704 DOI: 10.1074/jbc.m303206200] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ceramide is known to induce structural rearrangements in membrane bilayers, including the formation of ceramide-rich and -poor domains and the efflux of aqueous solutes. This report describes a novel effect of ceramide, namely the induction of transbilayer lipid movements. This effect was demonstrated in both model (large unilamellar vesicles) and cell (erythrocyte ghost) membranes in which ceramide generation took place in situ through the action of an externally added sphingomyelinase. Two different novel assays were developed to detect transbilayer lipid movement. One of the assays required the preparation of vesicles containing a ganglioside only in the outer monolayer and entrapped neuraminidase. Sphingomyelinase activity induced ganglioside hydrolysis under conditions in which no neuraminidase was released from the vesicles. The second assay involved the preparation of liposomes or erythrocyte ghosts labeled with a fluorescent energy donor in their inner leaflets. Sphingomyelin hydrolysis was accompanied by fluorescence energy transfer to an impermeable acceptor in the outer aqueous medium. Ceramide-induced transbilayer lipid movement is explained in terms of another well known property of ceramide, namely the facilitation of lamellar to non-lamellar lipid-phase transitions. Thus, sphingomyelinase generates ceramide on one side of the membrane; ceramide then induces the transient formation of non-lamellar structural intermediates, which cause the loss of lipid asymmetry in the bilayer, i.e. the transbilayer movement of ceramide together with other lipids. As direct targets for ceramide tend to be intracellular, these observations may be relevant to the mechanism of transmembrane signaling by means of the sphingomyelin pathway.
Collapse
Affiliation(s)
- F-Xabier Contreras
- Unidad de Biofísica (Centro Mixto CSIC-UPV/EHU), Universidad del País Vasco, 48080 Bilbao, Spain
| | | | | | | | | |
Collapse
|
165
|
Grassmé H, Cremesti A, Kolesnick R, Gulbins E. Ceramide-mediated clustering is required for CD95-DISC formation. Oncogene 2003; 22:5457-70. [PMID: 12934106 DOI: 10.1038/sj.onc.1206540] [Citation(s) in RCA: 207] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Early events required for induction of apoptosis by CD95 are preassociation of CD95, the formation of the death-inducing signaling complex (DISC) and clustering of CD95 in distinct membrane domains. Here, we identify the molecular ordering of these events and show that the acid sphingomyelinase (ASM) functions upstream of the DISC to mediate CD95 clustering in ceramide-enriched membrane platforms, an event that is required for DISC formation. Experiments in ASM-deficient cells revealed that CD95 ligation, in the absence of ceramide generation, triggers <1% of full caspase 8 activation at the receptor. This event, however, is both necessary and sufficient to trigger translocation of ASM onto the outer leaflet of the plasma membrane, ASM activation and ceramide release, but insufficient for apoptosis induction. Ceramide-mediated CD95 clustering then amplifies the primary CD95 signaling and drives the second step of CD95 signaling, that is, formation of the DISC yielding 100% caspase activity and apoptosis. These studies suggest that the most parsimonious interpretation of the molecular ordering of the earliest events in CD95 signaling, at least in some cells, is: CD95 ligation-->1% of maximum caspase 8 activation-->ASM translocation-->ceramide generation-->CD95 clustering-->DISC formation-->100% of maximum caspase 8 activation-->apoptosis.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse 55, 45122 Essen, Germany
| | | | | | | |
Collapse
|
166
|
Bock J, Szabó I, Gamper N, Adams C, Gulbins E. Ceramide inhibits the potassium channel Kv1.3 by the formation of membrane platforms. Biochem Biophys Res Commun 2003; 305:890-7. [PMID: 12767914 DOI: 10.1016/s0006-291x(03)00763-0] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Previous studies suggested a central role of sphingomyelin- and cholesterol-enriched membrane rafts in the initiation of signaling via many receptors. Here, we investigated the role of membrane rafts for the function of the voltage-gated potassium channel Kv1.3. We demonstrate that Kv1.3 localizes in the cell membrane to pre-existing small, sphingolipid- and cholesterol-enriched membrane rafts. Transformation of these small rafts to large ceramide-enriched membrane platforms was achieved by stimulation of the endogenous acid sphingomyelinase, addition of exogenous sphingomyelinase or treatment of the cells with C(16)-ceramide and resulted in clustering of Kv1.3 within ceramide-enriched membrane platforms and inhibition of the channel's activity. Likewise, disruption of pre-existing small rafts inhibited Kv1.3 activity. This indicates that intact small membrane rafts are required for Kv1.3 activity and an alteration of the lipid environment of rafts inhibits Kv1.3. These data, thus, may suggest a novel concept for the regulation of ion channels by the cell membrane composition.
Collapse
Affiliation(s)
- Jürgen Bock
- Department of Molecular Biology, University of Essen, Hufelandstrasse 55, Essen 45122, Germany
| | | | | | | | | |
Collapse
|
167
|
Jendrossek V, Fillon S, Belka C, Müller I, Puttkammer B, Lang F. Apoptotic response of Chang cells to infection with Pseudomonas aeruginosa strains PAK and PAO-I: molecular ordering of the apoptosis signaling cascade and role of type IV pili. Infect Immun 2003; 71:2665-73. [PMID: 12704141 PMCID: PMC153227 DOI: 10.1128/iai.71.5.2665-2673.2003] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Pseudomonas aeruginosa is a gram-negative facultative opportunistic pathogen associated with severe infections in immunocompromised hosts and in patients with cystic fibrosis. P. aeruginosa strains show divergent pathogenicity in vivo and trigger apoptosis of and/or are internalized into human host cells. In the present study, we studied the molecular ordering of apoptosis signaling upon infection of human conjunctiva epithelial Chang cells with P. aeruginosa PAK as well as the role of bacterial pili in the response to the infection. Our results show that CD95 up-regulation is followed by early activation of caspase-8 and -3 and cleavage of the caspase-3 substrate poly(ADP-ribose) polymerase. The data also demonstrate release of apoptosis inducing factor into the cytosol of infected cells. Induction of mitochondrial alterations, i.e., mitochondrial depolarization and release of cytochrome c, as well as cleavage of caspase-9, -7, and -1 occurred only at later time points. In addition, our results demonstrate that pili are required for P. aeruginosa-induced apoptosis of human epithelial cells. While the two piliated P. aeruginosa strains, PAO-I and PAK, induced apoptosis of Chang cells within 3 h of infection, the pilus-deficient P. aeruginosa mutants PAK Delta pilA and PAK Delta pilA Delta all were without effect. The pilus-deficient mutants failed to induce a significant up-regulation of CD95 on the cell surface and to trigger mitochondrial alterations or activation of caspase-8, -3, and -7. In addition, only the piliated wild-type strains induced caspase-1-mediated activation of interleukin-1 beta. Thus, pili are necessary for distinct infection-induced cellular responses of human epithelial cells.
Collapse
Affiliation(s)
- Verena Jendrossek
- Department of Physiology, University of Tübingen, 72076 Tübingen, Germany.
| | | | | | | | | | | |
Collapse
|
168
|
Barsacchi R, Perrotta C, Bulotta S, Moncada S, Borgese N, Clementi E. Activation of endothelial nitric-oxide synthase by tumor necrosis factor-alpha: a novel pathway involving sequential activation of neutral sphingomyelinase, phosphatidylinositol-3' kinase, and Akt. Mol Pharmacol 2003; 63:886-95. [PMID: 12644590 DOI: 10.1124/mol.63.4.886] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Activation of endothelial nitric-oxide synthase (eNOS) has been shown to occur through various pathways involving increases in the cytosolic Ca(2+) concentration, activation of the phosphatidylinositol-3' kinase/Akt pathway, as well as regulation by other kinases and by protein-protein interactions. We have recently reported that eNOS, expressed in an inducible HeLa Tet-off cell line, is activated by tumor necrosis factor-alpha (TNF-alpha) in a previously undescribed pathway that involves the lipid messenger ceramide. We have now characterized this pathway. We report here that eNOS activation in response to TNF-alpha correlated with phosphorylation of Akt at Ser 473 and of eNOS itself at Ser 1179. Akt and eNOS phosphorylation, as well as eNOS activation, were blocked by inhibitors of both phosphatidylinositol-3' kinase and neutral sphingomyelinase. In contrast, although acid sphingomyelinase was also stimulated by TNF-alpha, its inhibition was without effect. The activation of neutral sphingomyelinase triggered by TNF-alpha was insensitive to phosphatidylinositol-3' kinase inhibitors. Taken together, these results indicate that eNOS activation by TNF-alpha occurs through sequential activation of neutral sphingomyelinase and of the phosphatidylinositol-3' kinase/Akt pathway. The time course of eNOS activation induced through this pathway was markedly different from that triggered by ATP and epidermal growth factor, which activate eNOS through an increase in intracellular Ca(2+) concentration and through a sphingomyelinase-independent stimulation of the phosphatidylinositol-3' kinase/Akt pathway, respectively. The novel pathway of activation of eNOS described here may have broad biological relevance because neutral sphingomyelinase is activated not only by TNF-alpha but also by a variety of other physiological and pathological stimuli.
Collapse
Affiliation(s)
- Rico Barsacchi
- Vita-Salute University-DIBIT H San Raffaele Institute, Milan, Italy
| | | | | | | | | | | |
Collapse
|
169
|
Grassmé H, Jendrossek V, Riehle A, von Kürthy G, Berger J, Schwarz H, Weller M, Kolesnick R, Gulbins E. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med 2003; 9:322-30. [PMID: 12563314 DOI: 10.1038/nm823] [Citation(s) in RCA: 419] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2002] [Accepted: 01/09/2003] [Indexed: 12/23/2022]
Abstract
Pseudomonas aeruginosa infection is a serious complication in patients with cystic fibrosis and in immunocompromised individuals. Here we show that P. aeruginosa infection triggers activation of the acid sphingomyelinase and the release of ceramide in sphingolipid-rich rafts. Ceramide reorganizes these rafts into larger signaling platforms that are required to internalize P. aeruginosa, induce apoptosis and regulate the cytokine response in infected cells. Failure to generate ceramide-enriched membrane platforms in infected cells results in an unabated inflammatory response, massive release of interleukin (IL)-1 and septic death of mice. Our findings show that ceramide-enriched membrane platforms are central to the host defense against this potentially lethal pathogen.
Collapse
Affiliation(s)
- H Grassmé
- Department of Molecular Biology, University of Essen, Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
170
|
Abstract
Stimulation of CD40 has been previously shown to result in a release of ceramide in small sphingolipid-enriched rafts in the cell membrane [Grassmé et al., J. Immunol. 168 (2002) 298-307]. Those rafts fused to larger signaling platforms that served to cluster CD40. Here, we defined molecular mechanisms of CD40 clustering in membrane platforms. To this end, we replaced the transmembranous domain of CD40 with that of CD45, a molecule known to be excluded from lipid rafts. Murine T cells were stably transfected with wild-type CD40 or chimeric CD40/CD45. Flow cytometry confirmed normal binding properties of the mutant to CD40 ligand. Stimulation with CD40 ligand resulted in clustering of wild-type CD40, while the chimeric CD40/45 receptor failed to cluster. This correlated with a deficiency of the chimeric receptor to activate JNK, p38 MAP kinase and SAPK, known signaling molecules of the intracellular pathway initiated by CD40. Forced crosslinking of the CD40/45 chimeric receptor restored, at least partially, these signaling events. The results suggest that the transmembranous domain of CD40 is central for the recruitment to and clustering of CD40 in membrane platforms.
Collapse
Affiliation(s)
- Jürgen Bock
- Department of Immunology, St Jude Children's Research Hospital, 332 North Lauderdale, Memphis, TN 38105, USA
| | | |
Collapse
|
171
|
García-Ruiz C, Colell A, Marí M, Morales A, Calvo M, Enrich C, Fernández-Checa JC. Defective TNF-alpha-mediated hepatocellular apoptosis and liver damage in acidic sphingomyelinase knockout mice. J Clin Invest 2003; 111:197-208. [PMID: 12531875 PMCID: PMC151862 DOI: 10.1172/jci16010] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
This study addressed the contribution of acidic sphingomyelinase (ASMase) in TNF-alpha-mediated hepatocellular apoptosis. Cultured hepatocytes depleted of mitochondrial glutathione (mGSH) became sensitive to TNF-alpha, undergoing a time-dependent apoptotic cell death preceded by mitochondrial membrane depolarization, cytochrome c release, and caspase activation. Cyclosporin A treatment rescued mGSH-depleted hepatocytes from TNF-alpha-induced cell death. In contrast, mGSH-depleted hepatocytes deficient in ASMase were resistant to TNF-alpha-mediated cell death but sensitive to exogenous ASMase. Furthermore, although in vivo administration of TNF-alpha or LPS to galactosamine-pretreated ASMase(+/+) mice caused liver damage, ASMase(-/-) mice exhibited minimal hepatocellular injury. To analyze the requirement of ASMase, we assessed the effect of glucosylceramide synthetase inhibition on TNF-alpha-mediated apoptosis. This approach, which blunted glycosphingolipid generation by TNF-alpha, protected mGSH-depleted ASMase(+/+) hepatocytes from TNF-alpha despite enhancement of TNF-alpha-stimulated ceramide formation. To further test the involvement of glycosphingolipids, we focused on ganglioside GD3 (GD3) because of its emerging role in apoptosis through interaction with mitochondria. Analysis of the cellular redistribution of GD3 by laser scanning confocal microscopy revealed the targeting of GD3 to mitochondria in ASMase(+/+) but not in ASMase(-/-) hepatocytes. However, treatment of ASMase(-/-) hepatocytes with exogenous ASMase induced the colocalization of GD3 and mitochondria. Thus, ASMase contributes to TNF-alpha-induced hepatocellular apoptosis by promoting the mitochondrial targeting of glycosphingolipids.
Collapse
Affiliation(s)
- Carmen García-Ruiz
- Liver Unit, Instituto de Malalties Digestives, Hospital Clinic i Provincial, Instituto de Investigaciones Biomédicas August Pi Suñer, Barcelona, Spain
| | | | | | | | | | | | | |
Collapse
|
172
|
van Blitterswijk WJ, van der Luit AH, Veldman RJ, Verheij M, Borst J. Ceramide: second messenger or modulator of membrane structure and dynamics? Biochem J 2003; 369:199-211. [PMID: 12408751 PMCID: PMC1223095 DOI: 10.1042/bj20021528] [Citation(s) in RCA: 335] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2002] [Revised: 10/30/2002] [Accepted: 10/31/2002] [Indexed: 12/18/2022]
Abstract
The physiological role of ceramide formation in response to cell stimulation remains controversial. Here, we emphasize that ceramide is not a priori an apoptotic signalling molecule. Recent work points out that the conversion of sphingomyelin into ceramide can play a membrane structural (physical) role, with consequences for membrane microdomain function, membrane vesiculation, fusion/fission and vesicular trafficking. These processes contribute to cellular signalling. At the Golgi, ceramide takes part in a metabolic flux towards sphingomyelin, diacylglycerol and glycosphingolipids, which drives lipid raft formation and vesicular transport towards the plasma membrane. At the cell surface, receptor clustering in lipid rafts and the formation of endosomes can be facilitated by transient ceramide formation. Also, signalling towards mitochondria may involve glycosphingolipid-containing vesicles. Ceramide may affect the permeability of the mitochondrial outer membrane and the release of cytochrome c. In the effector phase of apoptosis, the breakdown of plasma membrane sphingomyelin to ceramide is a consequence of lipid scrambling, and may regulate apoptotic body formation. Thus ceramide formation serves many different functions at distinct locations in the cell. Given the limited capacity for spontaneous intracellular diffusion or membrane flip-flop of natural ceramide species, the topology and membrane sidedness of ceramide generation are crucial determinants of its impact on cell biology.
Collapse
Affiliation(s)
- Wim J van Blitterswijk
- Division of Cellular Biochemistry, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
173
|
Abstract
Acid sphingomyelinase (ASM) has been shown to be activated by a variety of receptor molecules and stimuli including CD95, the tumor necrosis factor receptor (TNF-R), CD40, CD28, LFA-1, CD5, during development, irradiation, heat shock, UV light or bacterial and viral infections. The central role of ASM-released ceramide in the response to those stimuli is confirmed by several genetic studies. ASM and ceramide might mediate their biological effects by the activation of several intracellular signaling molecules including cathepsin D, phospholipase A(2) or the kinase suppressor of Ras. In addition, recent fluorescence microscopy studies indicate that distinct, small membrane domains, termed rafts, are modified by ceramide to form larger domains, which serve to cluster receptor molecules. The generation of a high receptor density might be required for initiation of receptor-specific signaling and explain the function of the ASM and ceramide in multiple signaling pathways.
Collapse
Affiliation(s)
- Erich Gulbins
- Department of Molecular Biology, University of Essen, Hufelandstrasse 55, 45122 Essen, Germany.
| | | |
Collapse
|
174
|
Abstract
This paper reviews our present knowledge of sphingomyelinases as enzymes, and as enzymes acting on a membrane constituent lipid, sphingomyelin. Six types of sphingomyelinases are considered, namely acidic, secretory, Mg(2+)-dependent neutral, Mg(2+)-independent neutral, alkaline, and bacterial enzymes with both phospholipase C and sphingomyelinase activity. Sphingomyelinase assay methods and specific inhibitors are reviewed. Kinetic and mechanistic studies are summarized, a kinetic model and a general-base catalytic mechanism are proposed. Sphingomyelinase-membrane interactions are considered from the point of view of the influence of lipids on the enzyme activity. Moreover, effects of sphingomyelinase activity on membrane architecture (increased membrane permeability, membrane aggregation and fusion) are described. Finally, a number of open questions on the above topics are enunciated.
Collapse
Affiliation(s)
- Félix M Goñi
- Unidad de Biofísica (CSIC-UPV/EHU), and Departamento de Bioquímica, Universidad del País Vasco, Aptdo. 644, 48080, Bilbao, Spain.
| | | |
Collapse
|
175
|
Nurminen TA, Holopainen JM, Zhao H, Kinnunen PKJ. Observation of topical catalysis by sphingomyelinase coupled to microspheres. J Am Chem Soc 2002; 124:12129-34. [PMID: 12371852 DOI: 10.1021/ja017807r] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sphingomyelinase, SMase (EC 3.1.4.12), was coupled onto amino-derivatized acrylate microspheres and was shown to retain its catalytic activity. The immobilized enzyme allows one to carry out topical enzymatic reaction in a controlled manner. Accordingly, these spheres were held with a micropipet and using micromanipulator brought into contact with a giant liposome membrane composed of phosphatidylcholine and sphingomyelin (SOPC/C16:0-SM, 0.75:0.25, molar ratio), representing the substrate for the immobilized enzyme. The macroscopic consequences of the enzyme reaction were visualized using fluorescence microscopy as well as differential interference contrast microscopy. The surface contact of the giant vesicle and immobilized enzyme causes membrane microdomain formation and domain clustering (capping) in the membrane and subsequent shedding of small vesicles from the membrane into the interior of the giant liposome. The method described represents a novel approach to study enzymatic reactions and allows manipulating giant vesicles as well as cultured cells in a spatially controlled manner.
Collapse
Affiliation(s)
- Tuula A Nurminen
- Helsinki Biophysics & Biomembrane Group, Institute of Biomedicine, University of Helsinki, Helsinki, Finland
| | | | | | | |
Collapse
|
176
|
Grassmé H, Bock J, Kun J, Gulbins E. Clustering of CD40 ligand is required to form a functional contact with CD40. J Biol Chem 2002; 277:30289-99. [PMID: 12011072 DOI: 10.1074/jbc.m200494200] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Receptor clustering is a key event in the initiation of signaling by many types of receptor molecules. Here, we provide evidence for the novel concept that clustering of a ligand is a prerequisite for clustering of the cognate receptor. We show that clustering of the CD40 receptor depends on reciprocal clustering of the CD40 ligand (gp39, CD154). Clustering of the CD40 ligand is mediated by an association of the ligand with p53, a translocation of acid sphingomyelinase (ASM) to the cell membrane, an activation of the ASM, and a formation of ceramide. Ceramide appears to modify preexisting sphingolipid-rich membrane microdomains to fuse and form ceramide-enriched signaling platforms that serve to cluster CD40 ligand. Genetic deficiency of p53 or ASM or disruption of ceramide-enriched membrane domains prevents clustering of CD40 ligand. The functional significance of CD40 ligand clustering is indicated by the finding that clustering of CD40 on B lymphocytes upon co-incubation with CD40 ligand-expressing T cells depends on clustering of the CD40 ligand and is abrogated by inhibition of CD40 ligand clustering.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | |
Collapse
|
177
|
Affiliation(s)
- Erich Gulbins
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
178
|
Yu BZ, Zakim D, Jain MK. Processive interfacial catalytic turnover by Bacillus cereus sphingomyelinase on sphingomyelin vesicles. BIOCHIMICA ET BIOPHYSICA ACTA 2002; 1583:122-32. [PMID: 12069857 DOI: 10.1016/s1388-1981(02)00192-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Sphingomyelinase (SMase), a water-soluble enzyme from Bacillus cereus, is shown to bind with high affinity to vesicles of sphingomyelin (SM) but not to vesicles of phosphatidylcholine (PC). The reaction progress by SMase bound to SM vesicles occurs in the scooting mode with virtually infinite processivity of the successive interfacial turnover cycles. Three conditions for the microscopic steady state during the reaction progress at the interface are satisfied: the bound SMase does not leave the interface even after all the SM in the outer layer is converted to ceramide; the SMase-treated vesicles remain intact; and the ceramide product does not exchange with SM present in excess vesicles or in the inner layer of the hydrolyzed vesicle. Within these constraints, on accessibility and replenishment of the substrate, the extent of hydrolysis in the scooting mode reaction progress is a measure of the number of vesicles containing enzyme. The slope of the Poisson distribution plot, for the enzyme per vesicle versus the logarithm of the fraction of the total accessible substrate remaining unhydrolyzed in excess vesicles, shows that a single 32 kDa subunit of SMase is fully catalytically active. The maximum initial rate of hydrolysis, at the limit of the maximum possible substrate mol fraction, X(S)*=1, is 400 s(-1) in H(2)O and 220 s(-1) in D(2)O, which is consistent with the rate-limiting chemical step. The integrated reaction progress suggests that the ceramide product does not codisperse ideally on the hydrolyzed vesicles. Furthermore, complex reaction progress seen with covesicles of SM+PC are attributed to slow secondary changes in the partially hydrolyzed SM vesicles.
Collapse
Affiliation(s)
- Bao-Zhu Yu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, USA
| | | | | |
Collapse
|
179
|
Bellin R, Capila I, Lincecum J, Park PW, Reizes O, Bernfield MR. Unlocking the secrets of syndecans: transgenic organisms as a potential key. Glycoconj J 2002; 19:295-304. [PMID: 12975608 DOI: 10.1023/a:1025352501148] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Heparan sulfate proteoglycans are known to modulate the activity of a large number of extracellular ligands thereby having the potential to regulate a great diversity of biological processes. The long-term studies in our laboratory have focused on the syndecans, one of the major cell surface heparan sulfate proteoglycan families. Most early work on syndecans involved biochemical studies that provided initial information on their structure and putative biological roles. In recent years, the development of transgenic organisms has allowed a more complete understanding of syndecan function. Studies with transgenic syndecan-1 and syndecan-3 mice have demonstrated an unforeseen role for syndecans in the regulation of feeding behavior. Syndecan-1 knockout mice display a reduced susceptibility to both Wnt-induced tumorigenesis and microbial pathogenesis. Experiments with Drosophila show that syndecan is first expressed upon cellularization in the early embryo, and may play a role in the early developmental stages of the fly. This review focuses on these diverse functions of the syndecans that have been elucidated by the use of transgenic mice and Drosophila as model systems.
Collapse
Affiliation(s)
- Robert Bellin
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital, Harvard Medical School, 300 Longwood Ave., Enders-950, Boston, MA 02115, USA.
| | | | | | | | | | | |
Collapse
|
180
|
Gurunathan S, Marash M, Weinberger A, Gerst JE. t-SNARE phosphorylation regulates endocytosis in yeast. Mol Biol Cell 2002; 13:1594-607. [PMID: 12006655 PMCID: PMC111129 DOI: 10.1091/mbc.01-11-0541] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Earlier we demonstrated that activation of a ceramide-activated protein phosphatase (CAPP) conferred normal growth and secretion to yeast lacking their complement of exocytic v-SNAREs (Snc1,2) or bearing a temperature-sensitive mutation in an exocytic t-SNARE (Sso2). CAPP activation led to Sso dephosphorylation and enhanced the assembly of t-SNAREs into functional complexes. Thus, exocytosis in yeast is modulated by t-SNARE phosphorylation. Here, we show that endocytic defects in cells lacking the v- and t-SNAREs involved in endocytosis are also rescued by CAPP activation. Yeast lacking the Tlg1 or Tlg2 t-SNAREs, the Snc v-SNAREs, or both, undergo endocytosis after phosphatase activation. CAPP activation correlated with restored uptake of FM4-64 to the vacuole, the uptake and degradation of the Ste2 receptor after mating factor treatment, and the dephosphorylation and assembly of Tlg1,2 into SNARE complexes. Activation of the phosphatase by treatment with C(2)-ceramide, VBM/ELO gene inactivation, or by the overexpression of SIT4 was sufficient to confer rescue. Finally, we found that mutation of single PKA sites in Tlg1 (Ser31 to Ala31) or Tlg2 (Ser90 to Ala90) was sufficient to restore endocytosis, but not exocytosis, to snc cells. These results suggest that endocytosis is also modulated by t-SNARE phosphorylation in vivo.
Collapse
|
181
|
Abstract
Phagocytosis is an evolutionarily conserved process utilized by many cells to ingest microbial pathogens, and apoptotic and necrotic corpses. Recent investigation has revealed a fundamental requirement for two co-ordinated cellular processes--cytoskeletal alterations and membrane trafficking--in the phagocytic event. Some elements of this machinery are co-opted by certain pathogens to gain entry into host cells.
Collapse
Affiliation(s)
- Steven Greenberg
- Columbia University, Departments of Medicine and Pharmacology/BB914, 630 West 168th Street, New York, NY 10032, USA.
| | | |
Collapse
|
182
|
Grassmé H, Jendrossek V, Bock J, Riehle A, Gulbins E. Ceramide-rich membrane rafts mediate CD40 clustering. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2002; 168:298-307. [PMID: 11751974 DOI: 10.4049/jimmunol.168.1.298] [Citation(s) in RCA: 203] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Many receptor systems use receptor clustering for transmembrane signaling. In this study, we show that acid sphingomyelinase (ASM) is essential for the clustering of CD40. Stimulation of lymphocytes via CD40 ligation results in ASM translocation from intracellular stores, most likely vesicles, into distinct membrane domains on the extracellular surface of the plasma membrane. Surface ASM initiates a release of extracellularly oriented ceramide, which in turn mediates CD40 clustering in sphingolipid-rich membrane domains. ASM, ceramide, and CD40 colocalize in the cap-like structure of stimulated cells. Deficiency of ASM, destruction of sphingolipid-rich rafts, or neutralization of surface ceramide prevents CD40 clustering and CD40-initiated cell signaling. These findings indicate that the ASM-mediated release of ceramide and/or metabolites of ceramide regulate clustering of CD40, which seems to be a prerequisite for cellular activation via CD40.
Collapse
Affiliation(s)
- Heike Grassmé
- Department of Immunology, St. Jude Children's Research Hospital, 332 North Lauderdale Street, Memphis, TN 38105, USA
| | | | | | | | | |
Collapse
|
183
|
Popp A, Billker O, Rudel T. Signal transduction pathways induced by virulence factors of Neisseria gonorrhoeae. Int J Med Microbiol 2001; 291:307-14. [PMID: 11680791 DOI: 10.1078/1438-4221-00134] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The obligate human pathogen Neisseria gonorrhoeae infects a variety of human tissues. In recent years, several host cell receptors for the major bacterial adhesins have been identified. While the knowledge of the molecular mechanism of colonisation has helped to understand special aspects of the infection, like the explicit tropism of gonococci for human tissues, the long-term consequences of engaging these receptors are still unknown. A variety of signalling pathways initiated by the activated receptors and by bacterial proteins transferred to the infected cell have been defined which include lipid second messenger, protein kinases, proteases and GTPases. These pathways control important steps of the infection, such as tight adhesion and invasion, the induction of cytokine release, and apoptosis. The detailed knowledge of bacteria-induced signalling pathways could allow the design of new therapeutic approaches which might be advantageous over the classical antibiotics therapy.
Collapse
Affiliation(s)
- A Popp
- Max-Planck-Institute for Infection Biology, Department of Molecular Biology, Berlin, Germany
| | | | | |
Collapse
|
184
|
Grassmé H, Schwarz H, Gulbins E. Molecular mechanisms of ceramide-mediated CD95 clustering. Biochem Biophys Res Commun 2001; 284:1016-30. [PMID: 11409897 DOI: 10.1006/bbrc.2001.5045] [Citation(s) in RCA: 149] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Receptor clustering has been suggested as a crucial mechanism to initiate receptor signaling. Here we show that ceramide in sphingolipid-rich membrane rafts mediates clustering of CD95. Neutralization of surface ceramide or inhibition of its endogenous generation prevented CD95 clustering. Furthermore, application of ceramide at the cell surface triggered clustering of active but not inactive CD95. Apoptosis was inhibited by neutralization of surface ceramide or inhibition of ceramide release in vitro and in vivo. Thus, we conclude that surface ceramide mediates CD95 clustering, which is required for initiation of apoptosis, at least in some cell types.
Collapse
Affiliation(s)
- H Grassmé
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | |
Collapse
|
185
|
Grassme H, Jekle A, Riehle A, Schwarz H, Berger J, Sandhoff K, Kolesnick R, Gulbins E. CD95 signaling via ceramide-rich membrane rafts. J Biol Chem 2001; 276:20589-96. [PMID: 11279185 DOI: 10.1074/jbc.m101207200] [Citation(s) in RCA: 479] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Clustering seems to be employed by many receptors for transmembrane signaling. Here, we show that acid sphingomyelinase (ASM)-released ceramide is essential for clustering of CD95. In vitro and in vivo, extracellularly orientated ceramide, released upon CD95-triggered translocation of ASM to the plasma membrane outer surface, enabled clustering of CD95 in sphingolipid-rich membrane rafts and apoptosis induction. Whereas ASM deficiency, destruction of rafts, or neutralization of surface ceramide prevented CD95 clustering and apoptosis, natural ceramide only rescued ASM-deficient cells. The data suggest CD95-mediated clustering by ceramide is prerequisite for signaling and death.
Collapse
Affiliation(s)
- H Grassme
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | | | | | | | | | | | | | | |
Collapse
|
186
|
Park PW, Pier GB, Hinkes MT, Bernfield M. Exploitation of syndecan-1 shedding by Pseudomonas aeruginosa enhances virulence. Nature 2001; 411:98-102. [PMID: 11333985 DOI: 10.1038/35075100] [Citation(s) in RCA: 188] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cell-surface heparan sulphate proteoglycans (HSPGs) are ubiquitous and abundant receptors/co-receptors of extracellular ligands, including many microbes. Their role in microbial infections is poorly defined, however, because no cell-surface HSPG has been clearly connected to the pathogenesis of a particular microbe. We have previously shown that Pseudomonas aeruginosa, through its virulence factor LasA, enhances the in vitro shedding of syndecan-1-the predominant cell-surface HSPG of epithelia. Here we show that shedding of syndecan-1 is also activated by P. aeruginosa in vivo, and that the resulting syndecan-1 ectodomains enhance bacterial virulence in newborn mice. Newborn mice deficient in syndecan-1 resist P. aeruginosa lung infection but become susceptible when given purified syndecan-1 ectodomains or heparin, but not when given ectodomain core protein, indicating that the ectodomain's heparan sulphate chains are the effectors. In wild-type newborn mice, inhibition of syndecan-1 shedding or inactivation of the shed ectodomain's heparan sulphate chains prevents lung infection. Our findings uncover a pathogenetic mechanism in which a host response to tissue injury-syndecan-1 shedding-is exploited to enhance microbial virulence apparently by modulating host defences.
Collapse
Affiliation(s)
- P W Park
- Division of Newborn Medicine, Department of Pediatrics, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
187
|
Watanabe Y, Nakajima M, Hoshino T, Jayasimhulu K, Brooks EE, Kaneshiro ES. A novel sphingophosphonolipid head group 1-hydroxy-2-aminoethyl phosphonate in Bdellovibrio stolpii. Lipids 2001; 36:513-9. [PMID: 11432465 DOI: 10.1007/s11745-001-0751-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Members of the bacterial genus Bdellovibrio include strains that are free-living, whereas others are known to invade and parasitize larger Gram-negative bacteria. The bacterium can synthesize several sphingophospholipid compounds including those with phosphoryl bonds as well as phosphonyl bonds. In the present study, the dominant sphingophosphonolipid component was isolated by column chromatography, and the long-chain bases, fatty acids, and polar head groups were identified by thin-layer and gas-liquid chromatographic procedures. The definitive structural identity of the sphingolipid was established by nuclear magnetic resonance and mass spectrometry of hydrolysis products and the intact compound. The compound was identified as N-2'-hydroxypentadecanoyl-2-amino-3,4-dihydroxyheptadecan-1-phosphono-(1-hydroxy-2-aminoethane).
Collapse
Affiliation(s)
- Y Watanabe
- Department of Medical Technology, School of Health Sciences, Faculty of Medicine, Niigata University, Japan
| | | | | | | | | | | |
Collapse
|
188
|
Zhang Y, Mattjus P, Schmid PC, Dong Z, Zhong S, Ma WY, Brown RE, Bode AM, Schmid HH, Dong Z. Involvement of the acid sphingomyelinase pathway in uva-induced apoptosis. J Biol Chem 2001; 276:11775-82. [PMID: 11278294 PMCID: PMC2621016 DOI: 10.1074/jbc.m006000200] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The sphingomyelin-ceramide pathway is an evolutionarily conserved ubiquitous signal transduction system that regulates many cell functions including apoptosis. Sphingomyelin (SM) is hydrolyzed to ceramide by different sphingomyelinases. Ceramide serves as a second messenger in mediating cellular effects of cytokines and stress. In this study, we find that acid sphingomyelinase (SMase) activity was induced by UVA in normal JY lymphoblasts but was not detectable in MS1418 lymphoblasts from Niemann-Pick type D patients who have an inherited deficiency of acid SMase. We also provide evidence that UVA can induce apoptosis by activating acid SMase in normal JY cells. In contrast, UVA-induced apoptosis was inhibited in MS1418 cells. Exogenous SMase and its product, ceramide (10-40 micrometer), induced apoptosis in JY and MS1418 cells, but the substrate of SMase, SM (20-80 micrometer), induced apoptosis only in JY cells. These results suggest that UVA-induced apoptosis by SM is dependent on acid SMase activity. We also provide evidence that induction of apoptosis by UVA may occur through activation of JNKs via the acid SMase pathway.
Collapse
Affiliation(s)
- Y Zhang
- Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
The closely related bacterial pathogens Neisseria gonorrhoeae (gonococci, GC) and N. meningitidis (meningococci, MC) initiate infection at human mucosal epithelia. Colonization begins at apical epithelial surfaces with a multistep adhesion cascade, followed by invasion of the host cell, intracellular persistence, transcytosis, and exit. These activities are modulated by the interaction of a panoply of virulence factors with their cognate host cell receptors, and signals are sent from pathogen to host and host to pathogen at multiple stages of the adhesion cascade. Recent advances place us on the verge of understanding the colonization process at a molecular level of detail. In this review we describe the Neisseria virulence factors in the context of epithelial cell biology, placing special emphasis on the signaling functions of type IV pili, pilus-based twitching motility, and the Opa and Opc outermembrane adhesin/invasin proteins. We also summarize what is known about bacterial intracellular trafficking and growth. With the accelerated integration of tools from cell biology, biochemistry, biophysics, and genomics, experimentation in the next few years should bring unprecedented insights into the interactions of Neisseriae with their host.
Collapse
Affiliation(s)
- A J Merz
- Department of Molecular Microbiology & Immunology, L220, Oregon Health Sciences University, Portland, Oregon 97201-3098, USA
| | | |
Collapse
|
190
|
Abstract
Genetic and biochemical studies in yeast and animal cells have led to the identification of many components required for endocytosis. In this review, we summarize our understanding of the endocytic machinery with an emphasis on the proteins regulating the internalization step of endocytosis and endosome fusion. Even though the overall endocytic machinery appears to be conserved between yeast and animals, clear differences exist. We also discuss the roles of phosphoinositides, sterols, and sphingolipid precursors in endocytosis, because in addition to proteins, these lipids have emerged as important determinants in the spatial and most likely temporal specificity of endocytic membrane trafficking events.
Collapse
Affiliation(s)
- K D'Hondt
- Biozentrum-University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland.
| | | | | |
Collapse
|
191
|
DEIGNER HANSPETER, CLAUS RALF, BONATERRA GABRIELA, GEHRKE CHRISTOF, BIBAK NILOFAR, BLAESS MARKUS, CANTZ MICHAEL, METZ JÜRGEN, KINSCHERF RALF. Ceramide induces aSMase expression: implications for oxLDL-induced apoptosis. FASEB J 2001. [DOI: 10.1096/fasebj.15.3.807] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- HANS-PETER DEIGNER
- Institute of Pharmaceutical Chemistry and Clinics of Anaesthesiology and Intensive Care Medicine, Jena, Germany,
| | - RALF CLAUS
- Institute of Pharmaceutical Chemistry and Clinics of Anaesthesiology and Intensive Care Medicine, Jena, Germany,
| | | | - CHRISTOF GEHRKE
- Institute of Pharmaceutical Chemistry and Clinics of Anaesthesiology and Intensive Care Medicine, Jena, Germany,
| | - NILOFAR BIBAK
- Institute of Pharmaceutical Chemistry and Clinics of Anaesthesiology and Intensive Care Medicine, Jena, Germany,
| | - MARKUS BLAESS
- Institute of Pharmaceutical Chemistry and Clinics of Anaesthesiology and Intensive Care Medicine, Jena, Germany,
| | - MICHAEL CANTZ
- Institute of Pathochemistry and Neurochemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - JÜRGEN METZ
- Department of Anatomy and Cell Biology III, and the
| | | |
Collapse
|
192
|
Affiliation(s)
- E Gulbins
- Division of Cell Biology, University of Tuebingen, Germany
| | | |
Collapse
|
193
|
Abstract
Neisseria gonorrhoeae employs diverse strategies with which to adhere to and invade host cells during the course of infection. These primary encounters provide means by which biologically active molecules can be efficiently targeted to disrupt or exploit normal host cell metabolism and immune response elements, which in turn leads to the pathological responses characteristic of gonococcal disease. Current studies have begun to elucidate in detail the molecular interactions orchestrating these processes and the signaling events that they provoke.
Collapse
Affiliation(s)
- M Koomey
- The Biotechnology Centre of Oslo, University of Oslo, PO Box 1125 Blindern, N-0349, Oslo, Norway.
| |
Collapse
|
194
|
Kirschnek S, Paris F, Weller M, Grassmé H, Ferlinz K, Riehle A, Fuks Z, Kolesnick R, Gulbins E. CD95-mediated Apoptosis in Vivo Involves Acid Sphingomyelinase. J Biol Chem 2000. [DOI: 10.1016/s0021-9258(19)61513-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
195
|
Kolesnick RN, Goñi FM, Alonso A. Compartmentalization of ceramide signaling: physical foundations and biological effects. J Cell Physiol 2000; 184:285-300. [PMID: 10911359 DOI: 10.1002/1097-4652(200009)184:3<285::aid-jcp2>3.0.co;2-3] [Citation(s) in RCA: 351] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- R N Kolesnick
- Laboratory of Signal Transduction, Memorial Sloan-Kettering Cancer Center, New York, NY
| | | | | |
Collapse
|
196
|
Hauck CR, Grassmé H, Bock J, Jendrossek V, Ferlinz K, Meyer TF, Gulbins E. Acid sphingomyelinase is involved in CEACAM receptor-mediated phagocytosis of Neisseria gonorrhoeae. FEBS Lett 2000; 478:260-6. [PMID: 10930579 DOI: 10.1016/s0014-5793(00)01851-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The interaction with human phagocytes is a hallmark of symptomatic Neisseria gonorrhoeae infections. Gonococcal outer membrane proteins of the Opa family induce the opsonin-independent uptake of the bacteria that relies on CEACAM receptors and an active signaling machinery of the phagocyte. Here, we show that CEACAM receptor-mediated phagocytosis of Opa(52)-expressing N. gonorrhoeae into human cells results in a rapid activation of the acid sphingomyelinase. Inhibition of this enzyme by imipramine or SR33557 abolishes opsonin-independent internalization without affecting bacterial adherence. Reconstitution of ceramide, the product of acid sphingomyelinase activity, in imipramine- or SR33557-treated cells restores internalization of the bacteria. Furthermore, we demonstrate that CEACAM receptor-initiated stimulation of other signalling molecules, in particular Src-like tyrosine kinases and Jun N-terminal kinases, requires acid sphingomyelinase. These studies provide evidence for a crucial role of the acid sphingomyelinase for CEACAM receptor-initiated signalling events and internalization of Opa(52)-expressing N. gonorrhoeae into human neutrophils.
Collapse
Affiliation(s)
- C R Hauck
- Department of Physiology, University of Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
197
|
Bernfield M, Götte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. Functions of cell surface heparan sulfate proteoglycans. Annu Rev Biochem 2000; 68:729-77. [PMID: 10872465 DOI: 10.1146/annurev.biochem.68.1.729] [Citation(s) in RCA: 2113] [Impact Index Per Article: 84.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The heparan sulfate on the surface of all adherent cells modulates the actions of a large number of extracellular ligands. Members of both cell surface heparan sulfate proteoglycan families, the transmembrane syndecans and the glycosylphosphoinositide-linked glypicans, bind these ligands and enhance formation of their receptor-signaling complexes. These heparan sulfate proteoglycans also immobilize and regulate the turnover of ligands that act at the cell surface. The extracellular domains of these proteoglycans can be shed from the cell surface, generating soluble heparan sulfate proteoglycans that can inhibit interactions at the cell surface. Recent analyses of genetic defects in Drosophila melanogaster, mice, and humans confirm most of these activities in vivo and identify additional processes that involve cell surface heparan sulfate proteoglycans. This chapter focuses on the mechanisms underlying these activities and on the cellular functions that they regulate.
Collapse
Affiliation(s)
- M Bernfield
- Division of Developmental and Newborn Biology, Children's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
198
|
García-Ruiz C, Marí M, Morales A, Colell A, Ardite E, Fernández-Checa JC. Human placenta sphingomyelinase, an exogenous acidic pH-optimum sphingomyelinase, induces oxidative stress, glutathione depletion, and apoptosis in rat hepatocytes. Hepatology 2000; 32:56-65. [PMID: 10869289 DOI: 10.1053/jhep.2000.8267] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Ceramide has been identified as a putative lipid messenger that mediates diverse cellular processes including cell death. Since glutathione (GSH) depletion is known to sensitize cells to many cytotoxic agents and as a result of the reported regulation of neutral sphyngomyelinase (NSMase) by GSH, the present study compared the role of individual SMases in the induction of oxidative stress, regulation of cellular GSH, and apoptosis of rat hepatocytes. Exposure of cultured rat hepatocytes to exogenous Bacillus cereus sphingomyelinase (bSMase), a neutral SMase, or human placenta sphingomyelinase (hSMase), an acidic SMase (ASMase), generated similar ceramide levels in a dose-dependent manner. However, whereas bSMase increased hepatocellular GSH levels, hSMase depleted GSH stores, an effect that was prevented by monensin and mannose 6-phosphate (M-6-P), suggesting that exogenous hSMase enters hepatocytes by endocytosis and is delivered to an endosomal/lysosomal acidic compartment. Interestingly, despite the differential effect of either SMases on cell GSH levels, both bSMase and hSMase increased gamma-glutamylcysteine synthetase heavy-subunit chain (gamma-GCS-HS) mRNA levels. Consistent with these findings on GSH regulation, hSMase, but not bSMase, generated reactive oxygen species (ROS), being accompanied by mitochondrial depolarization, suggesting that hSMase targeted mitochondria, leading to oxidative stress. Accordingly, hepatocytes displayed a selective sensitivity to hSMase in contrast to bSMase exposure, and depletion of GSH stores enhanced susceptibility to hSMase as a result of potentiation of ROS formation and caspase 3 activation. Thus, these findings reveal the ability of ASMase to induce oxidative stress as a result of the targeting of mitochondria, and that GSH depletion sensitizes hepatocytes to the ASMase-induced apoptosis.
Collapse
Affiliation(s)
- C García-Ruiz
- Liver Unit, Instituto Malalties Digestives, Hospital Clinic i Provencial, Instituto de Investigaciones Biom¿edicas, August Pi i Sunyer, Consejo Superior Investigaciones Cient¿ificas, Barcelona 08036, Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
199
|
Zanolari B, Friant S, Funato K, Sütterlin C, Stevenson BJ, Riezman H. Sphingoid base synthesis requirement for endocytosis in Saccharomyces cerevisiae. EMBO J 2000; 19:2824-33. [PMID: 10856228 PMCID: PMC203373 DOI: 10.1093/emboj/19.12.2824] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The internalization step of endocytosis in yeast requires actin and sterols for maximum efficiency. In addition, many receptors and plasma membrane proteins must be phosphorylated and ubiquitylated prior to internalization. The Saccharomyces cerevisiae end8-1 mutant is allelic to lcb1, a mutant defective in the first step of sphingoid base synthesis. Upon arrest of sphingoid base synthesis a rapid block in endocytosis is seen. This block can be overcome by exogenous sphingoid base. Under conditions where endogenous sphingosine base synthesis was blocked and exogenous sphingoid bases could not be converted to phosphorylated sphingoid bases or to ceramide, sphingoid bases could still suppress the endocytic defect. Therefore, the required lipid is most likely a sphingoid base. Interestingly, sphingoid base synthesis is required for proper actin organization, but is not required for receptor phosphorylation. This is the first case of a physiological role for sphingoid base synthesis, other than as a precursor for ceramide or phosphorylated sphingoid base synthesis.
Collapse
Affiliation(s)
- B Zanolari
- Biozentrum of the University of Basel, CH-4056 Basel, Switzerland
| | | | | | | | | | | |
Collapse
|
200
|
Abstract
As outlined in this review, various experimental techniques have been employed in an attempt to understand neisserial pathogenesis. In vitro genetic analysis has been used to study the genetic basis for the structural variability of cell surface components. Transformed or primary epithelial cell cultures have provided the simplest model to analyze bacterial adherence and invasion, while the infection of polarized epithelial monolayers, fallopian tube and nasopharyngeal organ cultures, and ureteral tissue have each been used to more closely represent the events which occur in vivo. Finally, the in vivo infection of human volunteers with N. gonorrhoeae has provided a powerful means to confirm and expand the results obtained in vitro. By these various approaches, a number of neisserial adhesins (i.e. pilli, Opa, Opc and P36) and additional putative virulence determinants which affect bacterial adherence and invasion into host cells (i.e. LOS, capsule, PorB) have been identified. Clearly, neisserial surface variation serves as an adaptive mechanism which can modulate tissue tropism, immune evasion and survival in the changing host environment. Important progress has been made in recent years with respect to the host cellular receptors and subsequent signal transduction processes which are involved in neisserial adherence, invasion and transcytosis. This has led to the identification of (i) CD46 as a receptor for pilus which allows adherence to epithelial and endothelial cells, (ii) HSPGs, in cooperation with vitronectin and fibronectin, as receptors for a particular subset of Opa proteins and Opc, which may both mediate invasion into most epithelial and endothelial cells, and (iii) CD66 as the receptors for most Opa variants, potentially being involved in cellular interactions including adherence, invasion and transcytosis with epithelial, endothelial and phagocytic cells. As most of these data have been obtained using transformed cell lines growing in vitro, attempts must be made to translate these basic observations into a more natural situation. It can be expected that the successful ongoing integration of laboratory findings from the various infection models with human volunteer studies will further increase our understanding of the biology of neisserial infection. Perhaps the most difficult but also most rewarding challenge for the future will be to use volunteer studies to identify and understand the role of host factors which are important for the infectious process. Hopefully, insights gained from each of these studies will reveal new and useful strategies for the preventive and/or therapeutic intervention into infection and disease by these fascinating microbes.
Collapse
Affiliation(s)
- C Dehio
- Dept. Infektionsbiologie, Max-Planck-Institut für Biologie, Tübingen, Germany
| | | | | |
Collapse
|