151
|
Delon I, Brown NH. The integrin adhesion complex changes its composition and function during morphogenesis of an epithelium. J Cell Sci 2009; 122:4363-74. [PMID: 19903692 PMCID: PMC2779134 DOI: 10.1242/jcs.055996] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Cell adhesion to the extracellular matrix (ECM) is mediated by the integrin family of transmembrane receptors. Integrins link ECM ligands to the cytoskeleton, providing strong attachment to enable cell-shape change and tissue integrity. This connection is made possible by an intracellular complex of proteins, which links to actin filaments and controls signalling cascades that regulate cytoskeletal rearrangements. We have identified stress-fibre-associated focal adhesions that change their composition during tissue morphogenesis. Early expression of alphaPS1betaPS integrin decreases the levels of the actin-nucleating factors Enabled, Diaphanous and profilin, as well as downregulating the amount of F-actin incorporated into the stress fibres. As follicle cells mature in their developmental pathway and become squamous, the integrin in the focal adhesions changes from alphaPS1betaPS to alphaPS2betaPS. During the switch, stress fibres increase their length and change orientation, first changing by 90 degrees and then reorienting back. The normal rapid reorientation requires new expression of alphaPS2betaPS, which also permits recruitment of the adaptor protein tensin. Unexpectedly, it is the extracellular portion of the alphaPS2 subunit that provides the specificity for intracellular recruitment of tensin. Molecular variation of the integrin complex is thus a key component of developmentally programmed morphogenesis.
Collapse
Affiliation(s)
- Isabelle Delon
- Gurdon Institute and Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | | |
Collapse
|
152
|
Slit2-Robo4 signalling promotes vascular stability by blocking Arf6 activity. Nat Cell Biol 2009; 11:1325-31. [PMID: 19855388 DOI: 10.1038/ncb1976] [Citation(s) in RCA: 174] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2009] [Accepted: 07/28/2009] [Indexed: 01/08/2023]
Abstract
Slit-Roundabout (Robo) signalling has a well-understood role in axon guidance. Unlike in the nervous system, however, Slit-dependent activation of an endothelial-specific Robo, Robo4, does not initiate a guidance program. Instead, Robo4 maintains the barrier function of the mature vascular network by inhibiting neovascular tuft formation and endothelial hyperpermeability induced by pro-angiogenic factors. In this study, we used cell biological and biochemical techniques to elucidate the molecular mechanism underlying the maintenance of vascular stability by Robo4. Here, we demonstrate that Robo4 mediates Slit2-dependent suppression of cellular protrusive activity through direct interaction with the intracellular adaptor protein paxillin and its paralogue, Hic-5. Formation of a Robo4-paxillin complex at the cell surface blocks activation of the small GTPase Arf6 and, consequently, Rac by recruitment of Arf-GAPs (ADP-ribosylation factor- directed GTPase-activating proteins) such as GIT1. Consistent with these in vitro studies, inhibition of Arf6 activity in vivo phenocopies Robo4 activation by reducing pathologic angiogenesis in choroidal and retinal vascular disease and VEGF-165 (vascular endothelial growth factor-165)-induced retinal hyperpermeability. These data reveal that a Slit2-Robo4-paxillin-GIT1 network inhibits the cellular protrusive activity underlying neovascularization and vascular leak, and identify a new therapeutic target for ameliorating diseases involving the vascular system.
Collapse
|
153
|
Al-Anzi B, Wyman RJ. The Drosophila immunoglobulin gene turtle encodes guidance molecules involved in axon pathfinding. Neural Dev 2009; 4:31. [PMID: 19686588 PMCID: PMC2739522 DOI: 10.1186/1749-8104-4-31] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 08/17/2009] [Indexed: 11/10/2022] Open
Abstract
Background Neuronal growth cones follow specific pathways over long distances in order to reach their appropriate targets. Research over the past 15 years has yielded a large body of information concerning the molecules that regulate this process. Some of these molecules, such as the evolutionarily conserved netrin and slit proteins, are expressed in the embryonic midline, an area of extreme importance for early axon pathfinding decisions. A general model has emerged in which netrin attracts commissural axons towards the midline while slit forces them out. However, a large number of commissural axons successfully cross the midline even in the complete absence of netrin signaling, indicating the presence of a yet unidentified midline attractant. Results The evolutionarily conserved Ig proteins encoded by the turtle/Dasm1 genes are found in Drosophila, Caenorhabditis elegans, and mammals. In Drosophila the turtle gene encodes five proteins, two of which are diffusible, that are expressed in many areas, including the vicinity of the midline. Using both molecular null alleles and transgenic expression of the different isoforms, we show that the turtle encoded proteins function as non-cell autonomous axonal attractants that promote midline crossing via a netrin-independent mechanism. turtle mutants also have either stalled or missing axon projections, while overexpression of the different turtle isoforms produces invasive neurons and branching axons that do not respect the histological divisions of the nervous system. Conclusion Our findings indicate that the turtle proteins function as axon guidance cues that promote midline attraction, axon branching, and axonal invasiveness. The latter two capabilities are required by migrating axons to explore densely packed targets.
Collapse
Affiliation(s)
- Bader Al-Anzi
- Division of Biology 156-29, California Institute of Technology, Pasadena, CA 91125, USA.
| | | |
Collapse
|
154
|
Corty MM, Matthews BJ, Grueber WB. Molecules and mechanisms of dendrite development in Drosophila. Development 2009; 136:1049-61. [PMID: 19270170 DOI: 10.1242/dev.014423] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurons are one of the most morphologically diverse cell types, in large part owing to their intricate dendrite branching patterns. Dendrites are structures that are specialized to receive and process inputs in neurons, thus their specific morphologies reflect neural connectivity and influence information flow through circuits. Recent studies in Drosophila on the molecular basis of dendrite diversity, dendritic guidance, the cell biology of dendritic branch patterning and territory formation have identified numerous intrinsic and extrinsic cues that shape diverse features of dendrites. As we discuss in this review, many of the mechanisms that are being elucidated show conservation in diverse systems.
Collapse
Affiliation(s)
- Megan M Corty
- Center for Neurobiology and Behavior, Columbia University Medical Center, New York, NY 10032, USA.
| | | | | |
Collapse
|
155
|
Cdo binds Abl to promote p38alpha/beta mitogen-activated protein kinase activity and myogenic differentiation. Mol Cell Biol 2009; 29:4130-43. [PMID: 19470755 DOI: 10.1128/mcb.00199-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The p38 mitogen-activated protein kinase (MAPK) pathway is required for differentiation of skeletal myoblasts, but how the pathway is activated during this process is not well understood. One mechanism involves the cell surface receptor Cdo (also known as Cdon), which binds to Bnip-2 and JLP, scaffold proteins for Cdc42 and p38, respectively; formation of these complexes results in Bnip-2/Cdc42-dependent activation of p38. It has been reported that the tyrosine kinase Abl promotes myogenic differentiation in a manner dependent on its cytoplasmic localization, but the cytoplasmic signaling proteins with which it interacts to achieve this effect are unidentified. We report that Abl associates with both Cdo and JLP during myoblast differentiation. Abl binds a proline-rich motif in Cdo via its SH3 domain, and these regions of Abl and Cdo are required for their promyogenic effects. Cdo is important for full Abl kinase activity, and Abl is necessary for full activation of p38 MAPK, during myogenic differentiation. As seen with myoblasts depleted of Cdo, the diminished differentiation displayed by Abl-depleted cells is rescued by the expression of an activated form of the immediate upstream p38-activating kinase MAPK kinase 6. Abl's promyogenic effect is therefore linked to a multiprotein cell surface complex that regulates differentiation-dependent p38 activation.
Collapse
|
156
|
Burgess HA, Johnson SL, Granato M. Unidirectional startle responses and disrupted left-right co-ordination of motor behaviors in robo3 mutant zebrafish. GENES BRAIN AND BEHAVIOR 2009; 8:500-11. [PMID: 19496826 DOI: 10.1111/j.1601-183x.2009.00499.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Roundabout (Robo) family of receptors and their Slit ligands play well-established roles in axonal guidance, including in humans where horizontal gaze palsy with progressive scoliosis (HGPPS) is caused by mutations in the robo3 gene. Although significant progress has been made toward understanding the mechanism by which Robo receptors establish commissural projections in the central nervous system, less is known about how these projections contribute to neural circuits mediating behavior. In this study, we report cloning of the zebrafish behavioral mutant twitch twice and show that twitch twice encodes robo3. We show that in mutant hindbrains the axons of an identified pair of neurons, the Mauthner cells, fail to cross the midline. The Mauthner neurons are essential for the startle response, and in twitch twice/robo3 mutants misguidance of the Mauthner axons results in a unidirectional startle response. Moreover, we show that twitch twice mutants exhibit normal visual acuity but display defects in horizontal eye movements, suggesting a specific and critical role for twitch twice/robo3 in sensory-guided behavior.
Collapse
Affiliation(s)
- H A Burgess
- Department of Cell and Developmental Biology, University of Pennsylvania School of Medicine, Philadelphia, PA 19104-6058, USA
| | | | | |
Collapse
|
157
|
Neel NF, Barzik M, Raman D, Sobolik-Delmaire T, Sai J, Ham AJ, Mernaugh RL, Gertler FB, Richmond A. VASP is a CXCR2-interacting protein that regulates CXCR2-mediated polarization and chemotaxis. J Cell Sci 2009; 122:1882-94. [PMID: 19435808 DOI: 10.1242/jcs.039057] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chemotaxis regulates the recruitment of leukocytes, which is integral for a number of biological processes and is mediated through the interaction of chemokines with seven transmembrane G-protein-coupled receptors. Several studies have indicated that chemotactic signaling pathways might be activated via G-protein-independent mechanisms, perhaps through novel receptor-interacting proteins. CXCR2 is a major chemokine receptor expressed on neutrophils. We used a proteomics approach to identify unique ligand-dependent CXCR2-interacting proteins in differentiated neutrophil-like HL-60 cells. Using this approach, vasodilator-stimulated phosphoprotein (VASP) was identified as a CXCR2-interacting protein. The interaction between CXCR2 and VASP is direct and enhanced by CXCL8 stimulation, which triggers VASP phosphorylation via PKA- and PKCdelta-mediated pathways. The interaction between CXCR2 and VASP requires free F-actin barbed ends to recruit VASP to the leading edge. Finally, knockdown of VASP in HL-60 cells results in severely impaired CXCR2-mediated chemotaxis and polarization. These data provide the first demonstration that direct interaction of VASP with CXCR2 is essential for proper CXCR2 function and demonstrate a crucial role for VASP in mediating chemotaxis in leukocytes.
Collapse
Affiliation(s)
- Nicole F Neel
- Department of Veterans Affairs, Nashville, TN 37212, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
158
|
The cell surface receptor Tartan is a potential in vivo substrate for the receptor tyrosine phosphatase Ptp52F. Mol Cell Biol 2009; 29:3390-400. [PMID: 19332563 DOI: 10.1128/mcb.01764-08] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Receptor-linked protein-tyrosine phosphatases (RPTPs) are essential regulators of axon guidance and synaptogenesis in Drosophila, but the signaling pathways in which they function are poorly defined. We identified the cell surface receptor Tartan (Trn) as a candidate substrate for the neuronal RPTP Ptp52F by using a modified two-hybrid screen with a substrate-trapping mutant of Ptp52F as "bait." Trn can bind to the Ptp52F substrate-trapping mutant in transfected Drosophila S2 cells if v-Src kinase, which phosphorylates Trn, is also expressed. Coexpression of wild-type Ptp52F causes dephosphorylation of v-Src-phosphorylated Trn. To examine the specificity of the interaction in vitro, we incubated Ptp52F-glutathione S-transferase (GST) fusion proteins with pervanadate-treated S2 cell lysates. Wild-type Ptp52F dephosphorylated Trn, as well as most other bands in the lysate. GST "pulldown" experiments demonstrated that the Ptp52F substrate-trapping mutant binds exclusively to phospho-Trn. Wild-type Ptp52F pulled down dephosphorylated Trn, suggesting that it forms a stable Ptp52F-Trn complex that persists after substrate dephosphorylation. To evaluate whether Trn and Ptp52F are part of the same pathway in vivo, we examined motor axon guidance in mutant embryos. trn and Ptp52F mutations produce identical phenotypes affecting the SNa motor nerve. The genes also display dosage-dependent interactions, suggesting that Ptp52F regulates Trn signaling in SNa motor neurons.
Collapse
|
159
|
Sheldon H, Andre M, Legg JA, Heal P, Herbert JM, Sainson R, Sharma AS, Kitajewski JK, Heath VL, Bicknell R. Active involvement of Robo1 and Robo4 in filopodia formation and endothelial cell motility mediated via WASP and other actin nucleation-promoting factors. FASEB J 2009; 23:513-22. [PMID: 18948384 PMCID: PMC4048916 DOI: 10.1096/fj.07-098269] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2008] [Accepted: 09/25/2008] [Indexed: 01/03/2023]
Abstract
This study aimed to further elucidate the function of Roundabout proteins in endothelium. We show that both Robo1 and Robo4 are present in human umbilical vein endothelial cells (HUVECs) and have knocked expression down using small interfering RNA (siRNA) technology. Roundabout knockout endothelial cells were then studied in a variety of in vitro assays. We also performed a yeast 2-hybrid analysis using the intracellular domain of Robo4 as bait to identify interacting proteins and downstream signaling. Both Robo1 and Robo4 siRNA knockdown and transfection of Robo4-green fluorescent protein inhibited endothelial cell movement and disrupted tube formation on Matrigel. Consistent with a role in regulating cell movement, yeast 2-hybrid and glutathione-S-transferase pulldown analyses show Robo4 binding to a Wiskott-Aldrich syndrome protein (WASP), neural Wiskott-Aldrich syndrome protein, and WASP-interacting protein actin-nucleating complex. We have further shown that Robo1 forms a heterodimeric complex with Robo4, and that transfection of Robo4GFP into HUVECs induces filopodia formation. We finally show using Robo1 knockdown cells that Robo1 is essential for Robo4-mediated filopodia induction. Our results favor a model whereby Slit2 binding to a Robo1/Robo4 heterodimer activates actin nucleation-promoting factors to promote endothelial cell migration.
Collapse
Affiliation(s)
| | | | - John A. Legg
- Angiogenesis Group, Cancer Research UK, University of Birmingham Medical School, Birmingham, UK; and
| | | | - John M. Herbert
- Angiogenesis Group, Cancer Research UK, University of Birmingham Medical School, Birmingham, UK; and
| | - Richard Sainson
- Growth Factor Group, Cancer Research UK, Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Anshula S. Sharma
- Department of Pathology and OB/GYN, Columbia University, New York, New York, USA
| | - Jan K. Kitajewski
- Department of Pathology and OB/GYN, Columbia University, New York, New York, USA
| | - Victoria L. Heath
- Angiogenesis Group, Cancer Research UK, University of Birmingham Medical School, Birmingham, UK; and
| | - Roy Bicknell
- Molecular Angiogenesis Group and
- Angiogenesis Group, Cancer Research UK, University of Birmingham Medical School, Birmingham, UK; and
| |
Collapse
|
160
|
Peterson FC, Volkman BF. Diversity of polyproline recognition by EVH1 domains. Front Biosci (Landmark Ed) 2009; 14:833-46. [PMID: 19273103 DOI: 10.2741/3281] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Enabled/VASP Homology-1 (EVH1) domains function primarily as interaction modules that link signaling proteins by binding to proline-rich sequences. EVH1 domains are ~115 residues in length and adopt the pleckstrin homology (PH) fold. Four different protein families contain EVH1 domains: Ena/VASP, Homer, WASP and SPRED. Except for the SPRED domains, for which no binding partners are known, EVH1 domains use a conserved hydrophobic cleft to bind a four-residue motif containing 2-4 prolines. Conserved aromatic residues, including an invariant tryptophan, create a wedge-shaped groove on the EVH1 surface that matches the triangular profile of a polyproline type II helix. Hydrophobic residues adjacent to the polyproline motif dock into complementary sites on the EVH1 domain to enhance ligand binding specificity. Pseudosymmetry in the polyproline type II helix allows peptide ligands to bind in either of two N-to-C terminal orientations, depending on interactions between sequences flanking the prolines and the EVH1 domain. EVH1 domains also recognize non-proline motifs, as illustrated by the structure of an EVH1:LIM3 complex and the extended EVH1 ligands of the verprolin family.
Collapse
Affiliation(s)
- Francis C Peterson
- Department of Biochemistry, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | | |
Collapse
|
161
|
Avci ME, Konu O, Yagci T. Quantification of SLIT-ROBO transcripts in hepatocellular carcinoma reveals two groups of genes with coordinate expression. BMC Cancer 2008; 8:392. [PMID: 19114000 PMCID: PMC2632672 DOI: 10.1186/1471-2407-8-392] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2008] [Accepted: 12/29/2008] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND SLIT-ROBO families of proteins mediate axon pathfinding and their expression is not solely confined to nervous system. Aberrant expression of SLIT-ROBO genes was repeatedly shown in a wide variety of cancers, yet data about their collective behavior in hepatocellular carcinoma (HCC) is missing. Hence, we quantified SLIT-ROBO transcripts in HCC cell lines, and in normal and tumor tissues from liver. METHODS Expression of SLIT-ROBO family members was quantified by real-time qRT-PCR in 14 HCC cell lines, 8 normal and 35 tumor tissues from the liver. ANOVA and Pearson's correlation analyses were performed in R environment, and different clinicopathological subgroups were pairwise compared in Minitab. Gene expression matrices of cell lines and tissues were analyzed by Mantel's association test. RESULTS Genewise hierarchical clustering revealed two subgroups with coordinate expression pattern in both the HCC cell lines and tissues: ROBO1, ROBO2, SLIT1 in one cluster, and ROBO4, SLIT2, SLIT3 in the other, respectively. Moreover, SLIT-ROBO expression predicted AFP-dependent subgrouping of HCC cell lines, but not that of liver tissues. ROBO1 and ROBO2 were significantly up-regulated, whereas SLIT3 was significantly down-regulated in cell lines with high-AFP background. When compared to normal liver tissue, ROBO1 was found to be significantly overexpressed, while ROBO4 was down-regulated in HCC. We also observed that ROBO1 and SLIT2 differentiated histopathological subgroups of liver tissues depending on both tumor staging and differentiation status. However, ROBO4 could discriminate poorly differentiated HCC from other subgroups. CONCLUSION The present study is the first in comprehensive and quantitative evaluation of SLIT-ROBO family gene expression in HCC, and suggests that the expression of SLIT-ROBO genes is regulated in hepatocarcinogenesis. Our results implicate that SLIT-ROBO transcription profile is bi-modular in nature, and that each module shows intrinsic variability. We also provide quantitative evidence for potential use of ROBO1, ROBO4 and SLIT2 for prediction of tumor stage and differentiation status.
Collapse
Affiliation(s)
- Mehmet Ender Avci
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Tamer Yagci
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| |
Collapse
|
162
|
Abstract
Slit was identified in Drosophila embryo as a gene involved in the patterning of larval cuticle. It was later shown that Slit is synthesized in the fly central nervous system by midline glia cells. Slit homologues have since been found in C. elegans and many vertebrate species, from amphibians, fishes, birds to mammals. A single slit was isolated in invertebrates, whereas there are three slit genes (slit1-slit3) in mammals, that have around 60% homology. All encodes large ECM glycoproteins of about 200 kDa (Fig. 1A), comprising, from their N terminus to their C terminus, a long stretch of four leucine rich repeats (LRR) connected by disulphide bonds, seven to nine EGF repeats, a domain, named ALPS (Agrin, Perlecan, Laminin, Slit) or laminin G-like module (see ref 17), and a cystein knot (Fig. 1A). Alternative spliced transcripts have been reported for Drosophila Slit2, human Slit2 and Slit3, and Slit1. Moreover, two Slit1 isoforms exist in zebrafish as a consequence of gene duplication. Last, in mammals, two Slit2 isoforms can be purified from brain extracts, a long 200 kDa one and a shorter 150 kDa form (Slit2-N) that was shown to result from the proteolytic processing of full-length Slit2. Human Slit and Slit3 and Drosophila Slit are also cleaved by an unknown protease in a large N-terminal fragment and a shorter C-terminal fragment, suggesting conserved mechanisms for Slit cleavage across species. Moreover, Slit fragments have different cell association characteristics in cell culture suggesting that they may also have different extents of diffusion, different binding properties, and, hence, different functional activities in vivo. This conclusion is supported by in vitro data showing that full-length Slit2 functions as an antagonist of Slit2-N in the DRG branching assay, and that Slit2-N, not full-length Slit2, causes collapse of OB growth cones. In addition, Slit1-N and full-length Slit1 can induce branching of cortical neurons (see below), but only full-length Slit1 repels cortical axons. Structure-function analysis in vertebrates and Drosophila demonstrated that the LRRs of Slits are required and sufficient to mediate their repulsive activities in neurons. More recent detailed structure function analysis of the LRR domains of Drosophila Slit, revealed that the active site of Slit (at least regarding its pro-angiogenic activity) is located on the second of the fourth LRR (LRR2), which is highly conserved between Slits. Slit can also dimerize through the LRR4 domain and the cystein knot.However, a Slit1 spliced-variant that lacks the cysteine knot and does not dimerize is still able to repel OB axons.
Collapse
|
163
|
Dimitrova S, Reissaus A, Tavosanis G. Slit and Robo regulate dendrite branching and elongation of space-filling neurons in Drosophila. Dev Biol 2008; 324:18-30. [PMID: 18817767 DOI: 10.1016/j.ydbio.2008.08.028] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2008] [Revised: 07/06/2008] [Accepted: 08/21/2008] [Indexed: 11/24/2022]
Abstract
Space-filling neurons extensively sample their receptive fields with fine dendritic branches. In this study we show that a member of the conserved Robo receptor family, Robo, and its ligand Slit regulate the dendritic differentiation of space-filling neurons. Loss of Robo or Slit function leads to faster elongating and less branched dendrites of the complex and space-filling class IV multi-dendritic dendrite-arborization (md-da) neurons in the Drosophila embryonic peripheral nervous system, but not of the simpler class I neurons. The total dendrite length of Class IV neurons is not modified in robo or slit mutant embryos. Robo mediates this process cell-autonomously. Upon Robo over-expression in md-da neurons the dendritic tree is simplified and time-lapse analysis during larval stages indicates that this is due to reduction in the number of newly formed branches. We propose that Slit, through Robo, provides an extrinsic signal to coordinate the growth rate and the branching level of space-filling neurons, thus allowing them to appropriately cover their target field.
Collapse
Affiliation(s)
- Svetla Dimitrova
- Dendrite Differentiation, Department of Molecular Neurobiology, Max Planck Institute of Neurobiology, Munich, Germany
| | | | | |
Collapse
|
164
|
Gilestro GF. Redundant mechanisms for regulation of midline crossing in Drosophila. PLoS One 2008; 3:e3798. [PMID: 19030109 PMCID: PMC2583054 DOI: 10.1371/journal.pone.0003798] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 11/05/2008] [Indexed: 11/25/2022] Open
Abstract
During development, all neurons have to decide on whether to cross the longitudinal midline to project on the contralateral side of the body. In vertebrates and invertebrates regulation of crossing is achieved by interfering with Robo signalling either through sorting and degradation of the receptor, in flies, or through silencing of its repulsive activity, in vertebrates. Here I show that in Drosophila a second mechanism of regulation exists that is independent from sorting. Using in vitro and in vivo assays I mapped the region of Robo that is sufficient and required for its interaction with Comm, its sorting receptor. By modifying that region, I generated new forms of Robo that are insensitive to Comm sorting in vitro and in vivo, yet still able to normally translate repulsive activity in vivo. Using gene targeting by homologous recombination I created new conditional alleles of robo that are sorting defective (robo(SD)). Surprisingly, expression of these modified proteins results in phenotypically normal flies, unveiling a sorting independent mechanism of regulation.
Collapse
|
165
|
Kaur S, Samant GV, Pramanik K, Loscombe PW, Pendrak ML, Roberts DD, Ramchandran R. Silencing of directional migration in roundabout4 knockdown endothelial cells. BMC Cell Biol 2008; 9:61. [PMID: 18980679 PMCID: PMC2613885 DOI: 10.1186/1471-2121-9-61] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2008] [Accepted: 11/03/2008] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Roundabouts are axon guidance molecules that have recently been identified to play a role in vascular guidance as well. In this study, we have investigated gene knockdown analysis of endothelial Robos, in particular roundabout 4 (robo4), the predominant Robo in endothelial cells using small interfering RNA technology in vitro. RESULTS Robo1 and Robo4 knockdown cells display distinct activity in endothelial cell migration assay. The knockdown of robo4 abrogated the chemotactic response of endothelial cells to serum but enhanced a chemokinetic response to Slit2, while robo1 knockdown cells do not display chemotactic response to serum or VEGF. Robo4 knockdown endothelial cells unexpectedly show up regulation of Rho GTPases. Zebrafish Robo4 rescues both Rho GTPase homeostasis and serum reduced chemotaxis in robo4 knockdown cells. Robo1 and Robo4 interact and share molecules such as Slit2, Mena and Vilse, a Cdc42-GAP. In addition, this study mechanistically implicates IRSp53 in the signaling nexus between activated Cdc42 and Mena, both of which have previously been shown to be involved with Robo4 signaling in endothelial cells. CONCLUSION This study identifies specific components of the Robo signaling apparatus that work together to guide directional migration of endothelial cells.
Collapse
Affiliation(s)
- Sukhbir Kaur
- Genome Technology Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ganesh V Samant
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kallal Pramanik
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | | | - Michael L Pendrak
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - David D Roberts
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ramani Ramchandran
- Department of Pediatrics, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
166
|
Andrews GL, Tanglao S, Farmer WT, Morin S, Brotman S, Berberoglu MA, Price H, Fernandez GC, Mastick GS, Charron F, Kidd T. Dscam guides embryonic axons by Netrin-dependent and -independent functions. Development 2008; 135:3839-48. [PMID: 18948420 DOI: 10.1242/dev.023739] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Developing axons are attracted to the CNS midline by Netrin proteins and other as yet unidentified signals. Netrin signals are transduced in part by Frazzled (Fra)/DCC receptors. Genetic analysis in Drosophila indicates that additional unidentified receptors are needed to mediate the attractive response to Netrin. Analysis of Bolwig's nerve reveals that Netrin mutants have a similar phenotype to Down Syndrome Cell Adhesion Molecule (Dscam) mutants. Netrin and Dscam mutants display dose sensitive interactions, suggesting that Dscam could act as a Netrin receptor. We show using cell overlay assays that Netrin binds to fly and vertebrate Dscam, and that Dscam binds Netrin with the same affinity as DCC. At the CNS midline, we find that Dscam and its paralog Dscam3 act redundantly to promote midline crossing. Simultaneous genetic knockout of the two Dscam genes and the Netrin receptor fra produces a midline crossing defect that is stronger than the removal of Netrin proteins, suggesting that Dscam proteins also function in a pathway parallel to Netrins. Additionally, overexpression of Dscam in axons that do not normally cross the midline is able to induce ectopic midline crossing, consistent with an attractive receptor function. Our results support the model that Dscam proteins function as attractive receptors for Netrin and also act in parallel to Frazzled/DCC. Furthermore, the results suggest that Dscam proteins have the ability to respond to multiple ligands and act as receptors for an unidentified midline attractive cue. These functions in axon guidance have implications for the pathogenesis of Down Syndrome.
Collapse
Affiliation(s)
- Gracie L Andrews
- Department of Biology/ms 314, University of Nevada, Reno, NV 89557, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Rezával C, Berni J, Gorostiza EA, Werbajh S, Fagilde MM, Fernández MP, Beckwith EJ, Aranovich EJ, Sabio y García CA, Ceriani MF. A functional misexpression screen uncovers a role for enabled in progressive neurodegeneration. PLoS One 2008; 3:e3332. [PMID: 18841196 PMCID: PMC2553195 DOI: 10.1371/journal.pone.0003332] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2008] [Accepted: 08/31/2008] [Indexed: 01/23/2023] Open
Abstract
Drosophila is a well-established model to study the molecular basis of neurodegenerative diseases. We carried out a misexpression screen to identify genes involved in neurodegeneration examining locomotor behavior in young and aged flies. We hypothesized that a progressive loss of rhythmic activity could reveal novel genes involved in neurodegenerative mechanisms. One of the interesting candidates showing progressive arrhythmicity has reduced enabled (ena) levels. ena down-regulation gave rise to progressive vacuolization in specific regions of the adult brain. Abnormal staining of pre-synaptic markers such as cystein string protein (CSP) suggest that axonal transport could underlie the neurodegeneration observed in the mutant. Reduced ena levels correlated with increased apoptosis, which could be rescued in the presence of p35, a general Caspase inhibitor. Thus, this mutant recapitulates two important features of human neurodegenerative diseases, i.e., vulnerability of certain neuronal populations and progressive degeneration, offering a unique scenario in which to unravel the specific mechanisms in an easily tractable organism.
Collapse
Affiliation(s)
- Carolina Rezával
- Laboratorio de Genética del Comportamiento, Fundación Instituto Leloir, Instituto de Investigaciones Bioquímicas-Buenos Aires (IIB-BA, CONICET), Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Dickinson RE, Myers M, Duncan WC. Novel regulated expression of the SLIT/ROBO pathway in the ovary: possible role during luteolysis in women. Endocrinology 2008; 149:5024-34. [PMID: 18566128 DOI: 10.1210/en.2008-0204] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
The human corpus luteum (CL) undergoes luteolysis, associated with marked tissue and vascular remodeling, unless conception occurs and the gland is rescued by human chorionic gonadotropin (hCG). In Drosophila the Slit gene product, a secreted glycoprotein, acts as a ligand for the roundabout (robo) transmembrane receptor. Together they influence the guidance and migration of neuronal and nonneuronal cells. In vertebrates three Slit (Slit1, Slit2, Slit3) and four Robo (Robo1, Robo2, Robo3/Rig-1, Robo4/Magic Robo) genes have been identified. ROBO1, SLIT2, and SLIT3 are also inactivated in human cancers and may regulate apoptosis and metastasis. Because processes such as apoptosis and tissue remodeling occur during the regression of the CL, the aim of this study was to investigate the expression, regulation, and effects of the SLIT and ROBO genes in human luteal cells. Immunohistochemistry and RT-PCR revealed that SLIT2, SLIT3, ROBO1, and ROBO2 are expressed in luteal steroidogenic cells and fibroblast-like cells of the human CL. Furthermore, using real-time quantitative PCR, expression of SLIT2, SLIT3, and ROBO2 was maximal in the late-luteal phase and significantly reduced after luteal rescue in vivo with exogenous hCG (P<0.05). Additionally, hCG significantly inhibited SLIT2, SLIT3, and ROBO2 expression in cultured luteinized granulosa cells (P<0.05). Blocking SLIT-ROBO activity increased migration and significantly decreased levels of apoptosis in primary cultures of luteal cells (P<0.05). Overall, these results suggest the SLIT/ROBO pathway could play an important role in luteolysis in women.
Collapse
Affiliation(s)
- Rachel E Dickinson
- Medical Research Council Human Reproductive Sciences Unit, Centre for Reproductive Biology, Department of Reproductive and Developmental Sciences, The Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom.
| | | | | |
Collapse
|
169
|
Santiago-Martínez E, Soplop NH, Patel R, Kramer SG. Repulsion by Slit and Roundabout prevents Shotgun/E-cadherin-mediated cell adhesion during Drosophila heart tube lumen formation. J Cell Biol 2008; 182:241-8. [PMID: 18663139 PMCID: PMC2483515 DOI: 10.1083/jcb.200804120] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2008] [Accepted: 06/11/2008] [Indexed: 11/22/2022] Open
Abstract
During Drosophila melanogaster heart development, a lumen forms between apical surfaces of contralateral cardioblasts (CBs). We show that Slit and its receptor Roundabout (Robo) are required at CB apical domains for lumen formation. Mislocalization of Slit outside the apical domain causes ectopic lumen formation and the mislocalization of cell junction proteins, E-cadherin (E-Cad) and Enabled, without disrupting overall CB cell polarity. Ectopic lumen formation is suppressed in robo mutants, which indicates robo's requirement for this process. Genetic evidence suggests that Robo and Shotgun (Shg)/E-Cad function together in modulating CB adhesion. robo and shg/E-Cad transheterozygotes have lumen defects. In robo loss-of-function or shg/E-Cad gain-of-function embryos, lumen formation is blocked because of inappropriate CB adhesion and an accumulation of E-Cad at the apical membrane. In contrast, shg/E-Cad loss-of-function or robo gain-of-function blocks lumen formation due to a loss of CB adhesion. Our data show that Slit and Robo pathways function in lumen formation as a repulsive signal to antagonize E-Cad-mediated cell adhesion.
Collapse
Affiliation(s)
- Edgardo Santiago-Martínez
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, University of Medicine and Dentistry of New Jersey, Piscataway, NJ 08854, USA
| | | | | | | |
Collapse
|
170
|
Frazzled cytoplasmic P-motifs are differentially required for axon pathway formation in the Drosophila embryonic CNS. Int J Dev Neurosci 2008; 26:753-61. [PMID: 18674607 DOI: 10.1016/j.ijdevneu.2008.07.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2008] [Revised: 07/02/2008] [Accepted: 07/02/2008] [Indexed: 01/12/2023] Open
Abstract
Frazzled is a Netrin-dependent chemoattractive receptor required for axon pathway formation in the developing Drosophila embryonic CNS. The cytoplasmic domain is important and contains three conserved P-motifs (P1, P2, and P3) thought to initiate intracellular signaling cascades and to crosstalk with other receptors during axon pathway formation. Here, we rescue homozygous frazzled embryos by pan-neurally expressing a series of mutants lacking either the cytoplasmic domain or one of the conserved P-motifs and assess the ability of these mutants to rescue frazzled defects in commissural, longitudinal and motor axon pathways. Surprisingly, while the cytoplasmic domain is required, removal of an individual P-motif does not prevent gross formation of commissures. However, removal of P3 from Fra does prevent eagle-expressing commissural axons from crossing the midline in the posterior commissure suggesting that some neurons have a stronger requirement for P3-dependent signaling. Indeed, axons within the longitudinal connective as well as a small subset of motor neurons within the ISNb pathway also specifically require P3 to project to their targets correctly. In these latter axon projections, deleting the P1-motif appears to de-regulate the receptor's activity, actually increasing the frequency of motor neuron projection errors and inducing ectopic midline crossing errors. Collectively, these data demonstrate the critical nature of both the P1 and the P3-motifs to Frazzled function in vivo during axon pathway formation.
Collapse
|
171
|
Ou Y, Chwalla B, Landgraf M, van Meyel DJ. Identification of genes influencing dendrite morphogenesis in developing peripheral sensory and central motor neurons. Neural Dev 2008; 3:16. [PMID: 18616799 PMCID: PMC2503983 DOI: 10.1186/1749-8104-3-16] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2007] [Accepted: 07/10/2008] [Indexed: 01/29/2023] Open
Abstract
Background Developing neurons form dendritic trees with cell type-specific patterns of growth, branching and targeting. Dendrites of Drosophila peripheral sensory neurons have emerged as a premier genetic model, though the molecular mechanisms that underlie and regulate their morphogenesis remain incompletely understood. Still less is known about this process in central neurons and the extent to which central and peripheral dendrites share common organisational principles and molecular features. To address these issues, we have carried out two comparable gain-of-function screens for genes that influence dendrite morphologies in peripheral dendritic arborisation (da) neurons and central RP2 motor neurons. Results We found 35 unique loci that influenced da neuron dendrites, including five previously shown as required for da dendrite patterning. Several phenotypes were class-specific and many resembled those of known mutants, suggesting that genes identified in this study may converge with and extend known molecular pathways for dendrite development in da neurons. The second screen used a novel technique for cell-autonomous gene misexpression in RP2 motor neurons. We found 51 unique loci affecting RP2 dendrite morphology, 84% expressed in the central nervous system. The phenotypic classes from both screens demonstrate that gene misexpression can affect specific aspects of dendritic development, such as growth, branching and targeting. We demonstrate that these processes are genetically separable. Targeting phenotypes were specific to the RP2 screen, and we propose that dendrites in the central nervous system are targeted to territories defined by Cartesian co-ordinates along the antero-posterior and the medio-lateral axes of the central neuropile. Comparisons between the screens suggest that the dendrites of peripheral da and central RP2 neurons are shaped by regulatory programs that only partially overlap. We focused on one common candidate pathway controlled by the ecdysone receptor, and found that it promotes branching and growth of developing da neuron dendrites, but a role in RP2 dendrite development during embryonic and early larval stages was not apparent. Conclusion We identified commonalities (for example, growth and branching) and distinctions (for example, targeting and ecdysone response) in the molecular and organizational framework that underlies dendrite development of peripheral and central neurons.
Collapse
Affiliation(s)
- Yimiao Ou
- Centre for Research in Neuroscience, McGill University, Cedar Ave, Montreal, QC, H3G 1A4, Canada.
| | | | | | | |
Collapse
|
172
|
Drees F, Gertler FB. Ena/VASP: proteins at the tip of the nervous system. Curr Opin Neurobiol 2008; 18:53-9. [PMID: 18508258 DOI: 10.1016/j.conb.2008.05.007] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2008] [Revised: 05/06/2008] [Accepted: 05/08/2008] [Indexed: 10/22/2022]
Abstract
The emergence of neurites from a symmetrical cell body is an essential feature of nervous system development. Neurites are the precursors of axons and dendrites and are tipped by growth cones, motile structures that guide elongating axons in the developing nervous system. Growth cones steer the axon along a defined path to its appropriate target in response to guidance cues. This navigation involves the dynamic extension and withdrawal of actin-filled finger-like protrusions called filopodia that continuously sample their environment. Ena/VASP proteins, a conserved family of actin-regulatory proteins, are crucial for filopodia formation and function downstream of several guidance cues. Here we review recent findings into Ena/VASP function in neurite initiation, axon outgrowth and guidance.
Collapse
Affiliation(s)
- Frauke Drees
- David H Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139-4307, USA
| | | |
Collapse
|
173
|
Abstract
Drosophila Slit and its vertebrate orthologues Slit1-Slit3 are secreted glycoproteins that play important roles in the development of the nervous system and other organs. Human Slits are also involved in a number of pathological situations, such as cancer and inflammation. Slits exert their effects by activating receptors of the Robo (Roundabout) family, which resemble cell adhesion molecules in their ectodomains and have large, mainly unstructured cytosolic domains. HS (heparan sulfate) is required for Slit-Robo signalling. The hallmark of Slit proteins is a tandem of four LRR (leucine-rich repeat) domains, which mediate binding to the IG (immunoglobulin-like) domains of Robos. A major question is how Slit binding is translated into the recruitment of effector molecules to the cytosolic domain of Robo. Detailed structure-function studies have shown that the second LRR domain of Slit (D2) binds to the first two IG domains of Robo, and that HS serves to stabilize the Slit-Robo interaction and is required for biological activity of Slit D2. Very recently, the crystal structure of a minimal Slit-Robo complex revealed that the IG1 domain of Robo is bound by the concave face of Slit D2, confirming earlier mutagenesis data. To define the mechanism of Robo transmembrane signalling, these structural insights will have to be complemented by new cell biology and microscopy approaches.
Collapse
Affiliation(s)
- Erhard Hohenester
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| |
Collapse
|
174
|
Gates J, Mahaffey JP, Rogers SL, Emerson M, Rogers EM, Sottile SL, Van Vactor D, Gertler FB, Peifer M. Enabled plays key roles in embryonic epithelial morphogenesis in Drosophila. Development 2008; 134:2027-39. [PMID: 17507404 DOI: 10.1242/dev.02849] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Studies in cultured cells and in vitro have identified many actin regulators and begun to define their mechanisms of action. Among these are Enabled (Ena)/VASP proteins, anti-Capping proteins that influence fibroblast migration, growth cone motility, and keratinocyte cell adhesion in vitro. However, partially redundant family members in mammals and maternal Ena contribution in Drosophila previously prevented assessment of the roles of Ena/VASP proteins in embryonic morphogenesis in flies or mammals. We used several approaches to remove maternal and zygotic Ena function, allowing us to address this question. We found that inactivating Ena does not disrupt cell adhesion or epithelial organization, suggesting its role in these processes is cell type-specific. However, Ena plays an important role in many morphogenetic events, including germband retraction, segmental groove retraction and head involution, whereas it is dispensable for other morphogenetic movements. We focused on dorsal closure, analyzing mechanisms by which Ena acts. Ena modulates filopodial number and length, thus influencing the speed of epithelial zippering and the ability of cells to match with correct neighbors. We also explored filopodial regulation in cultured Drosophila cells and embryos. These data provide new insights into developmental and mechanistic roles of this important actin regulator.
Collapse
Affiliation(s)
- Julie Gates
- Lineberger Comprehensive Cancer Center and Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Kocherlakota KS, Wu JM, McDermott J, Abmayr SM. Analysis of the cell adhesion molecule sticks-and-stones reveals multiple redundant functional domains, protein-interaction motifs and phosphorylated tyrosines that direct myoblast fusion in Drosophila melanogaster. Genetics 2008; 178:1371-83. [PMID: 18245830 PMCID: PMC2278097 DOI: 10.1534/genetics.107.083808] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2007] [Accepted: 12/14/2007] [Indexed: 01/16/2023] Open
Abstract
The larval body wall muscles of Drosophila melanogaster arise by fusion of founder myoblasts (FMs) and fusion-competent myoblasts (FCMs). Sticks-and-Stones (SNS) is expressed on the surface of all FCMs and mediates adhesion with FMs and developing syncytia. Intracellular components essential for myoblast fusion are then recruited to these adhesive contacts. In the studies herein, a functional analysis of the SNS cytodomain using the GAL4/UAS system identified sequences that direct myoblast fusion, presumably through recruitment of these intracellular components. An extensive series of deletion and site-directed mutations were evaluated for their ability to rescue the myoblast fusion defects of sns mutant embryos. Deletion studies revealed redundant functional domains within SNS. Surprisingly, highly conserved consensus sites for binding post-synaptic density-95/discs large/zonula occludens-1-domain-containing (PDZ) proteins and serines with a high probability of phosphorylation play no significant role in myoblast fusion. Biochemical studies establish that the SNS cytodomain is phosphorylated at multiple tyrosines and their site-directed mutagenesis compromises the ability of the corresponding transgenes to rescue myoblast fusion. Similar mutagenesis revealed a requirement for conserved proline-rich regions. This complexity and redundancy of multiple critical sequences within the SNS cytodomain suggest that it functions through a complex array of interactions that likely includes both phosphotyrosine-binding and SH3-domain-containing proteins.
Collapse
|
176
|
Legg JA, Herbert JMJ, Clissold P, Bicknell R. Slits and Roundabouts in cancer, tumour angiogenesis and endothelial cell migration. Angiogenesis 2008; 11:13-21. [PMID: 18264786 DOI: 10.1007/s10456-008-9100-x] [Citation(s) in RCA: 131] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2007] [Accepted: 01/25/2008] [Indexed: 01/22/2023]
Abstract
Angiogenesis describes the development of new blood vessels from pre-existing vessels. The hijacking of this physiological process by tumours allows them to develop their own supplies of nutrients and oxygen, enabling their growth and metastasis. A large body of literature has accumulated over the last 20 years relating to angiogenesis, including signalling pathways involved in this process. One such pathway uses Slit-Roundabout proteins that are implicated in the development of cancers and tumour angiogenesis. The Roundabout family of receptors are large, single-pass transmembrane cell surface receptors involved in directing cell migration in response to their cognate Slit ligands. Although best known for their role in neuronal development, Slits and Roundabouts have now been implicated in myogenesis, leukocyte chemotaxis and tumour angiogenesis, confirming that the Robo signalling pathway functions across multiple cell types. We review here the evidence for a role for Slits and Roundabouts in cancer. In particular, we focus on the role of Robo1 and Robo4 in tumour angiogenesis and discuss the signalling pathways downstream of these proteins mediating endothelial cell migration.
Collapse
Affiliation(s)
- John A Legg
- Cancer Research UK Angiogenesis Group, Institute for Biomedical Research, University of Birmingham Medical School, Edgbaston, Birmingham, B15 2TT, UK
| | | | | | | |
Collapse
|
177
|
Ren XR, Hong Y, Feng Z, Yang HM, Mei L, Xiong WC. Tyrosine phosphorylation of netrin receptors in netrin-1 signaling. Neurosignals 2008; 16:235-45. [PMID: 18253061 DOI: 10.1159/000111566] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Deleted in colorectal cancer (DCC) and neogenin are receptors of netrins, a family of guidance cues that promote axon outgrowth and guide growth cones in developing nervous system. The intracellular mechanisms of netrins, however, remain elusive. In this paper, we show that both DCC and neogenin become tyrosine phosphorylated in cortical neurons in response to netrin-1. Using a site-specific antiphosphor DCC antibody, we show that Y1420 phosphorylation is increased in netrin-1-stimulated neurons and that tyrosine-phosphorylated DCC is located in growth cones. In addition, we show that tyrosine-phosphorylated DCC selectively interacts with the Src family kinases Fyn and Lck, but not Src, c-Abl, Grb2, SHIP1, Shc, or tensin, suggesting a role of Fyn or Lck in netrin-1-DCC signaling. Of interest to note is that tyrosine-phosphorylated neogenin and uncoordinated 5 H2 (Unc5H2) not only bind to the Src homology 2 (SH2) domains of Fyn and SHP2, but also interact with the SH2 domain of SHIP1, suggesting a differential signaling between DCC and neogenin/Unc5H2. Furthermore, we demonstrate that inhibition of Src family kinase activity attenuated netrin-1-induced neurite outgrowth. Together, these results suggest a role of Src family kinases and tyrosine phosphorylation of netrin-1 receptors in regulating netrin-1 function.
Collapse
Affiliation(s)
- Xiu-Rong Ren
- Department of Pathology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | | | | | | | | |
Collapse
|
178
|
Jeon M, Nguyen H, Bahri S, Zinn K. Redundancy and compensation in axon guidance: genetic analysis of the Drosophila Ptp10D/Ptp4E receptor tyrosine phosphatase subfamily. Neural Dev 2008; 3:3. [PMID: 18237413 PMCID: PMC2270841 DOI: 10.1186/1749-8104-3-3] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Accepted: 01/31/2008] [Indexed: 12/27/2022] Open
Abstract
Background Drosophila has six receptor protein tyrosine phosphatases (RPTPs), five of which are expressed primarily in neurons. Mutations in all five affect axon guidance, either alone or in combination. Highly penetrant central nervous system (CNS) and motor axon guidance alterations are usually observed only when specific combinations of two or more RPTPs are removed. Here, we examine the sixth RPTP, Ptp4E, which is broadly expressed. Results Ptp4E and Ptp10D are closely related type III RPTPs. Non-drosophilid insect species have only one type III RPTP, which is closest to Ptp10D. We found that Ptp4E mutants are viable and fertile. We then examined Ptp4E Ptp10D double mutants. These die before the larval stage, and have a mild CNS phenotype in which the outer longitudinal 1D4 bundle is frayed. Ptp10D Ptp69D double mutants have a strong CNS phenotype in which 1D4 axons abnormally cross the midline and the outer and middle longitudinal bundles are fused to the inner bundle. To examine if Ptp4E also exhibits synthetic phenotypes in combination with Ptp69D, we made Ptp4E Ptp69D double mutants and Ptp4E Ptp10D Ptp69D triple mutants. No phenotype was observed in the double mutant. The triple mutant phenotype differs from the Ptp10D Ptp69D phenotype in two ways. First, the longitudinal tracts appear more normal than in the double mutant; two or three bundles are observed, although they are disorganized and fused. Second, axons labelled by the SemaIIB-τMyc marker often cross in the wrong commissure. We also examined motor axon guidance, and found that no phenotypes are observed in any Ptp4E double mutant combination. However, triple mutants in which Ptp4E Ptp10D was combined with Ptp69D or Ptp52F exhibited stronger phenotypes than the corresponding Ptp10D double mutants. Conclusion Type III RPTPs are required for viability in Drosophila, since Ptp4E Ptp10D double mutants die before the larval stage. Unlike Ptp10D, Ptp4E appears to be a relatively minor player in the control of axon guidance. Strong phenotypes are only observed in triple mutants in which both type III RPTPs are eliminated together with Ptp69D or Ptp52F. Our results allow us to construct a complete genetic interaction matrix for all six of the RPTPs.
Collapse
Affiliation(s)
- Mili Jeon
- Broad Center, Division of Biology, California Institute of Technology Pasadena, California 91125, USA.
| | | | | | | |
Collapse
|
179
|
Abstract
The actin cytoskeleton is required for many important processes during embryonic development. In later stages of life, important homeostatic processes depend on the actin cytoskeleton, such as immune response, haemostasis and blood vessel preservation. Therefore, the function of the actin cytoskeleton must be tightly regulated, and aberrant regulation may cause disease. A growing number of proteins have been described to bind and regulate the actin cytoskeleton. Amongst them, Ena/VASP proteins function as anti-capping proteins, thereby directly modulating the actin ultrastructure. Ena/VASP function is regulated by their recruitment into protein complexes downstream of plasma membrane receptors and by phosphorylation. As regulators of the actin ultrastructure, Ena/VASP proteins are involved in crucial cellular functions, such as shape change, adhesion, migration and cell-cell interaction and hence are important targets for therapeutic intervention. In this chapter, we will first describe the structure, function and regulation of Ena/VASP proteins. Then, we will review the involvement of Ena/VASP proteins in the development of human diseases. Growing evidence links Ena/VASP proteins to important human diseases, such as thrombosis, cancer, arteriosclerosis, cardiomyopathy and nephritis. Finally, present and future perspectives for the development of therapeutic molecules interfering with Ena/VASP-mediated protein-protein interactions are presented.
Collapse
Affiliation(s)
- G Pula
- Randall Division of Cell and Molecular Biophysics, King's College London, New Hunt's House, Guy's Campus, London, UK
| | | |
Collapse
|
180
|
Hsouna A, VanBerkum MFA. Abelson tyrosine kinase and Calmodulin interact synergistically to transduce midline guidance cues in the Drosophila embryonic CNS. Int J Dev Neurosci 2007; 26:345-54. [PMID: 18243630 DOI: 10.1016/j.ijdevneu.2007.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Revised: 12/17/2007] [Accepted: 12/18/2007] [Indexed: 11/18/2022] Open
Abstract
Calmodulin and Abelson tyrosine kinase are key signaling molecules transducing guidance cues at the Drosophila embryonic midline. A reduction in the signaling strength of either pathway alone induces ectopic midline crossing errors in a few segments. When Calmodulin and Abelson signaling levels are simultaneously reduced, the frequency of ectopic crossovers is synergistically enhanced as all segments exhibit crossing errors. But as the level of signaling is further reduced, commissures begin to fuse and large gaps form in the longitudinal connectives. Quantitative analysis suggests that the level of Abelson activity is particularly important. Like Calmodulin, Abelson interacts with son-of-sevenless to increase ectopic crossovers suggesting all three contribute to midline repulsive signaling. Axons cross the midline in almost every segment if Frazzled is co-overexpressed with the Calmodulin inhibitor, but the crossovers induced by the Calmodulin inhibitor itself do not require endogenous Frazzled. Thus, Calmodulin and Abelson tyrosine kinase are key signaling molecules working synergistically to transduce both midline attractive and repulsive cues. While they may function downstream of specific receptors, the emergence of commissural and longitudinal connective defects point to a novel convergence of Calmodulin and Abelson signaling during the regulation of actin and myosin dynamics underlying a guidance decision.
Collapse
Affiliation(s)
- Anita Hsouna
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
181
|
Le Gall M, De Mattei C, Giniger E. Molecular separation of two signaling pathways for the receptor, Notch. Dev Biol 2007; 313:556-67. [PMID: 18062953 DOI: 10.1016/j.ydbio.2007.10.030] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2007] [Revised: 10/18/2007] [Accepted: 10/23/2007] [Indexed: 10/22/2022]
Abstract
Notch is required for many aspects of cell fate specification and morphogenesis during development, including neurogenesis and axon guidance. We here provide genetic and biochemical evidence that Notch directs axon growth and guidance in Drosophila via a "non-canonical", i.e. non-Su(H)-mediated, signaling pathway, characterized by association with the adaptor protein, Disabled, and Trio, an accessory factor of the Abl tyrosine kinase. We find that forms of Notch lacking the binding sites for its canonical effector, Su(H), are nearly inactive for the cell fate function of the receptor, but largely or fully active in axon patterning. Conversely, deletion from Notch of the binding site for Disabled impairs its action in axon patterning without disturbing cell fate control. Finally, we show by co-immunoprecipitation that Notch protein is physically associated in vivo with both Disabled and Trio. Together, these data provide evidence for an alternate Notch signaling pathway that mediates a postmitotic, morphogenetic function of the receptor.
Collapse
Affiliation(s)
- Maude Le Gall
- Axon Guidance and Neural Connectivity Unit, Basic Neuroscience Program, National Institute of Neurological Disorders and Stroke (NINDS), National Institutes of Health, Bldg. 37, Rm. 1016, 37 Convent Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
182
|
Song JK, Giniger E, Desai CJ. The receptor protein tyrosine phosphatase PTP69D antagonizes Abl tyrosine kinase to guide axons in Drosophila. Mech Dev 2007; 125:247-56. [PMID: 18160268 DOI: 10.1016/j.mod.2007.11.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2007] [Revised: 11/13/2007] [Accepted: 11/14/2007] [Indexed: 10/22/2022]
Abstract
During Drosophila embryogenesis, both the cytoplasmic Abelson tyrosine kinase (Abl) and the membrane bound tyrosine phosphatase PTP69D are required for proper guidance of CNS and motor axons. We provide evidence that PTP69D modulates signaling by Abl and its antagonist, Ena. An Abl loss-of function mutation dominantly suppresses most Ptp69D mutant phenotypes including larval/pupal lethality and CNS and motor axon defects, while increased Abl and decreased Ena expression dramatically increase the expressivity of Ptp69D axonal defects. In contrast, Ptp69D mutations do not affect Abl mutant phenotypes. These results support the hypothesis that PTP69D antagonizes the Abl/Ena genetic pathway, perhaps as an upstream regulator. We also find that mutation of the gene encoding the cytoplasmic Src64B tyrosine kinase exacerbates Ptp69D phenotypes, suggesting that two different cytoplasmic tyrosine kinases, Abl and Src64B, modify PTP69D-mediated axon patterning in quite different ways.
Collapse
Affiliation(s)
- Jeong K Song
- Axon Guidance and Neural Connectivity Unit, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bldg 37 Room 1016, 37 Convent Drive, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
183
|
Filopodia are required for cortical neurite initiation. Nat Cell Biol 2007; 9:1347-59. [PMID: 18026093 DOI: 10.1038/ncb1654] [Citation(s) in RCA: 248] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2007] [Accepted: 10/29/2007] [Indexed: 02/03/2023]
Abstract
Extension of neurites from a cell body is essential to form a functional nervous system; however, the mechanisms underlying neuritogenesis are poorly understood. Ena/VASP proteins regulate actin dynamics and modulate elaboration of cellular protrusions. We recently reported that cortical axon-tract formation is lost in Ena/VASP-null mice and Ena/VASP-null cortical neurons lack filopodia and fail to elaborate neurites. Here, we report that neuritogenesis in Ena/VASP-null neurons can be rescued by restoring filopodia formation through ectopic expression of the actin nucleating protein mDia2. Conversely, wild-type neurons in which filopodia formation is blocked fail to elaborate neurites. We also report that laminin, which promotes the formation of filopodia-like actin-rich protrusions, rescues neuritogenesis in Ena/VASP-deficient neurons. Therefore, filopodia formation is a key prerequisite for neuritogenesis in cortical neurons. Neurite initiation also requires microtubule extension into filopodia, suggesting that interactions between actin-filament bundles and dynamic microtubules within filopodia are crucial for neuritogenesis.
Collapse
|
184
|
Beg AA, Sommer JE, Martin JH, Scheiffele P. alpha2-Chimaerin is an essential EphA4 effector in the assembly of neuronal locomotor circuits. Neuron 2007; 55:768-78. [PMID: 17785183 DOI: 10.1016/j.neuron.2007.07.036] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2007] [Revised: 07/23/2007] [Accepted: 07/31/2007] [Indexed: 10/22/2022]
Abstract
The assembly of neuronal networks during development requires tightly controlled cell-cell interactions. Multiple cell surface receptors that control axon guidance and synapse maturation have been identified. However, the signaling mechanisms downstream of these receptors have remained unclear. Receptor signals might be transmitted through dedicated signaling lines defined by specific effector proteins. Alternatively, a single cell surface receptor might couple to multiple effectors with overlapping functions. We identified the neuronal RacGAP alpha2-chimaerin as an effector for the receptor tyrosine kinase EphA4. alpha2-Chimaerin interacts with activated EphA4 and is required for ephrin-induced growth cone collapse in cortical neurons. alpha2-Chimaerin mutant mice exhibit a rabbit-like hopping gait with synchronous hindlimb movements that phenocopies mice lacking EphA4 kinase activity. Anatomical and functional analyses of corticospinal and spinal interneuron projections reveal that loss of alpha2-chimaerin results in impairment of EphA4 signaling in vivo. These findings identify alpha2-chimaerin as an indispensable effector for EphA4 in cortical and spinal motor circuits.
Collapse
Affiliation(s)
- Asim A Beg
- Department of Physiology and Cellular Biophysics, Department of Neuroscience, Center for Motor Neuron Biology and Disease, Columbia University, New York, NY 10032, USA
| | | | | | | |
Collapse
|
185
|
Schmandke A, Schmandke A, Strittmatter SM. ROCK and Rho: biochemistry and neuronal functions of Rho-associated protein kinases. Neuroscientist 2007; 13:454-69. [PMID: 17901255 PMCID: PMC2849133 DOI: 10.1177/1073858407303611] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Rho-associated protein kinases (ROCKs) play key roles in mediating the control of the actin cytoskeleton by Rho family GTPases in response to extracellular signals. Such signaling pathways contribute to diverse neuronal functions from cell migration to axonal guidance to dendritic spine morphology to axonal regeneration to cell survival. In this review, the authors summarize biochemical knowledge of ROCK function and categorize neuronal ROCK-dependent signaling pathways. Further study of ROCK signal transduction mechanisms and specificities will enhance our understanding of brain development, plasticity, and repair. The ROCK pathway also provides a potential site for therapeutic intervention to promote neuronal regeneration and to limit degeneration.
Collapse
Affiliation(s)
- André Schmandke
- Program in Cellular Neuroscience, Neurodegeneration and Repair, Department of Neurology Yale University School of Medicine, New Haven, CT 06510, USA
| | | | | |
Collapse
|
186
|
Prasad A, Qamri Z, Wu J, Ganju RK. Slit-2/Robo-1 modulates the CXCL12/CXCR4-induced chemotaxis of T cells. J Leukoc Biol 2007; 82:465-76. [PMID: 17565045 PMCID: PMC2286829 DOI: 10.1189/jlb.1106678] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Slit, which mediates its function by binding to the Roundabout (Robo) receptor, has been shown to regulate neuronal, dendritic, and leukocyte migration. However, the molecular mechanism by which the Slit/Robo complex inhibits the migration of cells is not well defined. Here, we showed that Slit-2 can inhibit the CXCL12-induced chemotaxis and transendothelial migration of T cells and monocytes. We observed that CXCR4 associates with Robo-1 and that Slit-2 treatment enhances this association with the Robo-1 receptor. Robo-1 is a single-pass transmembrane receptor whose intracellular region contains four conserved motifs designated as CC0, CC1, CC2, and CC3. Structural and functional analyses of Robo receptors revealed that interaction of the CC3 motif with the CXCR4 receptor may regulate the CXCL12-induced chemotaxis of T cells. We further characterized Slit-2-mediated inhibition of the CXCL12/CXCR4 chemotactic pathway and found that Slit-2 can block the CXCL12-induced activation of the Src and Lck kinases but not Lyn kinase. Although Slit-2 did not inhibit the CXCL12-induced activation of MAPKs, it did inhibit the Akt phosphorylation and Rac activation induced by this chemokine. Altogether, our studies indicate a novel mechanism by which the Slit/Robo complex may inhibit the CXCR4/CXCL12-mediated chemotaxis of T cells.
Collapse
MESH Headings
- Blotting, Western
- Cell Adhesion/physiology
- Cell Movement/physiology
- Cell Survival
- Cells, Cultured
- Chemokine CXCL12
- Chemokines, CXC/metabolism
- Chemotaxis, Leukocyte/drug effects
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/metabolism
- Flow Cytometry
- Humans
- Immunoprecipitation
- Intercellular Signaling Peptides and Proteins/pharmacology
- Jurkat Cells/metabolism
- Mitogen-Activated Protein Kinases/metabolism
- Monocytes/physiology
- Nerve Tissue Proteins/pharmacology
- Phosphorylation
- Proto-Oncogene Proteins c-akt/metabolism
- RNA, Small Interfering/pharmacology
- Receptors, CXCR4/metabolism
- Receptors, Immunologic
- Signal Transduction
- T-Lymphocytes/physiology
- cdc42 GTP-Binding Protein/metabolism
- Roundabout Proteins
Collapse
Affiliation(s)
- Anil Prasad
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Zahida Qamri
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| | - Jane Wu
- Northwestern University Feinberg Medical School, Robert H. Laurie Comprehensive Cancer Center, Center for Genetic Medicine, Chicago, Illinois, USA
| | - Ramesh K. Ganju
- Division of Experimental Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
187
|
Campbell DS, Stringham SA, Timm A, Xiao T, Law MY, Baier H, Nonet ML, Chien CB. Slit1a inhibits retinal ganglion cell arborization and synaptogenesis via Robo2-dependent and -independent pathways. Neuron 2007; 55:231-45. [PMID: 17640525 DOI: 10.1016/j.neuron.2007.06.034] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 05/30/2007] [Accepted: 06/28/2007] [Indexed: 01/20/2023]
Abstract
Upon arriving at their targets, developing axons cease pathfinding and begin instead to arborize and form synapses. To test whether CNS arborization and synaptogenesis are controlled by Slit-Robo signaling, we followed single retinal ganglion cell (RGC) arbors over time. ast (robo2) mutant and slit1a morphant arbors had more branch tips and greater arbor area and complexity compared to wild-type and concomitantly more presumptive presynaptic sites labeled with YFP-Rab3. Increased arborization in ast was phenocopied by dominant-negative Robo2 expressed in single RGCs and rescued by full-length Robo2, indicating that Robo2 acts cell-autonomously. Time-lapse imaging revealed that ast and slit1a morphant arbors stabilized earlier than wild-type, suggesting a role for Slit-Robo signaling in preventing arbor maturation. Genetic analysis showed that Slit1a acts both through Robo2 and Robo2-independent mechanisms. Unlike previous PNS studies showing that Slits promote branching, our results show that Slits inhibit arborization and synaptogenesis in the CNS.
Collapse
Affiliation(s)
- Douglas S Campbell
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, UT 84132, USA.
| | | | | | | | | | | | | | | |
Collapse
|
188
|
Bhat KM, Gaziova I, Krishnan S. Regulation of axon guidance by slit and netrin signaling in the Drosophila ventral nerve cord. Genetics 2007; 176:2235-46. [PMID: 17565966 PMCID: PMC1950628 DOI: 10.1534/genetics.107.075085] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 05/30/2007] [Indexed: 11/18/2022] Open
Abstract
Netrin and Slit signaling systems play opposing roles during the positioning of longitudinal tracts along the midline in the ventral nerve cord of Drosophila embryo. It has been hypothesized that a gradient of Slit from the midline interacts with three different Robo receptors to specify the axon tract positioning. However, no such gradient has been detected. Moreover, overexpression of Slit at the midline has no effect on the positioning of these lateral tracts. In this article, we show that Slit is present outside of the midline along the longitudinal and commissural tracts. Sli from the midline, in a Robo-independent manner, is initially taken up by the commissural axon tracts when they cross the midline and is transported along the commissural tracts into the longitudinal connectives. These results are not consistent with a Sli gradient model. We also find that sli mRNA is maternally deposited and embryos that are genetically null for sli can have weaker guidance defects. Moreover, in robo or robo3 mutants, embryos with normal axon tracts are found and such robo embryos reach pupal stages and die, while robo3 mutant embryos develop into normal individuals and produce eggs. Interestingly, embryos from robo3 homozygous individuals fail to develop but have axon tracts ranging from normal to various defects: robo3 phenotype, robo phenotype, and slit-like phenotype, suggesting a more complex functional role for these genes than what has been proposed. Finally, our previous results indicated that netrin phenotype is epistatic to sli or robo phenotypes. However, it seems likely that this previously reported epistatic relationship might be due to the partial penetrance of the sli, robo, robo3 (or robo2) phenotypes. Our results argue that double mutant epistasis is most definitive only if the penetrance of the phenotypes of the mutants involved is complete.
Collapse
Affiliation(s)
- Krishna Moorthi Bhat
- Department of Neuroscience and Cell Biology, School of Medicine, University of Texas Medical Branch, Galveston, TX 77555, USA.
| | | | | |
Collapse
|
189
|
Abstract
Interneurons are an integral part of cortical neuronal circuits. During the past decade, numerous studies have shown that these cells, unlike their pyramidal counterparts that are derived from the neuroepithelium along the lumen of the lateral ventricles, are generated in the ganglionic eminences in the subpallium. They use tangential migratory paths to reach the cortex, guided by intrinsic and extrinsic cues. Evidence is now emerging which suggests that the family of Slit proteins, acting through Robo receptors, play a role not only in axon guidance in the developing forebrain, but also as guiding signals in the migration of cortical interneurons. Here we describe the patterns of expression of Slit and Robo at different stages of forebrain development and review the evidence in support of their role in cortical interneuron migration. Slit-Robo signal transduction mechanisms are also important during normal development in a number of systems in the body and in disease states, making them potential therapeutic targets for the treatment of neurological disorders and certain types of cancer.
Collapse
Affiliation(s)
- William D Andrews
- Department of Anatomy and Developmental Biology, University College London, London WC1E 6BT, UK
| | | | | |
Collapse
|
190
|
Rhee J, Buchan T, Zukerberg L, Lilien J, Balsamo J. Cables links Robo-bound Abl kinase to N-cadherin-bound beta-catenin to mediate Slit-induced modulation of adhesion and transcription. Nat Cell Biol 2007; 9:883-92. [PMID: 17618275 DOI: 10.1038/ncb1614] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2007] [Accepted: 05/30/2007] [Indexed: 11/08/2022]
Abstract
Binding of the secreted axon guidance cue Slit to its Robo receptor results in inactivation of the neural, calcium-dependent cell-cell adhesion molecule N-cadherin, providing a rapid epigenetic mechanism for integrating guidance and adhesion information. This requires the formation of a multimolecular complex containing Robo, Abl tyrosine kinase and N-cadherin. Here we show that on binding of Slit to Robo, the adaptor protein Cables is recruited to Robo-associated Abl and forms a multimeric complex by binding directly to N-cadherin-associated beta-catenin. Complex formation results in Abl-mediated phosphorylation of beta-catenin on tyrosine 489, leading to a decrease in its affinity for N-cadherin, loss of N-cadherin function, and targeting of phospho-Y489-beta-catenin to the nucleus. Nuclear beta-catenin combines with the transcription factor Tcf/Lef and activates transcription. Thus, Slit-induced formation of the Robo-N-cadherin complex results in a rapid loss of cadherin-mediated adhesion and has more lasting effects on gene transcription.
Collapse
Affiliation(s)
- Jinseol Rhee
- Department of Biological Sciences, The University of Iowa, Iowa City, Iowa 52242-1324, USA
| | | | | | | | | |
Collapse
|
191
|
Magalhães TR, Palmer J, Tomancak P, Pollard KS. Transcriptional control in embryonic Drosophila midline guidance assessed through a whole genome approach. BMC Neurosci 2007; 8:59. [PMID: 17672901 PMCID: PMC1950096 DOI: 10.1186/1471-2202-8-59] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2006] [Accepted: 07/31/2007] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND During the development of the Drosophila central nervous system the process of midline crossing is orchestrated by a number of guidance receptors and ligands. Many key axon guidance molecules have been identified in both invertebrates and vertebrates, but the transcriptional regulation of growth cone guidance remains largely unknown. It is established that translational regulation plays a role in midline crossing, and there are indications that transcriptional regulation is also involved. To investigate this issue, we conducted a genome-wide study of transcription in Drosophila embryos using wild type and a number of well-characterized Drosophila guidance mutants and transgenics. We also analyzed a previously published microarray time course of Drosophila embryonic development with an axon guidance focus. RESULTS Using hopach, a novel clustering method which is well suited to microarray data analysis, we identified groups of genes with similar expression patterns across guidance mutants and transgenics. We then systematically characterized the resulting clusters with respect to their relevance to axon guidance using two complementary controlled vocabularies: the Gene Ontology (GO) and anatomical annotations of the Atlas of Pattern of Gene Expression (APoGE) in situ hybridization database. The analysis indicates that regulation of gene expression does play a role in the process of axon guidance in Drosophila. We also find a strong link between axon guidance and hemocyte migration, a result that agrees with mounting evidence that axon guidance molecules are co-opted in vertebrate vascularization. Cell cyclin activity in the context of axon guidance is also suggested from our array data. RNA and protein expression patterns of cell cyclins in axon guidance mutants and transgenics support this possible link. CONCLUSION This study provides important insights into the regulation of axon guidance in vivo.
Collapse
Affiliation(s)
- Tiago R Magalhães
- Programa Gulbenkian Doutoramento Biologia e Medicina, Centro Neurociências, Universidade de Coimbra, 3000 – Coimbra, Portugal
| | - Jessica Palmer
- Lewis-Clark State College, 500 8th Avenue, Lewiston, ID 83501, USA
| | - Pavel Tomancak
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Katherine S Pollard
- UC Davis Genome Center & Department of Statistics, University of California, Davis, CA, 95616, USA
| |
Collapse
|
192
|
Peacock JG, Miller AL, Bradley WD, Rodriguez OC, Webb DJ, Koleske AJ. The Abl-related gene tyrosine kinase acts through p190RhoGAP to inhibit actomyosin contractility and regulate focal adhesion dynamics upon adhesion to fibronectin. Mol Biol Cell 2007; 18:3860-72. [PMID: 17652459 PMCID: PMC1995720 DOI: 10.1091/mbc.e07-01-0075] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
In migrating cells, actin polymerization promotes protrusion of the leading edge, whereas actomyosin contractility powers net cell body translocation. Although they promote F-actin-dependent protrusions of the cell periphery upon adhesion to fibronectin (FN), Abl family kinases inhibit cell migration on FN. We provide evidence here that the Abl-related gene (Arg/Abl2) kinase inhibits fibroblast migration by attenuating actomyosin contractility and regulating focal adhesion dynamics. arg-/- fibroblasts migrate at faster average speeds than wild-type (wt) cells, whereas Arg re-expression in these cells slows migration. Surprisingly, the faster migrating arg-/- fibroblasts have more prominent F-actin stress fibers and focal adhesions and exhibit increased actomyosin contractility relative to wt cells. Interestingly, Arg requires distinct functional domains to inhibit focal adhesions and actomyosin contractility. The kinase domain-containing Arg N-terminal half can act through the RhoA inhibitor p190RhoGAP to attenuate stress fiber formation and cell contractility. However, Arg requires both its kinase activity and its cytoskeleton-binding C-terminal half to fully inhibit focal adhesions. Although focal adhesions do not turn over efficiently in the trailing edge of arg-/- cells, the increased contractility of arg-/- cells tears the adhesions from the substrate, allowing for the faster migration observed in these cells. Together, our data strongly suggest that Arg inhibits cell migration by restricting actomyosin contractility and regulating its coupling to the substrate through focal adhesions.
Collapse
Affiliation(s)
| | - Ann L. Miller
- *Department of Molecular Biophysics and Biochemistry
| | | | - Olga C. Rodriguez
- Department of Cell Biology, The Scripps Research Institute, La Jolla, CA 92037; and
| | - Donna J. Webb
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235
| | - Anthony J. Koleske
- *Department of Molecular Biophysics and Biochemistry
- Department of Neurobiology, and
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06511
| |
Collapse
|
193
|
Wanner SJ, Miller JR. Regulation of otic vesicle and hair cell stereocilia morphogenesis by Ena/VASP-like (Evl) in Xenopus. J Cell Sci 2007; 120:2641-51. [PMID: 17635997 DOI: 10.1242/jcs.004556] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The inner ear is derived from a thickening in the embryonic ectoderm, called the otic placode. This structure undergoes extensive morphogenetic movements throughout its development and gives rise to all components of the inner ear. Ena/VASP-like (Evl) is an actin binding protein involved in the regulation of cytoskeletal dynamics and organization. We have examined the role of Evl during the morphogenesis of the Xenopus inner ear. Evl (hereafter referred to as Xevl) is expressed throughout otic vesicle formation and is enriched in the neuroblasts that delaminate to form the vestibulocochlear ganglion and in hair cells that possess mechanosensory stereocilia. Knockdown of Xevl perturbs epithelial morphology and intercellular adhesion in the otic vesicle and disrupts formation of the vestibulocochlear ganglion, evidenced by reduction of ganglion size, disorganization of the ganglion, and defects in neurite outgrowth. Later in embryogenesis, Xevl is required for development of mechanosensory hair cells. In Xevl knockdown embryos, hair cells of the ventromedial sensory epithelium display multiple abnormalities including disruption of the cuticular plate at the base of stereocilia and disorganization of the normal staircase appearance of stereocilia. Based on these data, we propose that Xevl plays an integral role in regulating morphogenesis of the inner ear epithelium and the subsequent development of the vestibulocochlear ganglion and mechanosensory hair cells.
Collapse
Affiliation(s)
- Sarah J Wanner
- Department of Genetics, Cell Biology and Development and Developmental Biology Center, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
194
|
Hearing development and spiral ganglion neurite growth in VASP deficient mice. Brain Res 2007; 1178:73-82. [PMID: 17920567 DOI: 10.1016/j.brainres.2007.06.041] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2006] [Revised: 04/27/2007] [Accepted: 06/07/2007] [Indexed: 10/23/2022]
Abstract
Vasodilator-stimulated phosphoprotein (VASP) has been found to be involved in intracellular signalling pathways and to play an important role in the actin associated organization and formation of the cytoskeleton. Since differential VASP expression was noted in inner ear tissues, the present study was performed to investigate the hearing development in VASP deficient mice. Hearing development in VASP-/- mice and wild type animals was investigated by auditory brain stem (ABR) measurements. In addition, inner ear tissues of wild type animals were tested for VASP expression using PCR, Western blot analysis, in situ hybridisation, and immunohistochemistry. To compare spiral ganglion (SG) neurite growth, SG explants from VASP-/- and wild type mice were analyzed under cell culture conditions. The electroacoustical results of the present study indicate that VASP deficient mice present with a later onset of hearing during postnatal development compared to wild type animals. Transient VASP expression was detected in neonatal SG of wild type mice. Tissue culture experiments with SG explants from VASP-/- animals revealed significant alterations in SG neurite extension compared to wild types. The present findings suggest a role for VASP during neonatal development of the mammalian cochlea and allow speculation on a possible delayed innervation of cochlear hair cells due to changes in SG neurite growth in VASP-deficient mice. Temporary VASP deficits in the neonatal inner ear may be compensated by related proteins like MENA leading to a delayed but complete development of hearing function in VASP-/- animals.
Collapse
|
195
|
Guan CB, Xu HT, Jin M, Yuan XB, Poo MM. Long-range Ca2+ signaling from growth cone to soma mediates reversal of neuronal migration induced by slit-2. Cell 2007; 129:385-95. [PMID: 17448996 DOI: 10.1016/j.cell.2007.01.051] [Citation(s) in RCA: 115] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2006] [Revised: 11/16/2006] [Accepted: 01/26/2007] [Indexed: 12/01/2022]
Abstract
Neuronal migration and growth-cone extension are both guided by extracellular factors in the developing brain, but whether these two forms of guidance are mechanistically linked is unclear. Application of a Slit-2 gradient in front of the leading process of cultured cerebellar granule cells led to the collapse of the growth cone and the reversal of neuronal migration, an event preceded by a propagating Ca(2+) wave from the growth cone to the soma. The Ca(2+) wave was required for the Slit-2 effect and was sufficient by itself to induce the reversal of migration. The Slit-2-induced reversal of migration required active RhoA, which was accumulated at the front of the migrating neuron, and this polarized RhoA distribution was reversed during the migration reversal induced by either the Slit-2 gradient or the Ca(2+) wave. Thus, long-range Ca(2+) signaling coordinates the Slit-2-induced changes in motility at two distant parts of migrating neurons by regulating RhoA distribution.
Collapse
Affiliation(s)
- Chen-Bing Guan
- Institute of Neuroscience and Key Laboratory of Neurobiology, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
196
|
Mann F, Chauvet S, Rougon G. Semaphorins in development and adult brain: Implication for neurological diseases. Prog Neurobiol 2007; 82:57-79. [PMID: 17537564 DOI: 10.1016/j.pneurobio.2007.02.011] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2006] [Revised: 01/18/2007] [Accepted: 02/26/2007] [Indexed: 01/17/2023]
Abstract
As a group, Semaphorins are expressed in most tissues and this distribution varies considerably with age. Semaphorins are dynamically expressed during embryonic development and their expression is often associated with growing axons. This expression decreases with maturity and several observations support the idea that in adult brain the expression of secreted Semaphorins is sensitive to electrical activity and experience. The functional role of Semaphorins in guiding axonal projections is well established and more recent evidence points to additional roles in the development, function and reorganization of synaptic complexes. Semaphorins exert the majority of their effects by binding to cognate receptor proteins through their extracellular domains. A common theme is that Semaphorin-triggered signalling induces the rearrangement of the actin and microtubule cytoskeleton. Mutations in Semaphorin genes are linked to several human diseases associated with neurological changes, but their actual influence in the pathogenesis of these diseases remains to be demonstrated. In addition, Semaphorins and their receptors are likely to mediate cross-talk between neurons and other cell types, including in pathological situations where their influence can be damaging or favourable depending on the context. We discuss how the manipulation of Semaphorin function might be crucial for future clinical studies.
Collapse
Affiliation(s)
- Fanny Mann
- CNRS UMR 6216, Université de la Méditerranée, Developmental Biology Institute of Marseille Luminy, Case 907, Parc Scientifique de Luminy, 13288 Marseille Cedex 09, France
| | | | | |
Collapse
|
197
|
Dwivedy A, Gertler FB, Miller J, Holt CE, Lebrand C. Ena/VASP function in retinal axons is required for terminal arborization but not pathway navigation. Development 2007; 134:2137-46. [PMID: 17507414 PMCID: PMC3792372 DOI: 10.1242/dev.002345] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The Enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family of proteins is required for filopodia formation in growth cones and plays a crucial role in guidance cue-induced remodeling of the actin cytoskeleton. In vivo studies with pharmacological inhibitors of actin polymerization have previously provided evidence for the view that filopodia are needed for growth cone navigation in the developing visual pathway. Here we have re-examined this issue using an alternative strategy to generate growth cones without filopodia in vivo by artificially targeting Xena/XVASP (Xenopus homologs of Ena/VASP) proteins to mitochondria in retinal ganglion cells (RGCs). We used the specific binding of the EVH1 domain of the Ena/VASP family of proteins with the ligand motif FP4 to sequester the protein at the mitochondria surface. RGCs with reduced function of Xena/XVASP proteins extended fewer axons out of the eye and possessed dynamic lamellipodial growth cones missing filopodia that advanced slowly in the optic tract. Surprisingly, despite lacking filopodia, the axons navigated along the optic pathway without obvious guidance errors, indicating that the Xena/XVASP family of proteins and filopodial protrusions are non-essential for pathfinding in retinal axons. However, depletion of Xena/XVASP proteins severely impaired the ability of growth cones to form branches within the optic tectum, suggesting that this protein family, and probably filopodia, plays a key role in establishing terminal arborizations.
Collapse
Affiliation(s)
- Asha Dwivedy
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Frank B. Gertler
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jeffrey Miller
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christine E. Holt
- Department of Anatomy, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Cecile Lebrand
- Département de Biologie Cellulaire et de Morphologie, University of Lausanne, Rue de Bugnon, 9, 1005 Lausanne, Switzerland
| |
Collapse
|
198
|
Dorsten JN, Kolodziej PA, VanBerkum MFA. Frazzled regulation of myosin II activity in the Drosophila embryonic CNS. Dev Biol 2007; 308:120-32. [PMID: 17568577 DOI: 10.1016/j.ydbio.2007.05.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2006] [Revised: 05/10/2007] [Accepted: 05/14/2007] [Indexed: 12/30/2022]
Abstract
Frazzled (Fra) is a chemoattractive guidance receptor regulating the cytoskeletal dynamics underlying growth cone steering at the Drosophila embryonic midline. Here, by genetically evaluating the role of Rho GTPases in Fra signaling in vivo, we uncover a Rho-dependent pathway apparently regulating conventional myosin II activity. Midline crossing errors induced by expressing activated Cdc42(v12) or Rac(v12) are suppressed by a heterozygous loss of fra(4) signaling but, in a Fra(wt) gain-of-function condition, no interaction is detected. In contrast, the frequency of crossovers is enhanced approximately 5-fold when Fra(wt) is co-expressed with activated Rho(v14) and this interaction specifically requires the cytoplasmic P3 motif of Fra. Expression of Rho(v14) and activated MLCK (ctMLCK) synergistically increase ectopic crossovers and both require phosphorylation of the regulatory light chain (Sqh) of myosin II. Abelson tyrosine kinase may also help regulate myosin II activity. Heterozygous abl(4) abolishes the midline crossing errors induced by ctMLCK alone or in combination with Fra(wt); suppression of Rho(v14) crossovers is not observed. Interestingly, an interaction between Fra and an activated Abl (Bcr-Abl) also specifically requires the P3 motif. Therefore, the P3 motif of Frazzled appears to initiate Rho and Abl dependent signals to directly or indirectly regulate myosin II activity in growth cones.
Collapse
Affiliation(s)
- Joy N Dorsten
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | | | |
Collapse
|
199
|
Sánchez-Soriano N, Tear G, Whitington P, Prokop A. Drosophila as a genetic and cellular model for studies on axonal growth. Neural Dev 2007; 2:9. [PMID: 17475018 PMCID: PMC1876224 DOI: 10.1186/1749-8104-2-9] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2007] [Accepted: 05/02/2007] [Indexed: 11/10/2022] Open
Abstract
One of the most fascinating processes during nervous system development is the establishment of stereotypic neuronal networks. An essential step in this process is the outgrowth and precise navigation (pathfinding) of axons and dendrites towards their synaptic partner cells. This phenomenon was first described more than a century ago and, over the past decades, increasing insights have been gained into the cellular and molecular mechanisms regulating neuronal growth and navigation. Progress in this area has been greatly assisted by the use of simple and genetically tractable invertebrate model systems, such as the fruit fly Drosophila melanogaster. This review is dedicated to Drosophila as a genetic and cellular model to study axonal growth and demonstrates how it can and has been used for this research. We describe the various cellular systems of Drosophila used for such studies, insights into axonal growth cones and their cytoskeletal dynamics, and summarise identified molecular signalling pathways required for growth cone navigation, with particular focus on pathfinding decisions in the ventral nerve cord of Drosophila embryos. These Drosophila-specific aspects are viewed in the general context of our current knowledge about neuronal growth.
Collapse
Affiliation(s)
- Natalia Sánchez-Soriano
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| | - Guy Tear
- MRC Centre for Developmental Neurobiology, Guy's Campus, King's College, London, UK
| | - Paul Whitington
- Department of Anatomy and Cell Biology, University of Melbourne, Victoria, Australia
| | - Andreas Prokop
- The Wellcome Trust Centre for Cell-Matrix Research, Faculty of Life Sciences, The University of Manchester, Manchester, UK
| |
Collapse
|
200
|
Garbe DS, Bashaw GJ. Independent functions of Slit-Robo repulsion and Netrin-Frazzled attraction regulate axon crossing at the midline in Drosophila. J Neurosci 2007; 27:3584-92. [PMID: 17392474 PMCID: PMC6672108 DOI: 10.1523/jneurosci.0301-07.2007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2006] [Revised: 02/27/2007] [Accepted: 02/27/2007] [Indexed: 11/21/2022] Open
Abstract
Slit and Netrin and their respective neuronal receptors play critical roles in patterning axonal connections in the developing nervous system by regulating the decision of whether or not to cross the midline. Studies of both invertebrate and vertebrate systems support the idea that Netrin, secreted by midline cells, signals through DCC (Deleted in Colorectal Carcinoma)/UNC40/Frazzled receptors to attract commissural axons toward and across the midline, whereas Slit signals through Robo family receptors to prevent commissural axons from recrossing the midline, as well as to prevent ipsilateral axons from ever crossing. Recent evidence from both Xenopus neuronal cell culture and Drosophila genetics have suggested that these signals may interact more directly in a hierarchical relationship, such that one response extinguishes the other. Here we present loss- and gain-of-function genetic evidence showing that the influence of Slit and Netrin on midline axon crossing is dictated by both independent and interdependent signaling functions of the Robo and Frazzled (Fra) receptors. Our results are not consistent with the proposal based on genetic analysis in Drosophila that the sole function of Slit and Robo during midline guidance is to repress Netrin attraction.
Collapse
Affiliation(s)
- David S. Garbe
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Greg J. Bashaw
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| |
Collapse
|