151
|
Morrison AC, Astete H, Chapilliquen F, Ramirez-Prada C, Diaz G, Getis A, Gray K, Scott TW. Evaluation of a sampling methodology for rapid assessment of Aedes aegypti infestation levels in Iquitos, Peru. JOURNAL OF MEDICAL ENTOMOLOGY 2004; 41:502-510. [PMID: 15185957 DOI: 10.1603/0022-2585-41.3.502] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
An epidemic of dengue during 2001 in Northwestern Peru reemphasized the need for efficient, accurate, and economical vector surveillance. Between November 1998 and January 1999, we carried out extensive entomological surveys in two neighborhoods of approximately 600 contiguous houses located in the Amazonian city of Iquitos, providing a unique opportunity to evaluate the Aedes aegypti (L.) rapid assessment survey strategy. Based on Pan American Health Organization recommendations, this strategy is used by the Peruvian Ministry of Health (MOH). In our analysis all household locations, including closed and unoccupied houses, were georeferenced and displayed in a geographic information system, which facilitated simulations of MOH surveys based on hypothetical systematic sampling transects. Larval, pupal, and adult mosquito indices were calculated for each simulation (n = 10) and compared with the indices calculated from the complete data set (n = 4). The range of indices calculated from simulations was moderately high, but included actual indices. For example, simulation ranges for house indices (HI, percentage of infested houses from complete survey) were 38-56% (45%), 36-42% (38%), 21-34% (30%), and 13-33% (27%) in four surveys. HI, Breteau index, pupae per hectare, adult index, and adults per hectare were more robust entomological indicators (coefficient of variation [CV]/mean = 0.1-2.9) than the container index, pupae per person, pupae per house, adults per person, and adults per house (CV/mean >20). Our results demonstrate that the MOH's Ae. aegypti risk assessment program provides reasonable estimates of indices based on samples from every house. However, it is critical that future studies investigate the association of these indices with rates of virus transmission to determine whether sampling variability will negatively impact the application of indices in a public health context.
Collapse
Affiliation(s)
- A C Morrison
- Department of Entomology, University of California, Davis 96515, USA
| | | | | | | | | | | | | | | |
Collapse
|
152
|
|
153
|
Abstract
The evolution of dengue viruses has had a major impact on their virulence for humans and on the epidemiology of dengue disease around the world. Although antigenic and genetic differences in virus strains had become evident, it is mainly due to the lack of animal models of disease that has made it difficult to detect differences in virulence of dengue viruses. However, phylogenetic studies of many different dengue virus samples have led to the association between specific genotypes (within serotypes) and the presentation of more or less severe disease. Currently, dengue viruses can be classified as being of epidemiologically low, medium, or high impact; i.e., some viruses may remain in sylvatic cycles of little or low transmissibility to humans, others produce dengue fever (DF) only, and some genotypes have been associated with the potential to cause the more severe dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS) in addition to DF. Although the factors that contribute to dengue virus epidemiology are complex, studies have suggested that specific viral structures may contribute to increased replication in human target cells and to increased transmission by the mosquito vector; however, the immune status and possibly the genetic background of the host are also determinants of virulence or disease presentation. As to the question of whether dengue viruses are evolving toward virulence as they continue to spread throughout the world, phylogenetic and epidemiological analyses suggest that the more virulent genotypes are now displacing those that have lower epidemiological impact; there is no evidence for the transmission of antigenically aberrant, new strains.
Collapse
Affiliation(s)
- Rebeca Rico-Hesse
- Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA
| |
Collapse
|
154
|
Thomas SJ, Strickman D, Vaughn DW. Dengue epidemiology: virus epidemiology, ecology, and emergence. Adv Virus Res 2004; 61:235-89. [PMID: 14714434 DOI: 10.1016/s0065-3527(03)61006-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Stephen J Thomas
- Department of Virology, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | | | | |
Collapse
|
155
|
Affiliation(s)
- Scott B Halstead
- Department of Preventive Medicine and Biometrics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, USA
| |
Collapse
|
156
|
Damonte EB, Pujol CA, Coto CE. Prospects for the Therapy and Prevention of Dengue Virus Infections. Adv Virus Res 2004; 63:239-85. [PMID: 15530563 DOI: 10.1016/s0065-3527(04)63004-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Elsa B Damonte
- Laboratory of Virology, Department of Biological Chemistry College of Exact and Natural Sciences, Ciudad Universitaria, University of Buenos Aires, 1428 Buenos Aires, Argentina
| | | | | |
Collapse
|
157
|
Twiddy SS, Pybus OG, Holmes EC. Comparative population dynamics of mosquito-borne flaviviruses. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2003; 3:87-95. [PMID: 12809802 DOI: 10.1016/s1567-1348(02)00153-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Among the members of the genus Flavivirus are several important human pathogens, including the dengue (DEN) and Japanese encephalitis (JE) viruses. From the analysis of gene sequence data of samples of these virus populations it is possible to infer phylogenetic relationships, which in turn can yield important epidemiological information, including their demographic history in humans. In this study, we use a recently developed method, based on coalescent theory, to infer the population dynamics of a variety of mosquito-borne flaviviruses. Our study involves the testing of alternative hypotheses, the estimation of confidence intervals around demographic model parameter values, and the placing of the maximum likelihood (ML) demographic model into a "real time" epidemiological history. We reveal that all the Flavivirus populations studied are growing at an exponential rate, with the rates of population growth of dengue virus serotypes 2 and 3 increasing rapidly in the recent past, and that of Japanese encephalitis virus changing from constant population size to exponential growth within the last century. We therefore demonstrate that the use of these coalescent methods may be extremely valuable in monitoring responses to interventions such as vaccination or vector control.
Collapse
Affiliation(s)
- S Susanna Twiddy
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK.
| | | | | |
Collapse
|
158
|
Avilés G, Paz MV, Rangeon G, Ranaivoarisoa MY, Verzeri N, Roginski S, Baroni P, Enria D. Laboratory surveillance of dengue in Argentina, 1995-2001. Emerg Infect Dis 2003; 9:738-42. [PMID: 12781019 PMCID: PMC3000136 DOI: 10.3201/eid0906.020483] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Local transmission of dengue fever virus in Argentina is increased by the presence of Aedes aegypti mosquitoes and dengue outbreaks in neighboring countries. From 1995 to 2001, a laboratory-based active surveillance program detected 922 dengue cases. Indigenous transmission involving dengue-1 and -2 serotypes was confirmed only in subtropical areas in northern Argentina.
Collapse
Affiliation(s)
- Gabriela Avilés
- Instituto Nacional de Enfermedades Virales Humanas (INEVH), Pergamino, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
159
|
Armstrong PM, Rico-Hesse R. Efficiency of dengue serotype 2 virus strains to infect and disseminate in Aedes aegypti. Am J Trop Med Hyg 2003; 68:539-44. [PMID: 12812340 PMCID: PMC3050023 DOI: 10.4269/ajtmh.2003.68.539] [Citation(s) in RCA: 104] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Dengue serotype 2 (DEN-2) viruses with the potential to cause dengue hemorrhagic fever have been shown to belong to the Southeast (SE) Asian genotype. These viruses appear to be rapidly displacing the American genotype of DEN-2 in the Western Hemisphere. To determine whether distinct genotypes of DEN-2 virus are better adapted to mosquito transmission, we classified 15 viral strains of DEN-2 phylogenetically and compared their ability to infect and disseminate in different populations of Aedes aegypti mosquitoes. Envelope gene nucleotide sequence analysis confirmed that six strains belonged to the American genotype and nine strains were of the SE Asian genotype. The overall rate of disseminated infection in mosquitoes from Texas was 27% for the SE Asian genotype versus 9% for the American genotype. This pattern of infection was similar in another population of mosquitoes sampled from southern Mexico (30% versus 13%). Together, these findings suggest that Ae. aegypti tends to be more susceptible to infection by DEN-2 viruses of the SE Asian genotype than to those of the American genotype, and this may have epidemiologic implications.
Collapse
Affiliation(s)
- Philip M Armstrong
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78245-0549, USA.
| | | |
Collapse
|
160
|
Cologna R, Rico-Hesse R. American genotype structures decrease dengue virus output from human monocytes and dendritic cells. J Virol 2003; 77:3929-38. [PMID: 12634353 PMCID: PMC150669 DOI: 10.1128/jvi.77.7.3929-3938.2003] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The dengue virus type 2 structures probably involved in human virulence were previously defined by sequencing the complete genome of both American and Southeast (SE) Asian genotype templates in patient serum (K. C. Leitmeyer et al., J. Virol. 73:4738-4747, 1999). We have now evaluated the effects of introducing a mutation in the envelope glycoprotein (E) gene and/or replacement of 5'- and 3'-nontranslated regions on dengue virus replication in human primary cell cultures. A series of chimeric infectious clones were generated containing different combinations of American and SE Asian genotype sequences. Some of the chimeric viruses had altered plaque morphology in mammalian cells; however, they replicated at similar rates in mosquito cells as measured by quantitative reverse transcription-PCR and plaque assay. Although susceptibility to virus infection varied from donor to donor in experiments using human macrophage and dendritic cells, we were able to measure consistent differences in viral RNA output per infected cell. Using this measurement, we demonstrated that the chimeric virus containing the E mutation had a lower virus output compared to the parental infectious clone. A larger reduction in virus output was observed for the triple mutant and the wild-type, American genotype virus from which chimeric inserts were derived. It appears that the three changes function synergistically, although the E mutation alone gives a lower output compared to the 5'- and 3'-terminal mutations. The data suggest that these changes may be responsible for decreased dengue virus replication in human target cells and for virulence characteristics during infection.
Collapse
Affiliation(s)
- Raymond Cologna
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227, USA
| | | |
Collapse
|
161
|
Abstract
The pathophysiological basis of severe dengue disease (i.e., dengue hemorrhagic fever [DHF]), appears to be multifactorial, involving complex interactions among viral factors, host genetics, and the immunologic background of the host, principally prior exposure to dengue virus. Analysis of these processes has been limited to observational studies of naturally infected humans because there have not been useful animal models of dengue disease. Substantial evidence points to dengue virus-reactive T cells as a critical effector in the development of DHF. We are beginning to define the critical elements of T-cell epitope specificity and functional responses that contribute to DHF. Additional studies in well-characterized patient cohorts from different geographic regions will be needed to advance this research and guide new approaches to prevention and treatment of DHF.
Collapse
Affiliation(s)
- Alan L Rothman
- Center for Infectious Disease and Vaccine Research, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
162
|
Halstead SB, Lan NT, Myint TT, Shwe TN, Nisalak A, Kalyanarooj S, Nimmannitya S, Soegijanto S, Vaughn DW, Endy TP. Dengue hemorrhagic fever in infants: research opportunities ignored. Emerg Infect Dis 2002; 8:1474-9. [PMID: 12498666 PMCID: PMC2738509 DOI: 10.3201/eid0812.020170] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The age distribution of cases of dengue hemorrhagic fever and dengue shock syndrome (DHF/DSS) in infants under the age of 1 year are reported from Bangkok, Thailand, and for the first time for Ho Chi Minh City, Vietnam; Yangon, Myanmar; and Surabaya, Indonesia. The four dengue viruses were isolated from Thai infants, all of whom were having a primary dengue infection. Progress studying the immunologically distinct infant DHF/DSS has been limited; most contemporary research has centered on DHF/DSS accompanying secondary dengue infections. In designing research results obtained in studies on a congruent animal model, feline infectious peritonitis virus (FIPV) infections of kittens born to FIPV-immune queens should be considered. Research challenges presented by infant DHF/DSS are discussed.
Collapse
Affiliation(s)
- Scott B Halstead
- Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Goncalvez AP, Escalante AA, Pujol FH, Ludert JE, Tovar D, Salas RA, Liprandi F. Diversity and evolution of the envelope gene of dengue virus type 1. Virology 2002; 303:110-9. [PMID: 12482662 DOI: 10.1006/viro.2002.1686] [Citation(s) in RCA: 148] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The genetic diversity and phylogenetic relationships of a collection of strains of dengue virus type 1 (DV-1), isolated from different parts of the world, were investigated. Phylogenetic trees derived from the complete sequence of the E gene of 44 strains suggested the existence of five genetic types defined by a maximum nucleotide divergence within each group of 6%. The 22 strains from America were classified into a single genetic type that included strains associated either with classical dengue or hemorrhagic dengue episodes. Using a maximum likelihood procedure based on a single rate with dated tips model and substitution rates calculated at the third codon position, evolution of the five DV-1 genotypes was shown to conform to a molecular clock. The average rate of evolution was estimated to be approximately 16.2 x 10(-4) substitutions/third codon position site/year. Using this estimate, divergence among the DV-1 genotypes was calculated to have occurred approximately 100 years ago. Very low average value of the ratio of nonsynonymous-to-synonymous nucleotide substitutions, relative to the respective sites (0.046), indicated that the evolution of the E gene of the DV-1 is subject mostly to purifying selection.
Collapse
Affiliation(s)
- Ana P Goncalvez
- Instituto Venezolano de Investigaciones Cienti;ficas, Caracas, Venezuela
| | | | | | | | | | | | | |
Collapse
|
164
|
Chen YC, Wang SY. Activation of terminally differentiated human monocytes/macrophages by dengue virus: productive infection, hierarchical production of innate cytokines and chemokines, and the synergistic effect of lipopolysaccharide. J Virol 2002; 76:9877-87. [PMID: 12208965 PMCID: PMC136495 DOI: 10.1128/jvi.76.19.9877-9887.2002] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dengue virus (DV) primarily infects blood monocytes (MO) and tissue macrophages (M phi). We have shown in the present study that DV can productively infect primary human MO/M phi regardless of the stage of cell differentiation. After DV infection, the in vitro-differentiated MO/M phi secreted multiple innate cytokines and chemokines, including tumor necrosis factor alpha, alpha interferon (IFN-alpha), interleukin-1 beta (IL-1 beta), IL-8, IL-12, MIP-1 alpha, and RANTES but not IL-6, IL-15, or nitric oxide. Secretion of these mediators was highlighted by distinct magnitude, onset, kinetics, duration, and induction potential. A chemokine-to-cytokine hierarchy was noted in the magnitude and induction potential of secretion, and a chemokine-to-cytokine-to-chemokine/Th1 cytokine cascade could be seen in the production kinetics. Furthermore, we found that terminally differentiated MO/M phi cultured for more than 45 days could support productive DV infection and produce innate cytokines and chemokines, indicating that these mature cells were functionally competent in the context of a viral infection. In addition, DV replication in primary differentiated human MO/M phi was enhanced and prolonged in the presence of lipopolysaccharide (LPS), and LPS-mediated synergistic production of IFN-alpha could be seen in DV-infected MO/M phi. The secretion of innate cytokines and chemokines by differentiated MO/M phi suggests that regional accumulation of these mediators may occur in various tissues to which DV has disseminated and may thus result in local inflammation. The LPS-mediated enhancement of virus replication and synergistic IFN-alpha production suggests that concurrent bacterial infection may modulate cytokine-mediated disease progression during DV infection.
Collapse
Affiliation(s)
- Yun-Chi Chen
- Laboratory of Hematology, Department of Medical Research and Education, Veterans General Hospital-Taipei, Taipei, Taiwan, Republic of China.
| | | |
Collapse
|
165
|
dos Santos FB, Miagostovich MP, Nogueira RMR, Edgil D, Schatzmayr HG, Riley LW, Harris E. Complete nucleotide sequence analysis of a Brazilian dengue virus type 2 strain. Mem Inst Oswaldo Cruz 2002; 97:991-5. [PMID: 12471426 DOI: 10.1590/s0074-02762002000700011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
In the last decade, dengue fever (DF) in Brazil has been recognized as an important public health problem, and an increasing number of dengue haemorrhagic fever (DHF) cases have been reported since the introduction of dengue virus type 2 (DEN-2) into the country in 1990. In order to analyze the complete genome sequence of a DEN-2 Brazilian strain (BR64022/98), we designed primers to amplify contiguous segments of approximately 500 base pairs across the entire sequence of the viral genome. Twenty fragments amplified by reverse transcriptase-PCR were cloned, and the complete nucleotide and the deduced amino acid sequences were determined. This constitutes the first complete genetic characterization of a DEN-2 strain from Brazil. All amino acid changes differentiating strains related to the Asian/American-Asian genotype were observed in BR64022/98, indicating the Asiatic origin of the strain.
Collapse
|
166
|
Kochel TJ, Watts DM, Halstead SB, Hayes CG, Espinoza A, Felices V, Caceda R, Bautista CT, Montoya Y, Douglas S, Russell KL. Effect of dengue-1 antibodies on American dengue-2 viral infection and dengue haemorrhagic fever. Lancet 2002; 360:310-2. [PMID: 12147378 DOI: 10.1016/s0140-6736(02)09522-3] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In Iquitos, Peru, no cases of dengue haemorrhagic fever have been recorded in individuals infected with dengue-1 virus followed by American genotype dengue-2 (American dengue-2) virus. We assayed serum samples collected in Iquitos that tested positive for antibodies of monotype dengue-1 and monotype dengue-2 using a plaque reduction neutralisation test to determine their ability to neutralise the infectivity of two dengue-1 viruses, two American dengue-2 viruses, and two Asian dengue-2 viruses. Sera positive for the dengue-1 antibody neutralised dengue-1 viruses and American dengue-2 viruses much more effectively than Asian dengue-2 viruses. Neutralisation of American dengue-2 virus by sera positive for dengue-1 antibodies may account for the absence of dengue haemorrhagic fever in individuals infected with dengue-1 in 1990-91 followed by American dengue-2 virus in 1995 in Iquitos, Peru.
Collapse
Affiliation(s)
- Tadeusz J Kochel
- Department of Virology, Naval Medical Research Centre Detachment, Lima, Peru.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
167
|
Jacobs M, Levin M. An improved endothelial barrier model to investigate dengue haemorrhagic fever. J Virol Methods 2002; 104:173-85. [PMID: 12088827 DOI: 10.1016/s0166-0934(02)00065-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A cell culture model suitable for studies of dengue haemorrhagic fever was developed, based on culture of primary human umbilical vein endothelial cells (HUVECs) on a permeable membrane. By electron microscopy, cultured HUVECs at day 11 resembled morphologically microvascular endothelium. Endothelial barrier function was assessed by measuring transendothelial flux of albumin. Instead of using a labelled tracer molecule, an enzyme-linked immunosorbent assay (ELISA) was developed to measure concentrations of native human albumin. The permeability characteristics of the HUVEC monolayer were found to be improved significantly (approximately 1 log reduction in permeability coefficient for albumin) by culturing HUVECs in human serum rather than fetal calf serum. Permeability coefficients for albumin in the range 1-4 x 10(-7) cm/s were achieved, which is an improvement on previous in vitro models of the endothelial barrier. Comparison of transendothelial flux of albumin and urea provided evidence of molecular sieving by the HUVEC monolayer. Moreover, tumour necrosis factor-alpha induced a dose-dependent, reversible increase in permeability of the HUVEC monolayer. This endothelial barrier model thus has many important characteristics that resembled human microvascular endothelium and is an improvement on the previous model proposed for studies of dengue haemorrhagic fever.
Collapse
Affiliation(s)
- Michael Jacobs
- Department of Medicine, Imperial College of Science, Technology and Medicine, 10th Floor, QEQM Wing, Norfolk Place, London W2 1PG, UK.
| | | |
Collapse
|
168
|
Twiddy SS, Farrar JJ, Vinh Chau N, Wills B, Gould EA, Gritsun T, Lloyd G, Holmes EC. Phylogenetic relationships and differential selection pressures among genotypes of dengue-2 virus. Virology 2002; 298:63-72. [PMID: 12093174 DOI: 10.1006/viro.2002.1447] [Citation(s) in RCA: 200] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To elucidate the processes controlling the emergence and spread of dengue-2 virus (DEN-2) we examined the evolution of viral isolates sampled from both local (Viet Nam) and global populations. Our phylogenetic analysis, incorporating envelope (E) glycoprotein sequences from 147 isolates of DEN-2, provided a more complete picture of viral diversity, with a newly defined "Cosmopolitan" genotype having a near global distribution and two other genotypes restricted to Asia. By analyzing rates of synonymous and nonsynonymous substitution we determined that genotypes have experienced different selection pressures, with some evidence of positive selection in the Cosmopolitan genotype and one of the two Asian genotypes, but that the transition from sylvatic to human transmission was not accompanied by adaptive evolution of the E gene. Although there was no association between selection pressures acting on the E gene and proposed virulence differences among genotypes, some putatively selected amino acid sites have previously been implicated in changing viral pathogenicity, most notably E-390, and may also affect transmittability. These findings have implications for the future spread of DEN-2.
Collapse
|
169
|
|
170
|
Clarke T. Dengue virus: Break-bone fever. Nature 2002. [DOI: 10.1038/news020415-10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
171
|
Abstract
This review is an update of dengue and dengue haemorrhagic fever (DHF) based on international and Cuban experience. We describe the virus characteristics and risk factors for dengue and DHF, and compare incidence and the case fatality rates in endemic regions (southeast Asia, western Pacific, and the Americas). The clinical picture and the pathogenesis of the severe disease are explained. We also discuss the viral, individual, and environmental factors that determine severe disease. Much more research is necessary to clarify these mechanisms. Also reviewed are methods for viral isolation and the serological, immunohistochemical, and molecular methods applied in the diagnosis of the disease. We describe the status of vaccine development and emphasise that the only alternative that we have today to control the disease is through control of its vector Aedes aegypti.
Collapse
Affiliation(s)
- María G Guzmán
- Virology Department, PAHO/WHO Collaborating Center for Viral Diseases, Pedro Kouri Tropical Medicine Institute, Autopista Novia del Mediodia, Km 6, PO Box Marianao 13, Ciudad Habana, Cuba.
| | | |
Collapse
|
172
|
Uzcategui NY, Camacho D, Comach G, Cuello de Uzcategui R, Holmes EC, Gould EA. Molecular epidemiology of dengue type 2 virus in Venezuela: evidence for in situ virus evolution and recombination. J Gen Virol 2001; 82:2945-2953. [PMID: 11714970 DOI: 10.1099/0022-1317-82-12-2945] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Epidemic outbreaks of dengue fever (DF) were first recorded in Venezuela in 1978 and were followed by the emergence of dengue haemorrhagic fever (DHF) outbreaks in 1989. To gain a better understanding of the nature of these epidemics, the complete envelope (E) gene sequence of 34 Venezuelan dengue type 2 (DEN-2) viruses, isolated between 1997 and 2000 was determined. Of these isolates, 16 were from patients with DF and 17 were from patients diagnosed with DHF. There were no diagnostic sequence differences between them, suggesting that the E gene alone does not determine disease severity. These sequence data were also used in phylogenetic comparisons with a global sample of DEN-2 viruses, including strains collected previously from Venezuela. This analysis revealed that the ancestors of the Venezuelan viruses were Asian in origin, implying that a DEN-2 virus strain from this region was introduced into Venezuela and the wider Caribbean region during the late 1970s or the early 1980s. The phylogenetic trees further indicate that evolution of DEN-2 virus in Venezuela has occurred in situ, with differentiation into a number of distinct but co-circulating lineages, rather than the repeated introduction of new strains from other localities. By incorporating additional sequence data from the virus capsid, premembrane and membrane genes, evidence is provided that a single Venezuelan strain sequenced previously, designated Mara4, is a recombinant virus, incorporating genome sequence from Venezuelan and Asian parental viruses.
Collapse
Affiliation(s)
- N Y Uzcategui
- Centre for Ecology and Hydrology (CEH) Oxford, Formerly the Institute of Virology and Environmental Microbiology, Mansfield Road, Oxford OX1 3SR, UK1
| | - D Camacho
- Laboratorio Regional de Diagnóstico e Investigación del Dengue y otras enfermedades virales (Lardidev), Maracay, Estado Aragua, Venezuela3
| | - G Comach
- Laboratorio Regional de Diagnóstico e Investigación del Dengue y otras enfermedades virales (Lardidev), Maracay, Estado Aragua, Venezuela3
| | - R Cuello de Uzcategui
- Instituto Venezolano de Investigaciones Científicas - IVIC, Centro de Microbiología y Biología Celular, Carretera Panamericana Km 11, Altos de Pipe, Apartado Postal 21827, Caracas 1020A, Venezuela4
| | - E C Holmes
- Department of Zoology, University of Oxford, South Parks Road, Oxford OX1 3PS, UK2
| | - E A Gould
- Centre for Ecology and Hydrology (CEH) Oxford, Formerly the Institute of Virology and Environmental Microbiology, Mansfield Road, Oxford OX1 3SR, UK1
| |
Collapse
|
173
|
Caufour PS, Motta MC, Yamamura AM, Vazquez S, Ferreira II, Jabor AV, Bonaldo MC, Freire MS, Galler R. Construction, characterization and immunogenicity of recombinant yellow fever 17D-dengue type 2 viruses. Virus Res 2001; 79:1-14. [PMID: 11551641 DOI: 10.1016/s0168-1702(01)00273-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Chimeric yellow fever (YF)-dengue type 2 (Den 2) viruses were constructed by replacing the premembrane (prM) and envelope (E) genes of YF 17D virus with those from Den 2 virus strains of south-east Asian genotype. Whereas viable chimeric viruses were successfully recovered when the YF 17D C gene and the Den 2 prM gene were fused at the signalase cleavage site, no virus could be rescued from the constructions fused at the viral protease cleavage site. Unlike YF virus that replicated in all the cell lines tested and similar to the Den 2 virus, the recombinant viruses did not replicate in vaccine-production certified CEF and MRC5 cells. Besides, chimeric 17D/Den 2 viruses and their parental viruses reached similar growth titers in Vero and C6/36 cell cultures. Analysis of mouse neurovirulence, performed by intracerebral inoculation, demonstrated that the 17D/Den 2 chimera is more attenuated in this system than the YF 17DD virus. Immunization of mice with this chimera induced a neutralizing antibody response associated with a partial protection against an otherwise lethal dose of mouse neurovirulent Den 2 NGC virus. Overall, these results provide further support for the use of chimeric viruses as an attractive methodology for the development of new live flavivirus vaccines.
Collapse
Affiliation(s)
- P S Caufour
- Fundação Oswaldo Cruz, Instituto Oswaldo Cruz, Departamento de Bioquimica e Biologia Molecular, RJ 21045-900, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Kurane I, Takasaki T. Dengue fever and dengue haemorrhagic fever: challenges of controlling an enemy still at large. Rev Med Virol 2001; 11:301-11. [PMID: 11590668 DOI: 10.1002/rmv.324] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Dengue virus infections are a serious cause of morbidity and mortality in most tropical and subtropical areas of the world: mainly Southeast and South Asia, Central and South America, and the Caribbean. Understanding the pathogenesis of dengue haemorrhagic fever (DHF), the severe form of dengue illness, is a very important and challenging research subject. Viral virulence and immune responses have been considered as two major factors responsible for the pathogenesis. Virological studies are attempting to define the molecular basis of viral virulence. The immunopathological mechanisms appear to include a complex series of immune responses. A rapid increase in the levels of cytokines and chemical mediators apparently plays a key role in inducing plasma leakage, shock and haemorrhagic manifestations. It is likely that the entire process is initiated by infection with a so-called virulent dengue virus, often with the help of enhancing antibodies in secondary infection, and then triggered by rapidly elevated cytokines and chemical mediators produced by intense immune activation. However, understanding of the DHF pathogenesis is not complete. We still have a long way to go.
Collapse
Affiliation(s)
- I Kurane
- Department of Virology 1, National Institute of Infectious Diseases, Tokyo, Japan.
| | | |
Collapse
|
175
|
Abstract
INTRODUCTION Transmitted by Aedes mosquitoes all over the inter-tropical area, Dengue fever is the leading arboviral disease in humans. It is also an emerging disease. CURRENT KNOWLEDGE AND KEY POINTS Increasing morbidity-mortality, and geographical expansion are the drastic changes noted in the recent epidemiology of the disease. They are related to those occurring at the bio-climatic, socio-demographic and behavioural levels, which in turn may have led to enhanced viral circulation and virulence, and also vectorial resistance. The various clinical patterns (undifferentiated febrile episode of children, acute and algid classic form, the potentially fatal dengue hemorrhagic fever/dengue shock syndrome, and the atypical forms) are reviewed, as well as the diagnostic methods, and the pathogenesis (sequential infections, facilitating antibodies, capillary leakage). FUTURE PROSPECTS AND PROJECTS Dengue fever is actually much more than a traveller's fever or an exotic curiosity. It presently threatens half the world's population, and remains a puzzling disease in many aspects, such as the virus-vector and host-virus relationships, and clinical expression variability. In this respect, dengue fever appears as a model of viral disease. The current molecular approach is expected to provide us with new insights into pathophysiology, more efficient tools for disease control, and also an efficient vaccine in the near future.
Collapse
Affiliation(s)
- M Strobel
- Service des maladies infectieuses, CHU, BP 465, 97159, Pointe à Pitre, Guadeloupe, France.
| | | |
Collapse
|
176
|
Shurtleff AC, Beasley DW, Chen JJ, Ni H, Suderman MT, Wang H, Xu R, Wang E, Weaver SC, Watts DM, Russell KL, Barrett AD. Genetic variation in the 3' non-coding region of dengue viruses. Virology 2001; 281:75-87. [PMID: 11222098 DOI: 10.1006/viro.2000.0748] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The 3' non-coding region (3'NCR) of strains of dengue 1 (DEN 1), DEN 2, DEN 3, and DEN 4 viruses, isolated in different geographical regions, was sequenced and compared to published sequences of the four dengue viruses. A total of 50 DEN 2 strains was compared: 7 West African strains, 3 Indonesian mosquito strains, 1 Indonesian macaque isolate, and 39 human isolates from Southeast Asia, the South Pacific, and the Caribbean and Americas. Nucleotide sequence alignment revealed few deletions and no repeat sequences in the 3' NCR of DEN 2 viruses and showed that much of the 3' NCR was well conserved. The strains could be divided into two groups, sylvatic and human/mosquito/macaque, based on nucleotide sequence homology. A hypervariable region was identified immediately following the NS5 stop codon, which involved a 2-10 nucleotide deletion in human, mosquito, and macaque isolates compared with the sylvatic strains. The DEN 2 3'NCR was also compared with 3'NCR sequences from strains of DEN 1, DEN 3, and DEN 4 viruses. DEN 1 was found to have four copies of an eight nucleotide imperfect repeat following the NS5 stop codon, while DEN 4 virus had a deletion of 75 nucleotides in the 3'NCR. We propose that the variation in nucleotide sequence in the 3'NCR may have evolved as a function of DEN virus transmission and replication in different mosquito and non-human primate/human host cycles. The results from this study are consistent with the hypothesis that DEN viruses arose from sylvatic progenitors and evolved into human epidemic strains. However, the data do not support the hypothesis that variation in the 3'NCR correlates with DEN virus pathogenesis.
Collapse
Affiliation(s)
- A C Shurtleff
- Center for Tropical Diseases, University of Texas Medical Branch, Galveston, Texas 77555-0609, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
177
|
Abstract
Flaviviruses are among the most important emerging viruses known to man. Most are arboviruses (arthropod-borne) being transmitted by mosquitoes or ticks. They derived from a common ancestor 10-20000 years ago and are evolving rapidly to fill new ecological niches. Many are spreading to new geographical areas and causing increased numbers of infections. Traditionally, three clinical syndromes are recognized: fever-arthralgia-rash, viral haemorrhagic fever, and neurological disease, though for some flaviviruses the disease pattern is changing. Dengue, the most important flavivirus, is transmitted between humans by Aedes mosquitoes. Recent work is elucidating the pathogenesis of its most severe form, dengue haemorrhagic fever. Yellow fever, which has epidemiological similarities to dengue, was under control in the mid-20th century, but is once again increasing. Japanese encephalitis virus is numerically the most important cause of epidemic encephalitis; its geographical area is expanding despite the availability of vaccines. Other mosquito-borne neurotropic flaviviruses with clinical and epidemiological similarities are found across the globe. These include St Louis encephalitis virus, Murray Valley encephalitis virus, and West Nile virus, which recently reached the Americas for the first time. In cooler northern climates ticks are more important vectors. Tick-borne encephalitis virus occurs across large parts of Eastern Europe and the Commonwealth of Independent states. The tick-borne haemorrhagic flaviviruses, Omsk haemorrhagic fever and Kyasanur Forrest disease are localized in small areas.
Collapse
Affiliation(s)
- T Solomon
- Department of Neurological Science, University of Liverpool, Walton Centre for Neurology and Neurosurgery, Fazakerley, Liverpool, L9 7LJ, UK.
| | | |
Collapse
|
178
|
Ho LJ, Wang JJ, Shaio MF, Kao CL, Chang DM, Han SW, Lai JH. Infection of human dendritic cells by dengue virus causes cell maturation and cytokine production. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 166:1499-506. [PMID: 11160189 DOI: 10.4049/jimmunol.166.3.1499] [Citation(s) in RCA: 230] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Dengue virus (DV) infection is a major problem in public health. It can cause fatal diseases such as Dengue hemorrhagic fever and Dengue shock syndrome. Dendritic cells (DC) are professional APCs required for establishing a primary immune response. Here, we investigated the role of human PBMC-derived DC in DV infection. Using different techniques, including plaque assay, flow cytometry analysis, nested RT-PCR, and confocal microscope and electron microscope examinations, we show that DV can enter cultured human DC and produce virus particles. After entrance, DV could be visualized in cystic vesicles, vacuoles, and the endoplasmic reticulum. The DV-infected DC also showed proliferation and hypertrophy of the endoplasmic reticulum as well as the swollen mitochondria. In addition, the DV-stimulated DC could express maturation markers such as B7-1, B7-2, HLA-DR, CD11b, and CD83. Furthermore, the infection of DC by DV induced production of TNF-alpha and IFN-alpha, but not IL-6 and IL-12. Although DC underwent spontaneous apoptosis in the absence of feeding cytokines, this process appeared to be delayed after DV infection. Our observations provide important information in understanding the pathogenesis of DV infection.
Collapse
Affiliation(s)
- L J Ho
- Rheumatology/Immunology and Allergy, Department of Medicine, Tri-Service General Hospital, Taiwan, Republic of China
| | | | | | | | | | | | | |
Collapse
|
179
|
Armstrong PM, Rico-Hesse R. Differential susceptibility of Aedes aegypti to infection by the American and Southeast Asian genotypes of dengue type 2 virus. Vector Borne Zoonotic Dis 2001; 1:159-68. [PMID: 12680353 PMCID: PMC3057097 DOI: 10.1089/153036601316977769] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Outbreaks of dengue hemorrhagic fever have coincided with the introduction of the Southeast (SE) Asian genotype of dengue type 2 virus in the Western Hemisphere. This introduced genotype appears to be rapidly displacing the indigenous, American genotype of dengue 2 virus throughout the region. These field observations raise the possibility that the SE Asian genotype of dengue 2 is better adapted for vector transmission than its American counterpart. To evaluate this hypothesis, we compared the ability of viral strains of the SE Asian and American genotypes to infect, replicate, and disseminate within vector mosquitoes (Aedes aegypti). Viral strains of the SE Asian genotype tended to infect and disseminate more efficiently in mosquitoes than did variants of the American genotype. These differences, however, were observed solely in field-derived mosquitoes, whereas viral infection rates were virtually identical in the laboratory-adapted Rockefeller colony of Ae. aegypti. Our findings could provide a physiological basis for the contrasting patterns of dengue virus genotype transmission and spread. Such an understanding of functional differences between viral strains and genotypes may ultimately improve surveillance and intervention strategies.
Collapse
Affiliation(s)
- P M Armstrong
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Tx 78245-0549, USA.
| | | |
Collapse
|
180
|
Bielefeldt-Ohmann H, Meyer M, Fitzpatrick DR, Mackenzie JS. Dengue virus binding to human leukocyte cell lines: receptor usage differs between cell types and virus strains. Virus Res 2001; 73:81-9. [PMID: 11163646 DOI: 10.1016/s0168-1702(00)00233-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Monocyte macrophages (Mphi) are thought to be the principal target cells for the dengue viruses (DV), the cause of dengue fever and hemorrhagic fever. Cell attachment is mediated by the virus envelope (E) protein, but the host-cell receptors remain elusive. Currently, candidate receptor molecules include proteins, Fc receptors, glycosaminoglycans (GAGs) and lipopolysaccharide binding CD14-associated molecules. Here, we show that in addition to Mphi, cells of the T- and B-cell lineages, and including cells lacking GAGs, can bind and become infected with DV. The level of virus binding varied widely between cell lines and, notably, between virus strains within a DV serotype. The latter difference may be ascribable to one or more amino acid differences in domain II of the E protein. Heparin had no significant effect on DV binding, while heparinase treatment of cells in all cases increased DV binding, further supporting the contention that GAGs are not required for DV binding and infection of human cells. In contrast to a recent report, we found that lipopolysaccharide (LPS) had either no effect or enhanced DV binding to, and infection of, various human leukocyte cell lines, while in all virus-cell combinations, depletion of Ca(2+)/Mg(2+) enhanced DV binding. This argues against involvement of beta(2) integrins in virus-host cell interactions, a conclusion in accord with the demonstration of three virus binding membrane proteins of < 75 kDa. Collectively, the results of this study question the purported exclusive importance of the E protein domain III in DV binding to host cells and point to a far more complex interaction between various target cells and, notably, individual DV strains.
Collapse
Affiliation(s)
- H Bielefeldt-Ohmann
- Molecular Virology Group, Department of Microbiology and Parasitology, University of Queensland, Qld 4072, Brisbane, Australia.
| | | | | | | |
Collapse
|
181
|
Abstract
The year under review has seen a remarkable proliferation of papers on dengue. Four prospective studies have been carried out across the dengue belt, many groups have been pushing at the question of pathogenesis of dengue haemorrhagic fever, and a breakthrough has been achieved in the development of a mouse model for human dengue haemorrhagic fever.
Collapse
Affiliation(s)
- Mary Jane Cardosa
- Institute of Health and Community Medicine, Universiti Malaysia Sarawak, Sarawak, Malaysia
| |
Collapse
|
182
|
van Der Most RG, Murali-Krishna K, Ahmed R, Strauss JH. Chimeric yellow fever/dengue virus as a candidate dengue vaccine: quantitation of the dengue virus-specific CD8 T-cell response. J Virol 2000; 74:8094-101. [PMID: 10933719 PMCID: PMC112342 DOI: 10.1128/jvi.74.17.8094-8101.2000] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
We have constructed a chimeric yellow fever/dengue (YF/DEN) virus, which expresses the premembrane (prM) and envelope (E) genes from DEN type 2 (DEN-2) virus in a YF virus (YFV-17D) genetic background. Immunization of BALB/c mice with this chimeric virus induced a CD8 T-cell response specific for the DEN-2 virus prM and E proteins. This response protected YF/DEN virus-immunized mice against lethal dengue encephalitis. Control mice immunized with the parental YFV-17D were not protected against DEN-2 virus challenge, indicating that protection was mediated by the DEN-2 virus prM- and E-specific immune responses. YF/DEN vaccine-primed CD8 T cells expanded and were efficiently recruited into the central nervous systems of DEN-2 virus challenged mice. At 5 days after challenge, 3 to 4% of CD8 T cells in the spleen were specific for the prM and E proteins, and 34% of CD8 T cells in the central nervous system recognized these proteins. Depletion of either CD4 or CD8 T cells, or both, strongly reduced the protective efficacy of the YF/DEN virus, stressing the key role of the antiviral T-cell response.
Collapse
Affiliation(s)
- R G van Der Most
- Emory Vaccine Center and Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA.
| | | | | | | |
Collapse
|
183
|
Diamond MS, Edgil D, Roberts TG, Lu B, Harris E. Infection of human cells by dengue virus is modulated by different cell types and viral strains. J Virol 2000; 74:7814-23. [PMID: 10933688 PMCID: PMC112311 DOI: 10.1128/jvi.74.17.7814-7823.2000] [Citation(s) in RCA: 208] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Although prior studies have investigated cellular infection by dengue virus (DV), many have used highly passaged strains. We have reassessed cellular infection by DV type 2 (DV2) using prototype and low-passage isolates representing genotypes from different geographic areas. We observed marked variation in the susceptibility to infection among cell types by different DV2 strains. HepG2 hepatoma cells were susceptible to infection by all DV2 strains assayed. Although the prototype strain generated higher titers of secreted virus than the low-passage isolates, this difference did not correspond to positive- or negative-strand viral RNA levels and thus may reflect variation in efficiency among DV2 isolates to translate viral proteins or package and/or secrete virus. In contrast, human foreskin fibroblasts were susceptible to the prototype and low-passage Thai isolates but not to five Nicaraguan strains tested, as reflected by the absence of accumulation of negative-strand viral RNA, viral antigen, and infectious virus. A similar pattern was observed with the antibody-dependent pathway of infection. U937 and THP-1 myeloid cells and peripheral blood monocytes were infected in the presence of enhancing antibodies by the prototype strain but not by low-passage Nicaraguan isolates. Again, the barrier appeared to be prior to negative-strand accumulation. Thus, depending on the cell type and viral isolate, blocks that limit the production of infectious virus in vitro may occur at distinct steps in the pathway of cellular infection.
Collapse
Affiliation(s)
- M S Diamond
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | |
Collapse
|
184
|
Abstract
Dengue viral infections affect up to 100 million individuals per year. Dengue haemorrhagic fever is a clinical form of disease characterised by intravascular fluid loss. There has been a marked increase in the incidence of this form of the disease over the last few decades, associated with significant mortality, particularly in the paediatric population. A number of theories relating to the pathogenesis of dengue haemorrhagic fever exist that have evolved from the analysis of the epidemiology of this disease. Virological and immunopathological factors are both important but the exact mechanisms for the disease are unknown.
Collapse
Affiliation(s)
- W J McBride
- Department of Pathology, Cairns Base Hospital, The Esplanade, Cairns, Queensland 4870, Australia.
| | | |
Collapse
|
185
|
Diamond MS, Roberts TG, Edgil D, Lu B, Ernst J, Harris E. Modulation of Dengue virus infection in human cells by alpha, beta, and gamma interferons. J Virol 2000; 74:4957-66. [PMID: 10799569 PMCID: PMC110847 DOI: 10.1128/jvi.74.11.4957-4966.2000] [Citation(s) in RCA: 274] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A role for interferon (IFN) in modulating infection by dengue virus (DV) has been suggested by studies in DV-infected patients and IFN receptor-deficient mice. To address how IFN modulates DV type 2 infection, we have assayed IFN-alpha, -beta, and -gamma for the ability to enhance or diminish antibody-independent and antibody-dependent cell infection using a competitive, asymmetric reverse transcriptase-mediated PCR (RT-PCR) assay that quantitates positive and negative strands of viral RNA, a flow cytometric assay that measures viral antigen, and a plaque assay that analyzes virion production. Our data suggest that IFN-alpha and -beta protect cells against DV infection in vitro. Treatment of hepatoma cells with IFN-alpha or -beta decreases viral RNA levels greater than 1, 000-fold, the percentage of cells infected 90 to 95%, and the amount of infectious virus secreted 150- to 100,000-fold. These results have been reproduced with several cell types and viral strains, including low-passage isolates. In contrast, IFN-gamma has a more variable effect depending on the cell type and pathway of infection. Quantitative RT-PCR experiments indicate that IFN inhibits DV infection by preventing the accumulation of negative-strand viral RNA.
Collapse
Affiliation(s)
- M S Diamond
- Division of Infectious Diseases, School of Public Health, University of California, Berkeley, California 94720, USA
| | | | | | | | | | | |
Collapse
|
186
|
Abstract
Despite the fact that dengue is one of the most prevalent viral infections of humans, the mechanisms responsible for its pathogenesis remain uncertain. Evolutionary studies of dengue virus have revealed that its genetic diversity is increasing. This, coupled with evidence that viral strains could naturally differ in virulence, suggests that in the future we might be exposed to viruses with an expanded range of pathogenic properties.
Collapse
Affiliation(s)
- E C Holmes
- Dept of Zoology, University of Oxford, South Parks Road, Oxford, UK.
| | | |
Collapse
|
187
|
Leitmeyer KC, Vaughn DW, Watts DM, Salas R, Villalobos I, Ramos C, Rico-Hesse R. Dengue virus structural differences that correlate with pathogenesis. J Virol 1999; 73:4738-47. [PMID: 10233934 PMCID: PMC112516 DOI: 10.1128/jvi.73.6.4738-4747.1999] [Citation(s) in RCA: 391] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The understanding of dengue virus pathogenesis has been hampered by the lack of in vitro and in vivo models of disease. The study of viral factors involved in the production of severe dengue, dengue hemorrhagic fever (DHF), versus the more common dengue fever (DF), have been limited to indirect clinical and epidemiologic associations. In an effort to identify viral determinants of DHF, we have developed a method for comparing dengue type 2 genomes (reverse transcriptase PCR in six fragments) directly from patient plasma. Samples for comparison were selected from two previously described dengue type 2 genotypes which had been shown to be the cause of DF or DHF. When full genome sequences of 11 dengue viruses were analyzed, several structural differences were seen consistently between those associated with DF only and those with the potential to cause DHF: a total of six encoded amino acid charge differences were seen in the prM, E, NS4b, and NS5 genes, while sequence differences observed within the 5' nontranslated region (NTR) and 3' NTR were predicted to change RNA secondary structures. We hypothesize that the primary determinants of DHF reside in (i) amino acid 390 of the E protein, which purportedly alters virion binding to host cells; (ii) in the downstream loop (nucleotides 68 to 80) of the 5' NTR, which may be involved in translation initiation; and (iii) in the upstream 300 nucleotides of the 3' NTR, which may regulate viral replication via the formation of replicative intermediates. The significance of four amino acid differences in the nonstructural proteins NS4b and NS5, a presumed transport protein and the viral RNA polymerase, respectively, remains unknown. This new approach to the study of dengue virus genome differences should better reflect the true composition of viral RNA populations in the natural host and permit their association with pathogenesis.
Collapse
Affiliation(s)
- K C Leitmeyer
- Department of Virology and Immunology, Southwest Foundation for Biomedical Research, San Antonio, Texas 78227-5301, USA
| | | | | | | | | | | | | |
Collapse
|