151
|
Block TM, Comunale MA, Lowman M, Steel LF, Romano PR, Fimmel C, Tennant BC, London WT, Evans AA, Blumberg BS, Dwek RA, Mattu TS, Mehta AS. Use of targeted glycoproteomics to identify serum glycoproteins that correlate with liver cancer in woodchucks and humans. Proc Natl Acad Sci U S A 2005; 102:779-84. [PMID: 15642945 PMCID: PMC545516 DOI: 10.1073/pnas.0408928102] [Citation(s) in RCA: 299] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Chronic infection with hepatitis B virus (HBV) is associated with the majority of hepatocellular carcinoma (HCC). The diagnosis of HCC is usually made in the late stages of the disease, when treatment options are limited and prognosis is poor. We therefore have developed a method of glycoproteomic analysis in an attempt to discover serum markers that can assist in the early detection of HBV-induced liver cancer. Briefly, a comparative method for analysis of oligosaccharides released from serum glycoproteins and for recovery and identification of proteins with aberrant glycosylation, as a function of cancer diagnosis, is described. The model we have used is the woodchuck (Marmota monax), which shares similarities in the glycosylation pattern associated with liver proteins in human HCC. In this report, we show that woodchucks diagnosed with HCC have dramatically higher levels of serum-associated core alpha-1,6-linked fucose, as compared with woodchucks without a diagnosis of HCC. The coupling of this methodology with 2D gel proteomics has permitted the identification of several glycoproteins with altered glycosylation as a function of cancer. One such glycoprotein, Golgi Protein 73 (GP73), was found to be elevated and hyperfucosylated in animals with HCC. Further, the study showed GP73 to be elevated in the serum of people with a diagnosis of HCC, providing a validation of our approach. The potential of this technology for biomarker discovery and the implications of increased levels of GP73 in liver cancer are discussed.
Collapse
Affiliation(s)
- Timothy M Block
- Drexel Institute for Biotechnology and Virology Research, Drexel University, Doylestown, PA 18901, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
152
|
Jones CJP, Santos TC, Abd-Elnaeim M, Dantzer V, Miglino MA. Placental glycosylation in peccary species and its relation to that of swine and dromedary. Placenta 2004; 25:649-57. [PMID: 15193872 DOI: 10.1016/j.placenta.2003.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/16/2003] [Indexed: 10/26/2022]
Abstract
Comparison has been made between glycans at the fetomaternal interface of two Tayassu species (New World peccaries or wild pigs) and those of swine (true pigs) and dromedary, which have similar epitheliochorial placentae. Plastic sections of near-term fetomaternal interface from Tayassu tajacu (120 days gestation) and Tayassu pecari (140 days gestation) were stained with 20 lectins and compared with those of swine (109 days) and dromedary (375 days). Both Tayassu species showed similar staining characteristics, which differed only slightly from those of the swine. Most differences were quantitative rather than qualitative, except for binding of Arachis hypogaea lectin to terminal beta-galactose which was absent in swine uterine epithelium though present in both Tayassu species, and binding of Sambucus nigra lectin to sialic acid which was absent in swine epithelium and trophoblast though present in Tayassu. Glycosylation of the dromedary fetomaternal interface showed, in contrast, significant differences compared to Tayassu and swine, particularly regarding fucosyl, sialyl and terminal galactosyl residues. Despite a divergence of between 33 million and 37 million years between true pigs and peccaries, glycosylation of the fetomaternal interface has remained similar, with most of the observed changes affecting terminal structures. The dromedary has an epitheliochorial placenta with a similar architecture, but different glycan expression, suggesting modification of glycosyl transferases with evolution. These data contain clues to changes of glycosyl transferase activity that accompany speciation.
Collapse
Affiliation(s)
- C J P Jones
- Academic Unit of Obstetrics and Gynaecology, School of Medicine, University of Manchester, Research Floor, St Mary's Hospital, Whitworth Park, Manchester M13 0JH, UK.
| | | | | | | | | |
Collapse
|
153
|
Aoki KF, Mamitsuka H, Akutsu T, Kanehisa M. A score matrix to reveal the hidden links in glycans. Bioinformatics 2004; 21:1457-63. [PMID: 15585530 DOI: 10.1093/bioinformatics/bti193] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION Glycans are the third major class of biomolecules following DNA and proteins. They are extremely vital for the functioning of multicellular organisms. However, comparing the fast development of sequence analysis techniques, informatics work on glycans have a long way to go. Alignment algorithms for glycan tree structures are one of the foremost concerns. In addition, the statistical analysis of these algorithms in terms of biological significance needs to be addressed. RESULTS We developed a tree-structure alignment algorithm for glycans and performed a statistical analysis of these alignment scores such that biologically interesting features could be captured into a score matrix for glycans. We generated our score matrix in a manner similar to BLOSUM, but with slight variations to accomodate our glycan data, including the incorporation of linkage information. We verified the effectiveness of our new glycan score matrix by illustrating how well the resulting score matrix entries correspond with biological knowledge. Future work for even better improvements with the use of a variety of score matrices for different subclasses of glycans due to their complexity is also discussed. CONTACT mami@kuicr.kyoto-u.ac.jp SUPPLEMENTARY INFORMATION The glycan score matrix can be downloaded from http://kanehisa.kuicr.kyoto-u.ac.jp/Paper/kcam/glycanMatrix0.1.txt.
Collapse
Affiliation(s)
- Kiyoko F Aoki
- Bioinformatics Center, Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto 611-0011, Japan
| | | | | | | |
Collapse
|
154
|
Geng F, Shi BZ, Yuan YF, Wu XZ. The expression of core fucosylated E-cadherin in cancer cells and lung cancer patients: prognostic implications. Cell Res 2004; 14:423-33. [PMID: 15538974 DOI: 10.1038/sj.cr.7290243] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
It is well documented that the glycosylation of E-cadherin is correlated with cancer metastasis, but whether E-cadherin could be core fucosylated remains largely unknown. We found that E-cadherin was core fucosylated in highly metastatic lung cancer cells while absent in lowly metastatic lung cancer cells. Since alpha-1,6 Fucosyltransferase (alpha-1,6 FucT) is known to catalyze the reaction of core fucosylation, we investigated the biological function of core fucosylation on E-cadherin by alpha-1,6 FucT targeted RNAi and transfecting alpha-1,6 FucT expression vector. As a result, calcium dependent cell-cell adhesion mediated by E-cadherin was strengthened with the reduction of core fucosylation on E-cadherin after RNAi and was weakened with the elevated core fucosylation on E-cadherin after alpha-1,6 FucT over expression. Our data indicated that alpha-1,6 FucT could regulate E-cadherin mediated cell adhesion and thus play an important role in cancer development and progression. Computer modeling showed that core fucosylation on E-cadherin could significantly impair three-dimensional conformation of N-glycan on E-cadherin and produce conformational asymmetry so as to suppress the function of E-cadherin. Furthermore, the relationship between the expression of core fucosylated E-cadherin and clinicopathological background of lung cancer patients was explored in lung cancer tissue of patients. It turns out to demonstrate that core fucosylated E-cadherin could serve as a promising prognostic indicator for lung cancer patients.
Collapse
Affiliation(s)
- Fei Geng
- Department of Biochemistry and Molecular Biology, Fudan University Medical Center, Shanghai 200032, China
| | | | | | | |
Collapse
|
155
|
Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, Shitara K, Satoh M. Establishment ofFUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng 2004; 87:614-22. [PMID: 15352059 DOI: 10.1002/bit.20151] [Citation(s) in RCA: 403] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To generate industrially applicable new host cell lines for antibody production with optimizing antibody-dependent cellular cytotoxicity (ADCC) we disrupted both FUT8 alleles in a Chinese hamster ovary (CHO)/DG44 cell line by sequential homologous recombination. FUT8 encodes an alpha-1,6-fucosyltransferase that catalyzes the transfer of fucose from GDP-fucose to N-acetylglucosamine (GlcNAc) in an alpha-1,6 linkage. FUT8(-/-) cell lines have morphology and growth kinetics similar to those of the parent, and produce completely defucosylated recombinant antibodies. FUT8(-/-)-produced chimeric anti-CD20 IgG1 shows the same level of antigen-binding activity and complement-dependent cytotoxicity (CDC) as the FUT8(+/+)-produced, comparable antibody, Rituxan. In contrast, FUT8(-/-)-produced anti-CD20 IgG1 strongly binds to human Fcgamma-receptor IIIa (FcgammaRIIIa) and dramatically enhances ADCC to approximately 100-fold that of Rituxan. Our results demonstrate that FUT8(-/-) cells are ideal host cell lines to stably produce completely defucosylated high-ADCC antibodies with fixed quality and efficacy for therapeutic use.
Collapse
Affiliation(s)
- Naoko Yamane-Ohnuki
- Tokyo Research Laboratories, Kyowa Hakko Kogyo Co., Ltd., 3-6-6 Asahi-machi, Machida-shi, Tokyo 194-8533, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Abstract
The four essential building blocks of cells are proteins, nucleic acids, lipids, and glycans. Also referred to as carbohydrates, glycans are composed of saccharides that are typically linked to lipids and proteins in the secretory pathway. Glycans are highly abundant and diverse biopolymers, yet their functions have remained relatively obscure. This is changing with the advent of genetic reagents and techniques that in the past decade have uncovered many essential roles of specific glycan linkages in living organisms. Glycans appear to modulate biological processes in the development and function of multiple physiologic systems, in part by regulating protein-protein and cell-cell interactions. Moreover, dysregulation of glycan synthesis represents the etiology for a growing number of human genetic diseases. The study of glycans, known as glycobiology, has entered an era of renaissance that coincides with the acquisition of complete genome sequences for multiple organisms and an increased focus upon how posttranslational modifications to protein contribute to the complexity of events mediating normal and disease physiology. Glycan production and modification comprise an estimated 1% of genes in the mammalian genome. Many of these genes encode enzymes termed glycosyltransferases and glycosidases that reside in the Golgi apparatus where they play the major role in constructing the glycan repertoire that is found at the cell surface and among extracellular compartments. We present a review of the recently established functions of glycan structures in the context of mammalian genetic studies focused upon the mouse and human species. Nothing tends so much to the advancement of knowledge as the application of a new instrument. The native intellectual powers of men in different times are not so much the causes of the different success of their labours, as the peculiar nature of the means and artificial resources in their possession. T. Hager: Force of Nature (1)
Collapse
Affiliation(s)
- John B Lowe
- Department of Pathology and Howard Hughes Medical Institute, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | | |
Collapse
|
157
|
Abstract
Fucose is a deoxyhexose that is present in a wide variety of organisms. In mammals, fucose-containing glycans have important roles in blood transfusion reactions, selectin-mediated leukocyte-endothelial adhesion, host-microbe interactions, and numerous ontogenic events, including signaling events by the Notch receptor family. Alterations in the expression of fucosylated oligosaccharides have also been observed in several pathological processes, including cancer and atherosclerosis. Fucose deficiency is accompanied by a complex set of phenotypes both in humans with leukocyte adhesion deficiency type II (LAD II; also known as congenital disorder of glycosylation type IIc) and in a recently generated strain of mice with a conditional defect in fucosylated glycan expression. Fucosylated glycans are constructed by fucosyltransferases, which require the substrate GDP-fucose. Two pathways for the synthesis of GDP-fucose operate in mammalian cells, the GDP-mannose-dependent de novo pathway and the free fucose-dependent salvage pathway. In this review, we focus on the biological functions of mammalian fucosylated glycans and the biosynthetic processes leading to formation of the fucosylated glycan precursor GDP-fucose.
Collapse
Affiliation(s)
- Daniel J Becker
- Graduate Program in Cellular and Molecular Biology, University of Michigan Medical School, MSRB I, room 3510, 1150 W. Medical Center Drive, Ann Arbor, MI 48109-0650, USA.
| | | |
Collapse
|
158
|
Marquardt T, Denecke J. Congenital disorders of glycosylation: review of their molecular bases, clinical presentations and specific therapies. Eur J Pediatr 2003; 162:359-79. [PMID: 12756558 DOI: 10.1007/s00431-002-1136-0] [Citation(s) in RCA: 180] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2002] [Revised: 11/06/2002] [Accepted: 11/07/2002] [Indexed: 10/25/2022]
Abstract
Congenital disorders of glycosylation (CDG, formerly named carbohydrate-deficient glycoprotein syndromes) are a rapidly growing family of inherited disorders affecting the assembly or processing of glycans on glycoconjugates. The clinical spectrum of the different types of CDG discovered so far is variable, ranging from severe multisystemic disorders to disorders restricted to specific organs. This review deals with clinical, diagnostic, and biochemical aspects of all characterized CDGs, including a disorder affecting the N-glycosylation of erythrocytes, congenital dyserythropoietic anemia type II (CDA II/HEMPAS), and the first disorders affecting O-glycosylation. Since the clinical spectrum of symptoms in CDG is variable and may be unspecific, a generous selective screening for the presence of CDG is recommended.
Collapse
Affiliation(s)
- T Marquardt
- Klinik und Poliklinik für Kinderheilkunde, Albert-Schweitzer-Str. 33, 48149 Münster, Germany.
| | | |
Collapse
|
159
|
Kamińska J, Wiśniewska A, Kościelak J. Chemical modifications of alpha1,6-fucosyltransferase define amino acid residues of catalytic importance. Biochimie 2003; 85:303-10. [PMID: 12770769 DOI: 10.1016/s0300-9084(03)00074-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
alpha1,6-Fucosyltransferase (alpha6FucT) of human platelets was subjected to the action of phenylglyoxal (PLG), pyridoxal-5'-phosphate/NaBH(4) (PLP), and diethyl pyrocarbonate (DEPC) the reagents that selectively modify the structure of amino acids arginine, lysine and histidine, respectively, as well as to N-ethylmaleimide (NEM), mersalyl, p-chloromercuribenzoate (pCMB), iodoacetate, iodoacetamide, and methyl iodide that react with sulfhydryl group of cysteine. In addition, we treated the enzyme with beta-mercaptoethanol, a reagent that disrupts disulfide bonds. All reagents except NEM significantly inactivated alpha6FucT. Protection against the action of PLG, PLP and sulfhydryl modifying reagents was offered by GDP-fucose, GDP, and the acceptor substrate, a transferrin-derived biantennary glycopeptide with terminal GlcNAc residues. Neither donor nor acceptor substrate offered, however, any protection against inactivation by DEPC or beta-mercaptoethanol. We conclude that arginine, cysteine and probably lysine residues are present in, or closely by, the donor and acceptor substrate binding domains of the enzyme, whereas histidine may be a part of its catalytic domain. However, the primary structure of alpha6FucT does not show cysteine residues in proximity to the postulated GDP-fucose-binding site and acceptor substrate binding site of the enzyme that contains two neighboring arginine residues and one lysine residue (Glycobiol. 10 (2000) 503). To rationalize our results we postulate that platelet alpha6FucT is folded through disulfide bonds that bring together donor/acceptor-binding- and cysteine- and lysine-rich, presumably acceptor substrate binding sites, thus creating a catalytic center of the enzyme.
Collapse
Affiliation(s)
- J Kamińska
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, Chocimska 5, 00-957 Warsaw, Poland
| | | | | |
Collapse
|
160
|
Javaud C, Dupuy F, Maftah A, Julien R, Petit JM. The fucosyltransferase gene family: an amazing summary of the underlying mechanisms of gene evolution. CONTEMPORARY ISSUES IN GENETICS AND EVOLUTION 2003. [DOI: 10.1007/978-94-010-0229-5_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
161
|
Noda K, Miyoshi E, Nakahara S, Ihara H, Gao CX, Honke K, Yanagidani S, Sasaki Y, Kasahara A, Hori M, Hayashi N, Taniguchi N. An enzymatic method of analysis for GDP-L-fucose in biological samples, involving high-performance liquid chromatography. Anal Biochem 2002; 310:100-106. [PMID: 12413479 DOI: 10.1016/s0003-2697(02)00313-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
To investigate the biological significance of GDP-L-fucose, we established a unique method for the determination of GDP-L-fucose levels in microsomal fractions, using an HPLC assay of alpha 1-6-fucosyltransferase (alpha1-6-FucT), an enzyme that catalyzes the synthesis of core fucosylation in N-glycans. A microsomal protein and a large excess of fluorescence-labeled synthetic oligosaccharide (a substrate) were incubated with a large excess of alpha1-6-FucT. The fluorescent intensity of the fucosylated reaction product, which was analyzed by isocratic reverse phase HPLC, was proportional to the level of GDP-L-fucose in the microsomal fractions over the range 0.20-10 pmol. This assay is applicable to the determination of the GDP-L-fucose content in various cancer cell lines as well as rat liver and would be useful in developing a better understanding of the fucosylation potential of such cells and tissues.
Collapse
Affiliation(s)
- Katsuhisa Noda
- Department of Biochemistry, Osaka University Graduate School of Medicine, 2-2 Yamada-oka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Smith PL, Myers JT, Rogers CE, Zhou L, Petryniak B, Becker DJ, Homeister JW, Lowe JB. Conditional control of selectin ligand expression and global fucosylation events in mice with a targeted mutation at the FX locus. J Cell Biol 2002; 158:801-15. [PMID: 12186857 PMCID: PMC2174027 DOI: 10.1083/jcb.200203125] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Glycoprotein fucosylation enables fringe-dependent modulation of signal transduction by Notch transmembrane receptors, contributes to selectin-dependent leukocyte trafficking, and is faulty in leukocyte adhesion deficiency (LAD) type II, also known as congenital disorder of glycosylation (CDG)-IIc, a rare human disorder characterized by psychomotor defects, developmental abnormalities, and leukocyte adhesion defects. We report here that mice with an induced null mutation in the FX locus, which encodes an enzyme in the de novo pathway for GDP-fucose synthesis, exhibit a virtually complete deficiency of cellular fucosylation, and variable frequency of intrauterine demise determined by parental FX genotype. Live-born FX(-/-) mice exhibit postnatal failure to thrive that is suppressed with a fucose-supplemented diet. FX(-/-) adults suffer from an extreme neutrophilia, myeloproliferation, and absence of leukocyte selectin ligand expression reminiscent of LAD-II/CDG-IIc. Contingent restoration of leukocyte and endothelial selectin ligand expression, general cellular fucosylation, and normal postnatal physiology is achieved by modulating dietary fucose to supply a salvage pathway for GDP-fucose synthesis. Conditional control of fucosylation in FX(-/-) mice identifies cellular fucosylation events as essential concomitants to fertility, early growth and development, and leukocyte adhesion.
Collapse
Affiliation(s)
- Peter L Smith
- Howard Hughes Medical Institute, The University of Michigan Medical School, 1150 W. Medical Center Drive, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | | | |
Collapse
|
163
|
Basak P, Lowary TL. Synthesis of conjugates ofL-fucose andortho-carborane as potential agents for boron neutron capture therapy. CAN J CHEM 2002. [DOI: 10.1139/v02-054] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The synthesis of three potential boron neutron capture therapy agents (68) is reported. The compounds synthesized are comprised of ortho-carborane covalently attached to L-fucose via C-6. Incorporation of the carborane moiety was achieved either through the reaction of an L-fucose-derived alkyne with decaborane or by the coupling of a 6-amino-L-galactopyranose derivative with carborane carboxylic acid chloride (18).Key words: L-fucose, fucosyltransferase, boron neutron capture therapy, ortho-carborane.
Collapse
|
164
|
Roos C, Kolmer M, Mattila P, Renkonen R. Composition of Drosophila melanogaster proteome involved in fucosylated glycan metabolism. J Biol Chem 2002; 277:3168-75. [PMID: 11698403 DOI: 10.1074/jbc.m107927200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The whole genome approach enables the characterization of all components of any given biological pathway. Moreover, it can help to uncover all the metabolic routes for any molecule. Here we have used the genome of Drosophila melanogaster to search for enzymes involved in the metabolism of fucosylated glycans. Our results suggest that in the fruit fly GDP-fucose, the donor for fucosyltransferase reactions, is formed exclusively via the de novo pathway from GDP-mannose through enzymatic reactions catalyzed by GDP-D-mannose 4,6-dehydratase (GMD) and GDP-4-keto-6-deoxy-D-mannose 3,5-epimerase/4-reductase (GMER, also known as FX in man). The Drosophila genome does not have orthologs for the salvage pathway enzymes, i.e. fucokinase and GDP-fucose pyrophosphorylase synthesizing GDP-fucose from fucose. In addition we identified two novel fucosyltransferases predicted to catalyze alpha1,3- and alpha1,6-specific linkages to the GlcNAc residues on glycans. No genes with the capacity to encode alpha1,2-specific fucosyltransferases were found. We also identified two novel genes coding for O-fucosyltransferases and a gene responsible for a fucosidase enzyme in the Drosophila genome. Finally, using the Drosophila CG4435 gene, we identified two novel human genes putatively coding for fucosyltransferases. This work can serve as a basis for further whole-genome approaches in mapping all possible glycosylation pathways and as a basic analysis leading to subsequent experimental studies to verify the predictions made in this work.
Collapse
Affiliation(s)
- Christophe Roos
- MediCel Ltd., Haartmaninkatu 8, FIN-00290, Helsinki, Finland
| | | | | | | |
Collapse
|
165
|
Ju T, Cummings RD, Canfield WM. Purification, characterization, and subunit structure of rat core 1 Beta1,3-galactosyltransferase. J Biol Chem 2002; 277:169-77. [PMID: 11673471 DOI: 10.1074/jbc.m109056200] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The O-linked oligosaccharides (O-glycans) in mammalian glycoproteins are classified according to their core structures. Among the most common is the core 1 disaccharide structure consisting of Galbeta1-->3GalNAcalpha1-->Ser/Thr, which is also the precursor for many extended O-glycan structures. The key enzyme for biosynthesis of core 1 O-glycan from the precursor GalNAc-alpha-Ser/Thr is UDP-Gal:GalNAc-alpha-Ser/Thr beta3-galactosyltransferase (core1 beta3-Gal-T). Core 1 beta3-Gal-T activity, which requires Mn2+, was solubilized from rat liver membranes and purified 71,034-fold to apparent homogeneity (>90% purity) in 5.7% yield by ion exchange chromatography on SP-Sepharose, affinity chromatography on immobilized asialo-bovine submaxillary mucin, and gel filtration chromatography on Superose 12. The purified enzyme is free of contaminating glycosyltransferases. Two peaks of core 1 beta3-Gal-T activity were identified in the final step on Superose 12. One peak of activity contained protein bands on non-reducing SDS-PAGE of approximately 84- and approximately 86-kDa disulfide-linked dimers, whereas the second peak of activity contained monomers of approximately 43 kDa. Reducing SDS-PAGE of these proteins gave approximately 42- and approximately 43-kDa monomers. Both the 84/86-kDa dimers and the 42/43-kDa monomers have the same novel N-terminal sequence. The purified enzyme, which is remarkably stable, has an apparent Km for UDP-Gal of 630 microm and an apparent Vmax of 206 micromol/mg/h protein using GalNAcalpha1-O-phenyl as the acceptor. The reaction product was generated using asialo-bovine submaxillary mucin as an acceptor; treatment with O-glycosidase generated the expected disaccharide Galbeta1-->3GalNAc. These studies demonstrate that activity of the core 1 beta1,3-Gal-T from rat liver is contained within a single, novel, disulfide-bonded, dimeric enzyme.
Collapse
Affiliation(s)
- Tongzhong Ju
- W. K. Warren Medical Research Institute, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma 73104, USA
| | | | | |
Collapse
|
166
|
Domino SE, Zhang L, Gillespie PJ, Saunders TL, Lowe JB. Deficiency of reproductive tract alpha(1,2)fucosylated glycans and normal fertility in mice with targeted deletions of the FUT1 or FUT2 alpha(1,2)fucosyltransferase locus. Mol Cell Biol 2001; 21:8336-45. [PMID: 11713270 PMCID: PMC99998 DOI: 10.1128/mcb.21.24.8336-8345.2001] [Citation(s) in RCA: 85] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2001] [Accepted: 09/10/2001] [Indexed: 11/20/2022] Open
Abstract
The fucose alpha(1-->2) galactose beta structure is expressed by uterine epithelial cells in the mouse and has been implicated in blastocyst adhesion events thought to be required for murine implantation. Fucalpha(1-->2)Galbeta moieties and cognate fucosyltransferases are also expressed by epithelial cells of the male reproductive tract and have been implicated in sperm maturation events that may contribute to fertilization. To determine directly if Fucalpha(1-->2)Galbeta moieties are required for fertility, we have generated strains of mice that are deficient in genes encoding FUT1 and FUT2, a pair of GDP-L-fucose:beta(1-->4)-D-galactosyl-R 2-alpha-L-fucosyltransferase enzymes (EC 2.4.1.69) responsible for Fucalpha(1-->2)Galbeta synthesis and expression. FUT1 null mice and FUT2 null mice develop normally and exhibit no gross phenotypic abnormalities. The Fucalpha(1-->2)Galbeta epitope is absent from the uterine epithelia of FUT2 null mice and from the epithelia of the epididymis of FUT1 null mice. Fully normal fertility is observed in FUT1 null intercrosses and in FUT2 null intercrosses. These observations indicate that Fucalpha(1-->2)Galbeta moieties are not essential to blastocyst-uterine epithelial cell interactions required for implantation and are not required for sperm maturation events that permit fertilization and that neither the FUT loci nor their cognate fucosylated glycans are essential to normal development.
Collapse
Affiliation(s)
- S E Domino
- Department of Obstetrics and Gynecology, 6428 Medical Science Bldg. 1, The University of Michigan Medical School, 1150 West Medical Center Dr., Ann Arbor, MI 48109, USA.
| | | | | | | | | |
Collapse
|
167
|
Nemoto-Sasaki Y, Mitsuki M, Morimoto-Tomita M, Maeda A, Tsuiji M, Irimura T. Correlation between the sialylation of cell surface Thomsen-Friedenreich antigen and the metastatic potential of colon carcinoma cells in a mouse model. Glycoconj J 2001; 18:895-906. [PMID: 12820723 DOI: 10.1023/a:1022252509765] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The cell surface glycosylation profiles of a liver metastatic colon carcinoma variant cell line, SL4 cells previously selected from colon 38 cells in vivo for liver colonization were investigated. Flowcytometric analysis was performed with 7 plant lectins and 10 carbohydrate specific monoclonal antibodies. The results showed that peanut agglutinin (PNA), Sambucus nigra agglutinin, Ulex europeus agglutinin-I, anti-LeX, anti-LeY, and anti-Le(b) antibodies bound to the parental colon 38 cells but not to SL4 cells. Another variant cell line was selected in vitro for the paucity of cell surface PNA-binding sites using a magnetic cell sorter and was designated as 38-N4 cells. The binding profiles of plant lectins and carbohydrate-specific antibodies to 38-N4 cells were very similar to those of SL4 cells. After intrasplenic injections, metastatic ability of 38-N4 cells was higher than that of colon 38 cells. PNA binding to SL4 cells and 38-N4 cells was detected after sialidase treatment of these cells, indicating increased sialylation of Thomsen-Friedenreich antigen in these cells. The mRNA levels of sialyltransferases, ST3Gal I, ST3Gal II, ST6GalNAc I, and ST6GalNAc II, were compared. The level of ST3Gal II mRNA was elevated in both SL4 cells and 38-N4 cells, whereas the level of ST6GalNAc II mRNA was elevated in 38-N4 cells compared with colon 38 cells. According to the expression array analysis, there are other glycosyltransferase genes differentially expressed between SL4 and colon 38 cells, yet their involvement in the altered glycosylation in these cells is unclear.
Collapse
Affiliation(s)
- Y Nemoto-Sasaki
- Laboratory of Cancer Biology and Molecular Immunology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | | | | | |
Collapse
|
168
|
Bublitz R, Hoppe H, Cumme GA, Thiele M, Attey A, Horn A. Structural study on the carbohydrate moiety of calf intestinal alkaline phosphatase. JOURNAL OF MASS SPECTROMETRY : JMS 2001; 36:960-972. [PMID: 11523097 DOI: 10.1002/jms.200] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Surprisingly alkaline phosphatase (AP) (EC 3.1.3.1) of calf intestine is found in large amounts, e.g. 80%, within chyme. Most of the enzyme is present as a mixture of four differently hydrophobic anchor-bearing forms and only the minor part is present as an anchorless enzyme. To investigate whether changes in the N-glycosylation pattern are signals responsible for large-scale liberation from mucosa into chyme, the glycans of the two potential glycosylation sites predicted from cDNA were investigated by matrix-assisted laser desorption/ionization and electrospray ionization mass spectrometry in combination with exoglycosidase treatment after tryptic digestion and reversed-phase chromatography. The glycans linked to Asn249 are at least eight different, mainly non-fucosylated, biantennary or triantennary structures with a bisecting N-acetylglucosamine. For the most abundant glycopeptide (40%) the following glycan structure is proposed: [carbostructure: see text]. The glycans linked to Asn410 are a mixture of at least nine, mainly tetraantennary, fucosylated structures with a bisecting N-acetylglucosamine. For the most abundant glycopeptide (35%) the following glycan structure is proposed: [carbostructure: see text]. For the structures the linkage data were deduced from the reported specificities of the exoglycosidases used and the specificities of the transglycosidases active in biosynthesis. The majority of glycans are capped by alpha-galactose residues at their non-reducing termini. In contrast to the glycans linked to other AP isoenzymes, no sialylation was observed. Glycopeptide 'mass fingerprints' of both glycosylation sites and glycan contents do not differ between AP from mucosa and chyme. These results suggest that the observed large-scale liberation of vesicle-bound glycosylphosphatidylinositol (GPI)-anchored AP from mucosa into chyme is unlikely to be mediated by alteration of glycan structures of the AP investigated. Rather, the exocytotic vesicle formation seems to be mediated by the controlled organization of the raft structures embedding GPI-AP. (c) 2001 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- R Bublitz
- Institute of Biochemistry, Medical Faculty, Friedrich Schiller University, D-07743 Jena, Germany
| | | | | | | | | | | |
Collapse
|
169
|
Kamińska J, Musielak M, Nowicka A, Wozniewicz B, Kościelak J. Neutrophils promote the release of alpha-6-fucosyltransferase from blood platelets through the action of cathepsin G and elastase. Biochimie 2001; 83:739-42. [PMID: 11530205 DOI: 10.1016/s0300-9084(01)01306-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Human blood platelets release alpha-6-fucosyltransferase during coagulation of blood or after stimulation with thrombin or other agonists that cause platelet activation (Antoniewicz et al., FEBS Lett. 244 (1989) 388-390). However, in the absence of neutrophils the thrombin-stimulated platelets release only a small fraction of alpha-6-fucosyltransferase activity (Kościelak et al., Acta Biochim. Polon. 42 (1995) 35-40). We show that the effect of neutrophils is reproduced by cathepsin G or (less efficiently) by elastase, the two enzymes that are released by neutrophils during coagulation of blood. We have also localized alpha-6-fucosyltransferase to membrane and alpha-granule fractions of platelets that had been disrupted by nitrogen cavitation. It is concluded that thrombin-activated neutrophils release cathepsin G and elastase that promote degranulation of platelets and hence the secretion of alpha-6-fucosyltransferase.
Collapse
Affiliation(s)
- J Kamińska
- Department of Biochemistry, Institute of Hematology and Blood Transfusion, ul. Chocimska 5, 00-957 Warsaw, Poland
| | | | | | | | | |
Collapse
|
170
|
Bastida A, Fernández-Mayoralas A, Gómez Arrayás R, Iradier F, Carretero JC, García-Junceda E. Heterologous over-expression of alpha-1,6-fucosyltransferase from Rhizobium sp.: application to the synthesis of the trisaccharide beta-D-GlcNAc(1-->4)-[alpha-L-Fuc-(1-->6)]-D-GLcNAc, study of the acceptor specificity and evaluation of polyhydroxylated indolizidines as inhibitors. Chemistry 2001; 7:2390-7. [PMID: 11446641 DOI: 10.1002/1521-3765(20010601)7:11<2390::aid-chem23900>3.0.co;2-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
An efficient heterologous expression system for overproduction of the enzyme alpha-1,6-Fucosyltransferase (alpha-1,6-FucT) from Rhizobium sp. has been developed. The gene codifying for the alpha-1,6-FucT was amplified by PCR using specific primers. After purification, the gene was cloned in the plasmid pKK223-3. The resulting plasmid, pKK1,6FucT, was transformed into the E. coli strain XL1-Blue MRF'. The protein was expressed both as inclusion bodies and in soluble form. Changing the induction time a five-fold increase of enzyme expressed in soluble form was obtained. In this way five units of enzyme alpha-1,6-FucT can be obtained per liter of culture. A crude preparation of the recombinant enzyme was used for the synthesis of the branched trisaccharide alpha-D-GlcNAc-(1-->4)-[alpha-L-Fuc-(1-->6)]-D-GlcNAc (3), from chitobiose (2) and GDP-Fucose (1). After purification, the trisaccharide 3 was obtained in a 84% overall yield. In order to elucidate the structural requirements for the acceptors, the specificity of the enzyme was studied towards mono-, di- and trisaccharides, which are structurally related to chitobiose. The enzyme uses, among others, the disaccharide N-acetyl lactosamine as a good substrate; the monosaccharide GlcNAc is a weak acceptor. Finally, several racemic polyhydroxylated indolizidines have been tested as potential inhibitors of the enzyme. Indolizidine 21 was the best inhibitor with an IC50 of 4.5 x 10(-5) M. Interestingly, this compound turned out to be the best mimic for the structural features of the fucose moiety in the presumed transition state.
Collapse
Affiliation(s)
- A Bastida
- Departamento de Química Orgánica Biológica, Instituto de Química Orgánica General, CSIC, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
171
|
Mares V, Brückner G. Fucosylated glycans in the periventricular structures and the cerebrospinal fluid of the fetal rat forebrain. An autoradiographic and lectin binding histiotopic study. Int J Dev Neurosci 2001; 19:297-303. [PMID: 11337198 DOI: 10.1016/s0736-5748(01)00013-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Our autoradiographic 3H-fucose incorporation study of the brains of 20-day-old rat fetuses showed that the synthesis of fucosylated glycans is significantly higher in the ventricular germinative zone of the forebrain hemisphere than in the more superficial layers, including the cortical plate. Intense incorporation of 3H-fucose also occurred in the choroid plexus, both its epithelial and stromal component, in the primordial ependymal lining of the lateral ventricles, meninges and capillaries of the forebrain parenchyma. In the lateral ventricles, densely labeled microprecipitates of the cerebrospinal fluid (CSF) were occasionally observed. The histiotopic differences in 3H-fucose labeling were absent, or were much less expressed, in the autoradiograms prepared from unfixed cryostat sections containing mainly unincorporated isotope. This indicates that the blood-mediated supply of 3H-fucose to the studied brain compartments was essentially equal and our incorporation data reflect actual differences in the rate of fucosylation within the forebrain hemispheres. The cytochemical lectin-binding assay, carried out with Ulex europaeus and Lotus tetragonolobus agglutinins, showed that regions with a higher rate of 3H-fucose incorporation were also richer in fucose-bearing glycoconjugates. The study revealed that the periventricular regions and the CSF of fetal rat forebrain form a fucosylated glycan-enriched complex, which represents a new chemoarchitectonic feature that may be of importance for maintaining the germinative properties of the ventricular neuroepithelium and the growth of the hemispheric ventricles.
Collapse
Affiliation(s)
- V Mares
- Institute of Physiology, Academy of Sciences, Vídenská 1083, CZ-142 00, Prague, Czech Republic.
| | | |
Collapse
|
172
|
Takahashi T, Ikeda Y, Miyoshi E, Yaginuma Y, Ishikawa M, Taniguchi N. alpha1,6fucosyltransferase is highly and specifically expressed in human ovarian serous adenocarcinomas. Int J Cancer 2000; 88:914-919. [PMID: 11093814 DOI: 10.1002/1097-0215(20001215)88:6<914::aid-ijc12>3.0.co;2-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
An elevated level of alpha1,6fucosylation in N-glycans represents one of the cancer-related alterations of oligosaccharides and is associated with the metastatic potential of hepatoma cells. However, expression of alpha1,6fucosyltransferase (alpha1,6FucT), which is involved in this aberrant glycosylation, has not been intensively explored in other malignant tumors. We report on a study of the expression of alpha1,6FucT in various types of epithelial ovarian carcinoma tissue, as well as normal ovary, benign and borderline ovarian tumors. The activity assay showed that alpha1,6FucT is highly and specifically elevated in serous adenocarcinomas but not in normal and other ovarian tumor tissues. This elevation was due to enhancement of mRNA expression, as evidenced by Northern blot analysis. Furthermore, we have shown immunohistochemically that alpha1,6FucT expression is localized predominantly in cancer cells. Lectin blot analysis using Lens culinaris agglutinin, which preferentially recognizes alpha1,6fucose residue, suggested that several glycoproteins were likely targets for modification by alpha1, 6fucosylation in serous adenocarcinoma tissues. These findings suggest that the elevated expression of alpha1,6FucT and the resulting modification of N-glycans are distinctive features of this type of ovarian cancer and may be related to the progression of this malignancy.
Collapse
Affiliation(s)
- T Takahashi
- Department of Biochemistry, Osaka University Medical School, Osaka, Japan
| | | | | | | | | | | |
Collapse
|
173
|
Puga A, Maier A, Medvedovic M. The transcriptional signature of dioxin in human hepatoma HepG2 cells. Biochem Pharmacol 2000; 60:1129-42. [PMID: 11007951 DOI: 10.1016/s0006-2952(00)00403-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
We have used a high density microarray hybridization approach to characterize the transcriptional response of human hepatoma HepG2 cells to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD). We find that exposure to 10 nM TCDD for 8 hr alters by at least a factor of 2.1 the expression of 310 known genes and of an equivalent number of expressed sequence tags. Treatment with TCDD in the presence of 20 microg/mL of cycloheximide blocked the effect on 202 of these genes, allowing us to distinguish between primary effects of TCDD exposure, which take place whether cycloheximide is present or not, and secondary effects, which are blocked by inhibition of protein synthesis. Of the 310 known genes affected by TCDD, 30 are up-regulated and 78 are down-regulated regardless of cycloheximide treatment, and 84 are up-regulated and 118 are down-regulated only when protein synthesis is not inhibited. Functional clustering of genes regulated by TCDD reveals many potential physiological interactions that might shed light on the multiple biological effects of this compound. Our results, however, suggest that arriving at a sound understanding of the molecular mechanisms governing the biological outcome of TCDD exposure promises to be orders of magnitude more complicated than might have been previously imagined.
Collapse
Affiliation(s)
- A Puga
- Center for Environmental Genetics and Department of Environmental Health, University of Cincinnati Medical Center, P.O. Box 670056, Cincinnati, OH 45267-0056, USA.
| | | | | |
Collapse
|
174
|
Struppe E, Staudacher E. Occurence of GDP-L-fucose: beta-N-acetylglucosamine (Fuc to asn-linked GlcNAc) alpha 1,6-fucosyltransferases in porcine, sheep, bovine, rabbit and chicken tissues. BIOCHIMICA ET BIOPHYSICA ACTA 2000; 1475:360-8. [PMID: 10913837 DOI: 10.1016/s0304-4165(00)00092-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Transgenic animals are a promising source of pharmaceutically-relevant proteins or as a source of organs for xenotransplantation. Beside other posttranslational modifications, glycosylation has been shown to be a critical parameter for the correct function of several glycoproteins. To analyse the contribution of alpha 1,6-fucosylation to N-glycan variability, we partly purified alpha 1,6-fucosyltransferase (alpha 1,6-Fuc-T) activities from various tissues (brain, lung, heart, liver) of agriculturally-relevant animals (porcine, sheep, bovine, rabbit, chicken) and compared some of their biochemical properties. All tissues displayed alpha1,6-Fuc-T activity, although at different levels. No differences were observed in their stability against chemicals, temperature or time, whereas the activities were distinguishable by their pH-optima and their cation preferences. Similarities were found for tissues between species. Lung and heart enzymes showed a narrow pH-optimum around pH 6.0 and an enhanced activity in the presence of divalent cations. alpha 1,6-Fuc-T activities in brain and liver were characterised by a broad pH-optimum from 5.5 to 8.0. Some activities of these tissues were decreased by the addition of EDTA, while others did not show any influence of EDTA or divalent cations. From the significant differences of the alpha 1,6-Fuc-T activities in the tissues, it is possible to hypothesise the presence of more than one single alpha 1, 6-Fuc-T in mammalian tissues.
Collapse
Affiliation(s)
- E Struppe
- Institut für Chemie, Universität für Bodenkultur, Muthgasse 18, A-1190 Vienna, Austria
| | | |
Collapse
|
175
|
Scanlin TF, Glick MC. Terminal glycosylation and disease: influence on cancer and cystic fibrosis. Glycoconj J 2000; 17:617-26. [PMID: 11421353 DOI: 10.1023/a:1011034912226] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Terminal glycosylation has been a recurring theme of the laboratory. In cystic fibrosis (CF), decreased sialic acid and increased fucosyl residues in alpha1,3 position to antennary N-acetyl glucosamine is the CF glycosylation phenotype. The glycosylation phenotype is reversed by transfection of CF airway cells with wtCFTR. In neuronal cells, polymers of alpha2,8sialyl residues are prominent in oligodendrocytes and human neuroblastoma. These findings are discussed in relationship to early studies in our laboratories and those of other investigators. The potential extension of these concepts to future clinical therapeutics is presented.
Collapse
Affiliation(s)
- T F Scanlin
- Department of Pediatrics and The Cystic Fibrosis Center, University of Pennsylvania School of Medicine, and The Children's Hospital of Philadelphia, 19104-4318, USA
| | | |
Collapse
|
176
|
Yamaguchi Y, Ikeda Y, Takahashi T, Ihara H, Tanaka T, Sasho C, Uozumi N, Yanagidani S, Inoue S, Fujii J, Taniguchi N. Genomic structure and promoter analysis of the human alpha1, 6-fucosyltransferase gene (FUT8). Glycobiology 2000; 10:637-43. [PMID: 10814706 DOI: 10.1093/glycob/10.6.637] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
GDP-L-Fuc:N-acetyl-beta-D-glucosaminide alpha1,6-fucosyltransferase (alpha1,6FucT) catalyzes the transfer of a fucosyl moiety from GDP-fucose to the asparagine-linked GlcNAc residue of complex N-glycans via alpha1,6-linkage. We have cloned the genomic DNA which encodes the human alpha1,6FucT gene ( FUT8 ) and analyzed its structure. It was found that the gene consists of at least nine exons spanning more than a 50 kbp genomic region, and the coding sequence is divided into eight exons. The translation initiation codon was located at exon 2, and thus exon 1 encodes only 5'-untranslated sequences. Transcription initiation site of FUT8 was determined by 5'-rapid amplification of the cDNA end and a primer-extension analysis using the total RNA isolated from SK-OV-3 cells, which have a high level of alpha1,6FucT activity. We then characterized the FUT8 promoter region by a reporter gene assay. The luciferase reporter assay indicated that the 5'-flanking region of exon 1, which covered about 1 kbp, conferred the promoter activity in SK-OV-3 cells. This region contains potential binding sites for some transcription factors, such as bHLH, cMyb, GATA-1, as well as a TATA-box, but not a CCAAT motif. 5'-Untranslated sequences found in ESTs and the cDNA for the FUT8 suggest the presence of an additional exon(s) at the upstream of the first exon identified in this study, and therefore, the transcription of the gene would be regulated by multiple promoters.
Collapse
Affiliation(s)
- Y Yamaguchi
- Department of Biochemistry, Osaka University Medical School, Suita, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|