151
|
Ben-Ari Y, Gaiarsa JL, Tyzio R, Khazipov R. GABA: a pioneer transmitter that excites immature neurons and generates primitive oscillations. Physiol Rev 2007; 87:1215-84. [PMID: 17928584 DOI: 10.1152/physrev.00017.2006] [Citation(s) in RCA: 910] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Developing networks follow common rules to shift from silent cells to coactive networks that operate via thousands of synapses. This review deals with some of these rules and in particular those concerning the crucial role of the neurotransmitter gamma-aminobuytric acid (GABA), which operates primarily via chloride-permeable GABA(A) receptor channels. In all developing animal species and brain structures investigated, neurons have a higher intracellular chloride concentration at an early stage leading to an efflux of chloride and excitatory actions of GABA in immature neurons. This triggers sodium spikes, activates voltage-gated calcium channels, and acts in synergy with NMDA channels by removing the voltage-dependent magnesium block. GABA signaling is also established before glutamatergic transmission, suggesting that GABA is the principal excitatory transmitter during early development. In fact, even before synapse formation, GABA signaling can modulate the cell cycle and migration. The consequence of these rules is that developing networks generate primitive patterns of network activity, notably the giant depolarizing potentials (GDPs), largely through the excitatory actions of GABA and its synergistic interactions with glutamate signaling. These early types of network activity are likely required for neurons to fire together and thus to "wire together" so that functional units within cortical networks are formed. In addition, depolarizing GABA has a strong impact on synaptic plasticity and pathological insults, notably seizures of the immature brain. In conclusion, it is suggested that an evolutionary preserved role for excitatory GABA in immature cells provides an important mechanism in the formation of synapses and activity in neuronal networks.
Collapse
Affiliation(s)
- Yehezkel Ben-Ari
- Insititut de Neurobiologie de la Méditerranée, Institut National de la Santé et de la Recherche Médicale U. 29, Marseille, France.
| | | | | | | |
Collapse
|
152
|
Martin BS, Kapur J. A combination of ketamine and diazepam synergistically controls refractory status epilepticus induced by cholinergic stimulation. Epilepsia 2007; 49:248-55. [PMID: 17941842 DOI: 10.1111/j.1528-1167.2007.01384.x] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PURPOSE New treatments are needed for status epilepticus (SE) that is refractory to drugs modulating GABA(A) receptors, and NMDA receptor antagonists are candidate drugs. METHODS Clinically available NMDA receptor antagonist ketamine was tested for effectiveness in terminating prolonged SE induced by a combination of lithium and pilocarpine. Animals were treated 10 min after first grade 5 behavioral seizure (Racine scoring scale) by intraperitoneal administration of ketamine, diazepam, or saline. Seizure termination was determined by electroencephalogram (EEG) recordings from the hippocampus and the cortex. RESULTS Animals treated with normal saline or either 20 mg/kg diazepam, or 50 mg/kg ketamine continued in SE for the next 300 min. However, combined treatment with diazepam and ketamine rapidly terminated prolonged cholinergic stimulation-induced SE. Detailed study of dose response relationships demonstrated that diazepam enhanced efficacy and potency of ketamine in terminating SE. DISCUSSION This study demonstrated synergistic action of diazepam and ketamine in terminating SE. It suggests that a ketamine-diazepam combination might be a clinically useful therapeutic option for the treatment of refractory SE.
Collapse
Affiliation(s)
- Brandon S Martin
- Department of Neurology, University of Virginia Health Sciences Center, Charlottesville, Virginia 22908-800394, U.S.A
| | | |
Collapse
|
153
|
Goetz T, Arslan A, Wisden W, Wulff P. GABA(A) receptors: structure and function in the basal ganglia. PROGRESS IN BRAIN RESEARCH 2007; 160:21-41. [PMID: 17499107 PMCID: PMC2648504 DOI: 10.1016/s0079-6123(06)60003-4] [Citation(s) in RCA: 96] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
gamma-Aminobutyric acid type A (GABA(A)) receptors, the major inhibitory neurotransmitter receptors responsible for fast inhibition in the basal ganglia, belong to the superfamily of "cys-cys loop" ligand-gated ion channels. GABA(A) receptors form as pentameric assemblies of subunits, with a central Cl(-) permeable pore. On binding of two GABA molecules to the extracellular receptor domain, a conformational change is induced in the oligomer and Cl(-), in most adult neurons, moves into the cell leading to an inhibitory hyperpolarization. Nineteen mammalian subunit genes have been identified, each showing distinct regional and cell-type-specific expression. The combinatorial assembly of the subunits generates considerable functional diversity. Here we place the focus on GABA(A) receptor expression in the basal ganglia: striatum, globus pallidus, substantia nigra and subthalamic nucleus, where, in addition to the standard alpha1beta2/3gamma2 receptor subtype, significant levels of other subunits (alpha2, alpha3, alpha4, gamma1, gamma3 and delta) are expressed in some nuclei.
Collapse
Affiliation(s)
- T. Goetz
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - A. Arslan
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | - W. Wisden
- Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen AB25 2ZD, Scotland, UK
| | - P. Wulff
- Department of Clinical Neurobiology, University of Heidelberg, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
- Corresponding author. Tel.: +0044-1224-551941; Fax: +0044-1224-555719; E-mail:
| |
Collapse
|
154
|
Sichardt K, Nieber K. Adenosine A(1) receptor: Functional receptor-receptor interactions in the brain. Purinergic Signal 2007; 3:285-98. [PMID: 18404442 PMCID: PMC2072922 DOI: 10.1007/s11302-007-9065-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2007] [Accepted: 07/24/2007] [Indexed: 12/20/2022] Open
Abstract
Over the past decade, many lines of investigation have shown that receptor-mediated signaling exhibits greater diversity than previously appreciated. Signal diversity arises from numerous factors, which include the formation of receptor dimers and interplay between different receptors. Using adenosine A1 receptors as a paradigm of G protein-coupled receptors, this review focuses on how receptor-receptor interactions may contribute to regulation of the synaptic transmission within the central nervous system. The interactions with metabotropic dopamine, adenosine A2A, A3, neuropeptide Y, and purinergic P2Y1 receptors will be described in the first part. The second part deals with interactions between A1Rs and ionotropic receptors, especially GABAA, NMDA, and P2X receptors as well as ATP-sensitive K+ channels. Finally, the review will discuss new approaches towards treating neurological disorders.
Collapse
Affiliation(s)
- Kathrin Sichardt
- Institute of Pharmacy, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany
| | - Karen Nieber
- Institute of Pharmacy, University of Leipzig, Talstr. 33, 04103 Leipzig, Germany
| |
Collapse
|
155
|
Xiang YY, Wang S, Liu M, Hirota JA, Li J, Ju W, Fan Y, Kelly MM, Ye B, Orser B, O'Byrne PM, Inman MD, Yang X, Lu WY. A GABAergic system in airway epithelium is essential for mucus overproduction in asthma. Nat Med 2007; 13:862-7. [PMID: 17589520 DOI: 10.1038/nm1604] [Citation(s) in RCA: 157] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2007] [Accepted: 05/08/2007] [Indexed: 11/09/2022]
Abstract
Gamma-aminobutyric acid (GABA) is an important neurotransmitter that, through the subtype A GABA receptor (GABAAR), induces inhibition in the adult brain. Here we show that an excitatory, rather than inhibitory, GABAergic system exists in airway epithelial cells. Both GABAARs and the GABA synthetic enzyme glutamic acid decarboxylase (GAD) are expressed in pulmonary epithelial cells. Activation of GABAARs depolarized these cells. The expression of GAD in the cytosol and GABAARs in the apical membranes of airway epithelial cells increased markedly when mice were sensitized and then challenged with ovalbumin, an approach for inducing allergic asthmatic reactions. Similarly, GAD and GABAARs in airway epithelial cells of humans with asthma increased after allergen inhalation challenge. Intranasal application of selective GABAAR inhibitors suppressed the hyperplasia of goblet cells and the overproduction of mucus induced by ovalbumin or interleukin-13 in mice. These findings show that a previously unknown epithelial GABAergic system has an essential role in asthma.
Collapse
Affiliation(s)
- Yun-Yan Xiang
- Sunnybrook Health Sciences Centre, 2075 Bayview Avenue, Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
156
|
Wanaverbecq N, Semyanov A, Pavlov I, Walker MC, Kullmann DM. Cholinergic axons modulate GABAergic signaling among hippocampal interneurons via postsynaptic alpha 7 nicotinic receptors. J Neurosci 2007; 27:5683-93. [PMID: 17522313 PMCID: PMC2889598 DOI: 10.1523/jneurosci.1732-07.2007] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Homopentameric alpha7 nicotinic receptors have a high affinity for acetylcholine (ACh), are permeable to Ca2+ ions, and are abundant in hippocampal interneurons. Although nicotinic agonists evoke inward currents and Ca2+ transients in stratum radiatum interneurons, the role of endogenous ACh in modulating synaptic integration by interneurons is incompletely understood. Many cholinergic axonal varicosities do not have postsynaptic specializations, but alpha7 receptors frequently occur close to synaptic GABA(A) receptors. These observations raise the possibility that alpha7 nicotinic receptors activated by ACh released from cholinergic axons modulate GABAergic transmission in interneurons. We show that agonists of alpha7 receptors profoundly depress GABAergic IPSCs recorded in stratum radiatum interneurons in the CA1 region of the hippocampus. This depression is accompanied by a small increase in GABA release. Alpha7 nicotinic receptor agonists also depress GABA- or muscimol-evoked currents in interneurons, indicating that the major effect is a postsynaptic modulation of GABA(A) receptors. The depression of GABA-evoked currents is abolished by chelating Ca2+ in the recorded interneuron and attenuated by inhibitors of PKC. We also show that stimuli designed to release endogenous ACh from cholinergic axons evoke an alpha7 receptor-dependent heterosynaptic depression of GABAergic IPSCs in interneurons. This heterosynaptic modulation is amplified by blocking cholinesterases. These results reveal a novel mechanism by which cholinergic neurons modulate information processing in the hippocampus.
Collapse
Affiliation(s)
- Nicolas Wanaverbecq
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | - Alexey Semyanov
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Ivan Pavlov
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Matthew C. Walker
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| | - Dimitri M. Kullmann
- Institute of Neurology, University College London, London WC1N 3BG, United Kingdom, and
| |
Collapse
|
157
|
Abstract
Neuronal inhibition is of paramount importance in maintaining the delicate and dynamic balance between excitatory and inhibitory influences in the central nervous system. GABA (gamma-aminobutyric acid), the primary inhibitory neurotransmitter in brain, exerts its fast inhibitory effects through ubiquitously expressed GABA(A) receptors. Activation of these heteropentameric receptors by GABA results in the gating of an integral chloride channel leading to membrane hyperpolarization and neuronal inhibition. To participate in neurotransmission, the receptor must reside on the cell surface. The trafficking of nascent receptors to the cell surface involves posttranslational modification and the interaction of the receptor with proteins that reside within the secretory pathway. The subsequent insertion of the receptor into specialized regions of the plasma membrane is dictated by receptor composition and other factors that guide insertion at synaptic or perisynaptic/extrasynaptic sites, where phasic and tonic inhibition are mediated, respectively. Once at the cell surface, the receptor is laterally mobile and subject to both constitutive and regulated endocytosis. Following endocytosis the receptor undergoes either recycling to the plasma membrane or degradation. These dynamic processes profoundly affect the strength of GABAergic signaling, neuronal inhibition, and presumably synaptic plasticity. Heritable channelopathies that affect receptor trafficking have been recently recognized and compelling evidence exists that mechanisms underlying acquired epilepsy involve GABA(A) receptor internalization. Additionally, GABA(A) receptor endocytosis has been identified as an early event in the ischemic response that leads to excitotoxicity and cell death. This chapter summarizes what is known regarding the regulation of receptor trafficking and cell surface expression and its impact on nervous system function from both cell biology and disease perspectives.
Collapse
Affiliation(s)
- Nancy J Leidenheimer
- Department of Biochemistry and Molecular Biology, Louisiana State University, Health Sciences Center, Shreveport, LA 71130, USA.
| |
Collapse
|
158
|
Houston CM, Lee HHC, Hosie AM, Moss SJ, Smart TG. Identification of the sites for CaMK-II-dependent phosphorylation of GABA(A) receptors. J Biol Chem 2007; 282:17855-65. [PMID: 17442679 DOI: 10.1074/jbc.m611533200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Phosphorylation can affect both the function and trafficking of GABA(A) receptors with significant consequences for neuronal excitability. Serine/threonine kinases can phosphorylate the intracellular loops between M3-4 of GABA(A) receptor beta and gamma subunits thereby modulating receptor function in heterologous expression systems and in neurons (1, 2). Specifically, CaMK-II has been demonstrated to phosphorylate the M3-4 loop of GABA(A) receptor subunits expressed as GST fusion proteins (3, 4). It also increases the amplitude of GABA(A) receptor-mediated currents in a number of neuronal cell types (5-7). To identify which substrate sites CaMK-II might phosphorylate and the consequent functional effects, we expressed recombinant GABA(A) receptors in NG108-15 cells, which have previously been shown to support CaMK-II modulation of GABA(A) receptors containing the beta3 subunit (8). We now demonstrate that CaMK-II mediates its effects on alpha1beta3 receptors via phosphorylation of Ser(383) within the M3-4 domain of the beta subunit. Ablation of beta3 subunit phosphorylation sites for CaMK-II revealed that for alphabetagamma receptors, CaMK-II has a residual effect on GABA currents that is not mediated by previously identified sites of CaMK-II phosphorylation. This residual effect is abolished by mutation of tyrosine phosphorylation sites, Tyr(365) and Tyr(367), on the gamma2S subunit, and by the tyrosine kinase inhibitor genistein. These results suggested that CaMK-II is capable of directly phosphorylating GABA(A) receptors and activating endogenous tyrosine kinases to phosphorylate the gamma2 subunit in NG108-15 cells. These findings were confirmed in a neuronal environment by expressing recombinant GABA(A) receptors in cerebellar granule neurons.
Collapse
Affiliation(s)
- Catriona M Houston
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | |
Collapse
|
159
|
Katagiri H, Fagiolini M, Hensch TK. Optimization of Somatic Inhibition at Critical Period Onset in Mouse Visual Cortex. Neuron 2007; 53:805-12. [PMID: 17359916 DOI: 10.1016/j.neuron.2007.02.026] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2006] [Revised: 01/01/2007] [Accepted: 02/27/2007] [Indexed: 11/21/2022]
Abstract
Local GABAergic circuits trigger visual cortical plasticity in early postnatal life. How these diverse connections contribute to critical period onset was investigated by nonstationary fluctuation analysis following laser photo-uncaging of GABA onto discrete sites upon individual pyramidal cells in slices of mouse visual cortex. The GABA(A) receptor number decreased on the soma-proximal dendrite (SPD), but not at the axon initial segment, with age and sensory deprivation. Benzodiazepine sensitivity was also higher on the immature SPD. Too many or too few SPD receptors in immature or dark-reared mice, respectively, were adjusted to critical period levels by benzodiazepine treatment in vivo, which engages ocular dominance plasticity in these animal models. Combining GAD65 deletion with dark rearing from birth confirmed that an intermediate number of SPD receptors enable plasticity. Site-specific optimization of perisomatic GABA response may thus trigger experience-dependent development in visual cortex.
Collapse
Affiliation(s)
- Hiroyuki Katagiri
- Laboratory for Neuronal Circuit Development, RIKEN Brain Science Institute, 2-1 Hirosawa, Wako-shi, Saitama 351-0198, Japan
| | | | | |
Collapse
|
160
|
Maguire J, Mody I. Neurosteroid synthesis-mediated regulation of GABA(A) receptors: relevance to the ovarian cycle and stress. J Neurosci 2007; 27:2155-62. [PMID: 17329412 PMCID: PMC6673487 DOI: 10.1523/jneurosci.4945-06.2007] [Citation(s) in RCA: 190] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2006] [Revised: 01/08/2007] [Accepted: 01/15/2007] [Indexed: 01/25/2023] Open
Abstract
Recently, we demonstrated cyclic alterations in GABA(A) receptor (GABA(A)R) subunit composition over the ovarian cycle correlated with fluctuations in progesterone levels. However, it remains unclear whether this physiological regulation of GABA(A)Rs is directly mediated by hormones. Here, we show that both ovarian and stress hormones are capable of reorganizing GABA(A)Rs by actions through neurosteroid metabolites. The cyclic alterations in GABA(A)Rs demonstrated in female mice can be mimicked with exogenous progesterone treatment in males or in ovariectomized females. Progesterone (5 mg/kg, twice daily) upregulates the expression of GABA(A)R delta subunits and enhances the tonic inhibition mediated by these receptors in dentate gyrus granule cells (DGGCs). These changes in males as well as ovarian cycle-induced changes in females can be blocked by finasteride, an antagonist of neurosteroid synthesis from progesterone. The altered GABA(A)R expression is unaffected by the progesterone receptor antagonist RU486 [mifepristone (11beta-[p-(dimethylamino)phenyl]-17beta-hydroxy-17-(1-propynyl)estra-4,9-dien-3-one)], suggesting that neurosteroid synthesis and not progesterone receptor activation underlies the hormone-mediated effects on GABA(A)R expression. Neurosteroids can alter GABA(A)R expression on a rapid timescale, because GABA(A)R upregulation can be induced in brain slices maintained in vitro after a short (30 min) treatment with the neurosteroid 3alpha,5alpha-tetrahydrodeoxycorticosterone (THDOC) (100 nM). Consistent with these rapid alterations, acute stress, a condition known to quickly raise THDOC levels, within 30 min induces upregulation of GABA(A)R delta subunit expression and increase tonic inhibition in DGGCs. These results reveal that several physiological conditions characterized by elevations in neurosteroid levels induce a reorganization of GABA(A)Rs through the action of neurosteroids.
Collapse
Affiliation(s)
- Jamie Maguire
- Departments of Neurology and Physiology, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| | - Istvan Mody
- Departments of Neurology and Physiology, The David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California 90095
| |
Collapse
|
161
|
Castillo M, Mulet J, Gutiérrez LM, Ortiz JA, Castelán F, Gerber S, Sala S, Sala F, Criado M. Role of the RIC-3 protein in trafficking of serotonin and nicotinic acetylcholine receptors. J Mol Neurosci 2007; 30:153-6. [PMID: 17192664 DOI: 10.1385/jmn:30:1:153] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/1999] [Revised: 11/30/1999] [Accepted: 11/30/1999] [Indexed: 11/11/2022]
Abstract
Neurotransmitter-gated receptors are assembled in the endoplasmic reticulum and transported to the cell surface through a process that might be of central importance to regulate the efficacy of synaptic transmission (Kneussel and Betz, 2000; Kittler and Moss, 2003). This process is relatively inefficient- what may be the consequence of tight quality controls that guarantee the functional competence of the final product. For this purpose, specific proteins involved in assembly and trafficking of receptors might be required (Keller and Taylor, 1999; Millar, 2003; Wanamaker et al., 2003). The RIC-3 protein could be one of them, as mutations in the ric-3 gene affect maturation of nicotinic acetylcholine receptors (nAChRs) in Caenorhabditis elegans (Halevi et al., 2002). Moreover, the human homolog hRIC-3 showed differential effects when coexpressed with several ligand-gated receptors (Halevi et al., 2003). Thus, it enhanced alpha7 nAChR expression while inhibiting expression of other nAChR subtypes (alpha4beta2 and alpha3beta4) and 5-HT3 serotonin receptors (5-HT3Rs). These opposite effects suggested that the RIC-3 protein might play a key role in the biogenesis of some ligand-gated receptors and prompted us to investigate how it performs its action. Here, we show that the RIC-3 protein acts as a barrier for some receptors like alpha4beta2 nAChRs and 5-HT3Rs, stopping the traffic of mature receptors to the membrane. In contrast, the inefficient transport of alpha7 nAChRs is enhanced by RIC-3 in a process in which certain amino acids at the amphipathic helix located at the C-terminal region of the large cytoplasmic domain are involved.
Collapse
Affiliation(s)
- Mar Castillo
- Instituto de Neurociencias de Alicante, UMH-CSIC, 03550 Sant Joan d'Alacant, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
162
|
Wake H, Watanabe M, Moorhouse AJ, Kanematsu T, Horibe S, Matsukawa N, Asai K, Ojika K, Hirata M, Nabekura J. Early changes in KCC2 phosphorylation in response to neuronal stress result in functional downregulation. J Neurosci 2007; 27:1642-50. [PMID: 17301172 PMCID: PMC6673731 DOI: 10.1523/jneurosci.3104-06.2007] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 01/26/2023] Open
Abstract
The K+ Cl- cotransporter KCC2 plays an important role in chloride homeostasis and in neuronal responses mediated by ionotropic GABA and glycine receptors. The expression levels of KCC2 in neurons determine whether neurotransmitter responses are inhibitory or excitatory. KCC2 expression is decreased in developing neurons, as well as in response to various models of neuronal injury and epilepsy. We investigated whether there is also direct modulation of KCC2 activity by changes in phosphorylation during such neuronal stressors. We examined tyrosine phosphorylation of KCC2 in rat hippocampal neurons under different conditions of in vitro neuronal stress and the functional consequences of changes in tyrosine phosphorylation. Oxidative stress (H2O2) and the induction of seizure activity (BDNF) and hyperexcitability (0 Mg2+) resulted in a rapid dephosphorylation of KCC2 that preceded the decreases in KCC2 protein or mRNA expression. Dephosphorylation of KCC2 is correlated with a reduction of transport activity and a decrease in [Cl-]i, as well as a reduction in KCC2 surface expression. Manipulation of KCC2 tyrosine phosphorylation resulted in altered neuronal viability in response to in vitro oxidative stress. During continued neuronal stress, a second phase of functional KCC2 downregulation occurs that corresponds to decreases in KCC2 protein expression levels. We propose that neuronal stress induces a rapid loss of tyrosine phosphorylation of KCC2 that results in translocation of the protein and functional loss of transport activity. Additional understanding of the mechanisms involved may provide means for manipulating the extent of irreversible injury resulting from different neuronal stressors.
Collapse
Affiliation(s)
- Hiroaki Wake
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Miho Watanabe
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
| | - Andrew J. Moorhouse
- Department of Physiology and Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Takashi Kanematsu
- Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Shoko Horibe
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, Hayama 240-0193, Japan, and
| | - Noriyuki Matsukawa
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Kiyofumi Asai
- Department of Molecular Neurobiology, Nagoya City University Graduate School of Medical Sciences, Nagoya 467-8601, Japan
| | - Kosei Ojika
- Department of Neurology and Neuroscience, Nagoya City University Graduate School of Medical Sciences, Mizuho-ku, Nagoya 467-8601, Japan
| | - Masato Hirata
- Molecular and Cellular Biochemistry, Faculty of Dental Science, Kyushu University, Fukuoka 812-8582, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute of Physiological Sciences, Okazaki 444-8585, Japan
- School of Life Science, The Graduate University for Advanced Studies, Hayama 240-0193, Japan, and
- Core Research for the Evolutionary Science and Technology, Japan Science and Technology Corporation, Saitama 332-0012, Japan
| |
Collapse
|
163
|
Kanematsu T, Mizokami A, Watanabe K, Hirata M. Regulation of GABAA-Receptor Surface Expression With Special Reference to the Involvement of GABARAP (GABAA Receptor-Associated Protein) and PRIP (Phospholipase C-Related, but Catalytically Inactive Protein). J Pharmacol Sci 2007; 104:285-92. [PMID: 17690529 DOI: 10.1254/jphs.cp0070063] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
GABA(A) receptors are heteropentameric ligand-gated chloride channels composed of a variety of subunits, including alpha1 - 6, beta1 - 3, gamma1 - 3, delta, epsilon, theta, and pi, and play a key role in controlling inhibitory neuronal activity. Modification of the efficacy of the synaptic strength is produced by changes in both the number of neuronal surface receptors and pentameric molecular assembly, leading to differences of sensitivity to neurotransmitters and neuromimetic drugs. Therefore, it is important to understand the molecular mechanisms regulating the so-called "life cycle of GABA(A) receptors" including sequential pentameric assembly at the site synthesized, intracellular transport through the Golgi apparatus and the cytoplasm, insertion into the cell membrane, functional modulation at the cell surface, and finally internalization, followed by either recycling back to the surface membrane or lysosomal degradation. This review is focused on events related to the surface expression of the receptor containing the gamma2 subunit and clathrin/AP2 complex-mediated phospho-regulated endocytosis of the receptor, with special reference to the function of novel GABA(A) receptor modulators, GABARAP (GABA(A) receptor-associated protein) and PRIP (phospholipase C-related, but catalytically inactive protein).
Collapse
Affiliation(s)
- Takashi Kanematsu
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka, Japan.
| | | | | | | |
Collapse
|
164
|
Mizokami A, Kanematsu T, Hirata M. Roles of PRIP in GABAA Receptor Signaling. J Oral Biosci 2007. [DOI: 10.1016/s1349-0079(07)80003-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
165
|
Fang C, Deng L, Keller CA, Fukata M, Fukata Y, Chen G, Lüscher B. GODZ-mediated palmitoylation of GABA(A) receptors is required for normal assembly and function of GABAergic inhibitory synapses. J Neurosci 2006; 26:12758-68. [PMID: 17151279 PMCID: PMC2366897 DOI: 10.1523/jneurosci.4214-06.2006] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Golgi-specific DHHC (Asp-His-His-Cys) zinc finger protein (GODZ) is a DHHC family palmitoyl acyltransferase that is implicated in palmitoylation and regulated trafficking of diverse substrates that function either at inhibitory or excitatory synapses. Of particular interest is the gamma2 subunit of GABA(A) receptors, which is required for targeting these receptors to inhibitory synapses. Here, we report that GODZ and, to a lesser extent, its close paralog sertoli cell gene with a zinc finger domain-beta (SERZ-beta) are the main members of the DHHC family of enzymes that are able to palmitoylate the gamma2 subunit in heterologous cells. Yeast two-hybrid and colocalization assays in human embryonic kidney 293T (HEK293T) cells indicate that GODZ and SERZ-beta show indistinguishable palmitoylation-dependent interaction with the gamma2 subunit. After coexpression in HEK293T cells, they form homomultimers and heteromultimers, as shown by coimmunoprecipitation and in vivo cross-linking experiments. Analyses in neurons transfected with dominant-negative GODZ (GODZ(C157S)) or plasmid-based GODZ-specific RNAi indicate that GODZ is required for normal accumulation of GABA(A) receptors at synapses, for normal whole-cell and synaptic GABAergic inhibitory function and, indirectly, for GABAergic innervation. Unexpectedly, GODZ was found to be dispensable for normal postsynaptic AMPA receptor-mediated glutamatergic transmission. We conclude that GODZ-mediated palmitoylation of GABA(A) receptors and possibly other substrates contributes selectively to the formation and normal function of GABAergic inhibitory synapses.
Collapse
Affiliation(s)
- Cheng Fang
- Department of Biology, Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | | | | | | | |
Collapse
|
166
|
Saalmann YB, Morgan IG, Calford MB. Neurosteroids Involved in Regulating Inhibition in the Inferior Colliculus. J Neurophysiol 2006; 96:3064-73. [PMID: 16971675 DOI: 10.1152/jn.00786.2006] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Fast inhibitory neurotransmission in the brain is largely mediated by the γ-aminobutyric acid-type A (GABAA) receptor. The 3α,5α-reduced neurosteroids (e.g., allopregnanolone) are the most potent endogenous modulators of the GABAA receptor. Although it is known that 3α,5α-reduced neurosteroid levels change during stress or depression and over the estrus cycle, a basic physiological role consistent with their pharmacological action remains elusive. We used the unique architecture of the auditory midbrain to reveal a role for 3α,5α-reduced neurosteroids in regulating inhibitory efficacy. After blocking the massive GABAergic projection from the dorsal nucleus of the lateral lemniscus (DNLL) to the contralateral central nucleus of the inferior colliculus (ICC) in anesthetized rats, a reactive increase in the efficacy of other inhibitory circuits in the ICC (separable because of the dominant ear that drives each circuit) was demonstrated with physiological measures—single-neuron activity and a neural-population-evoked response. This effect was prevented by blocking 3α,5α-reduced neurosteroid synthesis with a 5α-reductase inhibitor: finasteride. Immunohistochemistry confirmed that the DNLL blockade induced an increase in 3α,5α-reduced neurosteroids in the contralateral ICC. This study shows that when GABAergic inhibition is reduced, the brain compensates within minutes by locally increasing synthesis of neurosteroids, thereby balancing excitatory and inhibitory inputs in complex neural circuits.
Collapse
Affiliation(s)
- Yuri B Saalmann
- Department of Optometry and Vision Sciences, University of Melbourne, Corner of Keppel and Cardigan Streets, Carlton, Victoria 3053, Australia.
| | | | | |
Collapse
|
167
|
Arancibia-Carcamo IL, Moss SJ. Molecular organization and assembly of the central inhibitory postsynapse. Results Probl Cell Differ 2006; 43:25-47. [PMID: 17068966 DOI: 10.1007/400_017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
gamma-Amino butyric acid type A (GABAA) receptors are the major sites of fast synaptic inhibition in the brain. GABAA receptors play an important role in regulating neuronal excitability and in addition have been implicated in numerous neurological disorders. In order to understand synaptic inhibition it is important to comprehend the cellular mechanisms, that neurons utilize to regulate the accumulation and regulation of GABAA receptors at postsynaptic inhibitory specializations. Over the past decade a number of GABAA receptor interacting proteins have been identified allowing us to further understand the trafficking, targeting and clustering of these receptors as well as the regulation of receptor stability. In the following review we examine the proteins identified as GABAA receptor binding partners and other components of the inhibitory postsynaptic scaffold, and how they contribute to the construction of inhibitory synapses and the dynamic modulation of synaptic inhibition.
Collapse
|
168
|
Houston CM, Smart TG. CaMK-II modulation of GABAA receptors expressed in HEK293, NG108-15 and rat cerebellar granule neurons. Eur J Neurosci 2006; 24:2504-14. [PMID: 17100839 DOI: 10.1111/j.1460-9568.2006.05145.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The gamma-aminobutyric acid type A (GABA(A)) receptor is a pentameric ligand-gated ion channel responsible for fast synaptic inhibition in the brain. Phosphorylation of the GABA(A) receptor by serine/threonine protein kinases, at residues located in the intracellular loop between the third and fourth transmembrane domains of each subunit, can dynamically modulate receptor trafficking and function. In this study, we have assessed the effect that Ca(2+)-calmodulin-dependent protein kinase-II (CaMK-II) has on GABA(A) receptors. The intracellular application of preactivated CaMK-II failed to modulate the function of alphabeta and alphabetagamma subunit GABA(A) receptors heterologously expressed in human embryonic kidney (HEK)293 cells. However, application of similarly preactivated alpha-CaMK-II significantly potentiated the amplitudes of whole-cell GABA currents recorded from rat cultured cerebellar granule neurons and from recombinant GABA(A) receptors expressed in neuroblastoma, NG108-15, cells. The modulation by alpha-CaMK-II of current amplitude depended upon the subunit composition of GABA(A) receptors. alpha-CaMK-II potentiated GABA currents recorded from alpha1beta3 and alpha1beta3gamma2 GABA(A) receptors, but was unable to functionally modulate beta2 subunit-containing receptors. Similar results were obtained from beta2 -/- mouse cerebellar granule cell cultures and from rat granule cell cultures overexpressing recombinant alpha1beta2 or alpha1beta3 GABA(A) receptors. alpha-CaMK-II had a greater effect on the modulation of GABA responses mediated by alpha1beta3gamma2 compared with alpha1beta3 receptors, indicating a possible role for the gamma2 subunit in CaMK-II-mediated phosphorylation. In conclusion, CaMK-II can upregulate the function of GABA(A) receptors expressed in neurons or a neuronal cell line that is dependent on the beta subunit co-assembled into the receptor complex.
Collapse
Affiliation(s)
- C M Houston
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | | |
Collapse
|
169
|
Zhou X, Smith SS. Steroid requirements for regulation of the alpha4 subunit of the GABA(A) receptor in an in vitro model. Neurosci Lett 2006; 411:61-6. [PMID: 17081691 PMCID: PMC1857280 DOI: 10.1016/j.neulet.2006.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2006] [Revised: 09/15/2006] [Accepted: 10/03/2006] [Indexed: 01/28/2023]
Abstract
The alpha4 subunit of the GABA(A) receptor (GABAR) has relatively low expression in the CNS, but is increased in vivo following 48 h administration of the GABA-modulatory steroid 3alpha-OH-5alpha[beta]-pregnan-20-one (THP or [allo]pregnanolone) to female rats. The purpose of the following study was to determine the optimal conditions for steroid-induced upregulation of alpha4 expression in an in vitro model. To this end, we used the IMR-32 cell, a neuroblastoma cell line, which normally expresses alpha4 mRNA at low levels. In undifferentiated IMR-32 cells, 48 h administration of THP increased alpha4 expression when ambient THP levels were reduced by the 5alpha-reductase blocker 4MA, suggesting that the background steroid milieu affects steroid regulation of this subunit. Following neuronal differentiation in serum-free medium, 48 h THP treatment significantly increased alpha4 expression two-fold following application of nerve growth factor (NGF) suggesting that development of neuronal processes facilitates this effect of the steroid. In the absence of NGF treatment, combined administration of 17beta-estradiol (E2) plus THP also increased alpha4 expression to a similar extent as THP following NGF treatment. In addition, E2 alone effectively increased alpha4 expression to maximal levels following NGF treatment. In contrast, neuronal differentiation in the absence of serum deprivation did not increase alpha4 levels. These results suggest that both THP and E2 can increase expression of the GABAR alpha4 subunit, but that this effect is dependent upon the background steroid milieu as well as the degree of neuronal development. These findings demonstrate optimal conditions for steroid-induced upregulation of the alpha4 subunit in an in vitro system.
Collapse
Affiliation(s)
- Xiangping Zhou
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | | |
Collapse
|
170
|
Bogdanov Y, Michels G, Armstrong-Gold C, Haydon PG, Lindstrom J, Pangalos M, Moss SJ. Synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. EMBO J 2006; 25:4381-9. [PMID: 16946701 PMCID: PMC1570424 DOI: 10.1038/sj.emboj.7601309] [Citation(s) in RCA: 137] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Accepted: 08/03/2006] [Indexed: 11/08/2022] Open
Abstract
GABAA receptors mediate the majority of fast synaptic inhibition in the brain. The accumulation of these ligand-gated ion channels at synaptic sites is a prerequisite for neuronal inhibition, but the molecular mechanisms underlying this phenomenon remain obscure. To further understand these processes, we have examined the cellular origins of synaptic GABAA receptors. To do so, we have created fluorescent GABAA receptors that are capable of binding -bungarotoxin (Bgt), facilitating the visualization of receptor endocytosis, exocytosis and delivery to synaptic sites. Imaging with Bgt in hippocampal neurons revealed that GABAA receptor endocytosis occurred exclusively at extrasynaptic sites, consistent with the preferential colocalization of extrasynaptic receptors with the AP2 adaptin. Receptor insertion into the plasma membrane was also predominantly extrasynaptic, and pulse-chase analysis revealed that these newly inserted receptors were then able to access directly synaptic sites. Therefore, our results demonstrate that synaptic GABAA receptors are directly recruited from their extrasynaptic counterparts. Moreover, they illustrate a dynamic mechanism for neurons to modulate GABAA receptor number at inhibitory synapses by controlling the stability of extrasynaptic receptors.
Collapse
Affiliation(s)
- Yury Bogdanov
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmacology, University College, London, UK
| | - Guido Michels
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmacology, University College, London, UK
- Department of Internal Medicine III, University of Cologne, Cologne, Germany
| | | | - Philip G Haydon
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | - Jon Lindstrom
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Stephen J Moss
- Department of Neuroscience, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pharmacology, University College, London, UK
- Department of Neuroscience, University of Pennsylvania, 145 Johnson Pavilion, Hamilton Walk, Philadelphia, PA 19104, USA. Tel.: +1 215 898 1998; Fax: +1 215 898 1347; E-mail:
| |
Collapse
|
171
|
Birzniece V, Bäckström T, Johansson IM, Lindblad C, Lundgren P, Löfgren M, Olsson T, Ragagnin G, Taube M, Turkmen S, Wahlström G, Wang MD, Wihlbäck AC, Zhu D. Neuroactive steroid effects on cognitive functions with a focus on the serotonin and GABA systems. BRAIN RESEARCH REVIEWS 2006; 51:212-239. [PMID: 16368148 DOI: 10.1016/j.brainresrev.2005.11.001] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 11/10/2005] [Accepted: 11/11/2005] [Indexed: 01/20/2023]
Abstract
This article will review neuroactive steroid effects on serotonin and GABA systems, along with the subsequent effects on cognitive functions. Neurosteroids (such as estrogen, progesterone, and allopregnanolone) are synthesized in the central and peripheral nervous system, in addition to other tissues. They are involved in the regulation of mood and memory, in premenstrual syndrome, and mood changes related to hormone replacement therapy, as well as postnatal and major depression, anxiety disorders, and Alzheimer's disease. Estrogen and progesterone have their respective hormone receptors, whereas allopregnanolone acts via the GABA(A) receptor. The action of estrogen and progesterone can be direct genomic, indirect genomic, or non-genomic, also influencing several neurotransmitter systems, such as the serotonin and GABA systems. Estrogen alone, or in combination with antidepressant drugs affecting the serotonin system, has been related to improved mood and well being. In contrast, progesterone can have negative effects on mood and memory. Estrogen alone, or in combination with progesterone, affects the brain serotonin system differently in different parts of the brain, which can at least partly explain the opposite effects on mood of those hormones. Many of the progesterone effects in the brain are mediated by its metabolite allopregnanolone. Allopregnanolone, by changing GABA(A) receptor expression or sensitivity, is involved in premenstrual mood changes; and it also induces cognitive deficits, such as spatial-learning impairment. We have shown that the 3beta-hydroxypregnane steroid UC1011 can inhibit allopregnanolone-induced learning impairment and chloride uptake potentiation in vitro and in vivo. It would be important to find a substance that antagonizes allopregnanolone-induced adverse effects.
Collapse
Affiliation(s)
- Vita Birzniece
- Department of Clinical Sciences, Obstetrics and Gynecology, Umeå University Hospital, Sweden
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Kanematsu T, Yasunaga A, Mizoguchi Y, Kuratani A, Kittler JT, Jovanovic JN, Takenaka K, Nakayama KI, Fukami K, Takenawa T, Moss SJ, Nabekura J, Hirata M. Modulation of GABAA Receptor Phosphorylation and Membrane Trafficking by Phospholipase C-related Inactive Protein/Protein Phosphatase 1 and 2A Signaling Complex Underlying Brain-derived Neurotrophic Factor-dependent Regulation of GABAergic Inhibition. J Biol Chem 2006; 281:22180-22189. [PMID: 16754670 DOI: 10.1074/jbc.m603118200] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) modulates several distinct aspects of synaptic transmission, including GABAergic transmission. Exposure to BDNF alters properties of GABA(A) receptors and induces changes in the expression level at the cell surface. Although phospholipase C-related inactive protein-1 (PRIP-1) plays an important role in GABA(A) receptor trafficking and function, its role in BDNF-dependent modulation of these receptors, together with the role of PRIP-2, was investigated using neurons cultured from PRIP double knock-out mice. The BDNF-dependent inhibition of whole cell GABA-evoked currents observed in wild type neurons was not detected in neurons cultured from knock-out mice. Instead, a gradual increase in GABA-evoked currents in these neurons correlated with a gradual increase in phosphorylation of GABA(A) receptor beta3 subunit in response to BDNF. To characterize the specific role(s) that PRIP plays as components of underlying molecular machinery, we examined the recruitment of protein phosphatase(s) to GABA(A) receptors. We demonstrate that PRIP associates with phosphatases as well as with beta subunits. PRIP was found to colocalize with GABA(A) receptor clusters in cultured neurons and with recombinant GABA(A) receptors when co-expressed in HEK293 cells. Importantly, a peptide mimicking a domain of PRIP involved in binding to beta subunits disrupted the co-localization of these proteins in HEK293 cells and potently inhibited the BDNF-mediated attenuation of GABA(A) receptor currents in wild type neurons. Together, the results suggest that PRIP plays an important role in BDNF-dependent regulation of GABA(A) receptors by mediating the specific association between beta subunits of these receptors with protein phosphatases.
Collapse
Affiliation(s)
- Takashi Kanematsu
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Yasunaga
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| | - Yoshito Mizoguchi
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan; Department of Developmental Physiology, National Institute for Physiological Science, Okazaki 444-8585, Japan
| | - Akiko Kuratani
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| | - Josef T Kittler
- Department of Physiology, University College London, London WC1E 6BT, United Kingdom
| | - Jasmina N Jovanovic
- Department of Pharmacology, School of Pharmacy, Brunswick Square, London, WC1N 1AX, United Kingdom
| | - Kei Takenaka
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Keiichi I Nakayama
- Department of Molecular and Cellular Biology, Medical Institute of Bioregulation, Kyushu University, Fukuoka 812-8582, Japan
| | - Kiyoko Fukami
- Laboratory of Genome and Biosignal, Tokyo University of Pharmacy and Life Science, Tokyo 192-0392, Japan
| | - Tadaomi Takenawa
- Department of Biochemistry, Institute of Medical Science, University of Tokyo, Tokyo 108-8639, Japan
| | - Stephen J Moss
- Department of Neuroscience, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania 19104
| | - Junichi Nabekura
- Department of Developmental Physiology, National Institute for Physiological Science, Okazaki 444-8585, Japan
| | - Masato Hirata
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan.
| |
Collapse
|
173
|
Pagani F, Lauro C, Fucile S, Catalano M, Limatola C, Eusebi F, Grassi F. Functional properties of neurons derived from fetal mouse neurospheres are compatible with those of neuronal precursors in vivo. J Neurosci Res 2006; 83:1494-501. [PMID: 16547970 DOI: 10.1002/jnr.20835] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Neural stem cells can be propagated in culture as neurospheres, yielding neurons and glial cells upon differentiation. Although the neurosphere model is widely used, the functional properties of the neurosphere-derived neurons have been only partially characterized, and it is unclear whether repeated passaging alters their functional properties. In this study, we analyzed voltage- and transmitter-gated responses in neuron-like cells obtained by differentiating fetal mouse neurospheres at increasing passages in culture. We report that neurons fire overshooting action potentials in response to depolarizing currents up to passage 10 but loose this capability at later passages, as the density of voltage-gated Na(+) and K(+) currents decreases. In contrast, the immunoreactivity for the neuronal marker beta-tubulin remains unaltered up to passage 21, indicating that this marker is not representative of cell function. In almost all neurons, gamma-aminobutyric acid (GABA) evoked bicuculline-sensitive whole-cell currents, resulting from the activation of GABA(A) receptors, which appeared to be excitatory, insofar as the reversal potential of GABA-gated current was about -50 mV. Much smaller currents were elicited by the glutamatergic agonist AMPA, and only occasional responses to glycine were detected. In these functional aspects, neurosphere-derived neurons are similar to immature neurons differentiating in vivo. Therefore, at least for a limited number of passages in vitro, neurospheres provide an adequate model of in vivo neurogenesis.
Collapse
Affiliation(s)
- Francesca Pagani
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Fisiologia Umana e Farmacologia and Centro di Eccellenza BEMM, Universitá di Roma La Sapienza, Roma, Italy
| | | | | | | | | | | | | |
Collapse
|
174
|
Rowland AM, Richmond JE, Olsen JG, Hall DH, Bamber BA. Presynaptic terminals independently regulate synaptic clustering and autophagy of GABAA receptors in Caenorhabditis elegans. J Neurosci 2006; 26:1711-20. [PMID: 16467519 PMCID: PMC6793639 DOI: 10.1523/jneurosci.2279-05.2006] [Citation(s) in RCA: 122] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Synaptic clustering of GABAA receptors is important for the function of inhibitory synapses, influencing synapse strength and, consequently, the balance of excitation and inhibition in the brain. Presynaptic terminals are known to induce GABAA receptor clustering during synaptogenesis, but the mechanisms of cluster formation and maintenance are not known. To study how presynaptic neurons direct the formation of GABAA receptor clusters, we have investigated GABAA receptor localization in postsynaptic cells that fail to receive presynaptic contacts in Caenorhabditis elegans. Postsynaptic muscles in C. elegans receive acetylcholine and GABA motor innervation, and GABAA receptors cluster opposite GABA terminals. Selective loss of GABA inputs caused GABAA receptors to be diffusely distributed at or near the muscle cell surface, confirming that GABA presynaptic terminals induce GABAA receptor clustering. In contrast, selective loss of acetylcholine innervation had no effect on GABAA receptor localization. However, loss of both GABA and acetylcholine inputs together caused GABAA receptors to traffic to intracellular autophagosomes. Autophagosomes normally transport bulk cytoplasm to the lysosome for degradation. However, we show that GABAA receptors traffic to autophagosomes after endocytic removal from the cell surface and that acetylcholine receptors in the same cells do not traffic to autophagosomes. Thus, autophagy can degrade cell-surface receptors and can do so selectively. Our results show that presynaptic terminals induce GABAA receptor clustering by independently controlling synaptic localization and surface stability of GABAA receptors. They also demonstrate a novel function for autophagy in GABAA receptor degradative trafficking.
Collapse
|
175
|
Chen G, Kittler JT, Moss SJ, Yan Z. Dopamine D3 receptors regulate GABAA receptor function through a phospho-dependent endocytosis mechanism in nucleus accumbens. J Neurosci 2006; 26:2513-21. [PMID: 16510729 PMCID: PMC6793654 DOI: 10.1523/jneurosci.4712-05.2006] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The dopamine D3 receptor, which is highly enriched in nucleus accumbens (NAc), has been suggested to play an important role in reinforcement and reward. To understand the potential cellular mechanism underlying D3 receptor functions, we examined the effect of D3 receptor activation on GABAA receptor (GABAAR)-mediated current and inhibitory synaptic transmission in medium spiny neurons of NAc. Application of PD128907 [(4aR,10bR)-3,4a,4,10b-tetrahydro-4-propyl-2H,5H-[1]benzopyrano-[4,3-b]-1,4-oxazin-9-ol hydrochloride], a specific D3 receptor agonist, caused a significant reduction of GABAAR current in acutely dissociated NAc neurons and miniature IPSC amplitude in NAc slices. This effect was blocked by dialysis with a dynamin inhibitory peptide, which prevents the clathrin/activator protein 2 (AP2)-mediated GABAA receptor endocytosis. In addition, the D3 effect on GABAAR current was prevented by agents that manipulate protein kinase A (PKA) activity. Infusion of a peptide derived from GABAAR beta subunits, which contains an atypical binding motif for the clathrin AP2 adaptor complex and the major PKA phosphorylation sites and binds with high affinity to AP2 only when dephosphorylated, diminished the D3 regulation of IPSC amplitude. The phosphorylated equivalent of the peptide was without effect. Moreover, PD128907 increased GABAAR internalization and reduced the surface expression of GABAA receptor beta subunits in NAc slices, which was prevented by dynamin inhibitory peptide or cAMP treatment. Together, our results suggest that D3 receptor activation suppresses the efficacy of inhibitory synaptic transmission in NAc by increasing the phospho-dependent endocytosis of GABAA receptors.
Collapse
|
176
|
|
177
|
Hartman KN, Pal SK, Burrone J, Murthy VN. Activity-dependent regulation of inhibitory synaptic transmission in hippocampal neurons. Nat Neurosci 2006; 9:642-9. [PMID: 16582905 DOI: 10.1038/nn1677] [Citation(s) in RCA: 164] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2005] [Accepted: 03/03/2006] [Indexed: 11/09/2022]
Abstract
Neural activity regulates the number and properties of GABAergic synapses in the brain, but the mechanisms underlying these changes are unclear. We found that blocking spike activity globally in developing hippocampal neurons from rats reduced the density of GABAergic terminals as well as the frequency and amplitude of miniature inhibitory postsynaptic currents (mIPSCs). Chronic inactivity later in development led to a reduction in the mIPSC amplitude, without any change in GABAergic synapse density. By contrast, hyperpolarizing or abolishing spike activity in single neurons did not alter GABAergic synaptic inputs. Suppressing activity in individual presynaptic GABAergic neurons also failed to decrease synaptic output. Our results indicate that GABAergic synapses are regulated by the level of activity in surrounding neurons. Notably, we found that the expression of GABAergic plasticity involves changes in the amount of neurotransmitter in individual vesicles.
Collapse
Affiliation(s)
- Kenichi N Hartman
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts 02138, USA
| | | | | | | |
Collapse
|
178
|
Dong H, Kumar M, Zhang Y, Gyulkhandanyan A, Xiang YY, Ye B, Perrella J, Hyder A, Zhang N, Wheeler M, Lu WY, Wang Q. Gamma-aminobutyric acid up- and downregulates insulin secretion from beta cells in concert with changes in glucose concentration. Diabetologia 2006; 49:697-705. [PMID: 16447058 DOI: 10.1007/s00125-005-0123-1] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2005] [Accepted: 11/01/2005] [Indexed: 10/25/2022]
Abstract
AIMS/HYPOTHESIS The role of gamma-aminobutyric acid (GABA) and A-type GABA receptors (GABA(A)Rs) in modulating islet endocrine function has been actively investigated since the identification of GABA and GABA(A)Rs in the pancreatic islets. However, the reported effects of GABA(A)R activation on insulin secretion from islet beta cells have been controversial. METHODS This study examined the hypothesis that the effect of GABA on beta cell insulin secretion is dependent on glucose concentration. RESULTS Perforated patch-clamp recordings in INS-1 cells demonstrated that GABA, at concentrations ranging from 1 to 1,000 micromol/l, induced a transmembrane current (I(GABA)) which was sensitive to the GABA(A)R antagonist bicuculline. The current-voltage relationship revealed that I(GABA) reversed at -42+/-2.2 mV, independently of glucose concentration. Nevertheless, the glucose concentration critically controlled the membrane potential (V (M)), i.e., at low glucose (0 or 2.8 mmol/l) the endogenous V (M) of INS-1 cells was below the I(GABA) reversal potential and at high glucose (16.7 or 28 mmol/l), the endogenous V (M) of INS-1 cells was above the I(GABA) reversal potential. Therefore, GABA dose-dependently induced membrane depolarisation at a low glucose concentration, but hyperpolarisation at a high glucose concentration. Consistent with electrophysiological findings, insulin secretion assays demonstrated that at 2.8 mmol/l glucose, GABA increased insulin secretion in a dose-dependent fashion (p<0.05, n=7). This enhancement was blocked by bicuculline (p<0.05, n=4). In contrast, in the presence of 28 mmol/l glucose, GABA suppressed the secretion of insulin (p<0.05, n=5). CONCLUSIONS/INTERPRETATION These findings indicate that activation of GABA(A)Rs in beta cells regulates insulin secretion in concert with changes in glucose levels.
Collapse
Affiliation(s)
- H Dong
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Naylor DE, Liu H, Wasterlain CG. Trafficking of GABA(A) receptors, loss of inhibition, and a mechanism for pharmacoresistance in status epilepticus. J Neurosci 2006; 25:7724-33. [PMID: 16120773 PMCID: PMC6725248 DOI: 10.1523/jneurosci.4944-04.2005] [Citation(s) in RCA: 374] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During status epilepticus (SE), GABAergic mechanisms fail and seizures become self-sustaining and pharmacoresistant. During lithiumpilocarpine-induced SE, our studies of postsynaptic GABA(A) receptors in dentate gyrus granule cells show a reduction in the amplitude of miniature IPSCs (mIPSCs). Anatomical studies show a reduction in the colocalization of the beta2/beta3 and gamma2 subunits of GABA(A) receptors with the presynaptic marker synaptophysin and an increase in the proportion of those subunits in the interior of dentate granule cells and other hippocampal neurons with SE. Unlike synaptic mIPSCs, the amplitude of extrasynaptic GABA(A) tonic currents is augmented during SE. Mathematical modeling suggests that the change of mIPSCs with SE reflects a decrease in the number of functional postsynaptic GABA(A) receptors. It also suggests that increases in extracellular [GABA] during SE can account for the tonic current changes and can affect postsynaptic receptor kinetics with a loss of paired-pulse inhibition. GABA exposure mimics the effects of SE on mIPSC and tonic GABA(A) current amplitudes in granule cells, consistent with the model predictions. These results provide a potential mechanism for the inhibitory loss that characterizes initiation of SE and for the pharmacoresistance to benzodiazepines, as a reduction of available functional GABA(A) postsynaptic receptors. Novel therapies for SE might be directed toward prevention or reversal of these losses.
Collapse
Affiliation(s)
- David E Naylor
- Department of Neurology, Veterans Administration Greater Los Angeles Healthcare System, University of California, Los Angeles, California 90073, USA.
| | | | | |
Collapse
|
180
|
Zago WM, Massey KA, Berg DK. Nicotinic activity stabilizes convergence of nicotinic and GABAergic synapses on filopodia of hippocampal interneurons. Mol Cell Neurosci 2006; 31:549-59. [PMID: 16403644 DOI: 10.1016/j.mcn.2005.11.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2005] [Revised: 10/28/2005] [Accepted: 11/17/2005] [Indexed: 11/25/2022] Open
Abstract
Nicotinic acetylcholine receptors containing alpha7 subunits occupy pre- and postsynaptic sites in the adult hippocampus. We find that embryonic hippocampal slices in culture display the receptors most prominently on interneurons where they form clusters localized in part on filopodia. The receptors often co-distribute specifically with GABAA receptors. In septal-hippocampal co-cultures, the filopodia become co-innervated by cholinergic and GABAergic terminals abutting the receptor clusters. Nicotinic transmission appears to stabilize the cholinergic contacts: pharmacological blockade of the alpha7-containing nicotinic receptors increases the rate of filopodia movement and decreases the incidence of the clusters being adjacent to cholinergic terminals. Immunostaining fresh hippocampal slices from neonatal rat pups confirms that cholinergic and GABAergic terminals contact alpha7-containing nicotinic receptor clusters in vivo, and the clusters appear to include filopodial sites. The results indicate a convergence of nicotinic and GABAergic input at specific sites on developing hippocampal interneurons and suggest that synaptic activity helps stabilize the nicotinic contribution.
Collapse
Affiliation(s)
- Wagner M Zago
- Neurobiology Section, Division of Biology, 0357, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0357, USA
| | | | | |
Collapse
|
181
|
Jacob TC, Bogdanov YD, Magnus C, Saliba RS, Kittler JT, Haydon PG, Moss SJ. Gephyrin regulates the cell surface dynamics of synaptic GABAA receptors. J Neurosci 2006; 25:10469-78. [PMID: 16280585 PMCID: PMC6725824 DOI: 10.1523/jneurosci.2267-05.2005] [Citation(s) in RCA: 200] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The efficacy of fast synaptic inhibition is critically dependent on the accumulation of GABAA receptors at inhibitory synapses, a process that remains poorly understood. Here, we examined the dynamics of cell surface GABAA receptors using receptor subunits modified with N-terminal extracellular ecliptic pHluorin reporters. In hippocampal neurons, GABAA receptors incorporating pHluorin-tagged subunits were found to be clustered at synaptic sites and also expressed as diffuse extrasynaptic staining. By combining FRAP (fluorescence recovery after photobleaching) measurements with live imaging of FM4-64-labeled active presynaptic terminals, it was evident that clustered synaptic receptors exhibit significantly lower rates of mobility at the cell surface compared with their extrasynaptic counterparts. To examine the basis of this confinement, we used RNAi to inhibit the expression of gephyrin, a protein shown to regulate the accumulation of GABAA receptors at synaptic sites. However, whether gephyrin acts to control the actual formation of receptor clusters, their stability, or is simply a global regulator of receptor cell surface number remains unknown. Inhibiting gephyrin expression did not modify the total number of GABAA receptors expressed on the neuronal cell surface but significantly decreased the number of receptor clusters. Live imaging revealed that clusters that formed in the absence of gephyrin were significantly more mobile compared with those in control neurons. Together, our results demonstrate that synaptic GABAA receptors have lower levels of lateral mobility compared with their extrasynaptic counterparts, and suggest a specific role for gephyrin in reducing the diffusion of GABAA receptors, facilitating their accumulation at inhibitory synapses.
Collapse
Affiliation(s)
- Tija C Jacob
- Department of Pharmacology, University College London, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | |
Collapse
|
182
|
Hewitt SA, Bains JS. Brain-derived neurotrophic factor silences GABA synapses onto hypothalamic neuroendocrine cells through a postsynaptic dynamin-mediated mechanism. J Neurophysiol 2006; 95:2193-8. [PMID: 16407427 DOI: 10.1152/jn.01135.2005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In the paraventricular nucleus of the hypothalamus (PVN), experimental stress paradigms that suppress gamma-aminobutyric acid (GABA) inputs to parvocellular neuroendocrine cells (PNCs) also increase the expression of brain-derived neurotrophic factor (BDNF). In the adult CNS, BDNF regulates the efficacy of GABAergic transmission, but its contributions to functional changes at inhibitory synapses in the PVN have not been investigated. Analysis of quantal transmission revealed a decrease in the frequency of miniature inhibitory postsynaptic currents (mIPSCs) in response to BDNF with no accompanying changes in their amplitude. These effects were completely blocked by prior inclusion of the TrKB receptor antagonist K252a in the patch pipette. Inclusion of a dynamin inhibitory peptide in the patch pipette also blocked the effects of BDNF, consistent with an all-or-none removal of clusters of postsynaptic GABAA receptors. Finally, to confirm a decrease in the availability of postsynaptic GABAA receptors, we tested the effects of BDNF on focal application of the GABAA agonist muscimol. Postsynaptic responses to muscimol were reduced after BDNF. Collectively, these data indicate that BDNF remodels functional synaptic contacts putatively by reducing the surface expression of postsynaptic GABAA receptors.
Collapse
Affiliation(s)
- Sarah A Hewitt
- Hotchkiss Brain Institute and Department of Physiology and Biophysics, University of Calgary, Calgary, Canada T2N 4N1
| | | |
Collapse
|
183
|
Kretschmannova K, Svobodova I, Balik A, Mazna P, Zemkova H. Circadian Rhythmicity in AVP Secretion and GABAergic Synaptic Transmission in the Rat Suprachiasmatic Nucleus. Ann N Y Acad Sci 2006; 1048:103-15. [PMID: 16154925 DOI: 10.1196/annals.1342.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A variety of physiological and behavioral functions exhibit circadian changes and these circadian rhythms are driven by oscillatory expression of clock genes in the suprachiasmatic nuclei (SCN). It is still unknown how this molecular clockwork is controlled by extracellular neurohormones and neurotransmitters and which membrane receptors undergo circadian modulation. Circadian rhythm can be measured as a secretion of arginine vasopressin (AVP) in organotypic SCN culture for several weeks. Melatonin applied directly to the SCN late in the day induces a phase advance, when applied late at night or at the beginning of the day melatonin causes a phase delay. The time window for phase advance corresponds with the highest level of melatonin receptors in the SCN but the mechanism of melatonin-induced phase delay is unknown. The principal neurotransmitter on SCN synapses is gamma-aminobutyric acid (GABA), which acts at postsynaptic GABA(A) receptors. Spontaneous release of GABA from presynaptic nerve terminals, recorded as miniature inhibitory postsynaptic currents in the presence of TTX, does not change, but zinc sensitivity of exogenous GABA-induced currents varies during the day and night, possibly due to changes in subunit composition of GABA(A) receptors. We conclude that there is daily variation in the postsynaptic, but not presynaptic, function in the SCN.
Collapse
|
184
|
Xu E, Kumar M, Zhang Y, Ju W, Obata T, Zhang N, Liu S, Wendt A, Deng S, Ebina Y, Wheeler MB, Braun M, Wang Q. Intra-islet insulin suppresses glucagon release via GABA-GABAA receptor system. Cell Metab 2006; 3:47-58. [PMID: 16399504 DOI: 10.1016/j.cmet.2005.11.015] [Citation(s) in RCA: 202] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 07/05/2005] [Accepted: 11/29/2005] [Indexed: 12/12/2022]
Abstract
Excessive secretion of glucagon is a major contributor to the development of diabetic hyperglycemia. Secretion of glucagon is regulated by various nutrients, with glucose being a primary determinant of the rate of alpha cell glucagon secretion. The intra-islet action of insulin is essential to exert the effect of glucose on the alpha cells since, in the absence of insulin, glucose is not able to suppress glucagon release in vivo. However, the precise mechanism by which insulin suppresses glucagon secretion from alpha cells is unknown. In this study, we show that insulin induces activation of GABAA receptors in the alpha cells by receptor translocation via an Akt kinase-dependent pathway. This leads to membrane hyperpolarization in the alpha cells and, ultimately, suppression of glucagon secretion. We propose that defects in this pathway(s) contribute to diabetic hyperglycemia.
Collapse
Affiliation(s)
- Elaine Xu
- Department of Medicine, University of Toronto, and Division of Endocrinology and Metabolism, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Swanwick CC, Murthy NR, Kapur J. Activity-dependent scaling of GABAergic synapse strength is regulated by brain-derived neurotrophic factor. Mol Cell Neurosci 2005; 31:481-92. [PMID: 16330218 PMCID: PMC2842119 DOI: 10.1016/j.mcn.2005.11.002] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2005] [Revised: 10/17/2005] [Accepted: 11/03/2005] [Indexed: 10/25/2022] Open
Abstract
The homeostatic plasticity hypothesis suggests that neuronal activity scales synaptic strength. This study analyzed effects of activity deprivation on GABAergic synapses in cultured hippocampal neurons using patch clamp electrophysiology to record mIPSCs and immunocytochemistry to visualize presynaptic GAD-65 and the gamma2 subunit of the GABA(A) receptor. When neural activity was blocked for 48 h with tetrodotoxin (TTX, 1 microM), the amplitude of mIPSCs was reduced, corresponding with diminished sizes of GAD-65 puncta and gamma2 clusters. Treatment with the NMDA receptor antagonist APV (50 microM) or the AMPA receptor antagonist DNQX (20 microM) mimicked these effects, and co-application of brain-derived neurotrophic factor (BDNF, 100 ng/mL) overcame them. Moreover, when neurons were treated with BDNF alone for 48 h, these effects were reversed via the TrkB receptor. Overall, these results suggest that activity-dependent scaling of inhibitory synaptic strength can be modulated by BDNF/TrkB-mediated signaling.
Collapse
|
186
|
Diana MA, Bregestovski P. Calcium and endocannabinoids in the modulation of inhibitory synaptic transmission. Cell Calcium 2005; 37:497-505. [PMID: 15820399 DOI: 10.1016/j.ceca.2005.01.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2004] [Accepted: 01/06/2005] [Indexed: 11/20/2022]
Abstract
Synapses in the central nervous system can be highly plastic devices, being able to modify their efficacy in relaying information in response to several factors. Calcium ions are often fundamental in triggering synaptic plasticity. Here, we will shortly review the effects induced by postsynaptic increases of calcium concentration at GABAergic and glycinergic synapses. Both postsynaptic and presynaptic mechanisms mediating changes in synaptic strength will be examined. Particular attention will be devoted to phenomena of retrograde signaling and, specifically, to the recently discovered role, played by the endocannabinoid system in retrograde synaptic modulation.
Collapse
Affiliation(s)
- Marco A Diana
- Laboratoire de Physiologie Cérébrale, CNRS UMR8118, 45, rue des Saints Pères 75006 Paris, France.
| | | |
Collapse
|
187
|
Shen H, Gong QH, Yuan M, Smith SS. Short-term steroid treatment increases delta GABAA receptor subunit expression in rat CA1 hippocampus: pharmacological and behavioral effects. Neuropharmacology 2005; 49:573-86. [PMID: 15950994 PMCID: PMC2887348 DOI: 10.1016/j.neuropharm.2005.04.026] [Citation(s) in RCA: 130] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 04/13/2005] [Accepted: 04/14/2005] [Indexed: 11/29/2022]
Abstract
In this study, 48 h administration of 3alpha-OH-5beta-pregnan-20-one (3alpha,5beta-THP) or 17beta-estradiol (E2)+progesterone (P) to female rats increased expression of the delta subunit of the GABA(A) receptor (GABAR) in CA1 hippocampus. Coexpression of alpha4 and delta subunits was suggested by an increased response of isolated pyramidal cells to the GABA agonist 4,5,6,7- tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP), following 48 h steroid treatment, and nearly complete blockade by 300 microM lanthanum (La3+). Because alpha4betadelta GABAR are extrasynaptic, we also recorded pharmacologically isolated GABAergic holding current from CA1 hippocampal pyramidal cells in the slice. The La3+-sensitive THIP current, representative of current gated by alpha4betadelta GABAR, was measurable only following 48 h steroid treatment. In contrast, the bicuculline-sensitive current was not altered by steroid treatment, assessed with or without 200 nM gabazine to block synaptic current. However, 48 h steroid treatment resulted in a tonic current insensitive to the benzodiazepine agonists lorazepam (10 microM) and zolpidem (100 nM). These results suggest that 48 h steroid treatment increases expression of alpha4betadelta GABAR which replace the ambient receptor population. Increased anxiolytic effects of THIP were also observed following 48 h steroid treatment. The findings from the present study may be relevant for alterations in mood and benzodiazepine sensitivity reported across the menstrual cycle.
Collapse
Affiliation(s)
- Hui Shen
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
- Renmin Hospital, Wuhan University, Jiefanglu, Wuchang, Wuhan, P.R. China 430060
| | - Qi Hua Gong
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Maoli Yuan
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
| | - Sheryl S. Smith
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center, 450 Clarkson Ave., Brooklyn, NY 11203, USA
- Corresponding author: Tel.: +1 718 270 2226; fax: +1 718 270 3103. (S.S. Smith)
| |
Collapse
|
188
|
Ortiz JA, Castillo M, del Toro ED, Mulet J, Gerber S, Valor LM, Sala S, Sala F, Gutiérrez LM, Criado M. The cysteine-rich with EGF-like domains 2 (CRELD2) protein interacts with the large cytoplasmic domain of human neuronal nicotinic acetylcholine receptor alpha4 and beta2 subunits. J Neurochem 2005; 95:1585-96. [PMID: 16238698 DOI: 10.1111/j.1471-4159.2005.03473.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Using a yeast two-hybrid screening we report the isolation of a novel human protein, hCRELD2beta, that interacts specifically with the large cytoplasmic regions of human nicotinic acetylcholine receptor (nAChR) alpha4 and beta2 subunits, both in yeast cells and in vitro. This interaction is not detected with nAChR alpha7 and alpha3 subunits. The hCRELD2 gene encodes for multiple transcripts, likely to produce multiple protein isoforms. A previously reported one has been renamed as CRELD2alpha. Isoforms alpha and beta are expressed in all tissues examined and have the same N-terminal and central regions but alternative C-terminal regions. Both isoforms interact with the alpha4 subunit. Within this subunit the interaction was localized to the N-terminal region of the large cytoplasmic loop. The CRELD2beta protein is present at the endoplasmic reticulum where colocalized with alpha4beta2 nAChRs upon cell transfection. Immunohistochemistry experiments demonstrated the presence of CRELD2 in the rat brain at sites where alpha4beta2 receptors have been previously detected. Labeling was restricted to neuronal perikarya. Finally, CRELD2 decreases the functional expression and impairs membrane transport of alpha4beta2 nAChRs in Xenopus leavis oocytes, without affecting alpha3beta4 and alpha7 nAChR expression. These results suggest that CRELD2 can act as a specific regulator of alpha4beta2 nAChR expression.
Collapse
Affiliation(s)
- José A Ortiz
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant, Alicante, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Abstract
Ligand-gated ion channels, or ionotropic receptors, constitute a group of membrane-bound proteins that regulate the flux of ions across the cell membrane. In the brain, ligand-gated ion channels mediate fast neurotransmission. They are crucial for normal brain function and involved in many diseases in the brain. Historically, natural products have been used extensively in biomedical studies and ultimately as drugs or leads for drug design. In studies of ligand-gated ion channels, natural products have been essential for the understanding of their structure and function. In the following a short survey of natural products and their use in studies of ligand-gated ion channels is given.
Collapse
Affiliation(s)
- Kristian Strømgaard
- Department of Medicinal Chemistry, The Danish University of Pharmaceutical Sciences, DK-2100 Copenhagen, Denmark.
| |
Collapse
|
190
|
Goto H, Terunuma M, Kanematsu T, Misumi Y, Moss SJ, Hirata M. Direct interaction of N-ethylmaleimide-sensitive factor with GABAA receptor β subunits. Mol Cell Neurosci 2005; 30:197-206. [PMID: 16095914 DOI: 10.1016/j.mcn.2005.07.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2005] [Revised: 06/30/2005] [Accepted: 07/14/2005] [Indexed: 11/16/2022] Open
Abstract
GABA(A) receptors mediate most of the fast inhibitory neurotransmission in the brain, and are believed to be composed mainly of alpha, beta, and gamma subunits. It has been shown that GABA(A) receptors interact with a number of binding partners that act to regulate both receptor function and cell surface stability. Here, we reveal that GABA(A) receptors interact directly with N-ethylmaleimide-sensitive factor (NSF), a critical regulator of vesicular dependent protein trafficking, as measured by in vitro protein binding and co-immunoprecipitation assays. In addition, we established that NSF interacts with residues 395-415 of the receptor beta subunits and co-localizes with GABA(A) receptors in hippocampal neurons. We also established that NSF can regulate GABA(A) receptor cell surface expression depending upon residues 395-415 in the beta3 subunit. Together, our results suggest an important role for NSF activity in regulating the cell surface stability of GABA(A) receptors.
Collapse
Affiliation(s)
- Hidefumi Goto
- Laboratory of Molecular and Cellular Biochemistry, Faculty of Dental Science and Station for Collaborative Research, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | |
Collapse
|
191
|
Kittler JT, Chen G, Honing S, Bogdanov Y, McAinsh K, Arancibia-Carcamo IL, Jovanovic JN, Pangalos MN, Haucke V, Yan Z, Moss SJ. Phospho-dependent binding of the clathrin AP2 adaptor complex to GABAA receptors regulates the efficacy of inhibitory synaptic transmission. Proc Natl Acad Sci U S A 2005; 102:14871-6. [PMID: 16192353 PMCID: PMC1253579 DOI: 10.1073/pnas.0506653102] [Citation(s) in RCA: 138] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The efficacy of synaptic inhibition depends on the number of gamma-aminobutyric acid type A receptors (GABA(A)Rs) expressed on the cell surface of neurons. The clathrin adaptor protein 2 (AP2) complex is a critical regulator of GABA(A)R endocytosis and, hence, surface receptor number. Here, we identify a previously uncharacterized atypical AP2 binding motif conserved within the intracellular domains of all GABA(A)R beta subunit isoforms. This AP2 binding motif (KTHLRRRSSQLK in the beta3 subunit) incorporates the major sites of serine phosphorylation within receptor beta subunits, and phosphorylation within this site inhibits AP2 binding. Furthermore, by using surface plasmon resonance, we establish that a peptide (pepbeta3) corresponding to the AP2 binding motif in the GABA(A)R beta3 subunit binds to AP2 with high affinity only when dephosphorylated. Moreover, the pepbeta3 peptide, but not its phosphorylated equivalent (pepbeta3-phos), enhanced the amplitude of miniature inhibitory synaptic current and whole cell GABA(A)R current. These effects of pepbeta3 on GABA(A)R current were occluded by inhibitors of dynamin-dependent endocytosis supporting an action of pepbeta3 on GABA(A)R endocytosis. Therefore phospho-dependent regulation of AP2 binding to GABA(A)Rs provides a mechanism to specify receptor cell surface number and the efficacy of inhibitory synaptic transmission.
Collapse
Affiliation(s)
- Josef T Kittler
- Department of Physiology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
192
|
Kim M, Wasling P, Xiao MY, Jennische E, Lange S, Hanse E. Antisecretory factor modulates GABAergic transmission in the rat hippocampus. ACTA ACUST UNITED AC 2005; 129:109-18. [PMID: 15927705 DOI: 10.1016/j.regpep.2005.01.018] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2004] [Revised: 01/12/2005] [Accepted: 01/27/2005] [Indexed: 11/16/2022]
Abstract
Antisecretory Factor (AF) is a protein that has been implicated in the suppression of intestinal hypersecretion and inflammation. Intestinal secretion and inflammation are partly under local and central neural control raising the possibility that AF might exert its action by modulating neural signaling. In the present study we have investigated whether AF can modulate central synaptic transmission. Evoked glutamatergic and GABAergic synaptic transmissions were investigated using extracellular recordings in the CA1 region of hippocampal slices from adult rats. AF (0.5 microg/ml) suppressed GABA(A)-mediated synaptic transmission by about 40% while having no effect on glutamatergic transmission. Per oral administration of cholera toxin as well as feeding of rats with a diet containing hydrothermally processed cereals, known to upregulate endogenous AF plasma activity, mimicked the effect of exogenously administered AF on hippocampal GABAergic transmission. Our results identify AF as a neuromodulator and further raise the possibility that the hippocampus and AF are involved in a gut-brain loop controlling intestinal secretion and inflammation.
Collapse
Affiliation(s)
- Malin Kim
- Institute of Physiology and Pharmacology, Göteborg University, Sweden
| | | | | | | | | | | |
Collapse
|
193
|
Foeller E, Celikel T, Feldman DE. Inhibitory sharpening of receptive fields contributes to whisker map plasticity in rat somatosensory cortex. J Neurophysiol 2005; 94:4387-400. [PMID: 16162832 PMCID: PMC3070316 DOI: 10.1152/jn.00553.2005] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The role of inhibition in sensory cortical map plasticity is not well understood. Here we tested whether inhibition contributes to expression of receptive field plasticity in developing rat somatosensory (S1) cortex. In normal rats, microiontophoresis of gabazine (SR 95531), a competitive gamma-aminobutyric acid (GABA)-A receptor antagonist, preferentially disinhibited surround whisker responses relative to principal whisker responses, indicating that GABA(A) inhibition normally acts to sharpen whisker tuning. Plasticity was induced by transiently depriving adolescent rats of all but one whisker; this causes layer 2/3 (L2/3) receptive fields to shift away from the deprived principal whisker and toward the spared surround whisker. In units with shifted receptive fields, gabazine preferentially disinhibited responses to the deprived principal whisker, unlike in controls, suggesting that GABA(A) inhibition was acting to preferentially suppress these responses relative to spared whisker responses. This effect was not observed for L2/3 units that did not express receptive field plasticity or in layer 4, where receptive field plasticity did not occur. Thus GABA(A) inhibition promoted expression of sensory map plasticity by helping to sharpen receptive fields around the spared input.
Collapse
Affiliation(s)
- Elisabeth Foeller
- Division of Biological Sciences, University of California San Diego, La Jolla, USA.
| | | | | |
Collapse
|
194
|
Genzen JR, McGehee DS. Nicotinic modulation of GABAergic synaptic transmission in the spinal cord dorsal horn. Brain Res 2005; 1031:229-37. [PMID: 15649448 DOI: 10.1016/j.brainres.2004.10.042] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/30/2004] [Indexed: 10/26/2022]
Abstract
While the mechanisms underlying nicotinic acetylcholine receptor (nAChR)-mediated analgesia remain unresolved, one process that is almost certainly involved is the recently-described nicotinic enhancement of inhibitory synaptic transmission in the spinal cord dorsal horn. Despite these observations, the prototypical nicotinic analgesic (epibatidine) has not yet been shown to modulate inhibitory transmission in the spinal cord. Furthermore, while nAChRs have been implicated in short-term modulation, no studies have investigated the role of nAChRs in the modulation of long-term synaptic plasticity of inhibitory transmission in dorsal horn. Whole-cell patch clamp recordings from dorsal horn neurons of neonatal rat spinal cord slices were therefore conducted to investigate the short- and long-term effects of nicotinic agonists on GABAergic transmission. GABAergic synaptic transmission was enhanced in 86% of neurons during applications of 1 microM nicotine (mean increased spontaneous GABAergic inhibitory postsynaptic current (sIPSC) frequency was approximately 500% of baseline). Epibatidine (100 nM) induced an increase to an average of approximately 3000% of baseline, and this effect was concentration dependent (EC50=43 nM). Nicotinic enhancement was inhibited by mecamylamine and DHbetaE, suggesting an important role for non-alpha7 nAChRs. Tetrodotoxin (TTX) did not alter the prevalence or magnitude of the effect of nicotine, but the responses had a shorter duration. Nicotine did not alter evoked GABAergic IPSC amplitude, yet the long-term depression (LTD) induced by strong stimulation of inhibitory inputs was reduced when paired with nicotine. These results provide support for a mechanism of nicotinic analgesia dependent on both short and long-term modulation of GABAergic synaptic transmission in the spinal cord dorsal horn.
Collapse
Affiliation(s)
- Jonathan R Genzen
- Committee on Neurobiology, University of Chicago, Chicago, IL 60637, USA
| | | |
Collapse
|
195
|
Castillo M, Mulet J, Gutiérrez LM, Ortiz JA, Castelán F, Gerber S, Sala S, Sala F, Criado M. Dual Role of the RIC-3 Protein in Trafficking of Serotonin and Nicotinic Acetylcholine Receptors. J Biol Chem 2005; 280:27062-8. [PMID: 15927954 DOI: 10.1074/jbc.m503746200] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The ric-3 gene is required for maturation of nicotinic acetylcholine receptors in Caenorhabditis elegans. The human homolog of RIC-3, hRIC-3, enhances expression of alpha7 nicotinic receptors in Xenopus laevis oocytes, whereas it totally abolishes expression of alpha4beta2 nicotinic and 5-HT3 serotonergic receptors. Both the N-terminal region of hRIC-3, which contains two transmembrane segments, and the C-terminal region are needed for these differential effects. hRIC-3 inhibits receptor expression by hindering export of mature receptors to the cell membrane. By using chimeric proteins made of alpha7 and 5-HT3 receptors, we have shown that the presence of an extracellular isoleucine close to the first transmembrane receptor fragment is responsible for the transport arrest induced by hRIC-3. Enhancement of alpha7 receptor expression occurs, at least, at two levels: by increasing the number of mature receptors and facilitating its transport to the membrane. Certain amino acids of a putative amphipathic helix present at the large cytoplasmic region of the alpha7 subunit are required for these actions. Therefore, hRIC-3 can act as a specific regulator of receptor expression at different levels.
Collapse
Affiliation(s)
- Mar Castillo
- Instituto de Neurociencias de Alicante, Universidad Miguel Hernández-Consejo Superior de Investigaciones Científicas, Apartado 18, 03550 Sant Joan d'Alacant, Alicante, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
196
|
Holt AG, Asako M, Lomax CA, MacDonald JW, Tong L, Lomax MI, Altschuler RA. Deafness-related plasticity in the inferior colliculus: gene expression profiling following removal of peripheral activity. J Neurochem 2005; 93:1069-86. [PMID: 15934929 DOI: 10.1111/j.1471-4159.2005.03090.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The inferior colliculus (IC) is a major center of integration in the ascending as well as descending auditory pathways, where both excitatory and inhibitory amino acid neurotransmitters play a key role. When normal input to the auditory system is decreased, the balance between excitation and inhibition in the IC is disturbed. We examined global changes in gene expression in the rat IC 3 and 21 days following bilateral deafening, using Affymetrix GeneChip arrays and focused our analysis on changes in expression of neurotransmission-related genes. Over 1400 probe sets in the Affymetrix Rat Genome U34A Array were identified as genes that were differentially expressed. These genes encoded proteins previously reported to change as a consequence of deafness, such as calbindin, as well as proteins not previously reported to be modulated by deafness, such as clathrin. A subset of 19 differentially expressed genes was further examined using quantitative RT-PCR at 3, 21 and 90 days following deafness. These included several GABA, glycine, glutamate receptor and neuropeptide-related genes. Expression of genes for GABA-A receptor subunits beta2, beta3, and gamma2, plus ionotropic glutamate receptor subunits AMPA 2, AMPA 3, and kainate 2, increased at all three times. Expression of glycine receptor alpha1 initially declined and then later increased, while alpha2 increased sharply at 21 days. Glycine receptor alpha3 increased between 3 and 21 days, but decreased at 90 days. Of the neuropeptide-related genes tested with qRT-PCR, tyrosine hydroxylase decreased approximately 50% at all times tested. Serotonin receptor 2C increased at 3, 21, and 90 days. The 5B serotonin receptor decreased at 3 and 21 days and returned to normal by 90 days. Of the genes tested with qRT-PCR, only glycine receptor alpha2 and serotonin receptor 5B returned to normal levels of expression at 90 days. Changes in GABA receptor beta3, GABA receptor gamma2, glutamate receptor 2/3, enkephalin, and tyrosine hydroxylase were further confirmed using immunocytochemistry.
Collapse
Affiliation(s)
- Avril Genene Holt
- Kresge Hearing Research Institute, Department of Otolaryngology/Head Neck Surgery, University of Michigan, Ann Arbor, Michigan, USA.
| | | | | | | | | | | | | |
Collapse
|
197
|
Thomas P, Mortensen M, Hosie AM, Smart TG. Dynamic mobility of functional GABAA receptors at inhibitory synapses. Nat Neurosci 2005; 8:889-97. [PMID: 15951809 DOI: 10.1038/nn1483] [Citation(s) in RCA: 145] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2005] [Accepted: 05/17/2005] [Indexed: 02/06/2023]
Abstract
Importing functional GABAA receptors into synapses is fundamental for establishing and maintaining inhibitory transmission and for controlling neuronal excitability. By introducing a binding site for an irreversible inhibitor into the GABAA receptor alpha1 subunit channel lining region that can be accessed only when the receptor is activated, we have determined the dynamics of receptor mobility between synaptic and extrasynaptic locations in hippocampal pyramidal neurons. We demonstrate that the cell surface GABAA receptor population shows no fast recovery after irreversible inhibition. In contrast, after selective inhibition, the synaptic receptor population rapidly recovers by the import of new functional entities within minutes. The trafficking pathways that promote rapid importation of synaptic receptors do not involve insertion from intracellular pools, but reflect receptor diffusion within the plane of the membrane. This process offers the synapse a rapid mechanism to replenish functional GABAA receptors at inhibitory synapses and a means to control synaptic efficacy.
Collapse
Affiliation(s)
- Philip Thomas
- Department of Pharmacology, University College London, Gower Street, London WC1 E 6BT, UK
| | | | | | | |
Collapse
|
198
|
Dalskov SM, Immerdal L, Niels-Christiansen LL, Hansen GH, Schousboe A, Danielsen EM. Lipid raft localization of GABAA receptor and Na+, K+-ATPase in discrete microdomain clusters in rat cerebellar granule cells. Neurochem Int 2005; 46:489-99. [PMID: 15769551 DOI: 10.1016/j.neuint.2004.11.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2004] [Revised: 11/29/2004] [Accepted: 11/30/2004] [Indexed: 12/20/2022]
Abstract
The microdomain localization of the GABA(A) receptor in rat cerebellar granule cells was studied by subcellular fractionation and fluorescence- and immunogold electron microscopy. The receptor resided in lipid rafts, prepared at 37 degrees C by extraction with the nonionic detergent Brij 98, but the raft fraction, defined by the marker ganglioside GM(1) in the floating fractions following density gradient centrifugation, was heterogeneous in density and protein composition. Thus, another major raft-associated membrane protein, the Na(+), K(+)-ATPase, was found in discrete rafts of lower density, reflecting clustering of the two proteins in separate membrane microdomains. Both proteins were observed in patchy "hot spots" at the cell surface as well as in isolated lipid rafts. Their insolubility in Brij 98 was only marginally affected by methyl-beta-cyclodextrin. In contrast, both the GABA(A) receptor and Na(+), K(+)-ATPase were largely soluble in ice cold Triton X-100. This indicates that Brij 98 extraction defines an unusual type of cholesterol-independent lipid rafts that harbour membrane proteins also associated with underlying scaffolding/cytoskeletal proteins such as gephyrin (GABA(A) receptor) and ankyrin G (Na(+), K(+)-ATPase). By providing an ordered membrane microenvironment, lipid rafts may contribute to the clustering of the GABA(A) receptor and the Na(+), K(+)-ATPase at distinct functional locations on the cell surface.
Collapse
Affiliation(s)
- Stine-Mathilde Dalskov
- Department of Medical Biochemistry and Genetics, The Panum Institute, University of Copenhagen, 3 Blegdamsvej, DK-2200 Copenhagen N, Denmark
| | | | | | | | | | | |
Collapse
|
199
|
van Rijnsoever C, Sidler C, Fritschy JM. Internalized GABA-receptor subunits are transferred to an intracellular pool associated with the postsynaptic density. Eur J Neurosci 2005; 21:327-38. [PMID: 15673433 DOI: 10.1111/j.1460-9568.2005.03884.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Endocytosis represents an important mechanism regulating cell-surface expression of neurotransmitter receptors, including GABAA receptors, in neurons. Little is known, however, about trafficking of internalized receptors. Here, we used antibody tagging in living rat hippocampal neurons in culture to monitor GABAA receptor internalization. We show that cell-surface receptors have a homogeneous distribution reflecting their mobility in the membrane. Unexpectedly, internalized GABAA receptors were detected mainly in a subsynaptic pool associated with gephyrin at postsynaptic sites, whereas AMPA-type glutamate receptors were accumulated in the soma. This process was time-dependent and could be prevented by blocking clathrin-coated vesicle endocytosis. In control experiments, the existence of an intracellular pool of GABAA receptors associated with gephyrin was confirmed independently of internalization of surface receptors, and constitutive endocytosis, unrelated to antibody-tagging, could be demonstrated for both AMPA and GABAA receptors using a biotinylation assay. These results suggest that cycling of GABAA receptors between the cell surface and the subsynaptic pool provides a mechanism for the short-term regulation of GABAergic neurotransmission. Furthermore, the close association of gephyrin with internalized GABAA receptors suggests a role in intracellular receptor trafficking.
Collapse
Affiliation(s)
- Carolien van Rijnsoever
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | | | | |
Collapse
|
200
|
Farrant M, Nusser Z. Variations on an inhibitory theme: phasic and tonic activation of GABA(A) receptors. Nat Rev Neurosci 2005; 6:215-29. [PMID: 15738957 DOI: 10.1038/nrn1625] [Citation(s) in RCA: 1629] [Impact Index Per Article: 81.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The proper functioning of the adult mammalian brain relies on the orchestrated regulation of neural activity by a diverse population of GABA (gamma-aminobutyric acid)-releasing neurons. Until recently, our appreciation of GABA-mediated inhibition focused predominantly on the GABA(A) (GABA type A) receptors located at synaptic contacts, which are activated in a transient or 'phasic' manner by GABA that is released from synaptic vesicles. However, there is growing evidence that low concentrations of ambient GABA can persistently activate certain subtypes of GABA(A) receptor, which are often remote from synapses, to generate a 'tonic' conductance. In this review, we consider the distinct roles of synaptic and extrasynaptic GABA receptor subtypes in the control of neuronal excitability.
Collapse
Affiliation(s)
- Mark Farrant
- Department of Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | | |
Collapse
|