151
|
|
152
|
Großkinsky DK, Koffler BE, Roitsch T, Maier R, Zechmann B. Compartment-specific antioxidative defense in Arabidopsis against virulent and avirulent Pseudomonas syringae. PHYTOPATHOLOGY 2012; 102:662-73. [PMID: 22571419 PMCID: PMC3822284 DOI: 10.1094/phyto-02-12-0022-r] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The accumulation of reactive oxygen species (ROS) during biotic stress is either part of a hypersensitive response of the plant or induced directly by the pathogen. Antioxidants such as ascorbate and glutathione counteract the accumulation of ROS and are part of the defense reaction. The aim of the present study was to investigate the compartment-specific importance of ascorbate and glutathione during a virulent and avirulent Pseudomonas syringae infection in Arabidopsis thaliana. Peroxisomes were found to be the hotspot for glutathione accumulation reaching 452% and 258% of control levels 24 h postinoculation during the virulent and avirulent infection, respectively. An accumulation of ascorbate could also be observed in vacuoles during Pseudomonas syringae infection, whereas glutathione remained absent in this cell compartment. Neither glutathione nor ascorbate accumulated in the apoplast during pathogen infection demonstrating an only negligible role of these antioxidants in the apoplast during pathogen infection. Compartment-specific changes followed a recently proposed stress model with an increase of ascorbate and glutathione in most cell compartments at the early stages of infection and a strong drop at the later stage of infection when a strong accumulation of ROS and symptoms occurred in the leaves. This study highlights the importance of certain cell compartments and antioxidants in general for the protection of pathogen-induced ROS accumulation.
Collapse
|
153
|
Sakamoto S, Fujikawa Y, Tanaka N, Esaka M. Molecular cloning and characterization of L-galactose-1-phosphate phosphatase from tobacco (Nicotiana tabacum). Biosci Biotechnol Biochem 2012; 76:1155-62. [PMID: 22790939 DOI: 10.1271/bbb.110995] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
L-Galactose-1-phosphate phosphatase (GPPase) is an enzyme involved in ascorbate biosynthesis in higher plants. We isolated a cDNA encoding GPPase from tobacco, and named it NtGPPase. The putative amino acid sequence of NtGPPase contained inositol monophosphatase motifs and metal binding sites. Recombinant NtGPPase hydrolyzed not only L-galactose-1-phosphate, but also myo-inositol-1-phosphate. The optimum pH for the GPPase activity of NtGPPase was 7.5. Its enzyme activity required Mg2+, and was inhibited by Li+ and Ca2+. Its fluorescence, fused with green fluorescence protein in onion cells and protoplasts of tobacco BY-2 cells, was observed in both the cytosol and nucleus. The expression of NtGPPase mRNA and protein was clearly correlated with L-ascorbic acid (AsA) contents of BY-2 cells during culture. The AsA contents of NtGPPase over expression lines were higher than those of empty lines at 13 d after subculture. This suggests that NtGPPase contributes slightly to AsA biosynthesis.
Collapse
Affiliation(s)
- Shingo Sakamoto
- Graduate School of Biosphere Sciences, Hiroshima University, Hiroshima, Japan
| | | | | | | |
Collapse
|
154
|
Zhang CJ, Guo Y. OsTRXh1 regulates the redox state of the apoplast and influences stress responses in rice. PLANT SIGNALING & BEHAVIOR 2012; 7:440-442. [PMID: 22499210 PMCID: PMC3443930 DOI: 10.4161/psb.19244] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
The plant cell apoplast is the compartment beyond the cell plasmalemma, including the cell wall and intercellular space. Many environmental elements can trigger reactive oxygen species (ROS) burst at the plasma membrane which then alters the redox state of the apoplast. Recently, h-type thioredoxin (Trx), OsTRXh1, was identified to be involved in apoplastic redox state regulation in rice. OsTRXh1 is conserved redox-active Trx and can be secreted into the extracellular regions. Through transgenic rice plant, we found that OsTRXh1 regulated ROS accumulation in apoplast and influenced plant development and stress responses. This provides new insights into apoplastic redox state regulation pathway and expands our understanding of h-type Trxs function.
Collapse
Affiliation(s)
| | - Yi Guo
- * Correspondence to: Yi Guo;
| |
Collapse
|
155
|
Schertl P, Sunderhaus S, Klodmann J, Grozeff GEG, Bartoli CG, Braun HP. L-galactono-1,4-lactone dehydrogenase (GLDH) forms part of three subcomplexes of mitochondrial complex I in Arabidopsis thaliana. J Biol Chem 2012; 287:14412-9. [PMID: 22378782 DOI: 10.1074/jbc.m111.305144] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
L-galactono-1,4-lactone dehydrogenase (GLDH) catalyzes the terminal step of the Smirnoff-Wheeler pathway for vitamin C (l-ascorbate) biosynthesis in plants. A GLDH in gel activity assay was developed to biochemically investigate GLDH localization in plant mitochondria. It previously has been shown that GLDH forms part of an 850-kDa complex that represents a minor form of the respiratory NADH dehydrogenase complex (complex I). Because accumulation of complex I is disturbed in the absence of GLDH, a role of this enzyme in complex I assembly has been proposed. Here we report that GLDH is associated with two further protein complexes. Using native gel electrophoresis procedures in combination with the in gel GLDH activity assay and immunoblotting, two mitochondrial complexes of 470 and 420 kDa were identified. Both complexes are of very low abundance. Protein identifications by mass spectrometry revealed that they include subunits of complex I. Finally, the 850-kDa complex was further investigated and shown to include the complete "peripheral arm" of complex I. GLDH is attached to a membrane domain, which represents a major fragment of the "membrane arm" of complex I. Taken together, our data further support a role of GLDH during complex I formation, which is based on its binding to specific assembly intermediates.
Collapse
Affiliation(s)
- Peter Schertl
- Institut für Pflanzengenetik, Abteilung Pflanzenproteomik, Universität Hannover, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | | | | | | | | | | |
Collapse
|
156
|
Yakabe Y, Terato M, Higa A, Yamada K, Kitamura Y. Iron availability alters ascorbate-induced stress metabolism in Glehnia littoralis root cultures. PHYTOCHEMISTRY 2012; 74:100-104. [PMID: 22115175 DOI: 10.1016/j.phytochem.2011.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Revised: 09/26/2011] [Accepted: 10/31/2011] [Indexed: 05/31/2023]
Abstract
Our previous study indicated that formation of furanocoumarin phytoalexins could be induced in Glehnia littoralis root cultures by treatment with 10-40 mM ascorbic acid (AsA). This furanocoumarin production is much less evident when G. littoralis roots are treated with AsA under iron-deficient conditions. Instead, two large unknown peaks appeared in the HPLC chromatogram, whose chemical structures were elucidated by spectroscopic methods as being 6, β-dihydroxyphenethyl ferulate (DF) and 6-hydroxyphenethyl ferulate (HF), respectively. Their maximal level of induction was observed at 20 mM AsA, and the production of DF always exceeded that of HF. This is the first report of these compounds in G. littoralis and of the modulation of the phytoalexin biosynthetic pathway in G. littoralis by iron deficiency.
Collapse
Affiliation(s)
- Yukino Yakabe
- Graduate School of Science and Technology, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | | | | | | | | |
Collapse
|
157
|
Barba-Espín G, Hernández JA, Diaz-Vivancos P. Role of H₂O₂ in pea seed germination. PLANT SIGNALING & BEHAVIOR 2012; 7:193-5. [PMID: 22415047 PMCID: PMC3405688 DOI: 10.4161/psb.18881] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The imbibition of pea seeds with hydrogen peroxide H₂O₂ increased the germination as well as the seedling growth, producing an invigoration of the seeds. We propose that H₂O₂ could acts as signaling molecule in the beginning of seed germination involving specific changes at proteomic, transcriptomic and hormonal levels. These findings have practical implication in the context of seed priming technologies to invigorate low vigour seeds.
Collapse
Affiliation(s)
- Gregorio Barba-Espín
- Grupo de Biotecnologi´a de Frutales; CEBAS-CSIC; Campus Espinardo; Murcia, Spain
| | | | - Pedro Diaz-Vivancos
- Grupo de Biotecnologi´a de Frutales; CEBAS-CSIC; Campus Espinardo; Murcia, Spain
| |
Collapse
|
158
|
Puckette M, Iyer NJ, Tang Y, Dai XB, Zhao P, Mahalingam R. Differential mRNA translation in Medicago truncatula accessions with contrasting responses to ozone-induced oxidative stress. MOLECULAR PLANT 2012; 5:187-204. [PMID: 21873294 DOI: 10.1093/mp/ssr069] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Acute ozone is a model abiotic elicitor of oxidative stress and a useful tool for understanding biochemical and molecular events during oxidative signaling. Two Medicago truncatula accessions with contrasting responses to ozone were used to examine translational regulation during ozone stress. In ozone-resistant JE154, significant reduction in ribosome loading was observed within one hour of ozone treatment, suggesting energy homeostasis as a vital factor for oxidative stress management. Polysomal RNA-based expression profiling with Affymetrix arrays revealed extensive changes in the translatomes of both accessions. Messenger RNAs with low GC content in their 5' and 3'-UTRs were preferentially associated with polysomes during oxidative stress. Genebins analysis revealed extensive changes in various gene ontologies in both accessions. Extensive changes in nicotinate and nicotinamide metabolism genes were corroborated with increased levels of NAD(+) and NADH in JE154. The significantly lower NAD(+):NADH redox status in JE154, in conjunction with higher ATP amounts, provided a cellular milieu conducive for overcoming oxidative stress. Low levels of ATP, NADH, and suppression of antioxidant defense responses, abet build-up of ozone-derived ROS and ultimately lead to oxidative cell death in Jemalong.
Collapse
Affiliation(s)
- Michael Puckette
- 246 Noble Research Center, Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK 74078, USA
| | | | | | | | | | | |
Collapse
|
159
|
Zepeda-Jazo I, Velarde-Buendía AM, Enríquez-Figueroa R, Bose J, Shabala S, Muñiz-Murguía J, Pottosin II. Polyamines interact with hydroxyl radicals in activating Ca(2+) and K(+) transport across the root epidermal plasma membranes. PLANT PHYSIOLOGY 2011; 157:2167-80. [PMID: 21980172 PMCID: PMC3327209 DOI: 10.1104/pp.111.179671] [Citation(s) in RCA: 104] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Accepted: 10/03/2011] [Indexed: 05/18/2023]
Abstract
Reactive oxygen species (ROS) are integral components of the plant adaptive responses to environment. Importantly, ROS affect the intracellular Ca(2+) dynamics by activating a range of nonselective Ca(2+)-permeable channels in plasma membrane (PM). Using patch-clamp and noninvasive microelectrode ion flux measuring techniques, we have characterized ionic currents and net K(+) and Ca(2+) fluxes induced by hydroxyl radicals (OH(•)) in pea (Pisum sativum) roots. OH(•), but not hydrogen peroxide, activated a rapid Ca(2+) efflux and a more slowly developing net Ca(2+) influx concurrent with a net K(+) efflux. In isolated protoplasts, OH(•) evoked a nonselective current, with a time course and a steady-state magnitude similar to those for a K(+) efflux in intact roots. This current displayed a low ionic selectivity and was permeable to Ca(2+). Active OH(•)-induced Ca(2+) efflux in roots was suppressed by the PM Ca(2+) pump inhibitors eosine yellow and erythrosine B. The cation channel blockers gadolinium, nifedipine, and verapamil and the anionic channel blockers 5-nitro-2(3-phenylpropylamino)-benzoate and niflumate inhibited OH(•)-induced ionic currents in root protoplasts and K(+) efflux and Ca(2+) influx in roots. Contrary to expectations, polyamines (PAs) did not inhibit the OH(•)-induced cation fluxes. The net OH(•)-induced Ca(2+) efflux was largely prolonged in the presence of spermine, and all PAs tested (spermine, spermidine, and putrescine) accelerated and augmented the OH(•)-induced net K(+) efflux from roots. The latter effect was also observed in patch-clamp experiments on root protoplasts. We conclude that PAs interact with ROS to alter intracellular Ca(2+) homeostasis by modulating both Ca(2+) influx and efflux transport systems at the root cell PM.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Igor I. Pottosin
- Centro Universitario de Investigaciones Biomédicas, Universidad de Colima, 28045 Colima, Mexico (I.Z.-J., A.M.V.-B., R.E.-F., J.M.-M., I.I.P.); School of Agricultural Science, University of Tasmania, Hobart, Tasmania 7001, Australia (J.B., S.S.)
| |
Collapse
|
160
|
Zhang CJ, Zhao BC, Ge WN, Zhang YF, Song Y, Sun DY, Guo Y. An apoplastic h-type thioredoxin is involved in the stress response through regulation of the apoplastic reactive oxygen species in rice. PLANT PHYSIOLOGY 2011; 157:1884-99. [PMID: 22010108 PMCID: PMC3327207 DOI: 10.1104/pp.111.182808] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Thioredoxins (Trxs) are a multigenic family of proteins in plants that play a critical role in redox balance regulation through thiol-disulfide exchange reactions. There are 10 members of the h-type Trxs in rice (Oryza sativa), and none of them has been clearly characterized. Here, we demonstrate that OsTRXh1, a subgroup I h-type Trx in rice, possesses reduction activity in vitro and complements the hydrogen peroxide sensitivity of Trx-deficient yeast mutants. OsTRXh1 is ubiquitously expressed in rice, and its expression is induced by salt and abscisic acid treatments. Intriguingly, OsTRXh1 is secreted into the extracellular space, and salt stress in the apoplast of rice induces its expression at the protein level. The knockdown of OsTRXh1 results in dwarf plants with fewer tillers, whereas the overexpression of OsTRXh1 leads to a salt-sensitive phenotype in rice. In addition, both the knockdown and overexpression of OsTRXh1 decrease abscisic acid sensitivity during seed germination and seedling growth. We also analyzed the levels of hydrogen peroxide produced in transgenic plants, and the results show that more hydrogen peroxide is produced in the extracellular space of OsTRXh1 knockdown plants than in wild-type plants, whereas the OsTRXh1 overexpression plants produce less hydrogen peroxide under salt stress. These results show that OsTRXh1 regulates the redox state of the apoplast and influences plant development and stress responses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yi Guo
- Corresponding author; e-mail
| |
Collapse
|
161
|
Pöggeler S. Evolution of multicopper oxidase genes in coprophilous and non-coprophilous members of the order sordariales. Curr Genomics 2011; 12:95-103. [PMID: 21966247 PMCID: PMC3129052 DOI: 10.2174/138920211795564368] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 03/07/2011] [Accepted: 03/07/2011] [Indexed: 02/05/2023] Open
Abstract
Multicopper oxidases (MCO) catalyze the biological oxidation of various aromatic substrates and have been identified in plants, insects, bacteria, and wood rotting fungi. In nature, they are involved in biodegradation of biopolymers such as lignin and humic compounds, but have also been tested for various industrial applications. In fungi, MCOs have been shown to play important roles during their life cycles, such as in fruiting body formation, pigment formation and pathogenicity. Coprophilous fungi, which grow on the dung of herbivores, appear to encode an unexpectedly high number of enzymes capable of at least partly degrading lignin. This study compared the MCO-coding capacity of the coprophilous filamentous ascomycetes Podospora anserina and Sordaria macrospora with closely related non-coprophilous members of the order Sordariales. An increase of MCO genes in coprophilic members of the Sordariales most probably occurred by gene duplication and horizontal gene transfer events.
Collapse
Affiliation(s)
- Stefanie Pöggeler
- Department of Genetics of Eukaryotic Microorganisms, Institute of Microbiology and Genetics, Georg-August University Göttingen, Grisebachstr. 8, 37077 Göttingen, Germany
| |
Collapse
|
162
|
Pristov JB, Mitrović A, Spasojević I. A comparative study of antioxidative activities of cell-wall polysaccharides. Carbohydr Res 2011; 346:2255-9. [DOI: 10.1016/j.carres.2011.07.015] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2011] [Revised: 07/14/2011] [Accepted: 07/18/2011] [Indexed: 10/18/2022]
|
163
|
Tisi A, Federico R, Moreno S, Lucretti S, Moschou PN, Roubelakis-Angelakis KA, Angelini R, Cona A. Perturbation of polyamine catabolism can strongly affect root development and xylem differentiation. PLANT PHYSIOLOGY 2011; 157:200-15. [PMID: 21746808 PMCID: PMC3165870 DOI: 10.1104/pp.111.173153] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2011] [Accepted: 07/11/2011] [Indexed: 05/02/2023]
Abstract
Spermidine (Spd) treatment inhibited root cell elongation, promoted deposition of phenolics in cell walls of rhizodermis, xylem elements, and vascular parenchyma, and resulted in a higher number of cells resting in G(1) and G(2) phases in the maize (Zea mays) primary root apex. Furthermore, Spd treatment induced nuclear condensation and DNA fragmentation as well as precocious differentiation and cell death in both early metaxylem and late metaxylem precursors. Treatment with either N-prenylagmatine, a selective inhibitor of polyamine oxidase (PAO) enzyme activity, or N,N(1)-dimethylthiourea, a hydrogen peroxide (H(2)O(2)) scavenger, reverted Spd-induced autofluorescence intensification, DNA fragmentation, inhibition of root cell elongation, as well as reduction of percentage of nuclei in S phase. Transmission electron microscopy showed that N-prenylagmatine inhibited the differentiation of the secondary wall of early and late metaxylem elements, and xylem parenchymal cells. Moreover, although root growth and xylem differentiation in antisense PAO tobacco (Nicotiana tabacum) plants were unaltered, overexpression of maize PAO (S-ZmPAO) as well as down-regulation of the gene encoding S-adenosyl-l-methionine decarboxylase via RNAi in tobacco plants promoted vascular cell differentiation and induced programmed cell death in root cap cells. Furthermore, following Spd treatment in maize and ZmPAO overexpression in tobacco, the in vivo H(2)O(2) production was enhanced in xylem tissues. Overall, our results suggest that, after Spd supply or PAO overexpression, H(2)O(2) derived from polyamine catabolism behaves as a signal for secondary wall deposition and for induction of developmental programmed cell death.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alessandra Cona
- Department of Biology, University Roma Tre, 00146 Rome, Italy (A.T., R.F., S.M., R.A., A.C.); ENEA Casaccia Research Center, BIOTEC GEN, 00123 Rome, Italy (S.L.); and Department of Biology, University of Crete, 71409 Heraklion, Greece (P.N.M., K.A.R.-A.)
| |
Collapse
|
164
|
Lee Y, Park CH, Ram Kim A, Chang SC, Kim SH, Lee WS, Kim SK. The effect of ascorbic acid and dehydroascorbic acid on the root gravitropic response in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2011; 49:909-16. [PMID: 21696975 DOI: 10.1016/j.plaphy.2011.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2011] [Accepted: 05/31/2011] [Indexed: 05/09/2023]
Abstract
The effects of ascorbic acid (AA) and dehydroascorbic acid (DHA), one of products of the disproportionation of monodehydroascorbate (MDHA) by AA oxidase (AAO, EC 1.10.3.3), on the gravitropic curvature of Arabidopsis roots were characterized by biochemical and genetic approaches. Exogenously applied AA and DHA both stimulated root gravitropic responses in a concentration-dependent fashion. AA also changed the Indole-3-acetic acid (IAA) distribution in the roots after gravistimulation. In an effort to determine the relationship between AA and DHA in the gravitropic response, changes in the amount of reduced AA were evaluated in Arabidopsis under a variety of conditions. The expression level of an AAO gene (AAO1) was increased upon gravistimulation. Brassinolide (BL), indole-3-acetic acid (IAA), and AA also increased the transcript levels of this gene. Root elongation and the gravitropic response were both suppressed in the AA biosynthesis mutant, vtc1, which has a greatly reduced level of total AA. Furthermore, the line of AAO double mutants (aao1-1 X aao3-1, 41-21) showed a reduced gravitropic response and reduced root elongation. Taken together, the results of this study imply that both AA and DHA help to determine the redox environment for the root gravitropic response, but DHA, rather than AA, is a major player in the regulation of the gravitropic response mediated by AA in the roots of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Yew Lee
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
165
|
Ge W, Song Y, Zhang C, Zhang Y, Burlingame AL, Guo Y. Proteomic analyses of apoplastic proteins from germinating Arabidopsis thaliana pollen. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2011; 1814:1964-73. [PMID: 21798377 DOI: 10.1016/j.bbapap.2011.07.013] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 06/28/2011] [Accepted: 07/13/2011] [Indexed: 12/30/2022]
Abstract
Pollen grains play important roles in the reproductive processes of flowering plants. The roles of apoplastic proteins in pollen germination and in pollen tube growth are comparatively less well understood. To investigate the functions of apoplastic proteins in pollen germination, the global apoplastic proteins of mature and germinated Arabidopsis thaliana pollen grains were prepared for differential analyses by using 2-dimensional fluorescence difference gel electrophoresis (2-D DIGE) saturation labeling techniques. One hundred and three proteins differentially expressed (p value≤0.01) in pollen germinated for 6h compared with un-germination mature pollen, and 98 spots, which represented 71 proteins, were identified by LC-MS/MS. By bioinformatics analysis, 50 proteins were identified as secreted proteins. These proteins were mainly involved in cell wall modification and remodeling, protein metabolism and signal transduction. Three of the differentially expressed proteins were randomly selected to determine their subcellular localizations by transiently expressing YFP fusion proteins. The results of subcellular localization were identical with the bioinformatics prediction. Based on these data, we proposed a model for apoplastic proteins functioning in pollen germination and pollen tube growth. These results will lead to a better understanding of the mechanisms of pollen germination and pollen tube growth.
Collapse
Affiliation(s)
- Weina Ge
- Institute of Molecular Cell Biology, Hebei Normal University, Shijiazhuang, Hebei Province, People's Republic of China
| | | | | | | | | | | |
Collapse
|
166
|
Gillespie KM, Rogers A, Ainsworth EA. Growth at elevated ozone or elevated carbon dioxide concentration alters antioxidant capacity and response to acute oxidative stress in soybean (Glycine max). JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:2667-78. [PMID: 21282325 DOI: 10.1093/jxb/erq435] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Soybeans (Glycine max Merr.) were grown at elevated carbon dioxide concentration ([CO(2)]) or chronic elevated ozone concentration ([O(3)]; 90 ppb), and then exposed to an acute O(3) stress (200 ppb for 4 h) in order to test the hypothesis that the atmospheric environment alters the total antioxidant capacity of plants, and their capacity to respond to an acute oxidative stress. Total antioxidant metabolism, antioxidant enzyme activity, and antioxidant transcript abundance were characterized before, immediately after, and during recovery from the acute O(3) treatment. Growth at chronic elevated [O(3)] increased the total antioxidant capacity of plants, while growth at elevated [CO(2)] decreased the total antioxidant capacity. Changes in total antioxidant capacity were matched by changes in ascorbate content, but not phenolic content. The growth environment significantly altered the pattern of antioxidant transcript and enzyme response to the acute O(3) stress. Following the acute oxidative stress, there was an immediate transcriptional reprogramming that allowed for maintained or increased antioxidant enzyme activities in plants grown at elevated [O(3)]. Growth at elevated [CO(2)] appeared to increase the response of antioxidant enzymes to acute oxidative stress, but dampened and delayed the transcriptional response. These results provide evidence that the growth environment alters the antioxidant system, the immediate response to an acute oxidative stress, and the timing over which plants return to initial antioxidant levels. The results also indicate that future elevated [CO(2)] and [O(3)] will differentially affect the antioxidant system.
Collapse
Affiliation(s)
- Kelly M Gillespie
- Physiological and Molecular Plant Biology Program, University of Illinois, Urbana-Champaign, 1201 W. Gregory Drive, Urbana, IL 61801, USA
| | | | | |
Collapse
|
167
|
Talla S, Riazunnisa K, Padmavathi L, Sunil B, Rajsheel P, Raghavendra AS. Ascorbic acid is a key participant during the interactions between chloroplasts and mitochondria to optimize photosynthesis and protect against photoinhibition. J Biosci 2011; 36:163-73. [DOI: 10.1007/s12038-011-9000-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
168
|
Kües U, Rühl M. Multiple multi-copper oxidase gene families in basidiomycetes - what for? Curr Genomics 2011; 12:72-94. [PMID: 21966246 PMCID: PMC3129051 DOI: 10.2174/138920211795564377] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 03/11/2011] [Accepted: 03/14/2011] [Indexed: 11/22/2022] Open
Abstract
Genome analyses revealed in various basidiomycetes the existence of multiple genes for blue multi-copper oxidases (MCOs). Whole genomes are now available from saprotrophs, white rot and brown rot species, plant and animal pathogens and ectomycorrhizal species. Total numbers (from 1 to 17) and types of mco genes differ between analyzed species with no easy to recognize connection of gene distribution to fungal life styles. Types of mco genes might be present in one and absent in another fungus. Distinct types of genes have been multiplied at speciation in different organisms. Phylogenetic analysis defined different subfamilies of laccases sensu stricto (specific to Agaricomycetes), classical Fe2+-oxidizing Fet3-like ferroxidases, potential ferroxidases/laccases exhibiting either one or both of these enzymatic functions, enzymes clustering with pigment MCOs and putative ascorbate oxidases. Biochemically best described are laccases sensu stricto due to their proposed roles in degradation of wood, straw and plant litter and due to the large interest in these enzymes in biotechnology. However, biological functions of laccases and other MCOs are generally little addressed. Functions in substrate degradation, symbiontic and pathogenic intercations, development, pigmentation and copper homeostasis have been put forward. Evidences for biological functions are in most instances rather circumstantial by correlations of expression. Multiple factors impede research on biological functions such as difficulties of defining suitable biological systems for molecular research, the broad and overlapping substrate spectrum multi-copper oxidases usually possess, the low existent knowledge on their natural substrates, difficulties imposed by low expression or expression of multiple enzymes, and difficulties in expressing enzymes heterologously.
Collapse
Affiliation(s)
- Ursula Kües
- University of Goettingen, Büsgen-Institute, Division of Molecular Wood Biotechnology and Technical Mycology, Büsgenweg 2, 37077 Goettingen, Germany
| | | |
Collapse
|
169
|
Zechmann B. Subcellular distribution of ascorbate in plants. PLANT SIGNALING & BEHAVIOR 2011; 6:360-3. [PMID: 21350341 PMCID: PMC3142415 DOI: 10.4161/psb.6.3.14342] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 12/01/2010] [Indexed: 05/03/2023]
Abstract
The compartment specific distribution of ascorbate in plants is of great importance for plant development, growth and defense as this multifunctional metabolite plays important roles in the detoxification of reactive oxygen species (ROS), redox signaling, modulation of gene expression and is important for the regulation of enzymatic activities. Even though changes in ascorbate contents during plant growth and various stress conditions are well documented and the roles of ascorbate in plant defense during abiotic stress conditions are well established, still too little is known about its compartment specific roles during plant development and defense. This mini-review focuses on the subcellular distribution of ascorbate in plants and describes different methods that are currently used to study its compartment specific distribution. Finally, it will also briefly discuss data available on compartment specific changes of ascorbate during some abiotic stress conditions such as high light conditions and exposure to ozone.
Collapse
Affiliation(s)
- Bernd Zechmann
- University of Graz, Institute of Plant Sciences, Graz, Austria.
| |
Collapse
|
170
|
Llorente B, Alonso GD, Bravo-Almonacid F, Rodríguez V, López MG, Carrari F, Torres HN, Flawiá MM. Safety assessment of nonbrowning potatoes: opening the discussion about the relevance of substantial equivalence on next generation biotech crops. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:136-50. [PMID: 20497372 DOI: 10.1111/j.1467-7652.2010.00534.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
It is expected that the next generation of biotech crops displaying enhanced quality traits with benefits to both farmers and consumers will have a better acceptance than first generation biotech crops and will improve public perception of genetic engineering. This will only be true if they are proven to be as safe as traditionally bred crops. In contrast with the first generation of biotech crops where only a single trait is modified, the next generation of biotech crops will add a new level of complexity inherent to the mechanisms underlying their output traits. In this study, a comprehensive evaluation of the comparative safety approach on a quality-improved biotech crop with metabolic modifications is presented. Three genetically engineered potato lines with silenced polyphenol oxidase (Ppo) transcripts and reduced tuber browning were characterized at both physiological and molecular levels and showed to be equivalent to wild-type (WT) plants when yield-associated traits and photosynthesis were evaluated. Analysis of the primary metabolism revealed several unintended metabolic modifications in the engineered tubers, providing evidence for potential compositional inequivalence between transgenic lines and WT controls. The silencing construct sequence was in silico analysed for potential allergenic cross-reactivity, and no similarities to known allergenic proteins were identified. Moreover, in vivo intake safety evaluation showed no adverse effects in physiological parameters. Taken together, these results provide the first evidence supporting that the safety of next generation biotech crops can be properly assessed following the current evaluation criterion, even if the transgenic and WT crops are not substantially equivalent.
Collapse
Affiliation(s)
- Briardo Llorente
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, CONICET and FCEyN, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
171
|
Eltayeb AE, Yamamoto S, Habora MEE, Yin L, Tsujimoto H, Tanaka K. Transgenic potato overexpressing Arabidopsis cytosolic AtDHAR1 showed higher tolerance to herbicide, drought and salt stresses. BREEDING SCIENCE 2011. [PMID: 0 DOI: 10.1270/jsbbs.61.3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Affiliation(s)
- Amin Elsadig Eltayeb
- Laboratory of Plant Biotechnology, Faculty of Agriculture, Tottori University
- Arid Land Research Center, Tottori University
| | - Shohei Yamamoto
- Laboratory of Plant Biotechnology, Faculty of Agriculture, Tottori University
| | | | - Lina Yin
- Laboratory of Plant Biotechnology, Faculty of Agriculture, Tottori University
| | - Hisashi Tsujimoto
- Laboratory of Plant Genetics and Breeding, Faculty of Agriculture, Tottori University
| | - Kiyoshi Tanaka
- Laboratory of Plant Biotechnology, Faculty of Agriculture, Tottori University
| |
Collapse
|
172
|
Nafie E, Hathout T, Al Mokadem AS. Jasmonic acid elicits oxidative defense and detoxification systems in Cucumis melo L. cells. ACTA ACUST UNITED AC 2011. [DOI: 10.1590/s1677-04202011000200008] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
173
|
Zechmann B, Stumpe M, Mauch F. Immunocytochemical determination of the subcellular distribution of ascorbate in plants. PLANTA 2011; 233:1-12. [PMID: 20872269 PMCID: PMC3015205 DOI: 10.1007/s00425-010-1275-x] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2010] [Accepted: 09/07/2010] [Indexed: 05/18/2023]
Abstract
Ascorbate is an important antioxidant in plants and fulfills many functions related to plant defense, redox signaling and modulation of gene expression. We have analyzed the subcellular distribution of reduced and oxidized ascorbate in leaf cells of Arabidopsis thaliana and Nicotiana tabacum by high-resolution immuno electron microscopy. The accuracy and specificity of the applied method is supported by several observations. First, preadsorption of the ascorbate antisera with ascorbic acid or dehydroascorbic acid resulted in the reduction of the labeling to background levels. Second, the overall labeling density was reduced between 50 and 61% in the ascorbate-deficient Arabidopsis mutants vtc1-2 and vtc2-1, which correlated well with biochemical measurements. The highest ascorbate-specific labeling was detected in nuclei and the cytosol whereas the lowest levels were found in vacuoles. Intermediate labeling was observed in chloroplasts, mitochondria and peroxisomes. This method was used to determine the subcellular ascorbate distribution in leaf cells of plants exposed to high light intensity, a stress factor that is well known to cause an increase in cellular ascorbate concentration. High light intensities resulted in a strong increase in overall labeling density. Interestingly, the strongest compartment-specific increase was found in vacuoles (fourfold) and in plastids (twofold). Ascorbate-specific labeling was restricted to the matrix of mitochondria and to the stroma of chloroplasts in control plants but was also detected in the lumen of thylakoids after high light exposure. In summary, this study reveals an improved insight into the subcellular distribution of ascorbate in plants and the method can now be applied to determine compartment-specific changes in ascorbate in response to various stress situations.
Collapse
Affiliation(s)
- Bernd Zechmann
- Institute of Plant Sciences, University of Graz, Schubertstrasse 51, Graz, Austria.
| | | | | |
Collapse
|
174
|
Abstract
A review of ascorbic acid potentialities against oxidative stress induced in plantsAscorbic acid (AA) currently holds a significant position in plant physiology, mainly due to its possession of antioxidant and cellular reductant etc.properties and its diverse roles in plant growth and development and the regulation of a broad spectrum of plant cellular mechanisms against environmental stresses. Some researchers suggest that endogenous AA has been implicated in the promotion of plant growth and development by involvement in a complex and enigmatic array of phytohormone-regulated signalling networks that ties together different environmental stresses. As it is evident from the present review, recent progress on AA potentiality in the tolerance of plants to environmental stresses has been impressive. Indeed, AA plays an important role in resistance to oxidative stresses such as heavy metal, saline, ultra-violet etc. Rapidly increasing evidence indicates that AA is centrally involved in several physiological processes but there has been much disagreement regarding the mechanism(s) by which AA reduces the damaging effects of such stresses in plants. Perhaps the role of AA in mediating tolerance to abiotic stress (e.g. UV, salinity and temperature, etc.) will lead to a greater research focus in the near future. In addition, AA might provide a suitably attractive target for the enhancement of crop production.
Collapse
|
175
|
Becana M, Matamoros MA, Udvardi M, Dalton DA. Recent insights into antioxidant defenses of legume root nodules. THE NEW PHYTOLOGIST 2010; 188:960-76. [PMID: 21039567 DOI: 10.1111/j.1469-8137.2010.03512.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Legume root nodules are sites of intense biochemical activity and consequently are at high risk of damage as a result of the generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS). These molecules can potentially give rise to oxidative and nitrosative damage but, when their concentrations are tightly controlled by antioxidant enzymes and metabolites, they also play positive roles as critical components of signal transduction cascades during nodule development and stress. Thus, recent advances in our understanding of ascorbate and (homo)glutathione biosynthesis in plants have opened up the possibility of enhancing N(2) fixation through an increase of their concentrations in nodules. It is now evident that antioxidant proteins other than the ascorbate-glutathione enzymes, such as some isoforms of glutathione peroxidases, thioredoxins, peroxiredoxins, and glutathione S-transferases, are also critical for nodule activity. To avoid cellular damage, nodules are endowed with several mechanisms for sequestration of Fenton-active metals (nicotianamine, phytochelatins, and metallothioneins) and for controlling ROS/RNS bioactivity (hemoglobins). The use of 'omic' technologies has expanded the list of known antioxidants in plants and nodules that participate in ROS/RNS/antioxidant signaling networks, although aspects of developmental variation and subcellular localization of these networks remain to be elucidated. To this end, a critical point will be to define the transcriptional and post-transcriptional regulation of antioxidant proteins.
Collapse
Affiliation(s)
- Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | | | | | | |
Collapse
|
176
|
Spasojević I, Pristov JB. The potential physiological implications of polygalacturonic acid-mediated production of superoxide. PLANT SIGNALING & BEHAVIOR 2010; 5:1525-9. [PMID: 21139441 PMCID: PMC3115094 DOI: 10.4161/psb.5.12.12838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
PGA/OGA/PF represent apoplastic signaling molecules implicated in the control of gene expression and the activity of enzymes involved in defense regulation. However, the underlying mechanisms behind such processes are lacking. Here we unequivocally show using EPR spectroscopy with DEPMPO spin-trap capable of differentiating between •OH and •O(2)(-) that PGA and PF can produce •O(2)(-) by transforming •OH. The potential physiological implications of this unique property are discussed. We propose that PGA/OGA/PF could represent the initiators of redox signaling cascades in stress response, with H(2)O(2) being a downstream secondary messenger.
Collapse
Affiliation(s)
- Ivan Spasojević
- Institute for Multidisciplinary Research, University of Belgrade, Belgrade, Serbia.
| | | |
Collapse
|
177
|
Grafting Enhances Copper Tolerance of Cucumber Through Regulating Nutrient Uptake and Antioxidative System. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s1671-2927(09)60274-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
178
|
Pechanova O, Hsu CY, Adams JP, Pechan T, Vandervelde L, Drnevich J, Jawdy S, Adeli A, Suttle JC, Lawrence AM, Tschaplinski TJ, Séguin A, Yuceer C. Apoplast proteome reveals that extracellular matrix contributes to multistress response in poplar. BMC Genomics 2010; 11:674. [PMID: 21114852 PMCID: PMC3091788 DOI: 10.1186/1471-2164-11-674] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2010] [Accepted: 11/29/2010] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development. RESULTS We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast. CONCLUSION These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.
Collapse
Affiliation(s)
- Olga Pechanova
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Chuan-Yu Hsu
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Joshua P Adams
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Tibor Pechan
- Life Sciences and Biotechnology Institute, Mississippi Agricultural and Forestry Experiment Station, Mississippi State University, Mississippi State, MS 39762 USA
| | - Lindsay Vandervelde
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| | - Jenny Drnevich
- W.M. Keck Center for Comparative and Functional Genomics, University of Illinois, Urbana, IL 61801 USA
| | - Sara Jawdy
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831 USA
| | | | | | - Amanda M Lawrence
- Electron Microscopy Center, Mississippi State University, Mississippi State, MS 39762 USA
| | | | - Armand Séguin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, 1055 du P.E.P.S., P.O. Box 10380, Stn. Sainte-Foy, Quebec, Quebec G1V 4C7, Canada
| | - Cetin Yuceer
- Department of Forestry, Mississippi State University, Mississippi State, MS 39762 USA
| |
Collapse
|
179
|
Molina-Rueda JJ, Pascual MB, Cánovas FM, Gallardo F. Characterization and developmental expression of a glutamate decarboxylase from maritime pine. PLANTA 2010; 232:1471-1483. [PMID: 20859639 DOI: 10.1007/s00425-010-1268-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2010] [Accepted: 08/28/2010] [Indexed: 05/29/2023]
Abstract
Glutamate decarboxylase (GAD, EC 4.1.1.15) is a key enzyme in the synthesis of γ-aminobutyric acid (GABA) in higher plants. A complete cDNA encoding glutamate decarboxylase (GAD, EC 4.1.1.15) was characterized from Pinus pinaster Ait, and its expression pattern was studied to gain insight into the role of GAD in the differentiation of the vascular system. Pine GAD contained a C-terminal region with conserved residues and a predicted secondary structure similar to the calmodulin (CaM)-binding domains of angiosperm GADs. The enzyme was able to bind to a bovine CaM-agarose column and GAD activity was higher at acidic pH, suggesting that the pine GAD can be regulated in vivo by Ca(2+)/CaM and pH. A polyclonal antiserum was prepared against the pine protein. GAD expression was studied at activity, protein, and mRNA level and was compared with the expression of other genes during the differentiation of the hypocotyl and induction of reaction wood. In seedling organs, GABA levels closely matched GAD expression, with high levels in the root and during lignification of the hypocotyl. GAD expression was also induced in response to the production of compression wood and its expression matched the pattern of other genes involved in ethylene and 2-oxoglutarate synthesis. The results suggest of a role of GAD in hypocotyl and stem development in pine.
Collapse
Affiliation(s)
- Juan Jesús Molina-Rueda
- Departmento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Instituto Andaluz de Biotecnología, 29071, Málaga, Spain
| | | | | | | |
Collapse
|
180
|
Asensi-Fabado MA, Munné-Bosch S. Vitamins in plants: occurrence, biosynthesis and antioxidant function. TRENDS IN PLANT SCIENCE 2010; 15:582-92. [PMID: 20729129 DOI: 10.1016/j.tplants.2010.07.003] [Citation(s) in RCA: 156] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 07/13/2010] [Accepted: 07/22/2010] [Indexed: 05/03/2023]
Abstract
Plant-derived vitamins are of great interest because of their impact on human health. They are essential for metabolism because of their redox chemistry and role as enzymatic cofactors, not only in animals but also in plants. Several vitamins have strong antioxidant potential, including both water-soluble (vitamins B and C) and lipid-soluble (vitamins A, E and K) compounds. Here, we review recent advances in the understanding of antioxidant roles of vitamins and present an overview of their occurrence within the plant kingdom, different organs and subcellular location; their major biosynthetic pathways, including common precursors and competitive pathways; and their antioxidant function. In particular, we discuss novel evidence for, as well as evidence against, a role of B vitamins as important antioxidants.
Collapse
Affiliation(s)
- M Amparo Asensi-Fabado
- Departament de Biologia Vegetal, Universitat de Barcelona, Facultat de Biologia, Avinguda Diagonal 645, E-08028 Barcelona, Spain
| | | |
Collapse
|
181
|
Cruz-Rus E, Botella MA, Valpuesta V, Gomez-Jimenez MC. Analysis of genes involved in L-ascorbic acid biosynthesis during growth and ripening of grape berries. JOURNAL OF PLANT PHYSIOLOGY 2010; 167:739-48. [PMID: 20189680 DOI: 10.1016/j.jplph.2009.12.017] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 12/07/2009] [Accepted: 12/07/2009] [Indexed: 05/06/2023]
Abstract
Recent data indicate the existence of at least three L-ascorbic acid (AsA) biosynthetic pathways in plant cells. Studying their occurrence in different plant organs and species may help to decipher the precise role(s) of AsA in plant cell physiology. In grape berries, AsA is of particular importance since it is known to be the precursor of tartaric acid, an essential component of the grape fruit. The concentration of AsA increases during development of the fruit to reach a maximum at the full ripe stage. We followed the expression of genes related to the various AsA biosynthetic pathways in this plant organ during fruit ontogeny by real time RT-PCR. Among them, a gene (VvGalUR), showing high homology to one from strawberry encoding a D-galacturonate reductase, was up-regulated during fruit ripening in parallel to the AsA content increase. Cloning of the corresponding full length cDNA showed highest similarity to the strawberry gene (FaGalUR). Moreover, VvGalUR gene expression in grape was also up-regulated by high light, a condition that increased AsA content in grape fruits, while none of the genes involved in the other possible biosynthetic pathways analyzed increased their transcript levels. The results are discussed in relation to the presence of several AsA biosynthetic pathways in grape fruits.
Collapse
Affiliation(s)
- Eduardo Cruz-Rus
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | | | | | | |
Collapse
|
182
|
Demidchik V, Cuin TA, Svistunenko D, Smith SJ, Miller AJ, Shabala S, Sokolik A, Yurin V. Arabidopsis root K+-efflux conductance activated by hydroxyl radicals: single-channel properties, genetic basis and involvement in stress-induced cell death. J Cell Sci 2010; 123:1468-79. [PMID: 20375061 DOI: 10.1242/jcs.064352] [Citation(s) in RCA: 291] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024] Open
Abstract
Reactive oxygen species (ROS) are central to plant stress response, signalling, development and a multitude of other processes. In this study, the plasma-membrane hydroxyl radical (HR)-activated K(+) channel responsible for K(+) efflux from root cells during stress accompanied by ROS generation is characterised. The channel showed 16-pS unitary conductance and was sensitive to Ca(2+), tetraethylammonium, Ba(2+), Cs(+) and free-radical scavengers. The channel was not found in the gork1-1 mutant, which lacks a major plasma-membrane outwardly rectifying K(+) channel. In intact Arabidopsis roots, both HRs and stress induced a dramatic K(+) efflux that was much smaller in gork1-1 plants. Tests with electron paramagnetic resonance spectroscopy showed that NaCl can stimulate HR generation in roots and this might lead to K(+)-channel activation. In animals, activation of K(+)-efflux channels by HRs can trigger programmed cell death (PCD). PCD symptoms in Arabidopsis roots developed much more slowly in gork1-1 and wild-type plants treated with K(+)-channel blockers or HR scavengers. Therefore, similar to animal counterparts, plant HR-activated K(+) channels are also involved in PCD. Overall, this study provides new insight into the regulation of plant cation transport by ROS and demonstrates possible physiological properties of plant HR-activated K(+) channels.
Collapse
Affiliation(s)
- Vadim Demidchik
- Department of Biological Sciences, University of Essex, Colchester, Essex CO4 5AP, UK.
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Potters G, Horemans N, Jansen MAK. The cellular redox state in plant stress biology--a charging concept. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:292-300. [PMID: 20137959 DOI: 10.1016/j.plaphy.2009.12.007] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2009] [Revised: 12/23/2009] [Accepted: 12/28/2009] [Indexed: 05/20/2023]
Abstract
Different redox-active compounds, such as ascorbate, glutathione, NAD(P)H and proteins from the thioredoxin superfamily, contribute to the general redox homeostasis in the plant cell. The myriad of interactions between redox-active compounds, and the effect of environmental parameters on them, has been encapsulated in the concept of a cellular redox state. This concept has facilitated progress in understanding stress signalling and defence in plants. However, despite the proven usefulness of the concept of a redox state, there is no single, operational definition that allows for quantitative analysis and hypothesis testing.
Collapse
Affiliation(s)
- Geert Potters
- Dept. Bioscience Engineering, University of Antwerp, Groenenborgerlaan 171, B-2020 Antwerp, Belgium.
| | | | | |
Collapse
|
184
|
Suza WP, Avila CA, Carruthers K, Kulkarni S, Goggin FL, Lorence A. Exploring the impact of wounding and jasmonates on ascorbate metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2010; 48:337-50. [PMID: 20346686 PMCID: PMC2880922 DOI: 10.1016/j.plaphy.2010.02.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/20/2009] [Revised: 02/02/2010] [Accepted: 02/04/2010] [Indexed: 05/20/2023]
Abstract
Vitamin C (ascorbate, AsA) is the most abundant water-soluble antioxidant in plants. Ascorbate provides the first line of defense against damaging reactive oxygen species (ROS), and helps protect plant cells from many factors that induce oxidative stress, including wounding, ozone, high salinity, and pathogen attack. Plant defenses against these stresses are also dependent upon jasmonates (JAs), a class of plant hormones that promote ROS accumulation. Here, we review evidence showing that wounding and JAs influence AsA accumulation in various plant species, and we report new data from Arabidopsis and tomato testing the influence of JAs on AsA levels in wounded and unwounded plants. In both species, certain mutations that impair JA metabolism and signaling influence foliar AsA levels, suggesting that endogenous JAs may regulate steady-state AsA. However, the impact of wounding on AsA accumulation was similar in JA mutants and wild type controls, indicating that this wound response does not require JAs. Our findings also indicate that the effects of wounding and JAs on AsA accumulation differ between species; these factors both enhanced AsA accumulation in Arabidopsis, but depressed AsA levels in tomato. These results underscore the importance of obtaining data from more than one model species, and demonstrate the complexity of AsA regulation.
Collapse
Affiliation(s)
- Walter P. Suza
- Arkansas Biosciences Institute at Arkansas State University
| | - Carlos A. Avila
- Department of Entomology, University of Arkansas, Fayetteville, AR
| | - Kelly Carruthers
- Department of Entomology, University of Arkansas, Fayetteville, AR
| | - Shashank Kulkarni
- Arkansas Biosciences Institute at Arkansas State University
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 639, State University, AR 72467
| | - Fiona L. Goggin
- Department of Entomology, University of Arkansas, Fayetteville, AR
| | - Argelia Lorence
- Arkansas Biosciences Institute at Arkansas State University
- Department of Chemistry and Physics, Arkansas State University, P.O. Box 639, State University, AR 72467
| |
Collapse
|
185
|
Wang Z, Xiao Y, Chen W, Tang K, Zhang L. Increased vitamin C content accompanied by an enhanced recycling pathway confers oxidative stress tolerance in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:400-9. [PMID: 20377702 DOI: 10.1111/j.1744-7909.2010.00921.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Vitamin C (L-ascorbic acid, AsA) has important antioxidant and metabolic functions in both plants and animals. Once used, ascorbic acid can be regenerated from its oxidized form in a reaction catalyzed by dehydroascorbate reductase (DHAR, EC 1.8.5.1). To analyze the physiological role of DHAR catalyzing the reduction of DHA to ascorbate in environmental stress adaptation, we examined whether increasing the level of AsA through enhanced AsA recycling would limit the deleterious effects of oxidative stress. A chimeric construct consisting of the double CaMV35S promoter fused to the Myc-dhar gene was introduced into Arabidopsis thaliana. Transgenic plants were biochemically characterized and tested for responses to oxidative stress. Western blot indicated that the dhar-transgene was successfully expressed. In homozygous T(4) transgenic seedlings, DHAR overexpression was increased up to 1.5 to 5.4 fold, which enhanced foliar ascorbic acid levels 2- to 4.25-fold and ratio of AsA/DHA about 3- to 16-fold relative to wild type. In addition, the level of glutathione, the reductant used by DHAR, also increased as did its redox state. When whole plants were treated with high light and high temperature stress or in vitro leaf discs were subjected to 10 muM paraquat, transgenic plants showed a larger AsA pool size, lower membrane damage, and a higher level of chlorophyll compared with controls. These data suggested that increasing the plant vitamin C content through enhanced ascorbate recycling could limit the deleterious effects of environmental oxidative stress.
Collapse
Affiliation(s)
- Zinan Wang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, Fudan University, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
186
|
Yin L, Wang S, Eltayeb AE, Uddin MI, Yamamoto Y, Tsuji W, Takeuchi Y, Tanaka K. Overexpression of dehydroascorbate reductase, but not monodehydroascorbate reductase, confers tolerance to aluminum stress in transgenic tobacco. PLANTA 2010; 231:609-21. [PMID: 19960204 DOI: 10.1007/s00425-009-1075-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Accepted: 11/17/2009] [Indexed: 05/18/2023]
Abstract
Aluminum (Al) inhibits plant growth partly by causing oxidative damage that is promoted by reactive oxygen species and can be prevented by improving antioxidant capacity. Ascorbic acid (AsA), the most abundant antioxidant in plants, is regenerated by the action of monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR). We investigated the role of MDAR and DHAR in AsA regeneration during Al stress using transgenic tobacco (Nicotiana tabacum) plants overexpressing Arabidopsis cytosolic MDAR (MDAR-OX) or DHAR (DHAR-OX). DHAR-OX plants showed better root growth than wild-type (SR-1) plants after exposure to Al for 2 weeks, but MDAR-OX plants did not. There was no difference in Al distribution and accumulation in the root tips among SR-1, DHAR-OX, and MDAR-OX plants after Al treatment for 24 h. However, DHAR-OX plants showed lower hydrogen peroxide content, less lipid peroxidation and lower level of oxidative DNA damage than SR-1 plants, whereas MDAR-OX plants showed the same extent of damage as SR-1 plants. Compared with SR-1 plants, DHAR-OX plants consistently maintained a higher AsA level both with and without Al exposure, while MDAR-OX plants maintained a higher AsA level only without Al exposure. Also, DHAR-OX plants maintained higher APX activity under Al stress. The higher AsA level and APX activity in DHAR-OX plants contributed to their higher antioxidant capacity and higher tolerance to Al stress. These findings show that the overexpression of DHAR, but not of MDAR, confers Al tolerance, and that maintenance of a high AsA level is important to Al tolerance.
Collapse
Affiliation(s)
- Lina Yin
- Laboratory of Plant Biotechnology, The United Graduate School of Agricultural Sciences, Tottori University, Koyama, Minami 4-101, Tottori 680-8553, Japan.
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Zolla G, Heimer YM, Barak S. Mild salinity stimulates a stress-induced morphogenic response in Arabidopsis thaliana roots. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:211-24. [PMID: 19783843 PMCID: PMC2791118 DOI: 10.1093/jxb/erp290] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 09/07/2009] [Accepted: 09/08/2009] [Indexed: 05/18/2023]
Abstract
Plant roots exhibit remarkable developmental plasticity in response to local soil conditions. It is shown here that mild salt stress stimulates a stress-induced morphogenic response (SIMR) in Arabidopsis thaliana roots characteristic of several other abiotic stresses: the proliferation of lateral roots (LRs) with a concomitant reduction in LR and primary root length. The LR proliferation component of the salt SIMR is dramatically enhanced by the transfer of seedlings from a low to a high NO3- medium, thereby compensating for the decreased LR length and maintaining overall LR surface area. Increased LR proliferation is specific to salt stress (osmotic stress alone has no stimulatory effect) and is due to the progression of more LR primordia from the pre-emergence to the emergence stage, in salt-stressed plants. In salt-stressed seedlings, greater numbers of LR primordia exhibit expression of a reporter gene driven by the auxin-sensitive DR5 promoter than in unstressed seedlings. Moreover, in the auxin transporter mutant aux1-7, the LR proliferation component of the salt SIMR is completely abrogated. The results suggest that salt stress promotes auxin accumulation in developing primordia thereby preventing their developmental arrest at the pre-emergence stage. Examination of ABA and ethylene mutants revealed that ABA synthesis and a factor involved in the ethylene signalling network also regulate the LR proliferation component of the salt SIMR.
Collapse
Affiliation(s)
| | | | - Simon Barak
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
188
|
Soares-Cordeiro AS, Driscoll SP, Pellny TK, Olmos E, Arrabaça MC, Foyer CH. Variations in the dorso-ventral organization of leaf structure and Kranz anatomy coordinate the control of photosynthesis and associated signalling at the whole leaf level in monocotyledonous species. PLANT, CELL & ENVIRONMENT 2009; 32:1833-1844. [PMID: 19712063 DOI: 10.1111/j.1365-3040.2009.02043.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Photosynthesis and associated signalling are influenced by the dorso-ventral properties of leaves. The degree of adaxial/abaxial symmetry in stomatal numbers, photosynthetic regulation with respect to light orientation and the total section areas of the bundle sheath (BS) cells and the surrounding mesophyll (M) cells on the adaxial and abaxial sides of the vascular bundles were compared in two C(4)[Zea mays (maize) and Paspalum dilatatum] and one C(3)[Triticum turgidum (Durum wheat)] monocotyledonous species. The C(3) leaves had a higher degree of dorso-ventral symmetry than the C(4) leaves. Photosynthetic regulation was the same on each side of the wheat leaves, as were stomatal numbers and the section area of the BS relative to that of the M cells (BS/M section area ratio). In contrast, photosynthetic regulation in maize and P. dilatatum leaves showed a marked surface-specific response to light orientation. Compared to the adaxial sides of the C(4) monocotyledonous leaves, the abaxial surfaces had more stomata and the BS/M section area ratio was significantly higher. Differences in dorso-ventral structure, particularly in Kranz anatomy, serve not only to maximize photosynthetic capacity with respect light orientation in C(4) monocotyledonous leaves but also allow adaxial and abaxial-specific signalling from the respective M cells.
Collapse
Affiliation(s)
- Ana Sofia Soares-Cordeiro
- Centro de Engenharia Biológica e Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| | | | | | | | | | | |
Collapse
|
189
|
Hernandez M, Fernandez-Garcia N, Diaz-Vivancos P, Olmos E. A different role for hydrogen peroxide and the antioxidative system under short and long salt stress in Brassica oleracea roots. JOURNAL OF EXPERIMENTAL BOTANY 2009; 61:521-35. [PMID: 19906795 PMCID: PMC2803216 DOI: 10.1093/jxb/erp321] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2009] [Revised: 10/14/2009] [Accepted: 10/19/2009] [Indexed: 05/02/2023]
Abstract
Salinity affects normal growth and development of plants depending on their capacity to overcome the induced stress. The present study was focused on the response and regulation of the antioxidant defence system in Brassica oleracea roots under short and long salt treatments. The function and the implications of hydrogen peroxide as a stressor or as a signalling molecule were also studied. Two different zones were analysed--the elongation and differentiation zone and the fully differentiated root zone--in order to broaden the knowledge of the different effects of salt stress in root. In general, an accumulation of hydrogen peroxide was observed in both zones at the highest (80 mM NaCl) concentration. A higher accumulation of hydrogen peroxide was observed in the stele of salt-treated roots. At the subcellular level, mitochondria accumulated hydrogen peroxide in salt-treated roots. The results confirm a drastic decrease in the antioxidant enzymes catalase, ascorbate peroxidase, and peroxidases under short salt treatments. However, catalase and peroxidase activities were recovered under long salt stress treatments. The two antioxidant molecules analysed, ascorbate and glutathione, showed a different trend during salt treatments. Ascorbate was progressively accumulated and its redox state maintained, but glutathione was highly accumulated at 24 h of salt treatment, but then its concentration and redox state progressively decreased. Concomitantly, the antioxidant enzymes involved in ascorbate and glutathione regeneration were modified under salt stress treatments. In conclusion, the increase in ascorbate levels and the maintenance of the redox state seem to be critical for root growth and development under salt stress.
Collapse
Affiliation(s)
| | | | | | - Enrique Olmos
- Department of Abiotic Stress and Plant Pathology, CEBAS-CSIC, PO Box 164, Murcia, Spain
| |
Collapse
|
190
|
Li F, Shi J, Shen C, Chen G, Hu S, Chen Y. Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. PLANT MOLECULAR BIOLOGY 2009; 71:251-63. [PMID: 19629718 DOI: 10.1007/s11103-009-9521-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2009] [Accepted: 06/27/2009] [Indexed: 05/21/2023]
Abstract
Elsholtzia splendens is generally considered as a Cu-tolerant and -accumulating plant species, and a candidate for phytoremediation of Cu-contaminated soils. To better understand the Cu tolerance/accumulation mechanisms in E. splendens, proteomic analysis was performed on E. splendens roots and leaves exposed to 100 muM CuSO(4) for 3 and 6 days. After 6 days of treatment, Cu accumulation in roots increased much more than that in leaves. SDS-PAGE analysis showed that the proteins changed more intensively in roots than did in leaves upon Cu stress. Two-dimensional gel electrophoresis (2-DE) and image analyses found that 45 protein spots were significantly changed in roots, but only six protein spots in leaves. The abundance of protein spots mostly showed temporal changes. MALDI-TOF MS and LTQ-ESI-MS/MS were used to identify the differently expressed protein spots. The identified root proteins were involved in various cellular processes such as signal transduction, regulation of transcription and translation, energy metabolism, regulation of redox homeostasis and cell defense. The leaf proteins were mainly degraded fragments of RuBisCo and antioxidative protein. The roles of these proteins in Cu tolerance/accumulation were discussed. The resulting differences in protein expression pattern suggested that redirection of root cellular metabolism and redox homeostasis might be important survival mechanisms of E. splendens upon Cu stress.
Collapse
Affiliation(s)
- Feng Li
- Department of Environmental Engineering, Zhejiang University, 310029 Hangzhou, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
191
|
Vadassery J, Tripathi S, Prasad R, Varma A, Oelmüller R. Monodehydroascorbate reductase 2 and dehydroascorbate reductase 5 are crucial for a mutualistic interaction between Piriformospora indica and Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2009; 166:1263-1274. [PMID: 19386380 DOI: 10.1016/j.jplph.2008.12.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Revised: 12/19/2008] [Accepted: 12/19/2008] [Indexed: 05/04/2023]
Abstract
Ascorbate is a major antioxidant and radical scavenger in plants. Monodehydroascorbate reductase (MDAR) and dehydroascorbate reductase (DHAR) are two enzymes of the ascorbate-glutathione cycle that maintain ascorbate in its reduced state. MDAR2 (At3g09940) and DHAR5 (At1g19570) expression was upregulated in the roots and shoots of Arabidopsis seedlings co-cultivated with the root-colonizing endophytic fungus Piriformospora indica, or that were exposed to a cell wall extract or a culture filtrate from the fungus. Growth and seed production were not promoted by Piriformospora indica in mdar2 (SALK_0776335C) and dhar5 (SALK_029966C) T-DNA insertion lines, while colonized wild-type plants were larger and produced more seeds compared to the uncolonized controls. After 3 weeks of drought stress, growth and seed production were reduced in Piriformospora indica-colonized plants compared to the uncolonized control, and the roots of the drought-stressed insertion lines were colonized more heavily by the fungus than were wild-type plants. Upregulation of the message for the antimicrobial PDF1.2 protein in drought-stressed insertion lines indicated that MDAR2 and DHAR5 are crucial for producing sufficient ascorbate to maintain the interaction between Piriformospora indica and Arabidopsis in a mutualistic state.
Collapse
Affiliation(s)
- Jyothilakshmi Vadassery
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Str. 159, 07743 Jena, Germany
| | - Swati Tripathi
- Amity Institute of Herbal and Microbial Studies, Sector 125, Noida 201303, UP, India
| | - Ram Prasad
- Amity Institute of Herbal and Microbial Studies, Sector 125, Noida 201303, UP, India
| | - Ajit Varma
- Amity Institute of Herbal and Microbial Studies, Sector 125, Noida 201303, UP, India
| | - Ralf Oelmüller
- Friedrich-Schiller-Universität Jena, Institut für Allgemeine Botanik und Pflanzenphysiologie, Dornburger Str. 159, 07743 Jena, Germany.
| |
Collapse
|
192
|
Zou LP, Li HX, Ouyang B, Zhang JH, Ye ZB. Cloning, expression, and mapping of GDP-D-mannose pyrophosphorylase cDNA from tomato (Lycopersicon esculentum). ACTA ACUST UNITED AC 2009; 33:757-64. [PMID: 16939010 DOI: 10.1016/s0379-4172(06)60108-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
GDP-D-mannose pyrophosphorylase (GMP, EC 2.7.7.22) catalyzes the synthesis of GDP-D-mannose and represents the first committed step in plant ascorbic acid biosynthesis. Using potato GMP cDNA sequence as a querying probe, 65 highly homologous tomato ESTs were obtained from dbEST of GenBank and the putative cDNA sequence of tomato GMP was assembled. The full-length GMP cDNA of tomato was cloned by RACE-PCR with primers designed according to the assembled cDNA sequence. The full-length cDNA sequence contained a complete open reading frame (ORF) of 1,086 bp, which encoded 361 amino acid residues. This gene was designated as LeGMP (GenBank accession No. AY605668). Homology analysis of LeGMP showed a 96% identity with potato GMP and the deduced amino acid showed 99%, 97%, 91% and 89% homology with GMP from potato, tobacco, alfalfa and Arabidopsis thaliana, respectively. Northern blot analysis showed that LeGMP was constitutively expressed in roots, stems, leaves, flowers and fruits of tomato; but the expression levels varied. LeGMP was mapped to 3-D using 75 tomato introgression lines (ILs), each containing a single homozygous RFLP-defined chromosome segment from the green-fruited species Lycopersicon pennellii.
Collapse
Affiliation(s)
- Li-Ping Zou
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | |
Collapse
|
193
|
Preger V, Tango N, Marchand C, Lemaire SD, Carbonera D, Di Valentin M, Costa A, Pupillo P, Trost P. Auxin-responsive genes AIR12 code for a new family of plasma membrane b-type cytochromes specific to flowering plants. PLANT PHYSIOLOGY 2009; 150:606-20. [PMID: 19386804 PMCID: PMC2689961 DOI: 10.1104/pp.109.139170] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2009] [Accepted: 04/15/2009] [Indexed: 05/05/2023]
Abstract
We report here on the identification of the major plasma membrane (PM) ascorbate-reducible b-type cytochrome of bean (Phaseolus vulgaris) and soybean (Glycine max) hypocotyls as orthologs of Arabidopsis (Arabidopsis thaliana) AIR12 (for auxin induced in root cultures). Soybean AIR12, which is glycosylated and glycosylphosphatidylinositol-anchored to the external side of the PM in vivo, was expressed in Pichia pastoris in a recombinant form, lacking the glycosylphosphatidylinositol modification signal and purified from the culture medium. Recombinant AIR12 is a soluble protein predicted to fold into a beta-sandwich domain and belonging to the DOMON (for dopamine beta-monooxygenase N terminus) domain superfamily. It is shown to be a b-type cytochrome with a symmetrical alpha-band at 561 nm, fully reduced by ascorbate, and fully oxidized by monodehydroascorbate radical. AIR12 is a high-potential cytochrome b showing a wide bimodal dependence from the redox potential between +80 mV and +300 mV. Optical absorption and electron paramagnetic resonance analysis indicate that AIR12 binds a single, highly axial low-spin heme, likely coordinated by methionine-91 and histidine-76, which are strongly conserved in AIR12 sequences. Phylogenetic analyses reveal that the auxin-responsive genes AIR12 represent a new family of PM b-type cytochromes specific to flowering plants. Circumstantial evidence suggests that AIR12 may interact with other redox partners within the PM to constitute a redox link between cytoplasm and apoplast.
Collapse
Affiliation(s)
- Valeria Preger
- Laboratory of Molecular Plant Physiology, Department of Experimental Evolutionary Biology, University of Bologna, Bologna 40126, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
194
|
Shen CH, Krishnamurthy R, Yeh KW. Decreased L-ascorbate content mediating bolting is mainly regulated by the galacturonate pathway in Oncidium. PLANT & CELL PHYSIOLOGY 2009; 50:935-46. [PMID: 19307192 DOI: 10.1093/pcp/pcp045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
We investigated the alteration in l-ascorbate (AsA, reduced form) content and the expression pattern of its related genes during the phase transition in Oncidium orchid. During the vegetative growth, a high H2O2 level was associated with a high content of the reduced form of AsA. During the bolting period, the AsA content and H2O2 level were greatly reduced in parallel with increased expression of OgLEAFY, the gene encoding a key transcription factor integrating different flowering-inducing pathways. This observation suggests that reduced AsA content, due to it having been consumed in scavenging H2O2, is a prerequisite for mediating the phase transition in Oncidium. A survey of the AsA biosynthetic pathway revealed that the gene expression and enzymatic activities of the products of relevant genes of the galacturonate (GalUA) pathway, such as polygalacturonase (OgPG), pectin methylesterase (OgPME) and galacturonate reductase (OgGalUAR), were markedly decreased during the bolting period, as compared with during the vegetative stage. However, the genes whose products were involved in the Smirnoff-Wheeler pathway retained a similar expression level in the two growth stages. The data suggested that OgPME of the GalUA pathway was the pivotal gene in regulating AsA biosynthesis during the bolting period. Further elucidation by overexpressing OgPME in Arabidopsis demonstrated a considerable increase in AsA content, as well as a resulting delayed-flowering phenotype. Our results strongly imply that the reduced level of AsA, regulating bolting for phase transition, resulting in part from its consumption by scavenging H2O2, was mainly caused by the down-regulation of the GalUA pathway, not the Smirnoff-Wheeler pathway.
Collapse
Affiliation(s)
- Chin-Hui Shen
- Plant Biology, Life Science, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan
| | | | | |
Collapse
|
195
|
Foyer CH, Noctor G. Redox regulation in photosynthetic organisms: signaling, acclimation, and practical implications. Antioxid Redox Signal 2009; 11:861-905. [PMID: 19239350 DOI: 10.1089/ars.2008.2177] [Citation(s) in RCA: 766] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) have multifaceted roles in the orchestration of plant gene expression and gene-product regulation. Cellular redox homeostasis is considered to be an "integrator" of information from metabolism and the environment controlling plant growth and acclimation responses, as well as cell suicide events. The different ROS forms influence gene expression in specific and sometimes antagonistic ways. Low molecular antioxidants (e.g., ascorbate, glutathione) serve not only to limit the lifetime of the ROS signals but also to participate in an extensive range of other redox signaling and regulatory functions. In contrast to the low molecular weight antioxidants, the "redox" states of components involved in photosynthesis such as plastoquinone show rapid and often transient shifts in response to changes in light and other environmental signals. Whereas both types of "redox regulation" are intimately linked through the thioredoxin, peroxiredoxin, and pyridine nucleotide pools, they also act independently of each other to achieve overall energy balance between energy-producing and energy-utilizing pathways. This review focuses on current knowledge of the pathways of redox regulation, with discussion of the somewhat juxtaposed hypotheses of "oxidative damage" versus "oxidative signaling," within the wider context of physiological function, from plant cell biology to potential applications.
Collapse
Affiliation(s)
- Christine H Foyer
- School of Agriculture, Food and Rural Development, Agriculture Building, University of Newcastle upon Tyne, Newcastle upon Tyne, United Kingdom.
| | | |
Collapse
|
196
|
Rubio MC, Bustos-Sanmamed P, Clemente MR, Becana M. Effects of salt stress on the expression of antioxidant genes and proteins in the model legume Lotus japonicus. THE NEW PHYTOLOGIST 2009; 181:851-859. [PMID: 19140933 DOI: 10.1111/j.1469-8137.2008.02718.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Salt stress negatively affects many physiological processes in plants. Some of these effects may involve the oxidative damage of cellular components, which can be promoted by reactive oxygen species and prevented by antioxidants. The protective role of antioxidants was investigated in Lotus japonicus exposed to two salinization protocols: S1 (150 mM NaCl for 7 d) and S2 (50, 100 and 150 mM NaCl, each concentration for 6 d). Several markers of salt stress were measured and the expression of antioxidant genes was analyzed using quantitative reverse transcription–polymerase chain reaction and, in some cases, immunoblots and enzyme activity assays. Leaves of S1 plants suffered from mild osmotic stress, accumulated proline but noNa+, and showed induction of many superoxide dismutase and glutathione peroxidase genes. Leaves of S2 plants showed increases in Na+ and Ca2+, decreases in K+, and accumulation of proline and malondialdehyde. In leaves and roots of S1 and S2 plants, the mRNA, protein and activity levels of the ascorbate-glutathione enzymes remained constant, with a few exceptions. Notably, there was consistent up-regulation of the gene encoding cytosolic dehydroascorbate reductase, and this was possibly related to its role in ascorbate recycling in the apoplast. The overall results indicate that L. japonicus is more tolerant to salt stress than other legumes, which can be attributed to the capacity of the plant to prevent Na+reaching the shoot and to activate antioxidant defenses.
Collapse
Affiliation(s)
- Maria C Rubio
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Pilar Bustos-Sanmamed
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Maria R Clemente
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| | - Manuel Becana
- Departamento de Nutrición Vegetal, Estación Experimental de Aula Dei, Consejo Superior de Investigaciones Científicas, Apartado 13034, 50080 Zaragoza, Spain
| |
Collapse
|
197
|
Castro-Mercado E, Martinez-Diaz Y, Roman-Tehandon N, Garcia-Pineda E. Biochemical analysis of reactive oxygen species production and antioxidative responses in unripe avocado (Persea americana Mill var Hass) fruits in response to wounding. PROTOPLASMA 2009; 235:67-76. [PMID: 19234667 DOI: 10.1007/s00709-009-0034-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Accepted: 01/20/2009] [Indexed: 05/27/2023]
Abstract
We analyzed the production of reactive oxygen species (ROS) and of detoxifying enzymes and enzymes of the ascorbate (ASC) acid cycle in avocado fruit (Pesea Americana Mill cv Hass) in response to wounding. The levels of superoxide anion (O(2-), hydroxyl radicals (OH.) and hydrogen peroxide (H(2)O(2)) increased at 15 min and 2 and 15 h post-wounding. Peroxidase (POD) activity had increased to high levels 24 h after wounding; in contrast, catalase and superoxide dismutase (SOD) levels hat decreased significantly at 24 h post-treatment. Basic POD was the major POD form induced, and the levels of at least three apoplastic POD isozymes -increased following wounding. Using specific inhibitors, we characterized one MnSOD and two CuZnSOD isozymes. CuZnSOD activities decreased notably 12 h after treatment. The activities of dehydroascorbate reductase and glutathione reductase increased dramatically following the wounding treatment, possibly as a means to compensate for the redox changes due to ROS production.
Collapse
Affiliation(s)
- E Castro-Mercado
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Ciudad Universitaria, Edif. B1, C.P. 58040, Morelia, Mexico
| | | | | | | |
Collapse
|
198
|
Potters G, Pasternak TP, Guisez Y, Jansen MAK. Different stresses, similar morphogenic responses: integrating a plethora of pathways. PLANT, CELL & ENVIRONMENT 2009; 32:158-69. [PMID: 19021890 DOI: 10.1111/j.1365-3040.2008.01908.x] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Exposure of plants to mild chronic stress can cause induction of specific, stress-induced morphogenic responses (SIMRs). These responses are characterized by a blockage of cell division in the main meristematic tissues, an inhibition of elongation and a redirected outgrowth of lateral organs. Key elements in the ontogenesis of this phenotype appear to be stress-affected gradients of reactive oxygen species (ROS), antioxidants, auxin and ethylene. These gradients are present at the the organismal level, but are integrated on the cellular level, affecting cell division, cell elongation and/or cell differentiation. Our analysis of the literature indicates that stress-induced modulation of plant growth is mediated by a plethora of molecular interactions, whereby different environmental signals can trigger similar morphogenic responses. At least some of the molecular interactions that underlie morphogenic responses appear to be interchangeable. We speculate that this complexity can be viewed in terms of a thermodynamic model, in which not the specific pathway, but the achieved metabolic state is biologically conserved.
Collapse
Affiliation(s)
- Geert Potters
- Department of Bioscience Engineering, University of Antwerp, Antwerp, Belgium
| | | | | | | |
Collapse
|
199
|
Barceló AR, Laura VGR. Reactive Oxygen Species in Plant Cell Walls. REACTIVE OXYGEN SPECIES IN PLANT SIGNALING 2009. [DOI: 10.1007/978-3-642-00390-5_5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
200
|
Ferretti M, Destro T, Tosatto SCE, La Rocca N, Rascio N, Masi A. Gamma-glutamyl transferase in the cell wall participates in extracellular glutathione salvage from the root apoplast. THE NEW PHYTOLOGIST 2009; 181:115-126. [PMID: 19076720 DOI: 10.1111/j.1469-8137.2008.02653.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The molecular properties and subcellular location of bound gamma-glutamyl transferase (GGT) were studied, and an experimental setup devised to assess its functions in barley roots. Enzyme histochemistry was used to detect GGT activity at tissue level; immunocytochemistry to localize the protein at subcellular level; and modelling studies to investigate its surface charge properties. GGT activity in vivo was measured for the first time. Functions were explored by applying chemical treatments with inhibitors and the thiol-oxidizing drug diamide, performing time-course chromatographic and spectrophotometric analyses on low-molecular-weight thiols. Gamma-glutamyl transferase activity was found to be high in the root apical region and the protein was anchored to root cell wall components, probably by basic amino acid residues. The results show that GGT is essential to the recovery of apoplastic glutathione provided exogenously or extruded by oxidative treatment. It is demonstrated that GGT activity helps to salvage extracellular glutathione and may contribute to redox control of the extracellular environment, thus providing evidence of a functional role for gamma-glutamyl cycle in roots.
Collapse
Affiliation(s)
- M Ferretti
- Department of Agricultural Biotechnology, University of Padova, Viale dell'Universita' 16, I-35020 Legnaro (PD), Italy;Department of Biology, University of Padova, Via Trieste 75, I-35100 Padova, Italy;CRIBI Biotech Centre, University of Padova, Via Trieste 75, I-35100 Padova, Italy
| | - T Destro
- Department of Agricultural Biotechnology, University of Padova, Viale dell'Universita' 16, I-35020 Legnaro (PD), Italy;Department of Biology, University of Padova, Via Trieste 75, I-35100 Padova, Italy;CRIBI Biotech Centre, University of Padova, Via Trieste 75, I-35100 Padova, Italy
| | - S C E Tosatto
- Department of Agricultural Biotechnology, University of Padova, Viale dell'Universita' 16, I-35020 Legnaro (PD), Italy;Department of Biology, University of Padova, Via Trieste 75, I-35100 Padova, Italy;CRIBI Biotech Centre, University of Padova, Via Trieste 75, I-35100 Padova, Italy
| | - N La Rocca
- Department of Agricultural Biotechnology, University of Padova, Viale dell'Universita' 16, I-35020 Legnaro (PD), Italy;Department of Biology, University of Padova, Via Trieste 75, I-35100 Padova, Italy;CRIBI Biotech Centre, University of Padova, Via Trieste 75, I-35100 Padova, Italy
| | - N Rascio
- Department of Agricultural Biotechnology, University of Padova, Viale dell'Universita' 16, I-35020 Legnaro (PD), Italy;Department of Biology, University of Padova, Via Trieste 75, I-35100 Padova, Italy;CRIBI Biotech Centre, University of Padova, Via Trieste 75, I-35100 Padova, Italy
| | - A Masi
- Department of Agricultural Biotechnology, University of Padova, Viale dell'Universita' 16, I-35020 Legnaro (PD), Italy;Department of Biology, University of Padova, Via Trieste 75, I-35100 Padova, Italy;CRIBI Biotech Centre, University of Padova, Via Trieste 75, I-35100 Padova, Italy
| |
Collapse
|