151
|
Li L, Phungsai P, Kurisu F, Visvanathan C. Orbitrap mass spectrometry for the molecular characterization of water resource recovery from polluted surface water using membrane bioreactor. CHEMOSPHERE 2021; 270:128771. [PMID: 33131732 DOI: 10.1016/j.chemosphere.2020.128771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 10/19/2020] [Accepted: 10/26/2020] [Indexed: 06/11/2023]
Abstract
The increasing organic contamination of surface water hinders the conventional tap water treatment process. Membrane bioreactors (MBRs) are a promising alternative technology for recovering water from polluted surface water. In this study, the composition changes of dissolved organic matters (DOMs) in MBR and ultraviolet/ozone (UV/O3)-MBR systems for polluted surface water treatment were investigated using Orbitrap mass spectrometry analysis with unknown screening. The intense DOM ions within a mass-to-charge ratio range of 100-500 was detected, and 2340 molecular formulae from 5743 peaks were assigned to the two systems. The most abundant components were formulae with C, H, O, N, and CHO only classes. The highest formulae decrease including CHO, CHON, CHOS, and CHONS were attributed to the bio-carrier used in both systems. Results showed that bioprocess was the main contributor in the DOM reduction, and the integration of UV/O3 into the MBR improved the DOM composition changes. Biodegradable components with low O/C ratio in the CHO and CHON classes remarkably increased in the UV/O3-MBR system. The integration of UV/O3 as a polishing step in the recirculation stream of MBR system was effective in improve the DOM removal.
Collapse
Affiliation(s)
- Lu Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China; School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, 12120, Thailand; Department of Urban Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656, Japan.
| | - Phanwatt Phungsai
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo, 113-8656, Japan
| | - C Visvanathan
- School of Environment, Resources and Development, Asian Institute of Technology, Pathumthani, 12120, Thailand
| |
Collapse
|
152
|
Li C, Zheng M, Cao D, Yang L, Wu J, Yang Y, Liu G. Recognition of the molecular characterization and mechanisms of heterogeneously formed organic pollutants from metallurgical industries by FT-ICR-MS and GC/Q-TOF-MS. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124603. [PMID: 33316679 DOI: 10.1016/j.jhazmat.2020.124603] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/20/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
Emissions of numerous targeted and non-targeted organic pollutants from industrial activities are one of the major contributors to the global air pollution. However, comprehensive recognition of their molecular characterization and real industrial scale mechanisms have never been achieved. Herein, by using high resolution mass spectrometry, we firstly give an insight into the molecular characterization and mechanisms of organic pollutants formed on fly ashes from secondary smelting of Al, Cu, Pb, and Zn and electric arc furnace steel-making. We found that lipid-like, unsaturated hydrocarbon and carboxyl-rich alicyclic molecule-like structures were the major chemical classes. Methylation- and oxidation-related reactions were suggested to be the major formation mechanisms. The predominance of carboxyl-rich structures in the fly ash further proved the contribution of metallurgical industrial emissions to air pollution. Findings in this study could be significant for further understanding the contribution of industrial emissions to air pollutions and conducting their source emission control.
Collapse
Affiliation(s)
- Cui Li
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Minghui Zheng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China
| | - Dong Cao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Lili Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiajia Wu
- Agilent Technologies (China), Inc., Beijing, China
| | - Yuanping Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Guorui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, China.
| |
Collapse
|
153
|
Qiao W, Guo H, He C, Shi Q, Zhao B. Unraveling roles of dissolved organic matter in high arsenic groundwater based on molecular and optical signatures. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124702. [PMID: 33296763 DOI: 10.1016/j.jhazmat.2020.124702] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 09/10/2020] [Accepted: 11/25/2020] [Indexed: 06/12/2023]
Abstract
Dissolved organic matter (DOM) is a crucial controlling factor in mobilizing arsenic. However, direct delineations of DOM regarding both optical properties and molecular signatures were rarely conducted in high-arsenic groundwater. Here, both groundwater and surface water were taken from the Hetao Basin, China, to decipher DOM properties with both optical spectrophotometer and Fourier transform ion cyclotron resonance mass spectrometry. The tryptophan-like component (C4) was averagely less than 30% in groundwater DOM, being positively associated with high H/C-ratio molecules (H/C > 1.2) and mainly grouped as highly unsaturated and phenolic compounds and aliphatic compounds. Other three humic-like components (C1, C2, C3) had positive associations with low H/C-ratio molecules (H/C < 1.2), which mainly consisted of highly unsaturated and phenolic compounds, polyphenols, and polycyclic aromatics. Groundwater arsenic concentrations were positively correlated with humic-like, low H/C-ratio, and recalcitrant organic compounds, which may be the consequence of labile organic matter degradation. The degradation caused Fe(III) oxide reduction and mobilized the solid arsenic. In addition, high abundances of these recalcitrant organic compounds in high-arsenic groundwater may contribute to arsenic enrichment via electron shuttling, competition for surface sites, and complexation process. It suggested that groundwater proxies would be either the result or the cause of biogeochemical processes in aquifers.
Collapse
Affiliation(s)
- Wen Qiao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| | - Huaming Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China.
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, PR China
| | - Bo Zhao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, PR China
| |
Collapse
|
154
|
Che J, Bai Y, Li X, Ye J, Liao H, Cui P, Yu Z, Zhou S. Linking microbial community structure with molecular composition of dissolved organic matter during an industrial-scale composting. JOURNAL OF HAZARDOUS MATERIALS 2021; 405:124281. [PMID: 33097342 DOI: 10.1016/j.jhazmat.2020.124281] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 05/23/2023]
Abstract
This study explored the interactions between dissolved organic matter (DOM) composition and microbial community structure during an industrial-scale composting by Fourier transform ion cyclotron resonance mass spectrometry and 16S rRNA sequencing analysis. The results revealed that DOM from matured compost contained primarily lignins/carboxylic-rich alicyclic molecules (73.6%), the higher double bond equivalent (5.97) and aromaticity index (0.18), indicating that the molecular composition of DOM had changed substantially. Drastic changes in microbial community structure were also observed along with the DOM transformation process of composting. Network analysis further indicated that Caldicoprobacter, Bacillus, and Dechloromonas were associated with the most DOM subcategories. Caldicoprobacter could degrade carbohydrates, Bacillus accelerated the humification by transforming N-containing compounds, and Dechloromonas could degrade polycyclic aromatic hydrocarbons distributed in low O/C. These findings are helpful for understanding the molecular mechanisms of DOM transformation and humification of sludge composting.
Collapse
Affiliation(s)
- Jiangang Che
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yudan Bai
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xi Li
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jie Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Peng Cui
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhen Yu
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China.
| | - Shungui Zhou
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China; National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangdong Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
155
|
Shang H, Fu Q, Zhang S, Zhu X. Heating temperature dependence of molecular characteristics and biological response for biomass pyrolysis volatile-derived water-dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143749. [PMID: 33223178 DOI: 10.1016/j.scitotenv.2020.143749] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/16/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
The utilization of biomass pyrolysis volatile-derived water-dissolved organic matter (WOM, often called wood vinegar) determines sustainable recycling of biomass. Further, pyrolysis temperature significantly controls the cracking of biomass components, resulting in various molecular compositions and biological responses of WOM. Although it has been widely used in the agriculture, the relationship between molecular compositions and biological responses affected by heating temperature is still unclear. Here, it was observed that the WOM concentration increased with increasing temperatures and the pyrolysis of 1 g biomass can generate ~ WOM with 36.24 mg C. Moreover, with increasing pyrolysis temperatures, the generated WOM consisted of more phenols but fewer alcohols, furans, acids, and ketones, and demonstrated characteristics of higher aromaticity and lower m/z molecular weight. Due to the enhanced polarity, high temperatures promoted the solubility of WOM. Germination tests show that low pyrolysis temperatures-derived WOM (< 400 °C) with large-molecular-weight and low oxygen-containing (low O/Cwa) promoted plant growth, while high temperatures-derived WOM (> 400 °C) with small-molecular-weight and high oxygen-containing (high O/Cwa) inhibited growth. These results suggest that WOM can be separately collected at different pyrolysis temperatures to achieve sustainable recycling of pyrolysis volatile.
Collapse
Affiliation(s)
- Hua Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Qinglong Fu
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Tokyo 152-8550, Japan
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China.
| |
Collapse
|
156
|
Shen M, Zhu X, Shang H, Feng F, Ok YS, Zhang S. Molecular characterization and environmental impacts of water-soluble organic compounds of bio-oil from the thermochemical treatment of domestic sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144050. [PMID: 33261874 DOI: 10.1016/j.scitotenv.2020.144050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 11/18/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Water-soluble organic compounds derived from bio-oil (WOCB) are regarded as potential risk sources of sludge thermochemical treatment. This study showed that 10.35 mg of water-soluble organic carbon and 1.32 mg of water-soluble organic nitrogen were released per gram of sludge when the final temperature of thermochemical treatment was 600 °C. WOCB was mainly formed at 300-500 °C. Furthermore, FT-ICR MS results indicated that high temperatures promoted deamination reactions, and low molecular weight (LMW) compounds with low oxygen number polymerized into aromatic compounds with increasing temperature. Noteworthily, WOCB released at 20-600 °C showed strong phytotoxicity to wheat. LMW compounds with lignin/carboxylic rich alicyclic molecules (CRAM)-like structures derived from low temperatures (200-400 °C) induced this inhibitory effect, but lipids containing nitrogen and sulfur from high temperatures (400-600 °C) can act as nutrients to promote wheat growth. This study provides theoretical support for the risk control and benefits assessments of sludge thermochemical treatment.
Collapse
Affiliation(s)
- Minghao Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Hua Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China
| | - Fei Feng
- Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, School of Environmental and Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; Shanghai Technical Service Platform for Pollution Control and Resource Utilization of Organic Wastes, Shanghai 200438, China.
| |
Collapse
|
157
|
Chen W, Gu Z, Ran G, Li Q. Application of membrane separation technology in the treatment of leachate in China: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 121:127-140. [PMID: 33360812 DOI: 10.1016/j.wasman.2020.12.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 10/16/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
To comprehensively investigate the application of membrane separation technology in the treatment of landfill leachate in China, the performance of nearly 200 waste management enterprises of different sizes in China were analyzed, with an emphasis on their scale, regional features, processes, and economic characteristics. It was found that membrane separation technologies, mainly nanofiltration (NF), reverse osmosis (RO), and NF + RO, have been used in China since 2004. The treatment capacity of the two most dominant membrane separation technologies, i.e., NF and RO, were both almost 60,000 m3/d in 2018, and both technologies are widely used in landfills and incineration plants. Their distribution is mainly concentrated in eastern and southwestern China, where the amount of municipal solid waste (MSW) is relatively high and the economy is developing rapidly. Membrane separation technology is the preferred technique for the advanced treatment of leachate because more contaminants can be effectively removed by the technology than by other advanced processes. However, the membrane retentate that is produced using this technology-commonly known as leachate concentrate-is heavily contaminated due to the enrichment of almost all the inorganic anions, heavy metals, and organic matter that remain after bioprocessing. An economic cost analysis revealed that the operating cost of membrane separation technology has stabilized and is between 1.77 USD/m3 and 4.90 USD/m3; electricity consumption is the most expensive cost component. This review describes the current problems with the use of membrane separation technology and recommends strategies and solutions for its future use.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Gang Ran
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
158
|
Chen W, Yu HQ. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. WATER RESEARCH 2021; 190:116759. [PMID: 33360618 DOI: 10.1016/j.watres.2020.116759] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Natural organic matter (NOM) is ubiquitous in environment and plays a fundamental role in the geochemical cycling of elements. It is involved in a wide range of environmental processes and can significantly affect the environmental fates of exogenous contaminants. Understanding the properties and environmental behaviors of NOM is critical to advance water treatment technologies and environmental remediation strategies. NOM is composed of characteristic light-absorbing/emitting functional groups, which are the "identification card" of NOM and susceptive to ambient physiochemical changes. These groups and their variations can be captured through optical sensing. Therefore, spectroscopic techniques are elegant tools to track the sources, features, and environmental behaviors of NOM. In this work, the most recent advances in molecular spectroscopic techniques, including UV-Vis, fluorescence, infrared, and Raman spectroscopy, for the characterization, measurement, and monitoring of NOM are reviewed, and the state-of-the-art innovations are highlighted. Furthermore, the limitations of current spectroscopic approaches for the exploration of NOM-related environmental processesand how these weaknesses/drawbacks can be addressed are explored. Finally, suggestions and directions are proposed to advance the development of spectroscopic methods in analyzing and elucidating the properties and behaviors of NOM in natural and engineered environments.
Collapse
Affiliation(s)
- Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha410083, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China.
| |
Collapse
|
159
|
Phatthalung WN, Suttinun O, Phungsai P, Kasuga I, Kurisu F, Furumai H, Musikavong C. Non-target screening of dissolved organic matter in raw water, coagulated water, and chlorinated water by Orbitrap mass spectrometry. CHEMOSPHERE 2021; 264:128437. [PMID: 33045510 DOI: 10.1016/j.chemosphere.2020.128437] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 09/22/2020] [Accepted: 09/24/2020] [Indexed: 06/11/2023]
Abstract
This study aimed to classify the possible molecular formulas of precursors for disinfection by-products (DBPs) in raw, coagulated, and chlorinated water samples from the U-Tapao Canal, Songkhla, Thailand. The molecular formulas of DBPs in chlorinated water were investigated. Polyaluminum chloride (PACl) was employed as a coagulant. Orbitrap Fourier transform-mass spectrometry was able to estimate the composition of dissolved organic matter (DOM) with the carbon (C), hydrogen (H), oxygen (O), nitrogen (N), and sulfur (S) elements contained and DBPs at the molecular level. The molecular formulas of the DOM in the raw water primarily consisted of CHO and CHON when extracted by lichrolut EN. The CHO and CHON species were rich in lignin-, tannin-, and condensed aromatic-like substances. The DOM with high-molecular-weight from 300 to 500 Da were preferentially removed by coagulation. The PACl coagulation decreased the abundances of lignin-, tannin-, and condensed aromatic-like substances in the CHO formulas, while lignin- and condensed aromatic-like substances in the CHON formulas remained. The remaining precursors corresponded to CHON molecules in the coagulated water, which may result in the formation of some chlorine (Cl)-containing molecules. Several DBPs among the CHOCl and CHONCl species were produced in the chlorinated water through the addition reaction of chlorine. New chlorinated N-DBPs of 21 formulas were detected.
Collapse
Affiliation(s)
- Warangkana Na Phatthalung
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla, 90112, Thailand; Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand
| | - Oramas Suttinun
- Faculty of Environmental Management, Prince of Songkla University, Hat Yai, Songkhla, 90112, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand
| | - Phanwatt Phungsai
- Department of Environmental Engineering, Faculty of Engineering and Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Ikuro Kasuga
- Department of Urban Engineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Futoshi Kurisu
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hiroaki Furumai
- Research Center for Water Environment Technology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil Engineering, Faculty of Engineering, Prince of Songkla University, Songkhla, 90112, Thailand; Center of Excellence on Hazardous Substance Management (HSM), Bangkok, 10330, Thailand.
| |
Collapse
|
160
|
Zhou S, Shang H, Luo J, Shen M, Wang Q, Zhang S, Zhu X. Organoarsenic conversion to As(III) in subcritical hydrothermal reaction of livestock manure. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:123571. [PMID: 32763770 DOI: 10.1016/j.jhazmat.2020.123571] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/04/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Liquid phase produced by the subcritical hydrothermal liquefaction (HTL) of livestock manure is extensively used in agronomic and environmental applications, but the potential risks caused by inherent pollutants (e.g., roxarsone, ROX) of the livestock manure have not been considered. This study shows that less toxic ROX is completely converted into highly toxic As(III) and As(V) in the HTL reaction with temperature more than 240 °C. Moreover, more than 81.5% of As is distributed in the liquid phase generated by the livestock manure HTL reaction. Notably, the hydrothermal products of livestock manure facilitate the conversion of As(V) to As(III). The resulting hydrochar and aldehydes act as electron donors for As(V) reduction, thus resulting in the formation of As(III). Furthermore, the dissociated As promotes the depolymerization and deoxygenation of the macromolecular compounds to produce more small oxygen-containing compounds such as aldehydes, further boosting the As(V) reduction to As(III). These results indicate that the liquid phase of the livestock manure has potential risks in applications as a fertilizer. Such findings have substantial implications in biomass utilization and redox reactions of envirotechnical and biogeochemical relevance.
Collapse
Affiliation(s)
- Shaojie Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hua Shang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jiewen Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Minghao Shen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Qi Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP(3)), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
161
|
Shi W, Zhuang WE, Hur J, Yang L. Monitoring dissolved organic matter in wastewater and drinking water treatments using spectroscopic analysis and ultra-high resolution mass spectrometry. WATER RESEARCH 2021; 188:116406. [PMID: 33010601 DOI: 10.1016/j.watres.2020.116406] [Citation(s) in RCA: 110] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/10/2020] [Accepted: 09/06/2020] [Indexed: 05/27/2023]
Abstract
Dissolved organic matter (DOM) plays a critical role in determining the quality of wastewater and the safety of drinking water. This is the first review to compare two types of popular DOM monitoring techniques, including absorption spectroscopy and fluorescence excitation-emission matrices (EEMs) coupled with parallel factor analysis (PARAFAC) vs. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS), for the applications in wastewater and drinking water treatments. The optical techniques provide a series of indices for tracking the quantity and quality of chromophoric and fluorescent DOM, while FT-ICR-MS is capable of identifying thousands of DOM compounds in wastewater and drinking water at the molecule level. Both types of monitoring techniques are increasingly used in studying DOM in wastewater and drinking water treatments. They provide valuable insights into the variability of DOM composition in wastewater and drinking water. The complexity and diversity of DOM highlight the challenges for effective water treatments. Different effects of various treatment processes on DOM are also assessed, which indicates that the information on DOM composition and its removal is key to optimize the treatment processes. Considering notable progress in advanced treatment processes and novel materials for removing DOM, it is important to continuously utilize these powerful monitoring tools for assessing the responses of different DOM constituents to a series of treatment processes, which can achieve an effective removal of DOM and the quality of treated water.
Collapse
Affiliation(s)
- Weixin Shi
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, China
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Liyang Yang
- Fujian Provincial Engineering Research Center for High-value Utilization Technology of Plant Resources, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian, China.
| |
Collapse
|
162
|
Wu C, Li Q. Characteristics of organic matter removed from highly saline mature landfill leachate by an emergency disk tube-reverse osmosis treatment system. CHEMOSPHERE 2021; 263:128347. [PMID: 33297272 DOI: 10.1016/j.chemosphere.2020.128347] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 06/12/2023]
Abstract
Some sanitary landfills in China are required to treat aging landfill leachate that is highly saline. In this study, the effectiveness of an emergency disk tube-reverse osmosis (DTRO) treatment system for such a refractory mature landfill leachate was evaluated. A molecular-level analysis was then applied to reveal the changes of the characteristics of leachate organic matter (OM). The DTRO system achieved >83% water recovery rate, reduced the electrical conductivity of effluent to 0.15-0.22 ms/cm, and reduced carbonaceous and nitrogenous pollutants to a level suitable for discharge. Furthermore, the vast majority of salts (e.g., chloride and sulfate ions), as well as refractory OM (e.g., humic- and fulvic-like substances), were effectively removed. The DTRO system can effectively remove a large number of macromolecular dissolved organic compounds with carbon number >23, as well as highly unsaturated compounds with DBE >12. Additionally, > 80% of the molecules assigned to the dissolved OM (DOM) were removed; even CHONS compounds with complex molecular structures were completely removed. The constitution of DOM in the DTRO effluent was simple, mainly comprising anti-sludge agents (e.g., small molecule alcohol and alkyl benzene sulfonic acid, etc.). However, the DOM in the resulting membrane concentrates was very similar to that in raw landfill leachate and the concentration was much higher. Therefore, an effective and feasible method should be developed to treat DTRO membrane concentrates because they pose high environmental risk.
Collapse
Affiliation(s)
- Chuanwei Wu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
163
|
Liu M, Tan Y, Fang K, Chen C, Tang Z, Liu X, Yu Z. Diverse molecular compositions of dissolved organic matter derived from different composts using ESI FT-ICR MS. J Environ Sci (China) 2021; 99:80-89. [PMID: 33183719 DOI: 10.1016/j.jes.2020.06.011] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/30/2020] [Accepted: 06/10/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) derived from various composts can promote significant changes of soil properties. However, little is known about the DOM compositions and their similarities and differences at the molecular level. In this study, the molecular compositions of DOM derived from kitchen waste compost (KWC), green waste compost (GWC), manure waste compost (MWC), and sewage sludge compost (SSC) were characterized by electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). The molecular formulas were classified into four subcategories: CHO, CHON, CHOS, and CHONS. The KWC, MWC, and SSC DOM represented the highest fraction (35.8%-47.4%) of CHON subcategory, while the GWC DOM represented the highest fraction (68.4%) of CHO subcategory. The GWC DOM was recognized as the nitrogen- and sulfur-deficient compounds that were less saturated, more aromatic, and more oxidized compared with other samples. Further analysis of the oxygen, nitrogen-containing (N-containing), and sulfur-containing (S-containing) functional groups in the four subcategories revealed higher organic molecular complexity. Comparison of the similarities and differences of the four samples revealed 22.8% ubiquitous formulas and 17.4%, 11.1%, 10.7%, and 6.3% unique formulas of GWC, KWC, SSC, and MWC DOM, respectively, suggesting a large proportion of ubiquitous DOM as well as unique, source-specific molecular signatures. The findings presented herein provide new insight into the molecular characterization of DOM derived from various composts and demonstrated the potential role of these different compounds for agricultural utilization.
Collapse
Affiliation(s)
- Minru Liu
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Yunkai Tan
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Kejing Fang
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Changya Chen
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, 417000, China.
| | - Zhihua Tang
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China.
| | - Xiaoming Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| |
Collapse
|
164
|
Wen P, Huang Y, Qiu Z, Li Q. Microbial response during treatment of different types of landfill leachate in a semi-aerobic aged refuse biofilter. CHEMOSPHERE 2021; 262:127822. [PMID: 32799144 DOI: 10.1016/j.chemosphere.2020.127822] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
In this research, for the first time, three kinds of landfill leachate (young (YL), mature (ML) and mixed (MYL) leachate) were treated in a semi-aerobic aged refuse biofilter (SAARB) to compare the effectiveness of, and microbial changes in, this biofilter when treating leachates that have significantly different characteristics. The SAARB achieved stable removal of organic matter from all three leachates and reduced the concentrations of aromatic substances. The best treatment was achieved with YL, followed in order by MYL and ML. The removal of nitrogen from all three leachates by the SAARB was particularly significant. The microbial abundance and diversity in the media of the SAARB changed after treatment of the three leachates, and the order of change from small to large was ML# < MYL# < YL#. The microbial communities were mainly affected by (and negatively correlated to) the relative content of refractory organics in leachate. Proteobacteria was the dominant microorganism. Deinococcus-thermus responded most to the quality of leachate being treated, increasing in relative abundance as the content of refractory organics increased. This was opposite to the response of Chloroflexi. In YL# the dominant species at the genus level was Thauera, and in ML# the dominant species were Truepera and Iodidimonas. The microbial activity and metabolic intensity were enhanced after treatment of the different leachates. The expression of nitrification-related genes was the strongest and the total abundance was the highest when YL was treated. This study promotes the optimization and application of SAARB.
Collapse
Affiliation(s)
- Peng Wen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yuyu Huang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Zhongping Qiu
- School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
165
|
Wang F, Huang Y, Wen P, Li Q. Transformation mechanisms of refractory organic matter in mature landfill leachate treated using an Fe 0-participated O 3/H 2O 2 process. CHEMOSPHERE 2021; 263:128198. [PMID: 33297163 DOI: 10.1016/j.chemosphere.2020.128198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 08/24/2020] [Accepted: 08/27/2020] [Indexed: 06/12/2023]
Abstract
An Fe0-participated O3/H2O2 (Fe0-O3/H2O2) process was applied to remove refractory organic matter (OM) in semi-aerobic aged refuse biofilter (SAARB) leachate arising from treating mature landfill leachate. The degradation and transformation characteristics of refractory OM were revealed at molecular level. Removal efficiencies of aromatic substances were 63.55% by the Fe0-O3/H2O2 process (much higher than in other single or binary processes), and fulvic- and humic-like substances were more effectively degraded by this process than by other treatments. According to Fourier transform-ion cyclotron resonance mass spectrometry (FT-ICR MS), 6645 categories of OM in SAARB leachate were identified. Although there was little difference in number of OM categories after treatment using the single-O3 and Fe0-O3/H2O2 processes, Fe0-O3/H2O2 process can better reduce OM relative abundance. It is noteworthy that the Fe0-O3/H2O2 process more effectively degraded CHONS compounds than the single-O3 process, while also producing more CHO compounds having higher bio-availability. The enhanced degradation efficiency of the Fe0-O3/H2O2 process were attributed to the formation of the Fenton process initiated by leached Fe2+ and H2O2. The heterogeneous catalytic effect from iron (hydro) oxides for O3/H2O2 also increased the treatment capacity of the Fe0-O3/H2O2 process, resulting in better total organic carbon removal. The Fe0-O3/H2O2 process is an efficient method for removing refractory OM in SAARB leachate.
Collapse
Affiliation(s)
- Fan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Yuyu Huang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Peng Wen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
166
|
Guo F, Qin S, Xu L, Bai Y, Xing B. Thermal degradation features of soil humic acid sub-fractions in pyrolytic treatment and their relation to molecular signatures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:142318. [PMID: 33370911 DOI: 10.1016/j.scitotenv.2020.142318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 09/04/2020] [Accepted: 09/07/2020] [Indexed: 06/12/2023]
Abstract
Pyrolysis is a promising treatment for soil remediation for rapidity and fertility preservation. But it is difficult to establish the relationship between pyrolysis behaviors and soil organic matter (SOM) structures, for SOM is a mixture of heterogeneous compounds. HA sub-fractions from the same soil source may provide a series of promising objects to understand SOM at molecular level and the resulting patterns in SOM pyrolysis. We first propose a novel insight into pyrolysis mechanism response to molecular signatures using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) combined with thermogravimetric analysis (TGA) to study six humic acid (HA) sub-fractions extracted from a forest soil. The findings indicate that decomposition of soil HA occurs systematically due to molecular signatures. The decomposition can be categorized as carboxyl controlled (below 280 °C), lipid-dominated (280-450 °C) and condensed aromatics-dominated processes (450-700 °C). Predominant reaction mechanism of all HA sub-fractions was random nucleation (α > 0.25). Lipid in HA tend to initiate multiple nuclei in thermal degradation, while condensed aromatics tend to initiate and grow centering single random point in higher conversion rate (α > 0.75). Bridging the molecular signature and thermogravimetry reveals that the pyrolysis stage below 350 °C should be divided into two distinct processes related to the carboxylic group and lipid compounds, although this stage has conventionally been considered as a single process. The N element of HA was mostly preserved in the condensed aromatics which was mainly pyrolyzed above 450 °C, suggesting that pyrolysis below 450 °C is a preferable remediation treatment considering nitrogen fertility preservation. The observed molecular-level pyrolysis patterns can be applied as a targeted remediation procedure for contaminated soils and can improve the understanding of SOM thermal behaviors at the molecular level.
Collapse
Affiliation(s)
- Fei Guo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Guangdong Provincial Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Shuai Qin
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Lei Xu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yingchen Bai
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China.
| | - Baoshan Xing
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
167
|
Wang F, Huang Y, Zhuo X, He C, Li Q. Molecular-level transformation characteristics of refractory organics in landfill leachate during ozonation treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 749:141558. [PMID: 32846351 DOI: 10.1016/j.scitotenv.2020.141558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/21/2020] [Accepted: 08/05/2020] [Indexed: 06/11/2023]
Abstract
Macromolecular refractory organics in landfill leachate are extremely complex compounds. This study examined the molecular-level transformation characteristics of refractory organics in biologically-treated landfill leachate (i.e., membrane bioreactor (MBR) leachate) during ozonation treatment. Results indicated that higher ozone dosage and longer reaction time enhanced organics removal. When ozone dosage was 32.16 mg/min and reaction time was 30 min, the efficiencies of removing color number, chemical oxygen demand (COD), and dissolved organic carbon (DOC) were 95.16%, 51.13%, and 26.40%, respectively. Furthermore COD / DOC decreased from 3.38 to 2.24, and the content of aromatic substances and macromolecular humic substances (e.g., humic- and fulvic-like substances) substantially decreased. The MBR-treated leachate mainly contained phenolic compounds (82%, aromatic index ≤ 0.50 and H/C < 1.5), and the major elements within the dissolved organic matter in the MBR-treated leachate were C, H, O, N, and S. The CHOS and CHONS compounds in the leachate indicated that it would have a much greater biorefractory property than the natural organic matter (i.e., technical grade humic acid). After the MBR-treated leachate was treated by ozonation for 10 min, the CHO, CHON, CHOS and CHONS compounds were greatly degraded and removed, and the oxidation degree of dissolved organic matter was significantly increased owing to the strong oxidation ability of ozone. At 30 min of ozonation, CHON, CHOS and CHONS compounds were further degraded, and CHOS and CHONS compounds (as the biorefractory substances) were almost completely removed. It was noteworthy that some CHO compounds that mainly contained phenolic compounds (m/z = 250-300, carbon number > 20, and double bond equivalent < 6) with a higher bioavailability and higher saturation degree accumulated. This study provides beneficial references for practical application of landfill leachate treatment using the ozonation process.
Collapse
Affiliation(s)
- Fan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Yuyu Huang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xiaocun Zhuo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
168
|
Wu L, Yan Z, Huang S, Li J, Su B, Wang C, Peng Y. Rapid start-up and stable maintenance of partial nitrification-anaerobic ammonium oxidation treatment of landfill leachate at low temperatures. ENVIRONMENTAL RESEARCH 2020; 191:110131. [PMID: 32861727 DOI: 10.1016/j.envres.2020.110131] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 08/09/2020] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
The current research regarding anaerobic ammonium oxidation (anammox) for the treatment of landfill leachate mainly focuses on a temperature range of 30-35 °C. However, achieving and maintaining anammox at lower temperatures would widen its application for the treatment of landfill leachate. This study, attempts to address this issue by using a combined process involving an upflow anaerobic sludge blanket (UASB), anoxic/oxic (A/O) reactor, anammox reactor (ANAOR), and anaerobic sequencing batch reactor (ASBR) to enrich anammox bacteria at relatively low temperatures. The rapid start-up of the partial nitrification-anammox process for landfill leachate treatment was achieved and maintained at 13-22 °C. The experiment was divided into phase 1 (20-22 °C) and phase 2 (13-15 °C). The results showed that 87.1% of the chemical oxygen demand (COD), 97.4-97.7% of the ammonium nitrogen (NH4+-N), and 93.3-94.7% of the total nitrogen (TN), were removed. At least 29.3% and 11.4% of NH4+-N was removed through anammox in phases 1 and 2, respectively, with an accumulation NO2--N ratio of 86.1-88.6%. Candidatus Kuenenia was the dominant anammox bacteria in the anammox process. A low temperature of 13-15 °C did not affect ammonia oxidizing bacteria (AOB), and their relative abundance in the A/O reactor ranged from 27.29% to 33.22%.
Collapse
Affiliation(s)
- Lina Wu
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Zhibin Yan
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Shan Huang
- Department of Civil and Environmental Engineering, Princeton University, Princeton, 08544, USA
| | - Jin Li
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Baiyi Su
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Chunyan Wang
- Key Laboratory of Urban Stormwater System and Water Environment (Ministry of Education), Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Centre of Beijing, Beijing University of Technology, Beijing, 100124, China.
| |
Collapse
|
169
|
Xiang Y, Gonsior M, Schmitt-Kopplin P, Shang C. Influence of the UV/H 2O 2 Advanced Oxidation Process on Dissolved Organic Matter and the Connection between Elemental Composition and Disinfection Byproduct Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:14964-14973. [PMID: 33179505 DOI: 10.1021/acs.est.0c03220] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The UV/H2O2 process is a promising advanced oxidation process (AOP) for micropollutant abatement in drinking water treatment and water reuse plants. However, during micropollutant degradation by the AOP, dissolved organic matter (DOM) and the disinfection byproduct (DBP) formation potential may also be altered. This study investigated the influence of the UV/H2O2 AOP on the elemental composition and DBP formation potential of two DOM isolates by using ultrahigh-resolution mass spectrometry (UHRMS). After the AOP, 629 new chemical formulas with an increased degree of oxidation and decreased aromaticity were obtained. Such alterations led to the formation of 226 unknown DBPs with decreased aromaticity indices (AImod) in the subsequent 3-day chlorination. Links between the unknown DBPs and the corresponding precursors in DOM were visualized by network computational analysis. The analysis gave three zones in the van Krevelen diagram based on the possibility of the C7-22HnOm formulas located in each zone to link to the corresponding DBPs. A further investigation with two model compounds reconfirmed the hydroxylation and ring cleavage of DOM by HO· attack during the AOP and the influence on DBP formation. These results obtained from UHRMS build the connection between the elemental composition of DOM and the formation potential of DBPs.
Collapse
Affiliation(s)
- Yingying Xiang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong SAR
| | - Michael Gonsior
- Chesapeake Biological Laboratory, University of Maryland Center for Environmental Science, Solomons, Maryland 20688, United States
| | - Philippe Schmitt-Kopplin
- Helmholtz Zentrum Muenchen, Research Unit Analytical BioGeoChemistry, Neuherberg 85764, Germany
- Technische Universität München, Chair of Analytical Food Chemistry, Freising-Weihenstephan 80333, Germany
| | - Chii Shang
- Department of Civil and Environmental Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong SAR
- Hong Kong Branch of Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon 000, Hong Kong SAR
| |
Collapse
|
170
|
Zeng Q, Wang X, Liu X, Huang L, Hu J, Chu R, Tolic N, Dong H. Mutual Interactions between Reduced Fe-Bearing Clay Minerals and Humic Acids under Dark, Oxygenated Conditions: Hydroxyl Radical Generation and Humic Acid Transformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15013-15023. [PMID: 32991154 DOI: 10.1021/acs.est.0c04463] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Hydroxyl radicals (·OH) exert a strong impact on the carbon cycle due to their nonselective and highly oxidizing nature. Reduced iron-containing clay minerals (RIC) are one of the major contributors to the formation of ·OH in dark environments, but their interactions with humic acids (HA) are poorly known. Here, we investigate the mutual interactions between RIC and HA under dark and oxygenated conditions. HA decreased the oxidation rate of structural Fe(II) in RIC but significantly promoted the ·OH yield. HA dissolved a fraction of Fe(II) from RIC to form an aqueous Fe(II)-HA complex. ·OH were generated through both heterogeneous (through oxidation of structural Fe(II)) and homogeneous pathways (through oxidation of aqueous Fe(II)-HA species). RIC-mediated ·OH production by providing H2O2 to react with Fe(II)-HA and electrons to regenerate Fe(II)-HA. This highly efficient homogeneous pathway was responsible for increased ·OH yield. Abundant ·OH significantly decreased the molecular size, bleached chromophores, and increased the oxygen-containing functional groups of HA. These molecular changes of HA resembled photochemical transformation of HA. The mutual interaction between RIC and HA in dark and redox-fluctuating environments provides a new pathway for fast turnover of recalcitrant organic matters in clay- and HA-rich ecosystems such as tropical forest soils and tidal marsh sediments.
Collapse
Affiliation(s)
- Qiang Zeng
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xi Wang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Xiaolei Liu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China
| | - Liuqin Huang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, China
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Jinglong Hu
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| | - Rosalie Chu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Nikola Tolic
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
171
|
Liu X, Hou Y, Yu Z, Wang Y, Zhou S, Jiang B, Liao Y. Comparison of molecular transformation of dissolved organic matter in vermicomposting and thermophilic composting by ESI-FT-ICR-MS. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:43480-43492. [PMID: 32462625 DOI: 10.1007/s11356-020-09353-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 05/18/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to investigate the effects of vermicomposting (VC) and thermophilic composting (TC) on the molecular transformation of dissolved organic matter (DOM). Here, the DOM after VC and TC (DOMv and DOMt, respectively) was characterized using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS). The results indicated that VC could improve the preservation of nitrogen and the humification of DOM compared with TC. Concurrently, VC facilitated the formation of highly oxidized molecules (O/C = 0.4-0.9) by enhancing the oxidation. The aromatized molecules in each component were more easily generated during VC, especially N-containing aromatized molecules (39.4-58.0%), thereby improving the quality of compost products. Furthermore, this study found that VC could reduce the anaerobic microsites in pile, thus increasing nominal oxidation state of carbon (NOSC) of organic matter and promoting the decomposition of high-energy substrates (mainly lipids, NOSC = - 1.7~- 1.3). These findings provided new molecular insights that VC can significantly improve the oxidation of organic matter and the preservation of nitrogen. Graphical abstract.
Collapse
Affiliation(s)
- Xiaoming Liu
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Yi Hou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510641, China
| | - Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China.
| | - Yueqiang Wang
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Shungui Zhou
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Bin Jiang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Yuhong Liao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
172
|
Tang Y, Hou S, Yang Y, Cheng D, Gao B, Wan Y, Li YC, Yao Y, Zhang S, Xie J. Activation of Humic Acid in Lignite Using Molybdate-Phosphorus Hierarchical Hollow Nanosphere Catalyst Oxidation: Molecular Characterization and Rice Seed Germination-Promoting Performances. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13620-13631. [PMID: 33140972 DOI: 10.1021/acs.jafc.0c04729] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although solid-phase activation of lignite using a nanocatalyst has great potential in producing low-cost and sustainable humic acid, the large-scale application of this technology still faces challenges because of the high price and toxicity of the nanocatalyst. Additionally, the specific molecular components of humic acid in activated lignite remain unknown. In this work, a multifunctional molybdate-phosphorus hierarchical hollow nanosphere (Mo-P-HH) catalyst was successfully manufactured by a simple way followed by phosphorization. In comparison with a commercial Pd/C catalyst, the multifunctional Mo-P-HH catalyst was more effective in producing water-soluble humic acid with small molecular functional groups from lignite via solid-phase activation. Moreover, Fourier transform ion cyclotron resonance mass spectrometry revealed the molecular compositions of humic acid in activated lignite. Compared with that from raw lignite, the humic acid after Mo-P-HH activation had less aromatic structure but higher content of lipids, proteins, amino sugar, and carbohydrates. In addition, the activated humic acid simulated seed germination and seedling growth. Therefore, this study provided a high-performance hierarchical hollow nanocatalyst for activation of humic acid and also offered the theoretical basis for the application of humic acid in agriculture.
Collapse
Affiliation(s)
- Yafu Tang
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| | - Shanmin Hou
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| | - Yuechao Yang
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
- Economic and Technological Development Zone, Baoyuan Bio-Agri Technology Ltd., Chengdu Street No. 8, Yantai, Shandong 264006, China
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS, University of Florida, Homestead, Florida 33031, United States
| | - Dongdong Cheng
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| | - Bin Gao
- Agricultural and Biological Engineering, Institute of Food and Agricultural Sciences (IFAS), University of Florida, Gainesville, Florida 32611, United States
| | - Yongshan Wan
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS, University of Florida, Homestead, Florida 33031, United States
| | - Yuncong C Li
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS, University of Florida, Homestead, Florida 33031, United States
| | - Yuanyuan Yao
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| | - Shugang Zhang
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| | - Jiazhuo Xie
- National Engineering Laboratory for Efficient Use of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment, Shandong Agricultural University, Daizong Street No. 61, Taian, Shandong 271018, China
| |
Collapse
|
173
|
Chen W, He C, Gu Z, Wang F, Li Q. Molecular-level insights into the transformation mechanism for refractory organics in landfill leachate when using a combined semi-aerobic aged refuse biofilter and chemical oxidation process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140502. [PMID: 32887006 DOI: 10.1016/j.scitotenv.2020.140502] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 06/11/2023]
Abstract
Landfill leachate contains high concentrations of complex organic matter (OM) that can severely impact the ecological environment. If landfill leachate is to be treated using a combined "biological + advanced treatment" process, the molecular information of OM must be investigated to optimize the operation parameters of the combined process and maximize the removal of organic pollutants. This study applied ultra-high resolution mass spectroscopy to investigate the degradation and transformation characteristics of refractory OM in mature landfill leachate at the molecular level (m/z = 150-800) during biological treatment (i.e., semi-aerobic aged refuse biofilter, SAARB) and subsequent chemical oxidation (i.e., the Fenton process and ozonation). After SAARB treatment, the polycyclic aromatics (aromatic index, AI > 0.66) and polyphenol (0.66 ≥ AI > 0.50) contents increased, and the highly unsaturated phenolic compounds (AI ≤ 0.50 and H/C < 1.5), which have a high bioavailability, were mostly removed. Compared with raw leachate, SAARB effluent (i.e., SAARB leachate) contained fewer organics with short carbon chains, more organics with long carbon chains, an elevated condensation degree for organics and, thus, a considerably reduced biodegradability. Although both the Fenton and ozonation processes could remove many of the polycyclic aromatics and polyphenols, ozone produced considerable amounts of aliphatic compounds with high bioavailability. Compared to ozonation, the Fenton process utilized the hydroxyl radical to non-selectively react with OM and produced better mineralization results.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Zhepei Gu
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Fan Wang
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
174
|
Wang J, Zhang S, He C, She Z, Pan X, Li Y, Shao R, Shi Q, Yue Z. Source identification and component characterization of dissolved organic matter in an acid mine drainage reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:139732. [PMID: 32544673 DOI: 10.1016/j.scitotenv.2020.139732] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/25/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
Acid mine drainage (AMD) is one of the most serious environmental problems and extreme environments on the earth, with high concentrations of sulphate and dissolved metals. A comprehensive description of dissolved organic matter (DOM) in these reservoirs is lacking, and it can play an important role in AMD pollution treatment and ecosystem. Thus, the source, composition and property of DOM in an AMD reservoir in Ma'an shan, China were studied using Fourier transform ion cyclotron resonance mass spectrometry and three-dimension excitation emission matrix fluorescence spectroscopy. The results suggested that the autochthonous algal metabolites significantly contributed to the DOM pool in the AMD reservoir. Bioavailable substances with lower oxidation, unsaturation and aromaticity such as lipids and carbohydrates were lacking in the AMD reservoir especially in the deeper layers. In addition, the proportion of sulfur compounds was significantly higher than that in other waters, suggesting the potential formation of organic matter with sulfur atom in a sulfur-rich environment. These findings underscore that the investigation of DOM in AMD reservoirs may offer references for the AMD treatment with addition of organic matter and broaden the understanding of special carbon cycling in the extreme environment of AMD.
Collapse
Affiliation(s)
- Jin Wang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Siyu Zhang
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Zhixiang She
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Xin Pan
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Yunyun Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Rui Shao
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Changping District, Beijing 102249, China
| | - Zhengbo Yue
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, Anhui 230009, China; Key Laboratory of Nanominerals and Pollution Control of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui 230009, China.
| |
Collapse
|
175
|
Huang M, Li Z, Chen M, Wen J, Luo N, Xu W, Ding X, Xing W. Dissolved organic matter released from rice straw and straw biochar: Contrasting molecular composition and lead binding behaviors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 739:140378. [PMID: 32758977 DOI: 10.1016/j.scitotenv.2020.140378] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 05/14/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
It remains debatable whether carbonized straw reapplying is a better solution than direct straw reapplying. Comparison of the characteristics and complexation behaviors of dissolved organic matter (DOM) derived from straw (ST) and biochar (BC) may offer new insights, but little current information exists. Herein, DOM samples were characterized by Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), revealing that the molecular weight and condensed aromatic components of BCDOM (457.70 Da and 71.16%, respectively) were higher than those of STDOM (433.48 Da and 3.13%, respectively). In particular, the N-containing compounds of BCDOM was more aromatic than STDOM. By combining spectroscopic techniques, complexation modeling, and chemometric analysis, BCDOM was shown to exhibit higher binding parameters (log KM) and more binding sites for Pb than STDOM. Noteworthily, the two binding sites, aromatic NO and aromatic NO2, existed only in the interaction of BCDOM with Pb. Furthermore, while phenol-OH displayed the fastest response to Pb in both STDOM and BCDOM, the binding sequences were not exactly the same. These differences may be related to the variations in the aromaticity and N-containing structures of DOM detected by FTICR-MS. These findings have implications on the stewardship of straw- and biochar-amended soil.
Collapse
Affiliation(s)
- Mei Huang
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhongwu Li
- College of Resources and Environmental Sciences, Hunan Normal University, Changsha 410081, PR China; College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Ming Chen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Jiajun Wen
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Ninglin Luo
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Xiang Ding
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Wenle Xing
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| |
Collapse
|
176
|
Chen W, Wang F, He C, Li Q. Molecular-level comparison study on microwave irradiation-activated persulfate and hydrogen peroxide processes for the treatment of refractory organics in mature landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122785. [PMID: 32361674 DOI: 10.1016/j.jhazmat.2020.122785] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/23/2020] [Accepted: 04/18/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the degradation of organics in mature leachate treated by microwave radiation-activated persulfate (MW/PS) and hydrogen peroxide (MW/H2O2) processes. Obvious synergistic effects existed in both the MW/PS and MW/H2O2 processes, but were significantly higher in the MW/PS process. Refractory organics were better degraded by the MW/PS process than the MW/H2O2 process due to the major contribution of SO4-. Moreover, according to Fourier transform-ion cyclotron resonance mass spectrometry coupled with electrospray ionization analysis results, the refractory organics (e.g. polycyclic aromatics (AI > 0.66), polyphenols (0.66 ≥ AI > 0.50)) were greatly degraded by both the MW/H2O2 and MW/PS processes, but the MW/PS process degraded dissolved organic matter (DOM) over a wider range than the MW/H2O2 process due to the different dominant radicals in the two processes. In addition, after reaction in the MW/PS process, the O/C ratio of DOM in the treated effluent showed an obvious increase, which can be mainly attributed to the reaction of sulfate radicals with the N- and S- containing compounds via single electron transfer.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Fan Wang
- Faculty Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Qibin Li
- Faculty Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
177
|
Chen W, Zhuo X, He C, Shi Q, Li Q. Molecular investigation into the transformation of dissolved organic matter in mature landfill leachate during treatment in a combined membrane bioreactor-reverse osmosis process. JOURNAL OF HAZARDOUS MATERIALS 2020; 397:122759. [PMID: 32361244 DOI: 10.1016/j.jhazmat.2020.122759] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the effectiveness of a combined membrane bioreactor (MBR) and reverse osmosis (RO) process for treating leachate produced by a large-scale anaerobic landfill. The MBR process had limited treatment efficiency for removing organic pollutants, but when combined with RO, the integrated system completely removed macromolecular compounds (i.e., humic- and fulvic-like substances) and produced effluent that satisfied the applicable discharge standard. The landfill leachate contained many types of DOM that had high molecular weight and were highly unsaturated. Although the MBR process removed some DOM that had a relatively low saturated degree (mainly aliphatic compounds (2.0 ≥ H/C ≥ 1.5) with relatively high bioavailability), many bio-refractory compounds were not removed. The RO system greatly reduced the content of residual DOM in MBR effluent and was effective for removing heteroatom DOM, especially polycyclic aromatics (AI > 0.66) and polyphenols (0.66 ≥ AI > 0.50). The effluent from the combined process of MBR and RO treatment mainly contained a small number of aliphatic compounds and phenolic compounds (AI ≤ 0.50 and H/C < 1.5) that had higher bioavailability than DOM in the raw leachate and posed little environmental risk.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China
| | - Xiaocun Zhuo
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 611756, China.
| |
Collapse
|
178
|
Li Y, He C, Li Z, Zhang Y, Wu B, Shi Q. Molecular transformation of dissolved organic matter in refinery wastewater. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 82:107-119. [PMID: 32910796 DOI: 10.2166/wst.2020.334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) has an important impact on the water treatment and reuse of petroleum refinery wastewater. In order to improve the treatment efficiency, it is necessary to understand the chemical composition of the DOM in the treatment processes. In this paper, the molecular composition of DOM in wastewater samples from a representative refinery were characterized. The transformation of various compounds along the wastewater treatment processes was investigated. A total of 61 heteroatomic class species were detected from the DOM extracts, in which CHO (molecules composed of carbon, hydrogen, and oxygen atoms) and CHOS (CHO molecules that also contained sulfur) class species were the most abundant and account for 78.43% in relative mass peak abundance. The solid phase extraction DOM from the dichloromethane unextractable fraction exhibited a more complex molecular composition and contained more oxygen atoms than in the dichloromethane extract. During wastewater treatment processes, the chemical oxygen demand (COD) and ammonia-nitrogen were reduced by more than 90%. Volatile organic compounds (VOCs) accounted for about 30% of the total COD, in which benzene and toluene were dominant. After biochemical treatment, the VOCs were effectively removed but the molecular diversity of the DOM was increased and new compounds were generated. Sulfur-containing class species were more recalcitrant to biodegradation, so the origin and transformation of these compounds should be the subject of further research.
Collapse
Affiliation(s)
- Yuguo Li
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China E-mail:
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China E-mail:
| | - Ze Li
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Yuxi Zhang
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China; Daqing Oilfield Water Company, Daqing, Heilongjiang 163454, China
| | - Baichun Wu
- State Key Laboratory of Petroleum Pollution Control, CNPC Research Institute of Safety and Environmental Technology, Beijing 102206, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China E-mail:
| |
Collapse
|
179
|
Nai H, Xin J, Liu Y, Zheng X, Lin Z. Distribution and molecular chemodiversity of dissolved organic nitrogen in the vadose zone-groundwater system of a fluvial plain, northern China: Implications for understanding its loss pathway to groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:137928. [PMID: 32208209 DOI: 10.1016/j.scitotenv.2020.137928] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 03/05/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
Nitrogen (N) pollution in groundwater has become a worldwide environmental geological issue due to the excessive N application into the vadose zone and furthered N leaching. Dissolved organic nitrogen (DON) are proposed as an overlooked pathway of N loss from agricultural systems to groundwater recently. Here, we collected soil (0-320 cm) and groundwater samples in a historic agricultural area to characterize the distribution and chemodiversity of DON in the vadose zone-groundwater system, and identified specific linkages between DON traits and the bacterial community. The results showed that DON and NO3--N were the main forms of dissolved N in the vadose zone-groundwater system. The deep vadose zone (> 100 cm) was an important storage area for DON (44.9%), having implications for long-term groundwater quality degradation. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) revealed that the DON was dominated by condensed aromatics and lignins (57.2%) in the vadose zone, whereas amino sugars, proteins, peptides and lignins (72.5%) were dominant in groundwater. By analyzing shared and ubiquitous DON molecular formulas detected among different layers, it was found that < 2.52% of DONs could be leached from surface soil to groundwater directly, and most DONs went through biological conversion during the whole leaching path. It was identified that bacterial community played an important role in DONs transformation. The most active bacteria in the transformation were Nitrospira, Bacillus, and Sphingomonas and they tended to interact with DON of high N/C and H/C ratios, causing molecules with high unsaturation, high aromaticity and high oxidation to accumulate. The results would be helpful to elucidate DON occurrence in groundwater and track the key processes governing DON transport from the surface soil to groundwater.
Collapse
Affiliation(s)
- Hui Nai
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jia Xin
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Yang Liu
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xilai Zheng
- Key Laboratory of Marine Environment Science and Ecology, Ministry of Education, Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Zhiwei Lin
- Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
180
|
He C, Zhang Y, Li Y, Zhuo X, Li Y, Zhang C, Shi Q. In-House Standard Method for Molecular Characterization of Dissolved Organic Matter by FT-ICR Mass Spectrometry. ACS OMEGA 2020; 5:11730-11736. [PMID: 32478264 PMCID: PMC7254807 DOI: 10.1021/acsomega.0c01055] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 05/04/2020] [Indexed: 05/03/2023]
Abstract
Electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) has been widely used for molecular characterization of dissolved organic matter (DOM). However, ESI FT-ICR MS generally has poor repeatability and reproducibility because of its inherent ionization mechanism and structural characteristics, which severely hindered its application in quantitative analysis of complex mixtures. In this article, we developed an in-house standard method for molecular characterization of DOM by ESI FT-ICR MS. Instead of obtaining reproducible results by determining the instrument parameters, we adopted an approach of object control on the mass spectrum to solve the problem of poor reproducibility. The mass peak shape, resolution, and relative intensity distribution of a natural organic matter standard were adjusted by optimizing the operating conditions to obtain a repeatable result. The quality control sample was run 26 times by the different operators in a 6-month-long period to evaluate the reproducibility. Results showed that the relative standard deviation (%) of repeatability and reproducibility are 1.02 and 2.35 for average H/C, respectively. The in-house standard method has been validated and successfully used for the characterization of more than 4000 DOM samples, which is transferable to other laboratories.
Collapse
Affiliation(s)
- Chen He
- State
Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering
Center (PMEC), China University of Petroleum, Beijing 102249, China
| | - Yahe Zhang
- State
Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering
Center (PMEC), China University of Petroleum, Beijing 102249, China
| | - Yunyun Li
- State
Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering
Center (PMEC), China University of Petroleum, Beijing 102249, China
| | - Xiaocun Zhuo
- State
Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering
Center (PMEC), China University of Petroleum, Beijing 102249, China
| | - Yuguo Li
- State
Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering
Center (PMEC), China University of Petroleum, Beijing 102249, China
| | - Chuanlun Zhang
- State
Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering
Center (PMEC), China University of Petroleum, Beijing 102249, China
- Shenzhen
Key Laboratory of Marine Archaea Geo-Omics, Department of Ocean Science
& Engineering, Southern University of
Science and Technology, Shenzhen 518055, China
| | - Quan Shi
- State
Key Laboratory of Heavy Oil Processing, Petroleum Molecular Engineering
Center (PMEC), China University of Petroleum, Beijing 102249, China
- . Phone: +86 10 89739157
| |
Collapse
|
181
|
Qiu J, Lü F, Zhang H, Huang Y, Shao L, He P. Persistence of native and bio-derived molecules of dissolved organic matters during simultaneous denitrification and methanogenesis for fresh waste leachate. WATER RESEARCH 2020; 175:115705. [PMID: 32200334 DOI: 10.1016/j.watres.2020.115705] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/03/2020] [Accepted: 03/08/2020] [Indexed: 06/10/2023]
Abstract
Biological treatment of wastewater always leaves plenty of refractory dissolved organic matters (DOM) in effluents, specifically for fresh waste leachate. Aiming at comprehending the production and removal of these compounds, this study investigated DOM transformation in a simultaneous denitrification and methanogenesis with activated sludge (SDM-AS) system with NO3-/NO2- backflow for raw fresh leachate. Chemical oxygen demand (COD) was reduced to 854 ± 120 mg/L from 63000 ± 470 mg/L, and total nitrogen (TN) decreased from 2500 ± 647 mg/L to 404 ± 75 mg/L, during an operation of 440 days. The SDM reactor was fed at organic loading rate of 6.70 kgCOD/(m3·d) to generate 2.52 L CH4/(L·d). Molecular information of leachate DOM was acquired by using ultra-performance liquid chromatography coupled with Orbitrap mass spectrometry. A DOM classification based on Venn diagram was proposed to divide leachate DOM into seven categories. It revealed that 76-84% of final effluent DOM stemmed from biological derivation. Posteriori non-target screening showed anthropogenic micropollutants, e.g. phosphate flame retardants and industrial agents, probably contributed to the remnant native inert DOM in the effluent at the levels of 5-200 μg/L. DOM Classification also showed a portion of bio-derived DOM can be completely removed by SDM-AS processes, while the rest bio-derived DOM can be partially removed depending on DOM nature and the recirculation ratio. The removal and production rate of a specific bio-derived molecule in respective SDM and AS units theoretically satisfied a hyperbolical and dual relationship in terms of mass balance. The persistence of each DOM category was sorted. These results showed anaerobic degradation could be a promising approach to reduce aerobic bio-derived DOM.
Collapse
Affiliation(s)
- Junjie Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Yulong Huang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
182
|
Ji M, Sang W, Tsang DCW, Usman M, Zhang S, Luo G. Molecular and microbial insights towards understanding the effects of hydrochar on methane emission from paddy soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 714:136769. [PMID: 31982762 DOI: 10.1016/j.scitotenv.2020.136769] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/15/2020] [Accepted: 01/16/2020] [Indexed: 06/10/2023]
Abstract
Directly returning rice straw to the paddy soil would significantly stimulate methane emission, and hydrochar has potential to be used as soil conditioner. However, the effects of hydrochar on the methane emission from paddy soil and the related mechanisms are still unclear. In the present study, straw-based hydrochar obtained at 200 °C (HC200), 250 °C (HC250) and 300 °C (HC300) and hydrochar after removal of bio-oil at these temperatures (CHC200, CHC250, and CHC300) were prepared and added to the paddy soil. The application of HC200, HC250 and HC300 resulted in the enhanced methane production compared to the control, showing 4.3, 1.6 and 1.5-fold higher methane production, respectively. It was related to the large amount of dissolved organic matter (DOM) released from hydrochar. Excitation-emission matrix fluorescence spectroscopy with parallel factor analysis (EEM-PARAFAC) showed that the hydrochar-derived DOM mainly included humic-like, phenolic and less aromatic structures, and with the increase of hydrothermal temperature, the content of humic-like substances and phenols increased, while biodegradable organics decreased. This was consistent with the maximum methane production by HC200. After incubation, there was no low-aromatic structures observed in the soil leachate, and the residual organics were mainly humus. The EEM-PARAFAC results were supported by compositional characterization of soil leachate by high-resolution mass spectrometry, and the refractory organics released from hydrochar was mainly lignins or (CRAM)-like structures in the range of H/C = 0.8-1.6 and O/C = 0.1-0.5. The organics dissolved from the washed hydrochar was significantly reduced, and some washed hydrochar (CHC250 and CHC300) even inhibited methane emission possibly due to their ability to adsorb organics. Microbial analysis further showed that the increased methane production resulted from hydrochar was associated with the enrichment of Janibacter, Anaeromyxobacter, Anaerolinea and Sporacetigenium. This present study provided a better understanding to the effect of hydrochar on methanogenesis in paddy soil.
Collapse
Affiliation(s)
- Mengyuan Ji
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China; Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Wenjing Sang
- Textile Pollution Controlling Engineering Center of Ministry of Environmental Protection, College of Environmental Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Muhammad Usman
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| |
Collapse
|
183
|
Wang H, Ge D, Cheng Z, Zhu N, Yuan H, Lou Z. Improved understanding of dissolved organic matter transformation in concentrated leachate induced by hydroxyl radicals and reactive chlorine species. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121702. [PMID: 31796363 DOI: 10.1016/j.jhazmat.2019.121702] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/06/2019] [Accepted: 11/15/2019] [Indexed: 06/10/2023]
Abstract
Concentrated leachate (CL) is commonly featured with high salt and dissolved organic matters (DOM). In this study, molecular transformation of DOM was revealed to identify the reactive mechanisms with (non-) radical reactive species in ozonation, electrolysis and E+-ozonation processes. Chlorine ions were efficiently activated into non-radical reactive chlorine species (RCS) with 245.7 mg/L, which was more dominant in electrolysis. Compared to ozonation, C•OH was increased from 2.6 × 10-4 mg/L into 5.8 × 10-4 mg/L and the generation of Cl•/ClO• could be concluded according to the decline of non-radical RCS in E+-ozonation process. For chromophoric and fluorescent DOM, aromatic compounds and polymerization degree dramatically decreased in E+-ozonation. Lipid-like and CRAM/lignin-like compounds were substantially degraded, as •OH and ClO•/Cl• shows an affinity towards oxygen-containing organic compounds via single electron transfer by attracting OH bonds. Especially, carbon/hydrogen/oxygen (CHO-containing) compounds were readily to be degraded with the removal efficiency of 92.5 %, 97.0 % and 98.4 % in electrolysis, ozonation and E+-ozonation, respectively. Moreover, nitrogen atoms have a negative effect on DOM degradation, and thus, carbon/hydrogen/nitrogen and carbon/hydrogen/nitrogen/sulfur (CHN- and CHNS-containing) compounds were considered as refractory compounds. This paper is expected to shed light on the synergetic effect in E+-ozonation and transformation of refractory DOM in CL treatment.
Collapse
Affiliation(s)
- Hui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dongdong Ge
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhaowen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
184
|
Li R, Li L, Zhang Z, Chen H, McKenna AM, Chen G, Tang Y. Speciation and conversion of carbon and nitrogen in young landfill leachate during anaerobic biological pretreatment. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 106:88-98. [PMID: 32200251 DOI: 10.1016/j.wasman.2020.03.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/27/2020] [Accepted: 03/09/2020] [Indexed: 06/10/2023]
Abstract
There is an increasing need for landfill leachate pretreatment prior to discharge to wastewater treatment plants due to increasingly stringent sewer discharge limits. Lab-scale tests have shown that the anaerobic biological processes can effectively remove chemical oxygen demand and dissolved organic carbon from landfill leachate. Our work expands the knowledge in anaerobic leachate pretreatment by systematically studying the conversion of carbon and nitrogen species, particularly their recalcitrant fractions in a submerged anaerobic biofilm reactor using real-world leachate from a typical young municipal solid waste landfill. After reaching steady state, the reactor removed 41.7% of the fulvic acids (i.e., 1290 mg C/L). While compounds with a low degree of oxidation (O:C < 0.2) and compounds with a low degree of saturation (H:C < 1) were removed, compounds that were more oxidized (O:C > 0.2) and more saturated (H:C > 1) were produced. At steady state, 98% of recalcitrant dissolved organic nitrogen (i.e., rDON = 222 mg N/L) was removed. Compared to the DON in the raw leachate, the produced DON in the pre-treated leachate were more oxidized (O:C > 0.35) and more bioavailable (N:C > 0.07). The submerged anaerobic biofilm reactor may be an efficient leachate pretreatment method if rDON removal is needed.
Collapse
Affiliation(s)
- Runwei Li
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310-6064, USA
| | - Liang Li
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310-6064, USA; Florida Department of Environmental Protection, 3900 Commonwealth Boulevard, Tallahassee, FL 32399-3000, USA
| | - Zhiming Zhang
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310-6064, USA
| | - Huan Chen
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4205, USA
| | - Amy M McKenna
- National High Magnetic Field Laboratory, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4205, USA
| | - Gang Chen
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310-6064, USA
| | - Youneng Tang
- Department of Civil and Environmental Engineering at FAMU-FSU College of Engineering, Florida State University, 2525 Pottsdamer Street, Tallahassee, FL 32310-6064, USA.
| |
Collapse
|
185
|
Wang H, Cheng Z, Sun Z, Zhu N, Yuan H, Lou Z, Chen X. Molecular insight into variations of dissolved organic matters in leachates along China's largest A/O-MBR-NF process to improve the removal efficiency. CHEMOSPHERE 2020; 243:125354. [PMID: 31759208 DOI: 10.1016/j.chemosphere.2019.125354] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 11/04/2019] [Accepted: 11/11/2019] [Indexed: 06/10/2023]
Abstract
Dissolved organic matter (DOM) is a critical component of high-strength organic wastewater, and the study of them from molecular perspective could improve the removal efficiency. Leachate samples were collected from China's largest two stage anaerobic/aerobic membrane bioreactor and nanofiltration (A/O-MBR-NF) process, with the treatment capacity of 5000 t/d, and characterized by electrospray ionization (ESI) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) from molecular perspective. High molecular weight (m/z > 500) compounds with 40-50 carbon atoms and 15-20 double bond equivalence (DBE) were biodegraded into medium molecular weight compounds with 10-20 carbon atoms and ∼10 DBE. Contribution of lipids and unsaturated hydrocarbons compounds in DOM turned into 42.1% and 2.5%, respectively, while contribution of condensed aromatics in DOM dramatically increased to 15.4% in leachates along the A/O-MBR process. Most of DOM was converted into higher polymerization degree and accumulated in concentrated leachate (CL). Sulfur-containing compounds, whose relative peak ratio accounted for 56.4%, were regarded as recalcitrant DOM in CL. Increase of retention time in anaerobic unit for raw leachate might be useful for decomposing the long-chain organic compounds, which could also reduce loadings for the following A/O-MBR process. Well-focus techniques such as sulfur-oxidation bacteria could be introduced into the MBR unit for better removing organo-sulfur compounds. Advanced oxidation processes for CL degradation would be efficiency for the removal of recalcitrant DOM. Thus, leachate could be disposed in a zero-discharge way based on the practical experience of such a typical working treatment process.
Collapse
Affiliation(s)
- Hui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhaowen Cheng
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiyi Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Xiaoliang Chen
- Shanghai Solid Waste Management Center, Shanghai, 200240, China
| |
Collapse
|
186
|
Chen W, Li Q. Elimination of UV-quenching substances from MBR- and SAARB-treated mature landfill leachates in an ozonation process: A comparative study. CHEMOSPHERE 2020; 242:125256. [PMID: 31704524 DOI: 10.1016/j.chemosphere.2019.125256] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/18/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Ultraviolet-quenching substances (UVQS), recently identified pollutants in landfill leachate, can interfere with ultraviolet disinfection when landfill leachate is co-treated with municipal sewage. This study investigated the elimination of UVQS in mature landfill leachates through a membrane bioreactor (MBR) and a semi-aerobic aged refuse biofilter (SAARB). Humus (i.e., fulvic and humic acids) was the main component of organic matter in both MBR- and SAARB-treated landfill leachates, while there was a more stable chemical structure of humus in the MBR-treated leachate. The concentration of UVQS in MBR-treated mature landfill leachate was higher than that of SAARB-treated leachate. Ozonation can degrade UVQS effectively, especially for landfill leachate containing a high concentration UVQS (i.e., MBR-treated landfill leachate). However, a large accumulation of small molecule acid might be caused by ozonation for highly concentrated UVQS in landfill leachate, leading to the delayed degradation of total organic carbon. Moreover, ozonation degraded both fulvic acid and humic acid; and degraded humic acid more effectively. For instance, 88.0% removal (MBR-CP2) and 96.0% removal (SAARB-CP2) of humic acid was higher than those (83.3% for MBR-CP1 and 92.3% for SAARB-CP1) of fulvic acid. The destruction of UV-quenching functional groups of organics (such as CC) by ozone was the main UVQS degradation mechanism of ozonation applied to MBR- and SAARB-treated landfill leachates. Therefore, the ozonation process can efficiently decrease UV absorption intensity in both MBR- and SAARB-treated landfill leachates.
Collapse
Affiliation(s)
- Weiming Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China
| | - Qibin Li
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu, 611756, China.
| |
Collapse
|
187
|
Liu X, Liu R, Zhu B, Ruan T, Jiang G. Characterization of Carbonyl Disinfection By-Products During Ozonation, Chlorination, and Chloramination of Dissolved Organic Matters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2218-2227. [PMID: 31961661 DOI: 10.1021/acs.est.9b04875] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carbonyl compounds are an important class of by-products that are generated in disinfection reactions. These chemicals are ingredients contributing to toxicology in the drinking water system, the compositions and structures of which are worthy of attention. In this study, a chemical derivatization method based on simultaneous light/heavy isotope labeling was established for general recognition of carbonyl compounds and carbonyl disinfection by-products (DBPs) as per the humic substance reference standard (Suwannee river fulvic acid II, SRFA) before and after ozonation, chlorination, and chloramination. Decomposition of macromolecular components into polar carbonyl species was observed to be the most prominent pathway in ozone treatment due to the efficient reactivity of ozone with phenols and alkoxy aromatic rings. As a result, alteration of molecular characteristics was noticed. For instance, ozone-induced carbonyl DBPs in the highly oxygenated compound classes (0.67 ≤ O/C ≤ 1.2, 0.6 < H/C ≤ 1.5) possessed higher O/C but contained less oxygen numbers and carbon numbers. Cl/Br-carbonyl-DBPs were identified after chlorination and chloramination, and I-carbonyl-DBPs were found in ozone and chloramine treatments. Several major halogenated carbonyl homologues were further recognized, including halogenated 4-oxobutenoic acid analogues, halogenated 2,5-dioxohex-3-enoic acid analogues, and halogenated 4-cyclopentene-1,3-diones analogues. These findings illustrate the presence of abundant carbonyl DBPs in water disinfection, and hence their impacts on human health deserve further investigation.
Collapse
Affiliation(s)
- Xueke Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Ruirui Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
188
|
Qiu J, Lü F, Zhang H, Liu W, Chen J, Deng Y, Shao L, He P. UPLC Orbitrap MS/MS-based fingerprints of dissolved organic matter in waste leachate driven by waste age. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121205. [PMID: 31627183 DOI: 10.1016/j.jhazmat.2019.121205] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/25/2019] [Accepted: 09/10/2019] [Indexed: 06/10/2023]
Abstract
Waste leachate is a pool of complicated metabolites from waste treatment and disposal as a global environmental problem. The recognition of dissolved organic matter (DOM) in leachate is crucial to improve leachate treatment efficiency and comprehend waste stabilization process. The present study acquired the molecular information for DOM in 22 waste leachate samples using ultra-performance liquid chromatography coupled with hybrid quadrupole Orbitrap mass spectrometry (UPLC Orbitrap MS/MS) based on two dimensions of retention time and mass-to-charge ratio. Unique mass peaks occupied more than 20% of the detected mass peaks in each leachate, implying that the molecular information for DOM could be the fingerprint of waste landfills and storage pits. Waste age and composition predominately accounted for this unique DOM. The double-bond equivalent increased and the H/C decreased with waste age. We further found that 57 precursor ion peaks and artificial matter (confirmed as N-butylbenzenesulfonamide) were significantly correlated with waste age by multiple test and non-target screening. These molecular characteristics of raw leachate were first determined to compensate for the evolution of leachate with waste age. The fingerprints of waste leachate can be further applied in environmental monitoring scenarios, e.g., tracing landfill leakage.
Collapse
Affiliation(s)
- Junjie Qiu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Fan Lü
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Hua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Wanying Liu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Junlan Chen
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Yingtao Deng
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai, 200092, PR China; Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Liming Shao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai, 200092, PR China.
| |
Collapse
|
189
|
Hao S, Ren S, Zhou N, Chen H, Usman M, He C, Shi Q, Luo G, Zhang S. Molecular composition of hydrothermal liquefaction wastewater from sewage sludge and its transformation during anaerobic digestion. JOURNAL OF HAZARDOUS MATERIALS 2020; 383:121163. [PMID: 31520934 DOI: 10.1016/j.jhazmat.2019.121163] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 08/19/2019] [Accepted: 09/04/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion (AD) has shown potential to convert hydrothermal liquefaction wastewater (HTLWW) into biogas in previous studies. However, the identification of refractory components and further insights into the molecular transformations of organics in HTLWW are essential for developing more efficient AD processes. In this study, two HTLWWs were obtained from the temperature-derived hydrothermal liquefaction of sewage sludge at 170 ℃ and 320 ℃. Their molecular compositions, as well as their modifications in the subsequent AD process, were characterized using a suite of advanced molecular tools. The dissolved organic matter (DOM) in the high temperature-derived HTLWW was lower in molecular weight, less saturated, less oxidized, and enhanced in nitrogenous substances. During the AD process, most of the volatile compounds and low molecular weight (LMW) neutrals were removed, while biopolymers were the most refractory. Carboxylic-rich alicyclic molecules (CRAM), particularly those containing 3 to 5 N for low temperature-derived DOM and 1 to 3 N for high temperature-derived DOM, were resistant to anaerobic biodegradation. Meanwhile, compounds with fewer nitrogens and more carboxyl groups were preferentially produced. This molecular characterization of HTLWW-derived DOM and examination of its transformation during AD will contribute to the development of efficient methods for HTLWW treatment in the future.
Collapse
Affiliation(s)
- Shilai Hao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, Colorado, 80401, United States
| | - Shuang Ren
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Nan Zhou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Huihui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Muhammad Usman
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing, 102249, China
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China.
| |
Collapse
|
190
|
Chen H, Hao S, Chen Z, O-Thong S, Fan J, Clark J, Luo G, Zhang S. Mesophilic and thermophilic anaerobic digestion of aqueous phase generated from hydrothermal liquefaction of cornstalk: Molecular and metabolic insights. WATER RESEARCH 2020; 168:115199. [PMID: 31655439 DOI: 10.1016/j.watres.2019.115199] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 10/10/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The critical challenge of hydrothermal liquefaction (HTL) for bio-oil production from biomass is the production of large amounts of aqueous products (HTL-AP) with high organic contents. The present study investigated the anaerobic digestion (AD) performances of HTL-AP under both thermophilic and mesophilic conditions, and molecular and metabolic analysis were conducted to provide insights into the different performances. The results showed that thermophilic AD had lower COD removal efficiency compared to mesophilic AD (45.0% vs. 61.6%). Liquid chromatography coupled with organic carbon detection and organic nitrogen (LC-OCD-OND) analysis showed that both high molecular weight (HMW) and low molecular weight (LMW) compounds were degraded to some extent and more LMW acids (LMWA) and recalcitrant aromatic compounds were degraded in the mesophilic reactor, which was the main reason of higher COD removal efficiency. Phenyl compounds (e.g. phenol and 2 methoxyphenol), furans and pyrazines were the recalcitrant chemicals detected through GC-MS analysis. Fourier transform ion cyclone resonance mass spectrometry (FT-ICR-MS) analysis demonstrated the complexity of HTL-AP and the proportions of phenolic or condensed aromatic compounds increased especially in the thermophilic effluents. Metabolites analysis showed that the reasons contributing to the differences of mesophilic and thermophilic AD were not only related to the degradation of organic compounds (e.g. benzoate degradation via CoA ligation) in HTL-AP but also related to the microbial autogenesis (e.g. fatty acid biosynthesis) as well as the environmental information processing. In addition, the enrichment of Mesotoga, responsible for the high degradation efficiency of LMWA, and Pelolinea, involved in the degradation of phenyl compounds, were found in mesophilic reactor, which was consistent with higher removal of corresponding organics.
Collapse
Affiliation(s)
- Huihui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Shilai Hao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, 80401, United States
| | - Zheng Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Sompong O-Thong
- Department of Biology, Faculty of Science, Thaksin University, Phathalung, 93110, Thailand
| | - Jiajun Fan
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - James Clark
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, York YO10 5DD, UK
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, PR China.
| |
Collapse
|
191
|
Yao Y, Wang X, Yang Y, Shen T, Wang C, Tang Y, Wang Z, Xie J, Liu L, Hou S, Gao B, Li YC, Wan Y. Molecular Composition of Size-Fractionated Fulvic Acid-Like Substances Extracted from Spent Cooking Liquor and Its Relationship with Biological Activity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:14752-14760. [PMID: 31747513 DOI: 10.1021/acs.est.9b02359] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The treatment of spent cooking liquor is critical for clean production of pulp and paper industry. There is a compelling need to develop a cost-effective and green technology for reuse of organic matter in spent cooking liquor to mitigate the negative impacts on the environment. The objective of this study is to examine the chemical structure of fulvic acid-like substances extracted from spent cooking liquor (PFA) and their relationship with bioactivity in plant growth. Compared with the benchmark Pahokee peat fulvic acid (PPFA), PFA has less aromatic structure, but higher content of lignin, carbohydrates, and amino acid. After fractionation, protein/amino proportion decreased with increasing molecular weight, but the aromaticity increased. Under salt stress, rice seedling growth was promoted by PFA with low molecular weight (<5 kDa), but inhibited by fraction with high molecular weight (>10 kDa). Principal component analysis suggested that promoted growth was more related with chemical structure (O- and N-alkyl moieties) than with molecular weight. This study provided the theoretical basis for development of an innovative green technology of sustainable reuse of spent cooking liquor in agriculture.
Collapse
Affiliation(s)
- Yuanyuan Yao
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Xiaoqi Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Yuechao Yang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Tianlin Shen
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Chun Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Yafu Tang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Zhonghua Wang
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Jiazhuo Xie
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Lu Liu
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Shanmin Hou
- National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources; National Engineering & Technology Research Center for Slow and Controlled Release Fertilizers, College of Resources and Environment , Shandong Agricultural University , Taian , Shandong 271018 , P. R. China
| | - Bin Gao
- Department of Agricultural and Biological Engineering, IFAS , University of Florida , Gainesville , Florida 32611 , United States
| | - Yuncong C Li
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS , University of Florida , Homestead , Florida 33031 , United States
| | - Yongshan Wan
- Department of Soil and Water Science, Tropical Research and Education Center, IFAS , University of Florida , Homestead , Florida 33031 , United States
| |
Collapse
|
192
|
Usman M, Hao S, Chen H, Ren S, Tsang DCW, O-Thong S, Luo G, Zhang S. Molecular and microbial insights towards understanding the anaerobic digestion of the wastewater from hydrothermal liquefaction of sewage sludge facilitated by granular activated carbon (GAC). ENVIRONMENT INTERNATIONAL 2019; 133:105257. [PMID: 31675572 DOI: 10.1016/j.envint.2019.105257] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/06/2019] [Accepted: 10/09/2019] [Indexed: 06/10/2023]
Abstract
Hydrothermal liquefaction of sewage sludge to produce bio-oil and hydro-char unavoidably results in the production of high-strength organic wastewater (HTLWW). However, anaerobic digestion (AD) of HTLWW generally has low conversion efficiency due to the presence of complex and refractory organics. The present study showed that granular activated carbon (GAC) promoted the AD of HTLWW in continuous experiments, resulting in the higher methane yield (259 mL/g COD) compared to control experiment (202 mL/g COD). It was found that GAC increased the activities of both aceticlastic and hydrogenotrophic methanogens. The molecular transformation of organics in HTLWW was further analyzed. It was shown GAC promoted the degradation of soluble microbial by-products, fulvic- and humic-like substances as revealed by 3-dimensional fluorescence excitation-emission matrix (3D-EEM) analysis. Gas chromatography mass spectrometry (GC-MS) analysis showed that GAC resulted in the higher degradation of N-heterocyclic compounds, acids and aromatic compounds and less production of new organic species. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) analysis also showed that GAC promoted the degradation of nitrogenous organics. In addition, it was shown that GAC improved the removal of less oxidized, higher nitrogen content, and higher double bond equivalent (DBE) organic compounds. Microbial analysis showed that GAC not only increased the microbial concentration, but also enriched more syntrophic bacteria (e.g., Syntrophorhabdus and Synergistes), which were capable of degrading a wide range of different organics including nitrogenous and aromatic organics. Furthermore, profound effects on the methanogens and the enrichment of Methanothrix instead of Methanosarcina were observed. Overall, the present study revealed the molecular transformation and microbial mechanism in the AD of HTLWW with the presence of GAC.
Collapse
Affiliation(s)
- Muhammad Usman
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Shilai Hao
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, United States
| | - Huihui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Shuang Ren
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Sompong O-Thong
- Department of Biology, Faculty of Science, Thaksin University, Phathalung, 93110, Thailand
| | - Gang Luo
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
193
|
Yuan R, Shen Y, Zhu N, Yin C, Yuan H, Dai X. Pretreatment-promoted sludge fermentation liquor improves biological nitrogen removal: Molecular insight into the role of dissolved organic matter. BIORESOURCE TECHNOLOGY 2019; 293:122082. [PMID: 31493732 DOI: 10.1016/j.biortech.2019.122082] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/25/2019] [Accepted: 08/27/2019] [Indexed: 05/22/2023]
Abstract
Waste activated sludge (WAS) can be used as carbon sources to support biological nutrient removal (BNR). In this study, thermal-alkaline (THALK), ozonation (OZN), electrolysis (EC) and NaClO-promoted electrolysis (EC-AOP) were investigated to facilitate WAS solubilization and production of volatile fatty acids (VFAs). EEMF-PARAFAC and FT-ICR-MS were employed to characterize the transformation of dissolved organic matter (DOM) in WAS fermentation liquors at molecular level. THALK achieved the highest fluorescence intensity of C1 protein after pretreatment. Proteins and lipids were the dominant DOM in the pretreated WAS, while the DOM shifted towards substances with higher H/C and lower O/C after fermentation. The BNR results showed that THALK (100%) and EC-AOP (96.9%) outperformed other groups (78.9-90.3%) in terms of NO3-N removal, indicating the significant impact of DOM compositions. Overall, these results demonstrated that THALK and EC-AOP effectively enhanced release of VFAs and DOM, which subsequently improved NO3-N removal efficiency.
Collapse
Affiliation(s)
- Rongxue Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yanwen Shen
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, 1239 Siping Road, Shanghai 200292, China.
| | - Changkai Yin
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Haiping Yuan
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200292, China
| |
Collapse
|
194
|
Yu Z, Liu X, Chen C, Liao H, Chen Z, Zhou S. Analytical dataset on the molecular compositional changes of dissolved organic matter during hyperthermophilic composting. Data Brief 2019; 27:104588. [PMID: 31673589 PMCID: PMC6817657 DOI: 10.1016/j.dib.2019.104588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 09/17/2019] [Accepted: 09/24/2019] [Indexed: 12/03/2022] Open
Abstract
The aim of this research work was to determine the molecular compositional changes of dissolved organic matter (DOM) taken from different phases of the hyperthermophilic composting (HTC) process. The DOM samples were extracted by the standard protocol of C18 extraction methodology, and then analyzed by electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS). The profiles of negative ion mass spectrum and DOM molecular formulas of four compost samples were reported. Data related to the molecular compositional changes of DOM during HTC were also presented. Further interpretation and discussion on these datasets can be found in the related article entitled “Molecular insights into the transformation of dissolved organic matter during hyperthermophilic composting using ESI FT-ICR MS” [1].
Collapse
Affiliation(s)
- Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Xiaoming Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China
| | - Changya Chen
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi, 417000, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shungui Zhou
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou, 510650, China.,Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| |
Collapse
|
195
|
Yu Z, Liu X, Chen C, Liao H, Chen Z, Zhou S. Molecular insights into the transformation of dissolved organic matter during hyperthermophilic composting using ESI FT-ICR MS. BIORESOURCE TECHNOLOGY 2019; 292:122007. [PMID: 31445963 DOI: 10.1016/j.biortech.2019.122007] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 08/09/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to study the molecular compositional changes of dissolved organic matter (DOM) during hyperthermophilic composting (HTC) using electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry. Our results reveal that DOM in hyperthermophilic compost mainly consisted of lignins/carboxylic-rich alicyclic molecules (72%) with relatively lower H/C (1.24), and the higher double bound equivalent (5.98) and aromaticity index (0.22) when compared with the DOM in composting materials, suggesting that HTC led to an increase in carboxyl-rich, unsaturated, and aromatic compounds. Profiles of the DOM's transformation indicated that low O/C (O/C < 0.3) and high H/C (H/C < 1.5) compounds were preferentially decomposed in the hyperthermophilic phase of HTC. Abundant produced intermediates, such as lignin phenols and amino sugars, were further transformed to refractory humic substances. This investigation extends the current understanding of the molecular mechanisms on humification of HTC, and reveals further applications for hyperthermophilic compost.
Collapse
Affiliation(s)
- Zhen Yu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Xiaoming Liu
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China
| | - Changya Chen
- Hunan Provincial Key Laboratory of Fine Ceramics and Powder Materials, School of Materials and Environmental Engineering, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Hanpeng Liao
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhi Chen
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Shungui Zhou
- Guangdong Key Laboratory of Integrated Agro-environmental Pollution Control and Management, Guangdong Institute of Eco-environmental Science & Technology, Guangzhou 510650, China; Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
196
|
Zhang L, Peng Y, Ge Z, Xu K. Fate of dissolved organic nitrogen during the Anammox process using ultra-high resolution mass spectrometry. ENVIRONMENT INTERNATIONAL 2019; 131:105042. [PMID: 31376595 DOI: 10.1016/j.envint.2019.105042] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 07/14/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic ammonium oxidation (Anammox) is a cost-effective process for treating highly nitrogenous wastewater. However, the fate of organic nitrogen during Anammox treatment is still unclear, which limits its practical application. In this work, the changes in the quality of dissolved organic nitrogen (DON) in coal liquefaction wastewater (CLW) during Anammox were studied in relation to its chemical composition, which was determined by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). The molecular-level characterization of extracellular polymeric substances (EPS) in the Anammox sludge is also reported for the first time in this paper. The relative contribution of N-containing compounds to the total dissolved organic matter (DOM) determined by summating the normalized intensities exceeded 30%, highlighting the complexity of the nitrogenous compounds in the influent. Additionally, Anammox appeared to be better suited to removing DON compounds with fewer carbonyl or carboxyl groups, more aromatic structures, and higher oxidative properties. Lignin-like substances were verified as the predominant component of N-containing compounds in Anammox EPS, followed by protein and substances with condensed aromatic structures. DON compounds with higher degrees of saturation, lower molecular weight, and higher lignin-like properties were more prone to absorption by Anammox EPS. A series of microbe-mediated pathways were demonstrated to be responsible for DON biodegradation, which revealed the organic and inorganic nitrogen removal mechanisms in the Anammox reactor. The obtained results provide great support to the ongoing efforts to optimize the Anammox process.
Collapse
Affiliation(s)
- Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China.
| | - Zheng Ge
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| | - Kechen Xu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
197
|
Xu JX, Li XM, Sun GX, Cui L, Ding LJ, He C, Li LG, Shi Q, Smets BF, Zhu YG. Fate of Labile Organic Carbon in Paddy Soil Is Regulated by Microbial Ferric Iron Reduction. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8533-8542. [PMID: 31269402 DOI: 10.1021/acs.est.9b01323] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Global paddy soil is the primary source of methane, a potent greenhouse gas. It is therefore highly important to understand the carbon cycling in paddy soil. Microbial reduction of iron, which is widely found in paddy soil, is likely coupled with the oxidation of dissolved organic matter (DOM) and suppresses methanogenesis. However, little is known about the biotransformation of small molecular DOM accumulated under flooded conditions and the effect of iron reduction on the biotransformation pathway. Here, we carried out anaerobic incubation experiments using field-collected samples amended with ferrihydrite and different short-chain fatty acids. Our results showed that less than 20% of short-chain fatty acids were mineralized and released to the atmosphere. Using Fourier transform ion cyclotron resonance mass spectrometry, we further found that a large number of recalcitrant molecules were produced during microbial consumption of these short-chain fatty acids. Moreover, the biotransformation efficiency of short-chain fatty acids decreased with the increasing length of carbon chains. Ferrihydrite addition promoted microbial assimilation of short-chain fatty acids as well as enhanced the activation and biotransformation of indigenous stable carbon in the soil replenished with formate. This study demonstrates the significance of ferrihydrite in the biotransformation of labile DOM and promotes a more comprehensive understanding of the coupling of iron reduction and carbon cycling in paddy soils.
Collapse
Affiliation(s)
- Jian-Xin Xu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
- Department of Environmental Engineering , Technical University of Denmark , 2800 Kongens Lyngby , Denmark
- Sino-Danish College of University of Chinese Academy of Sciences , Beijing 101400 , People's Republic of China
- Sino-Danish Centre for Education and Research , Beijing 100049 , People's Republic of China
| | - Xiao-Ming Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Guo-Xin Sun
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , People's Republic of China
| | - Long-Jun Ding
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
| | - Chen He
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Beijing 102249 , People's Republic of China
| | - Li-Guan Li
- Department of Environmental Engineering , Technical University of Denmark , 2800 Kongens Lyngby , Denmark
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing , China University of Petroleum , Beijing 102249 , People's Republic of China
| | - Barth F Smets
- Department of Environmental Engineering , Technical University of Denmark , 2800 Kongens Lyngby , Denmark
| | - Yong-Guan Zhu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences , Chinese Academy of Sciences , Beijing 100085 , People's Republic of China
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment , Chinese Academy of Sciences , Xiamen , Fujian 361021 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| |
Collapse
|
198
|
Ye W, Liu H, Jiang M, Lin J, Ye K, Fang S, Xu Y, Zhao S, Van der Bruggen B, He Z. Sustainable management of landfill leachate concentrate through recovering humic substance as liquid fertilizer by loose nanofiltration. WATER RESEARCH 2019; 157:555-563. [PMID: 30991179 DOI: 10.1016/j.watres.2019.02.060] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/24/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
The hybrid membrane bioreactor - nanofiltration treatment process can be an effective approach for treating the landfill leachate, but the residual leachate concentrate highly loaded with the humic substance and salts remains an environmental concern. Herein, a loose nanofiltration membrane (molecular weight cut-off of 860 Da) was used to recover the humic substance, which can act as a key component of organic fertilizer, from the leachate concentrate. The loose nanofiltration membrane showed the high permeation fluxes and high transmissions (>94.7%) for most inorganic ions (i.e., Na+, K+, Cl-, and NO3-), while retaining 95.7 ± 0.3% of the humic substance, demonstrating its great potential in effective fractionation of humic substance from inorganic salts in the leachate concentrate. The operation conditions, i.e., cross-flow rates and temperatures, had more pronounced impacts on the filtration performance of the loose nanofiltration membrane. Increasing cross-flow rates from 60 to 260 L h-1 resulted in an improvement of ca. 7.3% in the humic substance rejection, mainly due to the reduced concentration polarization effect. In contrast, the solute rejection of the nanofiltration membrane was negatively dependent on the temperature. The rejection of humic substance decreased from 96.3 ± 0.3% to 92.0 ± 0.4% with increasing the temperature from 23 to 35 °C, likely due to the enlargement of the membrane pore size and enhancement in solute diffusivity. The humic substance was enriched from 1735 to 15,287 mg L-1, yielding a 91.2% recovery ratio with 85.7% desalination efficiency at a concentration factor of 9.6. The recovered HS had significantly stimulated the seed germination and growth of the green mungbean plants with no obvious phytotoxicity. These results demonstrate that loose nanofiltration can be an effective promising technology to recover the humic substance as a valuable fertilizer component towards sustainable management of the landfill leachate concentrate.
Collapse
Affiliation(s)
- Wenyuan Ye
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongwei Liu
- Fujian Provincial Key Laboratory of Soil Environmental Health and Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mei Jiang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, School of Environment and Resources, Fuzhou University, Fuzhou, 350116, China
| | - Jiuyang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, School of Environment and Resources, Fuzhou University, Fuzhou, 350116, China.
| | - Kunfeng Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, School of Environment and Resources, Fuzhou University, Fuzhou, 350116, China
| | - Shengqiong Fang
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, School of Environment and Resources, Fuzhou University, Fuzhou, 350116, China
| | - Yudong Xu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, School of Environment and Resources, Fuzhou University, Fuzhou, 350116, China
| | - Shuaifei Zhao
- Department of Environmental Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW, 2109, Australia; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Bart Van der Bruggen
- Department of Chemical Engineering, Process Engineering for Sustainable Systems (ProcESS), KU Leuven, Celestijnenlaan 200F, B-3001, Leuven, Belgium
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
199
|
Zhang B, Shan C, Hao Z, Liu J, Wu B, Pan B. Transformation of dissolved organic matter during full-scale treatment of integrated chemical wastewater: Molecular composition correlated with spectral indexes and acute toxicity. WATER RESEARCH 2019; 157:472-482. [PMID: 30981978 DOI: 10.1016/j.watres.2019.04.002] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/14/2019] [Accepted: 04/02/2019] [Indexed: 05/21/2023]
Abstract
As one of the key economic modes in China, chemical industry park (CIP) has made great contribution to the Chinese rapid economic growth. Concomitantly, how to effectively and safely dispose of the CIP wastewater (CIPWW) has been an unavoidable issue. Molecular transformation of dissolved organic matter (DOM) in CIPWW treatment is essential to optimize the employed process and to provide solid basis for risk evaluation of the discharged effluent as well. In this study, electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry (ESI-FT-ICR-MS) was used to characterize the molecular transformation of DOM during full-scale treatment of integrated chemical wastewater in a centralized wastewater treatment plant (CWWTP), where the combined process follows hydrolysis/acidification (HA)-flocculation/precipitation (FP)-A2/O-membrane bioreactor (MBR)-ultrafiltration (UF)-reverse osmosis (RO). Compared to municipal wastewater, DOM in CIPWW exhibited higher unsaturation degree, lower molecular weight, and higher toxicity. In FP unit, DOM of C<24 and higher nominal oxidation state of carbon (NOSC) values was preferentially removed. The HA and anaerobic units are capable of significantly degrading DOM, resulting in great changes in molecular composition of DOM. However, the anoxic, oxic, and MBR units only lead to a slight change of the molecular formulae. The terminal units of UF and RO can remove most DOM, with the concentration of dissolved organic carbon (DOC) declining by 19.2% and 94.6% respectively. The correlation between spectral indexes and acute toxicity with the molecular formulae of DOM suggested that polyphenols and highly unsaturated phenols were positively correlated with the specific UV absorbance at 254 nm (SUVA254). In addition, both compounds (0.32 < O/C < 0.63) as well as the aliphatic ones (0.22 < O/C < 0.56) presented positive correlation with acute toxicity. Further, the pairwise correlation analysis illustrated that SUVA254, O/Cwa, double bond equivalence (DBEwa), and NOSCwa were positively correlated with each other, whereas the acute toxicity was positively correlated with humification index (HIX), O/Cwa, and DBEwa.
Collapse
Affiliation(s)
- Bingliang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Chao Shan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Zhineng Hao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China
| | - Bing Wu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China.
| |
Collapse
|
200
|
Zhu X, Liu Y, Li L, Shi Q, Hou J, Zhang R, Zhang S, Chen J. Nonthermal air plasma dehydration of hydrochar improves its carbon sequestration potential and dissolved organic matter molecular characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 659:655-663. [PMID: 31096395 DOI: 10.1016/j.scitotenv.2018.12.399] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 12/07/2018] [Accepted: 12/26/2018] [Indexed: 06/09/2023]
Abstract
Labile organic compounds are associated with high environmental risk and are common on hydrochar surfaces. However, a comprehensive re-evaluation of hydrochar properties after the removal of labile compounds has long been overlooked. This study confirms that air-based nonthermal plasma can successfully modify hydrochar properties and change hydrochar's environmental benefits. NMR and FTIR results indicate that, aliphatic and alkyl structures are more reactive, while aromatic structures are highly resistant to the hydrochar modification process, leading to increased carbon sequestration potential and decreased dissolved organic matter (DOM). Van Krevelen diagram results indicate that dehydration controls the hydrochar modification process and leads to a decrease in oxygen content and O/C atomic ratio in the hydrochar; this weakens the ability of the hydrochar to immobilize hydrophobic organic pollutants (such as triclosan) due to the decrease in O‑alkyl C species within the hydrochar. Most importantly, air-based nonthermal plasma changes the structures of hydrochar associated DOM, and high molecular weight (>351 Da), and high degree of unsaturation and oxidation in the modified-hydrochar DOM compounds is observed. This study is therefore considered to have important implications for the carbon cycle and sustainable application of hydrochar.
Collapse
Affiliation(s)
- Xiangdong Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yuchen Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Lijie Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Quan Shi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Jianyuan Hou
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Renxi Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Shicheng Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| |
Collapse
|