151
|
Metabolic Reprogramming in Anticancer Drug Resistance: A Focus on Amino Acids. Trends Cancer 2021; 7:682-699. [PMID: 33736962 DOI: 10.1016/j.trecan.2021.02.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 02/16/2021] [Indexed: 11/22/2022]
Abstract
Overcoming anticancer drug resistance is a major challenge in cancer therapy, requiring innovative strategies that consider the extensive tumor heterogeneity and adaptability. We provide recent evidence highlighting the key role of amino acid (AA) metabolic reprogramming in cancer cells and the supportive microenvironment in driving resistance to anticancer therapies. AAs sustain the acquisition of anticancer resistance by providing essential building blocks for biosynthetic pathways and for maintaining a balanced redox status, and modulating the epigenetic profile of both malignant and non-malignant cells. In addition, AAs support the reduced intrinsic susceptibility of cancer stem cells to antineoplastic therapies. These findings shed new light on the possibility of targeting nonresponding tumors by modulating AA availability through pharmacological or dietary interventions.
Collapse
|
152
|
Quinn JJ, Jones MG, Okimoto RA, Nanjo S, Chan MM, Yosef N, Bivona TG, Weissman JS. Single-cell lineages reveal the rates, routes, and drivers of metastasis in cancer xenografts. Science 2021; 371:eabc1944. [PMID: 33479121 PMCID: PMC7983364 DOI: 10.1126/science.abc1944] [Citation(s) in RCA: 169] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/23/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Detailed phylogenies of tumor populations can recount the history and chronology of critical events during cancer progression, such as metastatic dissemination. We applied a Cas9-based, single-cell lineage tracer to study the rates, routes, and drivers of metastasis in a lung cancer xenograft mouse model. We report deeply resolved phylogenies for tens of thousands of cancer cells traced over months of growth and dissemination. This revealed stark heterogeneity in metastatic capacity, arising from preexisting and heritable differences in gene expression. We demonstrate that these identified genes can drive invasiveness and uncovered an unanticipated suppressive role for KRT17 We also show that metastases disseminated via multidirectional tissue routes and complex seeding topologies. Overall, we demonstrate the power of tracing cancer progression at subclonal resolution and vast scale.
Collapse
Affiliation(s)
- Jeffrey J Quinn
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Inscripta, Inc., Boulder, CO, USA
| | - Matthew G Jones
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Biological and Medical Informatics Graduate Program, University of California, San Francisco, San Francisco, CA, USA
- Integrative Program in Quantitative Biology, University of California, San Francisco, San Francisco, CA, USA
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Ross A Okimoto
- UCSF Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Shigeki Nanjo
- UCSF Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Michelle M Chan
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Nir Yosef
- Center for Computational Biology, University of California, Berkeley, Berkeley, CA, USA.
- Department of Electrical Engineering and Computer Science, University of California, Berkeley, Berkeley, CA, USA
- Chan Zuckerberg Biohub Investigator, San Francisco, CA, USA
- Ragon Institute of Massachusetts General Hospital, MIT and Harvard University, Cambridge, MA, USA
| | - Trever G Bivona
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- UCSF Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA, USA
- Whitehead Institute, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
153
|
Abstract
Cells metabolize nutrients for biosynthetic and bioenergetic needs to fuel growth and proliferation. The uptake of nutrients from the environment and their intracellular metabolism is a highly controlled process that involves cross talk between growth signaling and metabolic pathways. Despite constant fluctuations in nutrient availability and environmental signals, normal cells restore metabolic homeostasis to maintain cellular functions and prevent disease. A central signaling molecule that integrates growth with metabolism is the mechanistic target of rapamycin (mTOR). mTOR is a protein kinase that responds to levels of nutrients and growth signals. mTOR forms two protein complexes, mTORC1, which is sensitive to rapamycin, and mTORC2, which is not directly inhibited by this drug. Rapamycin has facilitated the discovery of the various functions of mTORC1 in metabolism. Genetic models that disrupt either mTORC1 or mTORC2 have expanded our knowledge of their cellular, tissue, as well as systemic functions in metabolism. Nevertheless, our knowledge of the regulation and functions of mTORC2, particularly in metabolism, has lagged behind. Since mTOR is an important target for cancer, aging, and other metabolism-related pathologies, understanding the distinct and overlapping regulation and functions of the two mTOR complexes is vital for the development of more effective therapeutic strategies. This review discusses the key discoveries and recent findings on the regulation and metabolic functions of the mTOR complexes. We highlight findings from cancer models but also discuss other examples of the mTOR-mediated metabolic reprogramming occurring in stem and immune cells, type 2 diabetes/obesity, neurodegenerative disorders, and aging.
Collapse
Affiliation(s)
- Angelia Szwed
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Eugene Kim
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| | - Estela Jacinto
- Department of Biochemistry and Molecular Biology, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey
| |
Collapse
|
154
|
Pan S, Fan M, Liu Z, Li X, Wang H. Serine, glycine and one‑carbon metabolism in cancer (Review). Int J Oncol 2021; 58:158-170. [PMID: 33491748 PMCID: PMC7864012 DOI: 10.3892/ijo.2020.5158] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 11/19/2020] [Indexed: 12/11/2022] Open
Abstract
Serine/glycine biosynthesis and one‑carbon metabolism are crucial in sustaining cancer cell survival and rapid proliferation, and of high clinical relevance. Excessive activation of serine/glycine biosynthesis drives tumorigenesis and provides a single carbon unit for one‑carbon metabolism. One‑carbon metabolism, which is a complex cyclic metabolic network based on the chemical reaction of folate compounds, provides the necessary proteins, nucleic acids, lipids and other biological macromolecules to support tumor growth. Moreover, one‑carbon metabolism also maintains the redox homeostasis of the tumor microenvironment and provides substrates for the methylation reaction. The present study reviews the role of key enzymes with tumor‑promoting functions and important intermediates that are physiologically relevant to tumorigenesis in serine/glycine/one‑carbon metabolism pathways. The related regulatory mechanisms of action of the key enzymes and important intermediates in tumors are also discussed. It is hoped that investigations into these pathways will provide new translational opportunities for human cancer drug development, dietary interventions, and biomarker identification.
Collapse
Affiliation(s)
- Sijing Pan
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ming Fan
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Zhangnan Liu
- Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xia Li
- Correspondence to: Dr Huijuan Wang or Dr Xia Li, Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Jinming Road, Kaifeng, Henan 475004, P.R. China, E-mail: , E-mail:
| | - Huijuan Wang
- Correspondence to: Dr Huijuan Wang or Dr Xia Li, Joint National Laboratory for Antibody Drug Engineering, Key Laboratory of Cellular and Molecular Immunology of Henan Province, Institute of Translational Medicine, School of Basic Medicine, Henan University, Jinming Road, Kaifeng, Henan 475004, P.R. China, E-mail: , E-mail:
| |
Collapse
|
155
|
Du Y, Fan P, Zou L, Jiang Y, Gu X, Yu J, Zhang C. Serum Metabolomics Study of Papillary Thyroid Carcinoma Based on HPLC-Q-TOF-MS/MS. Front Cell Dev Biol 2021; 9:593510. [PMID: 33598460 PMCID: PMC7882692 DOI: 10.3389/fcell.2021.593510] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/08/2021] [Indexed: 12/24/2022] Open
Abstract
This study examined metabolite profile differences between serum samples of thyroid papillary carcinoma (PTC) patients and healthy controls, aiming to identify candidate biomarkers and pathogenesis pathways in this cancer type. Serum samples were collected from PTC patients (n = 80) and healthy controls (n = 80). Using principal component analysis (PCA), partial least squares discrimination analysis(PLS-DA), orthogonal partial least square discriminant analysis (OPLS-DA), t-tests, and the volcano plot, a model of abnormal metabolic pathways in PTC was constructed. PCA, PLS-DA, and OPLS-DA analysis revealed differences in serum metabolic profiles between the PTC and control group. OPLS-Loading plot analysis, combined with Variable importance in the projection (VIP)>1, Fold change (FC) > 1.5, and p < 0.05 were used to screen 64 candidate metabolites. Among them, 22 metabolites, including proline betaine, taurocholic acid, L-phenylalanine, retinyl beta-glucuronide, alpha-tocotrienol, and threonine acid were upregulated in the PTC group; meanwhile, L-tyrosine, L-tryptophan, 2-arachidonylglycerol, citric acid, and other 42 metabolites were downregulated in this group. There were eight abnormal metabolic pathways related to the differential metabolites, which may be involved in the pathophysiology of PTC. Six metabolites yielded an area under the receiver operating curve of >0.75, specifically, 3-hydroxy-cis-5-tetradecenoylcarnitine, aspartylphenylalanine, l-kynurenine, methylmalonic acid, phenylalanylphenylalanine, and l-glutamic acid. The Warburg effect was observed in PTC. The levels of 3-hydroxy-cis-5-tetradecenoylcarnitine, aspartylphenylalanine, l-kynurenine, methylmalonic acid, phenylalanine, and L-glutamic acid may help distinguish PTC patients from healthy controls. Aspartic acid metabolism, glutamic acid metabolism, urea cycle, and tricarboxylic acid cycle are involved in the mechanism of PTC.
Collapse
Affiliation(s)
- Yang Du
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Peizhi Fan
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Lianhong Zou
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Yu Jiang
- Hunan Provincial Key Laboratory of Emergency and Critical Care Metabonomics, Institute of Emergency Medicine, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Xiaowen Gu
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Jie Yu
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| | - Chaojie Zhang
- Department of Breast and Thyroid Surgery, Hunan Provincial People's Hospital/The First Affiliated Hospital of Hunan Normal University, Changsha, China
| |
Collapse
|
156
|
Badeaux MD, Rolig AS, Agnello G, Enzler D, Kasiewicz MJ, Priddy L, Wiggins JF, Muir A, Sullivan MR, Van Cleef J, Daige C, Vander Heiden MG, Rajamanickam V, Wooldridge JE, Redmond WL, Rowlinson SW. Arginase Therapy Combines Effectively with Immune Checkpoint Blockade or Agonist Anti-OX40 Immunotherapy to Control Tumor Growth. Cancer Immunol Res 2021; 9:415-429. [PMID: 33500272 DOI: 10.1158/2326-6066.cir-20-0317] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 09/18/2020] [Accepted: 01/22/2021] [Indexed: 11/16/2022]
Abstract
Metabolic dysregulation is a hallmark of cancer. Many tumors exhibit auxotrophy for various amino acids, such as arginine, because they are unable to meet the demand for these amino acids through endogenous production. This vulnerability can be exploited by employing therapeutic strategies that deplete systemic arginine in order to limit the growth and survival of arginine auxotrophic tumors. Pegzilarginase, a human arginase-1 enzyme engineered to have superior stability and enzymatic activity relative to the native human arginase-1 enzyme, depletes systemic arginine by converting it to ornithine and urea. Therapeutic administration of pegzilarginase in the setting of arginine auxotrophic tumors exerts direct antitumor activity by starving the tumor of exogenous arginine. We hypothesized that in addition to this direct effect, pegzilarginase treatment indirectly augments antitumor immunity through increased antigen presentation, thus making pegzilarginase a prime candidate for combination therapy with immuno-oncology (I-O) agents. Tumor-bearing mice (CT26, MC38, and MCA-205) receiving pegzilarginase in combination with anti-PD-L1 or agonist anti-OX40 experienced significantly increased survival relative to animals receiving I-O monotherapy. Combination pegzilarginase/immunotherapy induced robust antitumor immunity characterized by increased intratumoral effector CD8+ T cells and M1 polarization of tumor-associated macrophages. Our data suggest potential mechanisms of synergy between pegzilarginase and I-O agents that include increased intratumoral MHC expression on both antigen-presenting cells and tumor cells, and increased presence of M1-like antitumor macrophages. These data support the clinical evaluation of I-O agents in conjunction with pegzilarginase for the treatment of patients with cancer.
Collapse
Affiliation(s)
| | - Annah S Rolig
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon
| | | | | | - Melissa J Kasiewicz
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon
| | | | | | - Alexander Muir
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois
| | - Mark R Sullivan
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts
| | | | | | - Matthew G Vander Heiden
- The Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts.,Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | | | - William L Redmond
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, Oregon.
| | | |
Collapse
|
157
|
Chu CY, Lee YC, Hsieh CH, Yeh CT, Chao TY, Chen PH, Lin IH, Hsieh TH, Shih JW, Cheng CH, Chang CC, Lin PS, Huang YL, Chen TM, Yen Y, Ann DK, Kung HJ. Genome-wide CRISPR/Cas9 knockout screening uncovers a novel inflammatory pathway critical for resistance to arginine-deprivation therapy. Theranostics 2021; 11:3624-3641. [PMID: 33664852 PMCID: PMC7914361 DOI: 10.7150/thno.51795] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/01/2021] [Indexed: 12/24/2022] Open
Abstract
Arginine synthesis deficiency due to the suppressed expression of ASS1 (argininosuccinate synthetase 1) represents one of the most frequently occurring metabolic defects of tumor cells. Arginine-deprivation therapy has gained increasing attention in recent years. One challenge of ADI-PEG20 (pegylated ADI) therapy is the development of drug resistance caused by restoration of ASS1 expression and other factors. The goal of this work is to identify novel factors conferring therapy resistance. Methods: Multiple, independently derived ADI-resistant clones including derivatives of breast (MDA-MB-231 and BT-549) and prostate (PC3, CWR22Rv1, and DU145) cancer cells were developed. RNA-seq and RT-PCR were used to identify genes upregulated in the resistant clones. Unbiased genome-wide CRISPR/Cas9 knockout screening was used to identify genes whose absence confers sensitivity to these cells. shRNA and CRISPR/Cas9 knockout as well as overexpression approaches were used to validate the functions of the resistant genes both in vitro and in xenograft models. The signal pathways were verified by western blotting and cytokine release. Results: Based on unbiased CRISPR/Cas9 knockout screening and RNA-seq analyses of independently derived ADI-resistant (ADIR) clones, aberrant activation of the TREM1/CCL2 axis in addition to ASS1 expression was consistently identified as the resistant factors. Unlike ADIR, MDA-MB-231 overexpressing ASS1 cells achieved only moderate ADI resistance both in vitro and in vivo, and overexpression of ASS1 alone does not activate the TREM1/CCL2 axis. These data suggested that upregulation of TREM1 is an independent factor in the development of strong resistance, which is accompanied by activation of the AKT/mTOR/STAT3/CCL2 pathway and contributes to cell survival and overcoming the tumor suppressive effects of ASS1 overexpression. Importantly, knockdown of TREM1 or CCL2 significantly sensitized ADIR toward ADI. Similar results were obtained in BT-549 breast cancer cell line as well as castration-resistant prostate cancer cells. The present study sheds light on the detailed mechanisms of resistance to arginine-deprivation therapy and uncovers novel targets to overcome resistance. Conclusion: We uncovered TREM1/CCL2 activation, in addition to restored ASS1 expression, as a key pathway involved in full ADI-resistance in breast and prostate cancer models.
Collapse
|
158
|
Rogers LC, Zhou J, Baker A, Schutt CR, Panda PK, Van Tine BA. Intracellular arginine-dependent translation sensor reveals the dynamics of arginine starvation response and resistance in ASS1-negative cells. Cancer Metab 2021; 9:4. [PMID: 33478587 PMCID: PMC7818940 DOI: 10.1186/s40170-021-00238-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 01/04/2021] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Many cancers silence the metabolic enzyme argininosuccinate synthetase 1 (ASS1), the rate-limiting enzyme for arginine biosynthesis within the urea cycle. Consequently, ASS1-negative cells are susceptible to depletion of extracellular arginine by PEGylated arginine deiminase (ADI-PEG20), an agent currently being developed in clinical trials. As the primary mechanism of resistance to arginine depletion is re-expression of ASS1, we sought a tool to understand the temporal emergence of the resistance phenotype at the single-cell level. METHODS A real-time, single-cell florescence biosensor was developed to monitor arginine-dependent protein translation. The versatile, protein-based sensor provides temporal information about the metabolic adaptation of cells, as it is able to quantify and track individual cells over time. RESULTS Every ASS1-deficient cell analyzed was found to respond to arginine deprivation by decreased expression of the sensor, indicating an absence of resistance in the naïve cell population. However, the temporal recovery and emergence of resistance varied widely amongst cells, suggesting a heterogeneous metabolic response. The sensor also enabled determination of a minimal arginine concentration required for its optimal translation. CONCLUSIONS The translation-dependent sensor developed here is able to accurately track the development of resistance in ASS1-deficient cells treated with ADI-PEG20. Its ability to track single cells over time allowed the determination that resistance is not present in the naïve population, as well as elucidating the heterogeneity of the timing and extent of resistance. This tool represents a useful advance in the study of arginine deprivation, while its design has potential to be adapted to other amino acids.
Collapse
Affiliation(s)
- Leonard C Rogers
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Jing Zhou
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA.,The First Affiliated Hospital of Nanchang University, Nanchang, 330006, Jiangxi, China
| | - Adriana Baker
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA.,University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Charles R Schutt
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Prashanta K Panda
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, Missouri, 63110, USA. .,Division of Pediatric Hematology/Oncology, St. Louis Children's Hospital, St. Louis, MO, 63110, USA. .,Siteman Cancer Center, St. Louis, MO, 63110, USA.
| |
Collapse
|
159
|
Caniglia JL, Jalasutram A, Asuthkar S, Sahagun J, Park S, Ravindra A, Tsung AJ, Guda MR, Velpula KK. Beyond glucose: alternative sources of energy in glioblastoma. Theranostics 2021; 11:2048-2057. [PMID: 33500708 PMCID: PMC7797684 DOI: 10.7150/thno.53506] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
Glioblastoma multiforme (GBM) is the most common malignant brain tumor in adults. With a designation of WHO Grade IV, it is also the most lethal primary brain tumor with a median survival of just 15 months. This is often despite aggressive treatment that includes surgical resection, radiation therapy, and chemotherapy. Based on the poor outcomes and prevalence of the tumor, the demand for innovative therapies continues to represent a pressing issue for clinicians and researchers. In terms of therapies targeting metabolism, the prevalence of the Warburg effect has led to a focus on targeting glucose metabolism to halt tumor progression. While glucose is the dominant source of growth substrate in GBM, a number of unique metabolic pathways are exploited in GBM to meet the increased demand for replication and progression. In this review we aim to explore how metabolites from fatty acid oxidation, the urea cycle, the glutamate-glutamine cycle, and one-carbon metabolism are shunted toward energy producing pathways to meet the high energy demand in GBM. We will also explore how the process of autophagy provides a reservoir of nutrients to support viable tumor cells. By so doing, we aim to establish a foundation of implicated metabolic mechanisms supporting growth and tumorigenesis of GBM within the literature. With the sparse number of therapeutic interventions specifically targeting metabolic pathways in GBM, we hope that this review expands further insight into the development of novel treatment modalities.
Collapse
Affiliation(s)
- John L. Caniglia
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Anvesh Jalasutram
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Swapna Asuthkar
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Joseph Sahagun
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Simon Park
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Aditya Ravindra
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Andrew J. Tsung
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria
- Illinois Neurological Institute, Peoria, IL
| | - Maheedhara R. Guda
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
| | - Kiran K. Velpula
- Department of Cancer Biology and Pharmacology, University of Illinois College of Medicine, Peoria
- Department of Neurosurgery, University of Illinois College of Medicine at Peoria
- Department of Pediatrics, University of Illinois College of Medicine at Peoria
| |
Collapse
|
160
|
Luengo A, Li Z, Gui DY, Sullivan LB, Zagorulya M, Do BT, Ferreira R, Naamati A, Ali A, Lewis CA, Thomas CJ, Spranger S, Matheson NJ, Vander Heiden MG. Increased demand for NAD + relative to ATP drives aerobic glycolysis. Mol Cell 2020; 81:691-707.e6. [PMID: 33382985 DOI: 10.1016/j.molcel.2020.12.012] [Citation(s) in RCA: 298] [Impact Index Per Article: 59.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 10/30/2020] [Accepted: 12/02/2020] [Indexed: 01/10/2023]
Abstract
Aerobic glycolysis, or preferential fermentation of glucose-derived pyruvate to lactate despite available oxygen, is associated with proliferation across many organisms and conditions. To better understand that association, we examined the metabolic consequence of activating the pyruvate dehydrogenase complex (PDH) to increase pyruvate oxidation at the expense of fermentation. We find that increasing PDH activity impairs cell proliferation by reducing the NAD+/NADH ratio. This change in NAD+/NADH is caused by increased mitochondrial membrane potential that impairs mitochondrial electron transport and NAD+ regeneration. Uncoupling respiration from ATP synthesis or increasing ATP hydrolysis restores NAD+/NADH homeostasis and proliferation even when glucose oxidation is increased. These data suggest that when demand for NAD+ to support oxidation reactions exceeds the rate of ATP turnover in cells, NAD+ regeneration by mitochondrial respiration becomes constrained, promoting fermentation, despite available oxygen. This argues that cells engage in aerobic glycolysis when the demand for NAD+ is in excess of the demand for ATP.
Collapse
Affiliation(s)
- Alba Luengo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Zhaoqi Li
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dan Y Gui
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lucas B Sullivan
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Human Biology Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Maria Zagorulya
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Brian T Do
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard-MIT Division of Health Sciences and Technology, Harvard Medical School, Boston, MA 02115, USA
| | - Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, SE412 96 Gothenburg, Sweden
| | - Adi Naamati
- Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Ahmed Ali
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Caroline A Lewis
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Craig J Thomas
- NIH Chemical Genomics Center, National Center for Advancing Translational Sciences, NIH, Bethesda, MD 20892, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nicholas J Matheson
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), University of Cambridge, Cambridge CB2 0AW, UK; Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Matthew G Vander Heiden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Dana-Farber Cancer Institute, Boston, MA 02115, USA.
| |
Collapse
|
161
|
Barbato A, Scandura G, Puglisi F, Cambria D, La Spina E, Palumbo GA, Lazzarino G, Tibullo D, Di Raimondo F, Giallongo C, Romano A. Mitochondrial Bioenergetics at the Onset of Drug Resistance in Hematological Malignancies: An Overview. Front Oncol 2020; 10:604143. [PMID: 33409153 PMCID: PMC7779674 DOI: 10.3389/fonc.2020.604143] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 11/13/2020] [Indexed: 12/11/2022] Open
Abstract
The combined derangements in mitochondria network, function and dynamics can affect metabolism and ATP production, redox homeostasis and apoptosis triggering, contributing to cancer development in many different complex ways. In hematological malignancies, there is a strong relationship between cellular metabolism, mitochondrial bioenergetics, interconnections with supportive microenvironment and drug resistance. Lymphoma and chronic lymphocytic leukemia cells, e.g., adapt to intrinsic oxidative stress by increasing mitochondrial biogenesis. In other hematological disorders such as myeloma, on the contrary, bioenergetics changes, associated to increased mitochondrial fitness, derive from the adaptive response to drug-induced stress. In the bone marrow niche, a reverse Warburg effect has been recently described, consisting in metabolic changes occurring in stromal cells in the attempt to metabolically support adjacent cancer cells. Moreover, a physiological dynamic, based on mitochondria transfer, between tumor cells and their supporting stromal microenvironment has been described to sustain oxidative stress associated to proteostasis maintenance in multiple myeloma and leukemia. Increased mitochondrial biogenesis of tumor cells associated to acquisition of new mitochondria transferred by mesenchymal stromal cells results in augmented ATP production through increased oxidative phosphorylation (OX-PHOS), higher drug resistance, and resurgence after treatment. Accordingly, targeting mitochondrial biogenesis, electron transfer, mitochondrial DNA replication, or mitochondrial fatty acid transport increases therapy efficacy. In this review, we summarize selected examples of the mitochondrial derangements in hematological malignancies, which provide metabolic adaptation and apoptosis resistance, also supported by the crosstalk with tumor microenvironment. This field promises a rational design to improve target-therapy including the metabolic phenotype.
Collapse
Affiliation(s)
- Alessandro Barbato
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Grazia Scandura
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Fabrizio Puglisi
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Daniela Cambria
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Enrico La Spina
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Giuseppe Alberto Palumbo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Giacomo Lazzarino
- Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| | - Daniele Tibullo
- Department of Biotechnological and Biomedical Sciences, University of Catania, Catania, Italy
| | - Francesco Di Raimondo
- Department of General Surgery and Medical-Surgical Specialties, University of Catania, Catania, Italy
| | - Cesarina Giallongo
- Department of Medical, Surgical Sciences and Advanced Technologies G.F. Ingrassia, University of Catania, Catania, Italy
| | - Alessandra Romano
- Department of Surgery and Medical Specialties, University of Catania, Catania, Italy
| |
Collapse
|
162
|
Fendt SM, Frezza C, Erez A. Targeting Metabolic Plasticity and Flexibility Dynamics for Cancer Therapy. Cancer Discov 2020; 10:1797-1807. [PMID: 33139243 PMCID: PMC7710573 DOI: 10.1158/2159-8290.cd-20-0844] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/06/2020] [Accepted: 09/02/2020] [Indexed: 11/16/2022]
Abstract
Cancer cells continuously rewire their metabolism to fulfill their need for rapid growth and survival while subject to changes in environmental cues. Thus, a vital component of a cancer cell lies in its metabolic adaptability. The constant demand for metabolic alterations requires flexibility, that is, the ability to utilize different metabolic substrates; as well as plasticity, that is, the ability to process metabolic substrates in different ways. In this review, we discuss how dynamic changes in cancer metabolism affect tumor progression and the consequential implications for cancer therapy. SIGNIFICANCE: Recognizing cancer dynamic metabolic adaptability as an entity can lead to targeted therapy that is expected to decrease drug resistance.
Collapse
Affiliation(s)
- Sarah-Maria Fendt
- Laboratory of Cellular Metabolism and Metabolic Regulation, VIB-KU Leuven Center for Cancer Biology, VIB, Leuven, Belgium
- Laboratory of Cellular Metabolism and Metabolic Regulation, Department of Oncology, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Christian Frezza
- Medical Research Council Cancer Unit, University of Cambridge, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
163
|
Grimes JM, Khan S, Badeaux M, Rao RM, Rowlinson SW, Carvajal RD. Arginine depletion as a therapeutic approach for patients with COVID-19. Int J Infect Dis 2020; 102:566-570. [PMID: 33160064 PMCID: PMC7641537 DOI: 10.1016/j.ijid.2020.10.100] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/15/2022] Open
Abstract
The COVID-19 pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is a source of significant morbidity and death worldwide, and effective treatments are urgently needed. Clinical trials have focused largely on direct antiviral therapies or on immunomodulation in patients with severe manifestations of COVID-19. One therapeutic approach that remains to be clinically investigated is disruption of the host-virus relationship through amino acid restriction, a strategy used successfully in the setting of cancer treatment. Arginine is an amino acid that has been shown in nonclinical studies to be essential in the life cycle of many viruses. Therefore, arginine depletion may be an effective therapeutic approach against SARS-CoV-2. Several arginine-metabolizing enzymes in clinical development may be a viable approach to induce a low arginine environment to treat COVID-19 and other viral diseases. Herein, we explore the rationale for arginine depletion as a therapeutic approach for COVID-19.
Collapse
Affiliation(s)
- Joseph M Grimes
- Columbia University Irving Medical Center, New York, NY, USA
| | - Shaheer Khan
- Columbia University Irving Medical Center, New York, NY, USA
| | | | - Ravi M Rao
- Aeglea Biotherapeutics Inc., Austin, TX, USA
| | | | - Richard D Carvajal
- Columbia University Irving Medical Center, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, New York, NY, USA.
| |
Collapse
|
164
|
Szlosarek PW, Phillips MM, Pavlyk I, Steele J, Shamash J, Spicer J, Kumar S, Pacey S, Feng X, Johnston A, Bomalaski J, Moir G, Lau K, Ellis S, Sheaff M. Expansion Phase 1 Study of Pegargiminase Plus Pemetrexed and Cisplatin in Patients With Argininosuccinate Synthetase 1-Deficient Mesothelioma: Safety, Efficacy, and Resistance Mechanisms. JTO Clin Res Rep 2020; 1:100093. [PMID: 34589965 PMCID: PMC8474273 DOI: 10.1016/j.jtocrr.2020.100093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 12/29/2022] Open
Abstract
INTRODUCTION Pegargiminase (ADI-PEG 20; ADI) degrades arginine and potentiates pemetrexed (Pem) cytotoxicity in argininosuccinate synthetase 1 (ASS1)-deficient malignant pleural mesothelioma (MPM). We conducted a phase 1 dose-expansion study at the recommended phase 2 dose of ADI-PEG 20 with Pem and cisplatin (ADIPemCis), to further evaluate arginine-lowering therapy in ASS1-deficient MPM and explore the mechanisms of resistance. METHODS A total of 32 patients with ASS1-deficient MPM (11 epithelioid; 10 biphasic;11 sarcomatoid) who were chemonaive received weekly intramuscular pegargiminase (36 mg/m2) with Pem (500 mg/m2) and cisplatin (75 mg/m2) intravenously, every 3 weeks (six cycles maximum). Maintenance pegargiminase was permitted until disease progression or withdrawal. Safety, pharmacodynamics, immunogenicity, and efficacy were determined. Biopsies were performed in progressing patients to explore the mechanisms of resistance to pegargiminase. RESULTS The treatment was well tolerated. Most adverse events were of grade 1/2, whereas four nonhematologic grade 3/4 adverse events related to pegargiminase were reversible. Plasma arginine decreased whereas citrulline increased; this was maintained by 18 weeks of ADIPemCis therapy. The disease control rate in 31 assessed patients was 93.5% (n = 29 of 31; 95% confidence interval [CI]: 78.6%-99.2%), with a partial response rate of 35.5% (n = 11 of 31; 95% CI: 19.2%-54.6%). The median progression-free and overall survivals were 5.6 (95% CI: 4.0-6.0) and 10.1 (95% CI: 6.1-11.1) months, respectively. Progression biopsies on pegargiminase revealed a statistically significant influx of macrophages (n = 6; p = 0.0255) and patchy tumoral ASS1 reexpression (n = 2 of 6). In addition, we observed increased tumoral programmed death-ligand 1-an ADI-PEG 20 inducible gene-and the formation of CD3-positive T lymphocyte aggregates on disease progression (n = 2 of 5). CONCLUSIONS The dose expansion of ADIPemCis confirmed the high clinical activity and good tolerability in ASS1-deficient poor-prognosis mesothelioma, underpinning an ongoing phase 3 study (ClinicalTrials.govNCT02709512). Notably, resistance to pegargiminase correlated with marked macrophage recruitment and-along with the tumor immune microenvironment-warrants further study to optimize arginine deprivation for the treatment of mesothelioma.
Collapse
Affiliation(s)
- Peter W. Szlosarek
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)—A Cancer Research UK Center of Excellence, Queen Mary University of London, London, United Kingdom
| | - Melissa M. Phillips
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)—A Cancer Research UK Center of Excellence, Queen Mary University of London, London, United Kingdom
- Department of Medical Oncology, Barts Health NHS Trust, St Bartholomew’s Hospital, London, United Kingdom
| | - Iuliia Pavlyk
- Center for Cancer Biomarkers and Biotherapeutics, Barts Cancer Institute (BCI)—A Cancer Research UK Center of Excellence, Queen Mary University of London, London, United Kingdom
| | - Jeremy Steele
- Department of Medical Oncology, Barts Health NHS Trust, St Bartholomew’s Hospital, London, United Kingdom
| | - Jonathan Shamash
- Department of Medical Oncology, Barts Health NHS Trust, St Bartholomew’s Hospital, London, United Kingdom
| | - James Spicer
- School of Cancer and Pharmaceutical Sciences, King’s College London, Guy’s Hospital, London, United Kingdom
| | - Sanjeev Kumar
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Simon Pacey
- Department of Oncology, University of Cambridge, Cambridge, United Kingdom
| | - Xiaoxing Feng
- Polaris Pharmaceuticals, Inc., San Diego, California
| | | | | | - Graeme Moir
- Department of Plastic Surgery, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| | - Kelvin Lau
- Department of Cardiothoracic Surgery, Barts Health NHS Trust, St Bartholomew’s Hospital, London, United Kingdom
| | - Stephen Ellis
- Department of Diagnostic Imaging, Barts Health NHS Trust, St Bartholomew’s Hospital, London, United Kingdom
| | - Michael Sheaff
- Department of Histopathology, Pathology and Pharmacy Building, Barts Health NHS Trust, Royal London Hospital, London, United Kingdom
| |
Collapse
|
165
|
The Janus-like role of proline metabolism in cancer. Cell Death Discov 2020; 6:104. [PMID: 33083024 PMCID: PMC7560826 DOI: 10.1038/s41420-020-00341-8] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 02/06/2023] Open
Abstract
The metabolism of the non-essential amino acid L-proline is emerging as a key pathway in the metabolic rewiring that sustains cancer cells proliferation, survival and metastatic spread. Pyrroline-5-carboxylate reductase (PYCR) and proline dehydrogenase (PRODH) enzymes, which catalyze the last step in proline biosynthesis and the first step of its catabolism, respectively, have been extensively associated with the progression of several malignancies, and have been exposed as potential targets for anticancer drug development. As investigations into the links between proline metabolism and cancer accumulate, the complexity, and sometimes contradictory nature of this interaction emerge. It is clear that the role of proline metabolism enzymes in cancer depends on tumor type, with different cancers and cancer-related phenotypes displaying different dependencies on these enzymes. Unexpectedly, the outcome of rewiring proline metabolism also differs between conditions of nutrient and oxygen limitation. Here, we provide a comprehensive review of proline metabolism in cancer; we collate the experimental evidence that links proline metabolism with the different aspects of cancer progression and critically discuss the potential mechanisms involved.
Collapse
|
166
|
Affiliation(s)
- Elodie Villa
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Northwestern University Feinberg School of Medicine, Chicago, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
167
|
Targeting Metabolic Pathways in Kidney Cancer: Rationale and Therapeutic Opportunities. ACTA ACUST UNITED AC 2020; 26:407-418. [PMID: 32947309 DOI: 10.1097/ppo.0000000000000472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Alterations in cellular sugar, amino acid and nucleic acid, and lipid metabolism, as well as in mitochondrial function, are a hallmark of renal cell carcinoma (RCC). The activation of oncogenes such as hypoxia-inducible factor and loss of the von Hippel-Lindau function and other tumor suppressors frequently occur early on during tumorigenesis and are the drivers for these changes, collectively known as "metabolic reprogramming," which promotes cellular growth, proliferation, and stress resilience. However, tumor cells can become addicted to reprogrammed metabolism. Here, we review the current knowledge of metabolic addictions in clear cell RCC, the most common form of RCC, and to what extent this has created therapeutic opportunities to interfere with such altered metabolic pathways to selectively target tumor cells. We highlight preclinical and emerging clinical data on novel therapeutics targeting metabolic traits in clear cell RCC to provide a comprehensive overview on current strategies to exploit metabolic reprogramming clinically.
Collapse
|
168
|
Keshet R, Lee JS, Adler L, Iraqi M, Ariav Y, Lim LQJ, Lerner S, Rabinovich S, Oren R, Katzir R, Weiss Tishler H, Stettner N, Goldman O, Landesman H, Galai S, Kuperman Y, Kuznetsov Y, Brandis A, Mehlman T, Malitsky S, Itkin M, Koehler SE, Zhao Y, Talsania K, Shen TW, Peled N, Ulitsky I, Porgador A, Ruppin E, Erez A. Targeting purine synthesis in ASS1-expressing tumors enhances the response to immune checkpoint inhibitors. NATURE CANCER 2020; 1:894-908. [PMID: 35121952 DOI: 10.1038/s43018-020-0106-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 07/21/2020] [Indexed: 06/14/2023]
Abstract
Argininosuccinate synthase (ASS1) downregulation in different tumors has been shown to support cell proliferation and yet, in several common cancer subsets ASS1 expression associates with poor patient prognosis. Here we demonstrate that ASS1 expression under glucose deprivation is induced by c-MYC, providing survival benefit by increasing nitric oxide synthesis and activating the gluconeogenic enzymes pyruvate carboxylase and phosphoenolpyruvate carboxykinase by S-nitrosylation. The resulting increased flux through gluconeogenesis enhances serine, glycine and subsequently purine synthesis. Notably, high ASS1-expressing breast cancer mice do not respond to immune checkpoint inhibitors and patients with breast cancer with high ASS1 have more metastases. We further find that inhibiting purine synthesis increases pyrimidine to purine ratio, elevates expression of the immunoproteasome and significantly enhances the response of autologous primary CD8+ T cells to anti-PD-1. These results suggest that treating patients with high-ASS1 cancers with purine synthesis inhibition is beneficial and may also sensitize them to immune checkpoint inhibition therapy.
Collapse
Affiliation(s)
- Rom Keshet
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- The Bert W. Strassburger Lipid Center, Sheba Medical Center, Tel Hashomer, Israel
| | - Joo Sang Lee
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology, Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
- Department of Precision Medicine, School of Medicine, Sungkyunkwan University, Suwon, Republic of Korea
| | - Lital Adler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Muhammed Iraqi
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yarden Ariav
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lisha Qiu Jin Lim
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shaul Lerner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shiran Rabinovich
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Roni Oren
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Katzir
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA
| | - Hila Weiss Tishler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Noa Stettner
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Omer Goldman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Landesman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Sivan Galai
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Yael Kuperman
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Yuri Kuznetsov
- Department of Veterinary Resources, Weizmann Institute of Science, Rehovot, Israel
| | - Alexander Brandis
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Tevi Mehlman
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - S Eleonore Koehler
- Department Anatomy & Embryology, Maastricht University, Maastricht, the Netherlands
| | - Yongmei Zhao
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Keyur Talsania
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Tsai-Wei Shen
- Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Nir Peled
- The Legacy Heritage Oncology Center and Dr. Larry Norton Institute, Soroka Medical Center and Ben-Gurion University, Beer-Sheva, Israel
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Angel Porgador
- Faculty of Health Sciences, The Shraga Segal Department of Microbiology, Immunology and Genetics, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Eytan Ruppin
- Cancer Data Science Lab, National Cancer Institutes of Health, Bethesda, MD, USA.
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
169
|
Systems level profiling of arginine starvation reveals MYC and ERK adaptive metabolic reprogramming. Cell Death Dis 2020; 11:662. [PMID: 32814773 PMCID: PMC7438517 DOI: 10.1038/s41419-020-02899-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 12/14/2022]
Abstract
Arginine auxotrophy due to the silencing of argininosuccinate synthetase 1 (ASS1) occurs in many carcinomas and in the majority of sarcomas. Arginine deiminase (ADI-PEG20) therapy exploits this metabolic vulnerability by depleting extracellular arginine, causing arginine starvation. ASS1-negative cells develop resistance to ADI-PEG20 through a metabolic adaptation that includes re-expressing ASS1. As arginine-based multiagent therapies are being developed, further characterization of the changes induced by arginine starvation is needed. In order to develop a systems-level understanding of these changes, activity-based proteomic profiling (ABPP) and phosphoproteomic profiling were performed before and after ADI-PEG20 treatment in ADI-PEG20-sensitive and resistant sarcoma cells. When integrated with metabolomic profiling, this multi-omic analysis reveals that cellular response to arginine starvation is mediated by adaptive ERK signaling and activation of the Myc–Max transcriptional network. Concomitantly, these data elucidate proteomic changes that facilitate oxaloacetate production by enhancing glutamine and pyruvate anaplerosis and altering lipid metabolism to recycle citrate for oxidative glutaminolysis. Based on the complexity of metabolic and cellular signaling interactions, these multi-omic approaches could provide valuable tools for evaluating response to metabolically targeted therapies.
Collapse
|
170
|
Missiroli S, Perrone M, Genovese I, Pinton P, Giorgi C. Cancer metabolism and mitochondria: Finding novel mechanisms to fight tumours. EBioMedicine 2020; 59:102943. [PMID: 32818805 PMCID: PMC7452656 DOI: 10.1016/j.ebiom.2020.102943] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
Mitochondria are dynamic organelles that have essential metabolic activity and are regarded as signalling hubs with biosynthetic, bioenergetics and signalling functions that orchestrate key biological pathways. However, mitochondria can influence all processes linked to oncogenesis, starting from malignant transformation to metastatic dissemination. In this review, we describe how alterations in the mitochondrial metabolic status contribute to the acquisition of typical malignant traits, discussing the most recent discoveries and the many unanswered questions. We also highlight that expanding our understanding of mitochondrial regulation and function mechanisms in the context of cancer cell metabolism could be an important task in biomedical research, thus offering the possibility of targeting mitochondria for the treatment of cancer.
Collapse
Affiliation(s)
- Sonia Missiroli
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Ilaria Genovese
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Carlotta Giorgi
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy.
| |
Collapse
|
171
|
Phase II Study of Arginine Deprivation Therapy With Pegargiminase in Patients With Relapsed Sensitive or Refractory Small-cell Lung Cancer. Clin Lung Cancer 2020; 21:527-533. [PMID: 32859536 DOI: 10.1016/j.cllc.2020.07.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 07/02/2020] [Accepted: 07/25/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Pre-clinical studies indicated that arginine-deprivation therapy using pegylated arginine deiminase (pegargiminase, ADI-PEG 20) may be effective in patients with argininosuccinate synthetase 1 (ASS1)-deficient small-cell lung cancer (SCLC). PATIENTS AND METHODS Patients were enrolled into either a 'sensitive' disease cohort (≥ 90 days response to first-line chemotherapy) or a 'refractory' disease cohort (progression while on chemotherapy or < 90 days afterwards or ≥ third-line treatment). Patients received weekly intramuscular pegargiminase, 320 IU/m2 (36.8 mg/m2), until unacceptable toxicity or disease progression. The primary endpoint was tumor response assessed by Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 with secondary endpoints including tolerability, pharmacodynamics, and immunogenicity. RESULTS Between January 2011 and January 2014, 22 patients were enrolled: 9 in the sensitive disease cohort and 13 in the refractory disease cohort. At a pre-planned interim analysis, the best overall response observed was stable disease in 2 patients in each cohort (18.2%). Owing to the lack of response and slow accrual in the sensitive disease cohort, the study was terminated early. Pegargiminase treatment was well-tolerated with no unexpected adverse events or discontinuations. CONCLUSION Although pegargiminase monotherapy in SCLC failed to meet its primary endpoint of RECIST-confirmed responses, more recent molecular stratification, including MYC status, may provide new opportunities moving forward.
Collapse
|
172
|
Interplay between Cellular Metabolism and the DNA Damage Response in Cancer. Cancers (Basel) 2020; 12:cancers12082051. [PMID: 32722390 PMCID: PMC7463900 DOI: 10.3390/cancers12082051] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Metabolism is a fundamental cellular process that can become harmful for cells by leading to DNA damage, for instance by an increase in oxidative stress or through the generation of toxic byproducts. To deal with such insults, cells have evolved sophisticated DNA damage response (DDR) pathways that allow for the maintenance of genome integrity. Recent years have seen remarkable progress in our understanding of the diverse DDR mechanisms, and, through such work, it has emerged that cellular metabolic regulation not only generates DNA damage but also impacts on DNA repair. Cancer cells show an alteration of the DDR coupled with modifications in cellular metabolism, further emphasizing links between these two fundamental processes. Taken together, these compelling findings indicate that metabolic enzymes and metabolites represent a key group of factors within the DDR. Here, we will compile the current knowledge on the dynamic interplay between metabolic factors and the DDR, with a specific focus on cancer. We will also discuss how recently developed high-throughput technologies allow for the identification of novel crosstalk between the DDR and metabolism, which is of crucial importance to better design efficient cancer treatments.
Collapse
|
173
|
Wang H, Wang X, Xu L, Zhang J, Cao H. High expression levels of pyrimidine metabolic rate-limiting enzymes are adverse prognostic factors in lung adenocarcinoma: a study based on The Cancer Genome Atlas and Gene Expression Omnibus datasets. Purinergic Signal 2020; 16:347-366. [PMID: 32638267 PMCID: PMC7524999 DOI: 10.1007/s11302-020-09711-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/25/2020] [Indexed: 12/14/2022] Open
Abstract
Reprogramming of metabolism is described in many types of cancer and is associated with the clinical outcomes. However, the prognostic significance of pyrimidine metabolism signaling pathway in lung adenocarcinoma (LUAD) is unclear. Using the Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) datasets, we found that the pyrimidine metabolism signaling pathway was significantly enriched in LUAD. Compared with normal lung tissues, the pyrimidine metabolic rate–limiting enzymes were highly expressed in lung tumor tissues. The high expression levels of pyrimidine metabolic–rate limiting enzymes were associated with unfavorable prognosis. However, purinergic receptors P2RX1, P2RX7, P2RY12, P2RY13, and P2RY14 were relatively downregulated in lung cancer tissues and were associated with favorable prognosis. Moreover, we found that hypo-DNA methylation, DNA amplification, and TP53 mutation were contributing to the high expression levels of pyrimidine metabolic rate–limiting enzymes in lung cancer cells. Furthermore, combined pyrimidine metabolic rate–limiting enzymes had significant prognostic effects in LUAD. Comprehensively, the pyrimidine metabolic rate–limiting enzymes were highly expressed in bladder cancer, breast cancer, colon cancer, liver cancer, and stomach cancer. And the high expression levels of pyrimidine metabolic rate–limiting enzymes were associated with unfavorable prognosis in liver cancer. Overall, our results suggested the mRNA levels of pyrimidine metabolic rate–limiting enzymes CAD, DTYMK, RRM1, RRM2, TK1, TYMS, UCK2, NR5C2, and TK2 were predictive of lung cancer as well as other cancers.
Collapse
Affiliation(s)
- Haiwei Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital,, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,, National Health and Family Planning Commission, Fuzhou, Fujian, China.
| | - Xinrui Wang
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital,, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Liangpu Xu
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital,, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,, National Health and Family Planning Commission, Fuzhou, Fujian, China
| | - Ji Zhang
- State Key Laboratory for Medical Genomics, Shanghai Institute of Hematology, Rui-Jin Hospital Affiliated to School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Hua Cao
- Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, Fujian Maternity and Child Health Hospital,, Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China.
- Key Laboratory of Technical Evaluation of Fertility Regulation for Non-human Primate,, National Health and Family Planning Commission, Fuzhou, Fujian, China.
| |
Collapse
|
174
|
Huang CY. Structure, catalytic mechanism, posttranslational lysine carbamylation, and inhibition of dihydropyrimidinases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2020; 122:63-96. [PMID: 32951816 DOI: 10.1016/bs.apcsb.2020.05.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Dihydropyrimidinase catalyzes the reversible hydrolytic ring opening of dihydrouracil and dihydrothymine to N-carbamoyl-β-alanine and N-carbamyl-β-aminoisobutyrate, respectively. Dihydropyrimidinase from microorganisms is normally known as hydantoinase because of its role as a biocatalyst in the synthesis of d- and l-amino acids for the industrial production of antibiotic precursors and its broad substrate specificity. Dihydropyrimidinase belongs to the cyclic amidohydrolase family, which also includes imidase, allantoinase, and dihydroorotase. Although these metal-dependent enzymes share low levels of amino acid sequence homology, they possess similar active site architectures and may use a similar mechanism for catalysis. By contrast, the five human dihydropyrimidinase-related proteins possess high amino acid sequence identity and are structurally homologous to dihydropyrimidinase, but they are neuronal proteins with no dihydropyrimidinase activity. In this chapter, we summarize and discuss current knowledge and the recent advances on the structure, catalytic mechanism, and inhibition of dihydropyrimidinase.
Collapse
Affiliation(s)
- Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, Taichung City, Taiwan
| |
Collapse
|
175
|
Carlisle SM, Trainor PJ, Hong KU, Doll MA, Hein DW. CRISPR/Cas9 knockout of human arylamine N-acetyltransferase 1 in MDA-MB-231 breast cancer cells suggests a role in cellular metabolism. Sci Rep 2020; 10:9804. [PMID: 32555504 PMCID: PMC7299936 DOI: 10.1038/s41598-020-66863-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 05/28/2020] [Indexed: 02/07/2023] Open
Abstract
Human arylamine N-acetyltransferase 1 (NAT1), present in all tissues, is classically described as a phase-II xenobiotic metabolizing enzyme but can also catalyze the hydrolysis of acetyl-Coenzyme A (acetyl-CoA) in the absence of an arylamine substrate using folate as a cofactor. NAT1 activity varies inter-individually and has been shown to be overexpressed in estrogen receptor-positive (ER+) breast cancers. NAT1 has also been implicated in breast cancer progression however the exact role of NAT1 remains unknown. The objective of this study was to evaluate the effect of varying levels of NAT1 N-acetylation activity in MDA-MB-231 breast cancer cells on global cellular metabolism and to probe for unknown endogenous NAT1 substrates. Global, untargeted metabolomics was conducted via ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) on MDA-MB-231 breast cancer cell lines constructed with siRNA and CRISPR/Cas9 technologies to vary only in NAT1 N-acetylation activity. Many metabolites were differentially abundant in NAT1-modified cell lines compared to the Scrambled parental cell line. N-acetylasparagine and N-acetylputrescine abundances were strongly positively correlated (r = 0.986 and r = 0.944, respectively) with NAT1 N-acetylation activity whereas saccharopine abundance was strongly inversely correlated (r = −0.876). Two of the most striking observations were a reduction in de novo pyrimidine biosynthesis and defective β-oxidation of fatty acids in the absence of NAT1. We have shown that NAT1 expression differentially affects cellular metabolism dependent on the level of expression. Our results support the hypothesis that NAT1 is not just a xenobiotic metabolizing enzyme and may have a role in endogenous cellular metabolism.
Collapse
Affiliation(s)
- Samantha M Carlisle
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.,Center for Clinical and Translational Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Patrick J Trainor
- Division of Cardiovascular Medicine, Department of Medicine, University of Louisville School of Medicine, Louisville, KY, USA.,Applied Statistics, EASIB Department, New Mexico State University, Las Cruces, NM, USA
| | - Kyung U Hong
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - Mark A Doll
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA
| | - David W Hein
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, KY, USA.
| |
Collapse
|
176
|
Abstract
The concept that dietary changes could improve the response to cancer therapy is extremely attractive to many patients, who are highly motivated to take control of at least some aspect of their treatment. Growing insight into cancer metabolism is highlighting the importance of nutrient supply to tumor development and therapeutic response. Cancers show diverse metabolic requirements, influenced by factors such as tissue of origin, microenvironment, and genetics. Dietary modulation will therefore need to be matched to the specific characteristics of both cancers and treatment, a precision approach requiring a detailed understanding of the mechanisms that determine the metabolic vulnerabilities of each cancer.
Collapse
Affiliation(s)
- Mylène Tajan
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen H Vousden
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
177
|
Avagliano A, Fiume G, Pelagalli A, Sanità G, Ruocco MR, Montagnani S, Arcucci A. Metabolic Plasticity of Melanoma Cells and Their Crosstalk With Tumor Microenvironment. Front Oncol 2020; 10:722. [PMID: 32528879 PMCID: PMC7256186 DOI: 10.3389/fonc.2020.00722] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 04/16/2020] [Indexed: 12/21/2022] Open
Abstract
Cutaneous melanoma (CM) is a highly aggressive and drug resistant solid tumor, showing an impressive metabolic plasticity modulated by oncogenic activation. In particular, melanoma cells can generate adenosine triphosphate (ATP) during cancer progression by both cytosolic and mitochondrial compartments, although CM energetic request mostly relies on glycolysis. The upregulation of glycolysis is associated with constitutive activation of BRAF/MAPK signaling sustained by BRAFV600E kinase mutant. In this scenario, the growth and progression of CM are strongly affected by melanoma metabolic changes and interplay with tumor microenvironment (TME) that sustain tumor development and immune escape. Furthermore, CM metabolic plasticity can induce a metabolic adaptive response to BRAF/MEK inhibitors (BRAFi/MEKi), associated with the shift from glycolysis toward oxidative phosphorylation (OXPHOS). Therefore, in this review article we survey the metabolic alterations and plasticity of CM, its crosstalk with TME that regulates melanoma progression, drug resistance and immunosurveillance. Finally, we describe hallmarks of melanoma therapeutic strategies targeting the shift from glycolysis toward OXPHOS.
Collapse
Affiliation(s)
- Angelica Avagliano
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Giuseppe Fiume
- Department of Experimental and Clinical Medicine, University “Magna Graecia” of Catanzaro, Catanzaro, Italy
| | - Alessandra Pelagalli
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
- Institute of Biostructures and Bioimages, National Research Council, Naples, Italy
| | - Gennaro Sanità
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Maria Rosaria Ruocco
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Stefania Montagnani
- Department of Public Health, University of Naples Federico II, Naples, Italy
| | - Alessandro Arcucci
- Department of Public Health, University of Naples Federico II, Naples, Italy
| |
Collapse
|
178
|
Deng L, Yao P, Li L, Ji F, Zhao S, Xu C, Lan X, Jiang P. p53-mediated control of aspartate-asparagine homeostasis dictates LKB1 activity and modulates cell survival. Nat Commun 2020; 11:1755. [PMID: 32273511 PMCID: PMC7145870 DOI: 10.1038/s41467-020-15573-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 03/17/2020] [Indexed: 12/31/2022] Open
Abstract
Asparagine synthetase (ASNS) catalyses the ATP-dependent conversion of aspartate to asparagine. However, both the regulation and biological functions of asparagine in tumour cells remain largely unknown. Here, we report that p53 suppresses asparagine synthesis through the transcriptional downregulation of ASNS expression and disrupts asparagine-aspartate homeostasis, leading to lymphoma and colon tumour growth inhibition in vivo and in vitro. Moreover, the removal of asparagine from culture medium or the inhibition of ASNS impairs cell proliferation and induces p53/p21-dependent senescence and cell cycle arrest. Mechanistically, asparagine and aspartate regulate AMPK-mediated p53 activation by physically binding to LKB1 and oppositely modulating LKB1 activity. Thus, we found that p53 regulates asparagine metabolism and dictates cell survival by generating an auto-amplification loop via asparagine-aspartate-mediated LKB1-AMPK signalling. Our findings highlight a role for LKB1 in sensing asparagine and aspartate and connect asparagine metabolism to the cellular signalling transduction network that modulates cell survival.
Collapse
Affiliation(s)
- Longfei Deng
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.,School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Pengbo Yao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.,School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Le Li
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.,School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Fansen Ji
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.,School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Shuang Zhao
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.,School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Chang Xu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.,School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xun Lan
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China.,School of Medicine, Tsinghua University, 100084, Beijing, China
| | - Peng Jiang
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University, 100084, Beijing, China. .,School of Life Sciences, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
179
|
Nitrogen Metabolism in Cancer and Immunity. Trends Cell Biol 2020; 30:408-424. [PMID: 32302552 DOI: 10.1016/j.tcb.2020.02.005] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/03/2020] [Accepted: 02/11/2020] [Indexed: 12/16/2022]
Abstract
As one of the fundamental requirements for cell growth and proliferation, nitrogen acquisition and utilization must be tightly regulated. Nitrogen can be generated from amino acids (AAs) and utilized for biosynthetic processes through transamination and deamination reactions. Importantly, limitations of nitrogen availability in cells can disrupt the synthesis of proteins, nucleic acids, and other important nitrogen-containing compounds. Rewiring cellular metabolism to support anabolic processes is a feature common to both cancer and proliferating immune cells. In this review, we discuss how nitrogen is utilized in biosynthetic pathways and highlight different metabolic and oncogenic programs that alter the flow of nitrogen to sustain biomass production and growth, an important emerging feature of cancer and immune cell proliferation.
Collapse
|
180
|
Huang YH, Lien Y, Chen JH, Lin ES, Huang CY. Identification and characterization of dihydropyrimidinase inhibited by plumbagin isolated from Nepenthes miranda extract. Biochimie 2020; 171-172:124-135. [PMID: 32147511 DOI: 10.1016/j.biochi.2020.03.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 03/03/2020] [Indexed: 02/07/2023]
Abstract
Dihydropyrimidinase is a member of the cyclic amidohydrolase family, which also includes allantoinase, dihydroorotase, hydantoinase, and imidase. This enzyme is important in pyrimidine metabolism, and blocking its activity would be detrimental to cell survival. This study investigated the dihydropyrimidinase inhibition by plumbagin isolated from the extract of carnivorous plant Nepenthes miranda (Nm). Plumbagin inhibited dihydropyrimidinase with IC50 value of 58 ± 3 μM. Double reciprocal results of Lineweaver-Burk plot indicated that this compound is a competitive inhibitor of dihydropyrimidinase. Fluorescence quenching analysis revealed that plumbagin could form a stable complex with dihydropyrimidinase with the Kd value of 37.7 ± 1.4 μM. Docking experiments revealed that the dynamic loop crucial for stabilization of the intermediate state in dihydropyrimidinase might be involved in the inhibition effect of plumbagin. Mutation at either Y155 or K156 within the dynamic loop of dihydropyrimidinase caused low plumbagin binding affinity. In addition to their dihydropyrimidinase inhibition, plumbagin and Nm extracts also exhibited cytotoxicity on melanoma cell survival, migration, and proliferation. Further research can directly focus on designing compounds that target the dynamic loop in dihydropyrimidinase during catalysis.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Yi Lien
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Jung-Hung Chen
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - En-Shyh Lin
- Department of Beauty Science, National Taichung University of Science and Technology, No.193, Sec.1, San-Min Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan.
| |
Collapse
|
181
|
Garcia-Bermudez J, Williams RT, Guarecuco R, Birsoy K. Targeting extracellular nutrient dependencies of cancer cells. Mol Metab 2020; 33:67-82. [PMID: 31926876 PMCID: PMC7056928 DOI: 10.1016/j.molmet.2019.11.011] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 11/11/2019] [Accepted: 11/13/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Cancer cells rewire their metabolism to meet the energetic and biosynthetic demands of their high proliferation rates and environment. Metabolic reprogramming of cancer cells may result in strong dependencies on nutrients that could be exploited for therapy. While these dependencies may be in part due to the nutrient environment of tumors, mutations or expression changes in metabolic genes also reprogram metabolic pathways and create addictions to extracellular nutrients. SCOPE OF REVIEW This review summarizes the major nutrient dependencies of cancer cells focusing on their discovery and potential mechanisms by which metabolites become limiting for tumor growth. We further detail available therapeutic interventions based on these metabolic features and highlight opportunities for restricting nutrient availability as an anti-cancer strategy. MAJOR CONCLUSIONS Strategies to limit nutrients required for tumor growth using dietary interventions or nutrient degrading enzymes have previously been suggested for cancer therapy. The best clinical example of exploiting cancer nutrient dependencies is the treatment of leukemia with l-asparaginase, a first-line chemotherapeutic that depletes serum asparagine. Despite the success of nutrient starvation in blood cancers, it remains unclear whether this approach could be extended to other solid tumors. Systematic studies to identify nutrient dependencies unique to individual tumor types have the potential to discover targets for therapy.
Collapse
Affiliation(s)
- Javier Garcia-Bermudez
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| | - Robert T Williams
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Rohiverth Guarecuco
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Kıvanç Birsoy
- Laboratory of Metabolic Regulation and Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
182
|
Agnello G, Alters SE, Rowlinson SW. Preclinical safety and antitumor activity of the arginine-degrading therapeutic enzyme pegzilarginase, a PEGylated, cobalt-substituted recombinant human arginase 1. Transl Res 2020; 217:11-22. [PMID: 31954097 DOI: 10.1016/j.trsl.2019.12.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 11/24/2022]
Abstract
Metabolic remodeling contributes to the development and progression of some cancers and exposes them to vulnerabilities, including specific nutrient dependencies that can be targeted therapeutically. Arginine is a semiessential amino acid, and several cancers are unable to endogenously synthesize sufficient levels of arginine for survival and proliferation, most commonly due to reduced expression of argininosuccinate synthase (ASS1). Such cancers are dependent on arginine and they can be targeted via enzyme-mediated depletion of systemic arginine. We report the preclinical safety, antitumor efficacy, and immune-potentiating effects of pegzilarginase, a highly potent human arginine-degrading enzyme. Toxicology studies showed that pegzilarginase-mediated arginine depletion is well tolerated at therapeutic levels that elicit an antitumor growth effect. To determine which tumor types are best suited for clinical development, we profiled clinical tumor samples for ASS1 expression, which correlated with pegzilarginase sensitivity in vivo in patient-derived xenograft (PDx) models. Among the histologies tested, malignant melanoma, small cell lung cancer and Merkel cell carcinoma had the highest prevalence of low ASS1 expression, the highest proportion of PDx models responding to pegzilarginase, and the strongest correlation between low or no ASS1 expression and sensitivity to pegzilarginase. In an immune-competent syngeneic mouse model, pegzilarginase slowed tumor growth and promoted the recruitment of CD8+ tumor infiltrating lymphocytes. This is consistent with the known autophagy-inducing effects of arginine depletion, and the link between autophagy and major histocompatibility complex antigen presentation to T cells. Our work supports the ongoing clinical investigations of pegzilarginase in solid tumors and clinical combination of pegzilarginase with immune checkpoint inhibitors.
Collapse
|
183
|
Yao S, Nguyen TV, Rolfe A, Agrawal AA, Ke J, Peng S, Colombo F, Yu S, Bouchard P, Wu J, Huang KC, Bao X, Omoto K, Selvaraj A, Yu L, Ioannidis S, Vaillancourt FH, Zhu P, Larsen NA, Bolduc DM. Small Molecule Inhibition of CPS1 Activity through an Allosteric Pocket. Cell Chem Biol 2020; 27:259-268.e5. [PMID: 32017919 DOI: 10.1016/j.chembiol.2020.01.009] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/09/2019] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
Carbamoyl phosphate synthetase 1 (CPS1) catalyzes the first step in the ammonia-detoxifying urea cycle, converting ammonia to carbamoyl phosphate under physiologic conditions. In cancer, CPS1 overexpression supports pyrimidine synthesis to promote tumor growth in some cancer types, while in others CPS1 activity prevents the buildup of toxic levels of intratumoral ammonia to allow for sustained tumor growth. Targeted CPS1 inhibitors may, therefore, provide a therapeutic benefit for cancer patients with tumors overexpressing CPS1. Herein, we describe the discovery of small-molecule CPS1 inhibitors that bind to a previously unknown allosteric pocket to block ATP hydrolysis in the first step of carbamoyl phosphate synthesis. CPS1 inhibitors are active in cellular assays, blocking both urea synthesis and CPS1 support of the pyrimidine biosynthetic pathway, while having no activity against CPS2. These newly discovered CPS1 inhibitors are a first step toward providing researchers with valuable tools for probing CPS1 cancer biology.
Collapse
Affiliation(s)
- Shihua Yao
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Tuong-Vi Nguyen
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Alan Rolfe
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Anant A Agrawal
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Jiyuan Ke
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Shouyong Peng
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Federico Colombo
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Sean Yu
- RMI Laboratories LLC, 418 Industrial Drive, North Wales, PA 19454, USA
| | - Patricia Bouchard
- NMX Research and Solutions, Inc., 500 Cartier Boulevard W., Laval, Quebec H7V 5B7, Canada
| | - Jiayi Wu
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Kuan-Chun Huang
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Xingfeng Bao
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Kiyoyuki Omoto
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Anand Selvaraj
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Lihua Yu
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | | | | | - Ping Zhu
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - Nicholas A Larsen
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| | - David M Bolduc
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA.
| |
Collapse
|
184
|
Nouwen LV, Everts B. Pathogens MenTORing Macrophages and Dendritic Cells: Manipulation of mTOR and Cellular Metabolism to Promote Immune Escape. Cells 2020; 9:cells9010161. [PMID: 31936570 PMCID: PMC7017145 DOI: 10.3390/cells9010161] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/01/2020] [Accepted: 01/07/2020] [Indexed: 02/06/2023] Open
Abstract
Myeloid cells, including macrophages and dendritic cells, represent an important first line of defense against infections. Upon recognition of pathogens, these cells undergo a metabolic reprogramming that supports their activation and ability to respond to the invading pathogens. An important metabolic regulator of these cells is mammalian target of rapamycin (mTOR). During infection, pathogens use host metabolic pathways to scavenge host nutrients, as well as target metabolic pathways for subversion of the host immune response that together facilitate pathogen survival. Given the pivotal role of mTOR in controlling metabolism and DC and macrophage function, pathogens have evolved strategies to target this pathway to manipulate these cells. This review seeks to discuss the most recent insights into how pathogens target DC and macrophage metabolism to subvert potential deleterious immune responses against them, by focusing on the metabolic pathways that are known to regulate and to be regulated by mTOR signaling including amino acid, lipid and carbohydrate metabolism, and autophagy.
Collapse
|
185
|
Kim SS, Xu S, Cui J, Poddar S, Le TM, Hayrapetyan H, Li L, Wu N, Moore AM, Zhou L, Yu AC, Dann AM, Elliott IA, Abt ER, Kim W, Dawson DW, Radu CG, Donahue TR. Histone deacetylase inhibition is synthetically lethal with arginine deprivation in pancreatic cancers with low argininosuccinate synthetase 1 expression. Theranostics 2020; 10:829-840. [PMID: 31903153 PMCID: PMC6929997 DOI: 10.7150/thno.40195] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 10/05/2019] [Indexed: 01/10/2023] Open
Abstract
Arginine (Arg) deprivation is a promising therapeutic approach for tumors with low argininosuccinate synthetase 1 (ASS1) expression. However, its efficacy as a single agent therapy needs to be improved as resistance is frequently observed. Methods: A tissue microarray was performed to assess ASS1 expression in surgical specimens of pancreatic ductal adenocarcinoma (PDAC) and its correlation with disease prognosis. An RNA-Seq analysis examined the role of ASS1 in regulating the global gene transcriptome. A high throughput screen of FDA-approved oncology drugs identified synthetic lethality between histone deacetylase (HDAC) inhibitors and Arg deprivation in PDAC cells with low ASS1 expression. We examined HDAC inhibitor panobinostat (PAN) and Arg deprivation in a panel of human PDAC cell lines, in ASS1-high and -knockdown/knockout isogenic models, in both anchorage-dependent and -independent cultures, and in multicellular complex cultures that model the PDAC tumor microenvironment. We examined the effects of combined Arg deprivation and PAN on DNA damage and the protein levels of key DNA repair enzymes. We also evaluated the efficacy of PAN and ADI-PEG20 (an Arg-degrading agent currently in Phase 2 clinical trials) in xenograft models with ASS1-low and -high PDAC tumors. Results: Low ASS1 protein level is a negative prognostic indicator in PDAC. Arg deprivation in ASS1-deficient PDAC cells upregulated asparagine synthetase (ASNS) which redirected aspartate (Asp) from being used for de novo nucleotide biosynthesis, thus causing nucleotide insufficiency and impairing cell cycle S-phase progression. Comprehensively validated, HDAC inhibitors and Arg deprivation showed synthetic lethality in ASS1-low PDAC cells. Mechanistically, combined Arg deprivation and HDAC inhibition triggered degradation of a key DNA repair enzyme C-terminal-binding protein interacting protein (CtIP), resulting in DNA damage and apoptosis. In addition, S-phase-retained ASS1-low PDAC cells (due to Arg deprivation) were also sensitized to DNA damage, thus yielding effective cell death. Compared to single agents, the combination of PAN and ADI-PEG20 showed better efficacy in suppressing ASS1-low PDAC tumor growth in mouse xenograft models. Conclusion: The combination of PAN and ADI-PEG20 is a rational translational therapeutic strategy for treating ASS1-low PDAC tumors through synergistic induction of DNA damage.
Collapse
|
186
|
TCA Cycle Rewiring as Emerging Metabolic Signature of Hepatocellular Carcinoma. Cancers (Basel) 2019; 12:cancers12010068. [PMID: 31881713 PMCID: PMC7016696 DOI: 10.3390/cancers12010068] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 12/20/2019] [Accepted: 12/23/2019] [Indexed: 12/27/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignancy. Despite progress in treatment, HCC is still one of the most lethal cancers. Therefore, deepening molecular mechanisms underlying HCC pathogenesis and development is required to uncover new therapeutic strategies. Metabolic reprogramming is emerging as a critical player in promoting tumor survival and proliferation to sustain increased metabolic needs of cancer cells. Among the metabolic pathways, the tricarboxylic acid (TCA) cycle is a primary route for bioenergetic, biosynthetic, and redox balance requirements of cells. In recent years, a large amount of evidence has highlighted the relevance of the TCA cycle rewiring in a variety of cancers. Indeed, aberrant gene expression of several key enzymes and changes in levels of critical metabolites have been observed in many solid human tumors. In this review, we summarize the role of the TCA cycle rewiring in HCC by reporting gene expression and activity dysregulation of enzymes relating not only to the TCA cycle but also to glutamine metabolism, malate/aspartate, and citrate/pyruvate shuttles. Regarding the transcriptional regulation, we focus on the link between NF-κB-HIF1 transcriptional factors and TCA cycle reprogramming. Finally, the potential of metabolic targets for new HCC treatments has been explored.
Collapse
|
187
|
Metabolic Alterations in Pancreatic Cancer Progression. Cancers (Basel) 2019; 12:cancers12010002. [PMID: 31861288 PMCID: PMC7016676 DOI: 10.3390/cancers12010002] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 02/07/2023] Open
Abstract
Pancreatic cancer is the third leading cause of cancer-related deaths in the USA. Pancreatic tumors are characterized by enhanced glycolytic metabolism promoted by a hypoxic tumor microenvironment and a resultant acidic milieu. The metabolic reprogramming allows cancer cells to survive hostile microenvironments. Through the analysis of the principal metabolic pathways, we identified the specific metabolites that are altered during pancreatic cancer progression in the spontaneous progression (KPC) mouse model. Genetically engineered mice exhibited metabolic alterations during PanINs formation, even before the tumor development. To account for other cells in the tumor microenvironment and to focus on metabolic adaptations concerning tumorigenic cells only, we compared the metabolic profile of KPC and orthotopic tumors with those obtained from KPC-tumor derived cell lines. We observed significant upregulation of glycolysis and the pentose phosphate pathway metabolites even at the early stages of pathogenesis. Other biosynthetic pathways also demonstrated a few common perturbations. While some of the metabolic changes in tumor cells are not detectable in orthotopic and spontaneous tumors, a significant number of tumor cell-intrinsic metabolic alterations are readily detectable in the animal models. Overall, we identified that metabolic alterations in precancerous lesions are maintained during cancer development and are largely mirrored by cancer cells in culture conditions.
Collapse
|
188
|
Lercher A, Bhattacharya A, Popa AM, Caldera M, Schlapansky MF, Baazim H, Agerer B, Gürtl B, Kosack L, Májek P, Brunner JS, Vitko D, Pinter T, Genger JW, Orlova A, Pikor N, Reil D, Ozsvár-Kozma M, Kalinke U, Ludewig B, Moriggl R, Bennett KL, Menche J, Cheng PN, Schabbauer G, Trauner M, Klavins K, Bergthaler A. Type I Interferon Signaling Disrupts the Hepatic Urea Cycle and Alters Systemic Metabolism to Suppress T Cell Function. Immunity 2019; 51:1074-1087.e9. [PMID: 31784108 PMCID: PMC6926485 DOI: 10.1016/j.immuni.2019.10.014] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 09/10/2019] [Accepted: 10/25/2019] [Indexed: 12/12/2022]
Abstract
Infections induce complex host responses linked to antiviral defense, inflammation, and tissue damage and repair. We hypothesized that the liver, as a central metabolic hub, may orchestrate systemic metabolic changes during infection. We infected mice with chronic lymphocytic choriomeningitis virus (LCMV), performed RNA sequencing and proteomics of liver tissue, and integrated these data with serum metabolomics at different infection phases. Widespread reprogramming of liver metabolism occurred early after infection, correlating with type I interferon (IFN-I) responses. Viral infection induced metabolic alterations of the liver that depended on the interferon alpha/beta receptor (IFNAR1). Hepatocyte-intrinsic IFNAR1 repressed the transcription of metabolic genes, including Otc and Ass1, which encode urea cycle enzymes. This led to decreased arginine and increased ornithine concentrations in the circulation, resulting in suppressed virus-specific CD8+ T cell responses and ameliorated liver pathology. These findings establish IFN-I-induced modulation of hepatic metabolism and the urea cycle as an endogenous mechanism of immunoregulation. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Alexander Lercher
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Anannya Bhattacharya
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Alexandra M Popa
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Michael Caldera
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Moritz F Schlapansky
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Hatoon Baazim
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Benedikt Agerer
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Bettina Gürtl
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Lindsay Kosack
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Peter Májek
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Julia S Brunner
- Department of Thrombosis Research and Vascular Biology, Medical University of Vienna, 1090 Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090 Vienna, Austria
| | - Dijana Vitko
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria; Department of Urology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Theresa Pinter
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria; Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jakob-Wendelin Genger
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Anna Orlova
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria
| | - Natalia Pikor
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Daniela Reil
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Maria Ozsvár-Kozma
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria; Department for Laboratory Medicine, Medical University of Vienna, 1090 Vienna, Austria
| | - Ulrich Kalinke
- Institute for Experimental Infection Research, TWINCORE, Centre for Experimental and Clinical Infection Research, a joint venture between the Helmholtz Centre for Infection Research, Braunschweig, and the Hannover Medical School, 30625 Hannover, Germany
| | - Burkhard Ludewig
- Institute of Immunobiology, Kantonsspital St. Gallen, 9007 St. Gallen, Switzerland
| | - Richard Moriggl
- Institute of Animal Breeding and Genetics, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; Medical University of Vienna, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Paul N Cheng
- Bio-Cancer Treatment International Limited, Hong Kong, China
| | - Gernot Schabbauer
- Department of Thrombosis Research and Vascular Biology, Medical University of Vienna, 1090 Vienna, Austria; Christian Doppler Laboratory for Arginine Metabolism in Rheumatoid Arthritis and Multiple Sclerosis, 1090 Vienna, Austria
| | - Michael Trauner
- Division of Gastroenterology & Hepatology, Department of Internal Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Kristaps Klavins
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria
| | - Andreas Bergthaler
- CeMM Research Center for Molecular Medicine or the Austrian Academy of Sciences, Lazarettgasse 14 AKH BT25.3, 1090 Vienna, Austria.
| |
Collapse
|
189
|
Werner A, Pieh D, Echchannaoui H, Rupp J, Rajalingam K, Theobald M, Closs EI, Munder M. Cationic Amino Acid Transporter-1-Mediated Arginine Uptake Is Essential for Chronic Lymphocytic Leukemia Cell Proliferation and Viability. Front Oncol 2019; 9:1268. [PMID: 31824848 PMCID: PMC6879669 DOI: 10.3389/fonc.2019.01268] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/01/2019] [Indexed: 12/22/2022] Open
Abstract
Interfering with tumor metabolism by specifically restricting the availability of extracellular nutrients is a rapidly emerging field of cancer research. A variety of tumor entities depend on the uptake of the amino acid arginine since they have lost the ability to synthesize it endogenously, that is they do not express the rate limiting enzyme for arginine synthesis, argininosuccinate synthase (ASS). Arginine transport through the plasma membrane of mammalian cells is mediated by eight different transporters that belong to two solute carrier (SLC) families. In the present study we found that the proliferation of primary as well as immortalized chronic lymphocytic leukemia (CLL) cells depends on the availability of extracellular arginine and that primary CLL cells do not express ASS and are therefore arginine-auxotrophic. The cationic amino acid transporter-1 (CAT-1) was the only arginine importer expressed in CLL cells. Lentiviral-mediated downregulation of the CAT-1 transporter in HG3 CLL cells significantly reduced arginine uptake, abolished cell proliferation and impaired cell viability. In a murine CLL xenograft model, tumor growth was significantly suppressed upon induced downregulation of CAT-1 in the CLL cells. Our results suggest that inhibition of CAT-1 is a promising new therapeutic approach for CLL.
Collapse
Affiliation(s)
- Anke Werner
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Daniel Pieh
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Hakim Echchannaoui
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Johanna Rupp
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Krishnaraj Rajalingam
- Cell Biology Unit, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Matthias Theobald
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,German Cancer Consortium (DKTK), Mainz, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ellen I Closs
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Markus Munder
- Third Department of Medicine (Hematology, Oncology, and Pneumology), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany.,Research Center for Immune Therapy, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| |
Collapse
|
190
|
Dai Z, Yang S, Xu L, Hu H, Liao K, Wang J, Wang Q, Gao S, Li B, Lai L. Identification of Cancer-associated metabolic vulnerabilities by modeling multi-objective optimality in metabolism. Cell Commun Signal 2019; 17:124. [PMID: 31601242 PMCID: PMC6785927 DOI: 10.1186/s12964-019-0439-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cancer cells undergo global reprogramming of cellular metabolism to satisfy demands of energy and biomass during proliferation and metastasis. Computational modeling of genome-scale metabolic models is an effective approach for designing new therapeutics targeting dysregulated cancer metabolism by identifying metabolic enzymes crucial for satisfying metabolic goals of cancer cells, but nearly all previous studies neglect the existence of metabolic demands other than biomass synthesis and trade-offs between these contradicting metabolic demands. It is thus necessary to develop computational models covering multiple metabolic objectives to study cancer metabolism and identify novel metabolic targets. METHODS We developed a multi-objective optimization model for cancer cell metabolism at genome-scale and an integrated, data-driven workflow for analyzing the Pareto optimality of this model in achieving multiple metabolic goals and identifying metabolic enzymes crucial for maintaining cancer-associated metabolic phenotypes. Using this workflow, we constructed cell line-specific models for a panel of cancer cell lines and identified lists of metabolic targets promoting or suppressing cancer cell proliferation or the Warburg Effect. The targets were then validated using knockdown and over-expression experiments in cultured cancer cell lines. RESULTS We found that the multi-objective optimization model correctly predicted phenotypes including cell growth rates, essentiality of metabolic genes and cell line specific sensitivities to metabolic perturbations. To our surprise, metabolic enzymes promoting proliferation substantially overlapped with those suppressing the Warburg Effect, suggesting that simply targeting the overlapping enzymes may lead to complicated outcomes. We also identified lists of metabolic enzymes important for maintaining rapid proliferation or high Warburg Effect while having little effect on the other. The importance of these enzymes in cancer metabolism predicted by the model was validated by their association with cancer patient survival and knockdown and overexpression experiments in a variety of cancer cell lines. CONCLUSIONS These results confirm this multi-objective optimization model as a novel and effective approach for studying trade-off between metabolic demands of cancer cells and identifying cancer-associated metabolic vulnerabilities, and suggest novel metabolic targets for cancer treatment.
Collapse
Affiliation(s)
- Ziwei Dai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Shiyu Yang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Liyan Xu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Hongrong Hu
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Kun Liao
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jianghuang Wang
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Qian Wang
- Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Shuaishi Gao
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Bo Li
- Program of Cancer Research, Affiliated Guangzhou Women and Children's Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Luhua Lai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China. .,Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China. .,Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
191
|
Sun J, Nagel R, Zaal EA, Ugalde AP, Han R, Proost N, Song J, Pataskar A, Burylo A, Fu H, Poelarends GJ, van de Ven M, van Tellingen O, Berkers CR, Agami R. SLC1A3 contributes to L-asparaginase resistance in solid tumors. EMBO J 2019; 38:e102147. [PMID: 31523835 PMCID: PMC6826201 DOI: 10.15252/embj.2019102147] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/13/2019] [Accepted: 08/14/2019] [Indexed: 12/12/2022] Open
Abstract
L-asparaginase (ASNase) serves as an effective drug for adolescent acute lymphoblastic leukemia. However, many clinical trials indicated severe ASNase toxicity in patients with solid tumors, with resistant mechanisms not well understood. Here, we took a functional genetic approach and identified SLC1A3 as a novel contributor to ASNase resistance in cancer cells. In combination with ASNase, SLC1A3 inhibition caused cell cycle arrest or apoptosis, and myriads of metabolic vulnerabilities in tricarboxylic acid (TCA) cycle, urea cycle, nucleotides biosynthesis, energy production, redox homeostasis, and lipid biosynthesis. SLC1A3 is an aspartate and glutamate transporter, mainly expressed in brain tissues, but high expression levels were also observed in some tumor types. Here, we demonstrate that ASNase stimulates aspartate and glutamate consumptions, and their refilling through SLC1A3 promotes cancer cell proliferation. Lastly, in vivo experiments indicated that SLC1A3 expression promoted tumor development and metastasis while negating the suppressive effects of ASNase by fueling aspartate, glutamate, and glutamine metabolisms despite of asparagine shortage. Altogether, our findings identify a novel role for SLC1A3 in ASNase resistance and suggest that restrictive aspartate and glutamate uptake might improve ASNase efficacy with solid tumors.
Collapse
Affiliation(s)
- Jianhui Sun
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Remco Nagel
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Esther A Zaal
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
| | - Alejandro Piñeiro Ugalde
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ruiqi Han
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| | - Natalie Proost
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA)The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Ji‐Ying Song
- Division of Experimental Animal PathologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Abhijeet Pataskar
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Artur Burylo
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Haigen Fu
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenGroningenThe Netherlands
| | - Gerrit J Poelarends
- Department of Chemical and Pharmaceutical BiologyUniversity of GroningenGroningenThe Netherlands
| | - Marieke van de Ven
- Preclinical Intervention Unit and Pharmacology Unit of the Mouse Clinic for Cancer and Ageing (MCCA)The Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Olaf van Tellingen
- Division of PharmacologyThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Celia R Berkers
- Biomolecular Mass Spectrometry and ProteomicsBijvoet Center for Biomolecular ResearchUtrecht UniversityUtrechtThe Netherlands
- Department of Biochemistry and Cell BiologyFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
| | - Reuven Agami
- Division of OncogenomicsOncode InstituteThe Netherlands Cancer InstituteAmsterdamThe Netherlands
- Department of GeneticsErasmus University Medical CenterRotterdamThe Netherlands
| |
Collapse
|
192
|
|
193
|
Abstract
Macroautophagy (referred to here as autophagy) degrades and recycles cytoplasmic constituents to sustain cellular and mammalian metabolism and survival during starvation. Deregulation of autophagy is involved in numerous diseases, such as cancer. Cancers up-regulate autophagy and depend on it for survival, growth, and malignancy in a tumor cell-autonomous fashion. Recently, it has become apparent that autophagy in host tissues as well as the tumor cells themselves contribute to tumor growth. Understanding how autophagy regulates metabolism and tumor growth has revealed new essential tumor nutrients, where they come from, and how they are supplied and used, which can now be targeted for cancer therapy.
Collapse
Affiliation(s)
- Laura Poillet-Perez
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA
| | - Eileen White
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey 08903, USA.,Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
194
|
Huang YH, Ning ZJ, Huang CY. Crystal structure of dihydropyrimidinase in complex with anticancer drug 5-fluorouracil. Biochem Biophys Res Commun 2019; 519:160-165. [PMID: 31481233 DOI: 10.1016/j.bbrc.2019.08.153] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 08/28/2019] [Indexed: 12/29/2022]
Abstract
Dihydropyrimidinase (DHPase) catalyzes the reversible cyclization of dihydrouracil to N-carbamoyl-β-alanine in the second step of the pyrimidine degradation pathway. Whether 5-fluorouracil (5-FU), the best-known fluoropyrimidine that is used to target the enzyme thymidylate synthase for anticancer therapy, can bind to DHPase remains unknown. In this study, we found that 5-FU can form a stable complex with Pseudomonas aeruginosa DHPase (PaDHPase). The crystal structure of PaDHPase complexed with 5-FU was determined at 1.76 Å resolution (PDB entry 6KLK). Various interactions between 5-FU and PaDHPase were examined. Six residues, namely, His61, Tyr155, Asp316, Cys318, Ser289 and Asn337, of PaDHPase were involved in 5-FU binding. Except for Cys318, these residues are also known as the substrate-binding sites of DHPase. 5-FU interacts with the main chains of residues Ser289 (3.0 Å) and Asn337 (3.2 Å) and the side chains of residues Tyr155 (2.8 Å) and Cys318 (2.9 Å). Mutation at either Tyr155 or Cys318 of PaDHPase caused a low 5-FU binding activity of PaDHPase. This structure and the binding mode provided molecular insights into how the dimetal center in DHPase undergoes a conformational change during 5-FU binding. Further research can directly focus on revisiting the role of DHPase in anticancer therapy.
Collapse
Affiliation(s)
- Yen-Hua Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Zhi-Jun Ning
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan
| | - Cheng-Yang Huang
- School of Biomedical Sciences, Chung Shan Medical University, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan; Department of Medical Research, Chung Shan Medical University Hospital, No.110, Sec.1, Chien-Kuo N. Rd., Taichung City, Taiwan.
| |
Collapse
|
195
|
Rabinovich S, Silberman A, Adler L, Agron S, Levin-Zaidman S, Bahat A, Porat Z, Ben-Zeev E, Geva I, Itkin M, Malitsky S, Buchaklian A, Helbling D, Dimmock D, Erez A. The mitochondrial carrier Citrin plays a role in regulating cellular energy during carcinogenesis. Oncogene 2019; 39:164-175. [PMID: 31462712 DOI: 10.1038/s41388-019-0976-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 05/16/2019] [Accepted: 05/21/2019] [Indexed: 11/09/2022]
Abstract
Citrin, encoded by SLC25A13 gene, is an inner mitochondrial transporter that is part of the malate-aspartate shuttle, which regulates the NAD+/NADH ratio between the cytosol and mitochondria. Citrullinemia type II (CTLN-II) is an inherited disorder caused by germline mutations in SLC25A13, manifesting clinically in growth failure that can be alleviated by dietary restriction of carbohydrates. The association of citrin with glycolysis and NAD+/NADH ratio led us to hypothesize that it may play a role in carcinogenesis. Indeed, we find that citrin is upregulated in multiple cancer types and is essential for supplementing NAD+ for glycolysis and NADH for oxidative phosphorylation. Consequently, citrin deficiency associates with autophagy, whereas its overexpression in cancer cells increases energy production and cancer invasion. Furthermore, based on the human deleterious mutations in citrin, we found a potential inhibitor of citrin that restricts cancerous phenotypes in cells. Collectively, our findings suggest that targeting citrin may be of benefit for cancer therapy.
Collapse
Affiliation(s)
- Shiran Rabinovich
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Silberman
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Lital Adler
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Shani Agron
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Smadar Levin-Zaidman
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, Israel
| | - Amir Bahat
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Ziv Porat
- Department of Cell Sorting, Weizmann Institute of Science, Rehovot, Israel
| | - Efrat Ben-Zeev
- Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Inbal Geva
- Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Maxim Itkin
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Sergey Malitsky
- Department of Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Adam Buchaklian
- Human and Molecular Genetic and Biochemistry Center, Medical College Wisconsin, Milwaukee, WI, USA
| | - Daniel Helbling
- Human and Molecular Genetic and Biochemistry Center, Medical College Wisconsin, Milwaukee, WI, USA
| | - David Dimmock
- Human and Molecular Genetic and Biochemistry Center, Medical College Wisconsin, Milwaukee, WI, USA.,Rady Children's Institute for Genomic Medicine, San Diego, CA, USA
| | - Ayelet Erez
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
196
|
Kishimoto S, Brender JR, Crooks DR, Matsumoto S, Seki T, Oshima N, Merkle H, Lin P, Reed G, Chen AP, Ardenkjaer-Larsen JH, Munasinghe J, Saito K, Yamamoto K, Choyke PL, Mitchell J, Lane AN, Fan TWM, Linehan WM, Krishna MC. Imaging of glucose metabolism by 13C-MRI distinguishes pancreatic cancer subtypes in mice. eLife 2019; 8:e46312. [PMID: 31408004 PMCID: PMC6706239 DOI: 10.7554/elife.46312] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2019] [Accepted: 08/08/2019] [Indexed: 12/13/2022] Open
Abstract
Metabolic differences among and within tumors can be an important determinant in cancer treatment outcome. However, methods for determining these differences non-invasively in vivo is lacking. Using pancreatic ductal adenocarcinoma as a model, we demonstrate that tumor xenografts with a similar genetic background can be distinguished by their differing rates of the metabolism of 13C labeled glucose tracers, which can be imaged without hyperpolarization by using newly developed techniques for noise suppression. Using this method, cancer subtypes that appeared to have similar metabolic profiles based on steady state metabolic measurement can be distinguished from each other. The metabolic maps from 13C-glucose imaging localized lactate production and overall glucose metabolism to different regions of some tumors. Such tumor heterogeneity would not be not detectable in FDG-PET.
Collapse
Affiliation(s)
- Shun Kishimoto
- Radiation Biology Branch, Center for Cancer ResearchNCI, NIHBethesdaUnited States
| | - Jeffrey R Brender
- Radiation Biology Branch, Center for Cancer ResearchNCI, NIHBethesdaUnited States
| | - Daniel R Crooks
- Urologic Oncology Branch, Center for Cancer Research, NCI, NIHBethesdaUnited States
| | - Shingo Matsumoto
- Graduate School of Information Science and Technology, Division of Bioengineering and BioinformaticsHokkaido UniversitySapporoJapan
- JST, PRESTSaitamaJapan
| | - Tomohiro Seki
- Radiation Biology Branch, Center for Cancer ResearchNCI, NIHBethesdaUnited States
| | - Nobu Oshima
- Radiation Biology Branch, Center for Cancer ResearchNCI, NIHBethesdaUnited States
| | | | - Penghui Lin
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
| | | | | | - Jan Henrik Ardenkjaer-Larsen
- GE HealthCareChicagoUnited States
- Department of Electrical EngineeringTechnical University of DenmarkKongens LyngbyDenmark
| | | | - Keita Saito
- Radiation Biology Branch, Center for Cancer ResearchNCI, NIHBethesdaUnited States
| | - Kazutoshi Yamamoto
- Radiation Biology Branch, Center for Cancer ResearchNCI, NIHBethesdaUnited States
| | - Peter L Choyke
- Molecular Imaging Program, Center for Cancer ResearchNCI, NIHBethesdaUnited States
| | - James Mitchell
- Radiation Biology Branch, Center for Cancer ResearchNCI, NIHBethesdaUnited States
| | - Andrew N Lane
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
| | - Teresa WM Fan
- Center for Environmental and Systems BiochemistryUniversity of KentuckyLexingtonUnited States
- Markey Cancer CenterUniversity of KentuckyLexingtonUnited States
| | - W Marston Linehan
- Urologic Oncology Branch, Center for Cancer Research, NCI, NIHBethesdaUnited States
| | - Murali C Krishna
- Radiation Biology Branch, Center for Cancer ResearchNCI, NIHBethesdaUnited States
| |
Collapse
|
197
|
Singh PK, Deorukhkar AA, Venkatesulu BP, Li X, Tailor R, Bomalaski JS, Krishnan S. Exploiting Arginine Auxotrophy with Pegylated Arginine Deiminase (ADI-PEG20) to Sensitize Pancreatic Cancer to Radiotherapy via Metabolic Dysregulation. Mol Cancer Ther 2019; 18:2381-2393. [PMID: 31395686 DOI: 10.1158/1535-7163.mct-18-0708] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 12/05/2018] [Accepted: 08/02/2019] [Indexed: 12/18/2022]
Abstract
Distinct metabolic vulnerabilities of cancer cells compared with normal cells can potentially be exploited for therapeutic targeting. Deficiency of argininosuccinate synthetase-1 (ASS1) in pancreatic cancers creates auxotrophy for the semiessential amino acid arginine. We explored the therapeutic potential of depleting exogenous arginine via pegylated arginine deiminase (ADI-PEG20) treatment as an adjunct to radiotherapy. We evaluated the efficacy of treatment of human pancreatic cancer cell lines and xenografts with ADI-PEG20 and radiation via clonogenic assays and tumor growth delay experiments. We also investigated potential mechanisms of action using reverse-phase protein array, Western blotting, and IHC and immunofluorescence staining. ADI-PEG20 potently radiosensitized ASS1-deficient pancreatic cancer cells (MiaPaCa-2, Panc-1, AsPc-1, HPAC, and CaPan-1), but not ASS1-expressing cell lines (Bxpc3, L3.6pl, and SW1990). Reverse phase protein array studies confirmed increased expression of proteins related to endoplasmic reticulum (ER) stress and apoptosis, which were confirmed by Western blot analysis. Inhibition of ER stress signaling with 4-phenylbutyrate abrogated the expression of ER stress proteins and reversed radiosensitization by ADI-PEG20. Independent in vivo studies in two xenograft models confirmed significant tumor growth delays, which were associated with enhanced expression of ER stress proteins and apoptosis markers and reduced expression of proliferation and angiogenesis markers. ADI-PEG20 augmented the effects of radiation by triggering the ER stress pathway, leading to apoptosis in pancreatic tumor cells.
Collapse
Affiliation(s)
- Pankaj K Singh
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Amit A Deorukhkar
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Bhanu P Venkatesulu
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Xiaolin Li
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas
| | - Ramesh Tailor
- Department of Radiation Physics, MD Anderson Cancer Center, Houston, Texas
| | | | - Sunil Krishnan
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
198
|
Stuani L, Sabatier M, Sarry JE. Exploiting metabolic vulnerabilities for personalized therapy in acute myeloid leukemia. BMC Biol 2019; 17:57. [PMID: 31319822 PMCID: PMC6637566 DOI: 10.1186/s12915-019-0670-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Changes in cell metabolism and metabolic adaptation are hallmark features of many cancers, including leukemia, that support biological processes involved into tumor initiation, growth, and response to therapeutics. The discovery of mutations in key metabolic enzymes has highlighted the importance of metabolism in cancer biology and how these changes might constitute an Achilles heel for cancer treatment. In this Review, we discuss the role of metabolic and mitochondrial pathways dysregulated in acute myeloid leukemia, and the potential of therapeutic intervention targeting these metabolic dependencies on the proliferation, differentiation, stem cell function and cell survival to improve patient stratification and outcomes.
Collapse
Affiliation(s)
- Lucille Stuani
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| | - Marie Sabatier
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France
| | - Jean-Emmanuel Sarry
- Centre de Recherches en Cancérologie de Toulouse, UMR1037, Inserm, Université de Toulouse 3 Paul Sabatier, Equipe Labellisée LIGUE 2018, F-31037, Toulouse, France.
| |
Collapse
|
199
|
Jiang J, Srivastava S, Zhang J. Starve Cancer Cells of Glutamine: Break the Spell or Make a Hungry Monster? Cancers (Basel) 2019; 11:cancers11060804. [PMID: 31212591 PMCID: PMC6627209 DOI: 10.3390/cancers11060804] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 06/04/2019] [Accepted: 06/06/2019] [Indexed: 12/13/2022] Open
Abstract
Distinct from normal differentiated tissues, cancer cells reprogram nutrient uptake and utilization to accommodate their elevated demands for biosynthesis and energy production. A hallmark of these types of reprogramming is the increased utilization of, and dependency on glutamine, a nonessential amino acid, for cancer cell growth and survival. It is well-accepted that glutamine is a versatile biosynthetic substrate in cancer cells beyond its role as a proteinogenic amino acid. In addition, accumulating evidence suggests that glutamine metabolism is regulated by many factors, including tumor origin, oncogene/tumor suppressor status, epigenetic alternations and tumor microenvironment. However, despite the emerging understanding of why cancer cells depend on glutamine for growth and survival, the contribution of glutamine metabolism to tumor progression under physiological conditions is still under investigation, partially because the level of glutamine in the tumor environment is often found low. Since targeting glutamine acquisition and utilization has been proposed to be a new therapeutic strategy in cancer, it is central to understand how tumor cells respond and adapt to glutamine starvation for optimized therapeutic intervention. In this review, we first summarize the diverse usage of glutamine to support cancer cell growth and survival, and then focus our discussion on the influence of other nutrients on cancer cell adaptation to glutamine starvation as well as its implication in cancer therapy.
Collapse
Affiliation(s)
- Jie Jiang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Sankalp Srivastava
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| | - Ji Zhang
- Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
- Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
200
|
Chalishazar MD, Wait SJ, Huang F, Ireland AS, Mukhopadhyay A, Lee Y, Schuman SS, Guthrie MR, Berrett KC, Vahrenkamp JM, Hu Z, Kudla M, Modzelewska K, Wang G, Ingolia NT, Gertz J, Lum DH, Cosulich SC, Bomalaski JS, DeBerardinis RJ, Oliver TG. MYC-Driven Small-Cell Lung Cancer is Metabolically Distinct and Vulnerable to Arginine Depletion. Clin Cancer Res 2019; 25:5107-5121. [PMID: 31164374 DOI: 10.1158/1078-0432.ccr-18-4140] [Citation(s) in RCA: 125] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/30/2019] [Accepted: 05/30/2019] [Indexed: 01/12/2023]
Abstract
PURPOSE Small-cell lung cancer (SCLC) has been treated clinically as a homogeneous disease, but recent discoveries suggest that SCLC is heterogeneous. Whether metabolic differences exist among SCLC subtypes is largely unexplored. In this study, we aimed to determine whether metabolic vulnerabilities exist between SCLC subtypes that can be therapeutically exploited. EXPERIMENTAL DESIGN We performed steady state metabolomics on tumors isolated from distinct genetically engineered mouse models (GEMM) representing the MYC- and MYCL-driven subtypes of SCLC. Using genetic and pharmacologic approaches, we validated our findings in chemo-naïve and -resistant human SCLC cell lines, multiple GEMMs, four human cell line xenografts, and four newly derived PDX models. RESULTS We discover that SCLC subtypes driven by different MYC family members have distinct metabolic profiles. MYC-driven SCLC preferentially depends on arginine-regulated pathways including polyamine biosynthesis and mTOR pathway activation. Chemo-resistant SCLC cells exhibit increased MYC expression and similar metabolic liabilities as chemo-naïve MYC-driven cells. Arginine depletion with pegylated arginine deiminase (ADI-PEG 20) dramatically suppresses tumor growth and promotes survival of mice specifically with MYC-driven tumors, including in GEMMs, human cell line xenografts, and a patient-derived xenograft from a relapsed patient. Finally, ADI-PEG 20 is significantly more effective than the standard-of-care chemotherapy. CONCLUSIONS These data identify metabolic heterogeneity within SCLC and suggest arginine deprivation as a subtype-specific therapeutic vulnerability for MYC-driven SCLC.
Collapse
Affiliation(s)
- Milind D Chalishazar
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Sarah J Wait
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Fang Huang
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas.,Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Abbie S Ireland
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Anandaroop Mukhopadhyay
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Younjee Lee
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Sophia S Schuman
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Matthew R Guthrie
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Kristofer C Berrett
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Jeffery M Vahrenkamp
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Zeping Hu
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas.,School of Pharmaceutical Sciences, Tsinghua University, Beijing, China
| | - Marek Kudla
- Department of Molecular and Cell Biology, Center for RNA Systems Biology, University of California, Berkeley, California
| | - Katarzyna Modzelewska
- Preclinical Research Resource, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Guoying Wang
- Preclinical Research Resource, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, Center for RNA Systems Biology, University of California, Berkeley, California
| | - Jason Gertz
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - David H Lum
- Preclinical Research Resource, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah
| | - Sabina C Cosulich
- Bioscience Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, United Kingdom
| | | | - Ralph J DeBerardinis
- Children's Medical Center Research Institute, University of Texas Southwestern Medical Center, Dallas, Texas.,Department of Pediatrics and Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Trudy G Oliver
- Department of Oncological Sciences, University of Utah, Huntsman Cancer Institute, Salt Lake City, Utah.
| |
Collapse
|