151
|
Guo J, Yang T, Zhang W, Yu K, Xu X, Li W, Song L, Gu X, Cao R, Cui S. Inhibition of CD44 suppresses the formation of fibrotic scar after spinal cord injury via the JAK2/STAT3 signaling pathway. iScience 2024; 27:108935. [PMID: 38323002 PMCID: PMC10846335 DOI: 10.1016/j.isci.2024.108935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/17/2023] [Accepted: 01/12/2024] [Indexed: 02/08/2024] Open
Abstract
Fibrotic scar is one of the main impediments to axon regeneration following spinal cord injury (SCI). In this study, we found that CD44 was upregulated during the formation of fibrotic scar, and blocking CD44 by IM7 caused downregulation of fibrosis-related extracellular matrix proteins at both 2 and 12 weeks post-spinal cord injury. More Biotinylated dextran amine (BDA)-traced corticospinal tract axons crossed the scar area and extended into the distal region after IM7 administration. A recovery of motor and sensory function was observed based on Basso Mouse Scale (BMS) scores and tail-flick test. In vitro experiments revealed that inhibiting CD44 and JAK2/STAT3 signaling pathway decreased the proliferation, differentiation, and migration of fibroblasts induced by the inflammatory supernatant. Collectively, these findings highlight the critical role of CD44 and its downstream JAK2/STAT3 signaling pathway in fibrotic scar formation, suggesting a potential therapeutic target for SCI.
Collapse
Affiliation(s)
- Jin Guo
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Tuo Yang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Weizhong Zhang
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Kaiming Yu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Xiong Xu
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Weizhen Li
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Lili Song
- Department of Hand & Microsurgery, Peking University Shenzhen Hospital, Shenzhen 518036, China
| | - Xiaosong Gu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu 226001, China
| | - Rangjuan Cao
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| | - Shusen Cui
- Department of Hand and Foot Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin Province 130033, China
- Key Laboratory of Peripheral Nerve Injury and Regeneration of Jilin Province, Changchun, Jilin Province 130033, China
| |
Collapse
|
152
|
Huang Y, Liu R, Meng T, Zhang B, Ma J, Liu X. The TGFβ1/SMADs/Snail1 signaling axis mediates pericyte-derived fibrous scar formation after spinal cord injury. Int Immunopharmacol 2024; 128:111482. [PMID: 38237223 DOI: 10.1016/j.intimp.2023.111482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/20/2023] [Accepted: 12/31/2023] [Indexed: 02/08/2024]
Abstract
AIMS The deposition of fibrous scars after spinal cord injury (SCI) affects axon regeneration and the recovery of sensorimotor function. It has been reported that microvascular pericytes in the neurovascular unit are the main source of myofibroblasts after SCI, but the specific molecular targets that regulate pericyte participation in the formation of fibrous scars remain to be clarified. METHODS In this study, a rat model of spinal cord dorsal hemisection injury was used. After SCI, epigallocatechin gallate (EGCG) was intraperitoneally injected to block the TGFβ1 signaling pathway or LV-Snail1-shRNA was immediately injected near the core of the injury using a microsyringe to silence Snail1 expression. Western blotting and RT-qPCR were used to analyze protein expression and transcription levels in tissues. Nissl staining and immunofluorescence analysis were used to analyze neuronal cell viability, scar tissue, and axon regeneration after SCI. Finally, the recovery of hind limb function after SCI was evaluated. RESULTS The results showed that targeted inhibition of Snail1 could block TGFβ1-induced pericyte-myofibroblast differentiation in vitro. In vivo experiments showed that timely blockade of Snail1 could reduce fibrous scar deposition after SCI, promote axon regeneration, improve neuronal survival, and facilitate the recovery of lower limb motor function. CONCLUSION In summary, Snail1 promotes the deposition of fibrous scars and inhibits axonal regeneration after SCI by inducing the differentiation of pericytes into myofibroblasts. Snail1 may be a promising therapeutic target for SCI.
Collapse
Affiliation(s)
- Yan Huang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China
| | - Renzhong Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China
| | - Tingyang Meng
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China
| | - Bin Zhang
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China
| | - Jingxing Ma
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China.
| | - Xuqiang Liu
- Orthopedic Hospital, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang 330006, People 's Republic of China.
| |
Collapse
|
153
|
Miron RJ, Estrin NE, Sculean A, Zhang Y. Understanding exosomes: Part 2-Emerging leaders in regenerative medicine. Periodontol 2000 2024; 94:257-414. [PMID: 38591622 DOI: 10.1111/prd.12561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 02/16/2024] [Accepted: 02/21/2024] [Indexed: 04/10/2024]
Abstract
Exosomes are the smallest subset of extracellular signaling vesicles secreted by most cells with the ability to communicate with other tissues and cell types over long distances. Their use in regenerative medicine has gained tremendous momentum recently due to their ability to be utilized as therapeutic options for a wide array of diseases/conditions. Over 5000 publications are currently being published yearly on this topic, and this number is only expected to dramatically increase as novel therapeutic strategies continue to be developed. Today exosomes have been applied in numerous contexts including neurodegenerative disorders (Alzheimer's disease, central nervous system, depression, multiple sclerosis, Parkinson's disease, post-traumatic stress disorders, traumatic brain injury, peripheral nerve injury), damaged organs (heart, kidney, liver, stroke, myocardial infarctions, myocardial infarctions, ovaries), degenerative processes (atherosclerosis, diabetes, hematology disorders, musculoskeletal degeneration, osteoradionecrosis, respiratory disease), infectious diseases (COVID-19, hepatitis), regenerative procedures (antiaging, bone regeneration, cartilage/joint regeneration, osteoarthritis, cutaneous wounds, dental regeneration, dermatology/skin regeneration, erectile dysfunction, hair regrowth, intervertebral disc repair, spinal cord injury, vascular regeneration), and cancer therapy (breast, colorectal, gastric cancer and osteosarcomas), immune function (allergy, autoimmune disorders, immune regulation, inflammatory diseases, lupus, rheumatoid arthritis). This scoping review is a first of its kind aimed at summarizing the extensive regenerative potential of exosomes over a broad range of diseases and disorders.
Collapse
Affiliation(s)
- Richard J Miron
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Nathan E Estrin
- Advanced PRF Education, Venice, Florida, USA
- School of Dental Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, Florida, USA
| | - Anton Sculean
- Department of Periodontology, University of Bern, Bern, Switzerland
| | - Yufeng Zhang
- Department of Oral Implantology, University of Wuhan, Wuhan, China
| |
Collapse
|
154
|
Liu S, Liu B, Li Q, Zheng T, Liu B, Li M, Chen Z. Transplantation of fibrin-thrombin encapsulated human induced neural stem cells promotes functional recovery of spinal cord injury rats through modulation of the microenvironment. Neural Regen Res 2024; 19:440-446. [PMID: 37488909 PMCID: PMC10503599 DOI: 10.4103/1673-5374.379049] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/02/2023] [Accepted: 05/29/2023] [Indexed: 07/26/2023] Open
Abstract
Recent studies have mostly focused on engraftment of cells at the lesioned spinal cord, with the expectation that differentiated neurons facilitate recovery. Only a few studies have attempted to use transplanted cells and/or biomaterials as major modulators of the spinal cord injury microenvironment. Here, we aimed to investigate the role of microenvironment modulation by cell graft on functional recovery after spinal cord injury. Induced neural stem cells reprogrammed from human peripheral blood mononuclear cells, and/or thrombin plus fibrinogen, were transplanted into the lesion site of an immunosuppressed rat spinal cord injury model. Basso, Beattie and Bresnahan score, electrophysiological function, and immunofluorescence/histological analyses showed that transplantation facilitates motor and electrophysiological function, reduces lesion volume, and promotes axonal neurofilament expression at the lesion core. Examination of the graft and niche components revealed that although the graft only survived for a relatively short period (up to 15 days), it still had a crucial impact on the microenvironment. Altogether, induced neural stem cells and human fibrin reduced the number of infiltrated immune cells, biased microglia towards a regenerative M2 phenotype, and changed the cytokine expression profile at the lesion site. Graft-induced changes of the microenvironment during the acute and subacute stages might have disrupted the inflammatory cascade chain reactions, which may have exerted a long-term impact on the functional recovery of spinal cord injury rats.
Collapse
Affiliation(s)
- Sumei Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Baoguo Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Qian Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Bochao Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Mo Li
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
155
|
Nelson DW, Funnell JL, Cheung CH, Quinones GB, Mendoza CS, Bentley M, Gilbert RJ. In vitro assessment of protamine toxicity with neural cells, its therapeutic potential to counter chondroitin sulfate mediated neuron inhibition, and its effects on reactive astrocytes. ADVANCED THERAPEUTICS 2024; 7:2300242. [PMID: 39071184 PMCID: PMC11281232 DOI: 10.1002/adtp.202300242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Indexed: 07/30/2024]
Abstract
Multiple therapies have been studied to ameliorate the neuroinhibitory cues present after traumatic injury to the central nervous system. Two previous in vitro studies have demonstrated the efficacy of the FDA-approved cardiovascular therapeutic, protamine (PRM), to overcome neuroinhibitory cues presented by chondroitin sulfates; however, the effect of a wide range of PRM concentrations on neuronal and glial cells has not been evaluated. In this study, we investigate the therapeutic efficacy of PRM with primary cortical neurons, hippocampal neurons, mixed glial cultures, and astrocyte cultures. We show the threshold for PRM toxicity to be at or above 10 μg/ml depending on the cell population, that 10 μg/ml PRM enables neurons to overcome the inhibitory cues presented by chondroitin sulfate type A, and that soluble PRM allows neurons to more effectively overcome inhibition compared to a PRM coating. We also assessed changes in gene expression of reactive astrocytes with soluble PRM and determined that PRM does not increase their neurotoxic phenotype and that PRM may reduce brevican production and serpin transcription in cortical and spinal cord astrocytes. This is the first study to thoroughly assess the toxicity threshold of PRM with neural cells and study astrocyte response after acute exposure to PRM in vitro.
Collapse
Affiliation(s)
- Derek W Nelson
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Jessica L Funnell
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Conrad H Cheung
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Geraldine B Quinones
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Christina S Mendoza
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Marvin Bentley
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biological Sciences, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States
| | - Ryan J Gilbert
- Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 1623 15 St. Troy, New York 12180, United States; Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, 110 8th St. Troy, NY, 12180, United States; Albany Stratton Veteran Affairs Medical Center, 113 Holland Ave. Albany, New York 12208, United States
| |
Collapse
|
156
|
Mahmoudi N, Mohamed E, Dehnavi SS, Aguilar LMC, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Calming the Nerves via the Immune Instructive Physiochemical Properties of Self-Assembling Peptide Hydrogels. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303707. [PMID: 38030559 PMCID: PMC10837390 DOI: 10.1002/advs.202303707] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/22/2023] [Indexed: 12/01/2023]
Abstract
Current therapies for the devastating damage caused by traumatic brain injuries (TBI) are limited. This is in part due to poor drug efficacy to modulate neuroinflammation, angiogenesis and/or promoting neuroprotection and is the combined result of challenges in getting drugs across the blood brain barrier, in a targeted approach. The negative impact of the injured extracellular matrix (ECM) has been identified as a factor in restricting post-injury plasticity of residual neurons and is shown to reduce the functional integration of grafted cells. Therefore, new strategies are needed to manipulate the extracellular environment at the subacute phase to enhance brain regeneration. In this review, potential strategies are to be discussed for the treatment of TBI by using self-assembling peptide (SAP) hydrogels, fabricated via the rational design of supramolecular peptide scaffolds, as an artificial ECM which under the appropriate conditions yields a supramolecular hydrogel. Sequence selection of the peptides allows the tuning of these hydrogels' physical and biochemical properties such as charge, hydrophobicity, cell adhesiveness, stiffness, factor presentation, degradation profile and responsiveness to (external) stimuli. This review aims to facilitate the development of more intelligent biomaterials in the future to satisfy the parameters, requirements, and opportunities for the effective treatment of TBI.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Elmira Mohamed
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
| | - Shiva Soltani Dehnavi
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- ANU College of Engineering & Computer ScienceAustralian National UniversityCanberraACT2601Australia
| | - Lilith M. Caballero Aguilar
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
| | - Alan R. Harvey
- School of Human SciencesThe University of Western Australiaand Perron Institute for Neurological and Translational SciencePerthWA6009Australia
| | - Clare L. Parish
- The Florey Institute of Neuroscience and Mental HealthThe University of MelbourneParkvilleMelbourneVIC3010Australia
| | | | - David R. Nisbet
- Laboratory of Advanced Biomaterialsthe John Curtin School of Medical ResearchAustralian National UniversityCanberraACT2601Australia
- The Graeme Clark InstituteThe University of MelbourneMelbourneVIC3010Australia
- Department of Biomedical EngineeringFaculty of Engineering and Information TechnologyThe University of MelbourneMelbourneVIC3010Australia
- Melbourne Medical SchoolFaculty of MedicineDentistry and Health ScienceThe University of MelbourneMelbourneVIC3010Australia
| |
Collapse
|
157
|
Yang R, Zhang Y, Kang J, Zhang C, Ning B. Chondroitin Sulfate Proteoglycans Revisited: Its Mechanism of Generation and Action for Spinal Cord Injury. Aging Dis 2024; 15:153-168. [PMID: 37307832 PMCID: PMC10796098 DOI: 10.14336/ad.2023.0512] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/12/2023] [Indexed: 06/14/2023] Open
Abstract
Reactive astrocytes (RAs) produce chondroitin sulfate proteoglycans (CSPGs) in large quantities after spinal cord injury (SCI) and inhibit axon regeneration through the Rho-associated protein kinase (ROCK) pathway. However, the mechanism of producing CSPGs by RAs and their roles in other aspects are often overlooked. In recent years, novel generation mechanisms and functions of CSPGs have gradually emerged. Extracellular traps (ETs), a new recently discovered phenomenon in SCI, can promote secondary injury. ETs are released by neutrophils and microglia, which activate astrocytes to produce CSPGs after SCI. CSPGs inhibit axon regeneration and play an important role in regulating inflammation as well as cell migration and differentiation; some of these regulations are beneficial. The current review summarized the process of ET-activated RAs to generate CSPGs at the cellular signaling pathway level. Moreover, the roles of CSPGs in inhibiting axon regeneration, regulating inflammation, and regulating cell migration and differentiation were discussed. Finally, based on the above process, novel potential therapeutic targets were proposed to eliminate the adverse effects of CSPGs.
Collapse
Affiliation(s)
- Rui Yang
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
| | - Ying Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jianning Kang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Ce Zhang
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Bin Ning
- Jinan Central Hospital, Shandong University, Jinan, Shandong, China.
- Central Hospital Affiliated to Shandong First Medical University, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
158
|
Cameron EG, Nahmou M, Toth AB, Heo L, Tanasa B, Dalal R, Yan W, Nallagatla P, Xia X, Hay S, Knasel C, Stiles TL, Douglas C, Atkins M, Sun C, Ashouri M, Bian M, Chang KC, Russano K, Shah S, Woodworth MB, Galvao J, Nair RV, Kapiloff MS, Goldberg JL. A molecular switch for neuroprotective astrocyte reactivity. Nature 2024; 626:574-582. [PMID: 38086421 PMCID: PMC11384621 DOI: 10.1038/s41586-023-06935-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/05/2023] [Indexed: 01/27/2024]
Abstract
The intrinsic mechanisms that regulate neurotoxic versus neuroprotective astrocyte phenotypes and their effects on central nervous system degeneration and repair remain poorly understood. Here we show that injured white matter astrocytes differentiate into two distinct C3-positive and C3-negative reactive populations, previously simplified as neurotoxic (A1) and neuroprotective (A2)1,2, which can be further subdivided into unique subpopulations defined by proliferation and differential gene expression signatures. We find the balance of neurotoxic versus neuroprotective astrocytes is regulated by discrete pools of compartmented cyclic adenosine monophosphate derived from soluble adenylyl cyclase and show that proliferating neuroprotective astrocytes inhibit microglial activation and downstream neurotoxic astrocyte differentiation to promote retinal ganglion cell survival. Finally, we report a new, therapeutically tractable viral vector to specifically target optic nerve head astrocytes and show that raising nuclear or depleting cytoplasmic cyclic AMP in reactive astrocytes inhibits deleterious microglial or macrophage cell activation and promotes retinal ganglion cell survival after optic nerve injury. Thus, soluble adenylyl cyclase and compartmented, nuclear- and cytoplasmic-localized cyclic adenosine monophosphate in reactive astrocytes act as a molecular switch for neuroprotective astrocyte reactivity that can be targeted to inhibit microglial activation and neurotoxic astrocyte differentiation to therapeutic effect. These data expand on and define new reactive astrocyte subtypes and represent a step towards the development of gliotherapeutics for the treatment of glaucoma and other optic neuropathies.
Collapse
Affiliation(s)
- Evan G Cameron
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Michael Nahmou
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Anna B Toth
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Lyong Heo
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Bogdan Tanasa
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Roopa Dalal
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Wenjun Yan
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Pratima Nallagatla
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Xin Xia
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sarah Hay
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Cara Knasel
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | | | | | - Melissa Atkins
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Catalina Sun
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Masoumeh Ashouri
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Minjuan Bian
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kun-Che Chang
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Kristina Russano
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Sahil Shah
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- University of California, San Diego, La Jolla, CA, USA
| | - Mollie B Woodworth
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Joana Galvao
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Ramesh V Nair
- Stanford Center for Genomics and Personalized Medicine, Stanford University, Palo Alto, CA, USA
| | - Michael S Kapiloff
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA
- Department of Medicine and Stanford Cardiovascular Institute, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jeffrey L Goldberg
- Mary M. and Sash A. Spencer Center for Vision Research, Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| |
Collapse
|
159
|
Kijima C, Inaba T, Hira K, Miyamoto N, Yamashiro K, Urabe T, Hattori N, Ueno Y. Astrocytic Extracellular Vesicles Regulated by Microglial Inflammatory Responses Improve Stroke Recovery. Mol Neurobiol 2024; 61:1002-1021. [PMID: 37676390 PMCID: PMC10861643 DOI: 10.1007/s12035-023-03629-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/30/2023] [Indexed: 09/08/2023]
Abstract
There are no effective treatments for post-stroke glial scar formation, which inhibits axonal outgrowth and functional recovery after stroke. We investigated whether astrocytic extracellular vesicles (AEVs) regulated by microglia modulate glial scars and improve stroke recovery. We found that peri-infarct glial scars comprised reactive astrocytes with proliferating C3d and decreased S100A10 expression in chronic stroke. In cultured astrocytes, microglia-conditioned media and treatment with P2Y1 receptor antagonists increased and reduced the area of S100A10- and C3d-expressing reactive astrocytes, respectively, by suppressing mitogen-activated protein kinase/nuclear factor-κβ (NF-κB)/tumor necrosis factor-α (TNF-α)/interleukin-1β signaling after oxygen-glucose deprivation. Intracerebral administrations of AEVs enriched miR-146a-5p, downregulated NF-κB, and suppressed TNF-α expressions, by transforming reactive astrocytes to those with S100A10 preponderance, causing functional recovery in rats subjected to middle cerebral artery occlusion. Modulating neuroinflammation in post-stroke glial scars could permit axonal outgrowth, thus providing a basis for stroke recovery with neuroprotective AEVs.
Collapse
Affiliation(s)
- Chikage Kijima
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Toshiki Inaba
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kenichiro Hira
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Nobukazu Miyamoto
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
| | - Kazuo Yamashiro
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Takao Urabe
- Department of Neurology, Juntendo University Urayasu Hospital, Chiba, Japan
| | - Nobutaka Hattori
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuji Ueno
- Department of Neurology, Juntendo University Faculty of Medicine, Tokyo, Japan.
| |
Collapse
|
160
|
Huang L, Yi L, Huang H, Zhan S, Chen R, Yue Z. Corticospinal tract: a new hope for the treatment of post-stroke spasticity. Acta Neurol Belg 2024; 124:25-36. [PMID: 37704780 PMCID: PMC10874326 DOI: 10.1007/s13760-023-02377-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023]
Abstract
Stroke is the third leading cause of death and disability worldwide. Post-stroke spasticity (PSS) is the most common complication of stroke but represents only one of the many manifestations of upper motor neuron syndrome. As an upper motor neuron, the corticospinal tract (CST) is the only direct descending motor pathway that innervates the spinal motor neurons and is closely related to the recovery of limb function in patients with PSS. Therefore, promoting axonal remodeling in the CST may help identify new therapeutic strategies for PSS. In this review, we outline the pathological mechanisms of PSS, specifically their relationship with CST, and therapeutic strategies for axonal regeneration of the CST after stroke. We found it to be closely associated with astroglial scarring produced by astrocyte activation and its secretion of neurotrophic factors, mainly after the onset of cerebral ischemia. We hope that this review offers insight into the relationship between CST and PSS and provides a basis for further studies.
Collapse
Affiliation(s)
- Linxing Huang
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lizhen Yi
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Huiyuan Huang
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Sheng Zhan
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Ruixue Chen
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Zenghui Yue
- College of Acupuncture, Massage and Rehabilitation, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
161
|
Mahmoudi N, Wang Y, Moriarty N, Ahmed NY, Dehorter N, Lisowski L, Harvey AR, Parish CL, Williams RJ, Nisbet DR. Neuronal Replenishment via Hydrogel-Rationed Delivery of Reprogramming Factors. ACS NANO 2024; 18:3597-3613. [PMID: 38221746 DOI: 10.1021/acsnano.3c11337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The central nervous system's limited capacity for regeneration often leads to permanent neuronal loss following injury. Reprogramming resident reactive astrocytes into induced neurons at the site of injury is a promising strategy for neural repair, but challenges persist in stabilizing and accurately targeting viral vectors for transgene expression. In this study, we employed a bioinspired self-assembling peptide (SAP) hydrogel for the precise and controlled release of a hybrid adeno-associated virus (AAV) vector, AAVDJ, carrying the NeuroD1 neural reprogramming transgene. This method effectively mitigates the issues of high viral dosage at the target site, off-target delivery, and immunogenic reactions, enhancing the vector's targeting and reprogramming efficiency. In vitro, this vector successfully induced neuron formation, as confirmed by morphological, histochemical, and electrophysiological analyses. In vivo, SAP-mediated delivery of AAVDJ-NeuroD1 facilitated the trans-differentiation of reactive host astrocytes into induced neurons, concurrently reducing glial scarring. Our findings introduce a safe and effective method for treating central nervous system injuries, marking a significant advancement in regenerative neuroscience.
Collapse
Affiliation(s)
- Negar Mahmoudi
- Laboratory of Advanced Biomaterials, the John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- ANU College of Engineering & Computer Science, Acton, ACT 2601, Australia
| | - Yi Wang
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Niamh Moriarty
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Noorya Y Ahmed
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Nathalie Dehorter
- The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 2601, Australia
- The Queensland Brain Institute, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Leszek Lisowski
- Translational Vectorology Research Unit, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Vector and Genome Engineering Facility, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW 2145, Australia
- Australian Genome Therapeutics Centre, Children's Medical Research Institute and Sydney Children's Hospitals Network, Westmead, NSW 2145, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, 04-141 Warsaw, Poland
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, and Perron Institute for Neurological and Translational Science, Perth, WA 6009, Australia
| | - Clare L Parish
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Melbourne, VIC 3010, Australia
| | - Richard J Williams
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- IMPACT, School of Medicine, Deakin University, Geelong, VIC 3217, Australia
| | - David R Nisbet
- Laboratory of Advanced Biomaterials, the John Curtin School of Medical Research, Australian National University, Canberra, ACT 2601, Australia
- The Graeme Clark Institute, The University of Melbourne, Melbourne, VIC 3010, Australia
- Department of Biomedical Engineering, Faculty of Engineering and Information Technology, The University of Melbourne, Melbourne, VIC 3010, Australia
- Melbourne Medical School, Faculty of Medicine, Dentistry and Health Science, The University of Melbourne, Melbourne, VIC 3010, Australia
| |
Collapse
|
162
|
Zhang C, Li Y, Yu Y, Li Z, Xu X, Talifu Z, Liu W, Yang D, Gao F, Wei S, Zhang L, Gong H, Peng R, Du L, Li J. Impact of inflammation and Treg cell regulation on neuropathic pain in spinal cord injury: mechanisms and therapeutic prospects. Front Immunol 2024; 15:1334828. [PMID: 38348031 PMCID: PMC10859493 DOI: 10.3389/fimmu.2024.1334828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/03/2024] [Indexed: 02/15/2024] Open
Abstract
Spinal cord injury is a severe neurological trauma that can frequently lead to neuropathic pain. During the initial stages following spinal cord injury, inflammation plays a critical role; however, excessive inflammation can exacerbate pain. Regulatory T cells (Treg cells) have a crucial function in regulating inflammation and alleviating neuropathic pain. Treg cells release suppressor cytokines and modulate the function of other immune cells to suppress the inflammatory response. Simultaneously, inflammation impedes Treg cell activity, further intensifying neuropathic pain. Therefore, suppressing the inflammatory response while enhancing Treg cell regulatory function may provide novel therapeutic avenues for treating neuropathic pain resulting from spinal cord injury. This review comprehensively describes the mechanisms underlying the inflammatory response and Treg cell regulation subsequent to spinal cord injury, with a specific focus on exploring the potential mechanisms through which Treg cells regulate neuropathic pain following spinal cord injury. The insights gained from this review aim to provide new concepts and a rationale for the therapeutic prospects and direction of cell therapy in spinal cord injury-related conditions.
Collapse
Affiliation(s)
- Chunjia Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Yan Li
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Yan Yu
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
| | - Zehui Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Xin Xu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Zuliyaer Talifu
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, China
| | - Wubo Liu
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Degang Yang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Feng Gao
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Song Wei
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liang Zhang
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Han Gong
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Run Peng
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Liangjie Du
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
| | - Jianjun Li
- School of Rehabilitation, Capital Medical University, Beijing, China
- Department of Spinal and Neural Functional Reconstruction, China Rehabilitation Research Center, Beijing, China
- Institute of Rehabilitation medicine, China Rehabilitation Research Center, Beijing, China
- Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
163
|
De Lima S, Mietto BS, Ribas VT, Ribeiro-Resende VT, Oliveira ALR, Park KK. Editorial: Promoting nervous system regeneration by treatments targeting neuron-glia interactions. Front Cell Neurosci 2024; 17:1355469. [PMID: 38273976 PMCID: PMC10808721 DOI: 10.3389/fncel.2023.1355469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Affiliation(s)
- Silmara De Lima
- Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA, United States
- Department of Neurology, Boston Children's Hospital, Harvard Medical School, Boston, MA, United States
| | - Bruno Siqueira Mietto
- Department of Biology, Institute of Biomedical Science, Juiz de Fora Federal University, Juiz de Fora, Minas Gerais, Brazil
| | - Vinicius Toledo Ribas
- Morphology Department, Institute of Biomedical Science, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | | | - Kevin K. Park
- Department of Ophthalmology and Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
164
|
Shinozaki Y, Namekata K, Guo X, Harada T. Glial cells as a promising therapeutic target of glaucoma: beyond the IOP. FRONTIERS IN OPHTHALMOLOGY 2024; 3:1310226. [PMID: 38983026 PMCID: PMC11182302 DOI: 10.3389/fopht.2023.1310226] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 07/11/2024]
Abstract
Glial cells, a type of non-neuronal cell found in the central nervous system (CNS), play a critical role in maintaining homeostasis and regulating CNS functions. Recent advancements in technology have paved the way for new therapeutic strategies in the fight against glaucoma. While intraocular pressure (IOP) is the most well-known modifiable risk factor, a significant number of glaucoma patients have normal IOP levels. Because glaucoma is a complex, multifactorial disease influenced by various factors that contribute to its onset and progression, it is imperative that we consider factors beyond IOP to effectively prevent or slow down the disease's advancement. In the realm of CNS neurodegenerative diseases, glial cells have emerged as key players due to their pivotal roles in initiating and hastening disease progression. The inhibition of dysregulated glial function holds the potential to protect neurons and restore brain function. Consequently, glial cells represent an enticing therapeutic candidate for glaucoma, even though the majority of glaucoma research has historically concentrated solely on retinal ganglion cells (RGCs). In addition to the neuroprotection of RGCs, the proper regulation of glial cell function can also facilitate structural and functional recovery in the retina. In this review, we offer an overview of recent advancements in understanding the non-cell-autonomous mechanisms underlying the pathogenesis of glaucoma. Furthermore, state-of-the-art technologies have opened up possibilities for regenerating the optic nerve, which was previously believed to be incapable of regeneration. We will also delve into the potential roles of glial cells in the regeneration of the optic nerve and the restoration of visual function.
Collapse
Affiliation(s)
- Youichi Shinozaki
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Kazuhiko Namekata
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Xiaoli Guo
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Takayuki Harada
- Visual Research Project, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
165
|
Schneider Y, Gauer C, Andert M, Hoffmann A, Riemenschneider MJ, Krebs W, Chalmers N, Lötzsch C, Naumann UJ, Xiang W, Rothhammer V, Beckervordersandforth R, Schlachetzki JCM, Winkler J. Distinct forebrain regions define a dichotomous astrocytic profile in multiple system atrophy. Acta Neuropathol Commun 2024; 12:1. [PMID: 38167307 PMCID: PMC10759635 DOI: 10.1186/s40478-023-01699-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 01/05/2024] Open
Abstract
The growing recognition of a dichotomous role of astrocytes in neurodegenerative processes has heightened the need for unraveling distinct astrocytic subtypes in neurological disorders. In multiple system atrophy (MSA), a rare, rapidly progressing atypical Parkinsonian disease characterized by increased astrocyte reactivity. However the specific contribution of astrocyte subtypes to neuropathology remains elusive. Hence, we first set out to profile glial fibrillary acidic protein levels in astrocytes across the human post mortem motor cortex, putamen, and substantia nigra of MSA patients and observed an overall profound astrocytic response. Matching the post mortem human findings, a similar astrocytic phenotype was present in a transgenic MSA mouse model. Notably, MSA mice exhibited a decreased expression of the glutamate transporter 1 and glutamate aspartate transporter in the basal ganglia, but not the motor cortex. We developed an optimized astrocyte isolation protocol based on magnetic-activated cell sorting via ATPase Na+/K+ transporting subunit beta 2 and profiled the transcriptomic landscape of striatal and cortical astrocytes in transgenic MSA mice. The gene expression profile of astrocytes in the motor cortex displayed an anti-inflammatory signature with increased oligodendroglial and pro-myelinogenic expression pattern. In contrast, striatal astrocytes were defined by elevated pro-inflammatory transcripts accompanied by dysregulated genes involved in homeostatic functions for lipid and calcium metabolism. These findings provide new insights into a region-dependent, dichotomous astrocytic response-potentially beneficial in the cortex and harmful in the striatum-in MSA suggesting a differential role of astrocytes in MSA-related neurodegenerative processes.
Collapse
Affiliation(s)
- Y Schneider
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - C Gauer
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - M Andert
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - A Hoffmann
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
- UK Dementia Research Institute, The University of Edinburgh, Edinburgh, UK
- Keenan Research Centre for Biomedical Science, St Michael's Hospital, Toronto, ON, Canada
- Department of Immunology, The University of Toronto, Toronto, ON, Canada
| | - M J Riemenschneider
- Department of Neuropathology, Regensburg University Hospital, 93053, Regensburg, Germany
| | - W Krebs
- Core Unit Bioinformatics, Data Integration and Analysis (CUBiDA), University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - N Chalmers
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - C Lötzsch
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - U J Naumann
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - W Xiang
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany
| | - V Rothhammer
- Department of Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - R Beckervordersandforth
- Institute of Biochemistry, Friedrich-Alexander-University Erlangen-Nürnberg, 91054, Erlangen, Germany
| | - J C M Schlachetzki
- Department of Cellular and Molecular Medicine, University of California-San Diego, La Jolla, CA, 92093, USA
| | - J Winkler
- Department of Molecular Neurology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, Schwabachanlage 6, 91054, Erlangen, Germany.
| |
Collapse
|
166
|
Yu T, Yang LL, Zhou Y, Wu MF, Jiao JH. Exosome-mediated repair of spinal cord injury: a promising therapeutic strategy. Stem Cell Res Ther 2024; 15:6. [PMID: 38167108 PMCID: PMC10763489 DOI: 10.1186/s13287-023-03614-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024] Open
Abstract
Spinal cord injury (SCI) is a catastrophic injury to the central nervous system (CNS) that can lead to sensory and motor dysfunction, which seriously affects patients' quality of life and imposes a major economic burden on society. The pathological process of SCI is divided into primary and secondary injury, and secondary injury is a cascade of amplified responses triggered by the primary injury. Due to the complexity of the pathological mechanisms of SCI, there is no clear and effective treatment strategy in clinical practice. Exosomes, which are extracellular vesicles of endoplasmic origin with a diameter of 30-150 nm, play a critical role in intercellular communication and have become an ideal vehicle for drug delivery. A growing body of evidence suggests that exosomes have great potential for repairing SCI. In this review, we introduce exosome preparation, functions, and administration routes. In addition, we summarize the effect and mechanism by which various exosomes repair SCI and review the efficacy of exosomes in combination with other strategies to repair SCI. Finally, the challenges and prospects of the use of exosomes to repair SCI are described.
Collapse
Affiliation(s)
- Tong Yu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Li-Li Yang
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Ying Zhou
- Department of Operating Room, The Third Hospital of Qinhuangdao, Qinhuangdao, 066000, Hebei Province, China
| | - Min-Fei Wu
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China
| | - Jian-Hang Jiao
- Department of Orthopedic, The Second Norman Bethune Hospital of Jilin University, Changchun, 130000, Jilin Province, China.
| |
Collapse
|
167
|
Qin B, Hu XM, Huang YX, Yang RH, Xiong K. A New Paradigm in Spinal Cord Injury Therapy: from Cell-free Treatment to Engineering Modifications. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:656-673. [PMID: 37076458 DOI: 10.2174/1871527322666230418090857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 01/20/2023] [Accepted: 02/06/2023] [Indexed: 04/21/2023]
Abstract
Spinal cord injury (SCI) is an intractable and poorly prognostic neurological disease, and current treatments are still unable to cure it completely and avoid sequelae. Extracellular vesicles (EVs), as important carriers of intercellular communication and pharmacological effects, are considered to be the most promising candidates for SCI therapy because of their low toxicity and immunogenicity, their ability to encapsulate endogenous bioactive molecules (e.g., proteins, lipids, and nucleic acids), and their ability to cross the blood-brain/cerebrospinal barriers. However, poor targeting, low retention rate, and limited therapeutic efficacy of natural EVs have bottlenecked EVs-based SCI therapy. A new paradigm for SCI treatment will be provided by engineering modified EVs. Furthermore, our limited understanding of the role of EVs in SCI pathology hinders the rational design of novel EVbased therapeutic approaches. In this study, we review the pathophysiology after SCI, especially the multicellular EVs-mediated crosstalk; briefly describe the shift from cellular to cell-free therapies for SCI treatment; discuss and analyze the issues related to the route and dose of EVs administration; summarize and present the common strategies for EVs drug loading in the treatment of SCI and point out the shortcomings of these drug loading methods; finally, we analyze and highlight the feasibility and advantages of bio-scaffold-encapsulated EVs for SCI treatment, providing scalable insights into cell-free therapy for SCI.
Collapse
Affiliation(s)
- Bo Qin
- Hubei Key Laboratory for Kidney Disease Pathogenesis and Intervention, Hubei Polytechnic University School of Medicine, Huangshi, 435003, China
| | - Xi-Min Hu
- Clinical Medicine Eight-year Program, 02 Class, 17 Grade, Xiangya School of Medicine, Central South University, Changsha, 410013, China
| | - Yan-Xia Huang
- Health Management Center, the Third Xiangya Hospital, Central South University, Changsha, 410013, China
| | - Rong-Hua Yang
- Department of Burn and Plastic Surgery, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Kun Xiong
- Department of Anatomy and Neurobiology, School of Basic Medical Science, Central South University, Changsha, 410013, China
- Hunan Key Laboratory of Ophthalmology, Changsha, 410008, China
- Key Laboratory of Emergency and Trauma, Ministry of Education, College of Emergency and Trauma, Hainan Medical University, Haikou, 571199, China
| |
Collapse
|
168
|
Yari D, Saberi A, Salmasi Z, Ghoreishi SA, Etemad L, Movaffagh J, Ganjeifar B. Recent Advances in the Treatment of Spinal Cord Injury. THE ARCHIVES OF BONE AND JOINT SURGERY 2024; 12:380-399. [PMID: 38919744 PMCID: PMC11195032 DOI: 10.22038/abjs.2023.73944.3424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 10/07/2023] [Indexed: 06/27/2024]
Abstract
Spinal cord injury (SCI) is a complex, multifaceted, progressive, and yet incurable complication that can cause irreversible damage to the individual, family, and society. In recent years strategies for the management and rehabilitation of SCI besides axonal regeneration, remyelination, and neuronal plasticity of the injured spinal cord have significantly improved. Although most of the current research and therapeutic advances have been made in animal models, so far, no specific and complete treatment has been reported for SCI in humans. The failure to treat this complication has been due to the inherent neurological complexity and the structural, cellular, molecular, and biochemical characteristics of spinal cord injury. In this review, in addition to elucidating the causes of spinal cord injury from a molecular and pathophysiological perspective, the complexity and drawbacks of neural regeneration that lead to the failure in SCI treatment are described. Also, recent advances and cutting-edge strategies in most areas of SCI treatment are presented.
Collapse
Affiliation(s)
- Davood Yari
- Department of Clinical Biochemistry, Babol University of Medical Sciences, Babol, Iran
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Saberi
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Salmasi
- Nanotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Alireza Ghoreishi
- Orthopedic Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Orthopedic Surgery, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Leila Etemad
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Jebrail Movaffagh
- Department of Pharmaceutics, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Targeted Drug Delivery Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Babak Ganjeifar
- Department of Neurosurgery, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
169
|
Mu C, Gao M, Xu W, Sun X, Chen T, Xu H, Qiu H. Mechanisms of microRNA-132 in central neurodegenerative diseases: A comprehensive review. Biomed Pharmacother 2024; 170:116029. [PMID: 38128185 DOI: 10.1016/j.biopha.2023.116029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023] Open
Abstract
MicroRNA-132 (miR-132) is a highly conserved molecule that plays a crucial regulatory role in central nervous system (CNS) disorders. The expression levels of miR-132 exhibit variability in various neurological disorders and have been closely linked to disease onset and progression. The expression level of miR-132 in the CNS is regulated by a diverse range of stimuli and signaling pathways, including neuronal migration and integration, dendritic outgrowth, and complexity, synaptogenesis, synaptic plasticity, as well as inflammation and apoptosis activation. The aberrant expression of miR-132 in various central neurodegenerative diseases has garnered widespread attention. Clinical studies have revealed altered miR-132 expression levels in both chronic and acute CNS diseases, positioning miR-132 as a potential biomarker or therapeutic target. An in-depth exploration of miR-132 holds the promise of enhancing our understanding of the mechanisms underlying CNS diseases, thereby offering novel insights and strategies for disease diagnosis and treatment. It is anticipated that this review will assist researchers in recognizing the potential value of miR-132 and in generating innovative ideas for clinical trials related to CNS degenerative diseases.
Collapse
Affiliation(s)
- Chenxi Mu
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Meng Gao
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Weijing Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China; School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China
| | - Xun Sun
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Tianhao Chen
- Basic Medical College, Jiamusi University, Jiamusi 154007, Heilongjiang, China; Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, Jiamusi 154007, Heilongjiang, China.
| | - Hongbin Qiu
- School of Public Health, Jiamusi University, Jiamusi 154007, Heilongjiang, China.
| |
Collapse
|
170
|
Zhao Q, Jiang C, Zhao L, Dai X, Yi S. Unleashing Axonal Regeneration Capacities: Neuronal and Non-neuronal Changes After Injuries to Dorsal Root Ganglion Neuron Central and Peripheral Axonal Branches. Mol Neurobiol 2024; 61:423-433. [PMID: 37620687 DOI: 10.1007/s12035-023-03590-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/16/2023] [Indexed: 08/26/2023]
Abstract
Peripheral nerves obtain remarkable regenerative capacity while central nerves can hardly regenerate following nerve injury. Sensory neurons in the dorsal root ganglion (DRG) are widely used to decipher the dissimilarity between central and peripheral axonal regeneration as axons of DRG neurons bifurcate into the regeneration-incompetent central projections and the regeneration-competent peripheral projections. A conditioning peripheral branch injury facilitates central axonal regeneration and enables the growth and elongation of central axons. Peripheral axonal injury stimulates neuronal calcium influx, alters the start-point chromatin states, increases chromatin accessibility, upregulates the expressions of regeneration-promoting genes and the synthesis of proteins, and supports axonal regeneration. Following central axonal injury, the responses of DRG neurons are modest, resulting in poor intrinsic growth ability. Some non-neuronal cells in DRGs, for instance satellite glial cells, also exhibit diminished injury responses to central axon injury as compared with peripheral axon injury. Moreover, DRG central and peripheral axonal branches are respectively surrounded by inhibitory glial scars generated by central glial cells and a permissive microenvironment generated by Schwann cells and macrophages. The aim of this review is to look at changes of DRG neurons and non-neuronal cells after peripheral and central axon injuries and summarize the contributing roles of both neuronal intrinsic regenerative capacities and surrounding microenvironments in axonal regeneration.
Collapse
Affiliation(s)
- Qian Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Chunyi Jiang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
- Department of Pathology, Nantong University Affiliated Hospital, Nantong, Jiangsu, China
| | - Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Xiu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
171
|
Chen JL, Li N, Xu M, Wang L, Sun J, Li Liu, Wang YF, Zhang BL, Suo HY, Wang TH, Wang F. Implantation of human urine stem cells promotes neural repair in spinal cord injury rats associated cadeharin-1 and integrin subunit beta 1 expression. J Gene Med 2024; 26:e3615. [PMID: 38123364 DOI: 10.1002/jgm.3615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/19/2023] [Accepted: 09/26/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND The aim of this study was to determine the effect of human urine-derived stem cells (HUSCs) for the treatment of spinal cord injury (SCI) and investigate associated the molecular network mechanism by using bioinformatics combined with experimental validation. METHODS After the contusive SCI model was established, the HUSC-expressed specific antigen marker was implanted into the injury site immediately, and the Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) was utilized to evaluate motor function so as to determine the effect of HUSCs for the neural repair after SCI. Then, the geneCards database was used to collect related gene targets for both HUSCs and SCI, and cross genes were merged with the findings of PubMed screen. Subsequently, protein-protein interaction (PPI) network, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment, as well as core network construction, were performed using Cytoscape software. Lastly, real-time quantitative polymerase chain reaction (PCR) and immunofluorescence were employed to validate the mRNA expression and localization of 10 hub genes, and two of the most important, designated as cadherin 1 (CDH1) and integrin subunit beta 1 (ITGB1), were identified successfully. RESULTS The immunophenotypes of HUSCs were marked by CD90+ and CD44+ but not CD45, and flow cytometry confirmed their character. The expression rates of CD90, CD73, CD44 and CD105 in HUSCs were 99.49, 99.77, 99.82 and 99.51%, respectively, while the expression rates of CD43, CD45, CD11b and HLA-DR were 0.08, 0.30, 1.34 and 0.02%, respectively. After SCI, all rats appeared to have severe motor dysfunction, but the BBB score was increased in HUSC-transplanted rats compared with control rats at 28 days. By using bioinformatics, we obtained 6668 targets for SCI and 1095 targets for HUSCs and identified a total of 645 cross targets between HUSCs and SCI. Based on the PPI and Cytoscape analysis, CD44, ACTB, FN1, ITGB1, HSPA8, CDH1, ALB, HSP90AA1 and GAPDH were identified as possible therapeutic targets. Enrichment analysis revealed that the involved signal pathways included complement and coagulation cascades, lysosome, systemic lupus erythematosus, etc. Lastly, quantificational real-time (qRT)-PCR confirmed the mRNA differential expression of CDH1/ITGB1 after HUSC therapy, and glial fibrillary acidic protein (GFAP) immunofluorescence staining showed that the astrocyte proliferation at the injured site could be reduced significantly after HUSC treatment. CONCLUSIONS We validated that HUSC implantation is effective for the treatment of SCI, and the underlying mechanisms associated with the multiple molecular network. Of these, CDH1 and ITGB1 may be considered as important candidate targets. Those findings therefore provided the crucial evidence for the potential use of HUSCs in SCI treatment in future clinic trials.
Collapse
Affiliation(s)
- Ji-Lin Chen
- Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
- Department of Anatomy, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Na Li
- Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
- Department of Anatomy, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Min Xu
- Department of Anatomy, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Lei Wang
- Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Jie Sun
- Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Liu
- Department of Anesthesiology, The First People's Hospital of Kunming, Kunming, Yunnan Province, China
| | - Yu-Fei Wang
- Department of Anatomy, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Bao-Lei Zhang
- Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hai-Yang Suo
- Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
| | - Ting-Hua Wang
- Animal Center, Kunming Medical University, Kunming, Yunnan Province, China
- Department of Anatomy, Liaoning Key Laboratory of Diabetic Cognitive and Perceptive Dysfunction, Jinzhou Medical University, Jinzhou, Liaoning Province, China
| | - Fang Wang
- Department of Science and Technology, Kunming Medical University, Kunming, China
| |
Collapse
|
172
|
Veneruso V, Petillo E, Pizzetti F, Orro A, Comolli D, De Paola M, Verrillo A, Baggiolini A, Votano S, Castiglione F, Sponchioni M, Forloni G, Rossi F, Veglianese P. Synergistic Pharmacological Therapy to Modulate Glial Cells in Spinal Cord Injury. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307747. [PMID: 37990971 DOI: 10.1002/adma.202307747] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/10/2023] [Indexed: 11/23/2023]
Abstract
Current treatments for modulating the glial-mediated inflammatory response after spinal cord injury (SCI) have limited ability to improve recovery. This is quite likely due to the lack of a selective therapeutic approach acting on microgliosis and astrocytosis, the glia components most involved after trauma, while maximizing efficacy and minimizing side effects. A new nanogel that can selectively release active compounds in microglial cells and astrocytes is developed and characterized. The degree of selectivity and subcellular distribution of the nanogel is evaluated by applying an innovative super-resolution microscopy technique, expansion microscopy. Two different administration schemes are then tested in a SCI mouse model: in an early phase, the nanogel loaded with Rolipram, an anti-inflammatory drug, achieves significant improvement in the animal's motor performance due to the increased recruitment of microglia and macrophages that are able to localize the lesion. Treatment in the late phase, however, gives opposite results, with worse motor recovery because of the widespread degeneration. These findings demonstrate that the nanovector can be selective and functional in the treatment of the glial component in different phases of SCI. They also open a new therapeutic scenario for tackling glia-mediated inflammation after neurodegenerative events in the central nervous system.
Collapse
Affiliation(s)
- Valeria Veneruso
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano, 6900, Switzerland
| | - Emilia Petillo
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
| | - Fabio Pizzetti
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Alessandro Orro
- Department of Biomedical Sciences National Research Council, Institute for Biomedical Technologies, Via Fratelli Cervi 93, Segrate, 20054, Italy
| | - Davide Comolli
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
| | - Massimiliano De Paola
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
| | - Antonietta Verrillo
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano, 6900, Switzerland
- Institute of Oncology Research (IOR), BIOS+, Via Francesco Chiesa 5, Bellinzona, 6500, Switzerland
| | - Arianna Baggiolini
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano, 6900, Switzerland
- Institute of Oncology Research (IOR), BIOS+, Via Francesco Chiesa 5, Bellinzona, 6500, Switzerland
| | - Simona Votano
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Franca Castiglione
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Mattia Sponchioni
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Gianluigi Forloni
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, via Mancinelli 7, Milano, 20131, Italy
| | - Pietro Veglianese
- Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, via Mario Negri 2, Milano, 20156, Italy
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, via Buffi 13, Lugano, 6900, Switzerland
| |
Collapse
|
173
|
Zhang Z, Song Z, Luo L, Zhu Z, Zuo X, Ju C, Wang X, Ma Y, Wu T, Yao Z, Zhou J, Chen B, Ding T, Wang Z, Hu X. Photobiomodulation inhibits the expression of chondroitin sulfate proteoglycans after spinal cord injury via the Sox9 pathway. Neural Regen Res 2024; 19:180-189. [PMID: 37488865 PMCID: PMC10479858 DOI: 10.4103/1673-5374.374136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/19/2023] [Accepted: 03/04/2023] [Indexed: 07/26/2023] Open
Abstract
Both glial cells and glia scar greatly affect the development of spinal cord injury and have become hot spots in research on spinal cord injury treatment. The cellular deposition of dense extracellular matrix proteins such as chondroitin sulfate proteoglycans inside and around the glial scar is known to affect axonal growth and be a major obstacle to autogenous repair. These proteins are thus candidate targets for spinal cord injury therapy. Our previous studies demonstrated that 810 nm photobiomodulation inhibited the formation of chondroitin sulfate proteoglycans after spinal cord injury and greatly improved motor function in model animals. However, the specific mechanism and potential targets involved remain to be clarified. In this study, to investigate the therapeutic effect of photobiomodulation, we established a mouse model of spinal cord injury by T9 clamping and irradiated the injury site at a power density of 50 mW/cm2 for 50 minutes once a day for 7 consecutive days. We found that photobiomodulation greatly restored motor function in mice and downregulated chondroitin sulfate proteoglycan expression in the injured spinal cord. Bioinformatics analysis revealed that photobiomodulation inhibited the expression of proteoglycan-related genes induced by spinal cord injury, and versican, a type of proteoglycan, was one of the most markedly changed molecules. Immunofluorescence staining showed that after spinal cord injury, versican was present in astrocytes in spinal cord tissue. The expression of versican in primary astrocytes cultured in vitro increased after inflammation induction, whereas photobiomodulation inhibited the expression of versican. Furthermore, we found that the increased levels of p-Smad3, p-P38 and p-Erk in inflammatory astrocytes were reduced after photobiomodulation treatment and after delivery of inhibitors including FR 180204, (E)-SIS3, and SB 202190. This suggests that Smad3/Sox9 and MAPK/Sox9 pathways may be involved in the effects of photobiomodulation. In summary, our findings show that photobiomodulation modulates the expression of chondroitin sulfate proteoglycans, and versican is one of the key target molecules of photobiomodulation. MAPK/Sox9 and Smad3/Sox9 pathways may play a role in the effects of photobiomodulation on chondroitin sulfate proteoglycan accumulation after spinal cord injury.
Collapse
Affiliation(s)
- Zhihao Zhang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhiwen Song
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Liang Luo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhijie Zhu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xiaoshuang Zuo
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Cheng Ju
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xuankang Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Yangguang Ma
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Tingyu Wu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhou Yao
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Jie Zhou
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Beiyu Chen
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Tan Ding
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Zhe Wang
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| | - Xueyu Hu
- Department of Orthopedics, Xijing Hospital, Fourth Military Medical University, Xi’an, Shaanxi Province, China
| |
Collapse
|
174
|
Kheirollahi A, Sadeghi S, Orandi S, Moayedi K, Khajeh K, Khoobi M, Golestani A. Chondroitinase as a therapeutic enzyme: Prospects and challenges. Enzyme Microb Technol 2024; 172:110348. [PMID: 37898093 DOI: 10.1016/j.enzmictec.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 09/28/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The chondroitinases (Chase) are bacterial lyases that specifically digest chondroitin sulfate and/or dermatan sulfate glycosaminoglycans via a β-elimination reaction and generate unsaturated disaccharides. In recent decades, these enzymes have attracted the attention of many researchers due to their potential applications in various aspects of medicine from the treatment of spinal cord injury to use as an analytical tool. In spite of this diverse spectrum, the application of Chase is faced with several limitations and challenges such as thermal instability and lack of a suitable delivery system. In the current review, we address potential therapeutic applications of Chase with emphasis on the challenges ahead. Then, we summarize the latest achievements to overcome the problems by considering the studies carried out in the field of enzyme engineering, drug delivery, and combination-based therapy.
Collapse
Affiliation(s)
- Asma Kheirollahi
- Department of Comparative Biosciences, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Solmaz Sadeghi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Shirin Orandi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Kiana Moayedi
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosro Khajeh
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran 14115-154, Iran
| | - Mehdi Khoobi
- Department of Radiopharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Department of Pharmaceutical Biomaterials and Medical Biomaterials Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Golestani
- Department of Clinical Biochemistry, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
175
|
Singh D, Nagdev S. Novel Biomaterials Based Strategies for Neurodegeneration: Recent Advancements and Future Prospects. Curr Drug Deliv 2024; 21:1037-1049. [PMID: 38310440 DOI: 10.2174/0115672018275382231215063052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/10/2023] [Accepted: 11/27/2023] [Indexed: 02/05/2024]
Abstract
Neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease, and Huntington's disease, pose significant challenges for effective treatment due to the complex nature of the central nervous system and the limited delivery of therapeutic agents to the brain. Biomaterial-based drug delivery systems offer promising strategies to overcome these challenges and improve therapeutic outcomes. These systems utilize various biomaterials, such as nanoparticles, hydrogels, and implants, to deliver drugs, genes, or cells to the affected regions of the brain. They provide advantages such as targeted delivery, controlled release, and protection of therapeutic agents. This review examines the role of biomaterials in drug delivery for neurodegeneration, discussing different biomaterialbased approaches, including surface modification, encapsulation, and functionalization techniques. Furthermore, it explores the challenges, future perspectives, and potential impact of biomaterialbased drug delivery systems in the field of neurodegenerative diseases.
Collapse
Affiliation(s)
- Dilpreet Singh
- Department of Pharmaceutics, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Mohali (140413), India
| | - Sanjay Nagdev
- Department of Quality Assurance, Shri. Prakashchand Jain College of Pharmacy and Research, Jamner, Maharashtra, India
| |
Collapse
|
176
|
Zhao Q, Ren YL, Zhu YJ, Huang RQ, Zhu RR, Cheng LM, Xie N. The origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after spinal cord injury. Front Cell Neurosci 2023; 17:1276506. [PMID: 38188669 PMCID: PMC10766709 DOI: 10.3389/fncel.2023.1276506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Accaumulating studies focus on the effects of C3-positive A1-like phenotypes and S100A10-positive A2-like phenotypes of reactive astrocytes on spinal cord injury (SCI), however the origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after SCI remain poorly understood. Through transgenic mice and lineage tracing, we aimed to determine the origins of C3- and S100A10-positive reactive astrocytes. Meanwhile, the distribution and dynamic changes in C3- and S100A10-positive reactive astrocytes were also detected in juvenile and adult SCI mice models and cultured astrocytes. Combing with bulk RNA sequencing (RNA-seq), single-cell RNA sequencing (scRNA-seq) and bioinformatic analysis, we further explored the dynamic transcripts changes of C3- and S100A10-positive reactive astrocytes after SCI. We confirmed that resident astrocytes produced both C3- and S100A10-positive reactive astrocytes, whereas ependymal cells regenerated only S100A10-positive reactive astrocytes in lesion area. Importantly, C3-positive reactive astrocytes were predominantly activated in adult SCI mice, while S100A10-positive reactive astrocytes were hyperactivated in juvenile mice. Furthermore, we observed that C3- and S100A10-positive reactive astrocytes had a dynamic transformation process at different time in vitro and vivo, and a majority of intermediate states of C3- and S100A10-positive reactive astrocytes were found during transformation. RNA-seq and scRNA-seq results further confirmed that the transcripts of C3-positive reactive astrocytes and their lipid toxicity were gradually increased with time and age. In contrast, S100A10-positive reactive astrocytes transcripts increased at early time and then gradually decreased after SCI. Our results provide insight into the origins and dynamic changes of C3- and S100A10-positive reactive astrocytes after SCI, which would be valuable resources to further target C3- and S100A10-positive reactive astrocytes after SCI.
Collapse
Affiliation(s)
- Qing Zhao
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yi-long Ren
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| | - Yan-jing Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rui-qi Huang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Rong-rong Zhu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Li-ming Cheng
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
- Clinical Center for Brain and Spinal Cord Research, Tongji University, Shanghai, China
| | - Ning Xie
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Division of Spine, Department of Orthopedics, Tongji Hospital, Tongji University School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
177
|
Tang Y, Yang Y, Feng J, Geng Y, Wang Y, Wang R, Zhang D, Zhao J. Hybrid surgery can improve neurocognitive function in patients with internal carotid artery occlusion. Sci Rep 2023; 13:22793. [PMID: 38129543 PMCID: PMC10739823 DOI: 10.1038/s41598-023-50270-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023] Open
Abstract
Internal carotid artery occlusion (ICAO) is a relatively uncommon but important cause of transient ischaemic attack and cerebral infarction. Hybrid surgery (HS) improves cerebral perfusion, but its impact on neurocognitive function has been controversial. Patients with symptomatic chronic ICAO treated by hybrid surgery or medical treatment from 2016 to 2019 were included. We recorded and analysed the clinical characteristics, angiographic data, outcomes and cognitive status. Functional assessments, including the National Institutes of Health Stroke Scale (NIHSS), the Barthel Index, and a battery of neuropsychological tests, including the Mini-Mental State Examination (MMSE), Alzheimer Disease Assessment Scale-Cognitive Subtest (ADAS-cog), verbal fluency, and Colour Trail test Parts 1 and 2, were administered. Significant improvements in the ADAS (before, 7.5 ± 6.2 versus after, 5.2 ± 5.7; P = 0.022), MMSE (before, 25.5 ± 2.8 versus after, 28.1 ± 2.3; P = 0.013), and Colour Trail test Part 1 (before, 118.3 ± 26.5 versus after, 96.2 ± 23.1; P = 0.016) were observed six months after HS. Moreover, the abovementioned postprocedure scales were ameliorated in the HS group. This study found that in patients with multiple symptomatic ICAO and objective ipsilateral ischaemia, successful HS leads to improvement in the scores of three cognitive tests.
Collapse
Affiliation(s)
- Yudi Tang
- Department of Interventional Neuroradiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Yunna Yang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China.
| | - Junqiang Feng
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Yibo Geng
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Yang Wang
- Department of Neurosurgery, Beijing Chaoyang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 100020, China
| | - Rong Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Dong Zhang
- Department of Neurosurgery, Beijing Hospital, Beijing, China
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
178
|
Patil N, Korenfeld O, Scalf RN, Lavoie N, Huntemer-Silveira A, Han G, Swenson R, Parr AM. Electrical stimulation affects the differentiation of transplanted regionally specific human spinal neural progenitor cells (sNPCs) after chronic spinal cord injury. Stem Cell Res Ther 2023; 14:378. [PMID: 38124191 PMCID: PMC10734202 DOI: 10.1186/s13287-023-03597-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND There are currently no effective clinical therapies to ameliorate the loss of function that occurs after spinal cord injury. Electrical stimulation of the rat spinal cord through the rat tail has previously been described by our laboratory. We propose combinatorial treatment with human induced pluripotent stem cell-derived spinal neural progenitor cells (sNPCs) along with tail nerve electrical stimulation (TANES). The purpose of this study was to examine the influence of TANES on the differentiation of sNPCs with the hypothesis that the addition of TANES would affect incorporation of sNPCs into the injured spinal cord, which is our ultimate goal. METHODS Chronically injured athymic nude rats were allocated to one of three treatment groups: injury only, sNPC only, or sNPC + TANES. Rats were sacrificed at 16 weeks post-transplantation, and tissue was processed and analyzed utilizing standard histological and tissue clearing techniques. Functional testing was performed. All quantitative data were presented as mean ± standard error of the mean. Statistics were conducted using GraphPad Prism. RESULTS We found that sNPCs were multi-potent and retained the ability to differentiate into mainly neurons or oligodendrocytes after this transplantation paradigm. The addition of TANES resulted in more transplanted cells differentiating into oligodendrocytes compared with no TANES treatment, and more myelin was found. TANES not only promoted significantly higher numbers of sNPCs migrating away from the site of injection but also influenced long-distance axonal/dendritic projections especially in the rostral direction. Further, we observed localization of synaptophysin on SC121-positive cells, suggesting integration with host or surrounding neurons, and this finding was enhanced when TANES was applied. Also, rats that were transplanted with sNPCs in combination with TANES resulted in an increase in serotonergic fibers in the lumbar region. This suggests that TANES contributes to integration of sNPCs, as well as activity-dependent oligodendrocyte and myelin remodeling of the chronically injured spinal cord. CONCLUSIONS Together, the data suggest that the added electrical stimulation promoted cellular integration and influenced the fate of human induced pluripotent stem cell-derived sNPCs transplanted into the injured spinal cord.
Collapse
Affiliation(s)
- Nandadevi Patil
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, 2-214 MTRF, 2001 6th St. SE, Minneapolis, MN, 55455, USA
| | - Olivia Korenfeld
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, 2-214 MTRF, 2001 6th St. SE, Minneapolis, MN, 55455, USA
| | - Rachel N Scalf
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, 2-214 MTRF, 2001 6th St. SE, Minneapolis, MN, 55455, USA
| | - Nicolas Lavoie
- Massachusetts Institute of Technology, 77 Massachusetts Ave, Cambridge, MA, 02139, USA
| | - Anne Huntemer-Silveira
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, 2-214 MTRF, 2001 6th St. SE, Minneapolis, MN, 55455, USA
| | - Guebum Han
- Department of Mechanical Engineering, College of Science and Engineering, University of Minnesota, 1100 Mechanical Engineering Building, 111 Church St. SE, Minneapolis, MN, 55455, USA
| | - Riley Swenson
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, 2-214 MTRF, 2001 6th St. SE, Minneapolis, MN, 55455, USA
| | - Ann M Parr
- Department of Neurosurgery, Stem Cell Institute, University of Minnesota, MMC 96, 420 Delaware St. SE, Minneapolis, MN, 55455, USA.
| |
Collapse
|
179
|
González-Orozco JC, Escobedo-Avila I, Velasco I. Transcriptome Profiling after Early Spinal Cord Injury in the Axolotl and Its Comparison with Rodent Animal Models through RNA-Seq Data Analysis. Genes (Basel) 2023; 14:2189. [PMID: 38137011 PMCID: PMC10742908 DOI: 10.3390/genes14122189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Traumatic spinal cord injury (SCI) is a disabling condition that affects millions of people around the world. Currently, no clinical treatment can restore spinal cord function. Comparison of molecular responses in regenerating to non-regenerating vertebrates can shed light on neural restoration. The axolotl (Ambystoma mexicanum) is an amphibian that regenerates regions of the brain or spinal cord after damage. METHODS In this study, we compared the transcriptomes after SCI at acute (1-2 days after SCI) and sub-acute (6-7 days post-SCI) periods through the analysis of RNA-seq public datasets from axolotl and non-regenerating rodents. RESULTS Genes related to wound healing and immune responses were upregulated in axolotls, rats, and mice after SCI; however, the immune-related processes were more prevalent in rodents. In the acute phase of SCI in the axolotl, the molecular pathways and genes associated with early development were upregulated, while processes related to neuronal function were downregulated. Importantly, the downregulation of processes related to sensorial and motor functions was observed only in rodents. This analysis also revealed that genes related to pluripotency, cytoskeleton rearrangement, and transposable elements (e.g., Sox2, Krt5, and LOC100130764) were among the most upregulated in the axolotl. Finally, gene regulatory networks in axolotls revealed the early activation of genes related to neurogenesis, including Atf3/4 and Foxa2. CONCLUSIONS Immune-related processes are upregulated shortly after SCI in axolotls and rodents; however, a strong immune response is more noticeable in rodents. Genes related to early development and neurogenesis are upregulated beginning in the acute stage of SCI in axolotls, while the loss of motor and sensory functions is detected only in rodents during the sub-acute period of SCI. The approach employed in this study might be useful for designing and establishing regenerative therapies after SCI in mammals, including humans.
Collapse
Affiliation(s)
- Juan Carlos González-Orozco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
| | - Itzel Escobedo-Avila
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
| | - Iván Velasco
- Instituto de Fisiología Celular-Neurociencias, Universidad Nacional Autónoma de México (UNAM), Mexico City 04510, Mexico; (J.C.G.-O.); (I.E.-A.)
- Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía “Manuel Velasco Suárez”, Mexico City 14269, Mexico
| |
Collapse
|
180
|
Chambel SS, Cruz CD. Axonal growth inhibitors and their receptors in spinal cord injury: from biology to clinical translation. Neural Regen Res 2023; 18:2573-2581. [PMID: 37449592 DOI: 10.4103/1673-5374.373674] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023] Open
Abstract
Axonal growth inhibitors are released during traumatic injuries to the adult mammalian central nervous system, including after spinal cord injury. These molecules accumulate at the injury site and form a highly inhibitory environment for axonal regeneration. Among these inhibitory molecules, myelin-associated inhibitors, including neurite outgrowth inhibitor A, oligodendrocyte myelin glycoprotein, myelin-associated glycoprotein, chondroitin sulfate proteoglycans and repulsive guidance molecule A are of particular importance. Due to their inhibitory nature, they represent exciting molecular targets to study axonal inhibition and regeneration after central injuries. These molecules are mainly produced by neurons, oligodendrocytes, and astrocytes within the scar and in its immediate vicinity. They exert their effects by binding to specific receptors, localized in the membranes of neurons. Receptors for these inhibitory cues include Nogo receptor 1, leucine-rich repeat, and Ig domain containing 1 and p75 neurotrophin receptor/tumor necrosis factor receptor superfamily member 19 (that form a receptor complex that binds all myelin-associated inhibitors), and also paired immunoglobulin-like receptor B. Chondroitin sulfate proteoglycans and repulsive guidance molecule A bind to Nogo receptor 1, Nogo receptor 3, receptor protein tyrosine phosphatase σ and leucocyte common antigen related phosphatase, and neogenin, respectively. Once activated, these receptors initiate downstream signaling pathways, the most common amongst them being the RhoA/ROCK signaling pathway. These signaling cascades result in actin depolymerization, neurite outgrowth inhibition, and failure to regenerate after spinal cord injury. Currently, there are no approved pharmacological treatments to overcome spinal cord injuries other than physical rehabilitation and management of the array of symptoms brought on by spinal cord injuries. However, several novel therapies aiming to modulate these inhibitory proteins and/or their receptors are under investigation in ongoing clinical trials. Investigation has also been demonstrating that combinatorial therapies of growth inhibitors with other therapies, such as growth factors or stem-cell therapies, produce stronger results and their potential application in the clinics opens new venues in spinal cord injury treatment.
Collapse
Affiliation(s)
- Sílvia Sousa Chambel
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| | - Célia Duarte Cruz
- Experimental Biology Unit, Department of Biomedicine, Faculty of Medicine of Porto; Translational NeuroUrology, Instituto de Investigação e Inovação em Saúde-i3S and IBMC, Universidade do Porto, Porto, Portugal
| |
Collapse
|
181
|
Estera LA, Walsh SP, Headen JA, Williamson RE, Kalinski AL. Neuroinflammation: Breaking barriers and bridging gaps. Neurosci Res 2023; 197:9-17. [PMID: 34748905 DOI: 10.1016/j.neures.2021.11.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/01/2021] [Indexed: 01/04/2023]
Abstract
Neurons are the cells of the nervous system and are responsible for every thought, movement and perception. Immune cells are the cells of the immune system, constantly protecting from foreign pathogens. Understanding the interaction between the two systems is especially important in disease states such as autoimmune or neurodegenerative disease. Unfortunately, this interaction is typically detrimental to the host. However, recent efforts have focused on how neurons and immune cells interact, either directly or indirectly, following traumatic injury to the nervous system. The outcome of this interaction can be beneficial - leading to successful neural repair, or detrimental - leading to functional deficits, depending on where the injury occurs. This review will discuss our understanding of neuron-immune cell interactions after traumatic injury to both the peripheral and central nervous system.
Collapse
Affiliation(s)
- Lora A Estera
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Sam P Walsh
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | - Jordan A Headen
- Department of Biology, Ball State University, Muncie, IN 47306, USA
| | | | - Ashley L Kalinski
- Department of Biology, Ball State University, Muncie, IN 47306, USA.
| |
Collapse
|
182
|
Hao H, Hou Y, Li A, Niu L, Li S, He B, Zhang X, Song H, Cai R, Zhou Y, Yao C, Wang Y, Wang Y. HIF-1α promotes astrocytic production of macrophage migration inhibitory factor following spinal cord injury. CNS Neurosci Ther 2023; 29:3802-3814. [PMID: 37334735 PMCID: PMC10651974 DOI: 10.1111/cns.14300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/16/2023] [Accepted: 05/28/2023] [Indexed: 06/20/2023] Open
Abstract
BACKGROUND Macrophage migration inhibitory factor (MIF) is an important mediator of neuropathology in various central nervous system (CNS) diseases. However, little is known about its inducers for production from the nerve cells, as well as the underlying regulatory mechanism. Injury-induced HIF-1α has been shown to exacerbate neuroinflammation by activating multiple downstream target molecules. It is postulated that HIF-1α is involved in the regulation of MIF following spinal cord injury (SCI). METHODS SCI model of Sprague-Dawley rats was established by cord contusion at T8-T10. The dynamic changes of HIF-1α and MIF protein levels at lesion site of rat spinal cord were determined by Western blot. The specific cell types of HIF-1α and MIF expression were examined by immunostaining. Primary astrocytes were isolated from the spinal cord, cultured and stimulated with various agonist or inhibitor of HIF-1α for analysis of HIF-1α-mediated expression of MIF. Luciferase report assay was used to determine the relationship between HIF-1α and MIF. The Basso, Beattie, and Bresnahan (BBB) locomotor scale was used to assess the locomotor function following SCI. RESULTS The protein levels of HIF-1α and MIF at lesion site were significantly elevated by SCI. Immunofluorescence demonstrated that both HIF-1α and MIF were abundantly expressed in the astrocytes of the spinal cord. By using various agonists or inhibitors of HIF-1α, it was shown that HIF-1α sufficiently induced astrocytic production of MIF. Mechanistically, HIF-1α promoted MIF expression through interaction with MIF promoter. Inhibition of HIF-1α activity using specific inhibitor markedly reduced the protein levels of MIF at lesion site following SCI, which in turn favored for the functional recovery. CONCLUSION SCI-induced activation of HIF-1α is able to promote MIF production from astrocytes. Our results have provided new clues for SCI-induced production of DAMPs, which may be helpful for clinical treatment of neuroinflammation.
Collapse
Affiliation(s)
- Huifei Hao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yuxuan Hou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Aicheng Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Li Niu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Shaolan Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Bingqiang He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Xingyuan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Honghua Song
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Rixin Cai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yue Zhou
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Chun Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yongjun Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| | - Yingjie Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co‐Innovation Center of NeuroregenerationNantong UniversityNantongChina
| |
Collapse
|
183
|
Forston MD, Wei GZ, Chariker JH, Stephenson T, Andres K, Glover C, Rouchka EC, Whittemore SR, Hetman M. Enhanced oxidative phosphorylation, re-organized intracellular signaling, and epigenetic de-silencing as revealed by oligodendrocyte translatome analysis after contusive spinal cord injury. Sci Rep 2023; 13:21254. [PMID: 38040794 PMCID: PMC10692148 DOI: 10.1038/s41598-023-48425-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 11/27/2023] [Indexed: 12/03/2023] Open
Abstract
Reducing the loss of oligodendrocytes (OLs) is a major goal for neuroprotection after spinal cord injury (SCI). Therefore, the OL translatome was determined in Ribotag:Plp1-CreERT2 mice at 2, 10, and 42 days after moderate contusive T9 SCI. At 2 and 42 days, mitochondrial respiration- or actin cytoskeleton/cell junction/cell adhesion mRNAs were upregulated or downregulated, respectively. The latter effect suggests myelin sheath loss/morphological simplification which is consistent with downregulation of cholesterol biosynthesis transcripts on days 10 and 42. Various regulators of pro-survival-, cell death-, and/or oxidative stress response pathways showed peak expression acutely, on day 2. Many acutely upregulated OL genes are part of the repressive SUZ12/PRC2 operon suggesting that epigenetic de-silencing contributes to SCI effects on OL gene expression. Acute OL upregulation of the iron oxidoreductase Steap3 was confirmed at the protein level and replicated in cultured OLs treated with the mitochondrial uncoupler FCCP. Hence, STEAP3 upregulation may mark mitochondrial dysfunction. Taken together, in SCI-challenged OLs, acute and subchronic enhancement of mitochondrial respiration may be driven by axonal loss and subsequent myelin sheath degeneration. Acutely, the OL switch to oxidative phosphorylation may lead to oxidative stress that is further amplified by upregulation of such enzymes as STEAP3.
Collapse
Affiliation(s)
- Michael D Forston
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - George Z Wei
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Julia H Chariker
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
- Neuroscience Training, University Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Tyler Stephenson
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Kariena Andres
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Charles Glover
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Eric C Rouchka
- Kentucky IDeA Networks of Biomedical Research Excellence (KY INBRE) Bioinformatics Core, University of Louisville, Louisville, KY, 40202, USA
- Department of Biochemistry and Molecular Genetics, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Scott R Whittemore
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA
| | - Michal Hetman
- Kentucky Spinal Cord Injury Research Center, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Neurological Surgery, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Anatomical Sciences & Neurobiology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
- MD/PhD Program, University of Louisville School of Medicine, Louisville, KY, 40202, USA.
| |
Collapse
|
184
|
Quan H, Zhang R. Microglia dynamic response and phenotype heterogeneity in neural regeneration following hypoxic-ischemic brain injury. Front Immunol 2023; 14:1320271. [PMID: 38094292 PMCID: PMC10716326 DOI: 10.3389/fimmu.2023.1320271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Hypoxic-ischemic brain injury poses a significant threat to the neural niche within the central nervous system. In response to this pathological process, microglia, as innate immune cells in the central nervous system, undergo rapid morphological, molecular and functional changes. Here, we comprehensively review these dynamic changes in microglial response to hypoxic-ischemic brain injury under pathological conditions, including stroke, chronic intermittent hypoxia and neonatal hypoxic-ischemic brain injury. We focus on the regulation of signaling pathways under hypoxic-ischemic brain injury and further describe the process of microenvironment remodeling and neural tissue regeneration mediated by microglia after hypoxic-ischemic injury.
Collapse
Affiliation(s)
- Hongxin Quan
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| | - Runrui Zhang
- State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, China
- Yunnan Key Laboratory of Primate Biomedical Research, Kunming, Yunnan, China
| |
Collapse
|
185
|
Kim RD, Marchildon AE, Frazel PW, Hasel P, Guo AX, Liddelow SA. Temporal and spatial analysis of astrocytes following stroke identifies novel drivers of reactivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.12.566710. [PMID: 38014211 PMCID: PMC10680590 DOI: 10.1101/2023.11.12.566710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Astrocytes undergo robust gene expression changes in response to a variety of perturbations, including ischemic injury. How these transitions are affected by time, and how heterogeneous and spatially distinct various reactive astrocyte populations are, remain unclear. To address these questions, we performed spatial transcriptomics as well as single nucleus RNAseq of ∼138,000 mouse forebrain astrocytes at 1, 3, and 14 days after ischemic injury. We observed a widespread and temporally diverse response across many astrocyte subtypes. We identified astrocyte clusters unique in injury, including a transiently proliferative substate that may be BRCA1-dependent. We also found an interferon-responsive population that rapidly expands to the perilesion cortex at 1 day and persists up to 14 days post stroke. These lowly abundant, spatially restricted populations are likely functionally important in post-injury stabilization and resolution. These datasets offer valuable insights into injury-induced reactive astrocyte heterogeneity and can be used to guide functional interrogation of biologically meaningful reactive astrocyte substates to understand their pro- and anti-reparative functions following acute injuries such as stroke.
Collapse
|
186
|
Lee PH, Hsu HJ, Tien CH, Huang CC, Huang CY, Chen HF, Yeh ML, Lee JS. Characterizing the Impact of Compression Duration and Deformation-Related Loss of Closure Force on Clip-Induced Spinal Cord Injury in Rats. Neurol Int 2023; 15:1383-1392. [PMID: 37987461 PMCID: PMC10661265 DOI: 10.3390/neurolint15040088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/05/2023] [Accepted: 11/08/2023] [Indexed: 11/22/2023] Open
Abstract
The clip-induced spinal cord injury (SCI) rat model is pivotal in preclinical SCI research. However, the literature exhibits variability in compression duration and limited attention to clip deformation-related loss of closure force. We aimed to investigate the impact of compression duration on SCI severity and the influence of clip deformation on closure force. Rats received T10-level clip-induced SCI with durations of 1, 5, 10, 20, and 30 s, and a separate group underwent T10 transection. Outcomes included functional, histological, electrophysiological assessments, and inflammatory cytokine analysis. A tactile pressure mapping system quantified clip closure force after open-close cycles. Our results showed a positive correlation between compression duration and the severity of functional, histological, and electrophysiological deficits. Remarkably, even a brief 1-s compression caused significant deficits comparable to moderate-to-severe SCI. SSEP waveforms were abolished with durations over 20 s. Decreased clip closure force appeared after five open-close cycles. This study offers critical insights into regulating SCI severity in rat models, aiding researchers. Understanding compression duration and clip fatigue is essential for experiment design and interpretation using the clip-induced SCI model.
Collapse
Affiliation(s)
- Po-Hsuan Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan; (P.-H.L.); (C.-H.T.); (C.-C.H.); (C.-Y.H.)
| | - Heng-Juei Hsu
- Department of Neurosurgery, Tainan Municipal Hospital, Tainan 701, Taiwan;
| | - Chih-Hao Tien
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan; (P.-H.L.); (C.-H.T.); (C.-C.H.); (C.-Y.H.)
| | - Chi-Chen Huang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan; (P.-H.L.); (C.-H.T.); (C.-C.H.); (C.-Y.H.)
| | - Chih-Yuan Huang
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan; (P.-H.L.); (C.-H.T.); (C.-C.H.); (C.-Y.H.)
| | - Hui-Fang Chen
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
| | - Ming-Long Yeh
- Department of Biomedical Engineering, National Cheng Kung University, Tainan 701, Taiwan;
- Medical Device Innovation Center, National Cheng Kung University, Tainan 701, Taiwan
| | - Jung-Shun Lee
- Division of Neurosurgery, Department of Surgery, National Cheng Kung University Hospital, Tainan 701, Taiwan; (P.-H.L.); (C.-H.T.); (C.-C.H.); (C.-Y.H.)
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
187
|
Lee HG, Lee JH, Flausino LE, Quintana FJ. Neuroinflammation: An astrocyte perspective. Sci Transl Med 2023; 15:eadi7828. [PMID: 37939162 DOI: 10.1126/scitranslmed.adi7828] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 10/19/2023] [Indexed: 11/10/2023]
Abstract
Astrocytes are abundant glial cells in the central nervous system (CNS) that play active roles in health and disease. Recent technologies have uncovered the functional heterogeneity of astrocytes and their extensive interactions with other cell types in the CNS. In this Review, we highlight the intricate interactions between astrocytes, other CNS-resident cells, and CNS-infiltrating cells as well as their potential therapeutic value in the context of inflammation and neurodegeneration.
Collapse
Affiliation(s)
- Hong-Gyun Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Joon-Hyuk Lee
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Lucas E Flausino
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Francisco J Quintana
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| |
Collapse
|
188
|
Moon S, Ito Y. Vasculature cells control neuroglial co-localization and synaptic connection in a central nervous system tissue mimic system. Hum Cell 2023; 36:1938-1947. [PMID: 37470936 DOI: 10.1007/s13577-023-00955-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/13/2023] [Indexed: 07/21/2023]
Abstract
Despite the development of neural tissue differentiation methods using a wide variety of stem cells and compartments, there is no standardized strategy for establishing synapses. As the neuronal network is developed in parallel with blood vessel angiogenesis in the central nervous system (CNS) from the embryonic period, we examined neuron-astrocyte-vasculature interactions to understand the effect of the vasculature on the development and stabilization of neurological morphogenesis. We generated a cellular co-culture module targeting the CNS that was embedded in a collagen-based extracellular matrix (ECM) gel. Our neuron-astrocyte-vascular complex module identified the neurological co-localization effect by endothelial cells, as well as the pericyte-induced improvement of synaptic connections. Furthermore, it was suggested that the PDGF, BDNF, IGF, and WNT/BMP pathways were upregulated in synaptic connections enhanced conditions, which are composed of neurexin. These results suggest that the integrity of the vasculature cells in the CNS is important for the establishment of neuronal networks and for synapse connection.
Collapse
Affiliation(s)
- SongHo Moon
- Faculty of Life and Environmental Sciences (Bioindustrial Sciences), University of Tsukuba, 1-1-1 Tenno-Dai, Tsukuba, Ibaraki, 305-8972, Japan
| | - Yuzuru Ito
- Faculty of Life and Environmental Sciences (Bioindustrial Sciences), University of Tsukuba, 1-1-1 Tenno-Dai, Tsukuba, Ibaraki, 305-8972, Japan.
- Life Science Development Department, Frontier Business Division, Chiyoda Corporation, Yokohama, Kanagawa, Japan.
| |
Collapse
|
189
|
Cho YJ, Park SH, Ryu KY. Mild Oxidative Stress Induced by Sodium Arsenite Reduces Lipocalin-2 Expression Levels in Cortical Glial Cells. Int J Mol Sci 2023; 24:15864. [PMID: 37958847 PMCID: PMC10649205 DOI: 10.3390/ijms242115864] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 11/15/2023] Open
Abstract
Astrocytes and microglia, the most abundant glial cells in the central nervous system, are involved in maintaining homeostasis in the brain microenvironment and in the progression of various neurological disorders. Lipocalin-2 (LCN2) is a small secretory protein that can be transcriptionally upregulated via nuclear factor kappa B (NF-κB) signaling. It is synthesized and secreted by glial cells, resulting in either the restoration of damaged neural tissues or the induction of neuronal apoptosis in a context-dependent manner. It has recently been reported that when glial cells are under lipopolysaccharide-induced inflammatory stress, either reduced production or accelerated degradation of LCN2 can alleviate neurotoxicity. However, the regulatory mechanisms of LCN2 in glial cells are not yet fully understood. In this study, we used primary astroglial-enriched cells which produce LCN2 and found that the production of LCN2 could be reduced by sodium arsenite treatment. Surprisingly, the reduced LCN2 production was not due to the suppression of NF-κB signaling. Mild oxidative stress induced by sodium arsenite treatment activated antioxidant responses and downregulated Lcn2 expression without reducing the viability of astroglial-enriched cells. Intriguingly, reduced LCN2 production could not be achieved by simple activation of the nuclear factor erythroid-2-related factor 2 (Nrf2)-Kelch-like ECH-associated protein 1 (Keap1) pathway in astroglial-enriched cells. Thus, it appears that mild oxidative stress, occurring in an Nrf2-independent manner, is required for the downregulation of Lcn2 expression. Taken together, our findings provide new insights into the regulatory mechanisms of LCN2 and suggest that mild oxidative stress may alter LCN2 homeostasis, even under neuroinflammatory conditions.
Collapse
Affiliation(s)
| | | | - Kwon-Yul Ryu
- Department of Life Science, University of Seoul, Seoul 02504, Republic of Korea; (Y.-J.C.); (S.-H.P.)
| |
Collapse
|
190
|
Qiu C, Sun Y, Li J, Zhou J, Xu Y, Qiu C, Yu K, Liu J, Jiang Y, Cui W, Wang G, Liu H, Yuan W, Jiang T, Kou Y, Ge Z, He Z, Zhang S, He Y, Yu L. A 3D-Printed Dual Driving Forces Scaffold with Self-Promoted Cell Absorption for Spinal Cord Injury Repair. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301639. [PMID: 37870182 PMCID: PMC10667844 DOI: 10.1002/advs.202301639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 09/23/2023] [Indexed: 10/24/2023]
Abstract
Stem cells play critical roles in cell therapies and tissue engineering for nerve repair. However, achieving effective delivery of high cell density remains a challenge. Here, a novel cell delivery platform termed the hyper expansion scaffold (HES) is developed to enable high cell loading. HES facilitated self-promoted and efficient cell absorption via a dual driving force model. In vitro tests revealed that the HES rapidly expanded 80-fold in size upon absorbing 2.6 million human amniotic epithelial stem cells (hAESCs) within 2 min, representing over a 400% increase in loading capacity versus controls. This enhanced uptake benefited from macroscopic swelling forces as well as microscale capillary action. In spinal cord injury (SCI) rats, HES-hAESCs promoted functional recovery and axonal projection by reducing neuroinflammation and improving the neurotrophic microenvironment surrounding the lesions. In summary, the dual driving forces model provides a new rationale for engineering hydrogel scaffolds to facilitate self-promoted cell absorption. The HES platform demonstrates great potential as a powerful and efficient vehicle for delivering high densities of hAESCs to promote clinical treatment and repair of SCI.
Collapse
Affiliation(s)
- Chen Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yuan Sun
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Jinying Li
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Jiayi Zhou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yuchen Xu
- Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhou310027China
| | - Cong Qiu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Jia Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yuanqing Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Wenyu Cui
- Eye Centerthe Second Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310009China
| | | | - He Liu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Weixin Yuan
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Tuoying Jiang
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Yaohui Kou
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| | - Zhen Ge
- School of Pharmaceutical SciencesHangzhou Medical CollegeHangzhou310013China
| | - Zhiying He
- Institute for Regenerative MedicineShanghai East HospitalSchool of Life Sciences and TechnologyTongji UniversityShanghai200123China
- Shanghai Engineering Research Center of Stem Cells Translational MedicineShanghai200335China
| | - Shaomin Zhang
- Qiushi Academy for Advanced StudiesZhejiang UniversityHangzhou310027China
| | - Yong He
- State Key Laboratory of Fluid Power and Mechatronic SystemsSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
- Key Laboratory of 3D Printing Process and Equipment of Zhejiang ProvinceSchool of Mechanical EngineeringZhejiang UniversityHangzhou310027China
| | - Luyang Yu
- Key Laboratory of Cardiovascular Intervention and Regenerative Medicine of Zhejiang ProvinceDepartment of CardiologySir Run Run Shaw HospitalZhejiang UniversityHangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and iCell Biotechnology Regenerative Biomedicine Laboratory of College of Life SciencesZhejiang UniversityHangzhou310058China
| |
Collapse
|
191
|
Ricciardelli AR, Robledo A, Fish JE, Kan PT, Harris TH, Wythe JD. The Role and Therapeutic Implications of Inflammation in the Pathogenesis of Brain Arteriovenous Malformations. Biomedicines 2023; 11:2876. [PMID: 38001877 PMCID: PMC10669898 DOI: 10.3390/biomedicines11112876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 11/26/2023] Open
Abstract
Brain arteriovenous malformations (bAVMs) are focal vascular lesions composed of abnormal vascular channels without an intervening capillary network. As a result, high-pressure arterial blood shunts directly into the venous outflow system. These high-flow, low-resistance shunts are composed of dilated, tortuous, and fragile vessels, which are prone to rupture. BAVMs are a leading cause of hemorrhagic stroke in children and young adults. Current treatments for bAVMs are limited to surgery, embolization, and radiosurgery, although even these options are not viable for ~20% of AVM patients due to excessive risk. Critically, inflammation has been suggested to contribute to lesion progression. Here we summarize the current literature discussing the role of the immune system in bAVM pathogenesis and lesion progression, as well as the potential for targeting inflammation to prevent bAVM rupture and intracranial hemorrhage. We conclude by proposing that a dysfunctional endothelium, which harbors the somatic mutations that have been shown to give rise to sporadic bAVMs, may drive disease development and progression by altering the immune status of the brain.
Collapse
Affiliation(s)
- Ashley R. Ricciardelli
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ariadna Robledo
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Jason E. Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 2C4, Canada;
- Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON M5G 2N2, Canada
| | - Peter T. Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX 77555, USA; (A.R.)
| | - Tajie H. Harris
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| | - Joshua D. Wythe
- Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Integrative Physiology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA 22903, USA;
- Brain, Immunology, and Glia (BIG) Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA 22903, USA
| |
Collapse
|
192
|
Benowitz LI, Xie L, Yin Y. Inflammatory Mediators of Axon Regeneration in the Central and Peripheral Nervous Systems. Int J Mol Sci 2023; 24:15359. [PMID: 37895039 PMCID: PMC10607492 DOI: 10.3390/ijms242015359] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Although most pathways in the mature central nervous system cannot regenerate when injured, research beginning in the late 20th century has led to discoveries that may help reverse this situation. Here, we highlight research in recent years from our laboratory identifying oncomodulin (Ocm), stromal cell-derived factor (SDF)-1, and chemokine CCL5 as growth factors expressed by cells of the innate immune system that promote axon regeneration in the injured optic nerve and elsewhere in the central and peripheral nervous systems. We also review the role of ArmC10, a newly discovered Ocm receptor, in mediating many of these effects, and the synergy between inflammation-derived growth factors and complementary strategies to promote regeneration, including deleting genes encoding cell-intrinsic suppressors of axon growth, manipulating transcription factors that suppress or promote the expression of growth-related genes, and manipulating cell-extrinsic suppressors of axon growth. In some cases, combinatorial strategies have led to unprecedented levels of nerve regeneration. The identification of some similar mechanisms in human neurons offers hope that key discoveries made in animal models may eventually lead to treatments to improve outcomes after neurological damage in patients.
Collapse
Affiliation(s)
- Larry I. Benowitz
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Lili Xie
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
- Department of Ophthalmology, Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Yuqin Yin
- Department of Neurosurgery, Boston Children’s Hospital, Boston, MA 02115, USA; (L.X.); (Y.Y.)
- Department of Neurosurgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
193
|
UENO YUJI. Mechanism of Post-stroke Axonal Outgrowth and Functional Recovery. JUNTENDO IJI ZASSHI = JUNTENDO MEDICAL JOURNAL 2023; 69:364-369. [PMID: 38845728 PMCID: PMC10984353 DOI: 10.14789/jmj.jmj23-0025-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/21/2023] [Indexed: 06/09/2024]
Abstract
Axonal outgrowth after stroke plays an important role in tissue repair and is critical for functional recovery. In the peri-infarct area of a rat middle cerebral artery occlusion model, we found that the axons and dendrites that had fallen off in the acute phase of stroke (7 days) were regenerated in the chronic phase of stroke (56 days). In vitro, we showed that phosphatase tensin homolog deleted on chromosome 10/Akt/Glycogen synthase kinase 3β signaling is implicated in postischemic axonal regeneration. In a rat model of chronic cerebral hypoperfusion, oral administration of L-carnitine induced axonal and oligodendrocyte regeneration in the cerebral white matter, resulting in myelin thickening, and it improved cognitive impairment in rats with chronic cerebral ischemia. Recently, it has been shown that exosomes enhanced functional recovery after stroke. Exosome treatment has less tumorigenicity, does not occlude the microvascular system, has low immunogenicity, and does not require a host immune response compared to conventional cell therapy. Several studies demonstrated specific microRNA in exosomes, which regulated signaling pathways related to neurogenesis after stroke. Collectively, there are various mechanisms of axonal regeneration and functional recovery after stroke, and it is expected that new therapeutic agents for stroke with the aim of axonal regeneration will be developed and used in real-world clinical practice in the future.
Collapse
Affiliation(s)
- YUJI UENO
- Corresponding author: Yuji Ueno, Department of Neurology, University of Yamanashi, 1110 Shimokato, Chuo-city, Yamanashi 409-3898, Japan, TEL/FAX: +81-55-273-9896 E-mail: ,
| |
Collapse
|
194
|
Jiang T, Li S, Xu B, Liu K, Qiu T, Dai H. IKVAV peptide-containing hydrogel decreases fibrous scar after spinal cord injury by inhibiting fibroblast migration and activation. Behav Brain Res 2023; 455:114683. [PMID: 37751807 DOI: 10.1016/j.bbr.2023.114683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023]
Abstract
Fibrous scar is one of the major factors that hinder functional recovery in patients with spinal cord injury (SCI). Studies have shown that the laminin α1 peptide chain ile-les-val-ala-Val (IKVAV) promoted axonal growth and motor function recovery in rats after SCI. However, whether IKVAV could ameliorate SCI via reducing the formation of fibrous scar was not clear. A SCI model was constructed by transecting the rat spinal cord with a scalpel and implanting poly (N-propan-2-ylprop-2-enamide) (PNIPAM)-b-poly (AC-PEG-COOH) (PNPP) or PNIPAM-b-poly (AC-PEG-IKVAV) (PNPP-IKVAV) hydrogel. 14 days later hematoxylin-eosin staining and immunohistochemical staining were used to assess the effect of PNPP-IKVAV on scar formation. The effect of PNPP-IKVAV on endoplasmic reticulum (ER) stress was investigated by immunohistochemical staining. NIH-3T3 cells were used for in vitro scratching experiments and a transforming growth factor 1 (TGF-β1) activation model was constructed to assess the role of PNPP-IKVAV. In this study, PNPP-IKVAV inhibited fibroblast migration and suppressed TGF-β1 activation and ER stress (ERS) to reduce the extracellular matrix secretion by fibroblasts.
Collapse
Affiliation(s)
- Tao Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China
| | - Shitong Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Benchang Xu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Institut WUT-AWU, Wuhan University of Technology, Wuhan 430070, China
| | - Kun Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China
| | - Tong Qiu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, China; Institut WUT-AWU, Wuhan University of Technology, Wuhan 430070, China.
| | - Honglian Dai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Biomedical Materials and Engineering Research Center of Hubei Province, Wuhan University of Technology, Wuhan 430070, China; Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan 528200, China.
| |
Collapse
|
195
|
Verkhratsky A, Butt A, Li B, Illes P, Zorec R, Semyanov A, Tang Y, Sofroniew MV. Astrocytes in human central nervous system diseases: a frontier for new therapies. Signal Transduct Target Ther 2023; 8:396. [PMID: 37828019 PMCID: PMC10570367 DOI: 10.1038/s41392-023-01628-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 58.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/15/2023] [Accepted: 08/22/2023] [Indexed: 10/14/2023] Open
Abstract
Astroglia are a broad class of neural parenchymal cells primarily dedicated to homoeostasis and defence of the central nervous system (CNS). Astroglia contribute to the pathophysiology of all neurological and neuropsychiatric disorders in ways that can be either beneficial or detrimental to disorder outcome. Pathophysiological changes in astroglia can be primary or secondary and can result in gain or loss of functions. Astroglia respond to external, non-cell autonomous signals associated with any form of CNS pathology by undergoing complex and variable changes in their structure, molecular expression, and function. In addition, internally driven, cell autonomous changes of astroglial innate properties can lead to CNS pathologies. Astroglial pathophysiology is complex, with different pathophysiological cell states and cell phenotypes that are context-specific and vary with disorder, disorder-stage, comorbidities, age, and sex. Here, we classify astroglial pathophysiology into (i) reactive astrogliosis, (ii) astroglial atrophy with loss of function, (iii) astroglial degeneration and death, and (iv) astrocytopathies characterised by aberrant forms that drive disease. We review astroglial pathophysiology across the spectrum of human CNS diseases and disorders, including neurotrauma, stroke, neuroinfection, autoimmune attack and epilepsy, as well as neurodevelopmental, neurodegenerative, metabolic and neuropsychiatric disorders. Characterising cellular and molecular mechanisms of astroglial pathophysiology represents a new frontier to identify novel therapeutic strategies.
Collapse
Affiliation(s)
- Alexei Verkhratsky
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China.
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.
- Achucarro Centre for Neuroscience, IKERBASQUE, Basque Foundation for Science, Bilbao, Spain.
- Department of Stem Cell Biology, State Research Institute Centre for Innovative Medicine, LT-01102, Vilnius, Lithuania.
| | - Arthur Butt
- Institute of Biomedical and Biomolecular Sciences, School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK
| | - Baoman Li
- Department of Forensic Analytical Toxicology, School of Forensic Medicine, China Medical University, Shenyang, China
| | - Peter Illes
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Rudolf Boehm Institute for Pharmacology and Toxicology, University of Leipzig, 04109, Leipzig, Germany
| | - Robert Zorec
- Celica Biomedical, Lab Cell Engineering, Technology Park, 1000, Ljubljana, Slovenia
- Laboratory of Neuroendocrinology-Molecular Cell Physiology, Institute of Pathophysiology, University of Ljubljana, Faculty of Medicine, Ljubljana, Slovenia
| | - Alexey Semyanov
- Department of Physiology, Jiaxing University College of Medicine, 314033, Jiaxing, China
| | - Yong Tang
- International Joint Research Centre on Purinergic Signalling/School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
- Key Laboratory of Acupuncture for Senile Disease (Chengdu University of TCM), Ministry of Education/Acupuncture and Chronobiology Key Laboratory of Sichuan Province, Chengdu, China.
| | - Michael V Sofroniew
- Department of Neurobiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA.
| |
Collapse
|
196
|
Wang Y, Liu W, Geng P, Du W, Guo C, Wang Q, Zheng GQ, Jin X. Role of Crosstalk between Glial Cells and Immune Cells in Blood-Brain Barrier Damage and Protection after Acute Ischemic Stroke. Aging Dis 2023; 15:2507-2525. [PMID: 37962453 PMCID: PMC11567273 DOI: 10.14336/ad.2023.1010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/10/2023] [Indexed: 11/15/2023] Open
Abstract
Blood-brain barrier (BBB) damage is the main pathological basis for acute ischemic stroke (AIS)-induced cerebral vasogenic edema and hemorrhagic transformation (HT). Glial cells, including microglia, astrocytes, and oligodendrocyte precursor cells (OPCs)/oligodendrocytes (OLs) play critical roles in BBB damage and protection. Recent evidence indicates that immune cells also have an important role in BBB damage, vasogenic edema and HT. Therefore, regulating the crosstalk between glial cells and immune cells would hold the promise to alleviate AIS-induced BBB damage. In this review, we first introduce the roles of glia cells, pericytes, and crosstalk between glial cells in the damage and protection of BBB after AIS, emphasizing the polarization, inflammatory response and crosstalk between microglia, astrocytes, and other glia cells. We then describe the role of glial cell-derived exosomes in the damage and protection of BBB after AIS. Next, we specifically discuss the crosstalk between glial cells and immune cells after AIS. Finally, we propose that glial cells could be a potential target for alleviating BBB damage after AIS and we discuss some molecular targets and potential strategies to alleviate BBB damage by regulating glial cells after AIS.
Collapse
Affiliation(s)
- Yihui Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Wencao Liu
- Shanxi Provincial People's Hospital, Taiyuan 030001, China.
| | - Panpan Geng
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Weihong Du
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Chun Guo
- School of Biosciences, University of Sheffield, Firth Court, Western Bank, Sheffield, UK.
| | - Qian Wang
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| | - Guo-qing Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, China
| | - Xinchun Jin
- Beijing Key Laboratory of Cancer Invasion and Metastasis Research, Department of Histology and Embryology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
197
|
Mihajlovic K, Bukvic MA, Dragic M, Scortichini M, Jacobson KA, Nedeljkovic N. Anti-inflammatory potency of novel ecto-5'-nucleotidase/CD73 inhibitors in astrocyte culture model of neuroinflammation. Eur J Pharmacol 2023; 956:175943. [PMID: 37541364 PMCID: PMC10527948 DOI: 10.1016/j.ejphar.2023.175943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/03/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Three novel cytosine-derived α,β-methylene diphosphonates designated MRS4598, MRS4552, and MRS4602 were tested in the range of 1 × 10-9 to 1 × 10-3 M for their efficacy and potency in inhibiting membrane-bound ecto-5'-nucleotidase/CD73 activity in primary astrocytes in vitro. The compounds were also tested for their ability to attenuate the reactive astrocyte phenotype induced by proinflammatory cytokines. The main findings are as follows: A) The tested compounds induced concentration-dependent inhibition of CD73 activity, with maximal inhibition achieved at ∼1 × 10-3M; B) All compounds showed high inhibitory potency, as reflected by IC50 values in the submicromolar range; C) All compounds showed high binding capacity, as reflected by Ki values in the low nanomolar range; D) Among the tested compounds, MRS4598 showed the highest inhibitory efficacy and potency, as reflected by IC50 and Ki values of 0.11 μM and 18.2 nM; E) Neither compound affected astrocyte proliferation and cell metabolic activity at concentrations near to IC50; E) MRS4598 was able to inhibit CD73 activity in reactive astrocytes stimulated with TNF-α and to induce concentration-dependent inhibition of CD73 in reactive astrocytes stimulated with IL-1β, with an order of magnitude higher IC50 value; F) MRS4598 was the only compound tested that was able to induce shedding of the CD73 from astrocyte membranes and to enhance astrocyte migration in the scratch wound migration assay, albeit at concentration well above its IC50 value. Given the role of CD73 in neurodegenerative diseases, MRS4598, MRS4552, and MRS4602 are promising pharmacological tools for the treatment of neurodegeneration and neuroinflammation.
Collapse
Affiliation(s)
- Katarina Mihajlovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Marija Adzic Bukvic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Milorad Dragic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia
| | - Mirko Scortichini
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Nadezda Nedeljkovic
- Laboratory for Neurobiology, Department of General Physiology and Biophysics, Faculty of Biology University of Belgrade, Serbia.
| |
Collapse
|
198
|
Chen R, Routh BN, Gaudet AD, Fonken LK. Circadian Regulation of the Neuroimmune Environment Across the Lifespan: From Brain Development to Aging. J Biol Rhythms 2023; 38:419-446. [PMID: 37357738 PMCID: PMC10475217 DOI: 10.1177/07487304231178950] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2023]
Abstract
Circadian clocks confer 24-h periodicity to biological systems, to ultimately maximize energy efficiency and promote survival in a world with regular environmental light cycles. In mammals, circadian rhythms regulate myriad physiological functions, including the immune, endocrine, and central nervous systems. Within the central nervous system, specialized glial cells such as astrocytes and microglia survey and maintain the neuroimmune environment. The contributions of these neuroimmune cells to both homeostatic and pathogenic demands vary greatly across the day. Moreover, the function of these cells changes across the lifespan. In this review, we discuss circadian regulation of the neuroimmune environment across the lifespan, with a focus on microglia and astrocytes. Circadian rhythms emerge in early life concurrent with neuroimmune sculpting of brain circuits and wane late in life alongside increasing immunosenescence and neurodegeneration. Importantly, circadian dysregulation can alter immune function, which may contribute to susceptibility to neurodevelopmental and neurodegenerative diseases. In this review, we highlight circadian neuroimmune interactions across the lifespan and share evidence that circadian dysregulation within the neuroimmune system may be a critical component in human neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruizhuo Chen
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
| | - Brandy N. Routh
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| | - Andrew D. Gaudet
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
- Department of Psychology, The University of Texas at Austin, Austin, Texas
- Department of Neurology, Dell Medical School, The University of Texas at Austin, Austin, Texas
| | - Laura K. Fonken
- Division of Pharmacology & Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, Texas
- Institute for Neuroscience, The University of Texas at Austin, Austin, Texas
| |
Collapse
|
199
|
Hastings N, Yu Y, Huang B, Middya S, Inaoka M, Erkamp NA, Mason RJ, Carnicer‐Lombarte A, Rahman S, Knowles TPJ, Bance M, Malliaras GG, Kotter MRN. Electrophysiological In Vitro Study of Long-Range Signal Transmission by Astrocytic Networks. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301756. [PMID: 37485646 PMCID: PMC10582426 DOI: 10.1002/advs.202301756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/09/2023] [Indexed: 07/25/2023]
Abstract
Astrocytes are diverse brain cells that form large networks communicating via gap junctions and chemical transmitters. Despite recent advances, the functions of astrocytic networks in information processing in the brain are not fully understood. In culture, brain slices, and in vivo, astrocytes, and neurons grow in tight association, making it challenging to establish whether signals that spread within astrocytic networks communicate with neuronal groups at distant sites, or whether astrocytes solely respond to their local environments. A multi-electrode array (MEA)-based device called AstroMEA is designed to separate neuronal and astrocytic networks, thus allowing to study the transfer of chemical and/or electrical signals transmitted via astrocytic networks capable of changing neuronal electrical behavior. AstroMEA demonstrates that cortical astrocytic networks can induce a significant upregulation in the firing frequency of neurons in response to a theta-burst charge-balanced biphasic current stimulation (5 pulses of 100 Hz × 10 with 200 ms intervals, 2 s total duration) of a separate neuronal-astrocytic group in the absence of direct neuronal contact. This result corroborates the view of astrocytic networks as a parallel mechanism of signal transmission in the brain that is separate from the neuronal connectome. Translationally, it highlights the importance of astrocytic network protection as a treatment target.
Collapse
Affiliation(s)
- Nataly Hastings
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Yi‐Lin Yu
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Department of Neurological SurgeryTri‐Service General HospitalNational Defence Medical CentreTaipei, Neihu District11490Taiwan
| | - Botian Huang
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | - Sagnik Middya
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Misaki Inaoka
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Nadia A. Erkamp
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
| | - Roger J. Mason
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | | | - Saifur Rahman
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| | - Tuomas P. J. Knowles
- Yusuf Hamied Department of ChemistryCentre for Misfolding DiseasesUniversity of CambridgeLensfield RoadCambridgeCB2 1EWUK
- Cavendish LaboratoryDepartment of PhysicsUniversity of CambridgeJ J Thomson AveCambridgeCB3 0HEUK
| | - Manohar Bance
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
| | - George G. Malliaras
- Electrical Engineering DivisionDepartment of EngineeringUniversity of CambridgeCambridgeCB3 0FAUK
| | - Mark R. N. Kotter
- Department of Clinical NeurosciencesUniversity of CambridgeCambridgeCB2 0QQUK
- Wellcome‐MRC Cambridge Stem Cell InstituteUniversity of CambridgeCambridgeCB2 0AWUK
| |
Collapse
|
200
|
Ye J, Wen Z, Wu T, Chen L, Sheng L, Wang C, Teng C, Wu B, Xu J, Wei W. Single-Cell Sequencing Reveals the Optimal Time Window for Anti-Inflammatory Treatment in Spinal Cord Injury. Adv Biol (Weinh) 2023; 7:e2300098. [PMID: 37085744 DOI: 10.1002/adbi.202300098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/02/2023] [Indexed: 04/23/2023]
Abstract
Though the occurrence of neuroinflammation after spinal cord injury (SCI) is essential for antigen clearance and tissue repair, excessive inflammation results in cell death and axon dieback. The effect of anti-inflammatory medicine used in clinical treatment remains debatable owing to the inappropriate therapeutic schedule that does not align with the biological process of immune reaction. A better understanding of the immunity process is critical to promote effective anti-inflammatory therapeutics. However, cellular heterogeneity, which results in complex cellular functions, is a major challenge. This study performs single-cell RNA sequencing by profiling the tissue proximity to the injury site at different time points after SCI. Depending on the analysis of single-cell data and histochemistry observation, an appropriate time window for anti-inflammatory medicine treatment is proposed. This work also verifies the mechanism of typical anti-inflammatory medicine methylprednisolone sodium succinate (MPSS), which is found attributable to the activation inhibition of cells with pro-inflammatory phenotype through the downregulation of pathways such as TNF, IL2, and MIF. These pathways can also be provided as targets for anti-inflammatory treatment. Collectively, this work provides a therapeutic schedule of 1-3 dpi (days post injury) to argue against classical early pulse therapy and provides some pathways for target therapy in the future.
Collapse
Affiliation(s)
- Jingjia Ye
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Zhengfa Wen
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Tianxin Wu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Liangliang Chen
- College of Computer Science and Technology, Zhejiang University, Hangzhou, 310000, China
| | - Lingchao Sheng
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Chenhuan Wang
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Chong Teng
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Bingbing Wu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Jian Xu
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| | - Wei Wei
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, 322000, China
| |
Collapse
|