151
|
He M, Liu A, Shi J, Xu YJ, Liu Y. Multi-Omics Reveals the Effects of Cannabidiol on Gut Microbiota and Metabolic Phenotypes. Cannabis Cannabinoid Res 2024; 9:714-727. [PMID: 37098174 DOI: 10.1089/can.2022.0331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/27/2023] Open
Abstract
Introduction: Cannabidiol (CBD) has important pharmacological activity, which includes antispasmodic, antioxidant, antithrombotic, and antianxiety properties. CBD has been applied as a health supplement to atherosclerosis. However, CBDs effect on gut microbiota and metabolic phenotype is unclear. Materials and Methods: We constructed a high production of cardiovascular risk factors, such as trimethylamine-N-oxide (TMAO) and phenylacetylglutamine (PAGln), in a mouse model using Clostridium sporogenes colonization. We used 16S ribosomal RNA (rRNA) gene sequencing and ultra-high performance liquid chromatography-quadrupole time-of flight mass spectrometry-based metabolomics to evaluate the effect of CBD on gut microbiota and plasma metabolites. Results: CBD decreased the levels of creatine kinase (CK), alanine transaminase (ALT), and low-density lipoprotein cholesterol and markedly increased high-density lipoprotein cholesterol. Furthermore, CBD treatment increased the abundance of beneficial bacteria, which include Lachnospiraceae_NK4A136 and Blautia in the gut, but it decreased the levels of TMAO and PAGln in the plasma. Conclusion: CBD might have beneficial effects for cardiovascular protection.
Collapse
Affiliation(s)
- Mengxue He
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Aiyang Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Jiachen Shi
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yong-Jiang Xu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, National Engineering Research Center for Functional Food, National Engineering Laboratory for Cereal Fermentation Technology, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, Jiangnan University, Wuxi, China
| |
Collapse
|
152
|
Zhang X, Jia L, Ma Q, Zhang X, Chen M, Liu F, Zhang T, Jia W, Zhu L, Qi W, Wang N. Astragalus Polysaccharide Modulates the Gut Microbiota and Metabolites of Patients with Type 2 Diabetes in an In Vitro Fermentation Model. Nutrients 2024; 16:1698. [PMID: 38892631 PMCID: PMC11174380 DOI: 10.3390/nu16111698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
This study investigated the effect of astragalus polysaccharide (APS, an ingredient with hypoglycemic function in a traditional Chinese herbal medicine) on gut microbiota and metabolites of type 2 diabetes mellitus (T2DM) patients using a simulated fermentation model in vitro. The main components of APS were isolated, purified, and structure characterized. APS fermentation was found to increase the abundance of Lactobacillus and Bifidobacterium and decrease the Escherichia-Shigella level in the fecal microbiota of T2DM patients. Apart from increasing propionic acid, APS also caused an increase in all-trans-retinoic acid and thiamine (both have antioxidant properties), with their enrichment in the KEGG pathway associated with thiamine metabolism, etc. Notably, APS could also enhance fecal antioxidant properties. Correlation analysis confirmed a significant positive correlation of Lactobacillus with thiamine and DPPH-clearance rate, suggesting the antioxidant activity of APS was related to its ability to enrich some specific bacteria and upregulate their metabolites.
Collapse
Affiliation(s)
- Xin Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Lina Jia
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Qian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Xiaoyuan Zhang
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China; (X.Z.); (M.C.); (F.L.)
| | - Mian Chen
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China; (X.Z.); (M.C.); (F.L.)
| | - Fei Liu
- Shandong Academy of Pharmaceutical Sciences, Key Laboratory of Biopharmaceuticals, Engineering Laboratory of Polysaccharide Drugs, National-Local Joint Engineering Laboratory of Polysaccharide Drugs, Postdoctoral Scientific Research Workstation, Jinan 2501011, China; (X.Z.); (M.C.); (F.L.)
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Weiguo Jia
- The Center of Gerontology and Geriatrics, National Clinical Research Center of Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China;
| | - Liying Zhu
- Institute of Food Science, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China;
| | - Wei Qi
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| | - Nan Wang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin 300457, China; (X.Z.); (L.J.); (Q.M.); (T.Z.); (W.Q.)
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education and Tianjin, Tianjin 300457, China
| |
Collapse
|
153
|
Kouraki A, Nogal A, Nocun W, Louca P, Vijay A, Wong K, Michelotti GA, Menni C, Valdes AM. Machine Learning Metabolomics Profiling of Dietary Interventions from a Six-Week Randomised Trial. Metabolites 2024; 14:311. [PMID: 38921446 PMCID: PMC11205626 DOI: 10.3390/metabo14060311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/21/2024] [Accepted: 05/27/2024] [Indexed: 06/27/2024] Open
Abstract
Metabolomics can uncover physiological responses to prebiotic fibre and omega-3 fatty acid supplements with known health benefits and identify response-specific metabolites. We profiled 534 stool and 799 serum metabolites in 64 healthy adults following a 6-week randomised trial comparing daily omega-3 versus inulin supplementation. Elastic net regressions were used to separately identify the serum and stool metabolites whose change in concentration discriminated between the two types of supplementations. Random forest was used to explore the gut microbiome's contribution to the levels of the identified metabolites from matching stool samples. Changes in serum 3-carboxy-4-methyl-5-propyl-2-furanpropanoate and indoleproprionate levels accurately discriminated between fibre and omega-3 (area under the curve (AUC) = 0.87 [95% confidence interval (CI): 0.63-0.99]), while stool eicosapentaenoate indicated omega-3 supplementation (AUC = 0.86 [95% CI: 0.64-0.98]). Univariate analysis also showed significant increases in indoleproprionate with fibre, 3-carboxy-4-methyl-5-propyl-2-furanpropanoate, and eicosapentaenoate with omega-3. Out of these, only the change in indoleproprionate was partly explained by changes in the gut microbiome composition (AUC = 0.61 [95% CI: 0.58-0.64] and Rho = 0.21 [95% CI: 0.08-0.34]) and positively correlated with the increase in the abundance of the genus Coprococcus (p = 0.005). Changes in three metabolites discriminated between fibre and omega-3 supplementation. The increase in indoleproprionate with fibre was partly explained by shifts in the gut microbiome, particularly Coprococcus, previously linked to better health.
Collapse
Affiliation(s)
- Afroditi Kouraki
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
| | - Ana Nogal
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Weronika Nocun
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Panayiotis Louca
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
- Human Nutrition and Exercise Research Centre, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Amrita Vijay
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
| | - Kari Wong
- Metabolon Inc., Research Triangle Park, Morrisville, NC 27560, USA
| | | | - Cristina Menni
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Ana M. Valdes
- Academic Unit of Injury, Recovery and Inflammation Sciences, Rheumatology, School of Medicine, University of Nottingham, Nottingham NG7 2UH, UK
- NIHR Nottingham Biomedical Research Centre, Nottingham University Hospitals NHS Trust and the University of Nottingham, Nottingham NG7 2UH, UK
- Pain Centre Versus Arthritis, University of Nottingham, Nottingham NG5 1PB, UK
| |
Collapse
|
154
|
Yang M, Cai W, Li X, Deng Y, Li J, Wang X, Zhu L, Wang C, Li X. The Effect of Type 2 Resistant Starch and Indole-3-Propionic Acid on Ameliorating High-Fat-Diet-Induced Hepatic Steatosis and Gut Dysbiosis. Foods 2024; 13:1625. [PMID: 38890854 PMCID: PMC11172015 DOI: 10.3390/foods13111625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/16/2024] [Accepted: 05/21/2024] [Indexed: 06/20/2024] Open
Abstract
Owing to the interplay of genetic and environmental factors, obesity has emerged as a significant global public health concern. To gain enhanced control over obesity, we examined the effects of type 2 resistant starch (RS2) and its promoted microbial-derived metabolite, indole-3-propionic acid (IPA), on hepatic steatosis, antioxidant activity, and gut microbiota in obese mice. Neither RS2 nor low-dose IPA (20 mg kg-1) exhibited a reduction in body weight or improved glucose and lipid metabolism in post-obesity state mice continuously fed the high-fat diet (HFD). However, both interventions improved hepatic steatosis, with RS2 being more effective in all measured parameters, potentially due to changes in gut microbiota and metabolites not solely attributed to IPA. LC-MS/MS analysis revealed increased serum IPA levels in both RS2 and IPA groups, which positively correlated with Bifidobacterium and Clostridium. Moreover, RS2 exhibited a more significant restoration of gut dysbiosis by promoting the abundance of health-promoting bacteria including Faecalibaculum and Bifidobacterium. These findings suggest that the regulatory role of RS2 on tryptophan metabolism only partially explains its prebiotic activity. Future studies should consider increasing the dose of IPA and combining RS2 and IPA to explore their potential interventions in obesity.
Collapse
Affiliation(s)
- Min Yang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (M.Y.); (W.C.)
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| | - Wanhao Cai
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (M.Y.); (W.C.)
| | - Xinxin Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| | - Yixuan Deng
- The 2nd School of Medicine, Wenzhou Medical University, Chashan University Town, Wenzhou 325035, China;
| | - Jinjun Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| | - Xin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| | - Liying Zhu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| | - Chong Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, College of Animal Science and Technology and College of Veterinary Medicine, Zhejiang Agriculture and Forestry University, Hangzhou 311300, China; (M.Y.); (W.C.)
| | - Xiaoqiong Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products & Institute of Food Sciences, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (X.L.); (J.L.); (X.W.); (L.Z.)
| |
Collapse
|
155
|
Zhang Y, Han L, Dong J, Yuan Z, Yao W, Ji P, Hua Y, Wei Y. Shaoyao decoction improves damp-heat colitis by activating the AHR/IL-22/STAT3 pathway through tryptophan metabolism driven by gut microbiota. JOURNAL OF ETHNOPHARMACOLOGY 2024; 326:117874. [PMID: 38342152 DOI: 10.1016/j.jep.2024.117874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The efficacy of Shaoyao Decoction (SYD), a traditional Chinese medicine prescription, in treating damp-heat colitis is established, but its underlying mechanism remains to be elucidated. AIM OF THE STUDY Our study aims to investigate the effect and mechanism of action of SYD in treating damp-heat colitis. MATERIALS AND METHODS A mouse model of damp-heat colitis was induced and treated with SYD via gavage for seven days. The therapeutic efficacy of SYD was assessed through clinical indicators and histopathological examinations. The inflammatory factors and oxidative stress parameters were detected by ELISA and biochemical kits. We also analyzed alterations in the gut microbiome via 16 S rRNA gene sequencing and quantified serum indole derivatives using targeted tryptophan metabolomics. Western blotting and immunofluorescence were used to detect the expressions of AHR, CYP1A1, STAT3 and tight junction (TJ) proteins. The ELISA kit was utilized to detect the content of antibacterial peptides (Reg3β and Reg3γ) in colon. The immunohistochemistry was employed to detect the expressions of proliferating cell nuclear antigen (PCNA) protein. RESULTS SYD effectively alleviated symptoms in mice with damp-heat colitis, including body weight loss, shortened colon, elevated DAI, enlarged spleen, and damage to the intestinal mucosa. SYD notably reduced IL-6, TNF-α, IL-1β and MDA levels in colon tissues, while increasing IL-10 and T-AOC levels. Furthermore, SYD mitigated gut microbiota disturbance, restored microbial tryptophan metabolite production (such as IA, IAA, and IAld), notably increased the protein levels of AHR, CYP1A1 and p-STAT3 in colon tissue, and elevated the IL-22 level. Moreover, the expression levels of Reg3β, Reg3γ, occludin, ZO-1 and PCNA were increased in SYD group. CONCLUSION Our study showed that SYD ameliorates damp-heat colitis by restructuring gut microbiota structure, enhancing the metabolism of tryptophan associated with gut microbiota to activate the AHR/IL-22/STAT3 pathway, thereby recovering damaged intestinal mucosa. This research offers novel insights into the therapeutic mechanisms of SYD on damp-heat colitis.
Collapse
Affiliation(s)
- Yahui Zhang
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Luoxia Han
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiaqi Dong
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Ziwen Yuan
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Wanling Yao
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Peng Ji
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yongli Hua
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China
| | - Yanming Wei
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
156
|
Shi Y, Guo S, Zhou J, Xu P, Wang Y. Black tea preserves intestinal homeostasis through balancing barriers and microbiota in mice. Front Nutr 2024; 11:1367047. [PMID: 38835958 PMCID: PMC11148374 DOI: 10.3389/fnut.2024.1367047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/30/2024] [Indexed: 06/06/2024] Open
Abstract
Introduction Black tea, a beverage consumed worldwide, possesses favorable effects on gastrointestinal tract, including nourishing stomach and promoting digestion. Nevertheless, its specific effects on intestinal homeostasis remains inconclusive. Methods We applied black tea to mice prior to inducing colitis with DSS and then monitored their body weight and disease activity index (DAI) daily. When sacrificed, we measured intestinal permeability and conducted analyses of mucin and tight junction proteins. We detected inflammatory cytokines, immune cells, and related inflammatory signaling pathways. In addition, the gut microbiota was analyzed through 16S rRNA sequencing, and the concentrations of short-chain fatty acids (SCFAs) were also measured. Results The results showed that black tea-treated group significantly rescued the DSS-disrupted intestinal structure. It reduced the relative abundance of the pathogenic bacterium Turicibacter, while increased the abundance of beneficial bacteria norank_f_Muribaculaceae and restored the contents of SCFAs such as acetate, propionate, and butyrate. It also protected the intestinal barrier by reducing the levels of immune response-related factors (e.g., TNF-α, IL-6, IL-1β) and increasing the expression of tight junction proteins (TJs) (e.g., ZO-1, occludin). Furthermore, black tea exhibited the capacity to suppress the expression of MMP-9 and ICAM-1, as well as to inhibit the activation of NF-κB signaling pathway. Discussion Our findings provide a theoretical framework that elucidates the mechanisms by which black tea preserves intestinal homeostasis, highlighting its potential as a preventive strategy against intestinal disruptions. This study contributes to the understanding of the dietary effects of black tea on gastrointestinal health.
Collapse
Affiliation(s)
- Yuxuan Shi
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Shasha Guo
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Jihong Zhou
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Ping Xu
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| | - Yuefei Wang
- Institute of Tea Science, Zhejiang University, Hangzhou, China
- Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, China
| |
Collapse
|
157
|
Chang H, Sun J, Ma J, Zhao Y, Guo T, Wei Y, Cong H, Yin L, Zhang X, Wang H. Decreased serum tryptophan levels in patients with MOGAD:a cross-sectional survey. Clin Chim Acta 2024; 558:119669. [PMID: 38599541 DOI: 10.1016/j.cca.2024.119669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 04/02/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
BACKGROUND Myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) is an inflammatory demyelinating disorder of central nervous system (CNS). Tryptophan indole catabolites have been reported to associate with the inflammatory diseases of the CNS. However, the roles of tryptophan indole catabolites have been rarely elucidated in MOGAD. METHODS This cross-sectional study enrolled forty MOGAD patients, twenty patients with other non-inflammatory neurological diseases (OND) and thirty-five healthy participants. Serum and cerebrospinal fluid (CSF) samples of MOGAD and OND subjects during clinical attacks, serum samples of healthy participants were obtained. The concentrations of tryptophan, indoleacetic acid (IAA), indoleacrylic acid (IA) and indole-3-carboxylic acid (I-3-CA) were measured using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS). The correlations between tryptophan indole catabolites and maintenance immunotherapy, disease duration, overall numbers of attacks, short-term outcome in MOGAD patients were investigated. RESULTS Levels of serum tryptophan, IAA, IA and CSF tryptophan in MOGAD patients were significantly decreased, while levels of serum I-3-CA and CSF IA were markedly increased compared with OND patients and healthy controls. Levels of serum tryptophan, CSF tryptophan and IA were significantly decreased in MOGAD patients who had received maintenance immunotherapy within 6 months before the attack. In MOGAD patients, serum and CSF tryptophan conversely correlated with disease duration and overall numbers of attacks, and serum IA negatively correlated with disease duration. Furthermore, serum tryptophan in MOGAD patients negatively correlated with the modified Rankin Scale (mRS) scores at 3 months. CONCLUSION This study manifested decreased serum tryptophan levels and serum tryptophan may be the potential marker to predict the short-term outcome in MOGAD patients.
Collapse
Affiliation(s)
- Haoxiao Chang
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jiali Sun
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Jia Ma
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China; Department of Neurology, Beijing Shunyi Hospital, Beijing 101300, China
| | - Yaobo Zhao
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Tianshu Guo
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Yuzhen Wei
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Hengri Cong
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Linlin Yin
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China
| | - Xinghu Zhang
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| | - Huabing Wang
- Neuroinfection and Neuroimmunology Center, Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing 100070, China.
| |
Collapse
|
158
|
Alexander M, Upadhyay V, Rock R, Ramirez L, Trepka K, Puchalska P, Orellana D, Ang QY, Whitty C, Turnbaugh JA, Tian Y, Dumlao D, Nayak R, Patterson A, Newman JC, Crawford PA, Turnbaugh PJ. A diet-dependent host metabolite shapes the gut microbiota to protect from autoimmunity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.02.565382. [PMID: 37961209 PMCID: PMC10635093 DOI: 10.1101/2023.11.02.565382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Diet can protect from autoimmune disease; however, whether diet acts via the host and/or microbiome remains unclear. Here, we use a ketogenic diet (KD) as a model to dissect these complex interactions. A KD rescued the experimental autoimmune encephalomyelitis (EAE) mouse model of multiple sclerosis in a microbiota-dependent fashion. Dietary supplementation with a single KD-dependent host metabolite (β-hydroxybutyrate, βHB) rescued EAE whereas transgenic mice unable to produce βHB in the intestine developed more severe disease. Transplantation of the βHB-shaped gut microbiota was protective. Lactobacillus sequence variants were associated with decreased T helper 17 (Th17) cell activation in vitro . Finally, we isolated a L. murinus strain that protected from EAE, which was phenocopied by the Lactobacillus metabolite indole lactic acid. Thus, diet alters the immunomodulatory potential of the gut microbiota by shifting host metabolism, emphasizing the utility of taking a more integrative approach to study diet-host-microbiome interactions.
Collapse
|
159
|
Luo K, Taryn A, Moon EH, Peters BA, Solomon SD, Daviglus ML, Kansal MM, Thyagarajan B, Gellman MD, Cai J, Burk RD, Knight R, Kaplan RC, Cheng S, Rodriguez CJ, Qi Q, Yu B. Gut microbiota, blood metabolites, and left ventricular diastolic dysfunction in US Hispanics/Latinos. MICROBIOME 2024; 12:85. [PMID: 38725043 PMCID: PMC11084054 DOI: 10.1186/s40168-024-01797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/21/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND Left ventricular diastolic dysfunction (LVDD) is an important precursor of heart failure (HF), but little is known about its relationship with gut dysbiosis and microbial-related metabolites. By leveraging the multi-omics data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL), a study with population at high burden of LVDD, we aimed to characterize gut microbiota associated with LVDD and identify metabolite signatures of gut dysbiosis and incident LVDD. RESULTS We included up to 1996 Hispanic/Latino adults (mean age: 59.4 years; 67.1% female) with comprehensive echocardiography assessments, gut microbiome, and blood metabolome data. LVDD was defined through a composite criterion involving tissue Doppler assessment and left atrial volume index measurements. Among 1996 participants, 916 (45.9%) had prevalent LVDD, and 212 out of 594 participants without LVDD at baseline developed incident LVDD over a median 4.3 years of follow-up. Using multivariable-adjusted analysis of compositions of microbiomes (ANCOM-II) method, we identified 7 out of 512 dominant gut bacterial species (prevalence > 20%) associated with prevalent LVDD (FDR-q < 0.1), with inverse associations being found for Intestinimonas_massiliensis, Clostridium_phoceensis, and Bacteroide_coprocola and positive associations for Gardnerella_vaginali, Acidaminococcus_fermentans, Pseudomonas_aeruginosa, and Necropsobacter_massiliensis. Using multivariable adjusted linear regression, 220 out of 669 circulating metabolites with detection rate > 75% were associated with the identified LVDD-related bacterial species (FDR-q < 0.1), with the majority being linked to Intestinimonas_massiliensis, Clostridium_phoceensis, and Acidaminococcus_fermentans. Furthermore, 46 of these bacteria-associated metabolites, mostly glycerophospholipids, secondary bile acids, and amino acids, were associated with prevalent LVDD (FDR-q < 0.1), 21 of which were associated with incident LVDD (relative risk ranging from 0.81 [p = 0.001, for guanidinoacetate] to 1.25 [p = 9 × 10-5, for 1-stearoyl-2-arachidonoyl-GPE (18:0/20:4)]). The inclusion of these 21 bacterial-related metabolites significantly improved the prediction of incident LVDD compared with a traditional risk factor model (the area under the receiver operating characteristic curve [AUC] = 0.73 vs 0.70, p = 0.001). Metabolite-based proxy association analyses revealed the inverse associations of Intestinimonas_massilliensis and Clostridium_phoceensis and the positive association of Acidaminococcus_fermentans with incident LVDD. CONCLUSION In this study of US Hispanics/Latinos, we identified multiple gut bacteria and related metabolites linked to LVDD, suggesting their potential roles in this preclinical HF entity. Video Abstract.
Collapse
Affiliation(s)
- Kai Luo
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Alkis Taryn
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Eun-Hye Moon
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Scott D Solomon
- Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Martha L Daviglus
- Institute for Minority Health Research, University of Illinois Chicago College of Medicine, Chicago, IL, 60612, USA
| | - Mayank M Kansal
- Clinical Medicine, University of Illinois College of Medicine, Chicago, IL, 60612, USA
| | - Bharat Thyagarajan
- Department of Laboratory Medicine & Pathology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Marc D Gellman
- Department of Psychology, Clinical Research Building, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| | - Jianwen Cai
- Department of Biostatistics, The University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Microbiology and Immunology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Obstetrics and Gynecology and Women's Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Pediatrics, Albert Einstein College of Medicine, NY10461, Bronx, USA
| | - Rob Knight
- Center for Microbiome Innovation, University of California, La Jolla, San Diego, CA, 92093, USA
- Department of Bioengineering, University of California, La Jolla, San Diego, CA, 92093, USA
- Department of Pediatrics, University of California, La Jolla, San Diego, CA, 92093, USA
- Department of Computer Science and Engineering, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, 98109, USA
| | - Susan Cheng
- Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA, 90048, USA
| | - Carlos J Rodriguez
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, 02115, USA.
| | - Bing Yu
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
160
|
Fu H, Li D, Shuai W, Kong B, Wang X, Tang Y, Huang H, Huang C. Effects of Phenylacetylglutamine on the Susceptibility of Atrial Fibrillation in Overpressure-Induced HF Mice. Mol Cell Biol 2024; 44:149-163. [PMID: 38725392 PMCID: PMC11110696 DOI: 10.1080/10985549.2024.2345363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/16/2024] [Indexed: 05/18/2024] Open
Abstract
Phenylacetylglutamine (PAGln), a gut metabolite is substantially elevated in heart failure (HF). The increase of PAGln in plasma is associated with atrial fibrillation (AF), and contributes to AF pathogenesis. However, the role of PAGln in AF with HF remains uncertain. Therefore, this study aimed to determine the effect of PAGln on AF after HF. Thoracic aortic coarctation (TAC) created overpressure-induced HF mice for 4 weeks. Histopathology, biochemical, echocardiographic for assessment of cardiac function, and electrophysiological examination of several electrophysiological indexes (ERP, SNRT, and the occurrence rate of AF) were performed at the end of the HF mice model. We found that plasma PAGln levels were significantly elevated in PAGln-treated HF mice and that PAGln aggravated maladaptive structural remodeling and electrical remodeling, which aggravated the vulnerability of AF, shortened the ERP duration, prolonged the SNRT, increased the occurrence rate of AF in HF mice. Mechanistically, PAGln exacerbated ROS accumulation and increased the levels of phosphorylated PLB and CAMK II. Overall, PAGln played a vital role in promoting the occurrence of AF in HF mice by activating the CAMK II signaling pathway.
Collapse
Affiliation(s)
- Hui Fu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Dengke Li
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Wei Shuai
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Bin Kong
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Xi Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Yanhong Tang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - He Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, Hubei, China
- Hubei Key Laboratory of Cardiology, Wuhan, Hubei, China
| |
Collapse
|
161
|
Li TT, Chen X, Huo D, Arifuzzaman M, Qiao S, Jin WB, Shi H, Li XV, Iliev ID, Artis D, Guo CJ. Microbiota metabolism of intestinal amino acids impacts host nutrient homeostasis and physiology. Cell Host Microbe 2024; 32:661-675.e10. [PMID: 38657606 PMCID: PMC11636940 DOI: 10.1016/j.chom.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 01/23/2024] [Accepted: 04/02/2024] [Indexed: 04/26/2024]
Abstract
The intestine and liver are thought to metabolize dietary nutrients and regulate host nutrient homeostasis. Here, we find that the gut microbiota also reshapes the host amino acid (aa) landscape via efficiently metabolizing intestinal aa. To identify the responsible microbes/genes, we developed a metabolomics-based assay to screen 104 commensals and identified candidates that efficiently utilize aa. Using genetics, we identified multiple responsible metabolic genes in phylogenetically diverse microbes. By colonizing germ-free mice with the wild-type strain and their isogenic mutant deficient in individual aa-metabolizing genes, we found that these genes regulate the availability of gut and circulatory aa. Notably, microbiota genes for branched-chain amino acids (BCAAs) and tryptophan metabolism indirectly affect host glucose homeostasis via peripheral serotonin. Collectively, at single-gene level, this work characterizes a microbiota-encoded metabolic activity that affects host nutrient homeostasis and provides a roadmap to interrogate microbiota-dependent activity to improve human health.
Collapse
Affiliation(s)
- Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Xi Chen
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Da Huo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Shanshan Qiao
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Huiqing Shi
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Xin V Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Iliyan D Iliev
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Gastroenterology and Hepatology Division, Joan and Sanford I. Weill Department of Medicine, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA; Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, Cornell University, New York, NY 10065, USA.
| |
Collapse
|
162
|
Goris T, Braune A. Genomics and physiology of Catenibacillus, human gut bacteria capable of polyphenol C-deglycosylation and flavonoid degradation. Microb Genom 2024; 10:001245. [PMID: 38785231 PMCID: PMC11170127 DOI: 10.1099/mgen.0.001245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
The genus Catenibacillus (family Lachnospiraceae, phylum Bacillota) includes only one cultivated species so far, Catenibacillus scindens, isolated from human faeces and capable of deglycosylating dietary polyphenols and degrading flavonoid aglycones. Another human intestinal Catenibacillus strain not taxonomically resolved at that time was recently genome-sequenced. We analysed the genome of this novel isolate, designated Catenibacillus decagia, and showed its ability to deglycosylate C-coupled flavone and xanthone glucosides and O-coupled flavonoid glycosides. Most of the resulting aglycones were further degraded to the corresponding phenolic acids. Including the recently sequenced genome of C. scindens and ten faecal metagenome-assembled genomes assigned to the genus Catenibacillus, we performed a comparative genome analysis and searched for genes encoding potential C-glycosidases and other polyphenol-converting enzymes. According to genome data and physiological characterization, the core metabolism of Catenibacillus strains is based on a fermentative lifestyle with butyrate production and hydrogen evolution. Both C. scindens and C. decagia encode a flavonoid O-glycosidase, a flavone reductase, a flavanone/flavanonol-cleaving reductase and a phloretin hydrolase. Several gene clusters encode enzymes similar to those of the flavonoid C-deglycosylation system of Dorea strain PUE (DgpBC), while separately located genes encode putative polyphenol-glucoside oxidases (DgpA) required for C-deglycosylation. The diversity of dgpA and dgpBC gene clusters might explain the broad C-glycoside substrate spectrum of C. scindens and C. decagia. The other Catenibacillus genomes encode only a few potential flavonoid-converting enzymes. Our results indicate that several Catenibacillus species are well-equipped to deglycosylate and degrade dietary plant polyphenols and might inhabit a corresponding, specific niche in the gut.
Collapse
Affiliation(s)
- Tobias Goris
- Research Group Intestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| | - Annett Braune
- Research Group Intestinal Microbiology, German Institute of Human Nutrition Potsdam-Rehbruecke, 14558 Nuthetal, Germany
| |
Collapse
|
163
|
Niu Y, Hu X, Song Y, Wang C, Luo P, Ni S, Jiao F, Qiu J, Jiang W, Yang S, Chen J, Huang R, Jiang H, Chen S, Zhai Q, Xiao J, Guo F. Blautia Coccoides is a Newly Identified Bacterium Increased by Leucine Deprivation and has a Novel Function in Improving Metabolic Disorders. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309255. [PMID: 38429906 PMCID: PMC11095201 DOI: 10.1002/advs.202309255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/14/2024] [Indexed: 03/03/2024]
Abstract
Gut microbiota is linked to human metabolic diseases. The previous work showed that leucine deprivation improved metabolic dysfunction, but whether leucine deprivation alters certain specific species of bacterium that brings these benefits remains unclear. Here, this work finds that leucine deprivation alters gut microbiota composition, which is sufficient and necessary for the metabolic improvements induced by leucine deprivation. Among all the affected bacteria, B. coccoides is markedly increased in the feces of leucine-deprived mice. Moreover, gavage with B. coccoides improves insulin sensitivity and reduces body fat in high-fat diet (HFD) mice, and singly colonization of B. coccoides increases insulin sensitivity in gnotobiotic mice. The effects of B. coccoides are mediated by metabolizing tryptophan into indole-3-acetic acid (I3AA) that activates the aryl hydrocarbon receptor (AhR) in the liver. Finally, this work reveals that reduced fecal B. coccoides and I3AA levels are associated with the clinical metabolic syndrome. These findings suggest that B. coccoides is a newly identified bacterium increased by leucine deprivation, which improves metabolic disorders via metabolizing tryptophan into I3AA.
Collapse
Affiliation(s)
- Yuguo Niu
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Xiaoming Hu
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Yali Song
- Department of Metabolic and Bariatric Surgery and Clinical Research InstituteFirst Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Cunchuan Wang
- Department of Metabolic and Bariatric Surgery and Clinical Research InstituteFirst Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Peixiang Luo
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Shihong Ni
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Fuxin Jiao
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Ju Qiu
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Weihong Jiang
- Key Laboratory of Synthetic BiologyInstitute of Plant Physiology and EcologyCAS Center for Excellence in Molecular Plant ScienceShanghai200032China
| | - Sheng Yang
- Key Laboratory of Synthetic BiologyInstitute of Plant Physiology and EcologyCAS Center for Excellence in Molecular Plant ScienceShanghai200032China
| | - Jun Chen
- Key Laboratory of Synthetic BiologyInstitute of Plant Physiology and EcologyCAS Center for Excellence in Molecular Plant ScienceShanghai200032China
| | - Rui Huang
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Haizhou Jiang
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Shanghai Chen
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| | - Qiwei Zhai
- CAS Key Laboratory of NutritionMetabolism and Food SafetyInnovation Center for Intervention of Chronic Disease and Promotion of HealthShanghai Institute of Nutrition and HealthUniversity of Chinese Academy of SciencesChinese Academy of SciencesShanghai200031China
| | - Jia Xiao
- Department of Metabolic and Bariatric Surgery and Clinical Research InstituteFirst Affiliated Hospital of Jinan UniversityGuangzhou510632China
| | - Feifan Guo
- Zhongshan HospitalState Key Laboratory of Medical NeurobiologyInstitute for Translational Brain ResearchMOE Frontiers Center for Brain ScienceFudan UniversityShanghai200032China
| |
Collapse
|
164
|
Deehan EC, Mocanu V, Madsen KL. Effects of dietary fibre on metabolic health and obesity. Nat Rev Gastroenterol Hepatol 2024; 21:301-318. [PMID: 38326443 DOI: 10.1038/s41575-023-00891-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 02/09/2024]
Abstract
Obesity and metabolic syndrome represent a growing epidemic worldwide. Body weight is regulated through complex interactions between hormonal, neural and metabolic pathways and is influenced by numerous environmental factors. Imbalances between energy intake and expenditure can occur due to several factors, including alterations in eating behaviours, abnormal satiation and satiety, and low energy expenditure. The gut microbiota profoundly affects all aspects of energy homeostasis through diverse mechanisms involving effects on mucosal and systemic immune, hormonal and neural systems. The benefits of dietary fibre on metabolism and obesity have been demonstrated through mechanistic studies and clinical trials, but many questions remain as to how different fibres are best utilized in managing obesity. In this Review, we discuss the physiochemical properties of different fibres, current findings on how fibre and the gut microbiota interact to regulate body weight homeostasis, and knowledge gaps related to using dietary fibres as a complementary strategy. Precision medicine approaches that utilize baseline microbiota and clinical characteristics to predict individual responses to fibre supplementation represent a new paradigm with great potential to enhance weight management efficacy, but many challenges remain before these approaches can be fully implemented.
Collapse
Affiliation(s)
- Edward C Deehan
- Department of Food Science and Technology, University of Nebraska, Lincoln, NE, USA
- Nebraska Food for Health Center, Lincoln, NE, USA
| | - Valentin Mocanu
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Karen L Madsen
- Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
165
|
Zhou Q, Feng L. Identification of avaC from Human Gut Microbial Isolates that Converts 5AVA to 2-Piperidone. J Microbiol 2024; 62:367-379. [PMID: 38884693 PMCID: PMC11196342 DOI: 10.1007/s12275-024-00141-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/16/2024] [Accepted: 05/01/2024] [Indexed: 06/18/2024]
Abstract
2-piperidone is a crucial industrial raw material of high-value nylon-5 and nylon-6,5. Currently, a major bottleneck in the biosynthesis of 2-piperidone is the identification of highly efficient 2-piperidone synthases. In this study, we aimed to identify specific strains among 51 human gut bacterial strains capable of producing 2-piperidone and to elucidate its synthetic mechanism. Our findings revealed that four gut bacterial strains, namely Collinsella aerofaciens LFYP39, Collinsella intestinalis LFYP54, Clostridium bolteae LFYP116, and Clostridium hathewayi LFYP18, could produce 2-piperidone from 5-aminovaleric acid (5AVA). Additionally, we observed that 2-piperidone could be synthesized from proline through cross-feeding between Clostridium difficile LFYP43 and one of the four 2-piperidone producing strains, respectively. To identify the enzyme responsible for catalyzing the conversion of 5AVA to 2-piperidone, we utilized a gain-of-function library and identified avaC (5-aminovaleric acid cyclase) in C. intestinalis LFYP54. Moreover, homologous genes of avaC were validated in the other three bacterial strains. Notably, avaC were found to be widely distributed among environmental bacteria. Overall, our research delineated the gut bacterial strains and genes involved in 2-piperidone production, holding promise for enhancing the efficiency of industrial biosynthesis of this compound.
Collapse
Affiliation(s)
- Qiudi Zhou
- Institute of Pediatrics, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China
| | - Lihui Feng
- Institute of Pediatrics, Children's Hospital of Fudan University, and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
166
|
Zhang J, Dong C, Lin Y, Shang L, Ma J, Hu R, Wang H. Causal relationship between gut microbiota and gastric cancer: A two‑sample Mendelian randomization analysis. Mol Clin Oncol 2024; 20:38. [PMID: 38628559 PMCID: PMC11019462 DOI: 10.3892/mco.2024.2736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 03/06/2024] [Indexed: 04/19/2024] Open
Abstract
The gut microbiota is associated with GC; however, the causal association between the gut microbiota and GC remains to be determined. The aim of the present study was to investigate the causal association between gut microbiota and gastric cancer (GC) from the perspective of Mendelian randomization (MR). The present study performed MR analysis using summary statistics from a genome-wide association study of the gut microbiome and GC. Inverse-variance weighted, MR-Egger and weighted median methods were used to investigate the causal relationship between gut microbiota and GC. Heterogeneity tests were performed using Cochrane's Q statistic. Horizontal polytropy was detected using Mendelian Randomization Pleiotropy RESidual Sum and Outlier were eliminated. Estimates from MR indicated that nine gut microorganism remained stable with regard to acceptance of heterogeneity and sensitivity methods. Among them, the genera Prevotella 7, Roseburia and Ruminococcaceae UCG014 were associated with an increased risk of GC; by contrast, the family Enterobacteriaceae, the genera Allisonella, Lachnospiraceae FCS020, Ruminococcaceae UCG004 and Ruminococcaceae UCG009, and the order Enterobacteriales decreased the risk of GC development. The present study demonstrated the potential importance of modulating the abundance of gut microbiota for the prevention and treatment of GC.
Collapse
Affiliation(s)
- Jianling Zhang
- General Surgery Ward 5, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Chunlu Dong
- General Surgery Ward 3, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Yanyan Lin
- General Surgery Ward 3, The First Hospital of Lanzhou University, Lanzhou, Gansu 730000, P.R. China
| | - Lifeng Shang
- Department of General Surgery, Qingdao Eighth People's Hospital, Qingdao, Shandong 266000, P.R. China
| | - Junming Ma
- Department of General Surgery, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, Ningxia 750000, P.R. China
| | - Ruiping Hu
- Department of Endocrinology, The Third People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| | - Hejing Wang
- Department of Healthcare-Associated Infection Control, The Third People's Hospital of Gansu Province, Lanzhou, Gansu 730000, P.R. China
| |
Collapse
|
167
|
Shon J, Han Y, Song S, Kwon SY, Na K, Lindroth AM, Park YJ. Anti-obesity effect of butyrate links to modulation of gut microbiome and epigenetic regulation of muscular circadian clock. J Nutr Biochem 2024; 127:109590. [PMID: 38311045 DOI: 10.1016/j.jnutbio.2024.109590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/31/2023] [Accepted: 01/29/2024] [Indexed: 02/06/2024]
Abstract
The role of the muscle circadian clock in regulating oxidative metabolism exerts a significant influence on whole-body energy metabolism; however, research on the connection between the muscle circadian clock and obesity is limited. Moreover, there is a lack of studies demonstrating the regulatory effects of dietary butyrate on muscle circadian clock and the resulting antiobesity effects. This study aimed to investigate the impacts of dietary butyrate on metabolic and microbiome alterations and muscle circadian clock in a diet-induced obesity model. Male Sprague-Dawley rats were fed a high-fat diet with or without butyrate. Gut microbiota and serum metabolome were analyzed, and molecular changes were examined using tissues and a cell line. Further correlation analysis was performed on butyrate-induced results. Butyrate supplementation reduced weight gain, even with increased food intake. Gut microbiome analysis revealed an increased abundance of Firmicutes in butyrate group. Serum metabolite profile in butyrate group exhibited reduced amino acid and increased fatty acid content. Muscle circadian clock genes were upregulated, resulting in increased transcription of fatty acid oxidation-related genes. In myoblast cells, butyrate also enhanced pan-histone acetylation via histone deacetylase inhibition, particularly modulating acetylation at the promoter of circadian clock genes. Correlation analysis revealed potential links between Firmicutes phylum, including certain genera within it, and butyrate-induced molecular changes in muscle as well as phenotypic alterations. The butyrate-driven effects on diet-induced obesity were associated with alterations in gut microbiota and a muscle-specific increase in histone acetylation, leading to the transcriptional activation of circadian clock genes and their controlled genes.
Collapse
Affiliation(s)
- Jinyoung Shon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03670, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03670, Republic of Korea
| | - Yerim Han
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03670, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03670, Republic of Korea
| | - Seungmin Song
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03670, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03670, Republic of Korea
| | - So Young Kwon
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03670, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03670, Republic of Korea
| | - Khuhee Na
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03670, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03670, Republic of Korea
| | - Anders M Lindroth
- Graduate School of Cancer Science and Policy, Cancer Biomedical Science, National Cancer Center, Goyang-si 10408, Republic of Korea
| | - Yoon Jung Park
- Department of Nutritional Science and Food Management, Ewha Womans University, Seoul 03670, Republic of Korea; Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03670, Republic of Korea.
| |
Collapse
|
168
|
Zhou J, Hou HT, Song Y, Zhou XL, Chen HX, Zhang LL, Xue HM, Yang Q, He GW. Metabolomics Analysis Identifies Differential Metabolites as Biomarkers for Acute Myocardial Infarction. Biomolecules 2024; 14:532. [PMID: 38785939 PMCID: PMC11117998 DOI: 10.3390/biom14050532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/07/2024] [Accepted: 04/23/2024] [Indexed: 05/25/2024] Open
Abstract
Myocardial infarction (MI), including ST-segment elevation MI (STEMI) and non-ST-segment elevation MI (NSTEMI), is still a leading cause of death worldwide. Metabolomics technology was used to explore differential metabolites (DMs) as potential biomarkers for early diagnosis of STEMI and NSTEMI. In the study, 2531 metabolites, including 1925 DMs, were discovered. In the selected 27 DMs, 14 were successfully verified in a new cohort, and the AUC values were all above 0.8. There were 10 in STEMI group, namely L-aspartic acid, L-acetylcarnitine, acetylglycine, decanoylcarnitine, hydroxyphenyllactic acid, ferulic acid, itaconic acid, lauroylcarnitine, myristoylcarnitine, and cis-4-hydroxy-D-proline, and 5 in NSTEMI group, namely L-aspartic acid, arachidonic acid, palmitoleic acid, D-aspartic acid, and palmitelaidic acid. These 14 DMs may be developed as biomarkers for the early diagnosis of MI with high sensitivity and specificity. These findings have particularly important clinical significance for NSTEMI patients because these patients have no typical ECG changes.
Collapse
Affiliation(s)
- Jie Zhou
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
| | - Hai-Tao Hou
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Yu Song
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
- Department of Cardiology & The Institute of Cardiovascular Diseases and the Critical Care Unit, TEDA International Cardiovascular Hospital, Tianjin University, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Xiao-Lin Zhou
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
- Department of Cardiology & The Institute of Cardiovascular Diseases and the Critical Care Unit, TEDA International Cardiovascular Hospital, Tianjin University, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Huan-Xin Chen
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Li-Li Zhang
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Hong-Mei Xue
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Qin Yang
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| | - Guo-Wei He
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Tianjin University, Tianjin 300457, China; (J.Z.); (H.-T.H.); (H.-X.C.); (L.-L.Z.); (H.-M.X.); (Q.Y.)
- Tianjin Key Laboratory of Molecular Regulation of Cardiovascular Diseases and Translational Medicine, Tianjin 300457, China; (Y.S.); (X.-L.Z.)
- Department of Cardiac Surgery & The Institute of Cardiovascular Diseases, TEDA International Cardiovascular Hospital, Chinese Academy of Medical Sciences, Tianjin 300457, China
| |
Collapse
|
169
|
Rong L, Liu K, An M, Zhang L, Zhang D, Wu L, Li R. Fungal-Bacterial Mutualism: Species and Strain-Dependent Simultaneous Modulation of Branched-Chain Esters and Indole Derivatives in Fermented Sausages through Metabolite Cross-Feeding. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8749-8759. [PMID: 38579123 DOI: 10.1021/acs.jafc.3c08616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/07/2024]
Abstract
The precise impact of species and strain diversity on fungal-bacterial interactions and the overall community functioning has remained unclear. First, our study revealed how Debaryomyces hansenii influences diverse bacteria to accumulate key metabolites in a simulated fermented food system. For flavor, D. hansenii promoted the accumulation of branched-chain esters in Staphylococcus xylosus by promoting growth and facilitating the precursor branched-chain acids transformations but hindered the accumulation of Staphylococcus equorum. Furthermore, fungal-bacterial interactions displayed diversity among S. equorum strains. For bioactive compounds, species and strain diversity of lactic acid bacteria (LAB) also influences the production of indole derivatives. Then, we investigated specific metabolic exchanges under reciprocal interaction. Amino acids, rather than vitamins, were identified as the primary drivers of the bacterial growth promotion. Moreover, precursor transformations by D. hansenii played a significant role in branched-chain esters production. Finally, a synthetic community capable of producing high concentrations of branched-chain esters and indole derivatives was successfully constructed. These results provide valuable insights into understanding and designing synthetic communities for fermented sausages.
Collapse
Affiliation(s)
- Liangyan Rong
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| | - Kaihao Liu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| | - Mairui An
- Zibo Institute for Food and Drug Control, Zibo, Shandong 255086, China
| | - Lan Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| | - Di Zhang
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| | - Liu Wu
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| | - Ruren Li
- School of Food Science and Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China
- College of Food Science and Technology, National & Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Bohai University, Jinzhou, Liaoning 121013, China
| |
Collapse
|
170
|
Han X, Gao Y, Zhou B, Hameed HMA, Fang C, Ju Y, He J, Fang X, Liu Z, Yu W, Xiong X, Zhong N, Zhang T. Indole Propionic Acid Disturbs the Normal Function of Tryptophanyl-tRNA Synthetase in Mycobacterium tuberculosis. ACS Infect Dis 2024; 10:1201-1211. [PMID: 38457660 DOI: 10.1021/acsinfecdis.3c00585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Tuberculosis (TB) is the leading infectious disease caused by Mycobacterium tuberculosis and the second-most contagious killer after COVID-19. The emergence of drug-resistant TB has caused a great need to identify and develop new anti-TB drugs with novel targets. Indole propionic acid (IPA), a structural analog of tryptophan (Trp), is active against M. tuberculosis in vitro and in vivo. It has been verified that IPA exerts its antimicrobial effect by mimicking Trp as an allosteric inhibitor of TrpE, which is the first enzyme in the Trp synthesis pathway of M. tuberculosis. However, other Trp structural analogs, such as indolmycin, also target tryptophanyl-tRNA synthetase (TrpRS), which has two functions in bacteria: synthesis of tryptophanyl-AMP by catalyzing ATP + Trp and producing Trp-tRNATrp by transferring Trp to tRNATrp. So, we speculate that IPA may also target TrpRS. In this study, we found that IPA can dock into the Trp binding pocket of M. tuberculosis TrpRS (TrpRSMtb), which was further confirmed by isothermal titration calorimetry (ITC) assay. The biochemical analysis proved that TrpRS can catalyze the reaction between IPA and ATP to generate pyrophosphate (PPi) without Trp as a substrate. Overexpression of wild-type trpS in M. tuberculosis increased the MIC of IPA to 32-fold, and knock-down trpS in Mycolicibacterium smegmatis made it more sensitive to IPA. The supplementation of Trp in the medium abrogated the inhibition of M. tuberculosis by IPA. We demonstrated that IPA can interfere with the function of TrpRS by mimicking Trp, thereby impeding protein synthesis and exerting its anti-TB effect.
Collapse
Affiliation(s)
- Xingli Han
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yamin Gao
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Biao Zhou
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, China
- Guangzhou International Bio Island, Guangzhou 510320, China
| | - H M Adnan Hameed
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Cuiting Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Yanan Ju
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
| | - Jing He
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
| | - Xiange Fang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Zhiyong Liu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Wei Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, China
| | - Xiaoli Xiong
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| | - Nanshan Zhong
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
- Guangzhou Laboratory, Guangzhou Medical University, Guangzhou 511436, China
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, The National Center for Respiratory Medicine, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou 510120, China
| | - Tianyu Zhang
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- China-New Zealand Joint Laboratory of Biomedicine and Health, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences (CAS), Guangzhou 510530, China
- Guangdong-Hong Kong-Macau Joint Laboratory of Respiratory Infectious Diseases, Guangzhou 510530, China
- University of Chinese Academy of Sciences (UCAS), Beijing 100049, China
| |
Collapse
|
171
|
Li Y, Liu Y, Mu C, Zhang C, Yu M, Tian Z, Deng D, Ma X. Magnolol-driven microbiota modulation elicits changes in tryptophan metabolism resulting in reduced skatole formation in pigs. JOURNAL OF HAZARDOUS MATERIALS 2024; 467:133423. [PMID: 38359760 DOI: 10.1016/j.jhazmat.2024.133423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/18/2023] [Accepted: 01/01/2024] [Indexed: 02/17/2024]
Abstract
Skatole of gut origin has garnered significant attention as a malodorous pollutant due to its escalating emissions, recalcitrance to biodegradation and harm to animal and human health. Magnolol is a health-promoting polyphenol with potential to considerably mitigate the skatole production in the intestines. To investigate the impact of magnolol and its underlying mechanism on the skatole formation, in vivo and in vitro experiments were conducted in pigs. Our results revealed that skatole concentrations in the cecum, colon, and faeces decreased by 58.24% (P = 0.088), 44.98% (P < 0.05) and 43.52% (P < 0.05), respectively, following magnolol supplementation. Magnolol supplementation significantly decreased the abundance of Lachnospira, Faecalibacterium, Paramuribaculum, Faecalimonas, Desulfovibrio, Bariatricus, and Mogibacterium within the colon (P < 0.05). Moreover, a strong positive correlation (P < 0.05) between skatole concentration and Desulfovibrio abundance was observed. Subsequent in silico studies showed that magnolol could dock well with indolepyruvate decarboxylase (IPDC) within Desulfovibrio. Further in vitro investigation unveiled that magnolol addition led to less indole-3-pyruvate diverted towards the oxidative skatole pathway by the potential docking of magnolol towards IPDC, thereby diminishing the conversion of substrate into skatole. Our findings offer novel targets and strategies for mitigating skatole emission from the source.
Collapse
Affiliation(s)
- Yuanfei Li
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China; Institute of Biological Technology, Jiangxi Provincial Key Laboratory of Poultry Genetic Improvement, Nanchang Normal University, Nanchang 330032, China
| | - Yanchen Liu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Chunlong Mu
- Food Informatics, AgResearch, Te Ohu Rangahau Kai, Palmerston North 4474, New Zealand
| | - Changyi Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Miao Yu
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Zhimei Tian
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Dun Deng
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China
| | - Xianyong Ma
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, State Key Laboratory of Swine and Poultry Breeding Industry, Key Laboratory of Animal Nutrition and Feed Science in South China, Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of Animal Breeding and Nutrition, Guangdong Engineering Technology Research Center of Animal Meat Quality and Safety Control and Evaluation, Guangzhou 510640, PR China.
| |
Collapse
|
172
|
Whiley L, Lawler NG, Zeng AX, Lee A, Chin ST, Bizkarguenaga M, Bruzzone C, Embade N, Wist J, Holmes E, Millet O, Nicholson JK, Gray N. Cross-Validation of Metabolic Phenotypes in SARS-CoV-2 Infected Subpopulations Using Targeted Liquid Chromatography-Mass Spectrometry (LC-MS). J Proteome Res 2024; 23:1313-1327. [PMID: 38484742 PMCID: PMC11002931 DOI: 10.1021/acs.jproteome.3c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 04/06/2024]
Abstract
To ensure biological validity in metabolic phenotyping, findings must be replicated in independent sample sets. Targeted workflows have long been heralded as ideal platforms for such validation due to their robust quantitative capability. We evaluated the capability of liquid chromatography-mass spectrometry (LC-MS) assays targeting organic acids and bile acids to validate metabolic phenotypes of SARS-CoV-2 infection. Two independent sample sets were collected: (1) Australia: plasma, SARS-CoV-2 positive (n = 20), noninfected healthy controls (n = 22) and COVID-19 disease-like symptoms but negative for SARS-CoV-2 infection (n = 22). (2) Spain: serum, SARS-CoV-2 positive (n = 33) and noninfected healthy controls (n = 39). Multivariate modeling using orthogonal projections to latent structures discriminant analyses (OPLS-DA) classified healthy controls from SARS-CoV-2 positive (Australia; R2 = 0.17, ROC-AUC = 1; Spain R2 = 0.20, ROC-AUC = 1). Univariate analyses revealed 23 significantly different (p < 0.05) metabolites between healthy controls and SARS-CoV-2 positive individuals across both cohorts. Significant metabolites revealed consistent perturbations in cellular energy metabolism (pyruvic acid, and 2-oxoglutaric acid), oxidative stress (lactic acid, 2-hydroxybutyric acid), hypoxia (2-hydroxyglutaric acid, 5-aminolevulinic acid), liver activity (primary bile acids), and host-gut microbial cometabolism (hippuric acid, phenylpropionic acid, indole-3-propionic acid). These data support targeted LC-MS metabolic phenotyping workflows for biological validation in independent sample sets.
Collapse
Affiliation(s)
- Luke Whiley
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Nathan G. Lawler
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Annie Xu Zeng
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Alex Lee
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Sung-Tong Chin
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| | - Maider Bizkarguenaga
- Centro
de Investigación Cooperativa en Biociencias—CIC bioGUNE,
Precision Medicine and Metabolism Laboratory, Basque Research and
Technology Alliance, Bizkaia Science and
Technology Park, Building
800, 48160 Derio, Spain
| | - Chiara Bruzzone
- Centro
de Investigación Cooperativa en Biociencias—CIC bioGUNE,
Precision Medicine and Metabolism Laboratory, Basque Research and
Technology Alliance, Bizkaia Science and
Technology Park, Building
800, 48160 Derio, Spain
| | - Nieves Embade
- Centro
de Investigación Cooperativa en Biociencias—CIC bioGUNE,
Precision Medicine and Metabolism Laboratory, Basque Research and
Technology Alliance, Bizkaia Science and
Technology Park, Building
800, 48160 Derio, Spain
| | - Julien Wist
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Chemistry
Department, Universidad del Valle, Cali 76001, Colombia
| | - Elaine Holmes
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Department
of Metabolism Digestion and Reproduction, Faculty of Medicine, Imperial
College London, Sir Alexander Fleming Building, South Kensington, London SW7 2AZ, U.K.
| | - Oscar Millet
- Centro
de Investigación Cooperativa en Biociencias—CIC bioGUNE,
Precision Medicine and Metabolism Laboratory, Basque Research and
Technology Alliance, Bizkaia Science and
Technology Park, Building
800, 48160 Derio, Spain
| | - Jeremy K. Nicholson
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Institute
of Global Health Innovation, Faculty Building South Kensington Campus, Imperial College London, London SW7 2AZ, U.K.
| | - Nicola Gray
- Australian
National Phenome Centre, Health Futures Institute Harry Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
- Centre
for Computational and Systems Medicine, Health Futures Institute Harry
Perkins Institute, Murdoch University, 5 Robin Warren Drive, Perth, WA 6150, Australia
| |
Collapse
|
173
|
Xing PY, Agrawal R, Jayaraman A, Martin KA, Zhang GW, Ngu EL, Faylon LE, Kjelleberg S, Rice SA, Wang Y, Bello AT, Holmes E, Nicholson JK, Whiley L, Pettersson S. Microbial Indoles: Key Regulators of Organ Growth and Metabolic Function. Microorganisms 2024; 12:719. [PMID: 38674663 PMCID: PMC11052216 DOI: 10.3390/microorganisms12040719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/28/2024] Open
Abstract
Gut microbes supporting body growth are known but the mechanisms are less well documented. Using the microbial tryptophan metabolite indole, known to regulate prokaryotic cell division and metabolic stress conditions, we mono-colonized germ-free (GF) mice with indole-producing wild-type Escherichia coli (E. coli) or tryptophanase-encoding tnaA knockout mutant indole-non-producing E. coli. Indole mutant E. coli mice showed multiorgan growth retardation and lower levels of glycogen, cholesterol, triglycerides, and glucose, resulting in an energy deficiency despite increased food intake. Detailed analysis revealed a malfunctioning intestine, enlarged cecum, and reduced numbers of enterochromaffin cells, correlating with a metabolic phenotype consisting of impaired gut motility, diminished digestion, and lower energy harvest. Furthermore, indole mutant mice displayed reduction in serum levels of tricarboxylic acid (TCA) cycle intermediates and lipids. In stark contrast, a massive increase in serum melatonin was observed-frequently associated with accelerated oxidative stress and mitochondrial dysfunction. This observational report discloses functional roles of microbe-derived indoles regulating multiple organ functions and extends our previous report of indole-linked regulation of adult neurogenesis. Since indoles decline by age, these results imply a correlation with age-linked organ decline and levels of indoles. Interestingly, increased levels of indole-3-acetic acid, a known indole metabolite, have been shown to correlate with younger biological age, further supporting a link between biological age and levels of microbe-derived indole metabolites. The results presented in this resource paper will be useful for the future design of food intervention studies to reduce accelerated age-linked organ decline.
Collapse
Affiliation(s)
- Peter Yuli Xing
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore
- Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637335, Singapore
| | - Ruchi Agrawal
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Anusha Jayaraman
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 308433, Singapore
| | - Katherine Ann Martin
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - George Wei Zhang
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 308433, Singapore
| | - Ee Ling Ngu
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 308433, Singapore
- Faculty of Medical Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
| | - Llanto Elma Faylon
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore
| | - Staffan Kjelleberg
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Scott A. Rice
- Singapore Centre for Environmental Life Sciences Engineering, Singapore 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Yulan Wang
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
- Singapore Phenome Centre, Singapore 636921, Singapore
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
| | - Adesola T. Bello
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
- UK Dementia Research Institute, Imperial College London, London W1T 7NF, UK
| | - Elaine Holmes
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London SW7 2AZ, UK
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
| | - Jeremy K. Nicholson
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Institute of Global Health Innovation, Imperial College London, London SW7 2NA, UK
| | - Luke Whiley
- Australian National Phenome Centre, Health Futures Institute, Murdoch University, Perth, WA 6150, Australia
- Perron Institute, Nedlands, WA 6009, Australia
| | - Sven Pettersson
- ASEAN Microbiome Nutrition Centre, National Neuroscience Institute, Singapore 308433, Singapore
- Faculty of Medical Sciences, Sunway University, Subang Jaya 47500, Selangor, Malaysia
- Karolinska Institutet, 171 77 Solna, Sweden
- Department of Microbiology and Immunology, National University Singapore, Singapore 117545, Singapore
| |
Collapse
|
174
|
Caffrey EB, Sonnenburg JL, Devkota S. Our extended microbiome: The human-relevant metabolites and biology of fermented foods. Cell Metab 2024; 36:684-701. [PMID: 38569469 DOI: 10.1016/j.cmet.2024.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/06/2024] [Accepted: 03/11/2024] [Indexed: 04/05/2024]
Abstract
One of the key modes of microbial metabolism occurring in the gut microbiome is fermentation. This energy-yielding process transforms common macromolecules like polysaccharides and amino acids into a wide variety of chemicals, many of which are relevant to microbe-microbe and microbe-host interactions. Analogous transformations occur during the production of fermented foods, resulting in an abundance of bioactive metabolites. In foods, the products of fermentation can influence food safety and preservation, nutrient availability, and palatability and, once consumed, may impact immune and metabolic status, disease expression, and severity. Human signaling pathways perceive and respond to many of the currently known fermented food metabolites, though expansive chemical novelty remains to be defined. Here we discuss several aspects of fermented food-associated microbes and metabolites, including a condensed history, current understanding of their interactions with hosts and host-resident microbes, connections with commercial probiotics, and opportunities for future research on human health and disease and food sustainability.
Collapse
Affiliation(s)
- Elisa B Caffrey
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA; Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA.
| | - Suzanne Devkota
- F. Widjaja Foundation Inflammatory Bowel Diseases Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Human Microbiome Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
175
|
Peng R, Song C, Gou S, Liu H, Kang H, Dong Y, Xu Y, Hu P, Cai K, Feng Q, Guan H, Li F. Gut Clostridium sporogenes-derived indole propionic acid suppresses osteoclast formation by activating pregnane X receptor. Pharmacol Res 2024; 202:107121. [PMID: 38431091 DOI: 10.1016/j.phrs.2024.107121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/24/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Bone homeostasis is maintained by osteoclast-mediated bone resorption and osteoblast-mediated bone formation. A dramatic decrease in estrogen levels in postmenopausal women leads to osteoclast overactivation, impaired bone homeostasis, and subsequent bone loss. Changes in the gut microbiome affect bone mineral density. However, the role of the gut microbiome in estrogen deficiency-induced bone loss and its underlying mechanism remain unknown. In this study, we found that the abundance of Clostridium sporogenes (C. spor.) and its derived metabolite, indole propionic acid (IPA), were decreased in ovariectomized (OVX) mice. In vitro assays suggested that IPA suppressed osteoclast differentiation and function. At the molecular level, IPA suppressed receptor activator of nuclear factor kappa-Β ligand (RANKL)-induced pregnane X receptor (PXR) ubiquitination and degradation, leading to increased binding of remaining PXR with P65. In vivo daily IPA administration or repeated C. spor. colonization protected against OVX-induced bone loss. To protect live bacteria from the harsh gastric environment and delay the emptying of orally administered C. spor. from the intestine, a C. spor.-encapsulated silk fibroin (SF) hydrogel system was developed, which achieved bone protection in OVX mice comparable to that achieved with repeated germ transplantation or daily IPA administration. Overall, we found that gut C. spor.-derived IPA was involved in estrogen deficiency-induced osteoclast overactivation by regulating the PXR/P65 complex. The C. spor.-encapsulated SF hydrogel system is a promising tool for combating postmenopausal osteoporosis without the disadvantages of repeated germ transplantation.
Collapse
Affiliation(s)
- Renpeng Peng
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chao Song
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuangquan Gou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Haiyang Liu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Honglei Kang
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Dong
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Xu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Peixuan Hu
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China
| | - Qian Feng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, China.
| | - Hanfeng Guan
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Feng Li
- Department of Orthopedic Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
176
|
Deng Y, Hu M, Huang S, Fu N. Molecular mechanism and therapeutic significance of essential amino acids in metabolically associated fatty liver disease. J Nutr Biochem 2024; 126:109581. [PMID: 38219809 DOI: 10.1016/j.jnutbio.2024.109581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/01/2024] [Accepted: 01/06/2024] [Indexed: 01/16/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD), also known as metabolically associated fatty liver disease (MAFLD), is a systemic metabolic disease characterized by lipid accumulation in the liver, lipid toxicity, insulin resistance, intestinal dysbiosis, and inflammation that can progress from simple steatosis to nonalcoholic steatohepatitis (NASH) and even cirrhosis or cancer. It is the most prevalent illness threatening world health. Currently, there are almost no approved drug interventions for MAFLD, mainly dietary changes and exercise to control weight and regulate metabolic disorders. Meanwhile, the metabolic pathway involved in amino acid metabolism also influences the onset and development of MAFLD in the body, and most amino acid metabolism takes place in the liver. Essential amino acids are those amino acids that must be supplemented from outside the diet and that cannot be synthesized in the body or cannot be synthesized at a rate sufficient to meet the body's needs, including leucine, isoleucine, valine (collectively known as branched-chain amino acids), tryptophan, phenylalanine (which are aromatic amino acids), histidine, methionine, threonine and lysine. The metabolic balance of the body is closely linked to these essential amino acids, and essential amino acids are closely linked to the pathophysiological process of MAFLD. In this paper, we will focus on the metabolism of essential amino acids in the body and further explore the therapeutic strategies for MAFLD based on the studies conducted in recent years.
Collapse
Affiliation(s)
- Yuting Deng
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Mengsi Hu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China
| | - Shufang Huang
- The Affiliated Nanhua Hospital, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| | - Nian Fu
- The Affiliated Nanhua Hospital, Department of Gastroenterology, Hunan Provincial Clinical Research Center of Metabolic Associated Fatty Liver Disease, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China; The Affiliated Nanhua Hospital, Institute of Clinical Research, Hengyang Medical School, University of South China, Hengyang, Hunan, 421002, China.
| |
Collapse
|
177
|
Zhang J, Zhao M, Yu H, Wang Q, Shen F, Cai H, Feng F, Tang J. Palmitoleic Acid Ameliorates Metabolic Disorders and Inflammation by Modulating Gut Microbiota and Serum Metabolites. Mol Nutr Food Res 2024; 68:e2300749. [PMID: 38511225 DOI: 10.1002/mnfr.202300749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Indexed: 03/22/2024]
Abstract
SCOPE Palmitoleic acid (POA) is an omega-7 monounsaturated fatty acid that has been suggested to improve metabolic disorders. However, it remains unclear whether gut microbiota plays a role in the amelioration of metabolic disorders by POA. This study aims to investigate the regulation of POA on metabolism, as well as systemic inflammation in HFD-fed mice from the perspective of serum metabolome and gut microbiome. METHODS AND RESULTS Thirty-six C57BL/6 male mice are randomly assigned to either a normal chow diet containing 1.9% w/w lard or an HFD containing 20.68% w/w lard or 20.68% w/w sea buckthorn pulp oil for 16 weeks. The study finds that POA significantly attenuated hyperlipidemia, insulin resistance, and inflammation in HFD-fed mice. POA supplementation significantly alters the composition of serum metabolites, particularly lipid metabolites in the glycerophospholipid metabolism pathway. POA obviously increases the abundance of Bifidobacterium and decreases the abundance of Allobaculum. Importantly, the study finds that glycerophosphocholine mediates the effect of Bifidobacterium on LDL-C, sphingomyelin mediates the effect of Bifidobacterium on IL-6, and maslinic acid mediates the effect of Allobaculum on IL-6. CONCLUSION The results suggest that exogenous POA can improve metabolic disorders and inflammation in HFD-fed mice, potentially by modulating the serum metabolome and gut microbiome.
Collapse
Affiliation(s)
- Junhui Zhang
- School of Life Sciences, Westlake University, Hangzhou, 310012, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310012, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310012, China
| | - Huilin Yu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310012, China
| | - Qianqian Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310012, China
| | - Fei Shen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310012, China
| | - Haiying Cai
- School of Biological & Chemical Engineering, Zhejiang University of Science &Technology, Hangzhou, 310012, China
| | - Fengqin Feng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310012, China
| | - Jun Tang
- School of Life Sciences, Westlake University, Hangzhou, 310012, China
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310012, China
- Westlake Intelligent Biomarker Discovery Lab, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, 310012, China
| |
Collapse
|
178
|
Fu M, Zhou X, Yin D, Liu H, Zhu X, Yang G. Impact of dietary digestible aromatic amino acid levels and stachyose on growth, nutrient utilization, and cecal odorous compounds in broiler chickens. Poult Sci 2024; 103:103536. [PMID: 38364606 PMCID: PMC10879834 DOI: 10.1016/j.psj.2024.103536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 01/27/2024] [Accepted: 02/03/2024] [Indexed: 02/18/2024] Open
Abstract
This study evaluated the impact of dietary digestible aromatic amino acid (DAAA) levels and stachyose on growth, nutrient utilization and cecal odorous compounds in broiler chickens. A 3×2 two-factor factorial design: Three dietary DAAA levels (1.40, 1.54, 1.68%) supplemented with either 5 g/kg of stachyose or without any stachyose were used to create 6 experimental diets. Each diet was fed to 6 replicates of 10 birds from d 22 to 42. Findings revealed that broilers receiving a diet with 1.54% DAAA levels supplemented with 5 g/kg stachyose exhibited a significant boost in average daily gain and improved utilization of crude protein, ether extract, tryptophan, and methionine compared to other diet treatments (P < 0.05). As the dietary DAAA levels increased, there was a significant rise in the concentrations of indole, skatole, p-methylphenol, and butyric acid in the cecum of broilers (P < 0.05). The addition of stachyose to diets reduced concentrations of indole, skatole, phenol, p-methylphenol, acetic acid and propionic acid in the cecum (P < 0.05). The lowest concentrations of indole, phenol, p-methylphenol, volatile fatty acids and pH in cecum of broilers were observed in the treatment which diet DAAA level was 1.40% with stachyose (P < 0.05). In conclusion, dietary DAAA levels and stachyose had significant interactions on the growth, main nutrient utilization and cecal odorous compounds in broilers. The dietary DAAA level was 1.54% with 5 g/kg of stachyose can improve the growth performance, nutrient utilization. However, the dietary DAAA level was 1.40% with stachyose was more beneficial to decrease the cecal odor compound composition in broilers.
Collapse
Affiliation(s)
- Meiye Fu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaoliang Zhou
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Dafei Yin
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Haiying Liu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Xin Zhu
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China
| | - Guiqin Yang
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
179
|
Williams LM, Cao S. Harnessing and delivering microbial metabolites as therapeutics via advanced pharmaceutical approaches. Pharmacol Ther 2024; 256:108605. [PMID: 38367866 PMCID: PMC10985132 DOI: 10.1016/j.pharmthera.2024.108605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/05/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
Microbial metabolites have emerged as key players in the interplay between diet, the gut microbiome, and host health. Two major classes, short-chain fatty acids (SCFAs) and tryptophan (Trp) metabolites, are recognized to regulate inflammatory, immune, and metabolic responses within the host. Given that many human diseases are associated with dysbiosis of the gut microbiome and consequent reductions in microbial metabolite production, the administration of these metabolites represents a direct, multi-targeted treatment. While a multitude of preclinical studies showcase the therapeutic potential of both SCFAs and Trp metabolites, they often rely on high doses and frequent dosing regimens to achieve systemic effects, thereby constraining their clinical applicability. To address these limitations, a variety of pharmaceutical formulations approaches that enable targeted, delayed, and/or sustained microbial metabolite delivery have been developed. These approaches, including enteric encapsulations, esterification to dietary fiber, prodrugs, and nanoformulations, pave the way for the next generation of microbial metabolite-based therapeutics. In this review, we first provide an overview of the roles of microbial metabolites in maintaining host homeostasis and outline how compromised metabolite production contributes to the pathogenesis of inflammatory, metabolic, autoimmune, allergic, infectious, and cancerous diseases. Additionally, we explore the therapeutic potential of metabolites in these disease contexts. Then, we provide a comprehensive and up-to-date review of the pharmaceutical strategies that have been employed to enhance the therapeutic efficacy of microbial metabolites, with a focus on SCFAs and Trp metabolites.
Collapse
Affiliation(s)
- Lindsey M Williams
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States
| | - Shijie Cao
- Department of Pharmaceutics, School of Pharmacy, University of Washington, Seattle, WA 98195, United States.
| |
Collapse
|
180
|
Wang Z, Peters BA, Yu B, Grove ML, Wang T, Xue X, Thyagarajan B, Daviglus M, Boerwinkle E, Hu G, Mossavar-Rahmani Y, Isasi CR, Knight R, Burk RD, Kaplan RC, Qi Q. Gut Microbiota and Blood Metabolites Related to Fiber Intake and Type 2 Diabetes. Circ Res 2024; 134:842-854. [PMID: 38547246 PMCID: PMC10987058 DOI: 10.1161/circresaha.123.323634] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 02/14/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Consistent evidence suggests diabetes-protective effects of dietary fiber intake. However, the underlying mechanisms, particularly the role of gut microbiota and host circulating metabolites, are not fully understood. We aimed to investigate gut microbiota and circulating metabolites associated with dietary fiber intake and their relationships with type 2 diabetes (T2D). METHODS This study included up to 11 394 participants from the HCHS/SOL (Hispanic Community Health Study/Study of Latinos). Diet was assessed with two 24-hour dietary recalls at baseline. We examined associations of dietary fiber intake with gut microbiome measured by shotgun metagenomics (350 species/85 genera and 1958 enzymes; n=2992 at visit 2), serum metabolome measured by untargeted metabolomics (624 metabolites; n=6198 at baseline), and associations between fiber-related gut bacteria and metabolites (n=804 at visit 2). We examined prospective associations of serum microbial-associated metabolites (n=3579 at baseline) with incident T2D over 6 years. RESULTS We identified multiple bacterial genera, species, and related enzymes associated with fiber intake. Several bacteria (eg, Butyrivibrio, Faecalibacterium) and enzymes involved in fiber degradation (eg, xylanase EC3.2.1.156) were positively associated with fiber intake, inversely associated with prevalent T2D, and favorably associated with T2D-related metabolic traits. We identified 159 metabolites associated with fiber intake, 47 of which were associated with incident T2D. We identified 18 of these 47 metabolites associated with the identified fiber-related bacteria, including several microbial metabolites (eg, indolepropionate and 3-phenylpropionate) inversely associated with the risk of T2D. Both Butyrivibrio and Faecalibacterium were associated with these favorable metabolites. The associations of fiber-related bacteria, especially Faecalibacterium and Butyrivibrio, with T2D were attenuated after further adjustment for these microbial metabolites. CONCLUSIONS Among United States Hispanics/Latinos, dietary fiber intake was associated with favorable profiles of gut microbiota and circulating metabolites for T2D. These findings advance our understanding of the role of gut microbiota and microbial metabolites in the relationship between diet and T2D.
Collapse
Affiliation(s)
- Zheng Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Brandilyn A Peters
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Bing Yu
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Megan L Grove
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Tao Wang
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Xiaonan Xue
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | | | | | - Eric Boerwinkle
- Department of Epidemiology, Human Genetics, and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX, USA
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Louisiana, USA
| | - Yasmin Mossavar-Rahmani
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Carmen R Isasi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Rob Knight
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, USA
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
- Center for Microbiome Innovation, University of California, San Diego, La Jolla, CA,USA
- Department of Pediatrics, University of California, San Diego, La Jolla, CA, USA
| | - Robert D Burk
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Pediatrics, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Obstetrics & Gynecology and Women’s Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Microbiology & Immunology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Robert C Kaplan
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Public Health Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Qibin Qi
- Department of Epidemiology and Population Health, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
181
|
Jia D, Wang Q, Qi Y, Jiang Y, He J, Lin Y, Sun Y, Xu J, Chen W, Fan L, Yan R, Zhang W, Ren G, Xu C, Ge Q, Wang L, Liu W, Xu F, Wu P, Wang Y, Chen S, Wang L. Microbial metabolite enhances immunotherapy efficacy by modulating T cell stemness in pan-cancer. Cell 2024; 187:1651-1665.e21. [PMID: 38490195 DOI: 10.1016/j.cell.2024.02.022] [Citation(s) in RCA: 60] [Impact Index Per Article: 60.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 12/31/2023] [Accepted: 02/20/2024] [Indexed: 03/17/2024]
Abstract
The immune checkpoint blockade (ICB) response in human cancers is closely linked to the gut microbiota. Here, we report that the abundance of commensal Lactobacillus johnsonii is positively correlated with the responsiveness of ICB. Supplementation with Lactobacillus johnsonii or tryptophan-derived metabolite indole-3-propionic acid (IPA) enhances the efficacy of CD8+ T cell-mediated αPD-1 immunotherapy. Mechanistically, Lactobacillus johnsonii collaborates with Clostridium sporogenes to produce IPA. IPA modulates the stemness program of CD8+ T cells and facilitates the generation of progenitor exhausted CD8+ T cells (Tpex) by increasing H3K27 acetylation at the super-enhancer region of Tcf7. IPA improves ICB responsiveness at the pan-cancer level, including melanoma, breast cancer, and colorectal cancer. Collectively, our findings identify a microbial metabolite-immune regulatory pathway and suggest a potential microbial-based adjuvant approach to improve the responsiveness of immunotherapy.
Collapse
Affiliation(s)
- Dingjiacheng Jia
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qiwen Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yadong Qi
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yao Jiang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Jiamin He
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yifeng Lin
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Yong Sun
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Jilei Xu
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Wenwen Chen
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Lina Fan
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Ruochen Yan
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Wang Zhang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Guohong Ren
- Department of Breast Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Chaochao Xu
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Qiwei Ge
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Lan Wang
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Wei Liu
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Sciences, Hangzhou, Zhejiang Province 310021, China
| | - Fei Xu
- Institute of Pharmaceutical Biotechnology and Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Pin Wu
- Department of Thoracic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China
| | - Yuhao Wang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310029, China
| | - Shujie Chen
- Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province 310001, China.
| | - Liangjing Wang
- Department of Gastroenterology, Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, Zhejiang Province 310058, China; Institution of Gastroenterology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China; Cancer Center, Zhejiang University, Hangzhou, Zhejiang Province 310001, China.
| |
Collapse
|
182
|
Jiang J, Wang D, Jiang Y, Yang X, Sun R, Chang J, Zhu W, Yao P, Song K, Chang S, Wang H, Zhou L, Zhang XS, Li H, Li N. The gut metabolite indole-3-propionic acid activates ERK1 to restore social function and hippocampal inhibitory synaptic transmission in a 16p11.2 microdeletion mouse model. MICROBIOME 2024; 12:66. [PMID: 38549163 PMCID: PMC10976717 DOI: 10.1186/s40168-024-01755-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 01/04/2024] [Indexed: 04/02/2024]
Abstract
BACKGROUND Microdeletion of the human chromosomal region 16p11.2 (16p11.2+ / - ) is a prevalent genetic factor associated with autism spectrum disorder (ASD) and other neurodevelopmental disorders. However its pathogenic mechanism remains unclear, and effective treatments for 16p11.2+ / - syndrome are lacking. Emerging evidence suggests that the gut microbiota and its metabolites are inextricably linked to host behavior through the gut-brain axis and are therefore implicated in ASD development. Despite this, the functional roles of microbial metabolites in the context of 16p11.2+ / - are yet to be elucidated. This study aims to investigate the therapeutic potential of indole-3-propionic acid (IPA), a gut microbiota metabolite, in addressing behavioral and neural deficits associated with 16p11.2+ / - , as well as the underlying molecular mechanisms. RESULTS Mice with the 16p11.2+ / - showed dysbiosis of the gut microbiota and a significant decrease in IPA levels in feces and blood circulation. Further, these mice exhibited significant social and cognitive memory impairments, along with hyperactivation of hippocampal dentate gyrus neurons and reduced inhibitory synaptic transmission in this region. However, oral administration of IPA effectively mitigated the histological and electrophysiological alterations, thereby ameliorating the social and cognitive deficits of the mice. Remarkably, IPA treatment significantly increased the phosphorylation level of ERK1, a protein encoded by the Mapk3 gene in the 16p11.2 region, without affecting the transcription and translation of the Mapk3 gene. CONCLUSIONS Our study reveals that 16p11.2+ / - leads to a decline in gut metabolite IPA levels; however, IPA supplementation notably reverses the behavioral and neural phenotypes of 16p11.2+ / - mice. These findings provide new insights into the critical role of gut microbial metabolites in ASD pathogenesis and present a promising treatment strategy for social and cognitive memory deficit disorders, such as 16p11.2 microdeletion syndrome. Video Abstract.
Collapse
Affiliation(s)
- Jian Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Dilong Wang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Youheng Jiang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Xiuyan Yang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Runfeng Sun
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Jinlong Chang
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Wenhui Zhu
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Peijia Yao
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China
| | - Kun Song
- Brain Research Centre, Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, China
| | - Shuwen Chang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Hong Wang
- The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen-Hong Kong Institute of Brain Science Shenzhen Fundamental Research Institutions, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Lei Zhou
- Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen, China
| | - Xue-Song Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, USA.
| | - Huiliang Li
- Wolfson Institute for Biomedical Research, Division of Medicine, Faculty of Medical Sciences, University College London, London, UK.
| | - Ningning Li
- Tomas Lindahl Nobel Laureate Laboratory, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, China.
- China-UK Institute for Frontier Science, Shenzhen, China.
- Department of Anesthesiology, The Afliated Hospital of Youjiang Medical University for Nationalities, Baise, China.
| |
Collapse
|
183
|
Schwarcz R, Foo A, Sathyasaikumar KV, Notarangelo FM. The Probiotic Lactobacillus reuteri Preferentially Synthesizes Kynurenic Acid from Kynurenine. Int J Mol Sci 2024; 25:3679. [PMID: 38612489 PMCID: PMC11011989 DOI: 10.3390/ijms25073679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
The gut-brain axis is increasingly understood to play a role in neuropsychiatric disorders. The probiotic bacterium Lactobacillus (L.) reuteri and products of tryptophan degradation, specifically the neuroactive kynurenine pathway (KP) metabolite kynurenic acid (KYNA), have received special attention in this context. We, therefore, assessed relevant features of KP metabolism, namely, the cellular uptake of the pivotal metabolite kynurenine and its conversion to its primary products KYNA, 3-hydroxykynurenine and anthranilic acid in L. reuteri by incubating the bacteria in Hank's Balanced Salt solution in vitro. Kynurenine readily entered the bacterial cells and was preferentially converted to KYNA, which was promptly released into the extracellular milieu. De novo production of KYNA increased linearly with increasing concentrations of kynurenine (up to 1 mM) and bacteria (107 to 109 CFU/mL) and with incubation time (1-3 h). KYNA neosynthesis was blocked by two selective inhibitors of mammalian kynurenine aminotransferase II (PF-048559989 and BFF-122). In contrast to mammals, however, kynurenine uptake was not influenced by other substrates of the mammalian large neutral amino acid transporter, and KYNA production was not affected by the presumed competitive enzyme substrates (glutamine and α-aminoadipate). Taken together, these results reveal substantive qualitative differences between bacterial and mammalian KP metabolism.
Collapse
Affiliation(s)
- Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21228, USA; (A.F.); (K.V.S.)
| | | | | | | |
Collapse
|
184
|
Gao Y, Huang R, Qiu Y, Liu Y, Chen L. Characterization of the chemical composition of different parts of Dolichos lablab L. and revelation of its anti-ulcerative colitis effects by modulating the gut microbiota and host metabolism. JOURNAL OF ETHNOPHARMACOLOGY 2024; 322:117629. [PMID: 38135234 DOI: 10.1016/j.jep.2023.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 12/24/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ulcerative colitis (UC) is a non-specific inflammatory disease characterized by long duration and easy relapse. Dolichos lablab L. (DLL) belongs to the family Fabaceae, was listed in a famous Chinese medical classic, Compendium of Materia Medic, and described as possessing features that invigorate the spleen, alleviate dampness, provide diarrhea relief, and other effects. The DLL-dried white mature seeds (DS) and dried flower (DF), which hold significant medicinal value in China, were used in clinical prescriptions to prevent and treat UC. DS and DF have appeared in different editions of the Pharmacopoeia of the People's Republic of China from 1977 to 2020. However, their chemical composition, pharmacological effects, and mechanism of treating UC are unclear. AIM OF THE STUDY This study aimed to characterize the chemical composition of different parts of DLL (seeds and flowers), further explore their pharmacological effects, and elaborate its underlying mechanism of treating UC. METHODS The chemical composition of DS and DF crude polysaccharides (DSP and DFP) and ethanolic extracts (DSE and DFE) were characterized by high-performance anion-exchange chromatography (HPAEC), ultra-high performance liquid chromatography-mass spectrometry (UHPLC-MS), and gas chromatography-mass spectrometry (GC-MS). Then, based on the acute UC mice model, the pharmacodynamic effects were investigated by Western blotting, ELISA, and other methods. Finally, the 16S rRNA gene sequencing and metabonomic analysis were used to explore the regulatory effects of DS and DF on intestinal microbiota and host metabolism. RESULTS DSE and DFE inhibited the oxidative stress response, reducing proinflammatory factor production and maintaining intestinal barrier integrity in UC mice. The 16S rRNA gene sequencing and metabonomic analysis revealed that DS and DF treated UC by regulating the intestinal microbiota structure and reversing the abnormal metabolism of the host. CONCLUSION This study suggested that different parts of DLL (flowers and seeds) may be potential medicines for treating UC, which exert their therapeutic effects through various active ingredients and might contribute significantly to reducing the economic pressures and challenges of UC treatment worldwide.
Collapse
Affiliation(s)
- Yanping Gao
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Ruiting Huang
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yongyi Qiu
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yi Liu
- School of Chinese Medicine, Southern Medical University, Guangzhou, 510515, China.
| | - Lei Chen
- School of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China.
| |
Collapse
|
185
|
Wei W, Lyu X, Markhard AL, Fu S, Mardjuki RE, Cavanagh PE, Zeng X, Rajniak J, Lu N, Xiao S, Zhao M, Moya-Garzon MD, Truong SD, Chou JCC, Wat LW, Chidambaranathan-Reghupaty S, Coassolo L, Xu D, Shen F, Huang W, Ramirez CB, Jang C, Svensson KJ, Fischbach MA, Long JZ. A PTER-dependent pathway of taurine metabolism linked to energy balance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.21.586194. [PMID: 38562797 PMCID: PMC10983888 DOI: 10.1101/2024.03.21.586194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Taurine is a conditionally essential micronutrient and one of the most abundant amino acids in humans1-3. In endogenous taurine metabolism, dedicated enzymes are involved in biosynthesis of taurine from cysteine as well as the downstream derivatization of taurine into secondary taurine metabolites4,5. One such taurine metabolite is N-acetyltaurine6. Levels of N-acetyltaurine are dynamically regulated by diverse physiologic perturbations that alter taurine and/or acetate flux, including endurance exercise7, nutritional taurine supplementation8, and alcohol consumption6,9. While taurine N-acetyltransferase activity has been previously detected in mammalian cells6,7, the molecular identity of this enzyme, and the physiologic relevance of N-acetyltaurine, have remained unknown. Here we show that the orphan body mass index-associated enzyme PTER (phosphotriesterase-related)10 is the principal mammalian taurine N-acetyltransferase/hydrolase. In vitro, recombinant PTER catalyzes bidirectional taurine N-acetylation with free acetate as well as the reverse N-acetyltaurine hydrolysis reaction. Genetic ablation of PTER in mice results in complete loss of tissue taurine N-acetyltransferase/hydrolysis activities and systemic elevation of N-acetyltaurine levels. Upon stimuli that increase taurine levels, PTER-KO mice exhibit lower body weight, reduced adiposity, and improved glucose homeostasis. These phenotypes are recapitulated by administration of N-acetyltaurine to wild-type mice. Lastly, the anorexigenic and anti-obesity effects of N-acetyltaurine require functional GFRAL receptors. Together, these data uncover enzymatic control of a previously enigmatic pathway of secondary taurine metabolism linked to energy balance.
Collapse
Affiliation(s)
- Wei Wei
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Xuchao Lyu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Andrew L. Markhard
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Sipei Fu
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Rachel E. Mardjuki
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Xianfeng Zeng
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jakub Rajniak
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Nannan Lu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Shuke Xiao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Meng Zhao
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Maria Dolores Moya-Garzon
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
| | - Steven D. Truong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | | | - Lianna W. Wat
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Saranya Chidambaranathan-Reghupaty
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Laetitia Coassolo
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Duo Xu
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Biochemistry, Stanford University, Stanford, CA, USA
| | - Fangfang Shen
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Wentao Huang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Cuauhtemoc B. Ramirez
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Cholsoon Jang
- Department of Biological Chemistry, University of California Irvine, Irvine, CA, USA
| | - Katrin J. Svensson
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael A Fischbach
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
| | - Jonathan Z. Long
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Wu Tsai Human Performance Alliance, Stanford University, Stanford, CA, USA
- Stanford Diabetes Research Center, Stanford University School of Medicine, Stanford, CA, USA
- Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA, USA
- The Phil & Penny Knight Initiative for Brain Resilience at the Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
| |
Collapse
|
186
|
Wang G, Fan Y, Zhang G, Cai S, Ma Y, Yang L, Wang Y, Yu H, Qiao S, Zeng X. Microbiota-derived indoles alleviate intestinal inflammation and modulate microbiome by microbial cross-feeding. MICROBIOME 2024; 12:59. [PMID: 38504383 PMCID: PMC10949743 DOI: 10.1186/s40168-024-01750-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 01/03/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND The host-microbiota interaction plays a crucial role in maintaining homeostasis and disease susceptibility, and microbial tryptophan metabolites are potent modulators of host physiology. However, whether and how these metabolites mediate host-microbiota interactions, particularly in terms of inter-microbial communication, remains unclear. RESULTS Here, we have demonstrated that indole-3-lactic acid (ILA) is a key molecule produced by Lactobacillus in protecting against intestinal inflammation and correcting microbial dysbiosis. Specifically, Lactobacillus metabolizes tryptophan into ILA, thereby augmenting the expression of key bacterial enzymes implicated in tryptophan metabolism, leading to the synthesis of other indole derivatives including indole-3-propionic acid (IPA) and indole-3-acetic acid (IAA). Notably, ILA, IPA, and IAA possess the ability to mitigate intestinal inflammation and modulate the gut microbiota in both DSS-induced and IL-10-/- spontaneous colitis models. ILA increases the abundance of tryptophan-metabolizing bacteria (e.g., Clostridium), as well as the mRNA expression of acyl-CoA dehydrogenase and indolelactate dehydrogenase in vivo and in vitro, resulting in an augmented production of IPA and IAA. Furthermore, a mutant strain of Lactobacillus fails to protect against inflammation and producing other derivatives. ILA-mediated microbial cross-feeding was microbiota-dependent and specifically enhanced indole derivatives production under conditions of dysbiosis induced by Citrobacter rodentium or DSS, but not of microbiota disruption with antibiotics. CONCLUSION Taken together, we highlight mechanisms by which microbiome-host crosstalk cooperatively control intestinal homoeostasis through microbiota-derived indoles mediating the inter-microbial communication. These findings may contribute to the development of microbiota-derived metabolites or targeted "postbiotic" as potential interventions for the treatment or prevention of dysbiosis-driven diseases. Video Abstract.
Collapse
Affiliation(s)
- Gang Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193, China
- Frontier Technology Research Institute of China Agricultural University in Shenzhen, Shenzhen, 518116, China
| | - Yuxin Fan
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193, China
| | - Guolong Zhang
- Department of Animal and Food Sciences, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Shuang Cai
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193, China
| | - Yonghang Ma
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193, China
| | - Lijie Yang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193, China
| | - Yuming Wang
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193, China
| | - Haitao Yu
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193, China
| | - Shiyan Qiao
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193, China
| | - Xiangfang Zeng
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
- Beijing Key Laboratory of Biological Feed Additive, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
187
|
Song P, Jiang F, Liu D, Cai Z, Gao H, Gu H, Zhang J, Li B, Xu B, Zhang T. Gut microbiota non-convergence and adaptations in sympatric Tibetan and Przewalski's gazelles. iScience 2024; 27:109117. [PMID: 38384851 PMCID: PMC10879710 DOI: 10.1016/j.isci.2024.109117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/17/2023] [Accepted: 01/31/2024] [Indexed: 02/23/2024] Open
Abstract
Unraveling the connection between gut microbiota and adaptability in wild species in natural habitats is imperative yet challenging. We studied the gut microbiota of sympatric and allopatric populations of two closely related species, the Procapra picticaudata and P. przewalskii, with the latter showing lower adaptability and adaptive potential than the former. Despite shared habitat, sympatric populations showed no convergence in gut microbiota, revealing distinct microbiota-environment relationships between the two gazelle species. Furthermore, the gut microbiota assembly process of the P. przewalskii was shifted toward homogeneous selection processes relative to that of the P. picticaudata. Those taxa which contributed to the shift were mainly from the phyla Firmicutes and Verrucomicrobiota, with functions highly related to micronutrient and macronutrient metabolism. Our study provides new insights into the complex dynamics between gut microbiota, host adaptability, and environment in wildlife adaptation and highlights the need to consider host adaptability when examining wildlife host-microbiome interplay.
Collapse
Affiliation(s)
- Pengfei Song
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Feng Jiang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Daoxin Liu
- Qinghai University, Xining, Qinghai 810016, China
| | - Zhenyuan Cai
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Hongmei Gao
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Haifeng Gu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Jingjie Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Bin Li
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Bo Xu
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| | - Tongzuo Zhang
- Key Laboratory of Adaptation and Evolution of Plateau Biota, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai 810008, China
- Qinghai Provincial Key Laboratory of Animal Ecological Genomics, Xining, Qinghai 810008, China
| |
Collapse
|
188
|
Hao Z, Ding X, Wang J. Effects of gut bacteria and their metabolites on gut health of animals. ADVANCES IN APPLIED MICROBIOLOGY 2024; 127:223-252. [PMID: 38763528 DOI: 10.1016/bs.aambs.2024.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
The intestine tract is a vital site for the body to acquire nutrients, serving as the largest immune organ. Intestinal health is crucial for maintaining a normal physiological state. Abundant microorganisms reside in the intestine, colonized in a symbiotic manner. These microorganisms can generate various metabolites that influence host physiological activities. Microbial metabolites serve as signaling molecules or metabolic substrates in the intestine, and some intestinal microorganisms act as probiotics and promote intestinal health. Researches on host, probiotics, microbial metabolites and their interactions are ongoing. This study reviews the effects of gut bacteria and their metabolites on intestinal health to provide useful references for animal husbandry.
Collapse
Affiliation(s)
- Zhuang Hao
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Xuedong Ding
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China
| | - Jing Wang
- College of Animal Science and Technology, Nanjing Agricultural University, National Center for International Research on Animal Gut Nutrition, Nanjing, Jiangsu, P.R. China.
| |
Collapse
|
189
|
Xu YX, Liu LD, Zhu JY, Zhu SS, Ye BQ, Yang JL, Huang JY, Huang ZH, You Y, Li WK, He JL, Xia M, Liu Y. Alistipes indistinctus-derived hippuric acid promotes intestinal urate excretion to alleviate hyperuricemia. Cell Host Microbe 2024; 32:366-381.e9. [PMID: 38412863 DOI: 10.1016/j.chom.2024.02.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 01/10/2024] [Accepted: 02/02/2024] [Indexed: 02/29/2024]
Abstract
Hyperuricemia induces inflammatory arthritis and accelerates the progression of renal and cardiovascular diseases. Gut microbiota has been linked to the development of hyperuricemia through unclear mechanisms. Here, we show that the abundance and centrality of Alistipes indistinctus are depleted in subjects with hyperuricemia. Integrative metagenomic and metabolomic analysis identified hippuric acid as the key microbial effector that mediates the uric-acid-lowering effect of A. indistinctus. Mechanistically, A. indistinctus-derived hippuric acid enhances the binding of peroxisome-proliferator-activated receptor γ (PPARγ) to the promoter of ATP-binding cassette subfamily G member 2 (ABCG2), which in turn boosts intestinal urate excretion. To facilitate this enhanced excretion, hippuric acid also promotes ABCG2 localization to the brush border membranes in a PDZ-domain-containing 1 (PDZK1)-dependent manner. These findings indicate that A. indistinctus and hippuric acid promote intestinal urate excretion and offer insights into microbiota-host crosstalk in the maintenance of uric acid homeostasis.
Collapse
Affiliation(s)
- Ying-Xi Xu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Lu-Di Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jiang-Yuan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Shan-Shan Zhu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Bing-Qi Ye
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Statistics and Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jia-Lu Yang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jing-Yi Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Zhi-Hao Huang
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Yi You
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Wen-Kang Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Jia-Lin He
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Min Xia
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China
| | - Yan Liu
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, and Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, Guangdong, P.R. China.
| |
Collapse
|
190
|
Ogbunugafor CB, Yitbarek S. Towards a fundamental theory of taxon transitions in microbial communities. Proc Natl Acad Sci U S A 2024; 121:e2400433121. [PMID: 38422064 PMCID: PMC10945776 DOI: 10.1073/pnas.2400433121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024] Open
Affiliation(s)
- C. Brandon Ogbunugafor
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT06520
- Santa Fe Institute, Santa Fe, NM87501
| | - Senay Yitbarek
- Department of Biology, University of North Carolina, Chapel Hill, NC27599-3280
| |
Collapse
|
191
|
Wei W, Liu Y, Hou Y, Cao S, Chen Z, Zhang Y, Cai X, Yan Q, Li Z, Yuan Y, Wang G, Zheng X, Hao H. Psychological stress-induced microbial metabolite indole-3-acetate disrupts intestinal cell lineage commitment. Cell Metab 2024; 36:466-483.e7. [PMID: 38266651 DOI: 10.1016/j.cmet.2023.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/12/2023] [Accepted: 12/21/2023] [Indexed: 01/26/2024]
Abstract
The brain and gut are intricately connected and respond to various stimuli. Stress-induced brain-gut communication is implicated in the pathogenesis and relapse of gut disorders. The mechanism that relays psychological stress to the intestinal epithelium, resulting in maladaptation, remains poorly understood. Here, we describe a stress-responsive brain-to-gut metabolic axis that impairs intestinal stem cell (ISC) lineage commitment. Psychological stress-triggered sympathetic output enriches gut commensal Lactobacillus murinus, increasing the production of indole-3-acetate (IAA), which contributes to a transferrable loss of intestinal secretory cells. Bacterial IAA disrupts ISC mitochondrial bioenergetics and thereby prevents secretory lineage commitment in a cell-intrinsic manner. Oral α-ketoglutarate supplementation bolsters ISC differentiation and confers resilience to stress-triggered intestinal epithelial injury. We confirm that fecal IAA is higher in patients with mental distress and is correlated with gut dysfunction. These findings uncover a microbe-mediated brain-gut pathway that could be therapeutically targeted for stress-driven gut-brain comorbidities.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yali Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; State Key Laboratory of Digestive Diseases, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China; Department of Pharmacy, Shenzhen Luohu People's Hospital, Shenzhen 518005, China
| | - Shuqi Cao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhuo Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingyuan Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Ziguang Li
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China.
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
192
|
Iwaniak P, Owe-Larsson M, Urbańska EM. Microbiota, Tryptophan and Aryl Hydrocarbon Receptors as the Target Triad in Parkinson's Disease-A Narrative Review. Int J Mol Sci 2024; 25:2915. [PMID: 38474162 DOI: 10.3390/ijms25052915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/14/2024] Open
Abstract
In the era of a steadily increasing lifespan, neurodegenerative diseases among the elderly present a significant therapeutic and socio-economic challenge. A properly balanced diet and microbiome diversity have been receiving increasing attention as targets for therapeutic interventions in neurodegeneration. Microbiota may affect cognitive function, neuronal survival and death, and gut dysbiosis was identified in Parkinson's disease (PD). Tryptophan (Trp), an essential amino acid, is degraded by microbiota and hosts numerous compounds with immune- and neuromodulating properties. This broad narrative review presents data supporting the concept that microbiota, the Trp-kynurenine (KYN) pathway and aryl hydrocarbon receptors (AhRs) form a triad involved in PD. A disturbed gut-brain axis allows the bidirectional spread of pro-inflammatory molecules and α-synuclein, which may contribute to the development/progression of the disease. We suggest that the peripheral levels of kynurenines and AhR ligands are strongly linked to the Trp metabolism in the gut and should be studied together with the composition of the microbiota. Such an approach can clearly delineate the sub-populations of PD patients manifesting with a disturbed microbiota-Trp-KYN-brain triad, who would benefit from modifications in the Trp metabolism. Analyses of the microbiome, Trp-KYN pathway metabolites and AhR signaling may shed light on the mechanisms of intestinal distress and identify new targets for the diagnosis and treatment in early-stage PD. Therapeutic interventions based on the combination of a well-defined food regimen, Trp and probiotics seem of potential benefit and require further experimental and clinical research.
Collapse
Affiliation(s)
- Paulina Iwaniak
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| | - Maja Owe-Larsson
- Department of Histology and Embryology, Center of Biostructure Research, Medical University of Warsaw, Chałubińskiego 5, 02-004 Warsaw, Poland
- Laboratory of Center for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Ewa M Urbańska
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, 20-059 Lublin, Poland
| |
Collapse
|
193
|
Zhang Y, Tang N, Zhou H, Zhu Y. The role of microbial metabolites in endocrine tumorigenesis: From the mechanistic insights to potential therapeutic biomarkers. Biomed Pharmacother 2024; 172:116218. [PMID: 38308969 DOI: 10.1016/j.biopha.2024.116218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024] Open
Abstract
Microbial metabolites have been indicated to communicate with the host's endocrine system, regulating hormone production, immune-endocrine communications, and interactions along the gut-brain axis, eventually affecting the occurrence of endocrine cancer. Furthermore, microbiota metabolites such as short-chain fatty acids (SCFAs) have been found to affect the tumor microenvironment and boost immunity against tumors. SCFAs, including butyrate and acetate, have been demonstrated to exert anti-proliferative and anti-protective activity on pancreatic cancer cells. The employing of microbial metabolic products in conjunction with radiation and chemotherapy has shown promising outcomes in terms of reducing treatment side effects and boosting effectiveness. Certain metabolites, such as valerate and butyrate, have been made known to improve the efficiency of CAR T-cell treatment, whilst others, such as indole-derived tryptophan metabolites, have been shown to inhibit tumor immunity. This review explores the intricate interplay between microbial metabolites and endocrine tumorigenesis, spanning mechanistic insights to the discovery of potential therapeutic biomarkers.
Collapse
Affiliation(s)
- Yiyi Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Nie Tang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China
| | - Hui Zhou
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| | - Ying Zhu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, 610072, China.
| |
Collapse
|
194
|
Shen D, Chang L, Su F, Huang S, Xu H, Si Y, Wang F, Xue Y. The gut microbiome modulates the susceptibility to traumatic stress in a sex-dependent manner. J Neurosci Res 2024; 102:e25315. [PMID: 38439584 DOI: 10.1002/jnr.25315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 03/06/2024]
Abstract
Post-traumatic stress disorder (PTSD), a psychological condition triggered by exposure to extreme or chronic stressful events, exhibits a sex bias in incidence and clinical manifestations. Emerging research implicates the gut microbiome in the pathogenesis of PTSD and its roles in stress susceptibility. However, it is unclear whether differential gut microbiota contribute to PTSD susceptibility in male and female rats. Here, we utilized the single prolonged stress animal model and employed unsupervised machine learning to classify stressed animals into stress-susceptible subgroups and stress-resilient subgroups. Subsequently, using 16S V3-V4 rDNA sequencing, we investigated the differential gut microbiota alterations between susceptible and resilient individuals in male and female rats. Our findings revealed distinct changes in gut microbiota composition between the sexes at different taxonomic levels. Furthermore, the abundance of Parabacteroides was lower in rats that underwent SPS modeling compared to the control group. In addition, the abundance of Tenericutes in the stress-susceptible subgroup was higher than that in the control group and stress-resilient subgroup, suggesting that Tenericutes may be able to characterize stress susceptibility. What is particularly interesting here is that Cyanobacteria may be particularly associated with anti-anxiety effects in male rats. This study underscores sex-specific variations in gut microbiota composition in response to stress and sex differences should be taken into account when using macrobiotics for neuropsychiatric treatment, highlighting potential targets for PTSD therapeutic interventions.
Collapse
Affiliation(s)
- Dan Shen
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Liang Chang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Feng Su
- College of Future Technology, Peking University, Beijing, China
| | - Shihao Huang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Hubo Xu
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Yue Si
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| | - Feng Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Yanxue Xue
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence, Peking University, Beijing, China
| |
Collapse
|
195
|
Zhang X, Li PH, Wang D, Li H, Kong X, Zhang G, Zhao Y, Liu J, Wu W, Zhang Y, Li ZH, Luo H. Causal effect of gut microbiota of Defluviitaleaceae on the clinical pathway of "Influenza-Subacute Thyroiditis-Hypothyroidism". Front Microbiol 2024; 15:1354989. [PMID: 38476943 PMCID: PMC10929266 DOI: 10.3389/fmicb.2024.1354989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/29/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Hypothyroidism has been found to be influenced by gut microbiota. However, it remains unclear which a taxon of gut microbiota plays a key role in this function. Identifying the key bacteria affects hypothyroidism and through what mechanism will be helpful for the prevention of hypothyroidism through specific clinical pathways. Materials and methods In Study A, 35 families and 130 genera of gut microbiota are used as exposures, with hypothyroidism as the outcome. The causal effect of the gut microbiota on hypothyroidism is estimated through two-sample Mendelian randomization. Combining the results of the two taxonomical levels, key taxa are selected, which in Study B are investigated for their causal association with multiple generally admitted causes of hypothyroidism and their more upstream factors. For validating and revealing the potential mechanism, enrichment analyses of the related genes and interacting transcription factors were performed. Results In Study A, Defluviitaleaceae (OR: 0.043, 95% CI: 0.005-0.363, P = 0.018)/Defluviitaleaceae_UCG_011 (OR: 0.385, 95% CI: 0.172-0.865, P = 0.021) are significantly causally associated with hypothyroidism at both taxonomical levels. In Study B, Defluviitaleaceae family and Defluviitaleaceae_UCG_011 genus show the causal association with decreased thyroiditis (Family: OR: 0.174, 95% CI: 0.046-0.653, P = 0.029; Genus: OR: 0.139, 95% CI: 0.029-0.664, P = 0.043), decreased subacute thyroiditis (Family: OR: 0.028, 95% CI: 0.004-0.213, P = 0.007; Genus: OR: 0.018, 95% CI: 0.002-0.194, P = 0.013), decreased influenza (Family: OR: 0.818, 95% CI: 0.676-0.989, P = 0.038; Genus: OR: 0.792, 95% CI: 0.644-0.974, P = 0.027), and increased anti-influenza H3N2 IgG levels (Family: OR: 1.934, 95% CI: 1.123-3.332, P = 0.017; Genus: OR: 1.675, 95% CI: 0.953-2.943, P = 0.073). The results of the enrichment analysis are consistent with the findings and the suggested possible mechanisms. Conclusion Defluviitaleaceae of the gut microbiota displays the probability of causally inhibiting the clinical pathway of "Influenza-Subacute Thyroiditis-Hypothyroidism" and acts as the potential probiotics to prevent influenza, subacute thyroiditis, and hypothyroidism.
Collapse
Affiliation(s)
- Xin Zhang
- Department of Radiation Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Pei-Heng Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Dongyue Wang
- Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, China
| | - Hancong Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiangyu Kong
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Gongshuang Zhang
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zhao
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jiaye Liu
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wenshuang Wu
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuwei Zhang
- Department of Endocrinology and Metabolism, West China Hospital of Sichuan University, Chengdu, China
- Center for Diabetes and Metabolism Research, West China Hospital of Sichuan University, Chengdu, China
| | - Zhi-Hui Li
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Han Luo
- Division of Thyroid Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Laboratory Medicine/Research Centre of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
196
|
Loh JS, Mak WQ, Tan LKS, Ng CX, Chan HH, Yeow SH, Foo JB, Ong YS, How CW, Khaw KY. Microbiota-gut-brain axis and its therapeutic applications in neurodegenerative diseases. Signal Transduct Target Ther 2024; 9:37. [PMID: 38360862 PMCID: PMC10869798 DOI: 10.1038/s41392-024-01743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 01/02/2024] [Accepted: 01/14/2024] [Indexed: 02/17/2024] Open
Abstract
The human gastrointestinal tract is populated with a diverse microbial community. The vast genetic and metabolic potential of the gut microbiome underpins its ubiquity in nearly every aspect of human biology, including health maintenance, development, aging, and disease. The advent of new sequencing technologies and culture-independent methods has allowed researchers to move beyond correlative studies toward mechanistic explorations to shed light on microbiome-host interactions. Evidence has unveiled the bidirectional communication between the gut microbiome and the central nervous system, referred to as the "microbiota-gut-brain axis". The microbiota-gut-brain axis represents an important regulator of glial functions, making it an actionable target to ameliorate the development and progression of neurodegenerative diseases. In this review, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases. As the gut microbiome provides essential cues to microglia, astrocytes, and oligodendrocytes, we examine the communications between gut microbiota and these glial cells during healthy states and neurodegenerative diseases. Subsequently, we discuss the mechanisms of the microbiota-gut-brain axis in neurodegenerative diseases using a metabolite-centric approach, while also examining the role of gut microbiota-related neurotransmitters and gut hormones. Next, we examine the potential of targeting the intestinal barrier, blood-brain barrier, meninges, and peripheral immune system to counteract glial dysfunction in neurodegeneration. Finally, we conclude by assessing the pre-clinical and clinical evidence of probiotics, prebiotics, and fecal microbiota transplantation in neurodegenerative diseases. A thorough comprehension of the microbiota-gut-brain axis will foster the development of effective therapeutic interventions for the management of neurodegenerative diseases.
Collapse
Affiliation(s)
- Jian Sheng Loh
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Wen Qi Mak
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Li Kar Stella Tan
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Chu Xin Ng
- School of Biosciences, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Hong Hao Chan
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Shiau Hueh Yeow
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London, WC1N 1AX, UK
| | - Jhi Biau Foo
- School of Pharmacy, Faculty of Health & Medical Sciences, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
- Digital Health & Medical Advancements, Taylor's University, 1, Jalan Taylors, Subang Jaya, 47500, Selangor, Malaysia
| | - Yong Sze Ong
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia
| | - Chee Wun How
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| | - Kooi Yeong Khaw
- School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor, Malaysia.
| |
Collapse
|
197
|
Wang YC, Chin Koay Y, Pan C, Zhou Z, Wilson Tang WH, Wilcox J, Li XS, Zagouras A, Marques F, Allayee H, Rey FE, Kaye DM, O’Sullivan JF, Hazen SL, Cao Y, Lusis AJ. Indole-3-Propionic Acid Protects Against Heart Failure With Preserved Ejection Fraction. Circ Res 2024; 134:371-389. [PMID: 38264909 PMCID: PMC10923103 DOI: 10.1161/circresaha.123.322381] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/15/2024] [Indexed: 01/25/2024]
Abstract
BACKGROUND Heart failure with preserved ejection fraction (HFpEF) is a common but poorly understood form of heart failure, characterized by impaired diastolic function. It is highly heterogeneous with multiple comorbidities, including obesity and diabetes, making human studies difficult. METHODS Metabolomic analyses in a mouse model of HFpEF showed that levels of indole-3-propionic acid (IPA), a metabolite produced by gut bacteria from tryptophan, were reduced in the plasma and heart tissue of HFpEF mice as compared with controls. We then examined the role of IPA in mouse models of HFpEF as well as 2 human HFpEF cohorts. RESULTS The protective role and therapeutic effects of IPA were confirmed in mouse models of HFpEF using IPA dietary supplementation. IPA attenuated diastolic dysfunction, metabolic remodeling, oxidative stress, inflammation, gut microbiota dysbiosis, and intestinal epithelial barrier damage. In the heart, IPA suppressed the expression of NNMT (nicotinamide N-methyl transferase), restored nicotinamide, NAD+/NADH, and SIRT3 (sirtuin 3) levels. IPA mediates the protective effects on diastolic dysfunction, at least in part, by promoting the expression of SIRT3. SIRT3 regulation was mediated by IPA binding to the aryl hydrocarbon receptor, as Sirt3 knockdown diminished the effects of IPA on diastolic dysfunction in vivo. The role of the nicotinamide adenine dinucleotide circuit in HFpEF was further confirmed by nicotinamide supplementation, Nnmt knockdown, and Nnmt overexpression in vivo. IPA levels were significantly reduced in patients with HFpEF in 2 independent human cohorts, consistent with a protective function in humans, as well as mice. CONCLUSIONS Our findings reveal that IPA protects against diastolic dysfunction in HFpEF by enhancing the nicotinamide adenine dinucleotide salvage pathway, suggesting the possibility of therapeutic management by either altering the gut microbiome composition or supplementing the diet with IPA.
Collapse
Affiliation(s)
- Yu-Chen Wang
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Yen Chin Koay
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
- Charles Perkins Centre, Sydney, New South Wales, Australia
| | - Calvin Pan
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - Zhiqiang Zhou
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| | - W. H. Wilson Tang
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH
| | - Jennifer Wilcox
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
| | - Xinmin S. Li
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
| | | | - Francine Marques
- School of Biological Sciences, Faculty of Medicine, Monash University, Clayton, VIC, Australia
| | - Hooman Allayee
- Department of Preventive Medicine and Institute for Genetic Medicine, University of Southern California Keck School of Medicine, Los Angeles, CA 90089-9075, USA
| | - Federico E Rey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - David M. Kaye
- Baker Heart & Diabetes Institute, Melbourne, Australia
- Department of Cardiology, Alfred Hospital, Melbourne, Australia
| | - John F. O’Sullivan
- Cardiometabolic Medicine, School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, New South Wales, Australia
- Charles Perkins Centre, Sydney, New South Wales, Australia
- Department of Cardiology, Royal Prince Alfred Hospital, New South Wales, Australia
- Faculty of Medicine, TU Dresden, Germany
| | - Stanley L. Hazen
- Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland OH
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
| | - Yang Cao
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Aldons J. Lusis
- Department of Medicine, Division of Cardiology, Department of Microbiology, Immunology and Molecular Genetics, and Department of Human Genetics, University of California, Los Angeles, CA, USA
| |
Collapse
|
198
|
Schirmer M, Stražar M, Avila-Pacheco J, Rojas-Tapias DF, Brown EM, Temple E, Deik A, Bullock K, Jeanfavre S, Pierce K, Jin S, Invernizzi R, Pust MM, Costliow Z, Mack DR, Griffiths AM, Walters T, Boyle BM, Kugathasan S, Vlamakis H, Hyams J, Denson L, Clish CB, Xavier RJ. Linking microbial genes to plasma and stool metabolites uncovers host-microbial interactions underlying ulcerative colitis disease course. Cell Host Microbe 2024; 32:209-226.e7. [PMID: 38215740 PMCID: PMC10923022 DOI: 10.1016/j.chom.2023.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 11/08/2023] [Accepted: 12/15/2023] [Indexed: 01/14/2024]
Abstract
Understanding the role of the microbiome in inflammatory diseases requires the identification of microbial effector molecules. We established an approach to link disease-associated microbes to microbial metabolites by integrating paired metagenomics, stool and plasma metabolomics, and culturomics. We identified host-microbial interactions correlated with disease activity, inflammation, and the clinical course of ulcerative colitis (UC) in the Predicting Response to Standardized Colitis Therapy (PROTECT) pediatric inception cohort. In severe disease, metabolite changes included increased dipeptides and tauro-conjugated bile acids (BAs) and decreased amino-acid-conjugated BAs in stool, whereas in plasma polyamines (N-acetylputrescine and N1-acetylspermidine) increased. Using patient samples and Veillonella parvula as a model, we uncovered nitrate- and lactate-dependent metabolic pathways, experimentally linking V. parvula expansion to immunomodulatory tryptophan metabolite production. Additionally, V. parvula metabolizes immunosuppressive thiopurine drugs through xdhA xanthine dehydrogenase, potentially impairing the therapeutic response. Our findings demonstrate that the microbiome contributes to disease-associated metabolite changes, underscoring the importance of these interactions in disease pathology and treatment.
Collapse
Affiliation(s)
- Melanie Schirmer
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Translational Microbiome Data Integration, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany; ZIEL - Institute for Food & Health, Technical University of Munich, 85354 Freising, Germany.
| | - Martin Stražar
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | | | | | - Eric M Brown
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Emily Temple
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Amy Deik
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kevin Bullock
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Sarah Jeanfavre
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Kerry Pierce
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Shen Jin
- Translational Microbiome Data Integration, School of Life Sciences, Technical University of Munich, 85354 Freising, Germany
| | | | - Marie-Madlen Pust
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Zach Costliow
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - David R Mack
- Division of Gastroenterology, Hepatology & Nutrition, Children's Hospital of Eastern Ontario and University of Ottawa, Ottawa, ON K1H 8L1, Canada
| | - Anne M Griffiths
- Division of Gastroenterology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Thomas Walters
- Division of Gastroenterology, Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Brendan M Boyle
- Division of Pediatric Gastroenterology, Hepatology, and Nutrition, Nationwide Children's Hospital, Columbus, OH 43205, USA
| | - Subra Kugathasan
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | - Hera Vlamakis
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Jeffrey Hyams
- Connecticut Children's Medical Center, Division of Digestive Diseases, Hartford, CT 06106, USA
| | - Lee Denson
- Cincinnati Children's Hospital Medical Center and the University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | - Clary B Clish
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ramnik J Xavier
- The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Center for Computational and Integrative Biology and Department of Molecular Biology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA; Center for Microbiome Informatics and Therapeutics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
199
|
Cheng L, Wu H, Cai X, Zhang Y, Yu S, Hou Y, Yin Z, Yan Q, Wang Q, Sun T, Wang G, Yuan Y, Zhang X, Hao H, Zheng X. A Gpr35-tuned gut microbe-brain metabolic axis regulates depressive-like behavior. Cell Host Microbe 2024; 32:227-243.e6. [PMID: 38198925 DOI: 10.1016/j.chom.2023.12.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/29/2023] [Accepted: 12/13/2023] [Indexed: 01/12/2024]
Abstract
Gene-environment interactions shape behavior and susceptibility to depression. However, little is known about the signaling pathways integrating genetic and environmental inputs to impact neurobehavioral outcomes. We report that gut G-protein-coupled receptor, Gpr35, engages a microbe-to-brain metabolic pathway to modulate neuronal plasticity and depressive behavior in mice. Psychological stress decreases intestinal epithelial Gpr35, genetic deletion of which induces depressive-like behavior in a microbiome-dependent manner. Gpr35-/- mice and individuals with depression have increased Parabacteroides distasonis, and its colonization to wild-type mice induces depression. Gpr35-/- and Parabacteroides distasonis-colonized mice show reduced indole-3-carboxaldehyde (IAld) and increased indole-3-lactate (ILA), which are produced from opposing branches along the bacterial catabolic pathway of tryptophan. IAld and ILA counteractively modulate neuroplasticity in the nucleus accumbens, a brain region linked to depression. IAld supplementation produces anti-depressant effects in mice with stress or gut epithelial Gpr35 deficiency. Together, these findings elucidate a gut microbe-brain signaling mechanism that underlies susceptibility to depression.
Collapse
Affiliation(s)
- Lingsha Cheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Haoqian Wu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Xiaoying Cai
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Youying Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Siqi Yu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Yuanlong Hou
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Zhe Yin
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingyuan Yan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qiong Wang
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Taipeng Sun
- Department of Psychosomatics and Psychiatry, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China
| | - Yonggui Yuan
- Department of Psychosomatics and Psychiatry, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China.
| | - Xueli Zhang
- Department of Pharmacy, Southeast University Affiliated Zhongda Hospital, Nanjing 210009, China.
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiao Zheng
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, China; Laboratory of Metabolic Regulation and Drug Target Discovery, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
200
|
Pautova AK. Metabolic Profiling of Aromatic Compounds. Metabolites 2024; 14:107. [PMID: 38392999 PMCID: PMC10890443 DOI: 10.3390/metabo14020107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Metabolic profiling is a powerful modern tool in searching for novel biomarkers and indicators of normal or pathological processes in the body [...].
Collapse
Affiliation(s)
- Alisa K Pautova
- Federal Research and Clinical Center of Intensive Care Medicine and Rehabilitology, 25-2 Petrovka Str., 107031 Moscow, Russia
| |
Collapse
|