151
|
Yu C, Kang R, Tang D. Organoids Models of Pancreatic Duct Adenocarcinoma. Methods Mol Biol 2023; 2712:45-60. [PMID: 37578695 DOI: 10.1007/978-1-0716-3433-2_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Three-dimensional (3D) organoid culture is a laboratory technique used to grow and study miniature organs that mimic the structure and function of real organs in the human body. Organoids are created from stem cells or tissue samples and are grown in a 3D matrix that allows them to self-organize into a complex, three-dimensional structure. Organoids are valuable tools for studying human biology and disease, including cancer. Pancreatic ductal adenocarcinoma (PDAC) still has the worst survival rate of common malignancies, despite recent advances in cancer treatment. Preclinical studies have shown that impaired cell death pathways, including apoptosis, necroptosis, ferroptosis, pyroptosis, and alkaliptosis, promote PDAC development. Organoid models are now widely used in the study of pancreatic cancer biology, including cell death machinery. This chapter provides step-by-step protocols for generating human or mice PDAC organoids in a 3D Matrigel system.
Collapse
Affiliation(s)
- Chunhua Yu
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Rui Kang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA
| | - Daolin Tang
- Department of Surgery, UT Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
152
|
Kumar A, Cai S, Allam M, Henderson S, Ozbeyler M, Saiontz L, Coskun AF. Single-Cell and Spatial Analysis of Emergent Organoid Platforms. Methods Mol Biol 2023; 2660:311-344. [PMID: 37191807 DOI: 10.1007/978-1-0716-3163-8_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Organoids have emerged as a promising advancement of the two-dimensional (2D) culture systems to improve studies in organogenesis, drug discovery, precision medicine, and regenerative medicine applications. Organoids can self-organize as three-dimensional (3D) tissues derived from stem cells and patient tissues to resemble organs. This chapter presents growth strategies, molecular screening methods, and emerging issues of the organoid platforms. Single-cell and spatial analysis resolve organoid heterogeneity to obtain information about the structural and molecular cellular states. Culture media diversity and varying lab-to-lab practices have resulted in organoid-to-organoid variability in morphology and cell compositions. An essential resource is an organoid atlas that can catalog protocols and standardize data analysis for different organoid types. Molecular profiling of individual cells in organoids and data organization of the organoid landscape will impact biomedical applications from basic science to translational use.
Collapse
Affiliation(s)
- Aditi Kumar
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Shuangyi Cai
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Mayar Allam
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Samuel Henderson
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Melissa Ozbeyler
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Lilly Saiontz
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Ahmet F Coskun
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA.
- Interdisciplinary Bioengineering Graduate Program, Georgia Institute of Technology, Atlanta, GA, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, , Georgia Institute of Technology, Atlanta, GA, USA.
| |
Collapse
|
153
|
Munn LL, Bazou D. A Self-Assembly Method for Creating Vascularized Tumor Explants Using Biomaterials for 3D Culture. Methods Mol Biol 2023; 2645:211-220. [PMID: 37202621 PMCID: PMC11110101 DOI: 10.1007/978-1-0716-3056-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Validation of potential therapeutic targets in cancer requires functional live assays that recapitulate the biology, anatomy, and physiology of human tumors. We present a methodology for maintaining mouse and patient tumor samples ex vivo for in vitro drug-screening as well as for the guidance of patient-specific chemotherapies. The harvested tumor biopsy, excised from mice or patients, is integrated into a support tissue that includes extended stroma and vasculature. The methodology is more representative than tissue culture assays, faster than patient-derived xenograft models, easy to implement, amenable to high-throughput assays and does not carry the ethical issues or expense associated with animal studies. Our physiologically relevant model can be successfully used for high-throughput drug screening.
Collapse
Affiliation(s)
- Lance L Munn
- Edwin L. Steele Laboratory, Department of Radiation Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Despina Bazou
- Department of Haematology, Mater Misericordiae University Hospital, Dublin, Ireland.
- School of Medicine, University College Dublin, Dublin 4, Ireland.
| |
Collapse
|
154
|
Lundy J, Croagh D. Endoscopic Ultrasound-Guided Fine-Needle Biopsies to Generate Preclinical Disease Models to Study Inflammation in Pancreatic Ductal Adenocarcinoma. Methods Mol Biol 2023; 2691:43-54. [PMID: 37355536 DOI: 10.1007/978-1-0716-3331-1_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
Patient-derived xenografts (PDXs) are valuable models to study cancer biology, behavior, and response to therapies in vivo. Pancreatic cancer is an aggressive and treatment-resistant disease, and typical biopsies are often of low cellular yield and therefore present challenges for the creation of PDXs. This chapter will describe a method to establish PDX models from tissue biopsies obtained via endoscopic ultrasound-guided fine-needle aspiration, a relatively noninvasive technique which compared to surgery is available to pancreatic cancer patients at all stages of disease. Furthermore, we also describe methods to incorporate "humanization" of PDXs via reconstitution with human immune cells, thus mimicking the immune cell-rich microenvironment of pancreatic tumors.
Collapse
Affiliation(s)
- Joanne Lundy
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia.
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
- Department of Surgery, School of Clinical Sciences, Monash University, Clayton, VIC, Australia.
- Peninsula Clinical School, Central Clinical School, Faculty of Medicine Nursing and Health Sciences, Monash University, Clayton, VIC, Australia.
| | - Daniel Croagh
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, VIC, Australia
- Department of Molecular Translational Science, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
- Department of Surgery, School of Clinical Sciences, Monash University, Clayton, VIC, Australia
| |
Collapse
|
155
|
Kim W, Gwon Y, Park S, Kim H, Kim J. Therapeutic strategies of three-dimensional stem cell spheroids and organoids for tissue repair and regeneration. Bioact Mater 2023; 19:50-74. [PMID: 35441116 PMCID: PMC8987319 DOI: 10.1016/j.bioactmat.2022.03.039] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/16/2022] [Accepted: 03/25/2022] [Indexed: 02/07/2023] Open
Abstract
Three-dimensional (3D) stem cell culture systems have attracted considerable attention as a way to better mimic the complex interactions between individual cells and the extracellular matrix (ECM) that occur in vivo. Moreover, 3D cell culture systems have unique properties that help guide specific functions, growth, and processes of stem cells (e.g., embryogenesis, morphogenesis, and organogenesis). Thus, 3D stem cell culture systems that mimic in vivo environments enable basic research about various tissues and organs. In this review, we focus on the advanced therapeutic applications of stem cell-based 3D culture systems generated using different engineering techniques. Specifically, we summarize the historical advancements of 3D cell culture systems and discuss the therapeutic applications of stem cell-based spheroids and organoids, including engineering techniques for tissue repair and regeneration.
Collapse
Affiliation(s)
- Woochan Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Yonghyun Gwon
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Sunho Park
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Hyoseong Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Jangho Kim
- Department of Convergence Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Department of Rural and Biosystems Engineering, Chonnam National University, Gwangju, 61186, Republic of Korea
- Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju, 61186, Republic of Korea
| |
Collapse
|
156
|
Usman OH, Zhang L, Xie G, Kocher HM, Hwang CI, Wang YJ, Mallory X, Irianto J. Genomic heterogeneity in pancreatic cancer organoids and its stability with culture. NPJ Genom Med 2022; 7:71. [PMID: 36535941 PMCID: PMC9763422 DOI: 10.1038/s41525-022-00342-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
The establishment of patient-derived pancreatic cancer organoid culture in recent years creates an exciting opportunity for researchers to perform a wide range of in vitro studies on a model that closely recapitulates the tumor. One of the outstanding question in pancreatic cancer biology is the causes and consequences of genomic heterogeneity observed in the disease. However, to use pancreatic cancer organoids as a model to study genomic variations, we need to first understand the degree of genomic heterogeneity and its stability within organoids. Here, we used single-cell whole-genome sequencing to investigate the genomic heterogeneity of two independent pancreatic cancer organoid lines, as well as their genomic stability with extended culture. Clonal populations with similar copy number profiles were observed within the organoids, and the proportion of these clones was shifted with extended culture, suggesting the growth advantage of some clones. However, sub-clonal genomic heterogeneity was also observed within each clonal population, indicating the genomic instability of the pancreatic cancer cells themselves. Furthermore, our transcriptomic analysis also revealed a positive correlation between copy number alterations and gene expression regulation, suggesting the "gene dosage" effect of these copy number alterations that translates to gene expression regulation.
Collapse
Affiliation(s)
- Olalekan H Usman
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Liting Zhang
- Department of Computer Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Gengqiang Xie
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Hemant M Kocher
- Barts Cancer Institute, Queen Mary, John Vane Science Centre, University of London, Charterhouse Square, London, EC1M 6BQ, UK
| | - Chang-Il Hwang
- Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, 95616, USA
| | - Yue Julia Wang
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Xian Mallory
- Department of Computer Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Jerome Irianto
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
157
|
Zhao C, Matalonga J, Lancman JJ, Liu L, Xiao C, Kumar S, Gates KP, He J, Graves A, Huisken J, Azuma M, Lu Z, Chen C, Ding BS, Dong PDS. Regenerative failure of intrahepatic biliary cells in Alagille syndrome rescued by elevated Jagged/Notch/Sox9 signaling. Proc Natl Acad Sci U S A 2022; 119:e2201097119. [PMID: 36469766 PMCID: PMC9897440 DOI: 10.1073/pnas.2201097119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 10/21/2022] [Indexed: 12/08/2022] Open
Abstract
Despite the robust healing capacity of the liver, regenerative failure underlies numerous hepatic diseases, including the JAG1 haploinsufficient disorder, Alagille syndrome (ALGS). Cholestasis due to intrahepatic duct (IHD) paucity resolves in certain ALGS cases but fails in most with no clear mechanisms or therapeutic interventions. We find that modulating jag1b and jag2b allele dosage is sufficient to stratify these distinct outcomes, which can be either exacerbated or rescued with genetic manipulation of Notch signaling, demonstrating that perturbations of Jag/Notch signaling may be causal for the spectrum of ALGS liver severities. Although regenerating IHD cells proliferate, they remain clustered in mutants that fail to recover due to a blunted elevation of Notch signaling in the distal-most IHD cells. Increased Notch signaling is required for regenerating IHD cells to branch and segregate into the peripheral region of the growing liver, where biliary paucity is commonly observed in ALGS. Mosaic loss- and-gain-of-function analysis reveals Sox9b to be a key Notch transcriptional effector required cell autonomously to regulate these cellular dynamics during IHD regeneration. Treatment with a small-molecule putative Notch agonist stimulates Sox9 expression in ALGS patient fibroblasts and enhances hepatic sox9b expression, rescues IHD paucity and cholestasis, and increases survival in zebrafish mutants, thereby providing a proof-of-concept therapeutic avenue for this disorder.
Collapse
Affiliation(s)
- Chengjian Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041People’s Republic of China
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Jonathan Matalonga
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Joseph J. Lancman
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Lu Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041People’s Republic of China
| | - Chaoxin Xiao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041People’s Republic of China
| | - Shiv Kumar
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Keith P. Gates
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| | - Jiaye He
- Morgridge Institute for Research, Madison, WI53715
| | | | - Jan Huisken
- Morgridge Institute for Research, Madison, WI53715
- Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI53706
| | - Mizuki Azuma
- Department of Molecular Biosciences, University of Kansas, Lawrence, KS66045
| | - Zhenghao Lu
- Chengdu Organoidmed Medical Laboratory Ltd., Sichuan, 610041People’s Republic of China
| | - Chong Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041People’s Republic of China
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy, Sichuan, 610041People’s Republic of China
| | - P. Duc Si Dong
- Human Genetics Program, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
- Graduate School of Biomedical Sciences, Sanford Burnham Prebys Medical Discovery Institute, La Jolla, CA92037
| |
Collapse
|
158
|
Unagolla JM, Jayasuriya AC. Recent advances in organoid engineering: A comprehensive review. APPLIED MATERIALS TODAY 2022; 29:101582. [PMID: 38264423 PMCID: PMC10804911 DOI: 10.1016/j.apmt.2022.101582] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Organoid, a 3D structure derived from various cell sources including progenitor and differentiated cells that self-organize through cell-cell and cell-matrix interactions to recapitulate the tissue/organ-specific architecture and function in vitro. The advancement of stem cell culture and the development of hydrogel-based extracellular matrices (ECM) have made it possible to derive self-assembled 3D tissue constructs like organoids. The ability to mimic the actual physiological conditions is the main advantage of organoids, reducing the excessive use of animal models and variability between animal models and humans. However, the complex microenvironment and complex cellular structure of organoids cannot be easily developed only using traditional cell biology. Therefore, several bioengineering approaches, including microfluidics, bioreactors, 3D bioprinting, and organoids-on-a-chip techniques, are extensively used to generate more physiologically relevant organoids. In this review, apart from organoid formation and self-assembly basics, the available bioengineering technologies are extensively discussed as solutions for traditional cell biology-oriented problems in organoid cultures. Also, the natural and synthetic hydrogel systems used in organoid cultures are discussed when necessary to highlight the significance of the stem cell microenvironment. The selected organoid models and their therapeutic applications in drug discovery and disease modeling are also presented.
Collapse
Affiliation(s)
- Janitha M. Unagolla
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
| | - Ambalangodage C. Jayasuriya
- Biomedical Engineering Program, Department of Bioengineering, College of Engineering, The University of Toledo, Toledo OH, United States
- Department of Orthopaedic Surgery, College of Medicine and Life Sciences, The University of Toledo, 3000 Arlington Avenue, Toledo, OH 43614, United States
| |
Collapse
|
159
|
Wang E, Xiang K, Zhang Y, Wang XF. Patient-derived organoids (PDOs) and PDO-derived xenografts (PDOXs): New opportunities in establishing faithful pre-clinical cancer models. JOURNAL OF THE NATIONAL CANCER CENTER 2022; 2:263-276. [PMID: 39036550 PMCID: PMC11256726 DOI: 10.1016/j.jncc.2022.10.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/11/2022] [Accepted: 10/13/2022] [Indexed: 11/05/2022] Open
Abstract
One of the major bottlenecks in advancing basic cancer research and developing novel cancer therapies is the lack of in vitro pre-clinical models that faithfully recapitulate tumor properties in the patients. Monolayer cultures of cancer cell lines usually lose the heterogeneity of the parental tumors, while patient-derived xenograft (PDX) suffers from its time- and resource-intensive nature. The emergence of organoid culture system and its application in cancer research provides a unique opportunity to develop novel in vitro cancer pre-clinical models. Here we review the recent advances in utilizing organoids culture system and other related three-dimensional culture systems in studying cancer biology, performing drug screening, and developing cancer therapies. In particular, we discuss the advantages of applying xenograft initiated from patient-derived organoids (PDOs) as a faithful cancer pre-clinical model in basic cancer research and precision medicine.
Collapse
Affiliation(s)
- Ergang Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| | - Kun Xiang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| | - Yun Zhang
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiao-Fan Wang
- Department of Pharmacology and Cancer Biology, Duke University, Durham, United States
| |
Collapse
|
160
|
Xu J, Yang M, Shao AZ, Pan HW, Fan YX, Chen KP. Identification and Validation of Common Reference Genes for Normalization of Esophageal Squamous Cell Carcinoma Gene Expression Profiles. BIOMED RESEARCH INTERNATIONAL 2022; 2022:9125242. [PMID: 36467891 PMCID: PMC9711964 DOI: 10.1155/2022/9125242] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 09/29/2022] [Accepted: 09/30/2022] [Indexed: 09/04/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the subtypes of esophageal cancer with Chinese characteristics, and its five-year survival rate is less than 20%. Early diagnosis is beneficial to improving the survival rate of ESCC significantly. Quantitative Real-Time Polymerase Chain Reaction is a high-throughput technique that can quantify tumor-related genes for early diagnosis. Its accuracy largely depends on the stability of the reference gene. There is no systematic scientific basis to demonstrate which reference gene expression is stable in ESCC and no consensus on the selection of internal reference. Therefore, this research used four software programs (The comparative delta-Ct method, GeNorm, NormFinder, and BestKeeper) to evaluate the expression stability of eight candidate reference genes commonly used in other tumor tissues and generated a comprehensive analysis by RefFinder. Randomly selected transcriptome sequencing analysis confirmed the SPP1 gene is closely related to ESCC. It was found that the expression trend of SPP1 obtained by RPS18 and PPIA as internal reference genes were the same as that of sequencing. The results show that RPS18 and PPIA are stable reference genes, and PPIA + RPS18 are a suitable reference gene combination. This is a reference gene report that combines transcriptome sequencing analysis and only focuses on ESCC, which makes the quantification more precise, systematic, and standardized, and promotes gene regulation research and the early diagnosis of ESCC in the future.
Collapse
Affiliation(s)
- Jia Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ming Yang
- Department of General Surgery, Fifth People's Hospital of Huaian City, Huaian, China
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Ai-zhong Shao
- Department of Cardiothorac Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, China
| | - Hui-wen Pan
- Department of Cardiothoracic Surgery, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu Province, China
| | - Yi-xuan Fan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ke-ping Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| |
Collapse
|
161
|
Hogenson TL, Xie H, Phillips WJ, Toruner MD, Li JJ, Horn IP, Kennedy DJ, Almada LL, Marks DL, Carr RM, Toruner M, Sigafoos AN, Koenig-Kappes AN, Olson RL, Tolosa EJ, Zhang C, Li H, Doles JD, Bleeker J, Barrett MT, Boyum JH, Kipp BR, Mahipal A, Hubbard JM, Scheffler Hanson TJ, Petersen GM, Dasari S, Oberg AL, Truty MJ, Graham RP, Levy MJ, Zhu M, Billadeau DD, Adjei AA, Dusetti N, Iovanna JL, Bekaii-Saab TS, Ma WW, Fernandez-Zapico ME. Culture media composition influences patient-derived organoid ability to predict therapeutic responses in gastrointestinal cancers. JCI Insight 2022; 7:e158060. [PMID: 36256477 PMCID: PMC9746806 DOI: 10.1172/jci.insight.158060] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 10/12/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUNDA patient-derived organoid (PDO) platform may serve as a promising tool for translational cancer research. In this study, we evaluated PDO's ability to predict clinical response to gastrointestinal (GI) cancers.METHODSWe generated PDOs from primary and metastatic lesions of patients with GI cancers, including pancreatic ductal adenocarcinoma, colorectal adenocarcinoma, and cholangiocarcinoma. We compared PDO response with the observed clinical response for donor patients to the same treatments.RESULTSWe report an approximately 80% concordance rate between PDO and donor tumor response. Importantly, we found a profound influence of culture media on PDO phenotype, where we showed a significant difference in response to standard-of-care chemotherapies, distinct morphologies, and transcriptomes between media within the same PDO cultures.CONCLUSIONWhile we demonstrate a high concordance rate between donor tumor and PDO, these studies also showed the important role of culture media when using PDOs to inform treatment selection and predict response across a spectrum of GI cancers.TRIAL REGISTRATIONNot applicable.FUNDINGThe Joan F. & Richard A. Abdoo Family Fund in Colorectal Cancer Research, GI Cancer program of the Mayo Clinic Cancer Center, Mayo Clinic SPORE in Pancreatic Cancer, Center of Individualized Medicine (Mayo Clinic), Department of Laboratory Medicine and Pathology (Mayo Clinic), Incyte Pharmaceuticals and Mayo Clinic Hepatobiliary SPORE, University of Minnesota-Mayo Clinic Partnership, and the Early Therapeutic program (Department of Oncology, Mayo Clinic).
Collapse
Affiliation(s)
- Tara L. Hogenson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Hao Xie
- Department of Gastrointestinal Oncology, H Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, USA
- Division of Medical Oncology, Department of Oncology
| | - William J. Phillips
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Merih D. Toruner
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Jenny J. Li
- Division of Medical Oncology, Department of Oncology
| | - Isaac P. Horn
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Devin J. Kennedy
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Luciana L. Almada
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - David L. Marks
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Ryan M. Carr
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Murat Toruner
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Ashley N. Sigafoos
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Amanda N. Koenig-Kappes
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Rachel L.O. Olson
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Ezequiel J. Tolosa
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hu Li
- Department of Pharmacology, and
| | - Jason D. Doles
- Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jonathan Bleeker
- Sanford Research, Oncology, Sanford Health, Sioux Falls, South Dakota, USA
| | | | | | | | - Amit Mahipal
- Division of Medical Oncology, Department of Oncology
| | | | | | | | - Surendra Dasari
- Division of Computational Biology, Department of Quantitative Health Sciences, and
| | - Ann L. Oberg
- Division of Computational Biology, Department of Quantitative Health Sciences, and
| | - Mark J. Truty
- Department of Surgery, Mayo Clinic, Rochester, Minnesota, USA
| | - Rondell P. Graham
- Division of Anatomic Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Michael J. Levy
- Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Mojun Zhu
- Division of Medical Oncology, Department of Oncology
| | - Daniel D. Billadeau
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| | - Alex A. Adjei
- Division of Medical Oncology, Department of Oncology
| | - Nelson Dusetti
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Juan L. Iovanna
- Cancer Research Center of Marseille (CRCM), INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | | | - Wen Wee Ma
- Division of Medical Oncology, Department of Oncology
| | - Martin E. Fernandez-Zapico
- Schulze Center for Novel Therapeutics, Division of Oncology Research, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
162
|
Hoarau-Véchot J, Blot-Dupin M, Pauly L, Touboul C, Rafii S, Rafii A, Pasquier J. Akt-Activated Endothelium Increases Cancer Cell Proliferation and Resistance to Treatment in Ovarian Cancer Cell Organoids. Int J Mol Sci 2022; 23:ijms232214173. [PMID: 36430649 PMCID: PMC9694384 DOI: 10.3390/ijms232214173] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 11/18/2022] Open
Abstract
Ovarian cancer (OC) is a heterogeneous disease characterized by its late diagnosis (FIGO stages III and IV) and the importance of abdominal metastases often observed at diagnosis. Detached ovarian cancer cells (OCCs) float in ascites and form multicellular spheroids. Here, we developed endothelial cell (EC)-based 3D spheroids to better represent in vivo conditions. When co-cultured in 3D conditions, ECs and OCCs formed organized tumor angiospheres with a core of ECs surrounded by proliferating OCCs. We established that Akt and Notch3/Jagged1 pathways played a role in angiosphere formation and peritoneum invasion. In patients' ascites we found angiosphere-like structures and demonstrated in patients' specimens that tumoral EC displayed Akt activation, which supports the importance of Akt activation in ECs in OC. Additionally, we demonstrated the importance of FGF2, Pentraxin 3 (PTX3), PD-ECGF and TIMP-1 in angiosphere organization. Finally, we confirmed the role of Notch3/Jagged1 in OCC-EC crosstalk relating to OCC proliferation and during peritoneal invasion. Our results support the use of multicellular spheroids to better model tumoral and stromal interaction. Such models could help decipher the complex pathways playing critical roles in metastasis spread and predict tumor response to chemotherapy or anti-angiogenic treatment.
Collapse
Affiliation(s)
- Jessica Hoarau-Véchot
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
| | - Morgane Blot-Dupin
- Faculté de Médecine de Créteil UPEC—Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000 Créteil, France
| | - Léa Pauly
- Faculté de Médecine de Créteil UPEC—Paris XII, Service de Gynécologie-Obstétrique et Médecine de la Reproduction, Centre Hospitalier Intercommunal de Créteil, 40 Avenue de Verdun, 94000 Créteil, France
| | - Cyril Touboul
- Institut National de la Santé et de la Recherche Médicale (INSERM), Centre National de la Recherche Scientifique (CNRS), UMR_S 938, Centre de Recherche Saint-Antoine, Team Cancer Biology and Therapeutics, Institut Universitaire de Cancérologie, Sorbonne Université, 75012 Paris, France
- Department of Obstetrics and Gynecology, Hôpital Tenon, Assistance Publique Des Hôpitaux de Paris, GRC-6 UPMC, Université Pierre et Marie Curie, 75005 Paris, France
| | - Shahin Rafii
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Arash Rafii
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
- Department of Genetic Medicine, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jennifer Pasquier
- Department of Genetic Medicine and Obstetrics and Gynecology, Genetic Intelligence Laboratory, Weill Cornell Medicine-Qatar, Education City, Qatar Foundation, Doha P.O. Box 24144, Qatar
- Correspondence:
| |
Collapse
|
163
|
David KI, Ravikumar TS, Sethuraman S, Krishnan UM. Investigations of an organic-inorganic nanotheranostic hybrid for pancreatic cancer therapy using cancer-in-a-dish and in vivomodels. Biomed Mater 2022; 18. [PMID: 36270604 DOI: 10.1088/1748-605x/ac9cb2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 10/21/2022] [Indexed: 12/14/2022]
Abstract
The incidence of highly aggressive pancreatic cancer is increasing across the globe and is projected to increase to 18.6% by 2050. The mortality rate for this form of cancer is very high and the 5 y relative survival rate is only about 9%-10%. The 3D pancreatic cancer microenvironment exerts a major influence on the poor survival rate. A key factor is the prevention of the penetration of the chemotherapeutic drugs in the three-dimensional (3D) microenvironment leading to the development of chemoresistance which is a major contributor to the survival rates. Hence,in vitrostudies using 3D cultures represent a better approach to understand the effect of therapeutic formulations on the cancer cells when compared to conventional 2D cultures. In the present study, we have explored three different conditions for the development of a 3D pancreatic tumour spheroid model from MiaPaCa-2 and PanC1 cells cultured for 10 days using Matrigel matrix. This optimized spheroid model was employed to evaluate a multi-functional nanotheranostic system fabricated using chitosan nanoparticles co-encapsulated with the chemotherapeutic agent gemcitabine and gold-capped iron oxide nanoparticles for multimodal imaging. The effect of the single and multiple-dose regimens of the theranostic system on the viability of 3D spheroids formed from the two pancreatic cancer cell lines was studied. It was observed that the 3D tumour spheroids cultured for 10 days exhibited resistance towards free gemcitabine drug, unlike the 2D culture. The administration of the multifunctional nanotheranostic system on alternate days effectively reduced the cancer cell viability after five doses to about 20% when compared with other groups. The repeated doses of the nanotheranostic system were found to be more effective than the single dose. Cell line-based differences in internalization of the carrier was also reflected in their response to the nanocarrier with PanC1 showing better sensitivity to the treatment.In vivostudies revealed that the combination of gemcitabine and magnetic field induced hypothermia produced superior regression in cancer when compared with the chemotherapeutic agent alone by a combination of activating the pro-apoptotic pathway and heat-induced necrosis. Our results reveal that this multi-functional system holds promise to overcome the current challenges to treat pancreatic cancers.
Collapse
Affiliation(s)
- Karolyn Infanta David
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India
| | - T S Ravikumar
- Formerly at Sri Venkateswara Institute of Medical Sciences (SVIMS) Tirupati 517507, India
| | - Swaminathan Sethuraman
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India
| | - Uma Maheswari Krishnan
- Centre for Nanotechnology and Advanced Biomaterials, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India.,School of Arts, Sciences, Humanities and Education, SASTRA Deemed University, Thanjavur, TamilNadu 613401, India
| |
Collapse
|
164
|
Rathje F, Klingler S, Aberger F. Organoids for Modeling (Colorectal) Cancer in a Dish. Cancers (Basel) 2022; 14:cancers14215416. [PMID: 36358834 PMCID: PMC9655999 DOI: 10.3390/cancers14215416] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/21/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022] Open
Abstract
Simple Summary Despite remarkable progress in the treatment of cancer patients, the medical need for drugs with better efficacy is still unmet and high. In addition to accurate prediction of drug efficacy for individual patients, pathophysiologically relevant preclinical model systems with increased predictive power are urgently needed to reduce the high rate of clinical trial failure in oncology. Organoids grown from patient material represent exceptionally valuable model systems to mimic and study human diseased tissues such as tumors. Here, we elaborate an overview of innovative and advanced organoid model systems and highlight the exciting opportunities of organoids for personalized precision medicine and the field of immuno-oncology drug development. Abstract Functional studies of primary cancer have been limited to animal models for a long time making it difficult to study aspects specific to human cancer biology. The development of organoid technology enabled us to culture human healthy and tumor cells as three-dimensional self-organizing structures in vitro for a prolonged time. Organoid cultures conserve the heterogeneity of the originating epithelium regarding cell types and tumor clonality. Therefore, organoids are considered an invaluable tool to study and genetically dissect various aspects of human cancer biology. In this review, we describe the applications, advantages, and limitations of organoids as human cancer models with the main emphasis on colorectal cancer.
Collapse
|
165
|
Kiemen AL, Braxton AM, Grahn MP, Han KS, Babu JM, Reichel R, Jiang AC, Kim B, Hsu J, Amoa F, Reddy S, Hong SM, Cornish TC, Thompson ED, Huang P, Wood LD, Hruban RH, Wirtz D, Wu PH. CODA: quantitative 3D reconstruction of large tissues at cellular resolution. Nat Methods 2022; 19:1490-1499. [PMID: 36280719 PMCID: PMC10500590 DOI: 10.1038/s41592-022-01650-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 09/14/2022] [Indexed: 12/15/2022]
Abstract
A central challenge in biology is obtaining high-content, high-resolution information while analyzing tissue samples at volumes relevant to disease progression. We address this here with CODA, a method to reconstruct exceptionally large (up to multicentimeter cubed) tissues at subcellular resolution using serially sectioned hematoxylin and eosin-stained tissue sections. Here we demonstrate CODA's ability to reconstruct three-dimensional (3D) distinct microanatomical structures in pancreas, skin, lung and liver tissues. CODA allows creation of readily quantifiable tissue volumes amenable to biological research. As a testbed, we assess the microanatomy of the human pancreas during tumorigenesis within the branching pancreatic ductal system, labeling ten distinct structures to examine heterogeneity and structural transformation during neoplastic progression. We show that pancreatic precancerous lesions develop into distinct 3D morphological phenotypes and that pancreatic cancer tends to spread far from the bulk tumor along collagen fibers that are highly aligned to the 3D curves of ductal, lobular, vascular and neural structures. Thus, CODA establishes a means to transform broadly the structural study of human diseases through exploration of exhaustively labeled 3D microarchitecture.
Collapse
Affiliation(s)
- Ashley L Kiemen
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alicia M Braxton
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Mia P Grahn
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Kyu Sang Han
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jaanvi Mahesh Babu
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Rebecca Reichel
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ann C Jiang
- Department of Biomedical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Bridgette Kim
- Department of Mechanical Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Jocelyn Hsu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA
| | - Falone Amoa
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sashank Reddy
- Department of Plastic and Reconstructive Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Seung-Mo Hong
- Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Toby C Cornish
- Department of Pathology, University of Colorado School of Medicine, Aurora, CO, USA
| | - Elizabeth D Thompson
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Peng Huang
- Department of Biostatistics, The Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura D Wood
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ralph H Hruban
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Materials Science and Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA.
- Department of Pathology, The Sol Goldman Pancreatic Cancer Research Center, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Pei-Hsun Wu
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD, USA.
- Johns Hopkins Physical Sciences-Oncology Center, The Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
166
|
Azimian Zavareh V, Rafiee L, Sheikholeslam M, Shariati L, Vaseghi G, Savoji H, Haghjooy Javanmard S. Three-Dimensional in Vitro Models: A Promising Tool To Scale-Up Breast Cancer Research. ACS Biomater Sci Eng 2022; 8:4648-4672. [PMID: 36260561 DOI: 10.1021/acsbiomaterials.2c00277] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Common models used in breast cancer studies, including two-dimensional (2D) cultures and animal models, do not precisely model all aspects of breast tumors. These models do not well simulate the cell-cell and cell-stromal interactions required for normal tumor growth in the body and lake tumor like microenvironment. Three-dimensional (3D) cell culture models are novel approaches to studying breast cancer. They do not have the restrictions of these conventional models and are able to recapitulate the structural architecture, complexity, and specific function of breast tumors and provide similar in vivo responses to therapeutic regimens. These models can be a link between former traditional 2D culture and in vivo models and are necessary for further studies in cancer. This review attempts to summarize the most common 3D in vitro models used in breast cancer studies, including scaffold-free (spheroid and organoid), scaffold-based, and chip-based models, particularly focused on the basic and translational application of these 3D models in drug screening and the tumor microenvironment in breast cancer.
Collapse
Affiliation(s)
- Vajihe Azimian Zavareh
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Core Research Facilities (CRF), Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Laleh Rafiee
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Mohammadali Sheikholeslam
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Biosensor Research Center, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Laleh Shariati
- Department of Biomaterials, Nanotechnology and Tissue Engineering, School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran.,Cancer Prevention Research Center, Omid Hospital, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Golnaz Vaseghi
- Isfahan Cardiovascular Research Center, Isfahan Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| | - Houman Savoji
- Institute of Biomedical Engineering, Department of Pharmacology and Physiology, Faculty of Medicine, University of Montreal, Montreal, QC H3T 1J4, Canada.,Research Center, Centre Hospitalier Universitaire Sainte-Justine, Montreal, QC H3T 1C5, Canada.,Montreal TransMedTech Institute, Montreal, QC H3T 1J4, Canada
| | - Shaghayegh Haghjooy Javanmard
- Applied Physiology Research Center, Cardiovascular Research Institute, Isfahan University of Medical Sciences, Isfahan 81746 73461, Iran
| |
Collapse
|
167
|
Arrigoni R, Ballini A, Topi S, Bottalico L, Jirillo E, Santacroce L. Antibiotic Resistance to Mycobacterium tuberculosis and Potential Use of Natural and Biological Products as Alternative Anti-Mycobacterial Agents. Antibiotics (Basel) 2022; 11:antibiotics11101431. [PMID: 36290089 PMCID: PMC9598247 DOI: 10.3390/antibiotics11101431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/12/2022] [Accepted: 10/14/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Tuberculosis (TB) is an infectious disease caused by the bacillus Mycobacterium tuberculosis (Mtb). TB treatment is based on the administration of three major antibiotics: isoniazid, rifampicin, and pyrazinamide. However, multi-drug resistant (MDR) Mtb strains are increasing around the world, thus, allowing TB to spread around the world. The stringent response is demonstrated by Mtb strains in order to survive under hostile circumstances, even including exposure to antibiotics. The stringent response is mediated by alarmones, which regulate bacterial replication, transcription and translation. Moreover, the Mtb cell wall contributes to the mechanism of antibiotic resistance along with efflux pump activation and biofilm formation. Immunity over the course of TB is managed by M1-macrophages and M2-macrophages, which regulate the immune response against Mtb infection, with the former exerting inflammatory reactions and the latter promoting an anti-inflammatory profile. T helper 1 cells via secretion of interferon (IFN)-gamma, play a protective role in the course of TB, while T regulatory cells secreting interleukin 10, are anti-inflammatory. Alternative therapeutic options against TB require further discussion. In view of the increasing number of MDR Mtb strains, attempts to replace antibiotics with natural and biological products have been object of intensive investigation. Therefore, in this review the anti-Mtb effects exerted by probiotics, polyphenols, antimicrobial peptides and IFN-gamma will be discussed. All the above cited compounds are endowed either with direct antibacterial activity or with anti-inflammatory and immunomodulating characteristics.
Collapse
Affiliation(s)
- Roberto Arrigoni
- CNR Institute of Biomembranes, Bioenergetics and Molecular Biotechnologies (IBIOM), 70124 Bari, Italy
- Correspondence:
| | - Andrea Ballini
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Skender Topi
- Department of Clinical Disciplines, School of Technical Medical Sciences, “A. Xhuvani”, 3001 Elbasan, Albania
| | - Lucrezia Bottalico
- Department of Clinical Disciplines, School of Technical Medical Sciences, “A. Xhuvani”, 3001 Elbasan, Albania
| | - Emilio Jirillo
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| | - Luigi Santacroce
- Interdisciplinary Department of Medicine, Section of Microbiology and Virology, School of Medicine, University of Bari “Aldo Moro”, 70124 Bari, Italy
| |
Collapse
|
168
|
Grapin-Botton A, Kim YH. Pancreas organoid models of development and regeneration. Development 2022; 149:278610. [DOI: 10.1242/dev.201004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
ABSTRACT
Organoids have become one of the fastest progressing and applied models in biological and medical research, and various organoids have now been developed for most of the organs of the body. Here, we review the methods developed to generate pancreas organoids in vitro from embryonic, fetal and adult cells, as well as pluripotent stem cells. We discuss how these systems have been used to learn new aspects of pancreas development, regeneration and disease, as well as their limitations and potential for future discoveries.
Collapse
Affiliation(s)
- Anne Grapin-Botton
- Max Planck Institute of Molecular Cell Biology and Genetics 1 , Dresden D-01307 , Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at The University Hospital Carl Gustav Carus and Faculty of Medicine of the TU Dresden 2 , Dresden D-01307 , Germany
- Cluster of Excellence Physics of Life, TU Dresden 3 , 01062 Dresden , Germany
| | - Yung Hae Kim
- Max Planck Institute of Molecular Cell Biology and Genetics 1 , Dresden D-01307 , Germany
| |
Collapse
|
169
|
Yu YY, Zhu YJ, Xiao ZZ, Chen YD, Chang XS, Liu YH, Tang Q, Zhang HB. The pivotal application of patient-derived organoid biobanks for personalized treatment of gastrointestinal cancers. Biomark Res 2022; 10:73. [PMID: 36207749 PMCID: PMC9547471 DOI: 10.1186/s40364-022-00421-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 09/21/2022] [Indexed: 12/02/2022] Open
Abstract
Gastrointestinal cancers (GICs) occupy more than 30% of the cancer-related incidence and mortality around the world. Despite advances in the treatment strategies, the long-term overall survival has not been improved for patients with GICs. Recently, the novel patient-derived organoid (PDO) culture technology has become a powerful tool for GICs in a manner that recapitulates the morphology, pathology, genetic, phenotypic, and behavior traits of the original tumors. Excitingly, a number of evidences suggest that the versatile technology has great potential for personalized treatment, suppling the clinical application of molecularly guided personalized treatment. In the paper, we summarize the literature on the topics of establishing organoid biobanks of PDOs, and their application in the personalized treatment allowing for radiotherapy, chemotherapy, targeted therapy, and immunotherapy selection for GICs. Despite the limitations of current organoid models, high-throughput drug screening of GIC PDO combined with next-generation sequencing technology represents a novel and pivotal preclinical model for precision medicine of tumors and has a great value in promoting the transformation from basic cancer research to clinical application.
Collapse
Affiliation(s)
- Ya-Ya Yu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yan-Juan Zhu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhen-Zhen Xiao
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ya-Dong Chen
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xue-Song Chang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Yi-Hong Liu
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Tang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China.,Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, China
| | - Hai-Bo Zhang
- Department of Oncology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China. .,Department of Oncology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, China. .,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China.
| |
Collapse
|
170
|
Precision oncology using ex vivo technology: a step towards individualised cancer care? Expert Rev Mol Med 2022; 24:e39. [PMID: 36184897 PMCID: PMC9884776 DOI: 10.1017/erm.2022.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Despite advances in cancer genomics and the increased use of genomic medicine, metastatic cancer is still mostly an incurable and fatal disease. With diminishing returns from traditional drug discovery strategies, and high clinical failure rates, more emphasis is being placed on alternative drug discovery platforms, such as ex vivo approaches. Ex vivo approaches aim to embed biological relevance and inter-patient variability at an earlier stage of drug discovery, and to offer more precise treatment stratification for patients. However, these techniques also have a high potential to offer personalised therapies to patients, complementing and enhancing genomic medicine. Although an array of approaches are available to researchers, only a minority of techniques have made it through to direct patient treatment within robust clinical trials. Within this review, we discuss the current challenges to ex vivo approaches within clinical practice and summarise the contemporary literature which has directed patient treatment. Finally, we map out how ex vivo approaches could transition from a small-scale, predominantly research based technology to a robust and validated predictive tool. In future, these pre-clinical approaches may be integrated into clinical cancer pathways to assist in the personalisation of therapy choices and to hopefully improve patient experiences and outcomes.
Collapse
|
171
|
Li NT, Wu NC, Cao R, Cadavid JL, Latour S, Lu X, Zhu Y, Mijalkovic M, Roozitalab R, Landon-Brace N, Notta F, McGuigan AP. An off-the-shelf multi-well scaffold-supported platform for tumour organoid-based tissues. Biomaterials 2022; 291:121883. [DOI: 10.1016/j.biomaterials.2022.121883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 10/07/2022] [Accepted: 10/23/2022] [Indexed: 11/15/2022]
|
172
|
Tu Q, Liu X, Yao X, Li R, Liu G, Jiang H, Li K, Chen Q, Huang X, Chang Q, Xu G, Zhu H, Shi P, Zhao B. RETSAT associates with DDX39B to promote fork restarting and resistance to gemcitabine based chemotherapy in pancreatic ductal adenocarcinoma. J Exp Clin Cancer Res 2022; 41:274. [PMID: 36109793 PMCID: PMC9476698 DOI: 10.1186/s13046-022-02490-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/07/2022] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Severe hypoxia is a prominent character of pancreatic ductal adenocarcinoma (PDAC) microenvironment. In the process of gemcitabine based chemotherapy, PDAC cells are insulted from replication stresses co-induced by hypoxia and gemcitabine. However, PDAC cells get outstanding abilities to resist to such harsh conditions and keep proliferating, causing a major obstacle for current therapy. RETSAT (Retinol Saturase) is defined as a hypoxia convergent gene recently, with high expression in PDAC hypoxic sectors. This study aimed to explore the roles of RETSAT in replication stress resistance and hypoxia adaptation in PDAC cells, and decipher the underlying mechanism.
Methods
The expression of RETSAT was examined in TCGA (The Cancer Genome Atlas), human pancreatic cancer microarray, clinical specimens and cell lines. Functions of RETSAT were studied by means of DNA fiber assay and comet assay in monolayer cultured PDAC cell lines, three dimensional spheroids, patient derived organoids and cell derived xenograft mouse models. Mechanism was investigated by using iPOND (isolate proteins on nascent DNA) combined with mass spectrometry, immunoprecipitation and immunoblotting.
Results
First, we found the converse relationship of RETSAT expression and PDAC chemotherapy. That is, PDAC patients with high RETSAT expression correlated with poor survival, while ones holding low RETSAT expression were benefitted more in Gemcitabine based chemotherapy. Second, we identified RETSAT as a novel replication fork associated protein. HIF-1α signaling promotes RETSAT expression under hypoxia. Functionally, RETSAT promoted fork restarting under replication stress and maintained genomic stability. Third, we uncovered the interaction of RETSAT and R-loop unwinding helicase DDX39B. RETSAT detained DDX39B on forks to resolve R-loops, through which avoided fork damage and CHK1 initiated apoptosis. Targeting DDX39B using chemical CCT018159 sensitized PDAC cells and organoids to gemcitabine induced apoptosis, highlighting the synergetic application of CCT018159 and gemcitabine in PDAC chemotherapy.
Conclusions
This study identified RETSAT as a novel replication fork protein, which functions through interacting with DDX39B mediated R-loop clearance to promote fork restarting, leading to cellular resistance to replication stresses co-induced by tumor environmental hypoxia and gemcitabine in pancreatic ductal adenocarcinoma.
Collapse
|
173
|
Liu Y, Gan Y, AiErken N, Chen W, Zhang S, Ouyang J, Zeng L, Tang D. Combining Organoid Models with Next-Generation Sequencing to Reveal Tumor Heterogeneity and Predict Therapeutic Response in Breast Cancer. JOURNAL OF ONCOLOGY 2022; 2022:9390912. [PMID: 36046364 PMCID: PMC9423951 DOI: 10.1155/2022/9390912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/01/2022] [Indexed: 11/23/2022]
Abstract
Estrogen receptor-positive (ER+) breast cancer (BC) is a common subtype of BC with a relatively good prognosis. However, recurrence and death from ER+ BC occur because of tumor heterogeneity. This study aimed to explore tumor heterogeneity using next-generation sequencing (NGS) and tumor-organoid models to promote BC precise therapy. We collected needle biopsy, surgical excision, and cerebrospinal fluid (CSF) samples to establish tumor organoids. We found that the histological characteristics of organoids were consistent with original lesions and recapitulated their heterogenicity. In addition, the NGS results showed that PIK3CA and TP53 genes had detrimental mutations. BAP1, RET, AXIN2, and PPP2R2A genes had mutations with unknown function. The score for homologous recombination deficiency (HRD) of genome was 56, indicating that the tumor was likely sensitive to PARPi. The mutant-allele tumor heterogeneity (MATH) value of the tumor genome was 68.03, indicating high tumor heterogeneity. At last, we performed a drug screening on organoids. The toxicity of different drugs toward BC organoids originated from needle biopsy and surgical excision was tested, respectively. The IC50 values in the needle biopsy groups were paclitaxel 2.83 μM, carboplatin 61.47 μM, neratinib 0.8 μM, lapatinib >100 μM; in the surgical excision groups: trastuzumab >100 μM, docetaxel 0.036 μM, tamoxifen 20.54 μM, olaparib 5.478 μM, BYL719 < 0.1 μM. The toxicity data showed that the BC organoids could show dynamic characteristics of tumor progression and reflect the heterogeneity of BC. Our study demonstrates that the combined use of tumor organoids and NGS is a potential way to test tumor heterogeneity and predict drug response in ER + BC, which contributes to the development of personalized therapy.
Collapse
Affiliation(s)
- Yuhong Liu
- The Seventh Affiliated Hospital of Sun Yat-Sen University, General Surgery, Shenzhen 518107, China
| | - Yixiang Gan
- School of Medicine, Sun Yat-Sen University, Shenzhen 518107, China
| | - NiJiati AiErken
- The Seventh Affiliated Hospital of Sun Yat-Sen University, General Surgery, Shenzhen 518107, China
| | - Wei Chen
- The Seventh Affiliated Hospital, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen 518107, China
| | - Shiwei Zhang
- The Seventh Affiliated Hospital, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen 518107, China
| | - Jie Ouyang
- Department of Breast Surgery, Dongguan Tungwah Hospital, Dongguan 518107, China
| | - Leli Zeng
- The Seventh Affiliated Hospital, Guangdong Provincial Key Laboratory of Digestive Cancer Research, Shenzhen 518107, China
| | - Di Tang
- The Seventh Affiliated Hospital of Sun Yat-Sen University, General Surgery, Shenzhen 518107, China
| |
Collapse
|
174
|
Li J, Chen Y, Zhang Y, Peng X, Wu M, Chen L, Zhan X. Clinical value and influencing factors of establishing stomach cancer organoids by endoscopic biopsy. J Cancer Res Clin Oncol 2022:10.1007/s00432-022-04296-4. [DOI: 10.1007/s00432-022-04296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/14/2022] [Indexed: 01/10/2023]
|
175
|
Chen Y, Yang S, Tavormina J, Tampe D, Zeisberg M, Wang H, Mahadevan KK, Wu CJ, Sugimoto H, Chang CC, Jenq RR, McAndrews KM, Kalluri R. Oncogenic collagen I homotrimers from cancer cells bind to α3β1 integrin and impact tumor microbiome and immunity to promote pancreatic cancer. Cancer Cell 2022; 40:818-834.e9. [PMID: 35868307 PMCID: PMC9831277 DOI: 10.1016/j.ccell.2022.06.011] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/14/2022] [Accepted: 06/27/2022] [Indexed: 01/12/2023]
Abstract
In contrast to normal type I collagen (Col1) heterotrimer (α1/α2/α1) produced by fibroblasts, pancreatic cancer cells specifically produce unique Col1 homotrimer (α1/α1/α1). Col1 homotrimer results from epigenetic suppression of the Col1a2 gene and promotes oncogenic signaling, cancer cell proliferation, tumor organoid formation, and growth via α3β1 integrin on cancer cells, associated with tumor microbiome enriched in anaerobic Bacteroidales in hypoxic and immunosuppressive tumors. Deletion of Col1 homotrimers increases overall survival of mice with pancreatic ductal adenocarcinoma (PDAC), associated with reprograming of the tumor microbiome with increased microaerophilic Campylobacterales, which can be reversed with broad-spectrum antibiotics. Deletion of Col1 homotrimers enhances T cell infiltration and enables efficacy of anti-PD-1 immunotherapy. This study identifies the functional impact of Col1 homotrimers on tumor microbiome and tumor immunity, implicating Col1 homotrimer-α3β1 integrin signaling axis as a cancer-specific therapeutic target.
Collapse
Affiliation(s)
- Yang Chen
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Sujuan Yang
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jena Tavormina
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Desiree Tampe
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Michael Zeisberg
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Georg-August University, Göttingen, Germany
| | - Huamin Wang
- Department of Anatomical Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Krishnan K Mahadevan
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chang-Jiun Wu
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hikaru Sugimoto
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Chia-Chi Chang
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Robert R Jenq
- Department of Genomic Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kathleen M McAndrews
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Raghu Kalluri
- Department of Cancer Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; James P. Allison Institute, University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA; Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
176
|
Moya-Garcia CR, Okuyama H, Sadeghi N, Li J, Tabrizian M, Li-Jessen NYK. In vitro models for head and neck cancer: Current status and future perspective. Front Oncol 2022; 12:960340. [PMID: 35992863 PMCID: PMC9381731 DOI: 10.3389/fonc.2022.960340] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 06/29/2022] [Indexed: 12/12/2022] Open
Abstract
The 5-year overall survival rate remains approximately 50% for head and neck (H&N) cancer patients, even though new cancer drugs have been approved for clinical use since 2016. Cancer drug studies are now moving toward the use of three-dimensional culture models for better emulating the unique tumor microenvironment (TME) and better predicting in vivo response to cancer treatments. Distinctive TME features, such as tumor geometry, heterogenous cellularity, and hypoxic cues, notably affect tissue aggressiveness and drug resistance. However, these features have not been fully incorporated into in vitro H&N cancer models. This review paper aims to provide a scholarly assessment of the designs, contributions, and limitations of in vitro models in H&N cancer drug research. We first review the TME features of H&N cancer that are most relevant to in vitro drug evaluation. We then evaluate a selection of advanced culture models, namely, spheroids, organotypic models, and microfluidic chips, in their applications for H&N cancer drug research. Lastly, we propose future opportunities of in vitro H&N cancer research in the prospects of high-throughput drug screening and patient-specific drug evaluation.
Collapse
Affiliation(s)
| | - Hideaki Okuyama
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Department of Otolaryngology – Head & Neck Surgery, Kyoto University, Kyoto, Japan
| | - Nader Sadeghi
- Department of Otolaryngology – Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, McGill University, Montreal, QC, Canada
| | - Jianyu Li
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Department of Mechanical Engineering, McGill University, Montreal, QC, Canada
| | - Maryam Tabrizian
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC, Canada
- *Correspondence: Maryam Tabrizian, ; Nicole Y. K. Li-Jessen,
| | - Nicole Y. K. Li-Jessen
- Department of Biomedical Engineering, McGill University, Montreal, QC, Canada
- School of Communication Sciences and Disorders, McGill University, Montreal, QC, Canada
- Department of Otolaryngology – Head and Neck Surgery, McGill University, Montreal, QC, Canada
- Research Institute of McGill University Health Center, McGill University, Montreal, QC, Canada
- *Correspondence: Maryam Tabrizian, ; Nicole Y. K. Li-Jessen,
| |
Collapse
|
177
|
Gao Y, Kruithof-de Julio M, Peng RW, Dorn P. Organoids as a Model for Precision Medicine in Malignant Pleural Mesothelioma: Where Are We Today? Cancers (Basel) 2022; 14:3758. [PMID: 35954422 PMCID: PMC9367391 DOI: 10.3390/cancers14153758] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/26/2022] [Accepted: 07/29/2022] [Indexed: 12/10/2022] Open
Abstract
MPM is an aggressive tumor originating from pleural mesothelial cells. A characteristic feature of the disease is the dominant prevalence of therapeutically intractable inactivating alterations in TSGs, making MPM one of the most difficult cancers to treat and the epitome of a cancer characterized by a significant lack of therapy options and an extremely poor prognosis (5-year survival rate of only 5% to 10%). Extensive interpatient heterogeneity poses another major challenge for targeted therapy of MPM, warranting stratified therapy for specific subgroups of MPM patients. Accurate preclinical models are critical for the discovery of new therapies and the development of personalized medicine. Organoids, an in vitro 'organ-like' 3D structure derived from patient tumor tissue that faithfully mimics the biology and complex architecture of cancer and largely overcomes the limitations of other existing models, are the next-generation tumor model. Although organoids have been successfully produced and used in many cancers, the development of MPM organoids is still in its infancy. Here, we provide an overview of recent advances in cancer organoids, focusing on the progress and challenges in MPM organoid development. We also elaborate the potential of MPM organoids for understanding MPM pathobiology, discovering new therapeutic targets, and developing personalized treatments for MPM patients.
Collapse
Affiliation(s)
- Yanyun Gao
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| | - Marianna Kruithof-de Julio
- Urology Research Laboratory, Department for BioMedical Research (DBMR), University of Bern, 3008 Bern, Switzerland;
- Department for BioMedical Research (DBMR), Translation Organoid Research, University of Bern, 3008 Bern, Switzerland
- Department of Urology, Inselspital, Bern University Hospital, 3008 Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| | - Patrick Dorn
- Department of General Thoracic Surgery, Inselspital, Bern University Hospital, University of Bern, 3008 Bern, Switzerland;
- Department of BioMedical Research (DBMR), Oncology-Thoracic Malignancies (OTM), University of Bern, 3008 Bern, Switzerland
| |
Collapse
|
178
|
Becklin KL, Draper GM, Madden RA, Kluesner MG, Koga T, Huang M, Weiss WA, Spector LG, Largaespada DA, Moriarity BS, Webber BR. Developing Bottom-Up Induced Pluripotent Stem Cell Derived Solid Tumor Models Using Precision Genome Editing Technologies. CRISPR J 2022; 5:517-535. [PMID: 35972367 PMCID: PMC9529369 DOI: 10.1089/crispr.2022.0032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 07/29/2022] [Indexed: 11/13/2022] Open
Abstract
Advances in genome and tissue engineering have spurred significant progress and opportunity for innovation in cancer modeling. Human induced pluripotent stem cells (iPSCs) are an established and powerful tool to study cellular processes in the context of disease-specific genetic backgrounds; however, their application to cancer has been limited by the resistance of many transformed cells to undergo successful reprogramming. Here, we review the status of human iPSC modeling of solid tumors in the context of genetic engineering, including how base and prime editing can be incorporated into "bottom-up" cancer modeling, a term we coined for iPSC-based cancer models using genetic engineering to induce transformation. This approach circumvents the need to reprogram cancer cells while allowing for dissection of the genetic mechanisms underlying transformation, progression, and metastasis with a high degree of precision and control. We also discuss the strengths and limitations of respective engineering approaches and outline experimental considerations for establishing future models.
Collapse
Affiliation(s)
- Kelsie L. Becklin
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Garrett M. Draper
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Rebecca A. Madden
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Mitchell G. Kluesner
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Tomoyuki Koga
- Ludwig Cancer Research San Diego Branch, La Jolla, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Miller Huang
- Department of Pediatrics, University of Southern California, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles and The Saban Research Institute, Los Angeles, California, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - William A. Weiss
- Departments of Neurology, Pediatrics, Neurosurgery, Brain Tumor Research Center, and Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, California, USA; and Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Departments of Pediatrics, Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Logan G. Spector
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - David A. Largaespada
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Branden S. Moriarity
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| | - Beau R. Webber
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
- Center for Genome Engineering, University of Minnesota, Minneapolis, Minnesota, USA; Neurosurgery and Brain Tumor Research Center, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
179
|
Ren X, Chen W, Yang Q, Li X, Xu L. Patient-derived cancer organoids for drug screening: Basic technology and clinical application. J Gastroenterol Hepatol 2022; 37:1446-1454. [PMID: 35771719 DOI: 10.1111/jgh.15930] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/16/2022] [Accepted: 06/25/2022] [Indexed: 12/13/2022]
Abstract
Cancer organoids, a three-dimensional (3D) culture system of cancer cells derived from tumor tissues, recapitulate physiological structure of the parental tumor. Different tumor organoids have been established for a variety of tumor types, such as colorectal, liver, stomach, pancreatic and brain tumors. Some tumor organoid biobanks are built to screen and discover novel antitumor drug targets. Moreover, patients-derived tumor organoids (PDOs) could predict treatment response to chemoradiotherapy, targeted therapy and immunotherapy to provide guidance for personalized cancer therapy. In this review, we provide an updated overview of tumor organoid development, summarize general approach to establish tumor organoids, and discuss the application of anti-cancer drug screening based on tumor organoid and its application in personalized therapy. We also outline the opportunities and challenges for organoids to guide precision medicine.
Collapse
Affiliation(s)
- Xiaoxue Ren
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Weikang Chen
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Qingxia Yang
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaoxing Li
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Lixia Xu
- Department of Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China.,Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
180
|
Monteiro MV, Ferreira LP, Rocha M, Gaspar VM, Mano JF. Advances in bioengineering pancreatic tumor-stroma physiomimetic Biomodels. Biomaterials 2022; 287:121653. [PMID: 35803021 DOI: 10.1016/j.biomaterials.2022.121653] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 06/20/2022] [Accepted: 06/24/2022] [Indexed: 01/18/2023]
Abstract
Pancreatic cancer exhibits a unique bioarchitecture and desmoplastic cancer-stoma interplay that governs disease progression, multi-resistance, and metastasis. Emulating the biological features and microenvironment heterogeneity of pancreatic cancer stroma in vitro is remarkably complex, yet highly desirable for advancing the discovery of innovative therapeutics. Diverse bioengineering approaches exploiting patient-derived organoids, cancer-on-a-chip platforms, and 3D bioprinted living constructs have been rapidly emerging in an endeavor to seamlessly recapitulate major tumor-stroma biodynamic interactions in a preclinical setting. Gathering on this, herein we showcase and discuss the most recent advances in bio-assembling pancreatic tumor-stroma models that mimic key disease hallmarks and its desmoplastic biosignature. A reverse engineering perspective of pancreatic tumor-stroma key elementary units is also provided and complemented by a detailed description of biodesign guidelines that are to be considered for improving 3D models physiomimetic features. This overview provides valuable examples and starting guidelines for researchers envisioning to engineer and characterize stroma-rich biomimetic tumor models. All in all, leveraging advanced bioengineering tools for capturing stromal heterogeneity and dynamics, opens new avenues toward generating more predictive and patient-personalized organotypic 3D in vitro platforms for screening transformative therapeutics targeting the tumor-stroma interplay.
Collapse
Affiliation(s)
- Maria V Monteiro
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Luís P Ferreira
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Marta Rocha
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Vítor M Gaspar
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
181
|
Pion E, Karnosky J, Boscheck S, Wagner BJ, Schmidt KM, Brunner SM, Schlitt HJ, Aung T, Hackl C, Haerteis S. 3D In Vivo Models for Translational Research on Pancreatic Cancer: The Chorioallantoic Membrane (CAM) Model. Cancers (Basel) 2022; 14:cancers14153733. [PMID: 35954398 PMCID: PMC9367548 DOI: 10.3390/cancers14153733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/21/2022] [Accepted: 07/28/2022] [Indexed: 11/25/2022] Open
Abstract
Simple Summary The 5-year overall survival rate for all stages of pancreatic cancer is relatively low at about only 6%. As a result of this exceedingly poor prognosis, new research models are necessary to investigate this highly malignant cancer. One model that has been used extensively for a vast variety of different cancers is the chorioallantoic membrane (CAM) model. It is based on an exceptionally vascularized membrane that develops within fertilized chicken eggs and can be used for the grafting and analysis of tumor tissue. The aim of the study was to summarize already existing works on pancreatic ductal adenocarcinoma (PDAC) and the CAM model. The results were subdivided into different categories that include drug testing, angiogenesis, personalized medicine, modifications of the model, and further developments to help improve the unfavorable prognosis of this disease. Abstract Pancreatic ductal adenocarcinoma (PDAC) is a highly aggressive cancer with adverse outcomes that have barely improved over the last decade. About half of all patients present with metastasis at the time of diagnosis, and the 5-year overall survival rate across all stages is only 6%. Innovative in vivo research models are necessary to combat this cancer and to discover novel treatment strategies. The chorioallantoic membrane (CAM) model represents one 3D in vivo methodology that has been used in a large number of studies on different cancer types for over a century. This model is based on a membrane formed within fertilized chicken eggs that contain a dense network of blood vessels. Because of its high cost-efficiency, simplicity, and versatility, the CAM model appears to be a highly valuable research tool in the pursuit of gaining more in-depth insights into PDAC. A summary of the current literature on the usage of the CAM model for the investigation of PDAC was conducted and subdivided into angiogenesis, drug testing, modifications, personalized medicine, and further developments. On this comprehensive basis, further research should be conducted on PDAC in order to improve the abysmal prognosis of this malignant disease.
Collapse
Affiliation(s)
- Eric Pion
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
| | - Julia Karnosky
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Sofie Boscheck
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
| | - Benedikt J. Wagner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Katharina M. Schmidt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Stefan M. Brunner
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Hans J. Schlitt
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Thiha Aung
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
- Faculty of Applied Healthcare Science, Deggendorf Institute of Technology, 94469 Deggendorf, Germany
| | - Christina Hackl
- Department of Surgery, University Hospital Regensburg, 93053 Regensburg, Germany; (J.K.); (B.J.W.); (K.M.S.); (S.M.B.); (H.J.S.); (C.H.)
| | - Silke Haerteis
- Institute for Molecular and Cellular Anatomy, University of Regensburg, 93053 Regensburg, Germany; (E.P.); (S.B.); (T.A.)
- Correspondence:
| |
Collapse
|
182
|
Foglizzo V, Cocco E, Marchiò S. Advanced Cellular Models for Preclinical Drug Testing: From 2D Cultures to Organ-On-A-Chip Technology. Cancers (Basel) 2022; 14:cancers14153692. [PMID: 35954355 PMCID: PMC9367322 DOI: 10.3390/cancers14153692] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/18/2022] [Accepted: 07/26/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Novel strategies that aim at personalizing cancer therapy are in rapid evolution. In the past decade, new methods to test for the efficacy of either standard-of-care medicines or novel targeted compounds have been implemented. In this review, we introduce the reader to experimental studies that employ patient-derived material to produce spheroids, organoids, or organs-on-a-chip as platforms that allow a more accurate representation of cancer complexity compared to bidimensional cell cultures. We discuss on the versatility and reliability of these model systems, provide evidence of their usage in drug screenings, and describe potential downfalls. The open question is whether or not tumor mimicry in vitro will be, in the near future, advanced enough to prospectively inform about treatment outcome on a certain patient. Abstract Cancer is a complex disease arising from a homeostatic imbalance of cell-intrinsic and microenvironment-related mechanisms. A multimodal approach to treat cancer that includes surgery, chemotherapy, and radiation therapy often fails in achieving tumor remission and produces unbearable side effects including secondary malignancies. Novel strategies have been implemented in the past decades in order to replace conventional chemotherapeutics with targeted, less toxic drugs. Up to now, scientists have relied on results achieved in animal research before proceeding to clinical trials. However, the high failure rate of targeted drugs in early phase trials leaves no doubt about the inadequacy of those models. In compliance with the need of reducing, and possibly replacing, animal research, studies have been conducted in vitro with advanced cellular models that more and more mimic the tumor in vivo. We will here review those methods that allow for the 3D reconstitution of the tumor and its microenvironment and the implementation of the organ-on-a-chip technology to study minimal organ units in disease progression. We will make specific reference to the usability of these systems as predictive cancer models and report on recent applications in high-throughput screenings of innovative and targeted drug compounds.
Collapse
Affiliation(s)
- Valentina Foglizzo
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.F.); (E.C.)
| | - Emiliano Cocco
- Department of Biochemistry and Molecular Biology, University of Miami Miller School of Medicine, Miami, FL 33136, USA; (V.F.); (E.C.)
| | - Serena Marchiò
- Department of Oncology, University of Torino, 10060 Candiolo, Italy
- Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy
- Correspondence:
| |
Collapse
|
183
|
Cacciamali A, Villa R, Dotti S. 3D Cell Cultures: Evolution of an Ancient Tool for New Applications. Front Physiol 2022; 13:836480. [PMID: 35936888 PMCID: PMC9353320 DOI: 10.3389/fphys.2022.836480] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 06/14/2022] [Indexed: 12/12/2022] Open
Abstract
Recently, research is undergoing a drastic change in the application of the animal model as a unique investigation strategy, considering an alternative approach for the development of science for the future. Although conventional monolayer cell cultures represent an established and widely used in vitro method, the lack of tissue architecture and the complexity of such a model fails to inform true biological processes in vivo. Recent advances in cell culture techniques have revolutionized in vitro culture tools for biomedical research by creating powerful three-dimensional (3D) models to recapitulate cell heterogeneity, structure and functions of primary tissues. These models also bridge the gap between traditional two-dimensional (2D) single-layer cultures and animal models. 3D culture systems allow researchers to recreate human organs and diseases in one dish and thus holds great promise for many applications such as regenerative medicine, drug discovery, precision medicine, and cancer research, and gene expression studies. Bioengineering has made an important contribution in the context of 3D systems using scaffolds that help mimic the microenvironments in which cells naturally reside, supporting the mechanical, physical and biochemical requirements for cellular growth and function. We therefore speak of models based on organoids, bioreactors, organ-on-a-chip up to bioprinting and each of these systems provides its own advantages and applications. All of these techniques prove to be excellent candidates for the development of alternative methods for animal testing, as well as revolutionizing cell culture technology. 3D systems will therefore be able to provide new ideas for the study of cellular interactions both in basic and more specialized research, in compliance with the 3R principle. In this review, we provide a comparison of 2D cell culture with 3D cell culture, provide details of some of the different 3D culture techniques currently available by discussing their strengths as well as their potential applications.
Collapse
Affiliation(s)
| | | | - Silvia Dotti
- *Correspondence: Andrea Cacciamali, ; Silvia Dotti,
| |
Collapse
|
184
|
Li H, Liu H, Chen K. Living biobank-based cancer organoids: prospects and challenges in cancer research. Cancer Biol Med 2022; 19:j.issn.2095-3941.2021.0621. [PMID: 35856555 PMCID: PMC9334762 DOI: 10.20892/j.issn.2095-3941.2021.0621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Biobanks bridge the gap between basic and translational research. Traditional cancer biobanks typically contain normal and tumor tissues, and matched blood. However, biospecimens in traditional biobanks are usually nonrenewable. In recent years, increased interest has focused on establishing living biobanks, including organoid biobanks, for the collection and storage of viable and functional tissues for long periods of time. The organoid model is based on a 3D in vitro cell culture system, is highly similar to primary tissues and organs in vivo, and can recapitulate the phenotypic and genetic characteristics of target organs. Publications on cancer organoids have recently increased, and many types of cancer organoids have been used for modeling cancer processes, as well as for drug discovery and screening. On the basis of the current research status, more exploration of cancer organoids through technical advancements is required to improve reproducibility and scalability. Moreover, given the natural characteristics of organoids, greater attention must be paid to ethical considerations. Here, we summarize recent advances in cancer organoid biobanking research, encompassing rectal, gastric, pancreatic, breast, and glioblastoma cancers. Living cancer biobanks that contain cancerous tissues and matched organoids with different genetic backgrounds, subtypes, and individualized characteristics will eventually contribute to the understanding of cancer and ultimately facilitate the development of innovative treatments.
Collapse
Affiliation(s)
- Haixin Li
- Cancer Biobank, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin 300060, China
| | - Hongkun Liu
- Cancer Biobank, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin 300060, China
| | - Kexin Chen
- Department of Epidemiology and Biostatistics, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Key Laboratory of Molecular Cancer Epidemiology of Tianjin, Tianjin 300060, China
| |
Collapse
|
185
|
Lee JH, Kim H, Lee SH, Ku JL, Chun JW, Seo HY, Kim SC, Paik WH, Ryu JK, Lee SK, Lowy AM, Kim YT. Establishment of Patient-Derived Pancreatic Cancer Organoids from Endoscopic Ultrasound-Guided Fine-Needle Aspiration Biopsies. Gut Liver 2022; 16:625-636. [PMID: 34916338 PMCID: PMC9289822 DOI: 10.5009/gnl210166] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 07/08/2021] [Accepted: 08/03/2021] [Indexed: 11/18/2022] Open
Abstract
Background/Aims Three-dimensional cultures of human pancreatic cancer tissue also known as "organoids" have largely been developed from surgical specimens. Given that most patients present with locally advanced and/or metastatic disease, such organoids are not representative of the majority of patients. Therefore, we used endoscopic ultrasound-guided fine-needle aspiration (EUS-FNA) to collect pancreatic cancer tissues from patients with advanced pancreatic cancer to create organoids, and evaluated their utility in pancreatic cancer research. Methods Single-pass EUS-FNA samplings were employed to obtain the tissue for organoid generation. After establishment of the organoid, we compared the core biopsy tissues with organoids using hematoxylin and eosin staining, and performed whole exome sequencing (WES) to detect mutational variants. Furthermore, we compared patient outcome with the organoid drug response to determine the potential utility of the clinical application of such organoid-based assays. Results Organoids were successfully generated in 14 of 20 tumors (70%) and were able to be passaged greater than 5 times in 12 of 20 tumors (60%). Among them, we selected eight pairs of organoid and core biopsy tissues for detailed analyses. They showed similar patterns in hematoxylin and eosin staining. WES revealed mutations in KRAS, TP53, CDKN2A, SMAD4, BRCA1, and BRCA2 which were 93% homologous, and the mean nonreference discordance rate was 5.47%. We observed moderate drug response correlations between the organoids and clinical outcomes in patients who underwent FOLFIRINOX chemotherapy. Conclusions The established organoids from EUS-FNA core biopsies can be used for a suitable model system for pancreatic cancer research.
Collapse
Affiliation(s)
- Jee Hyung Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
- Natural Products Research Institute, Seoul National University College of Pharmacy, Seoul, Korea
| | - Haeryoung Kim
- Department of Pathology, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Hyub Lee
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ja-Lok Ku
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Jung Won Chun
- Center for Liver and Pancreatobiliary Cancer, National Cancer Center, Goyang, Korea
| | - Ha Young Seo
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Soon Chan Kim
- Department of Biomedical Sciences, Korean Cell Line Bank, Laboratory of Cell Biology and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | - Woo Hyun Paik
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Kon Ryu
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| | - Sang Kook Lee
- Natural Products Research Institute, Seoul National University College of Pharmacy, Seoul, Korea
| | - Andrew M. Lowy
- Division of Surgical Oncology, Department of Surgery, Moores Cancer Center, University of California, San Diego, La Jolla, CA, USA
| | - Yong-Tae Kim
- Department of Internal Medicine and Liver Research Institute, Seoul National University Hospital, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
186
|
Wang J, Liu X, Ji J, Luo J, Zhao Y, Zhou X, Zheng J, Guo M, Liu Y. Orthotopic and Heterotopic Murine Models of Pancreatic Cancer Exhibit Different Immunological Microenvironments and Different Responses to Immunotherapy. Front Immunol 2022; 13:863346. [PMID: 35874730 PMCID: PMC9302770 DOI: 10.3389/fimmu.2022.863346] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/14/2022] [Indexed: 11/13/2022] Open
Abstract
For decades, tumor-bearing murine models established using tumor cell lines have been the most commonly used models to study human cancers. Even though there are several studies reported that implant sites caused disparities in tumor behaviors, few of them illuminated the positional effect on immunotherapy. Herein, we describe surgical techniques for a novel orthotopic implantation of syngeneic pancreatic ductal adenocarcinoma (PDAC) tissue slices. This method has a high success modeling rate and stable growth kinetics, which makes it useful for testing novel therapeutics. Pathological examination indicated that the orthotopic tumor displayed poor vascularization, desmoplastic stromal reaction, and a highly immunosuppressive tumor microenvironment. This unique microenvironment resulted in limited response to PD1/CTLA4 blockade therapy and anti-MUC1 (αMUC1) CAR-T transfer treatment. To reverse the suppressive tumor microenvironment, we developed gene modified T-cells bearing a chimeric receptor in which activating receptor NKG2D fused to intracellular domains of 4-1BB and CD3ζ (NKG2D CAR). The NKG2D CAR-T cells target myeloid-derived suppressor cells (MDSCs), which overexpress Rae1 (NKG2D ligands) within the TME. Results indicated that NKG2D CAR-T cells eliminated MDSCs and improved antitumor activity of subsequently infused CAR-T cells. Moreover, we generated a bicistronic CAR-T, including αMUC1 CAR and NKG2D CAR separated by a P2A element. Treatment with the dual targeted bicistronic CAR-T cells also resulted in prolonged survival of orthotopic model mice. In summary, this study describes construction of a novel orthotopic PDAC model through implantation of tissue slices and discusses resistance to immunotherapy from the perspective of a PDAC microenvironment. Based on the obtained results, it is evident that elimination MDSCs by NKG2D CAR could rescue the impaired CAR-T cell activity.
Collapse
Affiliation(s)
- Jin Wang
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Xingchen Liu
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
| | - Junsong Ji
- Institute of Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Jianhua Luo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Navy Medical University, Shanghai, China
| | - Yuanyu Zhao
- Institute of Organ Transplantation, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Xiaonan Zhou
- Department of Anesthesiology, Changzheng Hospital, Navy Medical University, Shanghai, China
| | - Jianming Zheng
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
- *Correspondence: Yanfang Liu, ; Meng Guo, ; Jianming Zheng,
| | - Meng Guo
- National Key Laboratory of Medical Immunology & Institute of Immunology, Navy Medical University, Shanghai, China
- *Correspondence: Yanfang Liu, ; Meng Guo, ; Jianming Zheng,
| | - Yanfang Liu
- Department of pathology, Changhai Hospital, Navy Medical University, Shanghai, China
- National Key Laboratory of Medical Immunology & Institute of Immunology, Navy Medical University, Shanghai, China
- *Correspondence: Yanfang Liu, ; Meng Guo, ; Jianming Zheng,
| |
Collapse
|
187
|
Tissue Engineering Approaches to Uncover Therapeutic Targets for Endothelial Dysfunction in Pathological Microenvironments. Int J Mol Sci 2022; 23:ijms23137416. [PMID: 35806421 PMCID: PMC9266895 DOI: 10.3390/ijms23137416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 06/28/2022] [Accepted: 07/01/2022] [Indexed: 02/07/2023] Open
Abstract
Endothelial cell dysfunction plays a central role in many pathologies, rendering it crucial to understand the underlying mechanism for potential therapeutics. Tissue engineering offers opportunities for in vitro studies of endothelial dysfunction in pathological mimicry environments. Here, we begin by analyzing hydrogel biomaterials as a platform for understanding the roles of the extracellular matrix and hypoxia in vascular formation. We next examine how three-dimensional bioprinting has been applied to recapitulate healthy and diseased tissue constructs in a highly controllable and patient-specific manner. Similarly, studies have utilized organs-on-a-chip technology to understand endothelial dysfunction's contribution to pathologies in tissue-specific cellular components under well-controlled physicochemical cues. Finally, we consider studies using the in vitro construction of multicellular blood vessels, termed tissue-engineered blood vessels, and the spontaneous assembly of microvascular networks in organoids to delineate pathological endothelial dysfunction.
Collapse
|
188
|
Navarro-Serer B, Wood LD. Organoids: A Promising Preclinical Model for Pancreatic Cancer Research. Pancreas 2022; 51:608-616. [PMID: 36206467 DOI: 10.1097/mpa.0000000000002084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
ABSTRACT Pancreatic cancer is one of the most lethal cancer types, estimated to become the second leading cause of cancer-related deaths in the United States in 2030. The use of 3-dimensional culture systems has greatly expanded over the past few years, providing a valuable tool for the study of pancreatic cancer. In this review, we highlight some of the preclinical in vitro and in vivo models used in pancreatic cancer research, each with its own advantages and disadvantages, and focus on one of the recently used 3-dimensional culture models: organoids. Organoids are multicellular units derived from tissue samples and embedded within extracellular matrix gels after mechanical and enzymatic digestion. We define organoids, differentiate them from other 3-dimensional culture systems such as spheroids, and describe some applications of this model that have recently advanced our understanding of pancreatic cancer and its tumor microenvironment. Organoids have provided valuable insights into pancreatic cancer progression, heterogeneity, and invasion, and they have enabled the creation of biobanks, providing a platform for drug screening. In addition, we discuss some of the future directions and challenges in this model when addressing research questions.
Collapse
Affiliation(s)
- Bernat Navarro-Serer
- From the Sol Goldman Pancreatic Cancer Research Center, Department of Pathology, Johns Hopkins University School of Medicine
| | | |
Collapse
|
189
|
Wu W, Li X, Yu S. Patient-derived Tumour Organoids: A Bridge between Cancer Biology and Personalised Therapy. Acta Biomater 2022; 146:23-36. [PMID: 35533925 DOI: 10.1016/j.actbio.2022.04.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/06/2023]
Abstract
Patient-derived tumour organoids (PDOs) have revolutionised our understanding of cancer biology and the applications of personalised therapies. These advancements are principally ascribed to the ability of PDOs to consistently recapitulate and maintain the genomic, proteomic and morphological characteristics of parental tumours. Given these characteristics, PDOs (and their extended biobanks) are a representative preclinical model eminently suited to translate relevant scientific findings into personalized therapies rapidly. Here, we summarise recent advancements in PDOs from the perspective of cancer biology and clinical applications, focusing on the current challenges and opportunities of reconstructing and standardising more sophisticated PDO models. STATEMENT OF SIGNIFICANCE: Patient-derived tumour organoids (PDOs), three-dimensional (3D) self-assembled organotypic structures, have revolutionised our understanding of cancer biology and the applications of personalised therapies. These advancements are principally ascribed to the ability of PDOs to consistently recapitulate and maintain the genomic, proteomic and morphological characteristics of parental tumours. Given these characteristics, PDOs (and their extended biobanks) are a representative preclinical model eminently suited to translate relevant scientific findings into personalized therapies rapidly.
Collapse
Affiliation(s)
- Wence Wu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Xiaoyang Li
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China
| | - Shengji Yu
- Departments of Orthopedics, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 17 Nanli, Panjiayuan, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
190
|
Monberg ME, Geiger H, Lee JJ, Sharma R, Semaan A, Bernard V, Wong J, Wang F, Liang S, Swartzlander DB, Stephens BM, Katz MHG, Chen K, Robine N, Guerrero PA, Maitra A. Occult polyclonality of preclinical pancreatic cancer models drives in vitro evolution. Nat Commun 2022; 13:3652. [PMID: 35752636 PMCID: PMC9233687 DOI: 10.1038/s41467-022-31376-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/15/2022] [Indexed: 11/26/2022] Open
Abstract
Heterogeneity is a hallmark of cancer. The advent of single-cell technologies has helped uncover heterogeneity in a high-throughput manner in different cancers across varied contexts. Here we apply single-cell sequencing technologies to reveal inherent heterogeneity in assumptively monoclonal pancreatic cancer (PDAC) cell lines and patient-derived organoids (PDOs). Our findings reveal a high degree of both genomic and transcriptomic polyclonality in monolayer PDAC cell lines, custodial variation induced by growing apparently identical cell lines in different laboratories, and transcriptomic shifts in transitioning from 2D to 3D spheroid growth models. Our findings also call into question the validity of widely available immortalized, non-transformed pancreatic lines as contemporaneous "control" lines in experiments. We confirm these findings using a variety of independent assays, including but not limited to whole exome sequencing, single-cell copy number variation sequencing (scCNVseq), single-nuclei assay for transposase-accessible chromatin with sequencing, fluorescence in-situ hybridization, and single-cell RNA sequencing (scRNAseq). We map scRNA expression data to unique genomic clones identified by orthogonally-gathered scCNVseq data of these same PDAC cell lines. Further, while PDOs are known to reflect the cognate in vivo biology of the parental tumor, we identify transcriptomic shifts during ex vivo passage that might hamper their predictive abilities over time. The impact of these findings on rigor and reproducibility of experimental data generated using established preclinical PDAC models between and across laboratories is uncertain, but a matter of concern.
Collapse
Affiliation(s)
- Maria E Monberg
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
- University of Texas MD Anderson Cancer Center Graduate School of Biomedical Sciences, Houston, TX, USA.
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | | | - Jaewon J Lee
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Alexander Semaan
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vincent Bernard
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Justin Wong
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fang Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shaoheng Liang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel B Swartzlander
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Bret M Stephens
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ken Chen
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | | | - Paola A Guerrero
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
191
|
Quadri M, Marconi A, Sandhu SK, Kiss A, Efimova T, Palazzo E. Investigating Cutaneous Squamous Cell Carcinoma in vitro and in vivo: Novel 3D Tools and Animal Models. Front Med (Lausanne) 2022; 9:875517. [PMID: 35646967 PMCID: PMC9131878 DOI: 10.3389/fmed.2022.875517] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/19/2022] [Indexed: 12/07/2022] Open
Abstract
Cutaneous Squamous Cell Carcinoma (cSCC) represents the second most common type of skin cancer, which incidence is continuously increasing worldwide. Given its high frequency, cSCC represents a major public health problem. Therefore, to provide the best patients’ care, it is necessary having a detailed understanding of the molecular processes underlying cSCC development, progression, and invasion. Extensive efforts have been made in developing new models allowing to study the molecular pathogenesis of solid tumors, including cSCC tumors. Traditionally, in vitro studies were performed with cells grown in a two-dimensional context, which, however, does not represent the complexity of tumor in vivo. In the recent years, new in vitro models have been developed aiming to mimic the three-dimensionality (3D) of the tumor, allowing the evaluation of tumor cell-cell and tumor-microenvironment interaction in an in vivo-like setting. These models include spheroids, organotypic cultures, skin reconstructs and organoids. Although 3D models demonstrate high potential to enhance the overall knowledge in cancer research, they lack systemic components which may be solved only by using animal models. Zebrafish is emerging as an alternative xenotransplant model in cancer research, offering a high-throughput approach for drug screening and real-time in vivo imaging to study cell invasion. Moreover, several categories of mouse models were developed for pre-clinical purpose, including xeno- and syngeneic transplantation models, autochthonous models of chemically or UV-induced skin squamous carcinogenesis, and genetically engineered mouse models (GEMMs) of cSCC. These models have been instrumental in examining the molecular mechanisms of cSCC and drug response in an in vivo setting. The present review proposes an overview of in vitro, particularly 3D, and in vivo models and their application in cutaneous SCC research.
Collapse
Affiliation(s)
- Marika Quadri
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Alessandra Marconi
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Simran K Sandhu
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Alexi Kiss
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Tatiana Efimova
- Department of Anatomy and Cell Biology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,The George Washington Cancer Center, George Washington University School of Medicine and Health Sciences, Washington, DC, United States.,Department of Dermatology, George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Elisabetta Palazzo
- DermoLAB, Department of Surgical, Medical, Dental and Morphological Science, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
192
|
Jiang T, Wei F, Xie K. Clinical significance of pancreatic ductal metaplasia. J Pathol 2022; 257:125-139. [PMID: 35170758 DOI: 10.1002/path.5883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 02/06/2022] [Accepted: 02/14/2022] [Indexed: 11/08/2022]
Abstract
Pancreatic ductal metaplasia (PDM) is the stepwise replacement of differentiated somatic cells with ductal or ductal-like cells in the pancreas. PDM is usually triggered by cellular and environmental insults. PDM development may involve all cell lineages of the pancreas, and acinar cells with the highest plasticity are the major source of PDM. Pancreatic progenitor cells are also involved as cells of origin or transitional intermediates. PDM is heterogeneous at the histological, cellular, and molecular levels and only certain subsets of PDM develop further into pancreatic intraepithelial neoplasia (PanIN) and then pancreatic ductal adenocarcinoma (PDAC). The formation and evolution of PDM is regulated at the cellular and molecular levels through a complex network of signaling pathways. The key molecular mechanisms that drive PDM formation and its progression into PanIN/PDAC remain unclear, but represent key targets for reversing or inhibiting PDM. Alternatively, PDM could be a source of pancreas regeneration, including both exocrine and endocrine components. Cellular aging and apoptosis are obstacles to PDM-to-PanIN progression or pancreas regeneration. Functional identification of the cellular and molecular events driving senescence and apoptosis in PDM and its progression would help not only to restrict the development of PDM into PanIN/PDAC, but may also facilitate pancreatic regeneration. This review systematically assesses recent advances in the understanding of PDM physiology and pathology, with a focus on its implications for enhancing regeneration and prevention of cancer. © 2022 The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Tingting Jiang
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Fang Wei
- Institute of Digestive Diseases Research, The South China University of Technology School of Medicine, Guangzhou, PR China
| | - Keping Xie
- Center for Pancreatic Cancer Research, The South China University of Technology School of Medicine, Guangzhou, PR China
- Department of Pathology, The South China University of Technology School of Medicine, Guangzhou, PR China
| |
Collapse
|
193
|
Zhao C, Zhang X, Chen G, Shang L. Developing sensor materials for screening intestinal diseases. MATERIALS FUTURES 2022; 1:022401. [DOI: 10.1088/2752-5724/ac48a3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Abstract
Intestinal diseases that have high mortality and morbidity rates and bring huge encumbrance to the public medical system and economy worldwide, have always been the focus of clinicians and scientific researchers. Early diagnosis and intervention are valuable in the progression of many intestinal diseases. Fortunately, the emergence of sensor materials can effectively assist clinical early diagnosis and health monitoring. By accurately locating the lesion and sensitively analyzing the level of disease markers, these sensor materials can help to precisely diagnose the stage and state of lesions, thereby avoiding delayed treatment. In this review, we provide comprehensive and in-depth knowledge of diagnosing and monitoring intestinal diseases with the assistance of sensor materials, particularly emphasizing their design and application in bioimaging and biodetection. This review is dedicated to conveying practical applications of sensor materials in the intestine, critical analysis of their mechanisms and applications and discussion of their future roles in medicine. We believe that this review will promote multidisciplinary communication between material science, medicine and relevant engineering fields, thus improving the clinical translation of sensor materials.
Collapse
|
194
|
Xu ZH, Wang WQ, Lou WH, Liu L. Insight of pancreatic cancer: recommendations for improving its therapeutic efficacy in the next decade. JOURNAL OF PANCREATOLOGY 2022; 5:58-68. [DOI: 10.1097/jp9.0000000000000093] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Pancreatic cancer is one of the most malignant digestive system tumors. The effectiveness of pancreatic cancer treatment is still dismal, and the 5-year survival rate is only about 10%. Further improving the diagnosis and treatment of pancreatic cancer is the top priority of oncology research and clinical practice. Based on the existing clinical and scientific research experience, the review provides insight into the hotspots and future directions for pancreatic cancer, which focuses on early detection, early diagnosis, molecular typing and precise treatment, new drug development and regimen combination, immunotherapy, database development, model establishment, surgical technology and strategy change, as well as innovation of traditional Chinese medicine and breakthrough of treatment concept.
Collapse
Affiliation(s)
- Zhi-Hang Xu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Quan Wang
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Hui Lou
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Liang Liu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
195
|
Melzer MK, Breunig M, Arnold F, Wezel F, Azoitei A, Roger E, Krüger J, Merkle J, Schütte L, Resheq Y, Hänle M, Zehe V, Zengerling F, Azoitei N, Klein L, Penz F, Singh SK, Seufferlein T, Hohwieler M, Bolenz C, Günes C, Gout J, Kleger A. Organoids at the PUB: The Porcine Urinary Bladder Serves as a Pancreatic Niche for Advanced Cancer Modeling. Adv Healthc Mater 2022; 11:e2102345. [PMID: 35114730 PMCID: PMC11468201 DOI: 10.1002/adhm.202102345] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/17/2021] [Indexed: 12/17/2022]
Abstract
Despite intensive research and progress in personalized medicine, pancreatic ductal adenocarcinoma remains one of the deadliest cancer entities. Pancreatic duct-like organoids (PDLOs) derived from human pluripotent stem cells (PSCs) or pancreatic cancer patient-derived organoids (PDOs) provide unique tools to study early and late stage dysplasia and to foster personalized medicine. However, such advanced systems are neither rapidly nor easily accessible and require an in vivo niche to study tumor formation and interaction with the stroma. Here, the establishment of the porcine urinary bladder (PUB) is revealed as an advanced organ culture model for shaping an ex vivo pancreatic niche. This model allows pancreatic progenitor cells to enter the ductal and endocrine lineages, while PDLOs further mature into duct-like tissue. Accordingly, the PUB offers an ex vivo platform for earliest pancreatic dysplasia and cancer if PDLOs feature KRASG12D mutations. Finally, it is demonstrated that PDOs-on-PUB i) resemble primary pancreatic cancer, ii) preserve cancer subtypes, iii) enable the study of niche epithelial crosstalk by spiking in pancreatic stellate and immune cells into the grafts, and finally iv) allow drug testing. In summary, the PUB advances the existing pancreatic cancer models by adding feasibility, complexity, and customization at low cost and high flexibility.
Collapse
Affiliation(s)
- Michael Karl Melzer
- Department of UrologyUlm UniversityUlm89081Germany
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Markus Breunig
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Frank Arnold
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Felix Wezel
- Department of UrologyUlm UniversityUlm89081Germany
| | - Anca Azoitei
- Department of UrologyUlm UniversityUlm89081Germany
| | - Elodie Roger
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Jana Krüger
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Jessica Merkle
- Department of Internal Medicine IUlm UniversityUlm89081Germany
- Core Facility OrganoidsUlm UniversityUlm89081Germany
| | - Lena Schütte
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Yazid Resheq
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Mark Hänle
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Viktor Zehe
- Department of UrologyUlm UniversityUlm89081Germany
| | | | - Ninel Azoitei
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Lukas Klein
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medicine GoettingenGoettingen37075Germany
| | - Frederike Penz
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medicine GoettingenGoettingen37075Germany
| | - Shiv K. Singh
- Department of GastroenterologyGastrointestinal Oncology and EndocrinologyUniversity Medicine GoettingenGoettingen37075Germany
| | | | - Meike Hohwieler
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | | | | | - Johann Gout
- Department of Internal Medicine IUlm UniversityUlm89081Germany
| | - Alexander Kleger
- Department of Internal Medicine IUlm UniversityUlm89081Germany
- Core Facility OrganoidsUlm UniversityUlm89081Germany
| |
Collapse
|
196
|
Xu H, Jiao D, Liu A, Wu K. Tumor organoids: applications in cancer modeling and potentials in precision medicine. J Hematol Oncol 2022; 15:58. [PMID: 35551634 PMCID: PMC9103066 DOI: 10.1186/s13045-022-01278-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022] Open
Abstract
Cancer is a top-ranked life-threatening disease with intratumor heterogeneity. Tumor heterogeneity is associated with metastasis, relapse, and therapy resistance. These factors contribute to treatment failure and an unfavorable prognosis. Personalized tumor models faithfully capturing the tumor heterogeneity of individual patients are urgently needed for precision medicine. Advances in stem cell culture have given rise to powerful organoid technology for the generation of in vitro three-dimensional tissues that have been shown to more accurately recapitulate the structures, specific functions, molecular characteristics, genomic alterations, expression profiles, and tumor microenvironment of primary tumors. Tumoroids in vitro serve as an important component of the pipeline for the discovery of potential therapeutic targets and the identification of novel compounds. In this review, we will summarize recent advances in tumoroid cultures as an excellent tool for accurate cancer modeling. Additionally, vascularization and immune microenvironment modeling based on organoid technology will also be described. Furthermore, we will summarize the great potential of tumor organoids in predicting the therapeutic response, investigating resistance-related mechanisms, optimizing treatment strategies, and exploring potential therapies. In addition, the bottlenecks and challenges of current tumoroids will also be discussed in this review.
Collapse
Affiliation(s)
- Hanxiao Xu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Dechao Jiao
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Aiguo Liu
- Department of Pediatrics, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Kongming Wu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China. .,Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
197
|
Abstract
Embryoids and organoids hold great promise for human biology and medicine. Herein, we discuss conceptual and technological frameworks useful for developing high-fidelity embryoids and organoids that display tissue- and organ-level phenotypes and functions, which are critically needed for decoding developmental programs and improving translational applications. Through dissecting the layers of inputs controlling mammalian embryogenesis, we review recent progress in reconstructing multiscale structural orders in embryoids and organoids. Bioengineering tools useful for multiscale, multimodal structural engineering of tissue- and organ-level cellular organization and microenvironment are also discussed to present integrative, bioengineering-directed approaches to achieve next-generation, high-fidelity embryoids and organoids.
Collapse
Affiliation(s)
- Yue Shao
- Institute of Biomechanics and Medical Engineering, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China; State Key Laboratory of Primate Biomedical Research, Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan 650500, China.
| | - Jianping Fu
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI 48109, USA; Department of Cell & Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48109, USA; Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
198
|
Shukla P, Yeleswarapu S, Heinrich M, Prakash J, Pati F. Mimicking Tumor Microenvironment by 3D Bioprinting: 3D Cancer Modeling. Biofabrication 2022; 14. [PMID: 35512666 DOI: 10.1088/1758-5090/ac6d11] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 05/05/2022] [Indexed: 11/12/2022]
Abstract
The tumor microenvironment typically comprises cancer cells, tumor vasculature, stromal components like fibroblasts, and host immune cells that assemble to support tumorigenesis. However, preexisting classic cancer models like 2D cell culture methods, 3D cancer spheroids, and tumor organoids seem to lack essential tumor microenvironment components. 3D bioprinting offers enormous advantages for developing in vitro tumor models by allowing user-controlled deposition of multiple biomaterials, cells, and biomolecules in a predefined architecture. This review highlights the recent developments in 3D cancer modeling using different bioprinting techniques to recreate the TME. 3D bioprinters enable fabrication of high-resolution microstructures to reproduce TME intricacies. Furthermore, 3D bioprinted models can be applied as a preclinical model for versatile research applications in the tumor biology and pharmaceutical industries. These models provide an opportunity to develop high-throughput drug screening platforms and can further be developed to suit individual patient requirements hence giving a boost to the field of personalized anti-cancer therapeutics. We underlined the various ways the existing studies have tried to mimic the TME, mimic the hallmark events of cancer growth and metastasis within the 3D bioprinted models and showcase the 3D drug-tumor interaction and further utilization of such models to develop personalized medicine.
Collapse
Affiliation(s)
- Priyanshu Shukla
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| | - Sriya Yeleswarapu
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| | - Marcel Heinrich
- Department of Biomaterials, Science and Technology, University of Twente Faculty of Science and Technology, Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Jai Prakash
- Department of Biomaterials, Science and Technology, University of Twente Faculty of Science and Technology, Department of Biomaterials, Science and Technology, Faculty of Science and Technology, University of Twente, Drienerlolaan 5, 7500AE, Enschede, The Netherlands, Enschede, Overijssel, 7500 AE, NETHERLANDS
| | - Falguni Pati
- Department of Biomedical Engineering, Indian Institute of Technology Hyderabad, Indian Institute of Technology Hyderabad, Kandi, Sangareddy, Hyderabad, Telangana, 502285, INDIA
| |
Collapse
|
199
|
Caipa Garcia AL, Arlt VM, Phillips DH. Organoids for toxicology and genetic toxicology: applications with drugs and prospects for environmental carcinogenesis. Mutagenesis 2022; 37:143-154. [PMID: 34147034 PMCID: PMC9071088 DOI: 10.1093/mutage/geab023] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
Advances in three-dimensional (3D) cell culture technology have led to the development of more biologically and physiologically relevant models to study organ development, disease, toxicology and drug screening. Organoids have been derived from many mammalian tissues, both normal and tumour, from adult stem cells and from pluripotent stem cells. Tissue organoids can retain many of the cell types and much of the structure and function of the organ of origin. Organoids derived from pluripotent stem cells display increased complexity compared with organoids derived from adult stem cells. It has been shown that organoids express many functional xenobiotic-metabolising enzymes including cytochrome P450s (CYPs). This has benefitted the drug development field in facilitating pre-clinical testing of more personalised treatments and in developing large toxicity and efficacy screens for a range of compounds. In the field of environmental and genetic toxicology, treatment of organoids with various compounds has generated responses that are close to those obtained in primary tissues and in vivo models, demonstrating the biological relevance of these in vitro multicellular 3D systems. Toxicological investigations of compounds in different tissue organoids have produced promising results indicating that organoids will refine future studies on the effects of environmental exposures and carcinogenic risk to humans. With further development and standardised procedures, advancing our understanding on the metabolic capabilities of organoids will help to validate their use to investigate the modes of action of environmental carcinogens.
Collapse
Affiliation(s)
- Angela L Caipa Garcia
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| | - Volker M Arlt
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| | - David H Phillips
- Department of Analytical, Environmental and Forensic Sciences, School of Population Health and Environmental Sciences, King’s College London, London, SE1 9NH, UK
| |
Collapse
|
200
|
Casamitjana J, Espinet E, Rovira M. Pancreatic Organoids for Regenerative Medicine and Cancer Research. Front Cell Dev Biol 2022; 10:886153. [PMID: 35592251 PMCID: PMC9110799 DOI: 10.3389/fcell.2022.886153] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/06/2022] [Indexed: 11/16/2022] Open
Abstract
In recent years, the development of ex vivo organoid cultures has gained substantial attention as a model to study regenerative medicine and diseases in several tissues. Diabetes and pancreatic ductal adenocarcinoma (PDAC) are the two major devastating diseases affecting the pancreas. Suitable models for regenerative medicine in diabetes and to accurately study PDAC biology and treatment response are essential in the pancreatic field. Pancreatic organoids can be generated from healthy pancreas or pancreatic tumors and constitute an important translational bridge between in vitro and in vivo models. Here, we review the rapidly emerging field of pancreatic organoids and summarize the current applications of the technology to tissue regeneration, disease modelling, and drug screening.
Collapse
Affiliation(s)
- Joan Casamitjana
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Elisa Espinet
- Department of Pathology and Experimental Therapy, School of Medicine, University of Barcelona (UB), L’Hospitalet de Llobregat, Barcelona, Spain
- Molecular Mechanisms and Experimental Therapy in Oncology Program (Oncobell), Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
| | - Meritxell Rovira
- Department of Physiological Science, School of Medicine, University of Barcelona (UB), L'Hospitalet de Llobregat, Barcelona, Spain
- Pancreas Regeneration: Pancreatic Progenitors and Their Niche Group, Regenerative Medicine Program, Institut D’Investigació Biomèdica de Bellvitge (IDIBELL), L’Hospitalet de Llobregat, Barcelona, Spain
- Program for Advancing the Clinical Translation of Regenerative Medicine of Catalonia (P-CMR[C]), L’Hospitalet de Llobregat, Barcelona, Spain
| |
Collapse
|