151
|
Michalkiewicz M, Zhao G, Jia Z, Michalkiewicz T, Racadio MJ. Central neuropeptide Y signaling ameliorates N(omega)-nitro-L-arginine methyl ester hypertension in the rat through a Y1 receptor mechanism. Hypertension 2005; 45:780-5. [PMID: 15699473 DOI: 10.1161/01.hyp.0000153953.69799.f2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y is a potent inhibitory neurotransmitter expressed in the central neurons that control blood pressure. NO also serves as an inhibitory neurotransmitter, and its deficit causes sympathetic overactivity, which then contributes to hypertension. This study tested the hypothesis that neuropeptide Y functions as a central neurotransmitter to lower blood pressure, therefore its increased signaling ameliorates hypertension induced by NO deficiency. Conscious neuropeptide Y transgenic male rats, overexpressing the peptide under its natural promoter, and nontransgenic littermates (controls) were used in this study. Neuropeptide Y, Y1 receptor antagonist BIBP3226, or vehicle (saline) were administered continuously for 14 days into the cerebral lateral ventricle in unrestrained animals using osmotic pumps. Blood pressure was measured by radiotelemetry. Compared with control animals, transgenic overexpression of neuropeptide Y significantly ameliorated (by 9.7+/-1.5 mm Hg) NO deficiency hypertension (induced by administration of N(omega)-nitro-L-arginine methyl ester in the drinking water). This hypotensive effect of neuropeptide Y upregulation was associated with reduced proteinuria and cardiac hypertrophy and fibrosis. Central administration of neuropeptide Y in nontransgenic rats also reduced (by 10.2+/-1.6 mm Hg) the NO deficiency hypertension, whereas a neuropeptide Y1 receptor antagonist centrally administered in the transgenic subjects during NO deficiency hypertension completely attenuated the depressor effect of neuropeptide Y upregulation. Thus, acting at the level of the central nervous system distinctively via a Y1 receptor-mediated mechanism, endogenous neuropeptide Y exerted a potent antihypertensive function, and its enhanced signaling ameliorated NO deficiency hypertension.
Collapse
Affiliation(s)
- Mieczyslaw Michalkiewicz
- Department of Physiology, Human Molecular and Genetic Center, Medical College of Wisconsin, Milwaukee 53226-0509, USA.
| | | | | | | | | |
Collapse
|
152
|
Costoli T, Sgoifo A, Stilli D, Flugge G, Adriani W, Laviola G, Fuchs E, Pedrazzini T, Musso E. Behavioural, neural and cardiovascular adaptations in mice lacking the NPY Y1 receptor. Neurosci Biobehav Rev 2005; 29:113-23. [PMID: 15652259 DOI: 10.1016/j.neubiorev.2004.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2004] [Accepted: 09/09/2004] [Indexed: 11/27/2022]
Abstract
Neuropeptide Y (NPY) is primarily synthesised and released by neurones, it is co-localised with noradrenaline and is involved in the regulation of cardiovascular function. In a mouse model lacking NPY Y1 receptor (KO), the ability of NPY to potentiate noradrenaline-induced vasoconstriction is abolished during stress but normal in baseline conditions, locomotor activity and metabolic rate are lowered, blood insulin levels and glucose storage activity are increased. The present study was aimed at further characterising NPY Y1 mutants, with special emphasis on: behavioural responses to novelty seeking and open-field with objects tests, heart rate responsiveness during acute social defeat, alpha2-adrenoceptor (alpha2-ARs) function in brain areas involved in cardiovascular regulation, and cardiac structure. As compared to wild-type controls (n=9), NPY Y1 KOs (n=9) showed: reduced somatomotor activation during non-social challenges, lower heart rate in baseline conditions, larger heart rate responsiveness during social defeat, increased number of alpha2-ARs in the dorsal motor nucleus of the vagus (nX) and the locus coeruleus (LC), moderately larger volume fraction of myocardial fibrosis. The remarkable increment of alpha2-adrenoceptor density in the nX and LC allows to view KO mice behavioural and anatomo-physiological peripheral characteristics as 'adaptations' to central adrenergic rearrangement due to NPY Y1 receptor deletion.
Collapse
Affiliation(s)
- Tania Costoli
- Department of Evolutionary and Functional Biology, Università di Parma, Parco Area delle Scienze 11A, 43100 Parma, Italy.
| | | | | | | | | | | | | | | | | |
Collapse
|
153
|
Lin S, Boey D, Couzens M, Lee N, Sainsbury A, Herzog H. Compensatory changes in [125I]-PYY binding in Y receptor knockout mice suggest the potential existence of further Y receptor(s). Neuropeptides 2005; 39:21-8. [PMID: 15627497 DOI: 10.1016/j.npep.2004.10.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2004] [Revised: 10/06/2004] [Accepted: 10/13/2004] [Indexed: 11/22/2022]
Abstract
Gene knockout approaches have helped to better understand the functions of the different Y receptors. However, some results obtained from these knockout mice are unexpected and differ from the results of pharmacological intervention experiments. One possible explanation for this is that germ-line gene deletion of a particular Y receptor can influence expression and function of the remaining Y receptors. Here we show that such compensation in mRNA and protein expression does occur in Y receptor single, double and triple knockout models. Radio-ligand binding experiments using [(125)I]-PYY revealed significant up- and down-regulation of remaining Y receptor binding sites in various Y receptor knockout models compared to results from control mice employing Y receptor preferring agonist or antagonists for displacement of the radio-ligand. The most obvious change can be seen in the hippocampus of Y(1) knockout mice, where the level of the remaining Y receptors is strongly down-regulated. In Y(2) knockout mice no such trend can be seen, however, the expression pattern is significantly changed with a strong up-regulation of [(125)I]-PYY specific binding in the dentate gyrus. Interestingly, this pattern was also seen in Y(1)Y(2)Y(4) triple knockout mice. Y(5) receptor mRNA was approximately 20% higher in the hippocampus and dentate gyrus in the triple knockout mice compared to wild-type controls, while Y(6) mRNA expression could not be detected. However, competition binding experiments in Y(1)Y(2)Y(4) triple knockout mice with the Y(5) receptor preferring ligands [Leu(31), Pro(34)] NPY and [A(31), Aib(32)] NPY were able to replace only approximately 50% of [(125)I]-PYY binding in the dentate gyrus suggesting the existence of further yet unidentified Y receptor(s).
Collapse
Affiliation(s)
- S Lin
- Neurobiology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | | | | | | | | | | |
Collapse
|
154
|
Abstract
Regulated energy homeostasis is fundamental for maintaining life. Unfortunately, this critical process is affected in a high number of mentally ill patients. Eating disorders such as anorexia nervosa are prevalent in modern societies. Impaired appetite and weight loss are common in patients with depression. In addition, the use of neuroleptics frequently produces obesity and diabetes mellitus. However, the neural mechanisms underlying the pathophysiology of these behavioral and metabolic conditions are largely unknown. In this review, we first concentrate on the established brain machinery of food intake and body weight, especially on the melanocortin and neuropeptide Y (NPY) systems as illustration. These systems play a critical role in receiving and processing critical peripheral metabolic cues such as leptin and ghrelin. It is also notable that both systems modulate emotion and motivated behavior as well. Secondly, we discuss the significance and potential promise of multidisciplinary molecular and neuroanatomic techniques that will likely increase the understanding of brain circuitries coordinating energy homeostasis and emotion. Finally, we introduce several lines of evidence suggesting a link between the melanocortin/NPY systems and several neurotransmitter systems on which many of the psychotropic agents exert their influence.
Collapse
Affiliation(s)
- T Kishi
- Department of Anatomy and Morphological Neuroscience, Shimane University School of Medicine, Izumo 693-8501, Japan.
| | | |
Collapse
|
155
|
Tovote P, Meyer M, Beck-Sickinger AG, von Hörsten S, Ove Ogren S, Spiess J, Stiedl O. Central NPY receptor-mediated alteration of heart rate dynamics in mice during expression of fear conditioned to an auditory cue. ACTA ACUST UNITED AC 2005; 120:205-14. [PMID: 15177939 DOI: 10.1016/j.regpep.2004.03.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 03/05/2004] [Accepted: 03/15/2004] [Indexed: 11/24/2022]
Abstract
Neuropeptide Y (NPY) is involved in the regulation of emotionality including fear and anxiety, which modulate autonomic control of cardiovascular function. We therefore investigated the central effects of porcine NPY, selective Y1, Y2 and Y5 receptor agonists and a Y1 receptor antagonist on heart rate (HR) and HR variability in freely moving mice using auditory fear conditioning. Intracerebroventricular (i.c.v.) injections were applied 15 min before the tone-dependent memory test. NPY dose-dependently induced bradycardia associated with decreased HR variability, and blunted the stress-induced tachycardic response. The selective Y1 receptor antagonist BIBO 3304 blocked the NPY- and Y1-receptor agonist-induced suppression of conditioned tachycardia without affecting basal HR. The tachycardia elicited by both conditioned and unconditioned stressor was effectively attenuated by the Y1 receptor agonist. These results suggest a specific contribution of Y1, but not Y2 and Y5 receptors, to modulation of emotional responses most likely unrelated to impairment or modulation of memory. The NPY-induced bradycardia is attributed to not yet characterized NPY receptor subtypes other than Y1, Y2 and Y5, or a complex receptor interaction. In conclusion, NPY mediates central inhibition of sympathetic outflow, potentially coupled with attenuation of parasympathetic tone, i.e., mechanisms that may be associated with the reported anxiolytic action.
Collapse
Affiliation(s)
- Philip Tovote
- Department of Molecular Neuroendocrinology, Max Planck Institute for Experimental Medicine, Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
156
|
Wittmann W, Loacker S, Kapeller I, Herzog H, Schwarzer C. Y1-receptors regulate the expression of Y2-receptors in distinct mouse forebrain areas. Neuroscience 2005; 136:241-50. [PMID: 16198492 DOI: 10.1016/j.neuroscience.2005.07.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2005] [Revised: 07/27/2005] [Accepted: 07/28/2005] [Indexed: 10/25/2022]
Abstract
Y-receptor-knockout mice have become an important tool to elucidate specific physiological roles of individual Y-receptors. However, their phenotypes are not always confirmatory to results obtained by pharmacological investigations in vivo or in vitro. These discrepancies may, at least in part, be due to compensatory changes in the expression of remaining Y-receptor types. To determine whether deletion of individual Y-receptors results in altered mRNA expression and/or binding toward other Y-receptor types, we applied in-situ hybridization and radioligand-binding studies on brain slices of Npy1r-, Npy2r- or Npy5r-knockout mice. Significant changes were seen in Y1-receptor-deficient mice. Thus, Y2-receptor mRNA and (125)I-peptide YY(3-36) binding in the hippocampus proper were increased by up to 55% and 89%, respectively. Similar increases in (125)I-peptide YY(3-36) binding were observed in the caudo-dorsal extension of the lateral septum, an area heavily targeted by hippocampal projections and involved in Y1-receptor-regulated anxiety. Increased (125)I-peptide YY(3-36) binding and Y2-receptor mRNA levels were also observed in the medial amygdaloid nucleus. In contrast, (125)I-peptide YY(3-36) binding was reduced in the central amygdaloid nucleus. Y2-receptor mRNA in the intermediate part of the lateral septum was reduced by 42%. Only minimal changes were observed in Y2- or Y5-receptor-deficient mice. Our results demonstrate that compensatory changes in the expression of Y2-receptors occur in Y1-receptor-deficient mice. These adaptations are likely to contribute to changed physiological function. Thus, alterations in Y2-receptors have to be taken in account upon discussion of Y1-receptor function, especially in emotional aspects like anxiety and aggression, but also alcoholism.
Collapse
Affiliation(s)
- W Wittmann
- Institute of Pharmacology, Innsbruck Medical University, Peter-Mayr-Str. 1a, A-6020 Innsbruck, Austria
| | | | | | | | | |
Collapse
|
157
|
Deshmukh S, Phillips BG, O'Dorisio T, Flanigan MJ, Lim VS. Hormonal responses to fasting and refeeding in chronic renal failure patients. Am J Physiol Endocrinol Metab 2005; 288:E47-55. [PMID: 15304376 DOI: 10.1152/ajpendo.00163.2004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To study anorexia in chronic renal failure (CRF) patients, we measured appetite-related hormones in seven CRF patients and four controls. Plasma concentrations and fractional changes from baseline (values from day 1, 0800) are listed as control vs. CRF (means +/- SE). Leptin, although higher in CRF (5.6 +/- 1.7 and 34 +/- 17 ng/ml), was suppressed after fasting; decrements were -51 +/- 9 and -55 +/- 8%. Nocturnal surge present during feeding was abolished upon fasting in both groups. Neuropeptide Y (NPY) was elevated in CRF (72 +/- 12 vs. 304 +/- 28 pg/ml, P = 0.0002). NPY rhythm, reciprocal to that of leptin, was muted in CRF. Basal cortisol was similar in both groups (17 +/- 3 and 17 +/- 2 microg/dl). In the controls, cortisol peaked in the morning and declined in the evening. CRF showed blunted cortisol suppression. Decrements were -61 +/- 3 and -20 +/- 9% at 1800 on day 1 (P = 0.008) and -61 +/- 8 and -26 +/- 8% at 2000 on day 2 (P = 0.02). Basal ACTH (25 +/- 5 and 54 +/- 16 pg/ml) as well as diurnal pattern was not statistically different between the groups. Baseline insulin was 6 +/- 1 and 20 +/- 9 microU/ml. During fasting, insulin was suppressed to -64 +/- 10 and -51 +/- 9%, respectively. Upon refeeding, increments were 277 +/- 96 and 397 +/- 75%. Thus, in our CRF patients, anorexia was not due to excess leptin or deficient NPY. Impaired cortisol suppression should favor eating. Insulin suppression during fasting and secretion after feeding should enhance both eating and anabolism. The constant high NPY suggests increased tonic hypersecretion.
Collapse
Affiliation(s)
- Sonali Deshmukh
- Department of Medicine, College of Medicine, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | | | |
Collapse
|
158
|
Zoccali C. Neuropeptide Y as a far-reaching neuromediator: from energy balance and cardiovascular regulation to central integration of weight and bone mass control mechanisms. Implications for human diseases. Curr Opin Nephrol Hypertens 2005; 14:25-32. [PMID: 15586012 DOI: 10.1097/00041552-200501000-00005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE OF REVIEW I review recent knowledge on the interference of neuropeptide Y with energy balance and cardiovascular and renal disease and on the central regulation of bone mass. RECENT FINDINGS Although neuropeptide Y is mainly seen as a vasoconstrictor, rats overexpressing the neuropeptide Y gene show reduced blood pressure and longer life span in comparison with control rats. Due to its strong mitogenic effects on vascular smooth muscle cells, neuropeptide Y induces occlusive lesions in a rat model of atherosclerosis induced by balloon angioplasty. The involvement of neuropeptide Y in experimental atherosclerosis is complex and may include also favourable, compensatory, mechanisms because, at physiological concentrations, it also activates a potent neoangiogenic response to ischemia. Subjects with a common genotype in the neuropeptide Y gene, which underlies increased intracellular neuropeptide Y storage, display slightly raised blood pressure, high serum cholesterol and increased carotid intima media thickness. In patients with end-stage renal disease high neuropeptide Y in plasma has been associated consistently with concentric left-ventricular hypertrophy and cardiovascular mortality. Finally, recent studies have shown that neuropeptide Y constitutes an important central regulator of bone mass and that it may be involved in inflammation and immune regulation. SUMMARY Evidence has accrued in experimental animals that altered neuropeptide Y is involved in obesity and the attendant metabolic complications. Recent data also suggest that this peptide may play a role in atherosclerosis and related cardiovascular complications.
Collapse
Affiliation(s)
- Carmine Zoccali
- CNR-IBIM Epidemiologia Clinica e Fisiopatologia delle Malattie Renali e dell'Ipertensione Arteriosa, Ospedali Riuniti, Reggio Calabria, Italy.
| |
Collapse
|
159
|
Funkat A, Massa CM, Jovanovska V, Proietto J, Andrikopoulos S. Metabolic adaptations of three inbred strains of mice (C57BL/6, DBA/2, and 129T2) in response to a high-fat diet. J Nutr 2004; 134:3264-9. [PMID: 15570023 DOI: 10.1093/jn/134.12.3264] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Although it is now becoming more evident that the strain of mouse used to generate genetically modified models for the study of endocrine disorders contributes to the ensuing phenotype, metabolic characterization of these common strains used to produce genetically altered mice has been limited. The aim of this study therefore was to measure various metabolic parameters in C57BL/6, DBA/2, and 129T2 mice fed a control or a high-fat diet. Mice were fed either a control (7 g/100 g) or a high-fat (60 g/100 g) diet for 6 wk. During wk 6, spontaneous and voluntary physical activity and resting energy expenditure were determined. DBA/2 mice that consumed the control diet gained more weight and had larger regional fat pad depots than either C57BL/6 or 129T2 mice (P < 0.05). Spontaneous and voluntary activity was lower in 129T2 mice compared with DBA/2 or C57BL/6 mice (P < 0.05). Resting energy expenditure (corrected for body weight) was greater in C57BL/6 mice than in DBA/2 or 129T2 mice (P < 0.05), whereas glucose and fat oxidation did not differ among the 3 strains of mice. Plasma glucose concentrations in food-deprived mice were higher and insulin concentrations lower in 129T2 compared with C57BL/6 mice (P < 0.05), but were not affected by the high-fat diet in any of the 3 strains tested. This study shows that these 3 commonly used inbred strains of mice have different inherent metabolic characteristics. It further highlights that the background strain used to produce genetically modified mice is critical to the resultant phenotype.
Collapse
Affiliation(s)
- Alexandra Funkat
- The University of Melbourne, Department of Medicine, (AH/NH), Heidelberg Repatriation Hospital, Heidelberg Heights, Victoria 3081 Australia
| | | | | | | | | |
Collapse
|
160
|
Schöneberg T, Schulz A, Biebermann H, Hermsdorf T, Römpler H, Sangkuhl K. Mutant G-protein-coupled receptors as a cause of human diseases. Pharmacol Ther 2004; 104:173-206. [PMID: 15556674 DOI: 10.1016/j.pharmthera.2004.08.008] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
G-protein-coupled receptors (GPCR) are involved in directly and indirectly controlling an extraordinary variety of physiological functions. Their key roles in cellular communication have made them the target for more than 60% of all currently prescribed drugs. Mutations in GPCR can cause acquired and inherited diseases such as retinitis pigmentosa (RP), hypo- and hyperthyroidism, nephrogenic diabetes insipidus, several fertility disorders, and even carcinomas. To date, over 600 inactivating and almost 100 activating mutations in GPCR have been identified which are responsible for more than 30 different human diseases. The number of human disorders is expected to increase given the fact that over 160 GPCR have been targeted in mice. Herein, we summarize the current knowledge relevant to understanding the molecular basis of GPCR function, with primary emphasis on the mechanisms underlying GPCR malfunction responsible for different human diseases.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Institute of Biochemistry, Department of Molecular Biochemistry (Max-Planck-Institute Interim), Medical Faculty, University of Leipzig, Deutscher Platz 6, 04103 Leipzig, Germany.
| | | | | | | | | | | |
Collapse
|
161
|
Nisoli E, Carruba MO. Emerging aspects of pharmacotherapy for obesity and metabolic syndrome. Pharmacol Res 2004; 50:453-69. [PMID: 15458765 DOI: 10.1016/j.phrs.2004.02.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/09/2004] [Indexed: 10/26/2022]
Abstract
Obesity is a multifactorial, chronic disorder that has reached epidemic proportions in most industrialized countries and is threatening to become a global epidemic. Obese patients are at higher risk from coronary artery disease, hypertension, hyperlipidemia, diabetes mellitus, cancers, cerebrovascular accidents, osteoarthritis, restrictive pulmonary disease, and sleep apnoea. In particular, visceral fat accumulation is usually accompanied by insulin resistance or type 2 diabetes mellitus, hypertension, hypertriglyceridemia, high uremic acid levels, low high density lipoprotein (HDL) cholesterol to define a variously named syndrome or metabolic syndrome. Metabolic syndrome is now considered a major cardiovascular risk factor in a large percentage of population in worldwide. Both obesity and metabolic syndrome are particularly challenging clinical conditions to treat because of their complex pathophysiological basis. Indeed, body weight represents the integration of many biological and environmental components and relationships among fat and glucose tolerance or blood pressure are not completely understood. Efforts to develop innovative anti-obesity drugs, with benefits for metabolic syndrome, have been recently intensified. In general two distinct strategies can be adopted: first, to reduce energy intake; second, to increase energy expenditure. Here we review some among the most promising avenues in these two fields of drug therapy of obesity and, consequently, of metabolic syndrome.
Collapse
Affiliation(s)
- Enzo Nisoli
- Department of Preclinical Sciences, Center for Study and Research on Obesity, L. Sacco Hospital, University of Milan, LITA Vialba, via G.B. Grassi 74, 20157 Milan, Italy.
| | | |
Collapse
|
162
|
Tang-Christensen M, Vrang N, Ortmann S, Bidlingmaier M, Horvath TL, Tschöp M. Central administration of ghrelin and agouti-related protein (83-132) increases food intake and decreases spontaneous locomotor activity in rats. Endocrinology 2004; 145:4645-52. [PMID: 15231700 DOI: 10.1210/en.2004-0529] [Citation(s) in RCA: 179] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Ghrelin was recently identified as an endogenous ligand of the GH secretagogue receptor. The novel peptide hormone is produced by gastric A-like cells, and circulating levels rise before feeding, suggestive of ghrelin as an endogenous hunger factor. ghrelin stimulates food intake and promotes adiposity after peripheral or central administration, likely by activating hypothalamic neurons expressing the orexigenic neuropeptides neuropeptide Y (NPY) and agouti-related protein (AGRP). To examine whether ghrelin-induced feeding resembles NPY and AGRP [AGRP fragment (83-132)] induced orexia, we compared the short- and long-term orexigenic capacity of the three peptides. A single intracerebroventricular injection of ghrelin (0.2, 1.0, and 5.0 microg) increased food intake in a dose-dependent manner. A prolonged and uncompensated increase in feeding was seen after the highest dose of ghrelin. The prolonged effects on feeding (+72 h) closely resembled those of AGRP (83-132) but not NPY. Surprisingly, ghrelin injections reduced overall locomotor activity by 20% during the first 24-h observation period. AGRP (83-132) had similar effects on locomotor behavior, whereas NPY had no effect. In summary, ghrelin causes long-term increases of food intake and, like AGRP, plays a previously unknown role as a suppressor of spontaneous physical activity. Expanding the current model of food intake control to include mechanisms regulating physical activity may promote our understanding of two major etiological factors causing obesity.
Collapse
|
163
|
Felies M, von Hörsten S, Pabst R, Nave H. Neuropeptide Y stabilizes body temperature and prevents hypotension in endotoxaemic rats. J Physiol 2004; 561:245-52. [PMID: 15388781 PMCID: PMC1665346 DOI: 10.1113/jphysiol.2004.073635] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The on-going high mortality from sepsis motivates continuous research for novel therapeutic strategies. Neuropeptide Y (NPY), a sympathetic neurotransmitter, has been shown to increase survival in experimental septic shock in rats. This protective effect might be due to immunological, cardiovascular or thermoregulatory effects. The aim of this study was to examine the in vivo effect of peripherally administered NPY on body temperature, blood pressure and heart rate in endotoxaemic animals. In order to obtain clinically relevant data, various physiological parameters were monitored in parallel via radio-telemetry in chronically intravenously cannulated, freely behaving rats. Rats received a sublethal bolus of lipopolysaccharide (LPS, 100 microg kg(-1) I.V.) and the three parameters were continuously recorded for 72 h. Endotoxaemic rats showed a long-lasting hypotension, an initial hypothermia (-0.5 degrees C), followed by a prolonged febrile phase (+1.6 degrees C 6 h after endotoxin challenge) associated with a decrease of the circadian rhythm amplitude of temperature. Pretreatment with NPY (160 pmol kg(-1) I.V. over 75 min) prevented hypotension and significantly stabilized body temperature immediately following the application. The febrile phase was effectively reduced for at least 72 h. These telemetrically obtained findings clearly demonstrate that pretreatment with NPY positively influences two life-threatening symptoms in endotoxaemia and might be a future option for a successful clinical treatment regimen.
Collapse
Affiliation(s)
- Melanie Felies
- Department of Functional and Applied Anatomy, Hannover Medical School, Carl-Neuberg-Strasse 1, 30625 Hannover, Germany
| | | | | | | |
Collapse
|
164
|
Sparta DR, Fee JR, Hayes DM, Knapp DJ, MacNeil DJ, Thiele TE. Peripheral and central administration of a selective neuropeptide Y Y1 receptor antagonist suppresses ethanol intake by C57BL/6J mice. Alcohol Clin Exp Res 2004; 28:1324-30. [PMID: 15365302 PMCID: PMC1360243 DOI: 10.1097/01.alc.0000139829.67958.1a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
BACKGROUND Neuropeptide Y (NPY) is a 36-amino acid neuromodulator that is expressed throughout the central nervous system. Recent genetic and pharmacological evidence suggests that the NPY Y1 receptor modulates ethanol intake. To further characterize the role of the Y1 receptor, we examined voluntary ethanol consumption by mice after administration of [(-)-2-[1-(3-chloro-5-isopropyloxycarbonylaminophenyl)ethylamino]-6-[2-(5-ethyl-4-methyl-1,3-tiazol-2-yl)ethyl]-4-morpholinopyridine] (compound A), a novel and selective Y1 receptor antagonist (Y1RA) that acts centrally on brain receptors when administered peripherally. METHODS C57BL/6J mice were habituated to drinking a 10% (v/v) ethanol solution by using a two-bottle-choice procedure and were then given an intraperitoneal (ip) injection (5 ml/kg) of the Y1RA (0, 25, 50, or 75 mg/kg). In a second study, mice were given intracerebroventricular infusion of the Y1RA (0, 30, or 100 microg). Finally, we determined whether the Y1RA alters open-field locomotor activity, ethanol-induced sedation (3.8 g/kg, ip), or blood ethanol levels. RESULTS Relative to control treatment, ip injection (50 and 75 mg/kg) and intracerebroventricular infusion (100 microg) of the Y1RA significantly reduced ethanol consumption and food intake without altering water drinking. However, the Y1RA did not alter open-field locomotor activity, ethanol-induced sedation, or blood ethanol levels. CONCLUSIONS These data indicate that acute blockade of the NPY Y1 receptor with a systemically bioavailable NPY Y1RA reduces voluntary ethanol consumption by C57BL/6J mice. These results are consistent with observations that hypothalamic infusion of NPY increases ethanol drinking by rats.
Collapse
Affiliation(s)
- Dennis R. Sparta
- From the Department of Psychology (DRS, JRF, DMH, TET), Bowles Center for Alcohol Studies (DJK, TET), and Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina (DJK); and Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (DJM)
| | - Jon R. Fee
- From the Department of Psychology (DRS, JRF, DMH, TET), Bowles Center for Alcohol Studies (DJK, TET), and Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina (DJK); and Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (DJM)
| | - Dayna M. Hayes
- From the Department of Psychology (DRS, JRF, DMH, TET), Bowles Center for Alcohol Studies (DJK, TET), and Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina (DJK); and Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (DJM)
| | - Darin J. Knapp
- From the Department of Psychology (DRS, JRF, DMH, TET), Bowles Center for Alcohol Studies (DJK, TET), and Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina (DJK); and Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (DJM)
| | - Douglas J. MacNeil
- From the Department of Psychology (DRS, JRF, DMH, TET), Bowles Center for Alcohol Studies (DJK, TET), and Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina (DJK); and Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (DJM)
| | - Todd E. Thiele
- From the Department of Psychology (DRS, JRF, DMH, TET), Bowles Center for Alcohol Studies (DJK, TET), and Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina (DJK); and Department of Obesity Research, Merck Research Laboratories, Rahway, New Jersey (DJM)
| |
Collapse
|
165
|
Karl T, Lin S, Schwarzer C, Sainsbury A, Couzens M, Wittmann W, Boey D, von Hörsten S, Herzog H. Y1 receptors regulate aggressive behavior by modulating serotonin pathways. Proc Natl Acad Sci U S A 2004; 101:12742-7. [PMID: 15314215 PMCID: PMC515123 DOI: 10.1073/pnas.0404085101] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neuropeptide Y (NPY) is pivotal in the coordinated regulation of food intake, growth, and reproduction, ensuring that procreation and growth occur only when food is abundant and allowing for energy conservation when food is scant. Although emotional and behavioral responses from the higher brain are known to be involved in all of these functions, understanding of the coordinated regulation of emotion/behavior and physiological functions is lacking. Here, we show that the NPY system plays a central role in this process because ablation of the Y1 receptor gene leads to a strong increase in territorial aggressive behavior. After exposure to the resident-intruder test, expression of c-fos mRNA in Y1-knockout mice is significantly increased in the medial amygdala, consistent with the activation of centers known to be important in regulating aggressive behavior. Expression of the serotonin [5-hydroxytryptamine (5-HT)] synthesis enzyme tryptophan hydroxylase is significantly reduced in Y1-deficient mice. Importantly, treatment with a 5-HT-1A agonist, (+/-)-8-hydroxy-2-(di-n-propylamino)tetralin hydrobromide, abolished the aggressive behavior in Y1-knockout mice. These results suggest that NPY acting through Y1 receptors regulates the 5-HT system, thereby coordinately linking physiological survival mechanisms such as food intake with enabling territorial aggressive behavior.
Collapse
Affiliation(s)
- Tim Karl
- Neurobiology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, Sydney NSW 2010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Meyer MH, Etienne W, Meyer RA. Altered mRNA expression of genes related to nerve cell activity in the fracture callus of older rats: A randomized, controlled, microarray study. BMC Musculoskelet Disord 2004; 5:24. [PMID: 15291962 PMCID: PMC512295 DOI: 10.1186/1471-2474-5-24] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2004] [Accepted: 08/03/2004] [Indexed: 01/10/2023] Open
Abstract
Background The time required for radiographic union following femoral fracture increases with age in both humans and rats for unknown reasons. Since abnormalities in fracture innervation will slow skeletal healing, we explored whether abnormal mRNA expression of genes related to nerve cell activity in the older rats was associated with the slowing of skeletal repair. Methods Simple, transverse, mid-shaft, femoral fractures with intramedullary rod fixation were induced in anaesthetized female Sprague-Dawley rats at 6, 26, and 52 weeks of age. At 0, 0.4, 1, 2, 4, and 6 weeks after fracture, a bony segment, one-third the length of the femur, centered on the fracture site, including the external callus, cortical bone, and marrow elements, was harvested. cRNA was prepared and hybridized to 54 Affymetrix U34A microarrays (3/age/time point). Results The mRNA levels of 62 genes related to neural function were affected by fracture. Of the total, 38 genes were altered by fracture to a similar extent at the three ages. In contrast, eight neural genes showed prolonged down-regulation in the older rats compared to the more rapid return to pre-fracture levels in younger rats. Seven genes were up-regulated by fracture more in the younger rats than in the older rats, while nine genes were up-regulated more in the older rats than in the younger. Conclusions mRNA of 24 nerve-related genes responded differently to fracture in older rats compared to young rats. This differential expression may reflect altered cell function at the fracture site that may be causally related to the slowing of fracture healing with age or may be an effect of the delayed healing.
Collapse
Affiliation(s)
- Martha H Meyer
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28232-2861 USA
| | - Wiguins Etienne
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28232-2861 USA
| | - Ralph A Meyer
- Orthopaedic Research Laboratory, Department of Orthopaedic Surgery, Carolinas Medical Center, P.O. Box 32861, Charlotte, NC 28232-2861 USA
| |
Collapse
|
167
|
Pedrazzini T. Importance of NPY Y1 receptor-mediated pathways: assessment using NPY Y1 receptor knockouts. Neuropeptides 2004; 38:267-75. [PMID: 15337379 DOI: 10.1016/j.npep.2004.05.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 05/25/2004] [Indexed: 11/19/2022]
Abstract
The peptidic neurotransmitter neuropeptide Y (NPY) has been functionally implicated in feeding behavior, cardiovascular regulation, control of neuroendocrine axes, affective disorders, seizures, and memory retention. At least five different receptors mediate NPY actions. In particular, the Y1 receptor appears to be involved in a variety of NPY-induced pathways. This review summarizes the main findings resulting from the use of mice lacking NPY Y1 receptor expression. Interestingly, the overall phenotype of Y1 knockouts mimics metabolic syndrome, which is characterized by obesity, a prediabetic state, and a susceptibility to develop hypertension.
Collapse
Affiliation(s)
- Thierry Pedrazzini
- Division of Hypertension, University of Lausanne Medical School, CH-1011 Lausanne, Switzerland.
| |
Collapse
|
168
|
Lin S, Boey D, Herzog H. NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 2004; 38:189-200. [PMID: 15337371 DOI: 10.1016/j.npep.2004.05.005] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 05/21/2004] [Indexed: 11/25/2022]
Abstract
Neuropeptide Y (NPY) in the central nervous system is a major regulator of food consumption and energy homeostasis. It also regulates blood pressure, induces anxiolysis, enhances memory retention, affects circadian rhythms and modulates hormone release. Five Y receptors (Y1, Y2, Y4, Y5 and Y6) are known to mediate the action of NPY and its two other family members, peptide YY (PYY) and pancreatic polypeptide (PP). Increased NPY signaling due to elevated NPY expression in the hypothalamus leads to the development of obesity and its related phenotypes, Type II diabetes and cardiovascular disease. Dysregulation in NPY signaling also causes alterations in bone formation, alcohol consumption and seizure susceptibility. The large number of Y receptors has made it difficult to delineate their individual contributions to these physiological processes. However, recent studies analysing NPY and Y receptor overexpressing and knockout models have started to unravel some of the different functions of these Y receptors. Particularly, the use of conditional knockout models has made it possible to pinpoint a specific function to an individual Y receptor in a particular location.
Collapse
Affiliation(s)
- Shu Lin
- Neurobiology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst Sydney, NSW 2010, Australia
| | | | | |
Collapse
|
169
|
Thiele TE, Sparta DR, Hayes DM, Fee JR. A role for neuropeptide Y in neurobiological responses to ethanol and drugs of abuse. Neuropeptides 2004; 38:235-43. [PMID: 15337375 DOI: 10.1016/j.npep.2004.04.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2004] [Accepted: 04/24/2004] [Indexed: 10/26/2022]
Abstract
In recent years, evidence has emerged suggesting that neuropeptide Y (NPY) is involved with neurobiological responses to ethanol and other drugs of abuse. Here, we provide an overview of physiological, pharmacological, and genetic research showing that: (A) administration of ethanol, as well as ethanol withdrawal, alter central NPY expression, (B) NPY modulates ethanol consumption under certain conditions, and (C) NPY signaling modulates the sedative effects of several drugs, including ethanol, sodium pentobarbital, and ketamine. Evidence suggesting possible mechanism(s) by which NPY signaling modulates ethanol consumption are considered. It is suggested that NPY may influence ethanol consumption by regulating basal levels of anxiety, by modulating the sedative effects of ethanol, and/or by modulating ethanol's rewarding properties.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology, University of North Carolina at Chapel Hill, Davie Hall, CB 3270, Chapel Hill, NC 27599-3270, USA.
| | | | | | | |
Collapse
|
170
|
Abstract
The neuropeptide Y (NPY) system consists in mammals of three peptides and 4-5 G-protein-coupled receptors called Y receptors that are involved in a variety of physiological functions such as appetite regulation, circadian rhythm and anxiety. Both the receptor family and the peptide family display unexpected evolutionary complexity and flexibility as shown by information from different classes of vertebrates. The vertebrate ancestor most likely had a single peptide gene and three Y receptor genes, the progenitors of the Y1, Y2 and Y5 subfamilies. The receptor genes were probably located in the same chromosomal segment. Additional gene copies arose through the chromosome quadruplication that took place before the emergence of jawed vertebrates (gnathostomes) whereupon differential losses of the gene copies ensued. The inferred ancestral gnathostome gene repertoire most likely consisted of two peptide genes, NPY and PYY, and no less than seven Y receptor genes: four Y1-like (Y1, Y4/a, Y6, and Yb), two Y2-like (Y2 and Y7), and a single Y5 gene. Whereas additional peptide genes have arisen in various lineages, the most common trend among the Y receptor genes has been further losses. Mammals have lost Yb and Y7 (the latter still exists in frogs) and Y6 is a pseudogene in several mammalian species but appears to be still functional in some. One challenge is to find out if mammals have been deprived of any functions through these gene losses. Teleost fishes like zebrafish and pufferfish, on the other hand, have lost the two major appetite-stimulating receptors Y1 and Y5. Nevertheless, teleost fishes seem to respond to NPY with increased feeding why some other subtype probably mediates this effect. Another challenge is to deduce how Y2 and Y4 came to evolve an inhibitory effect on appetite. Changes in anatomical distribution of receptor expression may have played an important part in such functional switching along with changes in receptor structures and ligand preferences.
Collapse
Affiliation(s)
- D Larhammar
- Department of Neuroscience, Unit of Pharmacology, Box 593 Uppsala University, SE-75124 Uppsala, Sweden.
| | | |
Collapse
|
171
|
Kalra SP, Kalra PS. NPY and cohorts in regulating appetite, obesity and metabolic syndrome: beneficial effects of gene therapy. Neuropeptides 2004; 38:201-11. [PMID: 15337372 DOI: 10.1016/j.npep.2004.06.003] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Accepted: 06/04/2004] [Indexed: 11/16/2022]
Abstract
Neuropeptide Y is the most potent physiological appetite transducer known. The NPY network is the conductor of the hypothalamic appetite regulating orchestra in the arcuate nucleus-paraventricular nucleus (ARC-PVN) of the hypothalamus. NPY and cohorts, AgrP, GABA and adrenergic transmitters, initiate appetitive drive directly through Y1, Y5, GABAA and alpha1 receptors, co-expressed in the magnocellular PVN (mPVN) and ARC neurons and by simultaneously repressing anorexigenic melanocortin signaling in the ARC-PVN axis. The circadian and ultradian rhythmicities in NPY secretion imprint the daily circadian and episodic feeding patterns. Although a number of afferent hormonal signals from the periphery can directly modulate NPYergic signaling, the reciprocal circadian and ultradian rhythmicities of anorexigenic leptin from adipocytes and orexigenic ghrelin from stomach, encode a corresponding pattern of NPY discharge for daily meal patterning. Subtle and progressive derangements produced by environmental and genetic factors in this exquisitely intricate temporal relationship between the two opposing humoral signals and the NPY network promote hyperphagia and abnormal rate of weight gain culminating in obesity and attendant metabolic disorders. Newer insights at cellular and molecular levels demonstrate that a breakdown of the integrated circuit due both to high and low abundance of NPY at target sites, underlies hyperphagia and increased adiposity. Consequently, interruption of NPYergic signaling at a single locus with NPY receptor antagonists may not be the most efficacious therapy to suppress hyperphagia and obesity. Central leptin gene therapy in rodents has been shown to subjugate, i.e. bring under homeostatic control, NPYergic signaling and suppress the age-related and dietary obesity for extended periods and thus shows promise as a newer treatment modality to curb the pandemic of obesity and metabolic syndrome.
Collapse
Affiliation(s)
- S P Kalra
- Department of Neuroscience, University of Florida, McKnight Brain Institute, PO Box 100244, Gainesville, FL 32610, USA.
| | | |
Collapse
|
172
|
Abstract
A complex system has evolved to regulate food intake and to maintain energy homeostasis. A series of short-term hormonal and neural signals that derive from the gastrointestinal tract, such as cholecystokinin (CCK), pancreatic polypeptide (PP) and peptide YY-(3-36), recently discovered to regulate meal size. Others such as ghrelin initiate meals, and insulin and leptin, together with circulating nutrients, indicate long-term energy stores. All these signals act on central nervous system sites which converge on the hypothalamus, an area that contains a large number of peptide and other neurotransmitters that influence food intake with neuropeptide Y (NPY) being one of the most prominent ones. Five Y receptors are known which mediate the action of neuropeptide Y and its two other family members, peptide YY and pancreatic polypeptide. Elevated neuropeptide Y expression in the hypothalamus leads to the development of obesity and its related phenotypes, Type II diabetes and cardiovascular disease. The limited availability of specific pharmacological tools and the considerable number of Y receptors have made it difficult to delineate their individual contributions to the regulation of energy homeostasis. However, recent studies analysing transgenic and knockout neuropeptide Y and Y receptor mouse models have started to unravel some of the individual functions of these Y receptors potentially also helping to develop novel therapeutics for a variety of physiological disorders including obesity.
Collapse
Affiliation(s)
- Herbert Herzog
- Neurobiology Program, Garvan Institute of Medical Research, 384 Victoria Street, Darlinghurst, NSW 2010, Sydney, Australia.
| |
Collapse
|
173
|
Abstract
Insights into the etiology of human obesity have arisen from the study of animal models. Animal models of obesity are also important for the development of future treatments of obesity. An agouti mouse mutation resulting in obese, yellow mice was described over a century ago and in 1992 agouti was cloned, making it the first obesity gene characterized at the molecular level. The lethal yellow mouse mutation is one of five dominant agouti mutations and is an excellent model for human obesity. The molecular categorization of agouti was responsible for the elucidation of the melanocortin system's involvement in hypothalamic weight regulation. As genetic knowledge increases many transgenic mice have been created with genes either over-expressed or deleted, models which further enhance the understanding of obesity.
Collapse
Affiliation(s)
- Levi Carroll
- Co-operative Research Centre for Diagnostics, School of Life Sciences, Queensland University of Technology, Brisbane, Australia
| | | | | |
Collapse
|
174
|
Thiele TE, Naveilhan P, Ernfors P. Assessment of ethanol consumption and water drinking by NPY Y(2) receptor knockout mice. Peptides 2004; 25:975-83. [PMID: 15203244 DOI: 10.1016/j.peptides.2004.03.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2004] [Revised: 03/19/2004] [Accepted: 03/23/2004] [Indexed: 01/07/2023]
Abstract
In recent years, pharmacological and genetic evidence have emerged suggesting that neuropeptide Y (NPY) and the NPY Y(1) receptor are involved with neurobiological responses to ethanol. Pharmacological data implicate a role for the NPY Y(2) receptor in ethanol self-administration. The purpose of the present study was to determine if genetic mutation of the Y(2) receptor would modulate ethanol consumption and/or ethanol-induced sedation. Here, we report that mutant mice lacking the NPY Y(2) receptor (Y(2)(-/-)), when maintained on a mixed 50% 129/ SvJ x 50 % Balb/cJ background, drink significantly less of solutions containing 3 or 6% (v/v) ethanol relative to wild-type (Y(2)(+/+)) mice. These mice drink normal amounts of solutions containing sucrose or quinine, have normal blood ethanol clearance, and show normal sensitivity to ethanol-induced sedation. However, Y(2)(-/-) mice that are backcrossed to a Balb/cJ background show normal consumption of ethanol, indicating that the contributions of the NPY Y(2) receptor to ethanol consumption are genetic background dependent. Consistent with previous data suggesting that NPY modulates water drinking, Y(2)(-/-) mice of both genetic backgrounds consume significantly more water than Y(2)(+/+) mice. The present results suggest roles for the NPY Y(2) receptor in the modulation of ethanol and water consumption.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology and the Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Davie Hall, CB#3270, Chapel Hill, NC 27599-3270, USA.
| | | | | |
Collapse
|
175
|
Hohmann JG, Teklemichael DN, Weinshenker D, Wynick D, Clifton DK, Steiner RA. Obesity and endocrine dysfunction in mice with deletions of both neuropeptide Y and galanin. Mol Cell Biol 2004; 24:2978-85. [PMID: 15024085 PMCID: PMC371109 DOI: 10.1128/mcb.24.7.2978-2985.2004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuropeptide Y (NPY) and galanin have both been implicated in the regulation of body weight, yet mice bearing deletions of either of these molecules have unremarkable metabolic phenotypes. To investigate whether galanin and NPY might compensate for one another, we produced mutants lacking both neuropeptides (GAL(-/-)/NPY(-/-)). We found that male GAL(-/-)/NPY(-/-) mice ate significantly more and were much heavier (30%) than wild-type (WT) controls. GAL(-/-)/NPY(-/-) mice responded to a high-fat diet by gaining more weight than WT mice gain, and they were unable to regulate their weight normally after a change in diet. GAL(-/-)/NPY(-/-) mice had elevated levels of leptin, insulin, and glucose, and they lost more weight than WT mice during chronic leptin treatment. Galanin mRNA was increased in the hypothalamus of NPY(-/-) mice, providing evidence of compensatory regulation in single mutants. The disruption of energy balance observed in GAL(-/-)/NPY(-/-) double knockouts is not found in the phenotype of single knockouts of either molecule. The unexpected obesity phenotype may result from the dysregulation of the leptin and insulin systems that normally keep body weight within the homeostatic range.
Collapse
Affiliation(s)
- J G Hohmann
- Neurobiology and Behavior, Howard Hughes Medical Institute, University of Washington, Seattle, Washington 98195, USA
| | | | | | | | | | | |
Collapse
|
176
|
Jackson DN, Noble EG, Shoemaker JK. Y1- and alpha1-receptor control of basal hindlimb vascular tone. Am J Physiol Regul Integr Comp Physiol 2004; 287:R228-33. [PMID: 15044188 DOI: 10.1152/ajpregu.00723.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The role of endogenous Y(1)-receptor activation on skeletal muscle vasculature under baseline conditions is currently debated and no in vivo studies have been performed to address this issue. Therefore, this study was designed to address the effect of Y(1)-receptor and/or alpha(1)-adrenoceptor antagonism on basal hindlimb vascular conductance in male Sprague-Dawley rats in vivo. Left hindlimb vascular conductance, carotid artery mean arterial pressure, and heart rate were measured during low volume infusion of N(2)-(diphenylacetyl)-N-[(4-hydroxyphenyl)methyl]-d-arginine amide (BIBP3226; 100 microg/kg), prazosin (20 microg/kg), and combined blockade to the left hindlimb. Vascular conductance increased 1.5 +/- 0.5 microl.min(-1).mmHg(-1) with BIBP3226 infusion, 1.7 +/- 0.5 microl.min(-1).mmHg(-1) with prazosin infusion, and 4.8 +/- 1.0 microl.min(-1).mmHg(-1) with combined blockade (P < 0.05). Interestingly, systolic vascular conductance increased in all three conditions, but diastolic vascular conductance only increased in the two conditions where BIBP3226 was present. These data indicate that Y(1)-receptor activation plays an important role in the regulation of vascular conductance in the resting rat hindlimb. Furthermore, this effect was of the same magnitude as the alpha(1)-adrenoceptor contribution. The differential flow profiles following alpha(1) blockade with and without Y(1)-receptor blockade supports local differences in receptor distribution.
Collapse
Affiliation(s)
- Dwayne N Jackson
- Neurovascular Research Laboratory, School of Kinesiology, Rm. 3110, Thames Hall, Univ. of Western Ontario, London, Ontario, Canada
| | | | | |
Collapse
|
177
|
Abstract
Energy balance is maintained via a homeostatic system involving both the brain and the periphery. A key component of this system is the hypothalamus. Over the past two decades, major advances have been made in identifying an increasing number of peptides within the hypothalamus that contribute to the process of energy homeostasis. Under stable conditions, equilibrium exists between anabolic peptides that stimulate feeding behavior, as well as decrease energy expenditure and lipid utilization in favor of fat storage, and catabolic peptides that attenuate food intake, while stimulating sympathetic nervous system (SNS) activity and restricting fat deposition by increasing lipid metabolism. The equilibrium between these neuropeptides is dynamic in nature. It shifts across the day-night cycle and from day to day and also in response to dietary challenges as well as peripheral energy stores. These shifts occur in close relation to circulating levels of the hormones, leptin, insulin, ghrelin and corticosterone, and also the nutrients, glucose and lipids. These circulating factors together with neural processes are primary signals relaying information regarding the availability of fuels needed for current cellular demand, in addition to the level of stored fuels needed for long-term use. Together, these signals have profound impact on the expression and production of neuropeptides that, in turn, initiate the appropriate anabolic or catabolic responses for restoring equilibrium. In this review, we summarize the evidence obtained on nine peptides in the hypothalamus that have emerged as key players in this process. Data from behavioral, physiological, pharmacological and genetic studies are described and consolidated in an attempt to formulate a clear statement on the underlying function of each of these peptides and also on how they work together to create and maintain energy homeostasis.
Collapse
Affiliation(s)
- Sarah F Leibowitz
- Laboratory of Behavioral Neurobiology, The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| | | |
Collapse
|
178
|
Raposinho PD, Pedrazzini T, White RB, Palmiter RD, Aubert ML. Chronic neuropeptide Y infusion into the lateral ventricle induces sustained feeding and obesity in mice lacking either Npy1r or Npy5r expression. Endocrinology 2004; 145:304-10. [PMID: 14525913 DOI: 10.1210/en.2003-0914] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Neuropeptide Y (NPY) is a powerful orexigenic neurotransmitter. The NPY Y1 and Y5 receptors have been implicated in mediating the appetite-stimulating activity of NPY. To further investigate the importance of these two receptors in NPY-induced hyperphagia after chronic central administration, we used mice lacking either Npy1r or Npy5r expression. NPY infusion into the lateral ventricle of wild-type mice stimulated food intake and induced obesity over a 7-d period. Fat pad weight as well as plasma insulin, leptin, and corticosterone levels were strongly increased in NPY-treated mice. In addition, NPY infusion resulted in a significant decrease in hypothalamic NPY and proopiomelanocortin expression. Interestingly, the lack of either Npy1r or Npy5r expression in knockout mice did not affect such feeding response to chronic NPY infusion. Moreover, the obesity syndrome that developed in these animals was similar to that in wild-type animals. Taken together, these data strongly suggest biological redundancies between Y1 and Y5 receptor signaling in the NPY-mediated control of food intake.
Collapse
Affiliation(s)
- Paula D Raposinho
- Division of Pediatric Endocrinology and Diabetology, University of Geneva School of Medicine, 1211 Geneva 14, Switzerland
| | | | | | | | | |
Collapse
|
179
|
Thiele TE, Navarro M, Sparta DR, Fee JR, Knapp DJ, Cubero I. Alcoholism and obesity: overlapping neuropeptide pathways? Neuropeptides 2003; 37:321-37. [PMID: 14698675 DOI: 10.1016/j.npep.2003.10.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Ethanol is a caloric compound, and ethanol drinking and food intake are both appetitive and consummatory behaviors. Furthermore, both ethanol and food have rewarding properties. It is therefore possible that overlapping central pathways are involved with uncontrolled eating and excessive ethanol consumption. A growing list of peptides has been shown to regulate food intake and/or energy homeostasis. Peptides such as the melanocortins, corticotropin releasing factor, and cholecystokinin promote reductions of food intake while others such as galanin and neuropeptide Y stimulate feeding. The present review highlights research aimed at determining if ingestive peptides also regulate voluntary ethanol intake, with an emphasis on the melanocortins and neuropeptide Y. It is suggested that research directed at ingestive peptides may expand our understanding of the neurobiological mechanisms that drive ethanol self-administration, and may reveal new therapeutic candidates for treating alcohol abuse and alcoholism.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology, University of North Carolina at Chapel Hill, Davie Hall, CB# 3270, Chapel Hill, NC 27599-3270, USA.
| | | | | | | | | | | |
Collapse
|
180
|
Ishii S, Kamegai J, Tamura H, Shimizu T, Sugihara H, Oikawa S. Hypothalamic neuropeptide Y/Y1 receptor pathway activated by a reduction in circulating leptin, but not by an increase in circulating ghrelin, contributes to hyperphagia associated with triiodothyronine-induced thyrotoxicosis. Neuroendocrinology 2003; 78:321-30. [PMID: 14688445 DOI: 10.1159/000074885] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2003] [Accepted: 10/14/2003] [Indexed: 11/19/2022]
Abstract
Food intake is regulated by hypothalamic neuropeptides which respond to peripheral signals. Plasma ghrelin and leptin levels reflect peripheral energy balance and regulate hypothalamic neuropeptides such as neuropeptide Y (NPY), pro-opiomelanocortin (POMC), cocaine- and amphetamine-regulated transcript (CART), melanin-concentrating hormone (MCH), and orexins. Thyroid hormone stimulates food intake in humans and rodents. However, the mechanisms responsible for this stimulation have not been fully elucidated. To investigate the hyperphagic response to triiodothyronine (T(3))-induced thyrotoxicosis, adult male rats were studied 7 days after daily intraperitoneal injections of T(3) or vehicle. T(3)-treated rats were markedly hyperphagic. During this hyperphagia, plasma leptin levels were markedly decreased. However, the expression of the ghrelin gene in the stomach and the plasma ghrelin concentrations did not differ between the 2 groups. Hypothalamic NPY mRNA levels were significantly increased and associated with a marked decreased in both hypothalamic POMC and CART mRNA levels in the T(3)-treated rats. Hypothalamic MCH and orexin mRNA levels did not differ between the 2 groups. In addition, hyperphagia was partially reversed by intracerebroventricular administration of the NPY Y1 receptor antagonist BIBO3304. Therefore, the decreased plasma leptin levels could contribute to hyperphagia in T(3)-induced thyrotoxicosis. However, plasma ghrelin levels did not contribute to this hyperphagia.
Collapse
Affiliation(s)
- Shinya Ishii
- Department of Medicine, Nippon Medical School, Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
181
|
Abstract
Growing health problems related to obesity have focused considerable attention on a number of neurotransmitters, particularly hypothalamic neuropeptides, involved in regulating energy homeostasis and food intake. As the fast-acting transmitters GABA and glutamate underlie the majority of fast synaptic activity in the hypothalamus, understanding neuropeptide modulation of amino acid transmitter actions may be key to a full appreciation of how the brain controls caloric balances.
Collapse
Affiliation(s)
- A N van den Pol
- Department of Neurosurgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| |
Collapse
|
182
|
Gonzales C, Voirol MJ, Giacomini M, Gaillard RC, Pedrazzini T, Pralong FP. The neuropeptide Y Y1 receptor mediates NPY‐induced inhibition of the gonadotrope axis under poor metabolic conditions. FASEB J 2003; 18:137-9. [PMID: 14597564 DOI: 10.1096/fj.03-0189fje] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hypothalamic neuropeptide Y (NPY) plays a central role in the control of food intake, energy balance, and modulation of neuroendocrine functions. In particular, an increase in NPY expression participates in the inhibition of the reproductive activity under poor nutritional conditions. The present study was designed to evaluate further the involvement of the Y1 subtype of NPY receptors in these effects. Food intake, body weight gain, and the onset of puberty were studied in groups of wild-type and Y1 deficient mice that were either fed ad libitum or subjected to a 30% restriction in food intake. This moderate feeding restriction induced a similar deficit in body weight gain in wild-type and in Y1 knockout mice. However, although wild-type mice experienced the expected delay of puberty, all mice in the food restriction group and lacking Y1 could go through puberty over the time of the experiment despite decreases in circulating leptin levels and increases in hypothalamic NPY expression. This observation demonstrates that the absence of Y1 impairs the perception of decreasing energy stores by the gonadotrope axis, demonstrating a physiological role for Y1 in the sensing of endogenous metabolic parameters by the hypothalamus.
Collapse
Affiliation(s)
- Christine Gonzales
- Division of Endocrinology, Diabetology and Metabolism, University Hospital, Lausanne, Switzerland
| | | | | | | | | | | |
Collapse
|
183
|
Thiele TE, Sparta DR, Fee JR, Navarro M, Cubero I. Central neuropeptide Y alters ethanol-induced sedation, but not ethanol intake, in C57BL/6 mice. Alcohol 2003; 31:155-60. [PMID: 14693264 DOI: 10.1016/j.alcohol.2003.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Recent evidence indicates that neuropeptide Y modulates neurobiologic responses to ethanol and ethanol consumption. Resistance to the sedative effects of ethanol, voluntary ethanol consumption, or both was found to be inversely related to neuropeptide Y levels in genetically manipulated rat and mouse models. More recently, intracerebroventricular infusion of neuropeptide Y reduced ethanol drinking in rats selectively bred for high ethanol preference, but not in low-ethanol-preferring or in outbred Wistar rats. In the current study, we determined whether intracerebroventricular infusion of neuropeptide Y would reduce voluntary ethanol consumption in high-ethanol-preferring, C57BL/6 mice. We also studied ethanol-induced sedation after intracerebroventricular infusion of neuropeptide Y. Pretreatment with doses of neuropeptide Y, ranging from 3.0 to 10.0 microg, significantly augmented ethanol-induced sedation without altering locomotor activity or plasma ethanol levels. However, neither a 5.0- nor a 10.0-microg dose of neuropeptide Y altered 2-h drinking of a 10% [volume/volume (vol./vol.)] ethanol solution. Consistent with genetic evidence, the results of current pharmacologic studies provide support that neuropeptide Y modulates ethanol-induced sedation.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology and the Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599-3270, USA.
| | | | | | | | | |
Collapse
|
184
|
Kalra SP, Kalra PS. Neuropeptide Y: a physiological orexigen modulated by the feedback action of ghrelin and leptin. Endocrine 2003; 22:49-56. [PMID: 14610298 DOI: 10.1385/endo:22:1:49] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2003] [Accepted: 04/14/2003] [Indexed: 01/16/2023]
Abstract
Neuropeptide Y (NPY), a 36-amino-acid neuropeptide is the most potent physiological appetite transducer known. Episodic NPY neurosecretion in hypothalamic target sites is temporally linked with onset of the daily feeding pattern. Upregulation of NPY signaling in the arcuate nucleus-paraventricular nucleus (ARC-PVN) neural axis is responsible for the hyperphagia evoked by dieting, fasting, hormonal and genetic factors, and disruption in intrahypothalamic signaling. Clusters of NPY-producing neurons in the ARC that coexpress gamma- amino butyric acid and agouti-related peptide, and those in the brain stem (BS) that coexpress catecholamines and galanin, participate in disparate manners to regulate appetitive behavior. NPY receptors, Y1, Y2, and Y5, expressed by various components of the NPY network, mediate NPY-induced feeding. Imbalance in NPY signaling due either to high or low abundance of NPY at target sites elicits hyperphagia leading to increased fat accretion and obesity. Recent studies show that intermittent, feedback action of opposing afferent hormonal signals-leptin from adipose tissue and ghrelin from stomach-regulate the episodic secretion of orexigenic NPY in the PVN-ARC. Apparently, the hypothalamic NPY network is the primary common pathway intimately involved in genesis of appetite- stimulating impulses.
Collapse
Affiliation(s)
- Satya P Kalra
- Department of Neuroscience, McKnight Brain Institute, PO Box 100244, University of Florida, Gainesville, FL 32610-0244, USA.
| | | |
Collapse
|
185
|
Ishii M, Fei H, Friedman JM. Targeted disruption of GPR7, the endogenous receptor for neuropeptides B and W, leads to metabolic defects and adult-onset obesity. Proc Natl Acad Sci U S A 2003; 100:10540-5. [PMID: 12925742 PMCID: PMC193597 DOI: 10.1073/pnas.1334189100] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Gold-thioglucose (GTG) induces lesions in the ventromedial nucleus of the hypothalamus, resulting in hyperphagia and obesity. To identify genes involved in the hypothalamic regulation of energy homeostasis, we used a screen for genes that are dysregulated in GTG-induced obese mice. We found that GPR7, the endogenous G protein-coupled receptor for the recently identified ligands neuropeptide B and neuropeptide W, was down-regulated in hypothalamus after GTG treatment. Here we show that male GPR7-/- mice develop an adult-onset obese phenotype that progressively worsens with age and was greatly exacerbated when animals are fed a high-fat diet. GPR7-/- male mice were hyperphagic and had decreased energy expenditure and locomotor activity. Plasma levels of glucose, leptin, and insulin were also elevated in these mice. GPR7-/- male mice had decreased hypothalamic neuropeptide Y RNA levels and increased proopiomelanocortin RNA levels, a set of effects opposite to those evident in ob/ob mice. Furthermore, ob/ob GPR7-/- and Ay/a GPR7-/- double mutant male mice had an increased body weight compared with normal ob/ob or Ay/a male mice, suggesting that the obesity of GPR7-/- mice is independent of leptin and melanocortin signaling. Female mice did not show any significant weight increase or associated metabolic defects. These data suggest a potential role for GPR7 and its endogenous ligands, neuropeptide B and neuropeptide W, in regulating energy homeostasis independent of leptin and melanocortin signaling in a sexually dimorphic manner.
Collapse
Affiliation(s)
- Makoto Ishii
- Laboratory of Molecular Genetics, The Rockefeller University, New York, NY 10021, USA
| | | | | |
Collapse
|
186
|
Sakurai T. [Roles of biologically active peptide in regulation of feeding behavior and energy homeostasis]. Nihon Yakurigaku Zasshi 2003; 122:236-42. [PMID: 12939541 DOI: 10.1254/fpj.122.236] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The mechanisms for regulating food intake involve a complicated interplay between peripheral systems (including gastrointestinal peptide secretion, leptin, and vagal afferent nerve responses) and central nervous system (CNS) neuropeptides and/or monoamines. Many hypothalamic neuropeptides are involved in the regulation of energy homeostasis and feeding behavior, including melanocortins, Agouti-related peptide, neuropeptide-Y, cocaine, and amphetamine-regulated transcript, orexin, and melanine concentrating hormone (MCH) as well as monamines (serotonin, dopamine, norepinephrine). Many of these systems are regulated by peripheral metabolic cues including plasma leptin levels. This review summarizes roles of neuropeptides in the regulatory mechanism of feeding and energy homeostasis.
Collapse
Affiliation(s)
- Takeshi Sakurai
- Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki, Japan.
| |
Collapse
|
187
|
Lecklin A, Lundell I, Salmela S, Männistö PT, Beck-Sickinger AG, Larhammar D. Agonists for neuropeptide Y receptors Y1 and Y5 stimulate different phases of feeding in guinea pigs. Br J Pharmacol 2003; 139:1433-40. [PMID: 12922930 PMCID: PMC1573983 DOI: 10.1038/sj.bjp.0705389] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
1. The stimulatory effect of neuropeptide Y (NPY) on food intake is well established but the roles of the receptor subtypes Y(1) and Y(5) have been difficult to define. We have studied the effects of two novel Y(1)-preferring and two Y(5)-preferring agonists on feeding in guinea pigs. 2. The Y(1)-preferring receptor agonists [Arg(6),Pro(34)]pNPY and [Phe(7),Pro(34)]pNPY had high affinity for the Y(1) receptor (K(i) values 0.07 and 0.04 nM, respectively) and nanomolar affinity for the Y(5) receptor. Administration of either compound into the third brain ventricle increased food intake equally to NPY. 3. The Y(5) agonist [Ala(31),Aib(32)]pNPY displayed a moderate affinity for the Y(5) receptor (K(i) 7.42 nM) and a low affinity for Y(1) (K(i) 1.7 micro M). This compound had only a modest effect on feeding. 4. The other Y(5)-preferring peptide [cPP(1-7),NPY(19-23),Ala(31),Aib(32),Gln(34)]hPP had a higher affinity at the Y(5) receptor (K(i) 1.32 nM) and also at the Y(1) receptor (K(i) 85 nM). It potently stimulated feeding: the food consumption after administration of this peptide was two-fold compared to NPY. 5. Our results support the view that both the receptor subtypes Y(1) and Y(5) are involved in the stimulation of feeding. As the action profiles of the Y(1) and Y(5) agonists on feeding parameters were different, it seems that they influence different phases of eating.
Collapse
Affiliation(s)
- Anne Lecklin
- Department of Neuroscience, Unit of Pharmacology, Uppsala University, Box 593, S-75124 Uppsala, Sweden.
| | | | | | | | | | | |
Collapse
|
188
|
Abstract
During the past decade, proof of the principle that peptide receptors can be used successfully for in vivo targeting of human cancers has been provided. The molecular basis for targeting rests on the in vitro observation that peptide receptors can be expressed in large quantities in certain tumors. The clinical impact is at the diagnostic level: in vivo receptor scintigraphy uses radiolabeled peptides for the localization of tumors and their metastases. It is also at the therapeutic level: peptide receptor radiotherapy of tumors emerges as a serious treatment option. Peptides linked to cytotoxic agents are also considered for therapeutic applications. The use of nonradiolabeled, noncytotoxic peptide analogs for long-term antiproliferative treatment of tumors appears promising for only a few tumor types, whereas the symptomatic treatment of neuroendocrine tumors by somatostatin analogs is clearly successful. The present review summarizes and critically evaluates the in vitro data on peptide and peptide receptor expression in human cancers. These data are considered to be the molecular basis for peptide receptor targeting of tumors. The paradigmatic peptide somatostatin and its receptors are extensively reviewed in the light of in vivo targeting of neuroendocrine tumors. The role of the more recently described targeting peptides vasoactive intestinal peptide, gastrin-releasing peptide, and cholecystokinin/gastrin is discussed. Other emerging and promising peptides and their respective receptors, including neurotensin, substance P, and neuropeptide Y, are introduced. This information relates to established and potential clinical applications in oncology.
Collapse
Affiliation(s)
- Jean Claude Reubi
- Division of Cell Biology and Experimental Cancer Research, Institute of Pathology, University of Berne, CH-3010 Berne, Switzerland
| |
Collapse
|
189
|
Benmaamar R, Pham-Lê BT, Marescaux C, Pedrazzini T, Depaulis A. Induced down-regulation of neuropeptide Y-Y1 receptors delays initiation of kindling. Eur J Neurosci 2003; 18:768-74. [PMID: 12925003 DOI: 10.1046/j.1460-9568.2003.02810.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Neuropeptide Y appears to modulate epileptic seizures differentially according to the receptor subtypes involved. In the hippocampus, neuropeptide Y expression and release are enhanced in different models of epileptogenesis. On the contrary, the expression of Y1 receptors is decreased and it has been shown that activation of these receptors has pro-convulsant effects. The aim of our study was to investigate the role of Y1 receptors during hippocampal kindling epileptogenesis using (i) knock-out mice lacking Y1 receptors and (ii) intrahippocampal infusion of Y1 antisense oligodeoxynucleotide in rats. Y1 knock-out mice showed similar susceptibility to seizure induction and presented no difference in kindling development as compared with their control littermates. Conversely, local hippocampal down-regulation of Y1 receptors during the first week of hippocampal kindling, induced by a local infusion of a Y1 antisense oligodeoxynucleotide, significantly increased seizure threshold intensity and decreased afterdischarge duration. A reverse effect was observed during the week following the infusion period, which was confirmed by a significant decrease in the number of hippocampal stimulations necessary to evoke generalized seizures. At the end of this second week, an up-regulation of Y1 receptors was observed in kindled rats infused with the antisense as compared with the mismatch-treated controls. Our results in the rat suggest that the down-regulation of Y1 receptors in the hippocampus participates in the control of the initiation of epileptogenesis. The lack of an effect of the deficiency of Y1 receptors in the control of kindling development in Y1 knock-out mice could be due to compensatory mechanisms.
Collapse
Affiliation(s)
- Ramla Benmaamar
- Laboratoire de Neuropharmacologie et Neurobiologie des Epilepsies, 11 Rue Humann, 67085 Strasbourg, France.
| | | | | | | | | |
Collapse
|
190
|
Sainsbury A, Baldock PA, Schwarzer C, Ueno N, Enriquez RF, Couzens M, Inui A, Herzog H, Gardiner EM. Synergistic effects of Y2 and Y4 receptors on adiposity and bone mass revealed in double knockout mice. Mol Cell Biol 2003; 23:5225-33. [PMID: 12861009 PMCID: PMC165708 DOI: 10.1128/mcb.23.15.5225-5233.2003] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neuropeptide Y regulates numerous physiological processes via at least five different Y receptors, but the specific roles of each receptor are still unclear. We previously demonstrated that Y2 receptor knockout results in a lean phenotype, increased cancellous bone volume, and an increase in plasma pancreatic polypeptide (PP), a ligand for Y4 receptors. PP-overexpressing mice are also known to have a lean phenotype. Deletion of the Y4 receptor also produced a lean phenotype and increased plasma PP levels. We therefore hypothesized that part of the Y2 phenotype results from increased PP action on Y4 receptors and tested this in PP transgenic Y4(-/-) and Y2(-/-) Y4(-/-) double knockout mice. Bone mass was not altered in Y4 knockout mice. Surprisingly, despite significant hyperphagia, Y2(-/-) Y4(-/-) mice retained a markedly lean phenotype, with reduced body weight, white adipose tissue mass, leptinemia, and insulinemia. Furthermore, bone volume was also increased threefold in Y2(-/-) Y4(-/-) mice, and this was associated with enhanced osteoblastic activity. These changes were more pronounced than those observed in Y2(-/-) mice, suggesting synergy between Y2 and Y4 receptor pathways. The lack of bone changes in PP transgenic mice suggests that PP alone is not responsible for the bone mass increases but might play a major role in the lean phenotype. However, a synergistic interaction between Y2 and Y4 pathways seems to regulate bone volume and adiposity and could have important implications for possible interventions in obesity and for anabolic treatment of osteoporotic bone loss.
Collapse
Affiliation(s)
- Amanda Sainsbury
- Neurobiology Program, Garvan Institute of Medical Research, St Vincent's Hospital, 384 Victoria Street, Darlinghurst, Sydney, New South Wales 2010, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Loktionov A. Common gene polymorphisms and nutrition: emerging links with pathogenesis of multifactorial chronic diseases (review). J Nutr Biochem 2003; 14:426-51. [PMID: 12948874 DOI: 10.1016/s0955-2863(03)00032-9] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Rapid progress in human genome decoding has accelerated search for the role of gene polymorphisms in the pathogenesis of complex multifactorial diseases. This review summarizes the results of recent studies on the associations of common gene variants with multifactorial chronic conditions strongly affected by nutritional factors. Three main individual sections discuss genes related to energy homeostasis regulation and obesity, cardiovascular disease (CVD), and cancer. It is evident that several major chronic diseases are closely related (often through obesity) to deregulation of energy homeostasis. Multiple polymorphic genes encoding central and peripheral determinants of energy intake and expenditure have been revealed over the past decade. Food intake control may be affected by polymorphisms in the genes encoding taste receptors and a number of peripheral signaling peptides such as insulin, leptin, ghrelin, cholecystokinin, and corresponding receptors. Polymorphic central regulators of energy intake include hypothalamic neuropeptide Y, agouti-related protein, melanocortin pathway factors, CART (cocaine- and amphetamine-regulated transcript), some other neuropeptides, and receptors for these molecules. Potentially important polymorphisms in the genes encoding energy expenditure modulators (alpha- and beta- adrenoceptors, uncoupling proteins, and regulators of adipocyte growth and differentiation) are also discussed. CVD-related gene polymorphisms comprising those involved in the pathogenesis of atherosclerosis, blood pressure regulation, hemostasis control, and homocysteine metabolism are considered in a separate section with emphasis on multiple polymorphisms affecting lipid transport and metabolism and their interactions with diet. Cancer-associated polymorphisms are discussed for groups of genes encoding enzymes of xenobiotic metabolism, DNA repair enzymes, factors involved in the cell cycle control, hormonal regulation-associated proteins, enzymes related to DNA methylation through folate metabolism, and angiogenesis-related factors. There is an apparent progress in the field with hundreds of new gene polymorphisms discovered and characterized, however firm evidence consistently linking them with pathogenesis of complex chronic diseases is still limited. Ways of improving the efficiency of candidate gene approach-based studies are discussed in a short separate section. Successful unraveling of interaction between dietary factors, polymorphisms, and pathogenesis of several multifactorial diseases is exemplified by studies of folate metabolism in relation to CVD and cancer. It appears that several new directions emerge as targets of research on the role of genetic variation in relation to diet and complex chronic diseases. Regulation of energy homeostasis is a fundamental problem insufficiently investigated in this context so far. Impacts of genetic variation on systems controlling angiogenesis, inflammatory reactions, and cell growth and differentiation (comprising regulation of the cell cycle, DNA repair, and DNA methylation) are also largely unknown and need thorough analysis. These goals can be achieved by complex simultaneous analysis of multiple polymorphic genes controlling carefully defined and selected elements of relevant metabolic and regulatory pathways in meticulously designed large-scale studies.
Collapse
|
192
|
Wu Q, Wen T, Lee G, Park JH, Cai HN, Shen P. Developmental control of foraging and social behavior by the Drosophila neuropeptide Y-like system. Neuron 2003; 39:147-61. [PMID: 12848939 DOI: 10.1016/s0896-6273(03)00396-9] [Citation(s) in RCA: 304] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Animals display stereotyped behavioral modifications during development, but little is known about how genes and neural circuits are regulated to turn on/off behaviors. Here we report that Drosophila neuropeptide F (dNPF), a human NPY homolog, coordinates larval behavioral changes during development. The brain expression of npf is high in larvae attracted to food, whereas its downregulation coincides with the onset of behaviors of older larvae, including food aversion, hypermobility, and cooperative burrowing. Loss of dNPF signaling in young transgenic larvae led to the premature display of behavioral phenotypes associated with older larvae. Conversely, dNPF overexpression in older larvae prolonged feeding, and suppressed hypermobility and cooperative burrowing behaviors. The dNPF system provides a new paradigm for studying the central control of cooperative behavior.
Collapse
Affiliation(s)
- Qi Wu
- Department of Cellular Biology, University of Georgia, Athens, GA 3060, USA
| | | | | | | | | | | |
Collapse
|
193
|
Karl T, Hoffmann T, Pabst R, von Hörsten S. Behavioral effects of neuropeptide Y in F344 rat substrains with a reduced dipeptidyl-peptidase IV activity. Pharmacol Biochem Behav 2003; 75:869-79. [PMID: 12957230 DOI: 10.1016/s0091-3057(03)00154-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Dipeptidyl-peptidase IV (DPPIV/CD26) is involved in several physiological functions by cleavage of dipeptides with a Xaa-Pro or Xaa-Ala sequence of regulatory peptides such as neuropeptide Y (NPY). Cleavage of NPY by DPPIV results in NPY(3-36), which lacks affinity for the Y(1) but not for other NPY receptor subtypes. Among other effects, the NPY Y(1) receptor mediates anxiolytic-like effects of NPY. In previous studies with F344 rat substrains lacking endogenous DPPIV-like activity we found a reduced behavioral stress response, which might be due to a differential degradation of NPY. Here we tested this hypothesis and administered intracerebroventricularly two different doses of NPY (0.0, 0.2, 1.0 nmol) in mutant and wildtype-like F344 substrains. NPY dose-dependently stimulated food intake and feeding motivation, decreased motor activity in the plus maze and social interaction test, and exerted anxiolytic-like effects. More important for the present hypothesis, NPY administration was found to be more potent in the DPPIV-negative substrains in exerting anxiolytic-like effects (increased social interaction time in the social interaction test) and sedative-like effects (decreased motor activity in the elevated plus maze). These data demonstrate for the first time a differential potency of NPY in DPPIV-deficient rats and suggest a changed receptor-specificity of NPY, which may result from a differential degradation of NPY in this genetic model of DPPIV deficiency. Overall, these results provide direct evidence that NPY-mediated effects in the central nervous system are modulated by DPPIV-like enzymatic activity.
Collapse
Affiliation(s)
- Tim Karl
- Department of Functional and Applied Anatomy, Hannover Medical School, Germany
| | | | | | | |
Collapse
|
194
|
Abstract
Obesity has become a leading public health concern. Over 1 billion people are now overweight or obese, and the prevalence of these conditions is rising rapidly. Remarkable new insights into the mechanisms that control body weight are providing an increasingly detailed framework for a better understanding of obesity pathogenesis. Key peripheral signals, such as leptin, insulin, and ghrelin, have been linked to hypothalamic neuropeptide systems, and the anatomic and functional networks that integrate these systems have begun to be elucidated. This article highlights some of these recent findings and their implications for the future of obesity treatment.
Collapse
Affiliation(s)
- David E Cummings
- Department of Medicine, VA Puget Sound Health Care System and Harborview Medical Center, University of Washington, Seattle, Washington 98195, USA.
| | | |
Collapse
|
195
|
Segal-Lieberman G, Trombly DJ, Juthani V, Wang X, Maratos-Flier E. NPY ablation in C57BL/6 mice leads to mild obesity and to an impaired refeeding response to fasting. Am J Physiol Endocrinol Metab 2003; 284:E1131-9. [PMID: 12582011 DOI: 10.1152/ajpendo.00491.2002] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Neuropeptide Y (NPY) is an orexigenic (appetite-stimulating) peptide that plays an important role in regulating energy balance. When administered directly into the central nervous system, animals exhibit an immediate increase in feeding behavior, and repetitive injections or chronic infusions lead to obesity. Surprisingly, initial studies of Npy(-/-) mice on a mixed genetic background did not reveal deficits in energy balance, with the exception of an attenuation in obesity seen in ob/ob mice in which the NPY gene was also deleted. Here, we show that, on a C57BL/6 background, NPY ablation is associated with an increase in body weight and adiposity and a significant defect in refeeding after a fast. This impaired refeeding response in Npy(-/-) mice resulted in a deficit in weight gain in these animals after 24 h of refeeding. These data indicate that genetic background must be taken into account when the biological role of NPY is evaluated. When examined on a C57BL/6 background, NPY is important for the normal refeeding response after starvation, and its absence promotes mild obesity.
Collapse
|
196
|
Thiele TE, Badia-Elder NE. A role for neuropeptide Y in alcohol intake control: evidence from human and animal research. Physiol Behav 2003; 79:95-101. [PMID: 12818714 DOI: 10.1016/s0031-9384(03)00109-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
This article is based on proceedings of a symposium presented at the 2002 meeting of the Society for the Study of Ingestive Behavior and provides a brief overview of recent research suggesting a role for neuropeptide Y (NPY) in the modulation of ethanol drinking. The discussion focuses mainly on recent studies with genetic animal models including mutant mice lacking specific NPY receptor and selectively bred rodents, namely the Indiana alcohol-preferring (P) and alcohol-nonpreferring (NP) rats and the Indiana high alcohol drinking (HAD) and low alcohol drinking (LAD) rats. It is concluded that abnormal or low central NPY activity can promote high alcohol drinking and that NPY modulates alcohol consumption via the NPY Y1 and Y2 receptors.
Collapse
Affiliation(s)
- Todd E Thiele
- Department of Psychology and the Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Davie Hall, CB#3270, Chapel Hill, NC 27599-3270, USA.
| | | |
Collapse
|
197
|
Abstract
Fetal swallowing has important roles in fetal gastrointestinal development, and perhaps fetal somatic growth and maturation. Ingestive behavioral responses must develop in utero to provide for acquisition of water and food intake during the neonatal period. At birth, the rat, ovine and human fetus have developed mechanisms to acquire food via intact mechanisms of taste, suckling and swallowing. Our preliminary studies suggest that in sheep and likely in human fetuses, putative orexic-mediated ingestive responses are present near term gestation. We hypothesize that both orexic (appetite) and satiety mechanisms develop during the last third of gestation and the related neurotransmitters involved in this process are functional. The potential in utero imprinting of orexic mechanisms may influence infant, childhood and ultimately adult appetite "set-points". Thus, dysfunctional appetite, and perhaps obesity, may result from maternal environmental influences during critical stages of development.
Collapse
Affiliation(s)
- Michael G Ross
- University of California, Los Angeles, Harbor-UCLA Medical Center, 1000 West, Carson Street, Box 3, Torrance, CA 90509, USA.
| | | | | | | | | |
Collapse
|
198
|
Abstract
The receptor subtypes that mediate the effects of neuropeptide Y (NPY) on food intake have not been clearly defined. The NPY Y4 receptor has been identified recently as a potential mediator of the regulation of food intake. The purpose of the present study was to characterize the central site of action of the Y4 receptor using a combination of neuroanatomical and physiological approaches. Using immunocytochemistry, Y4-like immunoreactivity was found to be colocalized with orexin cell bodies in the lateral hypothalamic area (LHA) and orexin fibers throughout the brain. In situ hybridization confirmed the expression of Y4 mRNA in orexin neurons. To determine the functional interaction between Y4 receptors and orexin neurons, we examined the effects of rat pancreatic polypeptide (rPP), a Y4-selective ligand, or NPY, a nonselective ligand, administered directly into the LHA on the stimulation of food and water intake and c-Fos expression. Both rPP and NPY significantly increased food and water intake when they were administered into the LHA, although NPY was a more potent stimulator of food intake. Furthermore, both NPY and rPP significantly stimulated c-Fos expression in the LHA. However, whereas rPP stimulated c-Fos expression in orexin neurons, NPY did not. Neither rPP nor NPY stimulated c-Fos in melanin-concentrating hormone neurons, but both activated neurons of an unknown phenotype in the LHA. These results suggest that a functional Y4 receptor is expressed on orexin neurons and that these neurons are activated in response to a ligand with high affinity for the Y4 receptor (rPP). Although these data suggest a role for central Y4 receptors, the endogenous ligand for this receptor has yet to be clearly established.
Collapse
|
199
|
Berglund MM, Hipskind PA, Gehlert DR. Recent developments in our understanding of the physiological role of PP-fold peptide receptor subtypes. Exp Biol Med (Maywood) 2003; 228:217-44. [PMID: 12626767 DOI: 10.1177/153537020322800301] [Citation(s) in RCA: 173] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The three peptides pancreatic polypeptide (PP), peptide YY (PYY), and neuropeptide Y (NPY) share a similar structure known as the PP-fold. There are four known human G-protein coupled receptors for the PP-fold peptides, namely Y1, Y2, Y4, and Y5, each of them being able to bind at least two of the three endogenous ligands. All three peptides are found in the circulation acting as hormones. Although NPY is only released from neurons, PYY and PP are primarily found in endocrine cells in the gut, where they exert such effects as inhibition of gall bladder secretion, gut motility, and pancreatic secretion. However, when PYY is administered in an experimental setting to animals, cloned receptors, or tissue preparations, it can mimic the effects of NPY in essentially all studies, making it difficult to study the effects of PP-fold peptides and to delineate what receptor and peptide accounts for a particular effect. Initial studies with transgenic animals confirmed the well-established action of NPY on metabolism, food-intake, vascular systems, memory, mood, neuronal excitability, and reproduction. More recently, using transgenic techniques and novel antagonists for the Y1, Y2, and Y5 receptors, NPY has been found to be a key player in the regulation of ethanol consumption and neuronal development.
Collapse
Affiliation(s)
- Magnus M Berglund
- Eli Lilly and Company, Lilly Research Laboratories, Indianapolis, Indiana 46285, USA
| | | | | |
Collapse
|
200
|
Pandey SC, Carr LG, Heilig M, Ilveskoski E, Thiele TE. Neuropeptide y and alcoholism: genetic, molecular, and pharmacological evidence. Alcohol Clin Exp Res 2003; 27:149-54. [PMID: 12605064 DOI: 10.1097/01.alc.0000052706.21367.0e] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
This article presents the proceedings of a symposium presented at the combined meeting of the Research Society on Alcoholism and the International Society for Biomedical Research on Alcoholism, held in San Francisco, CA, in June 2002. The organizers and chairpersons were Subhash C. Pandey and Todd E. Thiele. The presentations were (1) Altered ethanol-induced sedation and ethanol drinking in mutant mice lacking specific NPY receptor, by Todd E. Thiele; (2) NPY in P and NP rats: polymorphism and mRNA expression, by Lucinda G. Carr; (3) The cAMP-dependent PKA in the central amygdala regulates alcohol intake through NPY gene, by Subhash C. Pandey; (4) Involvement of NPY in alcohol dependence: from animal models to human genetics, by Markus Heilig; and (5) Association of neuropeptide Y polymorphism with the occurrence of type 1 and type 2 alcoholism, by Erkki Ilveskoski.
Collapse
Affiliation(s)
- Subhash C Pandey
- Department of Psychiatry, Psychiatric Institute, University of Illinois, IL 60612, USA.
| | | | | | | | | |
Collapse
|