151
|
Shegekar T, Vodithala S, Juganavar A. The Emerging Role of Liquid Biopsies in Revolutionising Cancer Diagnosis and Therapy. Cureus 2023; 15:e43650. [PMID: 37719630 PMCID: PMC10505053 DOI: 10.7759/cureus.43650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 08/17/2023] [Indexed: 09/19/2023] Open
Abstract
A potential non-invasive technique for identifying and tracking cancer is a liquid biopsy. This review article provides a comprehensive overview of the principles, applications, and challenges associated with liquid biopsies. The circulating tumour DNA (ctDNA), circulating tumour cells (CTCs), exosomes, and microRNAs are just a few of the biomarkers we cover in this article that are discovered in liquid biopsies. The clinical application of liquid biopsies in many stages of cancer management, including early cancer identification, therapy selection and response monitoring, and minimum residual illness, is also investigated. The technical advancements in liquid biopsy techniques, including digital polymerase chain reaction (dPCR) and next-generation sequencing (NGS), have improved the sensitivity and specificity of biomarker identification. Liquid biopsies require assistance with cost-effectiveness, sensitivity, and standardisation despite the potential benefits. We talk about these restrictions and potential solutions. In conclusion, liquid biopsies revolutionise personalised therapies and cancer diagnostics by providing a real-time, non-invasive tool for characterising and monitoring tumours. It will be possible to expand the use of liquid biopsies in clinical practises by having a better understanding of their current state and predicted future developments.
Collapse
Affiliation(s)
- Tejas Shegekar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Sahitya Vodithala
- Department of Pathology and Laboratory Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| | - Anup Juganavar
- Department of Medicine, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research, Wardha, IND
| |
Collapse
|
152
|
Jin Z, Zhou Q, Cheng JN, Jia Q, Zhu B. Heterogeneity of the tumor immune microenvironment and clinical interventions. Front Med 2023; 17:617-648. [PMID: 37728825 DOI: 10.1007/s11684-023-1015-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 06/24/2023] [Indexed: 09/21/2023]
Abstract
The tumor immune microenvironment (TIME) is broadly composed of various immune cells, and its heterogeneity is characterized by both immune cells and stromal cells. During the course of tumor formation and progression and anti-tumor treatment, the composition of the TIME becomes heterogeneous. Such immunological heterogeneity is not only present between populations but also exists on temporal and spatial scales. Owing to the existence of TIME, clinical outcomes can differ when a similar treatment strategy is provided to patients. Therefore, a comprehensive assessment of TIME heterogeneity is essential for developing precise and effective therapies. Facilitated by advanced technologies, it is possible to understand the complexity and diversity of the TIME and its influence on therapy responses. In this review, we discuss the potential reasons for TIME heterogeneity and the current approaches used to explore it. We also summarize clinical intervention strategies based on associated mechanisms or targets to control immunological heterogeneity.
Collapse
Affiliation(s)
- Zheng Jin
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- Research Institute, GloriousMed Clinical Laboratory (Shanghai) Co. Ltd., Shanghai, 201318, China
- Institute of Life Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Qin Zhou
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China
- School of Pharmacy and Bioengineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Jia-Nan Cheng
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Qingzhu Jia
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| | - Bo Zhu
- Department of Oncology, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China.
- Key Laboratory of Tumor Immunotherapy, Chongqing, 400037, China.
| |
Collapse
|
153
|
Yu X, Lei X. Application of the Multi-Omics Liquid Biopsy Method M2P-HCC in Early Liver Cancer Screening for High-Risk Individuals with Hepatitis B-Related Liver Cancer. Diagnostics (Basel) 2023; 13:2484. [PMID: 37568847 PMCID: PMC10417463 DOI: 10.3390/diagnostics13152484] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/13/2023] [Accepted: 07/21/2023] [Indexed: 08/13/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors worldwide, with low rates of early diagnosis and surgical resection. In recent years, with the rapid development of liquid biopsy technology, circulating tumor DNA (ctDNA) has emerged as a research hotspot in the field of precision medicine for liver cancer. Existing studies have demonstrated the suitability of ctDNA for combined detection with other liver cancer diagnostic markers, enabling a multi-index analysis. In recent years, a novel prediction model has been developed for early liver cancer screening based on ctDNA liquid biopsy, M2P-HCC (methylation, mutation, and protein-HCC), mainly incorporating methylation changes, gene mutations, and protein markers associated with liver cancer. Preliminary validation in the HCCscreenTM Investigational (HIT, ChiCTR1800020233) study, which focused on screening early liver cancer in communities with Hepatitis B surface antigen (HBsAg) positivity, yielded promising results with 100% sensitivity and 94% specificity. However, it remains uncertain whether M2P-HCC can be effectively applied in high-risk populations for Hepatitis B-associated liver cancer, warranting further research. METHODS Patients who were under long-term follow-up at the outpatient clinic of the Infectious Diseases Center of West China Hospital of Sichuan University from December 2020 to January 2023 were recruited in this prospective observational study and underwent the M2P-HCC test. The study population consisted of high-risk patients with Hepatitis B-related liver cancer who met the inclusion criteria. Patients with a history of previous malignancy, recent blood transfusion, autoimmune diseases, and human immunodeficiency virus (HIV) infection were excluded. Clinical data were collected at a baseline, and all patients underwent the M2P-HCC blood test. Based on the test results, they were categorized into positive, early-warning, and negative groups. Prospective cohort observation and regular follow-ups were performed for 6-8 months. RESULTS 313 patients met the inclusion criteria and were included in the study. After 6-8 months of follow-up, HCC occurred in 41(13.1%) participants. The M2P-HCC test demonstrated good predictive performance with an area under the curve (AUC) of 0.88 (95% CI: 0.81-0.95, p < 0.001) and a cutoff value of 83 points (sensitivity 82.9% and specificity 85.7%). In contrast, the combination of alpha-fetoprotein (AFP) and ultrasound (US) yielded an inferior predictive performance (AUC 0.76 (95% CI: 0.69-0.84, p < 0.001), sensitivity 58.5%, and specificity 94.1%). Multivariate analyses revealed that M2P-HCC was an independent predictor of increased risk of HCC (OR = 1.16 [1.09-1.22], p < 0.001). CONCLUSIONS M2P-HCC liquid biopsy demonstrated good performance for early liver cancer screening in high-risk populations of Hepatitis B-related liver cancer, exhibiting better sensitivity than the combination of AFP and US.
Collapse
Affiliation(s)
| | - Xuezhong Lei
- Center of Infectious Diseases, West China Hospital of Sichuan University, Chengdu 610041, China;
| |
Collapse
|
154
|
Xia T, Fang C, Chen Y. Advances in application of circulating tumor DNA in ovarian cancer. Funct Integr Genomics 2023; 23:250. [PMID: 37479960 DOI: 10.1007/s10142-023-01181-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Ovarian cancer is the third most common gynecologic cancer worldwide and has the highest mortality rate among gynecologic cancers. Identifying timely and effective biomarkers at different stages of the disease is the key to improve the prognosis of ovarian cancer patients. Circulating tumor DNA (ctDNA) is a fragment of free DNA produced by tumor cells in the blood. Current techniques for detecting ctDNA mainly include quantitative polymerase chain reaction (PCR), targeted next-generation sequencing (NGS), and non-targeted NGS (such as whole exon or whole genome sequencing). As a non-invasive liquid biopsy technique, ctDNA has a good application prospect in the ovarian cancer diagnosis, monitoring of treatment response and efficacy evaluation, detection of reverse mutation and related medication guidance, and prognosis evaluation. This article reviews the advances in application of ctDNA in ovarian cancer.
Collapse
Affiliation(s)
- Ting Xia
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Chenyan Fang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China
| | - Yaqing Chen
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, Zhejiang, China.
| |
Collapse
|
155
|
Ding B, Zhang X, Wan Z, Tian F, Ling J, Tan J, Peng X. Characterization of Mitochondrial DNA Methylation of Alzheimer's Disease in Plasma Cell-Free DNA. Diagnostics (Basel) 2023; 13:2351. [PMID: 37510095 PMCID: PMC10378411 DOI: 10.3390/diagnostics13142351] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/29/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023] Open
Abstract
Noninvasive diagnosis of Alzheimer's disease (AD) is important for patients. Significant differences in the methylation of mitochondrial DNA (mtDNA) were found in AD brain tissue. Cell-free DNA (cfDNA) is a noninvasive and economical diagnostic tool. We aimed to characterize mtDNA methylation alterations in the plasma cfDNA of 31 AD patients and 26 age- and sex-matched cognitively normal control subjects. We found that the mtDNA methylation patterns differed between AD patients and control subjects. The mtDNA was predominantly hypomethylated in the plasma cfDNA of AD patients. The hypomethylation sites or regions were mainly located in mt-rRNA, mt-tRNA, and D-Loop regions. The hypomethylation of the D-Loop region in plasma cfDNA of AD patients was consistent with that in previous studies. This study presents evidence that hypomethylation in the non-protein coding region of mtDNA may contribute to the pathogenesis of AD and potential application for the diagnosis of AD.
Collapse
Affiliation(s)
- Binrong Ding
- Department of Geriatrics, The Third Xiangya Hospital, Central South University, Changsha 410000, China
| | - Xuewei Zhang
- Health Management Center, Xiangya Hospital, Central South University, Changsha 410000, China
| | - Zhengqing Wan
- Hengyang Medical School, University of South China, Hengyang 421001, China
| | - Feng Tian
- The 8 Ward, The Ninth Hospital of Changsha, Changsha 410000, China
| | - Jie Ling
- Medical Functional Experiment Center, School of Basic Medicine, Central South University, Changsha 410000, China
| | - Jieqiong Tan
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Molecular Precision Medicine, Changsha 410000, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410000, China
| | - Xiaoqing Peng
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha 410000, China
- Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha 410000, China
- Hunan Key Laboratory of Molecular Precision Medicine, Changsha 410000, China
- Hunan International Scientific and Technological Cooperation Base of Neurodegenerative and Neurogenetic Diseases, Changsha 410000, China
| |
Collapse
|
156
|
Tetik Vardarlı A, Ozgur S, Goksel T, Korba K, Karakus HS, Asık A, Pelit L, Gunduz C. Conversion of specific lncRNAs to biomarkers in exhaled breath condensate samples of patients with advanced stage non-small-cell lung cancer. Front Genet 2023; 14:1200262. [PMID: 37424727 PMCID: PMC10324032 DOI: 10.3389/fgene.2023.1200262] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/11/2023] Open
Abstract
Objectives: Lung cancer (LC) is one of the most prevalent cancers with the highest fatality rate worldwide. Long noncoding RNAs (lncRNAs) are being considered potential new molecular targets for early diagnosis, follow-up, and individual treatment decisions in LC. Therefore, this study evaluated whether lncRNA expression levels obtained from exhaled breath condensate (EBC) samples play a role in the occurrence of metastasis in the diagnosis and follow-up of patients with advanced lung adenocarcinoma (LA). Methods: A total of 40 patients with advanced primary LA and 20 healthy controls participated in the study. EBC samples were collected from patients (during diagnosis and follow-up) and healthy individuals for molecular analysis. Liquid biopsy samples were also randomly obtained from 10 patients with LA and 10 healthy people. The expression of lncRNA genes, such as MALAT1, HOTAIR, PVT1, NEAT1, ANRIL, and SPRY4-IT1 was analyzed using cfRNA extracted from all clinical samples. Results: In the diagnosis and follow-up of patients with LA, lncRNA HOTAIR (5-fold), PVT1 (7.9-fold), and NEAT1 (12.8-fold), PVT1 (6.8-fold), MALAT1 (8.4-fold) expression levels were significantly higher than those in healthy controls, respectively. Additionally, the distinct lncRNA expression profiles identified in EBC samples imply that decreased ANRIL-NEAT1 and increased ANRIL gene expression levels can be used as biomarkers to predict the development of bone and lung metastases, respectively. Conclusion: EBC is an innovative, easily reproducible approach for predicting the development of metastases, molecular diagnosis, and follow-up of LC. EBC has shown potential in elucidating the molecular structure of LC, monitoring changes, and discovering novel biomarkers.
Collapse
Affiliation(s)
- Aslı Tetik Vardarlı
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Türkiye
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
| | - Su Ozgur
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
- Regional Hub for Cancer Registration in Northern Africa, Central and Western Asia, WHO/IARC-GICR, Izmir, Türkiye
| | - Tuncay Goksel
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Korcan Korba
- Department of Chemical Engineering, Faculty of Engineering, Ege University, Izmir, Türkiye
- Department of Medical Biology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Türkiye
| | - Hardar Soydaner Karakus
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
- Department of Pulmonary Medicine, Faculty of Medicine, Ege University, Izmir, Türkiye
| | - Aycan Asık
- Department of Medical Biology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Türkiye
| | - Levent Pelit
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
- Department of Chemistry, Faculty of Science, Ege University, Izmir, Türkiye
| | - Cumhur Gunduz
- Department of Medical Biology, Faculty of Medicine, Ege University, Izmir, Türkiye
- EgeSAM-Ege University Translational Pulmonary Research Center, Izmir, Türkiye
| |
Collapse
|
157
|
Lin Z, Li Y, Tang S, Deng Q, Jiang J, Zhou C. Comparative analysis of genomic profiles between tissue-based and plasma-based next-generation sequencing in patients with non-small cell lung cancer. Lung Cancer 2023; 182:107282. [PMID: 37392713 DOI: 10.1016/j.lungcan.2023.107282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/17/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
OBJECTIVES Genotype-guided personalized therapy has become an essential part of routine clinical care in non-small cell lung cancer (NSCLC) patients. However, small tissue specimens often yield inadequate molecular testing material. Plasma ctDNA-based liquid biopsy is an increasingly common non-invasive alternative to tissue biopsy. This study examined the similarities and differences in the molecular profiling of tissue and plasma samples to provide insight into sample selection in clinical practice. MATERIALS AND METHODS Sequencing data from 190 NSCLC patients who underwent concurrent tissue-based next-generation sequencing (tissue-NGS) and plasma-based NGS (plasma-NGS) using a 168-gene panel were analyzed. RESULTS Tissue-NGS identified genomic alterations in 97.4% (185/190) of the enrolled patients and plasma-NGS identified genomic alterations in 72.1% (137/190) of the enrolled patients. Considering all NSCLC guideline-recommended biomarkers in the entire cohort of 190 cases, 81 patients had positive concordant mutations detected in both tissue and plasma samples, while 69 patients had no predefined alterations detected in either tissue or plasma samples. Additional mutations were found in the tissues of 34 patients and the plasma of six patients. The overall concordance rate between tissue and plasma samples was 78.9% (150/190). The tissue-NGS and plasma-NGS sensitivities were 95.0% and 71.9%, respectively. In the 137 patients with detectable ctDNA in plasma samples, the concordance rate between tissue and plasma samples reached 91.2%, and the sensitivity of plasma-NGS reached 93.5%. CONCLUSION Our findings indicate that plasma-NGS is less capable of detecting genetic alterations than tissue-NGS, especially for copy number variations and gene fusions. Tissue-NGS remains the preferred method for evaluating the molecular profile of NSCLC patients when tumor tissue is available. We suggest that the concurrent use of liquid biopsy and tissue biopsy is the optimal approach in clinical practice; alternatively, plasma can be used as substitute material when tissue is unavailable.
Collapse
Affiliation(s)
- Zeyun Lin
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yuqin Li
- Department of Clinical Laboratory, Dongguan Eighth People's Hospital, Dongguan, China
| | - Shiqi Tang
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qiuhua Deng
- Department of Clinical Laboratory, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Juhong Jiang
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Chengzhi Zhou
- China State Key Laboratory of Respiratory Disease & National Clinical Research Center for Respiratory Disease, the First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| |
Collapse
|
158
|
Vlataki K, Antonouli S, Kalyvioti C, Lampri E, Kamina S, Mauri D, Harissis HV, Magklara A. Circulating Tumor DNA in the Management of Early-Stage Breast Cancer. Cells 2023; 12:1573. [PMID: 37371043 DOI: 10.3390/cells12121573] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Liquid biopsies refer to the isolation and analysis of tumor-derived biological material from body fluids, most commonly blood, in order to provide clinically valuable information for the management of cancer patients. Their non-invasive nature allows to overcome the limitations of tissue biopsy and complement the latter in guiding therapeutic decision-making. In the past years, several studies have demonstrated that circulating tumor DNA (ctDNA) detection can be used in the clinical setting to improve patient prognosis and monitor therapy response, especially in metastatic cancers. With the advent of significant technological advances in assay development, ctDNA can now be accurately and reliably identified in early-stage cancers despite its low levels in the bloodstream. In this review, we discuss the most important studies that highlight the potential clinical utility of ctDNA in early-stage breast cancer focusing on early diagnosis, detection of minimal residual disease and prediction of metastatic relapse. We also offer a concise description of the most sensitive techniques that are deemed appropriate for ctDNA detection in early-stage cancer and we examine their advantages and disadvantages, as they have been employed in various studies. Finally, we discuss future perspectives on how ctDNA could be better integrated into the everyday oncology practice.
Collapse
Affiliation(s)
- Katerina Vlataki
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Sevastiani Antonouli
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
| | - Christina Kalyvioti
- Breast Unit, Department of Surgery, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Evangeli Lampri
- Department of Pathology, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Sevasti Kamina
- Department of Pathology, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Davide Mauri
- Department of Medical Oncology, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Haralampos V Harissis
- Breast Unit, Department of Surgery, University Hospital of Ioannina, 45500 Ioannina, Greece
| | - Angeliki Magklara
- Department of Clinical Chemistry, Faculty of Medicine, University of Ioannina, 45110 Ioannina, Greece
- Biomedical Research Institute, Foundation for Research and Technology, 45110 Ioannina, Greece
- Institute of Biosciences, University Research Center of Ioannina (URCI), 45110 Ioannina, Greece
| |
Collapse
|
159
|
Li S, Zhang H, Zhu M, Kuang Z, Li X, Xu F, Miao S, Zhang Z, Lou X, Li H, Xia F. Electrochemical Biosensors for Whole Blood Analysis: Recent Progress, Challenges, and Future Perspectives. Chem Rev 2023. [PMID: 37262362 DOI: 10.1021/acs.chemrev.1c00759] [Citation(s) in RCA: 66] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Whole blood, as one of the most significant biological fluids, provides critical information for health management and disease monitoring. Over the past 10 years, advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems for whole blood testing toward the goal of disease monitoring and treatment. Among the techniques employed for whole-blood diagnostics, electrochemical biosensors, as known to be rapid, sensitive, capable of miniaturization, reagentless and washing free, become a class of emerging technology to achieve the target detection specifically and directly in complex media, e.g., whole blood or even in the living body. Here we are aiming to provide a comprehensive review to summarize advances over the past decade in the development of electrochemical sensors for whole blood analysis. Further, we address the remaining challenges and opportunities to integrate electrochemical sensing platforms.
Collapse
Affiliation(s)
- Shaoguang Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hongyuan Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Man Zhu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zhujun Kuang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xun Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xu
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Siyuan Miao
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Zishuo Zhang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Xiaoding Lou
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Hui Li
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
160
|
Zhao Y, O'Keefe CM, Hsieh K, Cope L, Joyce SC, Pisanic TR, Herman JG, Wang TH. Multiplex Digital Methylation-Specific PCR for Noninvasive Screening of Lung Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206518. [PMID: 37039321 DOI: 10.1002/advs.202206518] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/18/2023] [Indexed: 06/04/2023]
Abstract
There remains tremendous interest in developing liquid biopsy assays for detection of cancer-specific alterations, such as mutations and DNA methylation, in cell-free DNA (cfDNA) obtained through noninvasive blood draws. However, liquid biopsy analysis is often challenging due to exceedingly low fractions of circulating tumor DNA (ctDNA), necessitating the use of extended tumor biomarker panels. While multiplexed PCR strategies provide advantages such as higher throughput, their implementation is often hindered by challenges such as primer-dimers and PCR competition. Alternatively, digital PCR (dPCR) approaches generally offer superior performance, but with constrained multiplexing capability. This paper describes development and validation of the first multiplex digital methylation-specific PCR (mdMSP) platform for simultaneous analysis of four methylation biomarkers for liquid-biopsy-based detection of non-small cell lung cancer (NSCLC). mdMSP employs a microfluidic device containing four independent, but identical modules, housing a total of 40 160 nanowells. Analytical validation of the mdMSP platform demonstrates multiplex detection at analytical specificities as low as 0.0005%. The clinical utility of mdMSP is also demonstrated in a cohort of 72 clinical samples of low-volume liquid biopsy specimens from patients with computed tomography (CT)-scan indeterminant pulmonary nodules, exhibiting superior clinical performance when compared to traditional MSP assays for noninvasive detection of early-stage NSCLC.
Collapse
Affiliation(s)
- Yang Zhao
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Christine M O'Keefe
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Kuangwen Hsieh
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Leslie Cope
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
| | - Sonali C Joyce
- The UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Thomas R Pisanic
- Department of Oncology, Johns Hopkins University, Baltimore, MD, 21287, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - James G Herman
- The UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, 15232, USA
- Division of Hematology and Oncology, Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Tza-Huei Wang
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21287, USA
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
- Johns Hopkins Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
161
|
Kopystecka A, Patryn R, Leśniewska M, Budzyńska J, Kozioł I. The Use of ctDNA in the Diagnosis and Monitoring of Hepatocellular Carcinoma-Literature Review. Int J Mol Sci 2023; 24:ijms24119342. [PMID: 37298294 DOI: 10.3390/ijms24119342] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/18/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver cancer and is one of the leading causes of cancer-related deaths worldwide. Despite advances in medicine, it is still a cancer with a very poor prognosis. Both imaging and liver biopsy still have important limitations, especially in very small nodules and those which show atypical imaging features. In recent years, liquid biopsy and molecular analysis of tumor breakdown products have become an attractive source of new biomarkers. Patients with liver and biliary malignancies, including hepatocellular carcinoma (HCC), may greatly benefit from ctDNA testing. These patients are often diagnosed at an advanced stage of the disease, and relapses are common. Molecular analysis may indicate the best cancer treatment tailored to particular patients with specific tumor DNA mutations. Liquid biopsy is a minimally invasive technique that facilitates the early detection of cancer. This review summarizes the knowledge of ctDNA in liquid biopsy as an indicator for early diagnosis and monitoring of hepatocellular cancer.
Collapse
Affiliation(s)
- Agnieszka Kopystecka
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Rafał Patryn
- Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Magdalena Leśniewska
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Julia Budzyńska
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| | - Ilona Kozioł
- Students' Scientific Circle on Medical Law, Department of Humanities and Social Medicine, Medical University of Lublin, 20-093 Lublin, Poland
| |
Collapse
|
162
|
Lastraioli E, Bettiol A, Iorio J, Limatola E, Checcacci D, Parisi E, Bianchi C, Arcangeli A, Iannopollo M, Di Costanzo F, Di Lieto M. Evaluation of RAS Mutational Status in Liquid Biopsy to Monitor Disease Progression in Metastatic Colorectal Cancer Patients. Cells 2023; 12:1458. [PMID: 37296579 PMCID: PMC10253213 DOI: 10.3390/cells12111458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/09/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
In this study we evaluated both~ K- and N-RAS mutations in plasma samples from patients with metastatic colorectal cancer by means of the BEAMing technology, and we assessed their diagnostic performance compared to RAS analyses performed on tissue. The sensitivity of BEAMing in identifying KRAS mutations was of 89.5%, with a fair specificity. The agreement with tissue analysis was moderate. The sensitivity for NRAS was high with a good specificity, and the agreement between tissue analysis and BEAMing was fair. Interestingly, significantly higher mutant allele fraction (MAF) levels were detected in patients with G2 tumors, liver metastases, and in those who did not receive surgery. NRAS MAF level was significantly higher in patients with mucinous adenocarcinoma and for those with lung metastases. A sharp increase in the MAF values was observed in patients who moved towards disease progression. More strikingly, molecular progression always anticipated the radiological one in these patients. These observations pave the way to the possibility of using liquid biopsy to monitor patients during treatment, and to enable oncologists to anticipate interventions compared to radiological analyses. This will allow time to be saved and ensure a better management of metastatic patients in the near future.
Collapse
Affiliation(s)
- Elena Lastraioli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Complex Dynamics Study Centre (CSDC), University of Florence, 50100 Florence, Italy
| | - Alessandra Bettiol
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Jessica Iorio
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Elvira Limatola
- Medical Oncology, S. Jacopo Hospital, 51100 Pistoia, Italy
- Medical Oncology, S.S. Cosma e Damiano Hospital, 51017 Pescia, Italy
| | - Daniele Checcacci
- Medical Oncology, S. Jacopo Hospital, 51100 Pistoia, Italy
- Medical Oncology, S.S. Cosma e Damiano Hospital, 51017 Pescia, Italy
| | - Erica Parisi
- Medical Oncology, S. Jacopo Hospital, 51100 Pistoia, Italy
- Medical Oncology, S.S. Cosma e Damiano Hospital, 51017 Pescia, Italy
| | - Cristina Bianchi
- Medical Oncology, S. Jacopo Hospital, 51100 Pistoia, Italy
- Medical Oncology, S.S. Cosma e Damiano Hospital, 51017 Pescia, Italy
| | - Annarosa Arcangeli
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Complex Dynamics Study Centre (CSDC), University of Florence, 50100 Florence, Italy
| | - Mauro Iannopollo
- Medical Oncology, S. Jacopo Hospital, 51100 Pistoia, Italy
- Medical Oncology, S.S. Cosma e Damiano Hospital, 51017 Pescia, Italy
| | - Francesco Di Costanzo
- Medical Oncology Unit, Azienda Ospedaliero-Universitaria Careggi, Largo Brambilla 3, 50134 Florence, Italy
| | - Marco Di Lieto
- Medical Oncology, S. Jacopo Hospital, 51100 Pistoia, Italy
| |
Collapse
|
163
|
Amber A, Nawaz H, Bhatti HN, Mushtaq Z. Surface-enhanced Raman spectroscopy for the characterization of different anatomical subtypes of oral cavity cancer. Photodiagnosis Photodyn Ther 2023:103607. [PMID: 37220841 DOI: 10.1016/j.pdpdt.2023.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND The prognosis for oral cancer patients is still very poor worldwide. Early detection and treatment therapy remain the key issue to be addressed for improved patient survival. The characteristic Raman spectral features associated with the biochemical changes in the blood serum samples can be used for the diagnosis of diseases, particularly for oral cancer. Surface-enhanced Raman spectroscopy (SERS) is a promising technique for non-invasive and early detection of oral cancer by analyzing molecular changes in body fluids. OBJECTIVES To detect oral cavity anatomical subsites (buccal mucosa, cheek, hard palate, lips, mandible, maxilla, tongue and tonsillar region) cancers by using blood serum samples, SERS with principal component analysis is used. MATERIAL AND METHOD SERS is employed with silver nanoparticles for the analysis and detection of oral cancer serum samples by comparing with healthy serum samples. SERS spectra are recorded by Raman instrument and preprocessed using the statistical tool. Principal component analysis (PCA) and Partial least square discriminant analysis (PLS-DA) are used to discriminate between oral cancer serum samples and control serum samples. RESULTS Some major SERS peaks are observed at 1136 cm-1 (Phospholipids) and 1006 cm-1 (Phenylalanine) remain higher in intensities for oral cancer spectra as compared to healthy spectra. The peak at 1241 cm-1 (amide III) is observed only in oral cancer serum samples while absent in healthy serum samples. Higher protein and DNA contents were detected in SERS mean spectra of oral cancer. Moreover, PCA is used to identify the biochemical differences in the form of SERS features which is used to differentiate between oral cancer and healthy blood serum samples, while PLS-DA is used to build differentiation model of oral cancer serum samples and healthy control serum samples. PLS-DA provides successful differentiation with 94% specificity and 95.5% sensitivity. CONCLUSIONS SERS can be used for the diagnosis of oral cancer and to identify metabolic changes that occur during disease development.
Collapse
Affiliation(s)
- Arooj Amber
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, (38000), Pakistan
| | - Haq Nawaz
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, (38000), Pakistan.
| | - Haq Nawaz Bhatti
- Department of Chemistry, University of Agriculture Faisalabad, Faisalabad, (38000), Pakistan
| | - Zahid Mushtaq
- Department of Biochemistry, University of Agriculture Faisalabad, Faisalabad, (38000), Pakistan
| |
Collapse
|
164
|
Souza VGP, Forder A, Brockley LJ, Pewarchuk ME, Telkar N, de Araújo RP, Trejo J, Benard K, Seneda AL, Minutentag IW, Erkan M, Stewart GL, Hasimoto EN, Garnis C, Lam WL, Martinez VD, Reis PP. Liquid Biopsy in Lung Cancer: Biomarkers for the Management of Recurrence and Metastasis. Int J Mol Sci 2023; 24:ijms24108894. [PMID: 37240238 DOI: 10.3390/ijms24108894] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/11/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
Liquid biopsies have emerged as a promising tool for the detection of metastases as well as local and regional recurrence in lung cancer. Liquid biopsy tests involve analyzing a patient's blood, urine, or other body fluids for the detection of biomarkers, including circulating tumor cells or tumor-derived DNA/RNA that have been shed into the bloodstream. Studies have shown that liquid biopsies can detect lung cancer metastases with high accuracy and sensitivity, even before they are visible on imaging scans. Such tests are valuable for early intervention and personalized treatment, aiming to improve patient outcomes. Liquid biopsies are also minimally invasive compared to traditional tissue biopsies, which require the removal of a sample of the tumor for further analysis. This makes liquid biopsies a more convenient and less risky option for patients, particularly those who are not good candidates for invasive procedures due to other medical conditions. While liquid biopsies for lung cancer metastases and relapse are still being developed and validated, they hold great promise for improving the detection and treatment of this deadly disease. Herein, we summarize available and novel approaches to liquid biopsy tests for lung cancer metastases and recurrence detection and describe their applications in clinical practice.
Collapse
Affiliation(s)
- Vanessa G P Souza
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Aisling Forder
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Liam J Brockley
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | | | - Nikita Telkar
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- British Columbia Children's Hospital Research Institute, Vancouver, BC V5Z 4H4, Canada
| | - Rachel Paes de Araújo
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Jessica Trejo
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Katya Benard
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Ana Laura Seneda
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Iael W Minutentag
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Melis Erkan
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Greg L Stewart
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Erica N Hasimoto
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| | - Cathie Garnis
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
- Division of Otolaryngology, Department of Surgery, University of British Columbia, Vancouver, BC V5Z 1M9, Canada
| | - Wan L Lam
- British Columbia Cancer Research Institute, Vancouver, BC V5Z 1L3, Canada
| | - Victor D Martinez
- Department of Pathology and Laboratory Medicine, IWK Health Centre, Halifax, NS B3K 6R8, Canada
- Department of Pathology, Faculty of Medicine, Dalhousie University, Halifax, NS B3K 6R8, Canada
- Beatrice Hunter Cancer Research Institute, Halifax, NS B3H 4R2, Canada
| | - Patricia P Reis
- Molecular Oncology Laboratory, Experimental Research Unit, School of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
- Department of Surgery and Orthopedics, Faculty of Medicine, São Paulo State University (UNESP), Botucatu, SP 18618-687, Brazil
| |
Collapse
|
165
|
Trinidad EM, Juan-Ribelles A, Pisano G, Castel V, Cañete A, Gut M, Heath S, Font de Mora J. Evaluation of circulating tumor DNA by electropherogram analysis and methylome profiling in high-risk neuroblastomas. Front Oncol 2023; 13:1037342. [PMID: 37251933 PMCID: PMC10213460 DOI: 10.3389/fonc.2023.1037342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Background Liquid biopsy has emerged as a promising, non-invasive diagnostic approach in oncology because the analysis of circulating tumor DNA (ctDNA) reflects the precise status of the disease at diagnosis, progression, and response to treatment. DNA methylation profiling is also a potential solution for sensitive and specific detection of many cancers. The combination of both approaches, DNA methylation analysis from ctDNA, provides an extremely useful and minimally invasive tool with high relevance in patients with childhood cancer. Neuroblastoma is an extracranial solid tumor most common in children and responsible for up to 15% of cancer-related deaths. This high death rate has prompted the scientific community to search for new therapeutic targets. DNA methylation also offers a new source for identifying these molecules. However, the limited blood sample size which can be obtained from children with cancer and the fact that ctDNA content may occasionally be diluted by non-tumor cell-free DNA (cfDNA) complicate optimal quantities of material for high-throughput sequencing studies. Methods In this article, we present an improved method for ctDNA methylome studies of blood-derived plasma from high-risk neuroblastoma patients. We assessed the electropherogram profiles of ctDNA-containing samples suitable for methylome studies, using 10 ng of plasma-derived ctDNA from 126 samples of 86 high-risk neuroblastoma patients, and evaluated several bioinformatic approaches to analyze DNA methylation sequencing data. Results We demonstrated that enzymatic methyl-sequencing (EM-seq) outperformed bisulfite conversion-based method, based on the lower proportion of PCR duplicates and the higher percentage of unique mapping reads, mean coverage, and genome coverage. The analysis of the electropherogram profiles revealed the presence of nucleosomal multimers, and occasionally high molecular weight DNA. We established that 10% content of the mono-nucleosomal peak is sufficient ctDNA for successful detection of copy number variations and methylation profiles. Quantification of mono-nucleosomal peak also showed that samples at diagnosis contained a higher amount of ctDNA than relapse samples. Conclusions Our results refine the use of electropherogram profiles to optimize sample selection for subsequent high-throughput analysis and support the use of liquid biopsy followed by enzymatic conversion of unmethylated cysteines to assess the methylomes of neuroblastoma patients.
Collapse
Affiliation(s)
- Eva María Trinidad
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| | - Antonio Juan-Ribelles
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Giulia Pisano
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Victoria Castel
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
| | - Adela Cañete
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
- Pediatric Oncology Unit, La Fe University Hospital, Valencia, Spain
- School of Medicine, University of Valencia, Valencia, Spain
| | - Marta Gut
- National Center for Genomic Analysis – Centre for Genomic Regulation (CNAG-CRG), Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Simon Heath
- National Center for Genomic Analysis – Centre for Genomic Regulation (CNAG-CRG), Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Jaime Font de Mora
- Laboratory of Cellular and Molecular Biology, Health Research Institute Hospital La Fe, Valencia, Spain
- Clinical and Translational Research in Cancer, Health Research Institute Hospital La Fe, Valencia, Spain
| |
Collapse
|
166
|
Bersani F, Picca F, Morena D, Righi L, Napoli F, Russo M, Oddo D, Rospo G, Negrino C, Castella B, Volante M, Listì A, Zambelli V, Benso F, Tabbò F, Bironzo P, Monteleone E, Poli V, Pietrantonio F, Di Nicolantonio F, Bardelli A, Ponzetto C, Novello S, Scagliotti GV, Taulli R. Exploring circular MET RNA as a potential biomarker in tumors exhibiting high MET activity. J Exp Clin Cancer Res 2023; 42:120. [PMID: 37170152 PMCID: PMC10176894 DOI: 10.1186/s13046-023-02690-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 04/27/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND MET-driven acquired resistance is emerging with unanticipated frequency in patients relapsing upon molecular therapy treatments. However, the determination of MET amplification remains challenging using both standard and next-generation sequencing-based methodologies. Liquid biopsy is an effective, non-invasive approach to define cancer genomic profiles, track tumor evolution over time, monitor treatment response and detect molecular resistance in advance. Circular RNAs (circRNAs), a family of RNA molecules that originate from a process of back-splicing, are attracting growing interest as potential novel biomarkers for their stability in body fluids. METHODS We identified a circRNA encoded by the MET gene (circMET) and exploited blood-derived cell-free RNA (cfRNA) and matched tumor tissues to identify, stratify and monitor advanced cancer patients molecularly characterized by high MET activity, generally associated with genomic amplification. RESULTS Using publicly available bioinformatic tools, we discovered that the MET locus transcribes several circRNA molecules, but only one candidate, circMET, was particularly abundant. Deeper molecular analysis revealed that circMET levels positively correlated with MET expression and activity, especially in MET-amplified cells. We developed a circMET-detection strategy and, in parallel, we performed standard FISH and IHC analyses in the same specimens to assess whether circMET quantification could identify patients displaying high MET activity. Longitudinal monitoring of circMET levels in the plasma of selected patients revealed the early emergence of MET amplification as a mechanism of acquired resistance to molecular therapies. CONCLUSIONS We found that measurement of circMET levels allows identification and tracking of patients characterized by high MET activity. Circulating circMET (ccMET) detection and analysis could be a simple, cost-effective, non-invasive approach to better implement patient stratification based on MET expression, as well as to dynamically monitor over time both therapy response and clonal evolution during treatment.
Collapse
Affiliation(s)
- Francesca Bersani
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Francesca Picca
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Deborah Morena
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luisella Righi
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Francesca Napoli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Mariangela Russo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Daniele Oddo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Giuseppe Rospo
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Carola Negrino
- Department of Oncology, University of Torino, Orbassano, Italy
| | - Barbara Castella
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
- Laboratorio di Immunologia dei Tumori del Sangue (LITS), Centro Interdipartimentale di Ricerca in Biologia Molecolare (CIRBM), University of Torino, Turin, Italy
| | - Marco Volante
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Angela Listì
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Vanessa Zambelli
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Federica Benso
- Pathology Unit, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Fabrizio Tabbò
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Paolo Bironzo
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Emanuele Monteleone
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Valeria Poli
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Filippo Pietrantonio
- Medical Oncology Department, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy
- Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy
| | - Federica Di Nicolantonio
- Department of Oncology, University of Torino, Orbassano, Italy
- Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Alberto Bardelli
- Department of Oncology, University of Torino, Orbassano, Italy
- IFOM, Istituto Fondazione di Oncologia Molecolare ETS, Milan, Italy
| | - Carola Ponzetto
- Department of Oncology, University of Torino, Orbassano, Italy
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Silvia Novello
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy
| | - Giorgio V Scagliotti
- Thoracic Unit and Medical Oncology Division, Department of Oncology at San Luigi Hospital, University of Torino, Orbassano, Italy.
| | - Riccardo Taulli
- Department of Oncology, University of Torino, Orbassano, Italy.
- Center for Experimental Research and Medical Studies (CeRMS), AOU Città della Salute e della Scienza di Torino, Turin, Italy.
| |
Collapse
|
167
|
Zhou Y, Sun S, Ling T, Chen Y, Zhou R, You Q. The role of fibroblast growth factor 18 in cancers: functions and signaling pathways. Front Oncol 2023; 13:1124520. [PMID: 37228502 PMCID: PMC10203589 DOI: 10.3389/fonc.2023.1124520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/21/2023] [Indexed: 05/27/2023] Open
Abstract
Fibroblast growth factor 18(FGF18) is a member of the fibroblast growth factor family (FGFs). FGF18 is a class of bioactive substances that can conduct biological signals, regulate cell growth, participate in tissue repair and other functions, and can promote the occurrence and development of different types of malignant tumors through various mechanisms. In this review, we focus on recent studies of FGF18 in the diagnosis, treatment, and prognosis of tumors in digestive, reproductive, urinary, respiratory, motor, and pediatric systems. These findings suggest that FGF18 may play an increasingly important role in the clinical evaluation of these malignancies. Overall, FGF18 can function as an important oncogene at different gene and protein levels, and can be used as a potential new therapeutic target and prognostic biomarker for these tumors.
Collapse
Affiliation(s)
- Yiming Zhou
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Sizheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Ling
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Yongzhen Chen
- Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Rongzhong Zhou
- Department of Ophthalmology, Zaoyang First People’s Hosipital, Zaoyang, China
| | - Qiang You
- Department of Biotherapy, Medical Center for Digestive Diseases, Second Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
168
|
Cheng CA, Chiang LC, Chu YS. Integrated pipeline for ultrasensitive protein detection in cancer nanomedicine. RSC Adv 2023; 13:14685-14697. [PMID: 37197682 PMCID: PMC10183811 DOI: 10.1039/d3ra02092d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023] Open
Abstract
Although nanotechnologies have attractive attributes in cancer therapy, their full potential has yet to be realized due to challenges in their translation to clinical settings. The evaluation of cancer nanomedicine efficacy in preclinical in vivo studies is limited to tumor size and animal survival metrics, which do not provide adequate understanding of the nanomedicine's mechanism of action. To address this, we have developed an integrated pipeline called nanoSimoa that combines an ultrasensitive protein detection technique (Simoa) with cancer nanomedicine. As a proof-of concept, we assessed the therapeutic efficacy of an ultrasound-responsive mesoporous silica nanoparticle (MSN) drug delivery system on OVCAR-3 ovarian cancer cells using CCK-8 assays to evaluate cell viability and Simoa assays to measure IL-6 protein levels. The results demonstrated significant reductions in both IL-6 levels and cell viability following nanomedicine treatment. In addition, a Ras Simoa assay (limit of detection: 0.12 pM) was developed to detect and quantify Ras protein levels in OVCAR-3 cells, which are undetectable by commercial enzyme-linked immunosorbent assays (ELISA). These results suggest that nanoSimoa has the potential to guide the development of cancer nanomedicines and predict their behavior in vivo, making it a valuable tool for preclinical testing and accelerating the development of precision medicine if its generalizability is confirmed.
Collapse
Affiliation(s)
- Chi-An Cheng
- School of Pharmacy, College of Medicine, National Taiwan University Taipei 10050 Taiwan
| | - Li-Chiao Chiang
- School of Pharmacy, College of Medicine, National Taiwan University Taipei 10050 Taiwan
| | - Yu-Syuan Chu
- School of Pharmacy, College of Medicine, National Taiwan University Taipei 10050 Taiwan
| |
Collapse
|
169
|
Gajda-Walczak A, Potęga A, Kowalczyk A, Sek S, Zięba S, Kowalik A, Kudelski A, Nowicka AM. New, fast and cheap prediction tests for BRCA1 gene mutations identification in clinical samples. Sci Rep 2023; 13:7316. [PMID: 37147448 PMCID: PMC10163215 DOI: 10.1038/s41598-023-34588-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 05/03/2023] [Indexed: 05/07/2023] Open
Abstract
Despite significant progress in cancer therapy, cancer is still the second cause of mortality in the world. The necessity to make quick therapeutic decisions forces the development of procedures allowing to obtain a reliable result in a quick and unambiguous manner. Currently, detecting predictive mutations, including BRCA1, is the basis for effectively treating advanced breast cancer. Here, we present new insight on gene mutation detection. We propose a cheap BRCA1 mutation detection tests based on the surface plasmon resonance (SPR) or quartz crystal microbalance with energy dissipation (QCM-D) response changes recorded during a hybridization process of an oligonucleotide molecular probe with DNA fragments, with and without the BRCA1 mutation. The changes in the morphology of the formed DNA layer caused by the presence of the mutation were confirmed by atomic force microscopy. The unique property of the developed SPR and QCM tests is really short time of analysis: ca. 6 min for SPR and ca. 25 min for QCM. The proposed tests have been verified on 22 different DNA extracted from blood leukocytes collected from cancer patients: 17 samples from patients with various BRCA1 gene mutation variants including deletion, insertion and missense single-nucleotide and 5 samples from patients without any BRCA1 mutation. Our test is a response to the need of medical diagnostics for a quick, unambiguous test to identify mutations of the BRCA1 gene, including missense single-nucleotide (SNPs).
Collapse
Affiliation(s)
| | - Agnieszka Potęga
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza 11/12 Str., 80-233, Gdańsk, Poland
| | - Agata Kowalczyk
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., 02-093, Warsaw, Poland
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101 Str., 02-089, Warsaw, Poland
| | - Sebastian Zięba
- Molecular Diagnostics, Holy Cross Cancer Center, Stefana Artwińskiego 3 Str., 25-734, Kielce, Poland
| | - Artur Kowalik
- Molecular Diagnostics, Holy Cross Cancer Center, Stefana Artwińskiego 3 Str., 25-734, Kielce, Poland
- Division of Medical Biology, Institute of Biology, Jan Kochanowski University, Uniwersytecka 7 Str., 25-406, Kielce, Poland
| | - Andrzej Kudelski
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., 02-093, Warsaw, Poland
| | - Anna M Nowicka
- Faculty of Chemistry, University of Warsaw, Pasteura 1 Str., 02-093, Warsaw, Poland.
| |
Collapse
|
170
|
Dameri M, Cirmena G, Ravera F, Ferrando L, Cuccarolo P, Stabile M, Fanelli GN, Nuzzo PV, Calabrese M, Tagliafico A, Ballestrero A, Zoppoli G. Standard Operating Procedures (SOPs) for non-invasive multiple biomarkers detection in an academic setting: A critical review of the literature for the RENOVATE study protocol. Crit Rev Oncol Hematol 2023; 185:103963. [PMID: 36931614 DOI: 10.1016/j.critrevonc.2023.103963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 03/17/2023] Open
Abstract
Liquid biopsy has the potential to drastically change clinical practice, paving the way to a novel non-invasive approach for cancer diagnosis and treatment. One of the limitations for the implementation of liquid biopsy in clinical practice is the lack of shared and reproducible standard operating procedures (SOPs) for sample collection, processing and storage. Here, we present a critical review of the literature focusing on the available SOPs to guide liquid biopsy management in research settings and describe SOPs that our laboratory developed and employed in the context of a prospective clinical-translational trial (RENOVATE, NCT04781062). The main aim of this manuscript is to address common issues, towards the implementation of interlaboratory shared protocols for optimized preanalytical handling of blood and urine samples. To our knowledge, this work is one of the few up-to-date, freely available comprehensive reports on trial-level procedures for the handling of liquid biopsy.
Collapse
Affiliation(s)
- Martina Dameri
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | | | - Francesco Ravera
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy; Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 10044 New York, NY, USA
| | | | - Paola Cuccarolo
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - Mario Stabile
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy
| | - Giuseppe Nicolò Fanelli
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, 10021 New York, NY, USA; First Division of Pathology, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56126 Pisa, Italy
| | - Pier Vitale Nuzzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, 10044 New York, NY, USA
| | | | - Alberto Tagliafico
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy; Department of Health Sciences (DISSAL), University of Genoa, 16132, Genoa, Italy
| | - Alberto Ballestrero
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Gabriele Zoppoli
- Department of Internal Medicine and Medical Specialties (DiMI), University of Genoa, 16132 Genoa, Italy; IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy.
| |
Collapse
|
171
|
Hu S, Liu Y, Yang Q, Chen L, Chai H, Xiao M, Qi C, Qiu W. Liquid biopsy using cell-free DNA in the early diagnosis of hepatocellular carcinoma. Invest New Drugs 2023:10.1007/s10637-023-01363-6. [PMID: 37099161 DOI: 10.1007/s10637-023-01363-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 04/17/2023] [Indexed: 04/27/2023]
Abstract
Hepatocellular carcinoma ranks fourth in cancer-related causes of death worldwide and second in China. Patients with hepatocellular carcinoma (HCC) at the early stage have a better prognosis compared to HCC patients at the late stage. Therefore, early screening for HCC is critical for clinical treatment decisions and improving the prognosis of patients. Ultrasound (US), computed tomography (CT), and serum alpha fetoprotein (AFP) have been used to screen HCC, but HCC is still difficult to be diagnosed in the early stage due to the low sensitivity of the above methods. It is urgent to find a method with high sensitivity and specificity for the early diagnosis of HCC. Liquid biopsy is a noninvasive detection method using blood or other bodily fluids. Cell-free DNA (cfDNA) and circulating tumor DNA (ctDNA) are important biomarkers for liquid biopsy. Recently, HCC screening methods using the application of cfDNA and ctDNA have become the hot spot of early HCC diagnostics. In this mini review, we summarize the latest research progress of liquid biopsy based on blood cfDNA in early screening of HCC.
Collapse
Affiliation(s)
- Shiqi Hu
- The oncology department, Xiangtan Central Hospital, Hunan, China
| | - Yaqin Liu
- The Medical Department, The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Qidong Yang
- The Medical Department, The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Lin Chen
- The Medical Department, The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Huizi Chai
- The Medical Department, The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Mingzhe Xiao
- The Medical Department, The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Chuang Qi
- The Medical Department, The State Key Lab of Translational Medicine and Innovative Drug Development, Jiangsu Simcere Diagnostics Co., Ltd, Nanjing Simcere Medical Laboratory Science Co., Ltd, Nanjing, 210002, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, 71 Xinmin Street, Chaoyang District, Changchun, 130000, Jilin, China.
| |
Collapse
|
172
|
Gareev I, Ahmad A, Wang J, Beilerli A, Ilyasova T, Sufianov A, Beylerli O. Gastric juice non-coding RNAs as potential biomarkers for gastric cancer. Front Physiol 2023; 14:1179582. [PMID: 37179825 PMCID: PMC10169709 DOI: 10.3389/fphys.2023.1179582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Gastric cancer (GC), being one of the most common malignant human tumors, occupies the second position in the structure of mortality in men and women. High rates of morbidity and mortality in this pathology determine its extremely high clinical and social significance. Diagnosis and timely treatment of precancerous pathology is the main way to reduce morbidity and mortality, and early detection of GC and its adequate treatment improve prognosis. The ability to accurately predict the development of GC and start treatment on time, as well as the ability to determine the stage of the disease if the diagnosis is confirmed - non-invasive biomarkers can become the key to solving these and many other problems of modern medicine. One of the promising biomarkers being studied are non-coding RNAs, namely, miсroRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs). They are involved in a wide range of processes, including apoptosis, proliferation, differentiation, angiogenesis, which play a critical role in the development of GC oncogenesis. In addition, they are quite specific and stable due to their carriers (extracellular vesicles or Argonaute 2 protein) and can be detected in various human biological fluids, in particular gastric juice. Thus, miRNAs, lncRNAs, and circRNAs isolated from the gastric juice of GC patients are promising preventive, diagnostic and prognostic non-invasive biomarkers. This review article presents the characteristics of circulating or extracellular miRNAs, lncRNAs, and circRNAs in gastric juice, allowing their use in the GC preventive, diagnosis, prognosis and monitoring therapy.
Collapse
Affiliation(s)
- Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian
| | - Aamir Ahmad
- Academic Health System, Hamad Medical Corporation, Interim Translational Research Institute, Doha, Qatar
| | - Jiaqi Wang
- Department of Urology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Aferin Beilerli
- Department of Obstetrics and Gynecology, Tyumen State Medical University, Tyumen, Russia
| | - Tatiana Ilyasova
- Department of Internal Diseases, Bashkir State Medical University, Ufa, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russian
| |
Collapse
|
173
|
Li Z, Guo K, Gao Z, Chen J, Ye Z, Wang SE, Yin Y, Zhong W. Colocalization of Protein and microRNA Markers Reveals Unique Extracellular Vesicle Sub-Populations for Early Cancer Detection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.17.536958. [PMID: 37131582 PMCID: PMC10153150 DOI: 10.1101/2023.04.17.536958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Extracellular vesicles (EVs) play important roles in cell-cell communication but they are highly heterogeneous, and each vesicle has dimensions smaller than 200 nm thus encapsulates very limited amounts of cargos. We report the technique of NanOstirBar (NOB)-EnabLed Single Particle Analysis (NOBEL-SPA) that utilizes NOBs, which are superparamagnetic nanorods easily handled by a magnet or a rotating magnetic field, to act as isolated "islands" for EV immobilization and cargo confinement. NOBEL-SPA permits rapid inspection of single EV with high confidence by confocal fluorescence microscopy, and can assess the colocalization of selected protein/microRNA (miRNA) pairs in the EVs produced by various cell lines or present in clinical sera samples. Specific EV sub-populations marked by the colocalization of unique protein and miRNA combinations have been revealed by the present work, which can differentiate the EVs by their cells or origin, as well as to detect early-stage breast cancer (BC). We believe NOBEL-SPA can be expanded to analyze the co-localization of other types of cargo molecules, and will be a powerful tool to study EV cargo loading and functions under different physiological conditions, and help discover distinct EV subgroups valuable in clinical examination and therapeutics development.
Collapse
|
174
|
Magri V, Marino L, Nicolazzo C, Gradilone A, De Renzi G, De Meo M, Gandini O, Sabatini A, Santini D, Cortesi E, Gazzaniga P. Prognostic Role of Circulating Tumor Cell Trajectories in Metastatic Colorectal Cancer. Cells 2023; 12:cells12081172. [PMID: 37190081 DOI: 10.3390/cells12081172] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND A large amount of evidence from clinical studies has demonstrated that circulating tumor cells are strong predictors of outcomes in many cancers. However, the clinical significance of CTC enumeration in metastatic colorectal cancer is still questioned. The aim of this study was to evaluate the clinical value of CTC dynamics in mCRC patients receiving first-line treatments. MATERIALS AND METHODS Serial CTC data from 218 patients were used to identify CTC trajectory patterns during the course of treatment. CTCs were evaluated at baseline, at a first-time point check and at the radiological progression of the disease. CTC dynamics were correlated with clinical endpoints. RESULTS Using a cut-off of ≥1 CTC/7.5 mL, four prognostic trajectories were outlined. The best prognosis was obtained for patients with no evidence of CTCs at any timepoints, with a significant difference compared to all other groups. Lower PFS and OS were recognized in group 4 (CTCs always positive) at 7 and 16 months, respectively. CONCLUSIONS We confirmed the clinical value of CTC positivity, even with only one cell detected. CTC trajectories are better prognostic indicators than CTC enumeration at baseline. The reported prognostic groups might help to improve risk stratification, providing potential biomarkers to monitor first-line treatments.
Collapse
Affiliation(s)
- Valentina Magri
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy
| | - Luca Marino
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00184 Rome, Italy
| | - Chiara Nicolazzo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Angela Gradilone
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Gianluigi De Renzi
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Michela De Meo
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Orietta Gandini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Arianna Sabatini
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy
| | - Daniele Santini
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy
| | - Enrico Cortesi
- Department of Pathology, Oncology and Radiology, Sapienza University of Rome, 00161 Rome, Italy
| | - Paola Gazzaniga
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
175
|
Pilotto Heming C, Niemeyer Filho P, Moura-Neto V, Aran V. Recent advances in the use of liquid biopsy to fight central nervous system tumors. Cancer Treat Res Commun 2023; 35:100709. [PMID: 37088042 DOI: 10.1016/j.ctarc.2023.100709] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Brain tumors are considered one of the deadliest types of cancer, being challenging to treat, especially due to the blood-brain barrier, which has been linked to treatment resistance. The genomic classification of brain tumors has been helping in the diagnostic precision, however tumor heterogeneity in addition to the difficulties to obtain tissue biopsies, represent a challenge. The biopsies are usually obtained either via neurosurgical removal or stereotactic tissue biopsy, which can be risky procedures for the patient. To overcome these challenges, liquid biopsy has become an interesting option by constituting a safer procedure than conventional biopsy, which may offer valuable cellular and molecular information representative of the whole organism. Besides, it is relatively easy to obtain such as in the case of blood (venipuncture) and urine sample collection. In the present comprehensive review, we discuss the newest information regarding liquid biopsy in the brain tumors' field, methods employed, the different sources of bio-fluids and their potential circulating targets.
Collapse
Affiliation(s)
- Carlos Pilotto Heming
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Paulo Niemeyer Filho
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Vivaldo Moura-Neto
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil
| | - Veronica Aran
- Instituto Estadual do Cérebro Paulo Niemeyer (IECPN), R. do Rezende, 156 - Centro, Rio de Janeiro, 20231-092, Brazil.
| |
Collapse
|
176
|
Al-Obeidi E, Riess JW, Malapelle U, Rolfo C, Gandara DR. Convergence of Precision Oncology and Liquid Biopsy in Non-Small Cell Lung Cancer. Hematol Oncol Clin North Am 2023; 37:475-487. [PMID: 37024388 DOI: 10.1016/j.hoc.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
This review article illuminates the role of liquid biopsy in the continuum of care for non-small cell lung cancer (NSCLC). We discuss its current application in advanced-stage NSCLC at the time of diagnosis and at progression. We highlight research showing that concurrent testing of blood and tissue yields faster, more informative, and cheaper answers than the standard stepwise approach. We also describe future applications for liquid biopsy including treatment response monitoring and testing for minimal residual disease. Lastly, we discuss the emerging role of liquid biopsy for screening and early detection.
Collapse
Affiliation(s)
- Ebaa Al-Obeidi
- Division of Hematology-Oncology, University of California, Davis, 4501 X Street, Suite 3016, Sacramento, CA 95817, USA.
| | - Jonathan W Riess
- Division of Hematology-Oncology, University of California, Davis, 4501 X Street, Suite 3016, Sacramento, CA 95817, USA
| | - Umberto Malapelle
- Department of Public Health, University of Naples Federico II, Via Sergio Pansini 5, 80131, Naples, Italy. https://twitter.com/UmbertoMalapel1
| | - Christian Rolfo
- Center for Thoracic Oncology at the Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, One Gustave Levy Place, Box 1079, New York, NY 10029, USA. https://twitter.com/ChristianRolfo
| | - David R Gandara
- Division of Hematology-Oncology, University of California, Davis, 4501 X Street, Suite 3016, Sacramento, CA 95817, USA. https://twitter.com/drgandara
| |
Collapse
|
177
|
Di Sario G, Rossella V, Famulari ES, Maurizio A, Lazarevic D, Giannese F, Felici C. Enhancing clinical potential of liquid biopsy through a multi-omic approach: A systematic review. Front Genet 2023; 14:1152470. [PMID: 37077538 PMCID: PMC10109350 DOI: 10.3389/fgene.2023.1152470] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/20/2023] [Indexed: 04/05/2023] Open
Abstract
In the last years, liquid biopsy gained increasing clinical relevance for detecting and monitoring several cancer types, being minimally invasive, highly informative and replicable over time. This revolutionary approach can be complementary and may, in the future, replace tissue biopsy, which is still considered the gold standard for cancer diagnosis. "Classical" tissue biopsy is invasive, often cannot provide sufficient bioptic material for advanced screening, and can provide isolated information about disease evolution and heterogeneity. Recent literature highlighted how liquid biopsy is informative of proteomic, genomic, epigenetic, and metabolic alterations. These biomarkers can be detected and investigated using single-omic and, recently, in combination through multi-omic approaches. This review will provide an overview of the most suitable techniques to thoroughly characterize tumor biomarkers and their potential clinical applications, highlighting the importance of an integrated multi-omic, multi-analyte approach. Personalized medical investigations will soon allow patients to receive predictable prognostic evaluations, early disease diagnosis, and subsequent ad hoc treatments.
Collapse
|
178
|
Mitsudomi T, Tan D, Yang JCH, Ahn MJ, Batra U, Cho BC, Cornelio G, Lim T, Mok T, Prabhash K, Reungwetwattana T, Ren SX, Singh N, Toyooka S, Wu YL, Yang PC, Yatabe Y. Expert Consensus Recommendations on Biomarker Testing in Metastatic and Nonmetastatic NSCLC in Asia. J Thorac Oncol 2023; 18:436-446. [PMID: 36379356 DOI: 10.1016/j.jtho.2022.10.021] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/07/2022] [Accepted: 10/19/2022] [Indexed: 11/15/2022]
Abstract
INTRODUCTION Most published guidelines for genomic biomarker testing in NSCLC reflect the disease epidemiology and treatments readily available in Europe and North America. Nevertheless, 60% of annual global NSCLC cases occur in Asia, where patient characteristics, tumor molecular profiles, and treatments vary greatly from the Western world. For example, mutations in the EGFR occur at a higher prevalence in Asia than in other world regions. Although medical associations such as the International Association for the Study of Lung Cancer, European Society for Medical Oncology, and American Society of Clinical Oncology have described principles for tumor genomic biomarker testing in NSCLC, there is a need for recommendations specific for Asia. METHODS This report provides consensus recommendations for NSCLC biomarker testing from Asian lung cancer experts for clinicians working in Asia to improve patient care. Biomarker testing approaches for actionable genetic alterations in EGFR, ALK, ROS1, and others are discussed. RESULTS These recommendations are divided into nonmetastatic and metastatic forms of adenocarcinoma and squamous cell carcinoma. Owing to the higher prevalence of EGFR mutations in Asia, the experts emphasized the need for EGFR testing to include not just common mutations (exon 19 deletions and L858R substitutions) but also other uncommon EGFR mutations. In addition to the assessment of biomarkers in the tumor tissue, the role of assessing tumor biomarkers by liquid biopsy is discussed. CONCLUSION This consensus provides practical recommendations for biomarker testing in nonmetastatic and metastatic Asian NSCLC patients.
Collapse
Affiliation(s)
- Tetsuya Mitsudomi
- Division of Thoracic Surgery, Faculty of Medicine, Kindai University-Osaka-Sayama, Osaka, Japan.
| | - Daniel Tan
- Division of Medical Oncology, National Cancer Center Singapore, Singapore, Singapore
| | | | - Myung-Ju Ahn
- Section of Hematology-Oncology, Samsung Medical Center, School of Medicine, Sungkyunkwan University, Seoul, Republic of Korea
| | - Ullas Batra
- Rajiv Gandhi Cancer Institute & Research Centre, Rohini, New Delhi, India
| | - Byoung-Chul Cho
- Division of Medical Oncology, Yonsei Cancer Center, Seoul, Republic of Korea
| | - Gerardo Cornelio
- Cancer Institute, St. Luke's Medical Center-Global City, University of the Philippines-Philippine General Hospital, Metro Manila, Philippines
| | - Tony Lim
- Department of Anatomical Pathology, Singapore General Hospital, Singapore, Singapore
| | - Tony Mok
- State Key Laboratory in Translational Oncology, Department of Clinical Oncology, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, People's Republic of China
| | - Kumar Prabhash
- Department of Medical Oncology, Tata Memorial Hospital and Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Homi Bhabha National Institute (HBNI), Mumbai, India
| | - Thanyanan Reungwetwattana
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sheng-Xiang Ren
- Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Navneet Singh
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shinichi Toyooka
- Department of Thoracic Surgery, Okayama University Hospital, Okayama, Japan
| | - Yi-Long Wu
- Department of Pulmonary Oncology, Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital and Guangdong Academy of Medical Sciences, Guangzhou, People's Republic of China
| | - Pan-Chyr Yang
- Department of Internal Medicine, National Taiwan University Hospital, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yasushi Yatabe
- Department of Diagnostic Pathology, National Cancer Center Hospital, Tokyo, Japan
| |
Collapse
|
179
|
Jin J, Shao Y, Zhang J, Cao J, Tao Z, Hu X. High-purity isolation platelets by gradient centrifugation plus filtration. Int J Lab Hematol 2023; 45:187-194. [PMID: 36470678 DOI: 10.1111/ijlh.13998] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/20/2022] [Indexed: 12/12/2022]
Abstract
INTRODUCTION Platelets can be used as a liquid biopsy source to provide rapid, up-to-date, and relevant information on tumor pathology and treatment response. However, there is still a lack of high efficiency methods for platelet isolation with high purity. METHODS Three platelet isolation methods were evaluated by platelet recovery and purity. The platelet inhibition cocktail (PIC) was added into peripheral blood, or was not allowed to access the effect of the platelet activation. The CD61, CD45, and CD62P labelled platelets, leukocytes and activated platelets were detected by flow cytometry. Quantitative polymerase chain reaction (qPCR) and next-generation sequencing (NGS) were employed to determine the gene expression levels. A time-dependent experiment combined with qPCR was used to determine the time limit for platelet isolation at room temperature. RESULTS Compared to the gradient centrifugation alone, and gradient centrifugation plus filtration and magnetic beads separation, gradient centrifugation plus filtration was the preferred method for more efficient and high-purity platelet isolation, with a recovery rate of 9.1% and a purity of 99.98%. Furthermore, there was no difference in platelet activation level, regardless of whether PIC was used. Moreover, the rate of platelet RNA degradation did not differ when platelets were isolated within 48 h of blood collection. CONCLUSION Gradient centrifugation plus filtration at room temperature within 48 h of blood collection, without PIC, is a novel protocol with high recovery and purity rate to isolate platelets.
Collapse
Affiliation(s)
- Jia Jin
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yilin Shao
- Department of Oncology, Shanghai Tenth People's Hospital, Shanghai, China
| | - Jian Zhang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Phase I Clinical Trial Center, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Junning Cao
- Department of Lymphoma, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhonghua Tao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xichun Hu
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.,Department of Breast and Urological Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| |
Collapse
|
180
|
Moser T, Kühberger S, Lazzeri I, Vlachos G, Heitzer E. Bridging biological cfDNA features and machine learning approaches. Trends Genet 2023; 39:285-307. [PMID: 36792446 DOI: 10.1016/j.tig.2023.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/10/2023] [Accepted: 01/19/2023] [Indexed: 02/15/2023]
Abstract
Liquid biopsies (LBs), particularly using circulating tumor DNA (ctDNA), are expected to revolutionize precision oncology and blood-based cancer screening. Recent technological improvements, in combination with the ever-growing understanding of cell-free DNA (cfDNA) biology, are enabling the detection of tumor-specific changes with extremely high resolution and new analysis concepts beyond genetic alterations, including methylomics, fragmentomics, and nucleosomics. The interrogation of a large number of markers and the high complexity of data render traditional correlation methods insufficient. In this regard, machine learning (ML) algorithms are increasingly being used to decipher disease- and tissue-specific signals from cfDNA. Here, we review recent insights into biological ctDNA features and how these are incorporated into sophisticated ML applications.
Collapse
Affiliation(s)
- Tina Moser
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Stefan Kühberger
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Isaac Lazzeri
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Georgios Vlachos
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria
| | - Ellen Heitzer
- Institute of Human Genetics, Diagnostic & Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstrasse 6, 8010 Graz, Austria; Christian Doppler Laboratory for Liquid Biopsies for Early Detection of Cancer, Medical University of Graz, Graz, Austria.
| |
Collapse
|
181
|
Roi A, Boia S, Rusu LC, Roi CI, Boia ER, Riviș M. Circulating miRNA as a Biomarker in Oral Cancer Liquid Biopsy. Biomedicines 2023; 11:biomedicines11030965. [PMID: 36979943 PMCID: PMC10046112 DOI: 10.3390/biomedicines11030965] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 03/10/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Oral cancer is currently challenging the healthcare system, with a high incidence among the population and a poor survival rate. One of the main focuses related to this malignancy is the urge to implement a viable approach for improving its early diagnosis. By introducing the use of liquid biopsy and the identification of potential biomarkers, aiming for a noninvasive approach, new advancements offer promising perspectives in the diagnosis of oral cancer. The present review discusses the potential of circulating miRNAs as oral cancer biomarkers identified in body fluids such as serum, plasma, and saliva samples of oral cancer patients. Existing results reveal an important implication of different miRNA expressions involved in the initiation, development, progression, and metastasis rate of oral malignancy. Liquid biomarkers can play a crucial role in the development of the concept of personalized medicine, providing a wide range of clinical applications and future targeted therapies.
Collapse
Affiliation(s)
- Alexandra Roi
- Department of Oral Pathology, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Simina Boia
- Department of Periodontology, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Laura-Cristina Rusu
- Department of Oral Pathology, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Ciprian Ioan Roi
- Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 30041 Timisoara, Romania
| | - Eugen Radu Boia
- Department of Ear, Nose and Throat, "Victor Babes" University of Medicine and Pharmacy Timisoara, 2 Eftimie Murgu Sq., 300041 Timisoara, Romania
| | - Mircea Riviș
- Department of Anesthesiology and Oral Surgery, Multidisciplinary Center for Research, Evaluation, Diagnosis and Therapies in Oral Medicine, "Victor Babes" University of Medicine and Pharmacy, 2 Eftimie Murgu Sq., 30041 Timisoara, Romania
| |
Collapse
|
182
|
Einoch Amor R, Levy J, Broza YY, Vangravs R, Rapoport S, Zhang M, Wu W, Leja M, Behar JA, Haick H. Liquid Biopsy-Based Volatile Organic Compounds from Blood and Urine and Their Combined Data Sets for Highly Accurate Detection of Cancer. ACS Sens 2023; 8:1450-1461. [PMID: 36926819 DOI: 10.1021/acssensors.2c02422] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Liquid biopsy is seen as a prospective tool for cancer screening and tracking. However, the difficulty lies in effectively sieving, isolating, and overseeing cancer biomarkers from the backdrop of multiple disrupting cells and substances. The current study reports on the ability to perform liquid biopsy without the need to physically filter and/or isolate the cancer cells per se. This has been achieved through the detection and classification of volatile organic compounds (VOCs) emitted from the cancer cells found in the headspace of blood or urine samples or a combined data set of both. Spectrometric analysis shows that blood and urine contain complementary or overlapping VOC information on kidney cancer, gastric cancer, lung cancer, and fibrogastroscopy subjects. Based on this information, a nanomaterial-based chemical sensor array in conjugation with machine learning as well as data fusion of the signals achieved was carried out on various body fluids to assess the VOC profiles of cancer. The detection of VOC patterns by either Gas Chromatography-Mass Spectrometry (GC-MS) analysis or our sensor array achieved >90% accuracy, >80% sensitivity, and >80% specificity in different binary classification tasks. The hybrid approach, namely, analyzing the VOC datasets of blood and urine together, contributes an additional discrimination ability to the improvement (>3%) of the model's accuracy. The contribution of the hybrid approach for an additional discrimination ability to the improvement of the model's accuracy is examined and reported.
Collapse
Affiliation(s)
- Reef Einoch Amor
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Jeremy Levy
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering and Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Yoav Y Broza
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Reinis Vangravs
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga LV-1004, Latvia.,Department of Research, Riga East University Hospital, Digestive Diseases Centre GASTRO, Riga 1586, Latvia
| | - Shelley Rapoport
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Min Zhang
- School of Chemistry and Molecular Engineering, Shanghai Key Laboratory for Urban Ecological Processes and Eco-Restoration, East China Normal University, Shanghai 200241, China
| | - Weiwei Wu
- School of Advanced Materials and Nanotechnology, Interdisciplinary Research Center of Smart Sensors, Xidian University, Shaanxi 710126, P.R. China
| | - Marcis Leja
- Institute of Clinical and Preventive Medicine & Faculty of Medicine, University of Latvia, Riga LV-1004, Latvia.,Department of Research, Riga East University Hospital, Digestive Diseases Centre GASTRO, Riga 1586, Latvia
| | - Joachim A Behar
- The Andrew and Erna Viterbi Faculty of Electrical & Computer Engineering and Faculty of Biomedical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| |
Collapse
|
183
|
Recent advances in plasmon-enhanced luminescence for biosensing and bioimaging. Anal Chim Acta 2023; 1254:341086. [PMID: 37005018 DOI: 10.1016/j.aca.2023.341086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/10/2023] [Accepted: 03/11/2023] [Indexed: 03/16/2023]
Abstract
Plasmon-enhanced luminescence (PEL) is a unique photophysical phenomenon in which the interaction between luminescent moieties and metal nanostructures results in a marked luminescence enhancement. PEL offers several advantages and has been extensively used to design robust biosensing platforms for luminescence-based detection and diagnostics applications, as well as for the development of many efficient bioimaging platforms, enabling high-contrast non-invasive real-time optical imaging of biological tissues, cells, and organelles with high spatial and temporal resolution. This review summarizes recent progress in the development of various PEL-based biosensors and bioimaging platforms for diverse biological and biomedical applications. Specifically, we comprehensively assessed rationally designed PEL-based biosensors that can efficiently detect biomarkers (proteins and nucleic acids) in point-of-care tests, highlighting significant improvements in the sensing performance upon the integration of PEL. In addition to discussing the merits and demerits of recently developed PEL-based biosensors on substrates or in solutions, we include a brief discussion on integrating PEL-based biosensing platforms into microfluidic devices as a promising multi-responsive detection method. The review also presents comprehensive details about the recent advances in the development of various PEL-based multi-functional (passive targeting, active targeting, and stimuli-responsive) bioimaging probes, highlighting the scope of future improvements in devising robust PEL-based nanosystems to achieve more effective diagnostic and therapeutic insights by enabling imaging-guided therapy.
Collapse
|
184
|
Wang Z, Yan X, Tang P, Tang T, Wang Y, Peng S, Wang S, Lan W, Wang L, Zhang Y, Zhang J, Li K, Shu Z, Xu J, Qin J, Zhang D, Jiang J, Liu Q. Genetic profiling of hormone-sensitive and castration-resistant prostate cancers and identification of genetic mutations prone to castration-resistant prostate cancer. Prostate Cancer Prostatic Dis 2023; 26:180-187. [PMID: 36401126 DOI: 10.1038/s41391-022-00618-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/28/2022] [Accepted: 11/03/2022] [Indexed: 11/19/2022]
Abstract
BACKGROUND Genetic profiling of patients with prostate cancer could potentially identify mutations prone to castration-resistant prostate cancer (CRPC). Here, we aimed to identify the differences in genetic profiles of patients with hormone-sensitive prostate cancer (HSPC) and CRPC and stratify HSPC patients to identify mutations associated with CRPC progression. METHODS A total of 103 samples were collected, including 62 DNA samples from the tumor tissues of 59 HSPC patients and 41 cell-free DNA (cfDNA) samples from prostate cancer patients at different cancer stages. Targeted sequence was conducted on both the tissue DNA and cfDNA. The associations between mutations and clinical outcomes (CRPC-free time) were analyzed using χ2 test, logistic regression analysis, Kaplan-Meier analysis, and Cox regression analysis. RESULTS By comparing to that of cfDNA sequencing, the results from DNA sequencing of 1-needle (80%) and mixed 12-needle (77.8%) biopsies are highly comparable. FOXA1 (30.5%), CDK12 (23.7%), and TP53 (22.0%) were the top 3 most frequently mutated genes in HSPC patients; 50.8% (30/59) and 44.1% (26/59) HSPC patients had mutations in DDR and HRR pathway, respectively. Mutations in AR and APC as well as the members involved in the regulation of stem cell pluripotency and EMT pathway were often observed in CRPC samples. We established a panel of four genetic mutations (MSH2, CDK12, TP53, and RB1) to predict the risk of CRPC early progression with concordance index = 0.609 and the area under curve of the ROC curve as 0.838. CONCLUSIONS In this study, we demonstrated that the cfDNA can be used in genetic profiling in prostate cancer and our newly established panel is capable of predicting which mHSPC patient has a high risk of early CRPC progression.
Collapse
Affiliation(s)
- Ze Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Xuzhi Yan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Peng Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Tang Tang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yapeng Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Song Peng
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Shuo Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Weihua Lan
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Luofu Wang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Yao Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Zhang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Ke Li
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Zehua Shu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jing Xu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Nutrition and Health Sciences, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, PR China
| | - Dianzheng Zhang
- Department of Bio-Medical Sciences, Philadelphia College of Osteopathic Medicine, Philadelphia, PA, USA
| | - Jun Jiang
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China.
| | - Qiuli Liu
- Department of Urology, Daping Hospital, Army Medical University, Chongqing, PR China.
| |
Collapse
|
185
|
Rapid metabolomic screening of cancer cells via high-throughput static droplet microfluidics. Biosens Bioelectron 2023; 223:114966. [PMID: 36580816 DOI: 10.1016/j.bios.2022.114966] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/23/2022]
Abstract
Effective isolation and in-depth analysis of Circulating Tumour Cells (CTCs) are greatly needed in diagnosis, prognosis and monitoring of the therapeutic response of cancer patients but have not been completely fulfilled by conventional approaches. The rarity of CTCs and the lack of reliable biomarkers to distinguish them from peripheral blood cells have remained outstanding challenges for their clinical implementation. Herein, we developed a high throughput Static Droplet Microfluidic (SDM) device with 38,400 chambers, capable of isolating and classifying the number of metabolically active CTCs in peripheral blood at single-cell resolution. Owing to the miniaturisation and compartmentalisation capability of our device, we first demonstrated the ability to precisely measure the lactate production of different types of cancer cells inside 125 pL droplets at single-cell resolution. Furthermore, we compared the metabolomic activity of leukocytes from healthy donors to cancer cells and showed the ability to differentiate them. To further prove the clinical relevance, we spiked cancer cell lines in human healthy blood and showed the possibility to detect the cancer cells from leukocytes. Lastly, we tested the workflow on 8 preclinical mammary mouse models including syngeneic 67NR (non-metastatic) and 4T1.2 (metastatic) models with Triple-Negative Breast Cancer (TNBC) as well as transgenic mouses (12-week-old MMTV-PyMT). The results have shown the ability to precisely distinguish metabolically active CTCs from the blood using the proposed SDM device. The workflow is simple and robust which can eliminate the need for specialised equipment and expertise required for single-cell analysis of CTCs and facilitate on-site metabolic screening of cancer cells.
Collapse
|
186
|
Recent progress in aptamer-based microfluidics for the detection of circulating tumor cells and extracellular vesicles. J Pharm Anal 2023; 13:340-354. [PMID: 37181295 PMCID: PMC10173182 DOI: 10.1016/j.jpha.2023.03.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023] Open
Abstract
Liquid biopsy is a technology that exhibits potential to detect cancer early, monitor therapies, and predict cancer prognosis due to its unique characteristics, including noninvasive sampling and real-time analysis. Circulating tumor cells (CTCs) and extracellular vesicles (EVs) are two important components of circulating targets, carrying substantial disease-related molecular information and playing a key role in liquid biopsy. Aptamers are single-stranded oligonucleotides with superior affinity and specificity, and they can bind to targets by folding into unique tertiary structures. Aptamer-based microfluidic platforms offer new ways to enhance the purity and capture efficiency of CTCs and EVs by combining the advantages of microfluidic chips as isolation platforms and aptamers as recognition tools. In this review, we first briefly introduce some new strategies for aptamer discovery based on traditional and aptamer-based microfluidic approaches. Then, we subsequently summarize the progress of aptamer-based microfluidics for CTC and EV detection. Finally, we offer an outlook on the future directional challenges of aptamer-based microfluidics for circulating targets in clinical applications.
Collapse
|
187
|
Tanaka J, Nakagawa T, Harada K, Morizane C, Tanaka H, Shiba S, Ohba A, Hijioka S, Takai E, Yachida S, Kamura Y, Ishida T, Yokoi T, Uematsu C. Efficient and accurate KRAS genotyping using digital PCR combined with melting curve analysis for ctDNA from pancreatic cancer patients. Sci Rep 2023; 13:3039. [PMID: 36810451 PMCID: PMC9944920 DOI: 10.1038/s41598-023-30131-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 02/16/2023] [Indexed: 02/23/2023] Open
Abstract
A highly sensitive and highly multiplexed quantification technique for nucleic acids is necessary to predict and evaluate cancer treatment by liquid biopsy. Digital PCR (dPCR) is a highly sensitive quantification technique, but conventional dPCR discriminates multiple targets by the color of the fluorescent dye of the probe, which limits multiplexing beyond the number of colors of fluorescent dyes. We previously developed a highly multiplexed dPCR technique combined with melting curve analysis. Herein, we improved the detection efficiency and accuracy of multiplexed dPCR with melting curve analysis to detect KRAS mutations in circulating tumor DNA (ctDNA) prepared from clinical samples. The mutation detection efficiency was increased from 25.9% of the input DNA to 45.2% by shortening the amplicon size. The limit of detection of mutation was improved from 0.41 to 0.06% by changing the mutation type determination algorithm for G12A, resulting in a limit of detection of less than 0.2% for all the target mutations. Then, ctDNA in plasma from pancreatic cancer patients was measured and genotyped. The measured mutation frequencies correlated well with those measured by conventional dPCR, which can measure only the total frequency of KRAS mutants. KRAS mutations were detected in 82.3% of patients with liver or lung metastasis, which was consistent with other reports. Accordingly, this study demonstrated the clinical utility of multiplex dPCR with melting curve analysis to detect and genotype ctDNA from plasma with sufficient sensitivity.
Collapse
Affiliation(s)
- Junko Tanaka
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan.
| | - Tatsuo Nakagawa
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Kunio Harada
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Chigusa Morizane
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Hidenori Tanaka
- Department of Cancer Genome Informatics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoshi Shiba
- Division of Genomic Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Akihiro Ohba
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Susumu Hijioka
- Department of Hepatobiliary and Pancreatic Oncology, National Cancer Center Hospital, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Erina Takai
- Department of Cancer Genome Informatics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shinichi Yachida
- Department of Cancer Genome Informatics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Division of Genomic Medicine, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan
| | - Yoshio Kamura
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Takeshi Ishida
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Takahide Yokoi
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| | - Chihiro Uematsu
- Center for Digital Services - Healthcare, Research & Development Group, Hitachi, Ltd., 1-280, Higashi-Koigakubo, Kokubunji, Tokyo, 185-8601, Japan
| |
Collapse
|
188
|
An Overview of Hepatocellular Carcinoma Surveillance Focusing on Non-Cirrhotic NAFLD Patients: A Challenge for Physicians. Biomedicines 2023; 11:biomedicines11020586. [PMID: 36831120 PMCID: PMC9953185 DOI: 10.3390/biomedicines11020586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of liver disease worldwide and it ranges from simple steatosis to hepatocellular carcinoma (HCC). HCC represents the first liver tumor and the third source of cancer death. In the next few years, the prevalence of NAFLD and consequently of HCC is estimated to increase, becoming a major public health problem. The NAFLD-HCC shows several differences compared to other causes of chronic liver disease (CLD), including the higher percentage of patients that develop HCC in the absence of liver cirrhosis. In HCC surveillance, the international guidelines suggest a six months abdominal ultrasound (US), with or without alpha-fetoprotein (AFP) evaluation, in patients with cirrhosis and in a subgroup of patients with chronic hepatitis B infection. However, this screening program reveals several limitations, especially in NAFLD patients. Thus, new biomarkers and scores have been proposed to overcome the limits of HCC surveillance. In this narrative review we aimed to explore the differences in the HCC features between NAFLD and non-NAFLD patients, and those between NAFLD-HCC developed in the cirrhotic and non-cirrhotic liver. Finally, we focused on the limits of tumor surveillance in NAFLD patients, and we explored the new biomarkers for the early diagnosis of HCC.
Collapse
|
189
|
Li YZ, Kong SN, Liu YP, Yang Y, Zhang HM. Can Liquid Biopsy Based on ctDNA/cfDNA Replace Tissue Biopsy for the Precision Treatment of EGFR-Mutated NSCLC? J Clin Med 2023; 12:jcm12041438. [PMID: 36835972 PMCID: PMC9966257 DOI: 10.3390/jcm12041438] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/15/2023] Open
Abstract
More and more clinical trials have explored the role of liquid biopsy in the diagnosis and treatment of EGFR-mutated NSCLC. In certain circumstances, liquid biopsy has unique advantages and offers a new way to detect therapeutic targets, analyze drug resistance mechanisms in advanced patients, and monitor MRD in patients with operable NSCLC. Although its potential cannot be ignored, more evidence is needed to support the transition from the research stage to clinical application. We reviewed the latest progress in research on the efficacy and resistance mechanisms of targeted therapy for advanced NSCLC patients with plasma ctDNA EGFR mutation and the evaluation of MRD based on ctDNA detection in perioperative and follow-up monitoring.
Collapse
|
190
|
Nair MG, Ramesh RS, Naidu CM, Mavatkar AD, V. P. S, Ramamurthy V, Somashekaraiah VM, C. E. A, Raghunathan K, Panigrahi A, Das M, Dhar SK, Prabhu JS. Estimation of ALU Repetitive Elements in Plasma as a Cost-Effective Liquid Biopsy Tool for Disease Prognosis in Breast Cancer. Cancers (Basel) 2023; 15:cancers15041054. [PMID: 36831397 PMCID: PMC9953974 DOI: 10.3390/cancers15041054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/10/2023] Open
Abstract
BACKGROUND Liquid biopsy is widely recognized as an efficient diagnostic method in oncology for disease detection and monitoring. Though the examination of circulating tumor cells (CTC) is mostly implemented for the assessment of genomic aberrations, the need of complex methodologies for their detection has impeded its acceptance in low-resource settings. We evaluated cell-free DNA (cfDNA) as a liquid biopsy tool and investigated its utility in breast cancer patients. METHODS Total cell-free DNA was extracted from the plasma of breast cancer patients (n = 167) with a median follow-up of more than 5 years, at various stages of the disease. Quantitative PCR was performed to estimate the copy numbers of two fractions of ALU repetitive elements (ALU 115 and ALU 247), and DNA integrity (DI) was calculated as the ratio of ALU 247/115. Mutations in TP53 and PIK3CA in the cfDNA were estimated by next-gen sequencing (NGS) in a subset of samples. Associations of the levels of both the ALU fragments with various clinico-pathological factors and disease-free survival at various stages were examined. Nomogram models were constructed with clinical variables and ALU 247 levels to predict disease-free survival and the best performing model was evaluated by decision curve analysis. RESULTS DI and ALU 247 levels were significantly lower (p < 0.0001) in the post-operative plasma when compared to their pre-surgery levels. DI and ALU 247 were found to be significantly higher in patients with metastasis (p < 0.05). Patients with higher levels of ALU 247 in their post-operative plasma had significant poor disease-free survival (p = 0.005). Higher levels of ALU 247 in the circulation also correlated with low tumor-infiltrating lymphocytes (TIL) within their primary tumors in the ER-negative breast cancer subtype (p = 0.01). Cox proportional hazard analysis confirmed ALU 247 as an independent variable of disease-free survival both in univariate and multivariate analysis [HR 1.3 (95% CI 1.047 to 1.613, p = 0.017)]. The nomogram model showed that the addition of ALU 247 with other variables significantly improved (C-index 0.823) the predictive ability of the model. CONCLUSION Our results confirm the utility of cfDNA as an evolving liquid biopsy tool for molecular analysis. Evaluation of larger fragments of cfDNA estimated through ALU 247 can provide vital information concurrent with the pathological process of disease evolution in breast cancer and warrants expansion to other cancer types.
Collapse
Affiliation(s)
- Madhumathy G. Nair
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560034, India
- Correspondence: (M.G.N.); (J.S.P.)
| | - Rakesh S. Ramesh
- Department of Surgical Oncology, St. John’s Medical College and Hospital, Bangalore 560034, India
| | - Chandrakala M. Naidu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560034, India
| | - Apoorva D. Mavatkar
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560034, India
| | - Snijesh V. P.
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560034, India
| | - Vishakha Ramamurthy
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560034, India
| | - Vidya M. Somashekaraiah
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560034, India
| | - Anupama C. E.
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560034, India
| | | | - Anuradha Panigrahi
- Molecular Immunology Program, MSMF, Narayana Health City, Bangalore 560099, India
| | - Manjula Das
- Molecular Immunology Program, MSMF, Narayana Health City, Bangalore 560099, India
| | - Sujan K. Dhar
- Molecular Immunology Program, MSMF, Narayana Health City, Bangalore 560099, India
| | - Jyothi S. Prabhu
- Division of Molecular Medicine, St. John’s Research Institute, St. John’s Medical College, Bangalore 560034, India
- Correspondence: (M.G.N.); (J.S.P.)
| |
Collapse
|
191
|
Mazurek AM, Rutkowski TW. Practical Application of Circulating Tumor-Related DNA of Human Papillomavirus in Liquid Biopsy to Evaluate the Molecular Response in Patients with Oropharyngeal Cancer. Cancers (Basel) 2023; 15:1047. [PMID: 36831390 PMCID: PMC9953792 DOI: 10.3390/cancers15041047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/10/2023] Open
Abstract
Recent findings have shown that human papillomavirus (HPV) DNA is present in the blood as a tumor-specific biomarker (circulating tumor-related HPV; ctHPV) in patients with HPV-related oropharyngeal cancer (HPV-related OPC). The molecular response (MR) in patients with HPV-related OPC can be defined as the change in the number of ctHPV copies in relation to its initial quantity. The optimal model for assessing the MR using a liquid biopsy (LB) should be based on the E6/E7 sequences of the viral genome. MR assessment can help to evaluate the intensity of ongoing treatments in relation to the tumor response. The evaluation of the residual disease at the end of therapy may also be performed by MR assessment. If a partial MR (pMR) is found, caution is indicated and a subsequent LB should be considered, due to the likelihood of disease progression. Complete radiological and clinical responses together with a complete MR (cMR) convincingly indicate a low risk of treatment failure. Moreover, molecular recurrence (Mrec) during a follow-up, confirmed in two consecutive assays, even despite the lack of any other clinical or radiological symptoms of progression, indicates patients at high risk of disease recurrence. In conclusion, MR by ctHPV assessment may hasten the early detection of disease progression, at any stage of the management of the patient with HPV-related OPC.
Collapse
Affiliation(s)
- Agnieszka M. Mazurek
- Center for Translational Research and Molecular Biology of Cancer, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| | - Tomasz W. Rutkowski
- I Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
- Radiotherapy Department, Maria Sklodowska-Curie National Research Institute of Oncology Gliwice Branch, Wybrzeże Armii Krajowej 15, 44-102 Gliwice, Poland
| |
Collapse
|
192
|
Nigro MC, Marchese PV, Deiana C, Casadio C, Galvani L, Di Federico A, De Giglio A. Clinical Utility and Application of Liquid Biopsy Genotyping in Lung Cancer: A Comprehensive Review. LUNG CANCER (AUCKLAND, N.Z.) 2023; 14:11-25. [PMID: 36762267 PMCID: PMC9904307 DOI: 10.2147/lctt.s388047] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 01/26/2023] [Indexed: 02/05/2023]
Abstract
Precision medicine has revolutionized the therapeutic management of cancer patients with a major impact on non-small cell lung cancer (NSCLC), particularly lung adenocarcinoma, where advances have been remarkable. Tissue biopsy, required for tumor molecular testing, has significant limitations due to the difficulty of the biopsy site or the inadequacy of the histological specimen. In this context, liquid biopsy, consisting of the analysis of tumor-released materials circulating in body fluids, such as blood, is increasingly emerging as a valuable and non-invasive biomarker for detecting circulating tumor DNA (ctDNA) carrying molecular tumor signatures. In advanced/metastatic NSCLC, liquid biopsy drives target therapy by monitoring response to treatment and identifying eventual genomic mechanisms of resistance. In addition, recent data have shown a significant ability to detect minimal residual disease in early-stage lung cancer, underlying the potential application of liquid biopsy in the adjuvant setting, in early detection of recurrence, and also in the screening field. In this article, we present a review of the currently available data about the utility and application of liquid biopsy in lung cancer, with a particular focus on the approach to different techniques of analysis for liquid biopsy and a comparison with tissue samples as well as the potential practical uses in early and advanced/metastatic NSCLC.
Collapse
Affiliation(s)
- Maria Concetta Nigro
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, 40138, Italy
| | - Paola Valeria Marchese
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, 40138, Italy,Correspondence: Paola Valeria Marchese, Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Via Albertoni 15, Bologna, 40138, Italy, Email
| | - Chiara Deiana
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, 40138, Italy
| | - Chiara Casadio
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, 40138, Italy
| | - Linda Galvani
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, 40138, Italy
| | - Alessandro Di Federico
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, 40138, Italy
| | - Andrea De Giglio
- Department of Experimental, Diagnostic and Specialty Medicine, S.Orsola-Malpighi University Hospital, University of Bologna, Bologna, 40138, Italy,Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, 40138, Italy
| |
Collapse
|
193
|
Liao C, Wu Z, Lin C, Chen X, Zou Y, Zhao W, Li X, Huang G, Xu B, Briganti GE, Qi Y, Wang X, Zeng T, Wuethrich A, Zou H. Nurturing the marriages of urinary liquid biopsies and nano-diagnostics for precision urinalysis of prostate cancer. SMART MEDICINE 2023; 2:e20220020. [PMID: 39188554 PMCID: PMC11236013 DOI: 10.1002/smmd.20220020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/04/2022] [Indexed: 08/28/2024]
Abstract
Prostate cancer remains the second-most common cancer diagnosed in men, despite the increasingly widespread use of serum prostate-specific antigen (PSA) screening. The controversial clinical implications and cost benefits of PSA screening have been highlighted due to its poor specificity, resulting in a high rate of overdiagnosis and underdiagnosis. Thus, the development of novel biomarkers for prostate cancer detection remains an intriguing challenge. Urine is emerging as a source for prostate cancer biomarker discovery. Currently, new urine biomarkers already outperform serum PSA in clinical diagnosis. Meanwhile, the advances in nanotechnology have provided a suite of diagnostic tools to study prostate cancer in more detail, sparking a new era of biomarker discoveries. In this review, we envision that future prostate cancer diagnosis will probably integrate multiplex nano-diagnostic approaches to detect novel urinary biomarkers. However, challenges remain in differentiating indolent from aggressive cancers to better inform treatment decisions, and clinical translation still needs to be overcome.
Collapse
Affiliation(s)
- Caizhi Liao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Zhihao Wu
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Chan Lin
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xiaofeng Chen
- School of Environmental and Geographical SciencesShanghai Normal UniversityShanghaiChina
- School of ChemistryNorthwestern UniversityChicagoIllinoisUSA
| | - Yaqun Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Wan Zhao
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xin Li
- Department of UrologySir Run Run Shaw HospitalZhejiang UniversityHangzhouChina
| | | | - Baisheng Xu
- Department of UrologyThe First People's Hospital of XiushuiJiujiangChina
| | | | - Yan Qi
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Xianshu Wang
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
| | - Tao Zeng
- Department of Urologythe Second Affiliated Hospital of Nanchang UniversityNanchangChina
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of QueenslandBrisbaneQueenslandAustralia
| | - Hongzhi Zou
- Creative Biosciences (Guangzhou) Co., LtdGuangzhouChina
- The Sixth Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| |
Collapse
|
194
|
Recent advances in biosensors and sequencing technologies for the detection of mutations. Microchem J 2023. [DOI: 10.1016/j.microc.2022.108306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
195
|
Ren XH, Han D, He XY, Guo T, Chen XS, Pang X, Cheng SX. Multi-Targeting Nano-Systems Targeting Heterogeneous Cancer Cells for Therapeutics and Biomarker Detection. Adv Healthc Mater 2023; 12:e2202155. [PMID: 36333906 DOI: 10.1002/adhm.202202155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/15/2022] [Indexed: 11/06/2022]
Abstract
Cancer heterogeneity plays a vital part in cancer resistance and metastasis. To provide a reliable approach to exert a therapy action and evaluate its efficiency in heterogeneous cancer cells, a multiple targeting delivery vector composed of histone encapsulating the therapeutic or diagnostic agent, hyaluronic acid targeting CD44 overexpressed in stem tumor cells, SYL3C aptamer targeting epithelial cell adhesion molecule (EpCAM) overexpressed in epithelial cancer cells, and CL4 aptamer targeting epidermal growth factor receptor (EGFR) overexpressed in mesenchymal cancer cells, is developed. The vector can efficiently target different cancer cells and circulating tumor cells (CTCs) in the peripheral blood of patients for mucin 1 (MUC1) knockout. Furthermore, the multiple targeting vector can be used to co-encapsulate three types of molecular beacons for probing various mRNA biomarkers at single-cell resolution after genome editing. This study provides an efficient approach for exerting therapeutic actions in heterogeneous cancer cells and assessing the therapeutic efficacy by detection of cancer biomarkers via liquid biopsy.
Collapse
Affiliation(s)
- Xiao-He Ren
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072, China
| | - Di Han
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072, China
| | - Xiao-Yan He
- School of Life Sciences, Anhui Medical University, Hefei, Anhui, 230011, China
| | - Tao Guo
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Anhui Medical University, Anhui Public Health Clinical Center, Hefei, Anhui, 230011, China
| | - Xue-Si Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Xuan Pang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin, 130022, China
| | - Si-Xue Cheng
- Key Laboratory of Biomedical Polymers of Ministry of Education, Department of Chemistry, Wuhan University, Wuhan, Hubei, 430072, China
| |
Collapse
|
196
|
Reike MJ, Contreras-Sanz A, Black PC. Biological Stratification of Invasive and Advanced Urothelial Carcinoma. Urol Clin North Am 2023; 50:69-80. [DOI: 10.1016/j.ucl.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
197
|
Campani C, Zucman-Rossi J, Nault JC. Genetics of Hepatocellular Carcinoma: From Tumor to Circulating DNA. Cancers (Basel) 2023; 15:cancers15030817. [PMID: 36765775 PMCID: PMC9913369 DOI: 10.3390/cancers15030817] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/21/2023] [Accepted: 01/23/2023] [Indexed: 02/01/2023] Open
Abstract
Hepatocellular carcinoma (HCC) accounts for 90% of primary hepatic malignancies and is one of the major causes of cancer-related death. Over the last 15 years, the molecular landscape of HCC has been deciphered, with the identification of the main driver genes of liver carcinogenesis that belong to six major biological pathways, such as telomere maintenance, Wnt/b-catenin, P53/cell cycle regulation, oxidative stress, epigenetic modifiers, AKT/mTOR and MAP kinase. The combination of genetic and transcriptomic data composed various HCC subclasses strongly related to risk factors, pathological features and prognosis. However, translation into clinical practice is not achieved, mainly because the most frequently mutated genes are undruggable. Moreover, the results derived from the analysis of a single tissue sample may not adequately catch the intra- and intertumor heterogeneity. The analysis of circulating tumor DNA (ctDNA) is broadly developed in other types of cancer for early diagnosis, prognosis and monitoring under systemic treatment in order to identify primary and secondary mechanisms of resistance. The aim of this review is to describe recent data about the HCC molecular landscape and to discuss how ctDNA could be used in the future for HCC detection and management.
Collapse
Affiliation(s)
- Claudia Campani
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Internal Medicine and Hepatology Unit, Department of Experimental and Clinical Medicine, University of Firenze, 50134 Firenze, Italy
| | - Jessica Zucman-Rossi
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Hôpital Européen Georges Pompidou, APHP, 75015 Paris, France
| | - Jean-Charles Nault
- Centre de Recherche des Cordeliers, Sorbonne Université, Inserm, Université de Paris Cité, Team «Functional Genomics of Solid Tumors», 75006 Paris, France
- Equipe labellisée Ligue Nationale Contre le Cancer, Labex OncoImmunology, 75006 Paris, France
- Liver Unit, Hôpital Avicenne, Hôpitaux Universitaires Paris-Seine-Saint-Denis, Assistance-Publique Hôpitaux de Paris, 93000 Bobigny, France
- Unité de Formation et de Recherche Santé Médecine et Biologie Humaine, Université Paris Nord, 93000 Bobigny, France
- Correspondence: ; Tel.: +33-6-1067-9461
| |
Collapse
|
198
|
Zhang H, Hu Y, Wang Y, Song X, Hu Y, Ma L, Yang X, Li K, Qin N, Wang J, Lv J, Li X, Zhang X, Zhang Q, Wu Y, Yao G, Zhang S. Application of ddPCR in detection of the status and abundance of EGFR T790M mutation in the plasma samples of non-small cell lung cancer patients. Front Oncol 2023; 12:942123. [PMID: 36776375 PMCID: PMC9909534 DOI: 10.3389/fonc.2022.942123] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/28/2022] [Indexed: 01/27/2023] Open
Abstract
Background/Objective The third-generation epidermal growth factor receptor (EGFR) -tyrosine kinase inhibitor (TKIs), such as osimertinib, designed for targeting the acquired drug-resistant mutation of EGFR T790M, was approved as the first-line therapy for advanced EGFR-mutated non-small cell lung cancer (NSCLC). Thus, detection of the EGFR T790M mutation for NSCLC is crucial. However, tissue samples are often difficult to obtain, especially in patients at advanced stages. This study assessed the performances of droplet digital polymerase chain reaction (ddPCR) and next-generation sequencing (NGS) in detecting EGFR T790M status and abundance in the plasma ctDNA samples of patients with NSCLC. We also explored the association between T790M status and abundance and the response to third-generation EGFR-TKIs. Methods A total of 201 plasma samples with matched tissues, 821 plasma samples, and 56 patients who received third-generation EGFR-TKIs with response evaluation were included in this study. ddPCR and NGS were used to detect the mutation status and abundance of T790M in the tissues and/or blood samples. Results The results showed that the sensitivity and the specificity of EGFR T790M mutation status detected by ddPCR in plasma samples were 81.82% and 91.85%, respectively, compared with the tissue samples, with a consistency coefficient of 0.740. Among the 821 plasma samples, the positive rates of EGFR T790M detected by ddPCR and NGS were 34.2% (281/821) and 22.5% (185/821), respectively. With NGS results as the reference, the sensitivity and the specificity of ddPCR were 100% and 84.91%, respectively, and the consistency coefficient of the two methods was 0.717. In addition, we found that a higher EGFR T790M abundance was linked to a higher treatment response rate to the third-generation EGFR-TKIs regardless of the classification of the median value of 0.43% (P = 0.016) or average value of 3.16% (P = 0.010). Conclusion Taking these data together, this study reveals that ddPCR is an alternatively potent method for the detection of EGFR T790M in the plasma samples of NSCLC patients.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yi Hu
- Department of Medical Oncology, Chinese People's Liberation Army General Hospital, Beijing, China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xia Song
- Department of Respiratory, Shanxi Cancer Hospital, Affiliated Cancer Hospital of Shanxi Medical University, Taiyuan, China
| | - Ying Hu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Li Ma
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xinjie Yang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Kun Li
- Department of Pathology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Na Qin
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jinghui Wang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Jialin Lv
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xi Li
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Xinyong Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Quan Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Yuhua Wu
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China
| | - Guangyin Yao
- Department of Medicine, Shanghai Yuanqi Biomedical Technology Co. Ltd., Shanghai, China
| | - Shucai Zhang
- Department of Medical Oncology, Beijing Chest Hospital, Capital Medical University/Beijing Tuberculosis and Thoracic Tumor Research Institute, Beijing, China,*Correspondence: Shucai Zhang,
| |
Collapse
|
199
|
Zhan Y, Zhang R, Guo Y, Cao S, Chen G, Tian B. Recent advances in tumor biomarker detection by lanthanide upconversion nanoparticles. J Mater Chem B 2023; 11:755-771. [PMID: 36606393 DOI: 10.1039/d2tb02017c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early tumor diagnosis could reliably predict the behavior of tumors and significantly reduce their mortality. Due to the response to early cancerous changes at the molecular or cellular level, tumor biomarkers, including small molecules, proteins, nucleic acids, exosomes, and circulating tumor cells, have been employed as powerful tools for early cancer diagnosis. Therefore, exploring new approaches to detect tumor biomarkers has attracted a great deal of research interest. Lanthanide upconversion nanoparticles (UCNPs) provide numerous opportunities for bioanalytical applications. When excited by low-energy near-infrared light, UCNPs exhibit several unique properties, such as large anti-Stoke shifts, sharp emission lines, long luminescence lifetimes, resistance to photobleaching, and the absence of autofluorescence. Based on these excellent properties, UCNPs have demonstrated great sensitivity and selectivity in detecting tumor biomarkers. In this review, an overview of recent advances in tumor biomarker detection using UCNPs has been presented. The key aspects of this review include detection mechanisms, applications in vitro and in vivo, challenges, and perspectives of UCNP-based tumor biomarker detection.
Collapse
Affiliation(s)
- Ying Zhan
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Runchi Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yi Guo
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
200
|
Stejskal P, Goodarzi H, Srovnal J, Hajdúch M, van ’t Veer LJ, Magbanua MJM. Circulating tumor nucleic acids: biology, release mechanisms, and clinical relevance. Mol Cancer 2023; 22:15. [PMID: 36681803 PMCID: PMC9862574 DOI: 10.1186/s12943-022-01710-w] [Citation(s) in RCA: 103] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 12/29/2022] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Despite advances in early detection and therapies, cancer is still one of the most common causes of death worldwide. Since each tumor is unique, there is a need to implement personalized care and develop robust tools for monitoring treatment response to assess drug efficacy and prevent disease relapse. MAIN BODY Recent developments in liquid biopsies have enabled real-time noninvasive monitoring of tumor burden through the detection of molecules shed by tumors in the blood. These molecules include circulating tumor nucleic acids (ctNAs), comprising cell-free DNA or RNA molecules passively and/or actively released from tumor cells. Often highlighted for their diagnostic, predictive, and prognostic potential, these biomarkers possess valuable information about tumor characteristics and evolution. While circulating tumor DNA (ctDNA) has been in the spotlight for the last decade, less is known about circulating tumor RNA (ctRNA). There are unanswered questions about why some tumors shed high amounts of ctNAs while others have undetectable levels. Also, there are gaps in our understanding of associations between tumor evolution and ctNA characteristics and shedding kinetics. In this review, we summarize current knowledge about ctNA biology and release mechanisms and put this information into the context of tumor evolution and clinical utility. CONCLUSIONS A deeper understanding of the biology of ctDNA and ctRNA may inform the use of liquid biopsies in personalized medicine to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Pavel Stejskal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
| | - Hani Goodarzi
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158 USA
- Department of Urology, University of California San Francisco, San Francisco, CA 94158 USA
| | - Josef Srovnal
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
| | - Marián Hajdúch
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University and University Hospital in Olomouc, Olomouc, 779 00 Czech Republic
| | - Laura J. van ’t Veer
- Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA USA
| | - Mark Jesus M. Magbanua
- Department of Laboratory Medicine, University of California San Francisco, 2340 Sutter Street, San Francisco, CA USA
| |
Collapse
|