151
|
Tao M, Yan W, Chen C, Tang M, Zhao X, Feng Q, Fei X, Fu Y. Omentin-1 ameliorates experimental inflammatory bowel disease via Nrf2 activation and redox regulation. Life Sci 2023; 328:121847. [PMID: 37295714 DOI: 10.1016/j.lfs.2023.121847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/29/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
AIMS Omentin-1 production is decreased in patients with IBD. However, the specific role of Omentin-1 in IBD has not been fully elucidated. This study aimed to investigate the expression and role of Omentin-1 in IBD and the potential mechanisms. MAIN METHODS We collected human serum and colon biopsy samples at the Wuhan Union Hospital. Omentin-1 recombinant protein was injected intraperitoneally in a DSS-induced experimental IBD mouse model. Omentin-1 levels were measured in IBD patients, colitis mice, and LPS-induced HT-29 cells. Omentin-1 and/or a Nrf2 specific inhibitor (ML385) were administered to DSS mice and LPS-induced HT-29 cells. The effects of Omentin-1 on inflammation, intestinal barrier function, Nrf2 pathway, oxidative stress, and NF-κB signaling were detected in vivo and in vitro. KEY FINDINGS Serum Omentin-1 levels were significantly reduced in UC and CD patients compared with controls (173.7 (IQR, 120.1-221.2) ng/ml, 80.8 (43.8-151.8) ng/ml, and 270.7 (220.7-306.5) ng/ml, respectively). The levels of Omentin-1 were also significantly lower in colitis mice and LPS-induced HT-29 cells. Omentin-1 treatment effectively ameliorated inflammation and impaired intestinal barrier, decreased ROS and MDA levels, and increased GSH and SOD production in the DSS-induced colitis mice and LPS-induced HT-29 cells. Mechanically, Omentin-1 repaired the intestinal barrier by activating Nrf2, then improving oxidative stress and inhibiting NF-κB signaling. Furthermore, the interaction between Omentin-1 and Nrf2 was identified. SIGNIFICANCE Omentin-1 activates the Nrf2 pathway to regulate redox balance, ultimately protecting intestinal barrier function and reducing intestinal inflammation. In general, Omentin-1 can be used as a promising therapeutic target for IBD.
Collapse
Affiliation(s)
- Meihui Tao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Yan
- Department of Gastroenterology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoyue Chen
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengfan Tang
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Zhao
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qinyu Feng
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoshang Fei
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Fu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
152
|
Yokote A, Imazu N, Umeno J, Kawasaki K, Fujioka S, Fuyuno Y, Matsuno Y, Moriyama T, Miyawaki K, Akashi K, Kitazono T, Torisu T. Ferroptosis in the colon epithelial cells as a therapeutic target for ulcerative colitis. J Gastroenterol 2023; 58:868-882. [PMID: 37410250 DOI: 10.1007/s00535-023-02016-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 06/26/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND Ferroptosis, a type of programmed cell death triggered by oxidative stress, was suspected to play a role in ulcerative colitis. Indigo naturalis is highly effective against ulcerative colitis, but its mechanism is unclear. This study found that indigo naturalis treatment suppressed ferroptosis. METHODS We analyzed 770 mRNA expressions of patients with ulcerative colitis. Suppression of ferroptosis by indigo naturalis treatment was shown using a cell death assay. Malondialdehyde levels and reactive oxygen species were analyzed in CaCo-2 cells treated with indigo naturalis. Glutathione metabolism was shown by metabolomic analysis. Extraction of the ingredients indigo naturalis from the rectal mucosa was performed using liquid chromatograph-mass spectrometry. RESULTS Gene expression profiling showed that indigo naturalis treatment increased antioxidant genes in the mucosa of patients with ulcerative colitis. In vitro analysis showed that nuclear factor erythroid-2-related factor 2-related antioxidant gene expression was upregulated by indigo naturalis. Indigo naturalis treatment rendered cells resistant to ferroptosis. Metabolomic analysis suggested that an increase in reduced glutathione by indigo naturalis. The protein expression of CYP1A1 and GPX4 was increased in the rectum by treatment with indigo naturalis. The main ingredients of indigo naturalis, indirubin and indigo inhibited ferroptosis. Indirubin was detected in the rectal mucosa of patients with ulcerative colitis who were treated with indigo naturalis. CONCLUSIONS Suppression of ferroptosis by indigo naturalis in the intestinal epithelium could be therapeutic target for ulcerative colitis. The main active ingredient of indigo naturalis may be indirubin.
Collapse
Affiliation(s)
- Akihito Yokote
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Noriyuki Imazu
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Junji Umeno
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Keisuke Kawasaki
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Shin Fujioka
- Department of Endoscopic Diagnostics and Therapeutics, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Yuta Fuyuno
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Yuichi Matsuno
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Tomohiko Moriyama
- International Medical Department, Kyushu University Hospital, Fukuoka, 812-8582, Japan
| | - Kohta Miyawaki
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Koichi Akashi
- Department of Medicine and Biosystemic Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, 812-8582, Japan
| | - Takanari Kitazono
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan
| | - Takehiro Torisu
- Department of Medicine and Clinical Science, Graduate School of Medical Science, Kyushu University, Maidashi 3-1-1, Higashi-ku, Fukuoka, 812-8582, Japan.
| |
Collapse
|
153
|
Qiao CM, Zhou Y, Quan W, Ma XY, Zhao LP, Shi Y, Hong H, Wu J, Niu GY, Chen YN, Zhu S, Cui C, Zhao WJ, Shen YQ. Fecal Microbiota Transplantation from Aged Mice Render Recipient Mice Resistant to MPTP-Induced Nigrostriatal Degeneration Via a Neurogenesis-Dependent but Inflammation-Independent Manner. Neurotherapeutics 2023; 20:1405-1426. [PMID: 37596429 PMCID: PMC10480387 DOI: 10.1007/s13311-023-01420-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 08/20/2023] Open
Abstract
Accumulating data support a crucial role of gut microbiota in Parkinson's disease (PD). However, gut microbiota vary with age and, thus, will affect PD in an age-dependent, but unknown manner. We examined the effects of fecal microbiota transplantation (FMT) pretreatment, using fecal microbiota from young (7 weeks) or aged mice (23 months), on MPTP-induced PD model. Motor function, pathological changes, striatal neurotransmitters, neuroinflammation, gut inflammation and gut permeability were examined. Gut microbiota composition and metabolites, namely short-chain fatty acids (SCFAs), were analyzed. Neurogenesis was also evaluated by measuring the number of doublecortin-positive (DCX+) neurons and Ki67-positive (Ki67+) cells in the hippocampus. Expression of Cd133 mRNA, a cellular stemness marker, in the hippocampus was also examined. Mice who received FMT from young mice showed MPTP-induced motor dysfunction, and reduction of striatal dopamine (DA), dopaminergic neurons and striatal tyrosine hydroxylase (TH) levels. Interestingly and unexpectedly, mice that received FMT from aged mice showed recovery of motor function and rescue of dopaminergic neurons and striatal 5-hydroxytryptamine (5-HT), as well as decreased DA metabolism after MPTP challenge. Further, they showed improved metabolic profiling and a decreased amount of fecal SCFAs. High-throughput sequencing revealed that FMT remarkably reshaped the gut microbiota of recipient mice. For instance, levels of genus Akkermansia and Candidatus Saccharimonas were elevated in fecal samples of recipient mice receiving aged microbiota (AM + MPTP mice) than YM + MPTP mice. Intriguingly, both young microbiota and aged microbiota had no effect on neuroinflammation, gut inflammation or gut permeability. Notably, AM + MPTP mice showed a marked increase in DCX+ neurons, as well as Ki67+ cells and Cd133 expression in the hippocampal dentate gyrus (DG) compared to YM + MPTP mice. These results suggest that FMT from aged mice augments neurogenesis, improves motor function and restores dopaminergic neurons and neurotransmitters in PD model mice, possibly through increasing neurogenesis.
Collapse
Affiliation(s)
- Chen-Meng Qiao
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yu Zhou
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei Quan
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Xiao-Yu Ma
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Li-Ping Zhao
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yun Shi
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Hui Hong
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Jian Wu
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Gu-Yu Niu
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yu-Nuo Chen
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Shan Zhu
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Chun Cui
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Wei-Jiang Zhao
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China
| | - Yan-Qin Shen
- Laboratory of Neurodegeneration and Neuroinjury, Wuxi School of Medicine, Jiangnan University, Wuxi, Jiangsu, 214122, China.
| |
Collapse
|
154
|
Jain S, Marotta F, Haghshenas L, Yadav H. Treating Leaky Syndrome in the Over 65s: Progress and Challenges. Clin Interv Aging 2023; 18:1447-1451. [PMID: 37671072 PMCID: PMC10476862 DOI: 10.2147/cia.s409801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/03/2023] [Indexed: 09/07/2023] Open
Abstract
As we age, our organ functions gradually decline. Circulating factors in the blood and the integrity of organ barriers can become dysfunctional, resulting in a condition known as leaky syndrome. This condition involves the unregulated exchange or leakage of components between organs. However, the triggers of leaky syndrome, as well as its role in aging-related disorders and illnesses, remain largely unknown. In this editorial, we discuss potential mechanisms that originate from the gut and resident microbes (microbiome) to contribute in leaky syndrome. Furthermore, we explore how the food we consume can impact the development of leaky syndrome, potentially influencing the biology of aging and challenges to diagnose the leaky gut condition accurately and clinically.
Collapse
Affiliation(s)
- Shalini Jain
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA
| | | | - Leila Haghshenas
- Department of Clinical Bioinformatics, Harvard Medical School, Boston, MA, USA
| | - Hariom Yadav
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, USA
- USF Center for Microbiome Research, Microbiomes Institute, University of South Florida, Tampa, FL, USA
- Department of Internal Medicine- Digestive Diseases and Nutrition, University of South Florida, Tampa, FL, USA
| |
Collapse
|
155
|
Li X, Xu L, Peng X, Zhang H, Kang M, Jiang Y, Shi H, Chen H, Zhao C, Yu Y, Ma R, Li X, Cao Y. The alleviating effect of ellagic acid on DSS-induced colitis via regulating gut microbiomes and gene expression of colonic epithelial cells. Food Funct 2023; 14:7550-7561. [PMID: 37526638 DOI: 10.1039/d3fo01226c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The anti-inflammatory effect of ellagic acid (EA) and its possible underlying mechanism in dextran sulfate sodium (DSS)-induced mouse chronic colonic inflammation were studied. It was observed that EA administration significantly alleviated the colonic inflammation phenotypes, including decreasing the disease activity index (DAI), enhancing the body weight loss, and improving the shortened length of the colon and pathological damage of colon tissue. Additionally, EA reshaped the constitution of the gut microbiota by elevating the ratio of Bacteroidetes along with Bacteroides and Muribaculaceae, while decreasing the proportion of Firmicutes. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) revealed that the metabolic function of the gut microbiota was also changed. Furthermore, mouse colon transcriptome analysis showed that the tight junction and peroxisome proliferator-activated receptor (PPAR) signaling pathways were activated and the expressions of related genes were upregulated after EA intervention. These results showed that EA could remodel the gut bacterial composition, change the intestinal epithelial cell gene expressions in mice, and consequently improve the colonic inflammatory symptoms.
Collapse
Affiliation(s)
- Xiaoqing Li
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Lu Xu
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Xinan Peng
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Huiting Zhang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Meng Kang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Yiqi Jiang
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| | - Haibo Shi
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Haiyan Chen
- Guangdong Testing Institute of Product Quality Supervision (GQI), Foshan, 528300, China
| | - Chao Zhao
- College of Marine Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yigang Yu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ruiting Ma
- Eastroc Beverage Group Co., Ltd, Shenzhen, 518057, China
| | - Xueli Li
- Eastroc Beverage Group Co., Ltd, Shenzhen, 518057, China
| | - Yong Cao
- Guangdong Provincial Key Laboratory of Nutraceuticals and Functional Foods, College of Food Science, South China Agricultural University, 483 Wushan Road, Tianhe District, Guangzhou City, Guangdong Province, 510642, China.
| |
Collapse
|
156
|
Marino M, Venturi S, Rendine M, Porrini M, Gardana C, Klimis-Zacas D, Del Bo' C, Riso P. Wild blueberry ( V. angustifolium) improves TNFα-induced cell barrier permeability through claudin-1 and oxidative stress modulation in Caco-2 cells. Food Funct 2023; 14:7387-7399. [PMID: 37486007 DOI: 10.1039/d3fo00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Increasing evidence links the impairment of intestinal permeability (IP), a feature of the intestinal barrier, to numerous dysmetabolic and dysfunctional conditions. Several host and environmental factors, including dietary factors, can negatively and/or positively affect IP. In this regard, polyphenol-rich foods including berries have been proposed as potential IP modulators. However, the exact mechanisms involved are not yet fully elucidated. The aim of the present study was to evaluate the effect of a wild blueberry (WB; V. angustifolium) powder, naturally rich in polyphenols, to affect Caco-2 cell monolayer permeability and to identify the potential mechanisms in modulating the IP process. Caco-2 cells were incubated with TNF-α (10 ng mL-1), as a pro-inflammatory stimulus, and supplemented for 24 hours with different concentrations (1 and 5 mg mL-1) of WB powder. The integrity of the intestinal cell monolayer was evaluated by measuring the transepithelial electrical resistance (TEER) and the paracellular transport of FITC-dextran. In addition, the production of the tight junction proteins, such as claudin-1 and occludin, as well as protein carbonyl and 8-hydroxy 2 deoxyguanosine, as oxidative stress markers, were quantified in the supernatant by ELISA kits. Overall, the treatment with WB powder (5 mg mL-1) mitigated the loss of Caco-2 cell barrier integrity, as documented by an increase in TEER and a reduction in FITC values. This modulation was accompanied by an upregulation of claudin-1 and a reduction of 8-OHdG. Conversely, no effect was documented for the lower concentration (1 mg mL-1) and the other IP markers, as well as oxidative stress markers analysed. In conclusion, our findings suggest a potential role of WB in the modulation of cell barrier integrity. This modulation process could be attributed to an increase in claudin-1 expression and a reduction in 8-OHdG. Further studies should be performed to corroborate the results obtained. In addition, since the effects were observed at doses of WB achievable with the diet, these findings should be substantiated also through in vivo approaches.
Collapse
Affiliation(s)
- Mirko Marino
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Samuele Venturi
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Marco Rendine
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Marisa Porrini
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Claudio Gardana
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | | | - Cristian Del Bo'
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| | - Patrizia Riso
- Università degli Studi di Milano, DeFENS - Department of Food, Environmental and Nutritional Sciences, Via Celoria 2, 20133 Milano, Italy.
| |
Collapse
|
157
|
Choi SH, Eom JY, Kim HJ, Seo W, Kwun HJ, Kim DK, Kim J, Cho YE. Aloe-derived nanovesicles attenuate inflammation and enhance tight junction proteins for acute colitis treatment. Biomater Sci 2023; 11:5490-5501. [PMID: 37367827 DOI: 10.1039/d3bm00591g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Inflammatory bowel disease (IBD) is a chronic recurrent inflammatory disease of the digestive tract that causes pain and weight loss and also increases the risk of colon cancer. Inspired by the benefits of plant-derived nanovesicles and aloe, we herein report aloe-derived nanovesicles, including aloe vera-derived nanovesicles (VNVs), aloe arborescens-derived nanovesicles (ANVs), and aloe saponaria-derived nanovesicles (SNVs) and evaluate their therapeutic potential and molecular mechanisms in a dextran sulfate sodium (DSS)-induced acute experimental colitis mouse model. Aloe-derived nanovesicles not only facilitate markedly reduced DSS-induced acute colonic inflammation, but also enable the restoration of tight junction (TJ) and adherent junction (AJ) proteins to prevent gut permeability in DSS-induced acute colonic injury. These therapeutic effects are ascribed to the anti-inflammatory and anti-oxidant effects of aloe-derived nanovesicles. Therefore, aloe-derived nanovesicles are a safe treatment option for IBD.
Collapse
Affiliation(s)
- Sang-Hun Choi
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea.
| | - Jung-Young Eom
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Hyun-Jin Kim
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea.
| | - Wonhyo Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Hyo-Jung Kwun
- Department of Veterinary Pathology, College of Veterinary Medicine, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Do-Kyun Kim
- Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Jihoon Kim
- Division of Biological Science and Technology, Yonsei University, Wonju 26493, Republic of Korea.
| | - Young-Eun Cho
- Department of Food and Nutrition, Andong National University, Andong 36729, Republic of Korea.
| |
Collapse
|
158
|
García-Díez E, López-Oliva ME, Perez-Vizcaino F, Pérez-Jiménez J, Ramos S, Martín MÁ. Dietary Supplementation with a Cocoa-Carob Blend Modulates Gut Microbiota and Prevents Intestinal Oxidative Stress and Barrier Dysfunction in Zucker Diabetic Rats. Antioxidants (Basel) 2023; 12:1519. [PMID: 37627514 PMCID: PMC10452029 DOI: 10.3390/antiox12081519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/27/2023] Open
Abstract
We have recently developed a cocoa-carob blend (CCB) rich in polyphenols with antidiabetic properties. In this study, we investigated whether its benefits could be related to gut health and gut microbiota (GM) composition and the likely phenolic metabolites involved. Zucker diabetic fatty rats were fed on a standard or a CCB-rich diet for 12 weeks. Intestinal barrier structure and oxidative and inflammatory biomarkers were analyzed in colonic samples. GM composition and phenolic metabolites were evaluated from feces. The results show that CCB improved mucin and tight-junction proteins and counteracted gut oxidative stress and inflammation by regulating sirtuin-1 and nuclear factor erythroid 2-related factor 2 (Nrf2) levels. CCB also modulated the composition of the GM, showing increases in Akkermansia and Bacteroides and decreases in Ruminococcus genera. Correlation analysis strengthened the associations between these genera and improved pathological variables in diabetic animals. Moreover, 12 phenolic metabolites were identified in CCB feces, being2,3-dihydroxybenzoic and 3,4,5-trihydroxybenzoic acids significantly associated with increased levels of Akkermansia and Oscillospira genera. Our findings support the potential use of CCB to prevent intestinal damage and dysbiosis in T2D, which would help to delay the progression of this pathology.
Collapse
Affiliation(s)
- Esther García-Díez
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (E.G.-D.); (J.P.-J.); (S.R.)
| | - María Elvira López-Oliva
- Departamento de Fisiología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- AFUSAN Group, Sanitary Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
| | - Francisco Perez-Vizcaino
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid, 28040 Madrid, Spain;
- CIBER de Enfermedades Respiratorias (CIBERES), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
- Instituto de Investigación Sanitaria Gregorio Marañón (IISGM), 28007 Madrid, Spain
| | - Jara Pérez-Jiménez
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (E.G.-D.); (J.P.-J.); (S.R.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Sonia Ramos
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (E.G.-D.); (J.P.-J.); (S.R.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - María Ángeles Martín
- Instituto de Ciencia y Tecnología de Alimentos y Nutrición (ICTAN-CSIC), 28040 Madrid, Spain; (E.G.-D.); (J.P.-J.); (S.R.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
159
|
Ganapathy AS, Saha K, Wang A, Arumugam P, Dharmaprakash V, Yochum G, Koltun W, Nighot M, Perdew G, Thompson TA, Ma T, Nighot P. Alpha-tocopherylquinone differentially modulates claudins to enhance intestinal epithelial tight junction barrier via AhR and Nrf2 pathways. Cell Rep 2023; 42:112705. [PMID: 37393618 PMCID: PMC10528852 DOI: 10.1016/j.celrep.2023.112705] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/25/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023] Open
Abstract
Defects in intestinal epithelial tight junctions (TJs) allow paracellular permeation of noxious luminal antigens and are important pathogenic factors in inflammatory bowel disease (IBD). We show that alpha-tocopherylquinone (TQ), a quinone-structured oxidation product of vitamin E, consistently enhances the intestinal TJ barrier by increasing barrier-forming claudin-3 (CLDN3) and reducing channel-forming CLDN2 in Caco-2 cell monolayers (in vitro), mouse models (in vivo), and surgically resected human colons (ex vivo). TQ reduces colonic permeability and ameliorates colitis symptoms in multiple colitis models. TQ, bifunctionally, activates both aryl hydrocarbon receptor (AhR) and nuclear factor erythroid 2-related factor 2 (Nrf2) pathways. Genetic deletion studies reveal that TQ-induced AhR activation transcriptionally increases CLDN3 via xenobiotic response element (XRE) in the CLDN3 promoter. Conversely, TQ suppresses CLDN2 expression via Nrf2-mediated STAT3 inhibition. TQ offers a naturally occurring, non-toxic intervention for enhancement of the intestinal TJ barrier and adjunct therapeutics to treat intestinal inflammation.
Collapse
Affiliation(s)
| | - Kushal Saha
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Alexandra Wang
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Priya Arumugam
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Viszwapriya Dharmaprakash
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Gregory Yochum
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Walter Koltun
- Division of Colon and Rectal Surgery, Department of Surgery, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Meghali Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Gary Perdew
- Department of Veterinary and Biomedical Sciences and the Center for Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA
| | - Todd A Thompson
- University of New Mexico College of Pharmacy, Albuquerque, NM 87131, USA
| | - Thomas Ma
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA
| | - Prashant Nighot
- Division of Gastroenterology and Hepatology, Department of Medicine, Pennsylvania State College of Medicine, Hershey, PA 17033, USA.
| |
Collapse
|
160
|
Wojciechowska O, Kujawska M. Urolithin A in Health and Diseases: Prospects for Parkinson's Disease Management. Antioxidants (Basel) 2023; 12:1479. [PMID: 37508017 PMCID: PMC10376282 DOI: 10.3390/antiox12071479] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Parkinson's disease (PD) is a chronic and progressive neurodegenerative disorder characterized by a complex pathophysiology and a range of symptoms. The prevalence increases with age, putting the ageing population at risk. Disease management includes the improvement of symptoms, the comfort of the patient's life, and palliative care. As there is currently no cure, growing evidence points towards the beneficial role of polyphenols on neurodegeneration. Numerous studies indicate the health benefits of the family of urolithins, especially urolithin A (UA). UA is a bacterial metabolite produced by dietary ellagitannins and ellagic acid. An expanding body of literature explores the involvement of the compound in mitochondrial health, and its anti-inflammatory, anti-oxidant, and anti-apoptotic properties. The review organizes the existing knowledge on the role of UA in health and diseases, emphasizing neurodegenerative diseases, especially PD. We gathered data on the potential neuroprotective effect in in vivo and in vitro models. We discussed the possible mechanisms of action of the compound and related health benefits to give a broader perspective of potential applications of UA in neuroprotective strategies. Moreover, we projected the future directions of applying UA in PD management.
Collapse
Affiliation(s)
| | - Małgorzata Kujawska
- Department of Toxicology, Poznan University of Medical Sciences, Dojazd 30, 60-631 Poznań, Poland;
| |
Collapse
|
161
|
Ghosh S, Erickson D, Chua MJ, Collins J, Jala VR. The microbial metabolite Urolithin A reduces C. difficile toxin expression and repairs toxin-induced epithelial damage. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.24.550342. [PMID: 37546803 PMCID: PMC10402075 DOI: 10.1101/2023.07.24.550342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Clostridioides difficile is a gram-positive, anaerobic, spore-forming bacterium that is responsible for antibiotic-associated pseudomembranous colitis. Clostridioides difficile infection (CDI) symptoms can range from diarrhea to life-threatening colon damage. Toxins produced by C. difficile (TcdA and TcdB) cause intestinal epithelial injury and lead to severe gut barrier dysfunction, stem cell damage, and impaired regeneration of the gut epithelium. Current treatment options for intestinal repair are limited. In this study, we demonstrate that treatment with the microbial metabolite urolithin A (UroA) attenuates CDI-induced adverse effects on the colon epithelium in a preclinical model of CDI-induced colitis. Moreover, our analysis suggests that UroA treatment protects against C. difficile-induced inflammation, disruption of gut barrier integrity, and intestinal tight junction proteins in the colon of CDI mice. Importantly, UroA treatment significantly reduced the expression and release of toxins from C. difficile, without inducing bacterial cell death. These results indicate the direct regulatory effects of UroA on bacterial gene regulation. Overall, our findings reveal a novel aspect of UroA activities, as it appears to act at both the bacterial and host levels to protect against CDI-induced colitis pathogenesis. This research sheds light on a promising avenue for the development of novel treatments for C. difficile infection.
Collapse
Affiliation(s)
- Sweta Ghosh
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
- UofL-Brown Cancer Center, Louisville, KY, USA
| | - Daniel Erickson
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - Michelle J Chua
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
| | - James Collins
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
- Center for Predictive Medicine, University of Louisville, Louisville, KY, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
| | - Venkatakrishna Rao Jala
- Department of Microbiology & Immunology, University of Louisville, Louisville, KY, USA
- UofL-Brown Cancer Center, Louisville, KY, USA
- Center for Microbiomics, Inflammation and Pathogenicity, University of Louisville, Louisville, KY, USA
- Center for Integrative Environmental Health Sciences, University of Louisville, Louisville, KY, USA
| |
Collapse
|
162
|
Yin Y, Martínez R, Zhang W, Estévez M. Crosstalk between dietary pomegranate and gut microbiota: evidence of health benefits. Crit Rev Food Sci Nutr 2023; 64:10009-10035. [PMID: 37335106 DOI: 10.1080/10408398.2023.2219763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Gut microbiota (GM) is an invisible organ that plays an important role in human health. Increasing evidence suggests that polyphenols in pomegranate (punicalagin, PU) could serve as prebiotics to modulate the composition and function of GM. In turn, GM transform PU into bioactive metabolites such as ellagic acid (EA) and urolithin (Uro). In this review, the interplay between pomegranate and GM is thoroughly described by unveiling a dialog in which both actors seem to affect each other's roles. In a first dialog, the influence of bioactive compounds from pomegranate on GM is described. The second act shows how the GM biotransform pomegranate phenolics into Uro. Finally, the health benefits of Uro and that related molecular mechanism are summarized and discussed. Intake of pomegranate promotes beneficial bacteria in GM (e.g. Lactobacillus spp., Bifidobacterium spp.) while reducing the growth of harmful bacteria (e.g. Bacteroides fragilis group, Clostridia). Akkermansia muciniphila, and Gordonibacter spp., among others, biotransform PU and EA into Uro. Uro contributes to strengthening intestinal barrier and reducing inflammatory processes. Yet, Uro production varies greatly among individuals and depend on GM composition. Uro-producing bacteria and precise metabolic pathways need to be further elucidated therefore contributing to personalized and precision nutrition.
Collapse
Affiliation(s)
- Yantao Yin
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| | - Remigio Martínez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
- Infectious Diseases Unit. Animal Health Department, University of Extremadura, Caceres, Spain
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mario Estévez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
163
|
Peng S, Shen L, Yu X, Zhang L, Xu K, Xia Y, Zha L, Wu J, Luo H. The role of Nrf2 in the pathogenesis and treatment of ulcerative colitis. Front Immunol 2023; 14:1200111. [PMID: 37359553 PMCID: PMC10285877 DOI: 10.3389/fimmu.2023.1200111] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 05/22/2023] [Indexed: 06/28/2023] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory bowel disease involving mainly the colorectal mucosa and submucosa, the incidence of which has been on the rise in recent years. Nuclear factor erythroid 2-related factor 2 (Nrf2), known for its key function as a transcription factor, is pivotal in inducing antioxidant stress and regulating inflammatory responses. Numerous investigations have demonstrated the involvement of the Nrf2 pathway in maintaining the development and normal function of the intestine, the development of UC, and UC-related intestinal fibrosis and carcinogenesis; meanwhile, therapeutic agents targeting the Nrf2 pathway have been widely investigated. This paper reviews the research progress of the Nrf2 signaling pathway in UC.
Collapse
Affiliation(s)
- Shuai Peng
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lei Shen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Xiaoyun Yu
- Department of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Zhang
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ke Xu
- Department of Neurology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuan Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Lanlan Zha
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Jing Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Digestive Diseases, Wuhan, China
| |
Collapse
|
164
|
Chougule PR, Sangaraju R, Patil PB, Qadri SSYH, Panpatil VV, Ghosh S, Mungamuri SK, Bhanoori M, Sinha SN. Effect of ethyl gallate and propyl gallate on dextran sulfate sodium (DSS)-induced ulcerative colitis in C57BL/6 J mice: preventive and protective. Inflammopharmacology 2023:10.1007/s10787-023-01254-5. [PMID: 37266812 DOI: 10.1007/s10787-023-01254-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 03/29/2023] [Indexed: 06/03/2023]
Abstract
OBJECTIVE AND DESIGN Inflammatory bowel disease (IBD) is an idiopathic inflammatory condition of the digestive system marked by oxidative stress, leukocyte infiltration, and elevation of inflammatory mediators. In this study, we demonstrate the protective effect of ethyl gallate (EG), a phytochemical, and propyl gallate (PG), an anti-oxidant, given through normal drinking water (DW) and copper water (CW) in various combinations, which had a positive effect on the amelioration of DSS-induced ulcerative colitis in C57BL/6 J mice. MATERIALS AND METHODS We successfully determined the levels of proinflammatory cytokines and anti-oxidant enzymes by ELISA, tracked oxidative/nitrosative stress (RO/NS) by in vivo imaging (IVIS) using L-012 chemiluminescent probe, disease activity index (DAI), and histopathological and morphometric analysis of colon in DSS-induced colitis in a model. RESULTS The results revealed that oral administration of ethyl gallate and propyl gallate at a dose of 50 mg/kg considerably reduced the severity of colitis and improved both macroscopic and microscopic clinical symptoms. The level of proinflammatory cytokines (TNF-α, IL-6, IL-1β, and IFN-γ) in colonic tissue was considerably reduced in the DSS + EG-treated and DSS + PG-treated groups, compared to the DSS alone-treated group. IVIS imaging of animals from the DSS + EG and DSS + PG-treated groups showed a highly significant decrease in RO/NS species relative to the DSS control group, with the exception of the DSS + PG/CW and DSS + EG + PG/CW-treated groups. We also observed lower levels of myeloperoxidase (MPO), nitric oxide (NO), and lipid peroxidation (LPO), and restored levels of GST and superoxide dismutase (SOD) in DSS + EG-DW/CW, DSS + PG/DW, and DSS + EG + PG/DW groups compared to DSS alone-treated group. In addition, we showed that the EG, PG, and EG + PG treatment significantly reduced the DAI score, and counteracted the body weight loss and colon shortening in mice compared to DSS alone-treated group. In this 21-day study, mice were treated daily with test substances and were challenged to DSS from day-8 to 14. CONCLUSION Our study highlights the protective effect of ethyl gallate and propyl gallate in various combinations which, in pre-clinical animals, serve as an anti-inflammatory drug against the severe form of colitis, indicating its potential for the treatment of IBD in humans. In addition, propyl gallate was investigated for the first time in this study for its anti-colitogenic effect with normal drinking water and reduced effect with copper water.
Collapse
Affiliation(s)
- Priyanka Raju Chougule
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500027, India
| | - Rajendra Sangaraju
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India
| | - Pradeep B Patil
- Animal Facility, ICMR - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India
| | - S S Y H Qadri
- Animal Facility, ICMR - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India
| | - Virendra V Panpatil
- Molecular Biology Division, National Institute of Nutrition-ICMR, Jamai-Osmania, Hyderabad, 500007, India
| | - Sudip Ghosh
- Molecular Biology Division, National Institute of Nutrition-ICMR, Jamai-Osmania, Hyderabad, 500007, India
| | - Sathish Kumar Mungamuri
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India
| | - Manjula Bhanoori
- Department of Biochemistry, Osmania University, Hyderabad, Telangana, 500027, India
| | - Sukesh Narayan Sinha
- Division of Food Safety, Indian Council of Medical Research - National Institute of Nutrition, Jamai-Osmania PO, Hyderabad, 500007, India.
| |
Collapse
|
165
|
Cui H, Han S, Dai Y, Xie W, Zheng R, Sun Y, Xia X, Deng X, Cao Y, Zhang M, Shang H. Gut microbiota and integrative traditional Chinese and western medicine in prevention and treatment of heart failure. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 117:154885. [PMID: 37302262 DOI: 10.1016/j.phymed.2023.154885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/27/2023] [Accepted: 05/15/2023] [Indexed: 06/13/2023]
Abstract
BACKGROUND Heart failure (HF) is the terminal stage of multiple cardiovascular diseases, with high mortality and morbidity. More and more studies have proved that gut microbiota may play a role in the process of HF, which is expected to become a new therapeutic target. The combination of traditional Chinese and Western medicine has vast therapeutic potential of complementation against HF. PURPOSE This manuscript expounds on the research progress of mechanisms of gut microbiota participating in the occurrence and prognosis of HF and the role of integrative traditional Chinese and Western medicine from 1987 to 2022. The combination of traditional Chinese and Western medicine in the prevention and treatment of HF from the perspective of gut microbiota has been discussed. METHODS Studies focusing on the effects and their mechanisms of gut microbiota in HF and the role of integrative traditional Chinese and Western medicine were identified and summarized, including contributions from February 1987 until August 2022. The investigation was carried out in accordance with the Preferred Reporting Items for Systematic Review and Meta-Analysis (PRISMA) guidelines. We searched PubMed, Embase, Cochrane Library, CNKI, Wanfang, and VIP databases up to April 2023 by using the relevant keywords and operators. RESULTS A total of 34 articles were finally included in this review.16 RCTs and 13 basic researches, and 3 clinical research studies involving 7 relevant outcome indicators(cardiac function evaluation index, changes in gut microbiota, inflammatory factors, metabolites of gut microbiota, serum nutritional index protein, quality of life score, intestinal permeability and all-cause mortality). Compared with healthy controls, serum TNF-α and TMAO levels were significantly higher in patients with heart failure [MD = 5.77, 95%CI(4.97, 6.56), p < 0.0001; SMD = 1.92, 95%CI(1.70, 2.14), p < 0.0001]. Escherichia coli and Thick-walled bacteria increased significantly [SMD = -0.99, 95%CI(-1.38, -0.61), p < 0.0001, SMD = 2.58, 95%CI(2.23, 2.93), p < 0.0001];The number of bacteroides and lactobacillus decreased [SMD = -2.29, 95%CI(-2.54, -2.04), p < 0.0001; SMD = -1.55, 95%CI(-1.8, -1.3), p < 0.0001]. There was no difference in bifidobacterium [SMD = 0.16, 95%CI(-0.22, 0.54), p = 0.42]. In the published literature, it is not difficult to see that most of the results are studied and proved based on animal experiments or clinical trials, involving the cellular level, while the mechanism and mode of action of the molecular biology of traditional Chinese medicine are less elaborated, which is related to the characteristics of multi-components and multi-targets of traditional Chinese medicine. The above are the shortcomings of published literature, which can also be the direction of future research. CONCLUSION Heart failure patients have decreased beneficial bacteria such as Bacillus mimics and Lactobacillus in the intestinal flora and increased harmful flora like thick-walled flora. And increase the inflammatory response of the body and the expression of trimethylamine oxide (TMAO) in the serum. And The prevention and treatment of integrative traditional Chinese and Western medicine against heart failure based on gut microbiota and its metabolites is a promising research direction.
Collapse
Affiliation(s)
- Herong Cui
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China; School of Life Sciences, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Songjie Han
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yanan Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Wei Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Rui Zheng
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Yang Sun
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Xiaofeng Xia
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaopeng Deng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yaru Cao
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Mei Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China.
| | - Hongcai Shang
- Key Laboratory of Chinese Internal Medicine of the Ministry of Education, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China.
| |
Collapse
|
166
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 124] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
167
|
Ma M, Wang Y, Fan S, Huang Y, Su X, Lu C. Urolithin A Alleviates Colitis in Mice by Improving Gut Microbiota Dysbiosis, Modulating Microbial Tryptophan Metabolism, and Triggering AhR Activation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7710-7722. [PMID: 37167350 DOI: 10.1021/acs.jafc.3c00830] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Urolithin A (UroA) is a microbial metabolite derived from ellagitannins and ellagic acid with good bioavailability. In this study, we explored the anticolitis activity of UroA and clarified the mechanism by 16S rDNA sequencing and metabonomics. UroA alleviated dextran sulfate sodium (DSS)-induced colitis in mice, characterized by a decreased disease activity index, increased colon length, and improved colonic histopathological lesions, along with inhibited phosphorylation of the mitogen-activated protein kinase signaling pathway. In addition, UroA improved gut microbiota dysbiosis and modulated the microbiota metabolome. Furthermore, targeted metabolomics focused on tryptophan catabolites showed that UroA significantly increased the production of indole-3-aldehyde (IAld) and subsequently led to increased colonic expression of aryl hydrocarbon receptor (AhR) and promoted the serum content of IL-22 in mice with colitis. Collectively, our data identified a novel anticolitis mechanism of UroA by improving gut microbiota dysbiosis, modulating microbial tryptophan metabolism, promoting IAld production, and triggering AhR/IL-22 axis activation. However, a limitation noted in this study is that these beneficial effects of UroA were found at 50 μM in vitro and 20 mg/kg in vivo, which were nonphysiological concentrations.
Collapse
Affiliation(s)
- Mingxia Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Yanxin Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Siqing Fan
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo City 315832, China
| | - Yumeng Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Xiurong Su
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| | - Chenyang Lu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo City 315211, China
- School of Marine Science, Ningbo University, Ningbo City 315832, China
| |
Collapse
|
168
|
Fan P, Meng H, Hao W, Zheng Y, Li H, Zhang Z, Du L, Guo X, Wang D, Wang Y, Wu H. Cardamonin targets KEAP1/NRF2 signaling for protection against atherosclerosis. Food Funct 2023; 14:4905-4920. [PMID: 37157847 DOI: 10.1039/d3fo00967j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Atherosclerosis (AS)-induced cardiovascular disease is a leading cause of death worldwide. To date, there is still a lack of effective approaches for AS intervention. Cardamonin (CAD) is a bioactive food component, but its effect on AS is unknown. In this work, CAD was investigated for its effect on AS using low-density lipoprotein receptor knockout mice and tumor necrosis factor-alpha (TNF-α)-stimulated endothelial cells (ECs). After a 12-week intervention, CAD was found to significantly prevent AS formation in the aortic root and aortic tree, reduce the necrotic core area, and inhibit aortic inflammation and oxidative stress. Moreover, CAD quenched TNF-α-provoked inflammation and oxidative stress in ECs. RNA-sequencing identified nuclear factor erythroid-2 related factor 2 (NFE2L2, NRF2)/heme oxidase 1 (HO1) signaling to be drastically activated by CAD. CAD is a known activator of the aryl hydrocarbon receptor (AHR) which is a transcription factor of the NFE2L2 gene. Surprisingly, AHR was not required for CAD's action on the activation of NRF2/HO1 signaling since AHR gene silencing did not reverse this effect. Furthermore, a molecular docking assay showed a strong binding potential of CAD to the Kelch domain of the Kelch-like ECH-associated protein 1 (KEAP1) which sequesters NRF2 in the cytoplasm. Both CAD and the Kelch domain inhibitor Ki696 promoted NRF2 nuclear translocation, whereas the combination of CAD and Ki696 did not yield a greater effect compared with either CAD or Ki696, confirming the interaction of CAD with the Kelch domain. This work provides an experimental basis for CAD as a novel and effective bioactive food component in future AS interventions.
Collapse
Affiliation(s)
- Pengfei Fan
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Huali Meng
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Wenhao Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Yan Zheng
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Hui Li
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Zhiyue Zhang
- NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology (Ministry of Education), Department of Pharmaceutics, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China
| | - Lei Du
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Xin Guo
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| | - Dongliang Wang
- Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), 74 Zhongshan Road II, Guangzhou 510080, China
| | - Yunyan Wang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine, Shandong University, 107 Wenhuaxi Rd., Jinan, Shandong 250012, China.
| | - Hao Wu
- Department of Nutrition and Food Hygiene, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 Wenhuaxi Rd., Jinan, Shandong 250012, China.
- Research Center of Translational Medicine, Jinan Central Hospital, Shandong University, 105 Jiefang Rd., Jinan, Shandong 250013, China
| |
Collapse
|
169
|
Yan C, Hu W, Tu J, Li J, Liang Q, Han S. Pathogenic mechanisms and regulatory factors involved in alcoholic liver disease. J Transl Med 2023; 21:300. [PMID: 37143126 PMCID: PMC10158301 DOI: 10.1186/s12967-023-04166-8] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 04/27/2023] [Indexed: 05/06/2023] Open
Abstract
Alcoholism is a widespread and damaging behaviour of people throughout the world. Long-term alcohol consumption has resulted in alcoholic liver disease (ALD) being the leading cause of chronic liver disease. Many metabolic enzymes, including alcohol dehydrogenases such as ADH, CYP2E1, and CATacetaldehyde dehydrogenases ALDHsand nonoxidative metabolizing enzymes such as SULT, UGT, and FAEES, are involved in the metabolism of ethanol, the main component in alcoholic beverages. Ethanol consumption changes the functional or expression profiles of various regulatory factors, such as kinases, transcription factors, and microRNAs. Therefore, the underlying mechanisms of ALD are complex, involving inflammation, mitochondrial damage, endoplasmic reticulum stress, nitrification, and oxidative stress. Moreover, recent evidence has demonstrated that the gut-liver axis plays a critical role in ALD pathogenesis. For example, ethanol damages the intestinal barrier, resulting in the release of endotoxins and alterations in intestinal flora content and bile acid metabolism. However, ALD therapies show low effectiveness. Therefore, this review summarizes ethanol metabolism pathways and highly influential pathogenic mechanisms and regulatory factors involved in ALD pathology with the aim of new therapeutic insights.
Collapse
Affiliation(s)
- Chuyun Yan
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Wanting Hu
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Jinqi Tu
- The First Affiliated Hospital of Wannan Medical College, Yijishan Hospital of Wannan Medical College of Wuhu, Wannan Medical College, Wuhu, 241000, Anhui, China
| | - Jinyao Li
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Qionglin Liang
- MOE Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology, Key Lab of Microanalytical Methods & Instrumentation, Department of Chemistry, Center for Synthetic and Systems Biology, Tsinghua University, Beijing, 100084, China
| | - Shuxin Han
- Department of Hepatobiliary Surgery, Anhui Province Key Laboratory of Hepatopancreatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China.
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China.
| |
Collapse
|
170
|
Yang Q, Wang B, Zheng Q, Li H, Meng X, Zhou F, Zhang L. A Review of Gut Microbiota-Derived Metabolites in Tumor Progression and Cancer Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207366. [PMID: 36951547 PMCID: PMC10214247 DOI: 10.1002/advs.202207366] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Indexed: 05/27/2023]
Abstract
Gut microbiota-derived metabolites are key hubs connecting the gut microbiome and cancer progression, primarily by remodeling the tumor microenvironment and regulating key signaling pathways in cancer cells and multiple immune cells. The use of microbial metabolites in radiotherapy and chemotherapy mitigates the severe side effects from treatment and improves the efficacy of treatment. Immunotherapy combined with microbial metabolites effectively activates the immune system to kill tumors and overcomes drug resistance. Consequently, various novel strategies have been developed to modulate microbial metabolites. Manipulation of genes involved in microbial metabolism using synthetic biology approaches directly affects levels of microbial metabolites, while fecal microbial transplantation and phage strategies affect levels of microbial metabolites by altering the composition of the microbiome. However, some microbial metabolites harbor paradoxical functions depending on the context (e.g., type of cancer). Furthermore, the metabolic effects of microorganisms on certain anticancer drugs such as irinotecan and gemcitabine, render the drugs ineffective or exacerbate their adverse effects. Therefore, a personalized and comprehensive consideration of the patient's condition is required when employing microbial metabolites to treat cancer. The purpose of this review is to summarize the correlation between gut microbiota-derived metabolites and cancer, and to provide fresh ideas for future scientific research.
Collapse
Affiliation(s)
- Qiqing Yang
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Bin Wang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Qinghui Zheng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Heyu Li
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
| | - Xuli Meng
- General SurgeryCancer CenterDepartment of Breast SurgeryZhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College)Hangzhou310058China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhou310058China
- Center for Infection & Immunity of International Institutes of Medicine The Fourth Affiliated HospitalZhejiang University School of MedicineYiwu322000China
- Cancer CenterZhejiang UniversityHangzhou310058China
| |
Collapse
|
171
|
Pinto CJG, Ávila-Gálvez MÁ, Lian Y, Moura-Alves P, Nunes Dos Santos C. Targeting the aryl hydrocarbon receptor by gut phenolic metabolites: A strategy towards gut inflammation. Redox Biol 2023; 61:102622. [PMID: 36812782 PMCID: PMC9958510 DOI: 10.1016/j.redox.2023.102622] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/25/2023] [Accepted: 01/30/2023] [Indexed: 02/04/2023] Open
Abstract
The Aryl Hydrocarbon Receptor (AHR) is a ligand-dependent transcription factor able to control complex transcriptional processes in several cell types, which has been correlated with various diseases, including inflammatory bowel diseases (IBD). Numerous studies have described different compounds as ligands of this receptor, like xenobiotics, natural compounds, and several host-derived metabolites. Dietary (poly)phenols have been studied regarding their pleiotropic activities (e.g., neuroprotective and anti-inflammatory), but their AHR modulatory capabilities have also been considered. However, dietary (poly)phenols are submitted to extensive metabolism in the gut (e.g., gut microbiota). Thus, the resulting gut phenolic metabolites could be key players modulating AHR since they are the ones that reach the cells and may exert effects on the AHR throughout the gut and other organs. This review aims at a comprehensive search for the most abundant gut phenolic metabolites detected and quantified in humans to understand how many have been described as AHR modulators and what could be their impact on inflammatory gut processes. Even though several phenolic compounds have been studied regarding their anti-inflammatory capacities, only 1 gut phenolic metabolite, described as AHR modulator, has been evaluated on intestinal inflammatory models. Searching for AHR ligands could be a novel strategy against IBD.
Collapse
Affiliation(s)
- Catarina J G Pinto
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - María Ángeles Ávila-Gálvez
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal
| | - Yilong Lian
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom
| | - Pedro Moura-Alves
- IBMC, Instituto de Biologia Molecular e Celular, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; I3S, Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal; Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, OX3 7DQ, Oxford, United Kingdom.
| | - Cláudia Nunes Dos Santos
- iNOVA4Health, NOVA Medical School
- Faculdade de Ciências Médicas, NMS
- FCM, Universidade Nova de Lisboa, Lisboa, Portugal; iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, Oeiras, Portugal.
| |
Collapse
|
172
|
Alexova R, Alexandrova S, Dragomanova S, Kalfin R, Solak A, Mehan S, Petralia MC, Fagone P, Mangano K, Nicoletti F, Tancheva L. Anti-COVID-19 Potential of Ellagic Acid and Polyphenols of Punica granatum L. Molecules 2023; 28:molecules28093772. [PMID: 37175181 PMCID: PMC10180134 DOI: 10.3390/molecules28093772] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
Pomegranate (Punica granatum L.) is a rich source of polyphenols, including ellagitannins and ellagic acid. The plant is used in traditional medicine, and its purified components can provide anti-inflammatory and antioxidant activity and support of host defenses during viral infection and recovery from disease. Current data show that pomegranate polyphenol extract and its ellagitannin components and metabolites exert their beneficial effects by controlling immune cell infiltration, regulating the cytokine secretion and reactive oxygen and nitrogen species production, and by modulating the activity of the NFκB pathway. In vitro, pomegranate extracts and ellagitannins interact with and inhibit the infectivity of a range of viruses, including SARS-CoV-2. In silico docking studies show that ellagitannins bind to several SARS-CoV-2 and human proteins, including a number of proteases. This warrants further exploration of polyphenol-viral and polyphenol-host interactions in in vitro and in vivo studies. Pomegranate extracts, ellagitannins and ellagic acid are promising agents to target the SARS-CoV-2 virus and to restrict the host inflammatory response to viral infections, as well as to supplement the depleted host antioxidant levels during the stage of recovery from COVID-19.
Collapse
Affiliation(s)
- Ralitza Alexova
- Department of Medical Chemistry and Biochemistry, Medical Faculty, Medical University-Sofia, Zdrave Str. 2, 1431 Sofia, Bulgaria
| | - Simona Alexandrova
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
| | - Stela Dragomanova
- Department of Pharmacology, Toxicology and Pharmacotherapy, Faculty of Pharmacy, Medical University, Marin Drinov Str. 55, 9002 Varna, Bulgaria
| | - Reni Kalfin
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
- Department of Healthcare, South-West University "Neofit Rilski", Ivan Mihailov Str. 66, 2700 Blagoevgrad, Bulgaria
| | - Ayten Solak
- Institute of Cryobiology and Food Technologies, Cherni Vrah Blvd. 5, 1407 Sofia, Bulgaria
| | - Sidharth Mehan
- Department of Pharmacology, Division of Neuroscience, ISF College of Pharmacy, Moga 142001, India
| | - Maria Cristina Petralia
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy
| | - Paolo Fagone
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Katia Mangano
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Ferdinando Nicoletti
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 89, 95123 Catania, Italy
| | - Lyubka Tancheva
- Department of Biological Effects of Natural and Synthetic Substances, Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. Georgi Bonchev Str., Block 23, 1113 Sofia, Bulgaria
| |
Collapse
|
173
|
Zhang M, Cui S, Mao B, Zhang Q, Zhao J, Tang X, Chen W. Urolithin A Produced by Novel Microbial Fermentation Possesses Anti-aging Effects by Improving Mitophagy and Reducing Reactive Oxygen Species in Caenorhabditis elegans. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6348-6357. [PMID: 37040550 DOI: 10.1021/acs.jafc.3c01062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Urolithin, intestinal microbiota metabolites of ellagitannin-rich foods, exhibit anti-aging activities. However, urolithin A is significantly superior to other types of urolithin with regard to this anti-aging function. This study aimed to screen edible urolithin A-producing strains of bacteria and explore the corresponding anti-aging efficacy of fermented products produced by these strains using Caenorhabditis elegans as a model. Our results showed that the Lactobacillus plantarum strains CCFM1286, CCFM1290, and CCFM1291 converted ellagitannin to produce urolithin A; the corresponding yields of urolithin A from these strains were 15.90 ± 1.46, 24.70 ± 0.82, and 32.01 ± 0.97 μM, respectively. Furthermore, it was found that the pomegranate juice extracts fermented by the CCFM1286, CCFM1290, and CCFM1291 strains of L. plantarum could extend lifespan by 26.04 ± 0.12, 32.05 ± 0.14, and 46.33 ± 0.12%, respectively, by improving mitochondrial function and/or reducing reactive oxygen species levels. These findings highlight the potential application of this fermentation in the subsequent development of anti-aging products.
Collapse
Affiliation(s)
- Mengwei Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Shumao Cui
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Bingyong Mao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Qiuxiang Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Xin Tang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- School of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi, Jiangsu 214122, P. R China
| |
Collapse
|
174
|
Yan B, Mao X, Hu S, Wang S, Liu X, Sun J. Spermidine protects intestinal mucosal barrier function in mice colitis via the AhR/Nrf2 and AhR/STAT3 signaling pathways. Int Immunopharmacol 2023; 119:110166. [PMID: 37104918 DOI: 10.1016/j.intimp.2023.110166] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/02/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023]
Abstract
BACKGROUND Aryl hydrocarbon receptor (AhR) activation promotes intestinal barrier repair and enhances the gut mucosal barrier function in inflammatory bowel diseases (IBD). Spermidine is beneficial in several murine models of IBD and may affect AhR activity. However, the precise effects of spermidine on the intestinal barrier and AhR remain unclear. This study was designed to investigate whether spermidine affects AhR and gut barrier function in IBD models as well as, its underlying mechanism. METHODS We used dextran sulfate sodium (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced mice, as well as, Caco2 cells incubated with TNF-α and IFN-γ to establish multiple IBD models, followed by spermidine intervention. Alcian blue/Periodic acid-Schiff (AB/PAS) staining, Fluorescein isothiocyanate (FITC)-dextran permeability assay, transepithelial electrical resistance (TER), tight junction protein (TJs) expression, and 16S rRNA scope in situ hybridization were performed to assess intestinal barrier function. AhR expression and the associated pathways were measured. AhR-targeted adeno-associated virus (AAV) and siRNA were used to explore the related molecular mechanisms. RESULTS Spermidine significantly attenuated the increased intestinal permeability, decreased TER, abnormal distribution of TJs in colitis, and bacterial translocation from the gut tract. Additionally, it significantly increased AhR and Nrf2 expression and inhibited STAT3 phosphorylation. However, the protective effects of spermidine and the related alterations in pathway proteins were largely abolished by the specific inhibition of AhR. CONCLUSION Our study demonstrated that spermidine rescues intestinal barrier defects in mice with colitis via the AhR-Nrf2 and AhR-STAT3 pathways, providing a potential therapeutic agent for IBD and other conditions associated with dysregulated gut barrier function.
Collapse
Affiliation(s)
- Bing Yan
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie Mao
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shasha Hu
- Department of Anatomy and Physiology, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Shimin Wang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaochen Liu
- Department of Gastroenterology, the Third Affiliated Hospital, Liaoning University of Traditional Chinese Medicine, Shenyang, China.
| | - Jing Sun
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
175
|
Fan N, Fusco JL, Rosenberg DW. Antioxidant and Anti-Inflammatory Properties of Walnut Constituents: Focus on Personalized Cancer Prevention and the Microbiome. Antioxidants (Basel) 2023; 12:982. [PMID: 37237848 PMCID: PMC10215340 DOI: 10.3390/antiox12050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 04/13/2023] [Accepted: 04/18/2023] [Indexed: 05/28/2023] Open
Abstract
Walnuts have been lauded as a 'superfood', containing a remarkable array of natural constituents that may have additive and/or synergistic properties that contribute to reduced cancer risk. Walnuts are a rich source of polyunsaturated fatty acids (PUFAs: alpha-linolenic acid, ALA), tocopherols, antioxidant polyphenols (including ellagitannins), and prebiotics, including fiber (2 g/oz). There is a growing body of evidence that walnuts may contribute in a positive way to the gut microbiome, having a prebiotic potential that promotes the growth of beneficial bacteria. Studies supporting this microbiome-modifying potential include both preclinical cancer models as well as several promising human clinical trials. Mediated both directly and indirectly via its actions on the microbiome, many of the beneficial properties of walnuts are related to a range of anti-inflammatory properties, including powerful effects on the immune system. Among the most potent constituents of walnuts are the ellagitannins, primarily pedunculagin. After ingestion, the ellagitannins are hydrolyzed at low pH to release ellagic acid (EA), a non-flavonoid polyphenolic that is subsequently metabolized by the microbiota to the bioactive urolithins (hydroxydibenzo[b,d]pyran-6-ones). Several urolithins, including urolithin A, reportedly have potent anti-inflammatory properties. These properties of walnuts provide the rationale for including this tree nut as part of a healthy diet for reducing overall disease risk, including colorectal cancer. This review considers the latest information regarding the potential anti-cancer and antioxidant properties of walnuts and how they may be incorporated into the diet to provide additional health benefits.
Collapse
Affiliation(s)
| | | | - Daniel W. Rosenberg
- Center for Molecular Oncology, University of Connecticut Health Center, Farmington, CT 06030-3101, USA
| |
Collapse
|
176
|
Kwon C, Ediriweera MK, Kim Cho S. Interplay between Phytochemicals and the Colonic Microbiota. Nutrients 2023; 15:nu15081989. [PMID: 37111207 PMCID: PMC10145007 DOI: 10.3390/nu15081989] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/08/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Phytochemicals are natural compounds found in food ingredients with a variety of health-promoting properties. Phytochemicals improve host health through their direct systematic absorption into the circulation and modulation of the gut microbiota. The gut microbiota increases the bioactivity of phytochemicals and is a symbiotic partner whose composition and/or diversity is altered by phytochemicals and affects host health. In this review, the interactions of phytochemicals with the gut microbiota and their impact on human diseases are reviewed. We describe the role of intestinal microbial metabolites, including short-chain fatty acids, amino acid derivatives, and vitamins, from a therapeutic perspective. Next, phytochemical metabolites produced by the gut microbiota and the therapeutic effect of some selected metabolites are reviewed. Many phytochemicals are degraded by enzymes unique to the gut microbiota and act as signaling molecules in antioxidant, anti-inflammatory, anticancer, and metabolic pathways. Phytochemicals can ameliorate diseases by altering the composition and/or diversity of the gut microbiota, and they increase the abundance of some gut microbiota that produce beneficial substances. We also discuss the importance of investigating the interactions between phytochemicals and gut microbiota in controlled human studies.
Collapse
Affiliation(s)
- Chohee Kwon
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
| | - Meran Keshawa Ediriweera
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Colombo, Colombo 008, Sri Lanka
| | - Somi Kim Cho
- Department of Environmental Biotechnology, Graduate School of Industry, Jeju National University, Jeju 63243, Republic of Korea
- Interdisciplinary Graduate Program in Advanced Convergence Technology and Science, Jeju National University, Jeju 63243, Republic of Korea
| |
Collapse
|
177
|
Li L, Peng P, Ding N, Jia W, Huang C, Tang Y. Oxidative Stress, Inflammation, Gut Dysbiosis: What Can Polyphenols Do in Inflammatory Bowel Disease? Antioxidants (Basel) 2023; 12:antiox12040967. [PMID: 37107341 PMCID: PMC10135842 DOI: 10.3390/antiox12040967] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 04/29/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a long-term, progressive, and recurrent intestinal inflammatory disorder. The pathogenic mechanisms of IBD are multifaceted and associated with oxidative stress, unbalanced gut microbiota, and aberrant immune response. Indeed, oxidative stress can affect the progression and development of IBD by regulating the homeostasis of the gut microbiota and immune response. Therefore, redox-targeted therapy is a promising treatment option for IBD. Recent evidence has verified that Chinese herbal medicine (CHM)-derived polyphenols, natural antioxidants, are able to maintain redox equilibrium in the intestinal tract to prevent abnormal gut microbiota and radical inflammatory responses. Here, we provide a comprehensive perspective for implementing natural antioxidants as potential IBD candidate medications. In addition, we demonstrate novel technologies and stratagems for promoting the antioxidative properties of CHM-derived polyphenols, including novel delivery systems, chemical modifications, and combination strategies.
Collapse
Affiliation(s)
- Lei Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Peilan Peng
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Ning Ding
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wenhui Jia
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Canhua Huang
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
- West China School of Basic Medical Sciences and Forensic Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital and Sichuan University and Collaborative Innovation Center for Biotherapy, Chengdu 610041, China
| | - Yong Tang
- School of Health and Rehabilitation, Chengdu University of Traditional Chinese Medicine, Chengdu 610075, China
| |
Collapse
|
178
|
Akoth M, Odhiambo J, Omolo B. Genome-wide association testing in malaria studies in the presence of overdominance. Malar J 2023; 22:119. [PMID: 37038187 PMCID: PMC10084622 DOI: 10.1186/s12936-023-04533-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 03/15/2023] [Indexed: 04/12/2023] Open
Abstract
BACKGROUND In human genetics, heterozygote advantage (heterosis) has been detected in studies that focused on specific genes but not in genome-wide association studies (GWAS). For example, heterosis is believed to confer resistance to certain strains of malaria in patients heterozygous for the sickle-cell gene, haemoglobin S (HbS). Yet the power of allelic tests can be substantially diminished by heterosis. Since GWAS (and haplotype-associations) also utilize allelic tests, it is unclear to what degree GWAS could underachieve because heterosis is ignored. METHODS In this study, a two-step approach to genetic association testing in malaria studies in a GWAS setting that may enhance the power of the tests was proposed, by identifying the underlying genetic model first before applying the association tests. Generalized linear models for dominant, recessive, additive, and heterotic effects were fitted and model selection was performed. This was achieved via tests of significance using the MAX and allelic tests, noting the minimum p-values across all the models and the proportion of tests that a given genetic model was deemed the best. An example dataset, based on 17 SNPs, from a robust genetic association study and simulated genotype datasets, were used to illustrate the method. Case-control genotype data on malaria from Kenya and Gambia were used for validation. RESULTS AND CONCLUSION Results showed that the allelic test returned some false negatives under the heterosis model, suggesting reduced power in testing genetic association. Disparities were observed for some chromosomes in the Kenyan and Gambian datasets, including the sex chromosomes. Thus, GWAS and haplotype associations should be treated with caution, unless the underlying genetic model had been determined.
Collapse
Affiliation(s)
- Morine Akoth
- Strathmore Institute of Mathematical Sciences, Strathmore University, Ole Sangale Road, Nairobi, Kenya
| | - John Odhiambo
- Strathmore Institute of Mathematical Sciences, Strathmore University, Ole Sangale Road, Nairobi, Kenya
| | - Bernard Omolo
- Strathmore Institute of Mathematical Sciences, Strathmore University, Ole Sangale Road, Nairobi, Kenya
- Division of Mathematics & Computer Science, University of South Carolina-Upstate, 800 University Way, Spartanburg, USA
- School of Public Health, Faculty of Health Science, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
179
|
Wang J, Yan Y, Si H, Li J, Zhao Y, Gao T, Pi J, Zhang R, Chen R, Chen W, Zheng Y, Jiang M. The effect of real-ambient PM2.5 exposure on the lung and gut microbiomes and the regulation of Nrf2. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 254:114702. [PMID: 36950983 DOI: 10.1016/j.ecoenv.2023.114702] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/20/2023] [Accepted: 02/26/2023] [Indexed: 06/18/2023]
Abstract
The influence of air pollution on human health has sparked widespread concerns across the world. Previously, we found that exposure to ambient fine particulate matter (PM2.5) in our "real-ambient exposure" system can result in reduced lung function. However, the mechanism of organ-specific toxicity is still not fully elucidated. The balance of the microbiome contributes to maintaining lung and gut health, but the changes in the microbiome under PM2.5 exposure are not fully understood. Recently, crosstalk between nuclear factor E2-related factor 2 (Nrf2) and the microbiome was reported. However, it is unclear whether Nrf2 affects the lung and gut microbiomes under PM2.5 exposure. In this study, wild-type (WT) and Nrf2-/- (KO) mice were exposed to filtered air (FA) and real ambient PM2.5 (PM) in the " real-ambient exposure" system to examine changes in the lung and gut microbiomes. Here, our data suggested microbiome dysbiosis in lung and gut of KO mice under PM2.5 exposure, and Nrf2 ameliorated the microbiome disorder. Our study demonstrated the detrimental impacts of PM2.5 on the lung and gut microbiome by inhaled exposure to air pollution and supported the protective role of Nrf2 in maintaining microbiome homeostasis under PM2.5 exposure.
Collapse
Affiliation(s)
- Jianxin Wang
- School of Public Health, Qingdao University, Qingdao, China
| | - Yongwei Yan
- Key Laboratory of Maricultural Organism Disease Control, Ministry of Agriculture and Rural Affairs, Yellow Sea fisheries research institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong, China
| | - Honglin Si
- School of Public Health, Qingdao University, Qingdao, China
| | - Jianyu Li
- School of Public Health, Qingdao University, Qingdao, China
| | - Yanjie Zhao
- School of Public Health, Qingdao University, Qingdao, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao, China
| | - Jingbo Pi
- School of Public Health, China Medical University, Shenyang, China
| | - Rong Zhang
- Department of Toxicology, School of Public Health, Hebei Medical University, Shijiazhuang, China
| | - Rui Chen
- School of Public Health, Capital Medical University, Beijing, China
| | - Wen Chen
- Department of Toxicology, School of Public Health, Sun Yaseen University, Guangzhou, China
| | - Yuxin Zheng
- School of Public Health, Qingdao University, Qingdao, China
| | - Menghui Jiang
- School of Public Health, Qingdao University, Qingdao, China.
| |
Collapse
|
180
|
Mandalari G, Gervasi T, Rosenberg DW, Lapsley KG, Baer DJ. Effect of Nuts on Gastrointestinal Health. Nutrients 2023; 15:1733. [PMID: 37049572 PMCID: PMC10096892 DOI: 10.3390/nu15071733] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Nuts are high nutrient-dense foods containing healthy lipids, dietary fiber, and bioactive phytochemicals, including vitamins and minerals. Although the beneficial effect of nut consumption on different chronic diseases has been well documented, especially in relation to their cardiometabolic benefits, less scientific evidence is available on their possible beneficial effects on gastrointestinal health. In this narrative review, we summarize the most important findings and new research perspectives in relation to the importance of nut consumption on gastrointestinal health. The integrity of the cell wall structure, cell size and particle size after mastication are known to play a crucial role in energy, nutrient and bioactive release from nuts during digestion, therefore affecting bioaccessibility. Other mechanisms, such as cell wall composition, thickness and porosity, as well as stability of the membranes surrounding the oil bodies within the cell, are also important for energy extraction. As the undigested nutrients and phytochemicals are delivered to the colon, effects on gut microbiota composition are predicted. Although the overall effect of nut consumption on microbial alpha- and beta-diversity has been inconsistent, some scientific evidence suggests an increase in fecal butyrate after almond consumption, and a beneficial role of walnuts on the prevention of ulcerative colitis and protection against the development of gastric mucosal lesions.
Collapse
Affiliation(s)
- Giuseppina Mandalari
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Viale Ferdinando Stagno d’Alcontres 31, 98166 Messina, Italy
| | - Teresa Gervasi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98125 Messina, Italy
| | - Daniel W. Rosenberg
- Centre for Molecular Oncology, University of Connecticut Health Center, Farmington, CT 06030-3101, USA
| | | | - David J. Baer
- USDA, Agricultural Research Service, Beltsville Human Nutrition Research Center, Beltsville, MD 20705, USA
| |
Collapse
|
181
|
Sun W, Chen Y, Wang L, Wang Z, Liu S, Zhang M, Liu Y, Li Q, Zhang H. Gram-scale preparation of quercetin supramolecular nanoribbons for intestinal inflammatory diseases by oral administration. Biomaterials 2023; 295:122039. [PMID: 36791522 DOI: 10.1016/j.biomaterials.2023.122039] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 01/20/2023] [Accepted: 02/08/2023] [Indexed: 02/11/2023]
Abstract
Gastrointestinal (GI) tract, which possesses the largest surface area of mucosa in the body, is easily suffered from inflammatory damages under the exposure of external stimulations. Excessive reactive oxygen species (ROS) production and continuous oxidative stress in intestines can elicit local mucosal injury, accelerate mucosal ulceration, and amplify the inflammatory response. Thereby, antioxidant therapy is a potential strategy against intestinal inflammatory diseases. Herein, we demonstrate the gram-scale preparation of quercetin supramolecular nanoribbons (SNRs) by using free quercetin molecules as the sole building block for preventing and treating intestinal inflammatory diseases. Unlike current clinical medicines, which mainly confront with poor response and severe adverse effects via bloodstream delivery, our quercetin SNRs possess an excellent antioxidant activity in the harsh environments of GI tract, a relative long retention time in GI tract, an admirable metabolism in GI tract without burdening other organs, and a specific adhesion to the inflamed intestinal epithelium via electrostatic interactions. These advantages strongly guarantee the applications of quercetin SNRs as oral medicines for intestinal inflammatory diseases. After establishing the models of intestinal inflammatory diseases caused by irradiation and drug stimulations, our quercetin SNRs exhibit the promising protective and therapeutic effects for radiation-induced acute enteritis and dextran sulfate sodium (DSS)-induced acute colitis. Because the super easy and fast preparation procedure and the nearly 100% loading capacity of quercetin SNRs, the current work provides a supramolecular nanomedicine with great clinical translation potential against intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Wei Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yingxuan Chen
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130021, PR China
| | - Liang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ze Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Shuwei Liu
- Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China
| | - Mengzhu Zhang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130021, PR China
| | - Yi Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun, 130021, PR China.
| | - Hao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China; Joint Laboratory of Opto-Functional Theranostics in Medicine and Chemistry, The First Hospital of Jilin University, Changchun, 130021, PR China; Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001, PR China
| |
Collapse
|
182
|
Chang Y, Wu X, Lu S, Du J, Long Y, Zhu Y, Qin H. Engineered procyanidin-Fe nanoparticle alleviates intestinal inflammation through scavenging ROS and altering gut microbiome in colitis mice. Front Chem 2023; 11:1089775. [PMID: 37065822 PMCID: PMC10090317 DOI: 10.3389/fchem.2023.1089775] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 03/21/2023] [Indexed: 03/31/2023] Open
Abstract
Inflammatory bowel disease (IBD) is an idiopathic chronic inflammatory bowel disease characterized by inflammation, intestinal barrier injury, and imbalance of gut microbiota. Excess accumulation of reactive oxygen species (ROS) is closely correlated with the development and reoccurrence of IBD. Previous researches demonstrate that procyanidin, as a natural antioxidant, exhibits strong ability of eliminating ROS, thus showing good therapeutic effects in the inflammation-related diseases. Non-etheless, its poor stability and solubility always limits the therapeutic outcomes. Here, we typically designed an antioxidant coordination polymer nanoparticle using the engineering of procyanidin (Pc) and free iron (Fe), named Pc-Fe nanozyme, for effectively scavenging ROS and further inhibiting inflammation while altering the gut microbiome for the treatment of colitis. Furthermore, in vitro experiments uncover that Pc-Fe nanoparticles exert strong multi biomimic activities, including peroxidase, and glutathione peroxidase, for the scavenging of ROS and protecting cells from oxidative injury. In addition, the colon accumulation of Pc-Fe nanozyme effectively protects the intestinal mucosa from oxidative damage while significantly downregulates pro-inflammatory factors, repairs the intestinal barriers and alternates gut microbiome after orally administrated in sodium dextran sulfate (DSS) induced colitis mice. The results collectively illustrate that the multienzyme mimicking Pc-Fe nanozyme owns high potential for treating IBD through scavenging ROS, inhibiting inflammation, repairing gut barriers and alternating gut microbiome, which further promising its clinical translation on IBD treatment and other ROS induced intestinal diseases.
Collapse
Affiliation(s)
- Yongliang Chang
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Xiawei Wu
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Shengwei Lu
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
| | - Jiahao Du
- Medical School of Nantong University, Nantong, China
| | - Yixiu Long
- Department of Gynecological Oncology, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
- *Correspondence: Yixiu Long, ; Yefei Zhu, ; Huanlong Qin,
| | - Yefei Zhu
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
- *Correspondence: Yixiu Long, ; Yefei Zhu, ; Huanlong Qin,
| | - Huanlong Qin
- Shanghai Clinical College, Anhui Medical University, Shanghai, China
- The Fifth Clinical Medical College of Anhui Medical University, Hefei, China
- Department of General Surgery, School of Medicine, Shanghai Tenth People’s Hospital Affiliated to Tongji University, Shanghai, China
- Medical School of Nantong University, Nantong, China
- *Correspondence: Yixiu Long, ; Yefei Zhu, ; Huanlong Qin,
| |
Collapse
|
183
|
Zeng Z, Li C, Liu Y, Chen H, Feng X. Delivery of Transcriptional Factors for Activating Antioxidant Defenses against Inflammatory Bowel Disease. ACS APPLIED BIO MATERIALS 2023; 6:1306-1312. [PMID: 36881502 DOI: 10.1021/acsabm.3c00094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Oxidative stress caused by the overproduction of reactive oxygen species (ROS) plays an important role in inflammatory bowel disease (IBD). It is well-known that the Nrf2-ARE (antioxidative response element) pathway is important in the regulation mechanism of antioxidant defense. Therefore, Nrf2 activation may be an effective therapeutic strategy for IBD. Here, we reported the development of a nucleus-targeted Nrf2 delivery nanoplatform, termed N/LC, that could accumulate in inflamed colonic epithelium, reduce inflammatory responses, and restore epithelium barriers in a murine model of acute colitis. N/LC nanocomposites could quickly escape from lysosomes, so Nrf2 largely accumulated in the nucleus of colonic cells, activated the Nrf2-ARE signaling pathway, further elevated the expression levels of downstream detoxification and antioxidant genes, and protected cells from oxidative damage. These results suggested that N/LC might be a potential nanoplatform for IBD therapy. The study provided the basis for the biomedical applications of Nrf2-based therapeutics in various diseases.
Collapse
Affiliation(s)
- Zhiying Zeng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Changying Li
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Ye Liu
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Hui Chen
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| | - Xuli Feng
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Centre, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China
| |
Collapse
|
184
|
Fu H, Liu H, Ge Y, Chen Y, Tan P, Bai J, Dai Z, Yang Y, Wu Z. Chitosan oligosaccharide alleviates and removes the toxicological effects of organophosphorus pesticide chlorpyrifos residues. JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130669. [PMID: 36586336 DOI: 10.1016/j.jhazmat.2022.130669] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 12/04/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
The abuse of chlorpyrifos (CHP), a commonly used organophosphorus pesticide, has caused many environmental pollution problems, especially its toxicological effects on non-target organisms. First, CHP enriched on the surface of plants enters ecosystem circulation along the food chain. Second, direct inflow of CHP into the water environment under the action of rainwater runoff inevitably causes toxicity to non-target organisms. Therefore, we used rats as a model to establish a CHP exposure toxicity model and studied the effects of CHP in rats. In addition, to alleviate and remove the injuries caused by residual chlorpyrifos in vivo, we explored the alleviation effect of chitosan oligosaccharide (COS) on CHP toxicity in rats by exploiting its high water solubility and natural biological activity. The results showed that CHP can induce the toxicological effects of intestinal antioxidant changes, inflammation, apoptosis, intestinal barrier damage, and metabolic dysfunction in rats, and COS has excellent removal and mitigation effects on the toxic damage caused by residual CHP in the environment. In summary, COS showed significant biological effects in removing and mitigating blood biochemistry, antioxidants, inflammation, apoptosis, gut barrier structure, and metabolic function changes induced by residual CHP in the environment.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Yao Ge
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China
| | - Yinfeng Chen
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Jun Bai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhaolai Dai
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Companion Animal Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China; Beijing Jingwa Agricultural Science and Technology Innovation Center, #1, Yuda Road, Pinggu, Beijing 101200, China.
| |
Collapse
|
185
|
Meng Y, Mao Y, Tang Z, Qiu X, Bajinka O, Tan Y, Song Z. Crosstalk between the lung microbiome and lung cancer. Microb Pathog 2023; 178:106062. [PMID: 36914054 DOI: 10.1016/j.micpath.2023.106062] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/18/2023] [Accepted: 03/07/2023] [Indexed: 03/13/2023]
Abstract
The human microbiome is a complex ecosystem that mediates interaction between the human host and the environment. All of the human body is colonized by microorganisms. The lung as an organ used to be considered sterile. Recently, however, there has been a growing number of reports with evidence that the lungs are also in a state of carrying bacteria. The pulmonary microbiome is associated with many lung diseases and is increasingly reported in current studies. These include; chronic obstructive pulmonary disease (COPD), asthma, acute chronic respiratory infections, and cancers. These lung diseases are associated with reduced diversity and dysbiosis. It directly or indirectly affects the occurrence and development of lung cancer. Very few microbes directly cause cancer, while many are complicit in cancer growth, usually working through the host's immune system. This review focuses on the correlation between lung microbiota and lung cancer, and investigates the mechanism of action of lung microorganisms on lung cancer, which will provide new and reliable treatments and diagnosis of lung cancer in the future.
Collapse
Affiliation(s)
- Yuting Meng
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Xiangjie Qiu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Ousman Bajinka
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, 410078, Hunan, China.
| | - Zhi Song
- Department of General Surgery, the third Xiangya Hospital, Central South University, Changsha, 410000, Hunan, China.
| |
Collapse
|
186
|
Ye HY, Shang ZZ, Zhang FY, Zha XQ, Li QM, Luo JP. Dendrobium huoshanense stem polysaccharide ameliorates alcohol-induced gastric ulcer in rats through Nrf2-mediated strengthening of gastric mucosal barrier. Int J Biol Macromol 2023; 236:124001. [PMID: 36907308 DOI: 10.1016/j.ijbiomac.2023.124001] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/12/2023]
Abstract
This study aimed to explore whether Dendrobium huoshanense stem polysaccharide (cDHPS) ameliorates alcohol-induced gastric ulcer (GU) through the strengthening effect of the gastric mucosal barrier in rats and its potential mechanism. In normal rats, the pretreatment of cDHPS effectively strengthened gastric mucosal barrier by increasing mucus secretion and tight junction protein expression. In GU rats, cDHPS supplementation effectively alleviated alcohol-induced gastric mucosal injury and nuclear factor κB (NF-κB)-driven inflammation by strengthening gastric mucosal barrier. Moreover, cDHPS significantly activated nuclear factor E2-related factor 2 (Nrf2) signaling and promoted antioxidant enzymes activities in both normal and GU rats. These results suggested that the pretreatment of cDHPS could strengthen gastric mucosal barrier to inhibit oxidative stress and NF-κB-driven inflammation induced gastric mucosal injury, which was likely related to the activation of Nrf2 signaling.
Collapse
Affiliation(s)
- Hui-Yu Ye
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Zhen-Zi Shang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Feng-Yun Zhang
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, People's Republic of China
| | - Xue-Qiang Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China
| | - Qiang-Ming Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| | - Jian-Ping Luo
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, People's Republic of China.
| |
Collapse
|
187
|
Lou L, Wang M, He J, Yang S, Meng F, Wang S, Jin X, Cai J, Cai C. Urolithin A (UA) attenuates ferroptosis in LPS-induced acute lung injury in mice by upregulating Keap1-Nrf2/HO-1 signaling pathway. Front Pharmacol 2023; 14:1067402. [PMID: 36969874 PMCID: PMC10034769 DOI: 10.3389/fphar.2023.1067402] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/08/2023] [Indexed: 03/11/2023] Open
Abstract
Acute lung injury (ALI) is a life-threatening disease with high incidence and mortality rates. Urolithin A (UA) is a pomegranate intestinal flora metabolite with anti-inflammatory, antioxidant, and anti-aging properties. Ferroptosis is a critical factor in lipopolysaccharide (LPS)-induced acute lung injury (ALI). However, the link between UA and ferroptosis is unknown. The purpose of this research was to look into the role of UA in regulating LPS-induced ferroptosis in ALI. The current study used LPS to injure two models, one BEAS-2B cell injury model and one ALI mouse model. UA effectively alleviated LPS-induced ALI compared to the LPS group by lowering in vivo lung wet/dry weight ratio, reactive oxygen species, and malondialdehyde production, as well as superoxide dismutase, catalase, and glutathione depletion. Furthermore, by increasing GPX4 and SLC7A11 expression and decreasing Fe2+ levels, lung histopathological damage, inflammatory cytokine secretion, and ferroptosis levels can be significantly reduced. The Keap1-Nrf2/HO-1 pathway was upregulated by UA, which inhibited LPS-induced ALI and ferroptosis. ML385 inhibited UA’s protective effect against LPS-induced ALI. These findings suggested that UA could be a novel potential therapeutic target for ALI.
Collapse
Affiliation(s)
- Lejing Lou
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Min Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jingjing He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Song Yang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Fanxi Meng
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Shijia Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Xiao Jin
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jihao Cai
- Renji College of Wenzhou Medical University, Wenzhou, China
| | - Chang Cai
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Chang Cai,
| |
Collapse
|
188
|
Dander E, Vinci P, Vetrano S, Recordati C, Piazza R, Fazio G, Bardelli D, Bugatti M, Sozio F, Piontini A, Bonanomi S, Bertola L, Tassistro E, Valsecchi MG, Calza S, Vermi W, Biondi A, Del Prete A, Sozzani S, D'Amico G. The chemerin/CMKLR1 axis regulates intestinal graft-versus-host disease. JCI Insight 2023; 8:154440. [PMID: 36883565 PMCID: PMC10077469 DOI: 10.1172/jci.insight.154440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 01/23/2023] [Indexed: 03/09/2023] Open
Abstract
Gastrointestinal graft-versus-host disease (GvHD) is a major cause of mortality and morbidity following allogeneic bone marrow transplantation (allo-BMT). Chemerin is a chemotactic protein that recruits leukocytes to inflamed tissues by interacting with ChemR23/CMKLR1, a chemotactic receptor expressed by leukocytes, including macrophages. During acute GvHD, chemerin plasma levels were strongly increased in allo-BM-transplanted mice. The role of the chemerin/CMKLR1 axis in GvHD was investigated using Cmklr1-KO mice. WT mice transplanted with an allogeneic graft from Cmklr1-KO donors (t-KO) had worse survival and more severe GvHD. Histological analysis demonstrated that the gastrointestinal tract was the organ mostly affected by GvHD in t-KO mice. The severe colitis of t-KO mice was characterized by massive neutrophil infiltration and tissue damage associated with bacterial translocation and exacerbated inflammation. Similarly, Cmklr1-KO recipient mice showed increased intestinal pathology in both allogeneic transplant and dextran sulfate sodium-induced colitis. Notably, the adoptive transfer of WT monocytes into t-KO mice mitigated GvHD manifestations by decreasing gut inflammation and T cell activation. In patients, higher chemerin serum levels were predictive of GvHD development. Overall, these results suggest that CMKLR1/chemerin may be a protective pathway for the control of intestinal inflammation and tissue damage in GvHD.
Collapse
Affiliation(s)
- Erica Dander
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Paola Vinci
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Stefania Vetrano
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Camilla Recordati
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Mouse and Animal Pathology Laboratory, Fondazione Unimi, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy.,Hematology Division and Bone Marrow Unit, San Gerardo Hospital, Monza, Italy
| | - Grazia Fazio
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Donatella Bardelli
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Mattia Bugatti
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Francesca Sozio
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Andrea Piontini
- Laboratory of Gastrointestinal Immunopathology, Humanitas Clinical and Research Center, Rozzano, Italy.,Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Italy
| | - Sonia Bonanomi
- Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| | - Luca Bertola
- Department of Veterinary Medicine, University of Milan, Lodi, Italy.,Mouse and Animal Pathology Laboratory, Fondazione Unimi, Milan, Italy
| | - Elena Tassistro
- Bicocca Center of Bioinformatics, Biostatistics and Bioimaging (B4 center), School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Maria Grazia Valsecchi
- Bicocca Center of Bioinformatics, Biostatistics and Bioimaging (B4 center), School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Stefano Calza
- Biostatistics, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - William Vermi
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Andrea Biondi
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.,Pediatrics, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy.,School of Medicine and Surgery, University of Milano-Bicocca, Monza, Italy
| | - Annalisa Del Prete
- Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy.,Humanitas Clinical and Research Center-IRCCS, Rozzano, Italy
| | - Silvano Sozzani
- Department of Molecular Medicine, Sapienza University of Rome, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Giovanna D'Amico
- Tettamanti Center, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy
| |
Collapse
|
189
|
Ancona G, Alagna L, Alteri C, Palomba E, Tonizzo A, Pastena A, Muscatello A, Gori A, Bandera A. Gut and airway microbiota dysbiosis and their role in COVID-19 and long-COVID. Front Immunol 2023; 14:1080043. [PMID: 36969243 PMCID: PMC10030519 DOI: 10.3389/fimmu.2023.1080043] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/13/2023] [Indexed: 03/29/2023] Open
Abstract
The gut microbiota plays a crucial role in human health and disease. Gut dysbiosis is known to be associated with increased susceptibility to respiratory diseases and modifications in the immune response and homeostasis of the lungs (the so-called gut-lung axis). Furthermore, recent studies have highlighted the possible role of dysbiosis in neurological disturbances, introducing the notion of the "gut-brain axis." During the last 2 years, several studies have described the presence of gut dysbiosis during coronavirus disease 2019 (COVID-19) and its relationship with disease severity, SARS-CoV-2 gastrointestinal replication, and immune inflammation. Moreover, the possible persistence of gut dysbiosis after disease resolution may be linked to long-COVID syndrome and particularly to its neurological manifestations. We reviewed recent evidence on the association between dysbiosis and COVID-19, investigating the possible epidemiologic confounding factors like age, location, sex, sample size, the severity of disease, comorbidities, therapy, and vaccination status on gut and airway microbial dysbiosis in selected studies on both COVID-19 and long-COVID. Moreover, we analyzed the confounding factors strictly related to microbiota, specifically diet investigation and previous use of antibiotics/probiotics, and the methodology used to study the microbiota (α- and β-diversity parameters and relative abundance tools). Of note, only a few studies focused on longitudinal analyses, especially for long-term observation in long-COVID. Lastly, there is a lack of knowledge regarding the role of microbiota transplantation and other therapeutic approaches and their possible impact on disease progression and severity. Preliminary data seem to suggest that gut and airway dysbiosis might play a role in COVID-19 and in long-COVID neurological symptoms. Indeed, the development and interpretation of these data could have important implications for future preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Giuseppe Ancona
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Laura Alagna
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Claudia Alteri
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Multimodal Research Area, Bambino Gesù Children Hospital (IRCCS), Rome, Italy
| | - Emanuele Palomba
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Anna Tonizzo
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Andrea Pastena
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Antonio Muscatello
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Andrea Gori
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| | - Alessandra Bandera
- Infectious Diseases Unit, Foundation IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
- Department of Pathophysiology and Transplantation, Centre for Multidisciplinary Research in Health Science (MACH), University of Milan, Milan, Italy
| |
Collapse
|
190
|
Liu LW, Xie Y, Li GQ, Zhang T, Sui YH, Zhao ZJ, Zhang YY, Yang WB, Geng XL, Xue DB, Chen H, Wang YW, Lu TQ, Shang LR, Li ZB, Li L, Sun B. Gut microbiota-derived nicotinamide mononucleotide alleviates acute pancreatitis by activating pancreatic SIRT3 signalling. Br J Pharmacol 2023; 180:647-666. [PMID: 36321732 DOI: 10.1111/bph.15980] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 10/07/2022] [Accepted: 10/10/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND AND PURPOSE Gut microbiota dysbiosis induced by acute pancreatitis (AP) exacerbates pancreatic injury and systemic inflammatory responses. The alleviation of gut microbiota dysbiosis through faecal microbiota transplantation (FMT) is considered a potential strategy to reduce tissue damage and inflammation in many clinical disorders. Here, we aim to investigate the effect of gut microbiota and microbiota-derived metabolites on AP and further clarify the mechanisms associated with pancreatic damage and inflammation. EXPERIMENTAL APPROACH AP rat and mouse models were established by administration of caerulein or sodium taurocholate in vivo. Pancreatic acinar cells were exposed to caerulein and lipopolysaccharide in vitro to simulate AP. KEY RESULTS Normobiotic FMT alleviated AP-induced gut microbiota dysbiosis and ameliorated the severity of AP, including mitochondrial dysfunction, oxidative damage and inflammation. Normobiotic FMT induced higher levels of NAD+ (nicotinamide adenine dinucleotide)-associated metabolites, particularly nicotinamide mononucleotide (NMN). NMN administration mitigated AP-mediated mitochondrial dysfunction, oxidative damage and inflammation by increasing pancreatic NAD+ levels. Similarly, overexpression of the NAD+ -dependent mitochondrial deacetylase sirtuin 3 (SIRT3) alleviated the severity of AP. Furthermore, SIRT3 deacetylated peroxiredoxin 5 (PRDX5) and enhanced PRDX5 protein expression, thereby promoting its antioxidant and anti-inflammatory activities in AP. Importantly, normobiotic FMT-mediated NMN metabolism induced SIRT3-PRDX5 pathway activation during AP. CONCLUSION AND IMPLICATIONS Gut microbiota-derived NMN alleviates the severity of AP by activating the SIRT3-PRDX5 pathway. Normobiotic FMT could be served as a potential strategy for AP treatment.
Collapse
Affiliation(s)
- Li-Wei Liu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yu Xie
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Guan-Qun Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Tao Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Yu-Hang Sui
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Zhong-Jie Zhao
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yang-Yang Zhang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wen-Bo Yang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xing-Long Geng
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dong-Bo Xue
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hua Chen
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yong-Wei Wang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian-Qi Lu
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li-Ren Shang
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Zhi-Bo Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Le Li
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| | - Bei Sun
- Department of Pancreatic and Biliary Surgery, The First Affiliated Hospital of Harbin Medical University, Harbin, China.,Key Laboratory of Hepatosplenic Surgery, Ministry of Education, Harbin, China
| |
Collapse
|
191
|
Kotla NG, Rochev Y. IBD disease-modifying therapies: insights from emerging therapeutics. Trends Mol Med 2023; 29:241-253. [PMID: 36720660 DOI: 10.1016/j.molmed.2023.01.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/19/2022] [Accepted: 01/05/2023] [Indexed: 02/01/2023]
Abstract
Inflammatory bowel disease (IBD) pathogenesis is associated with gut mucosal inflammation, epithelial damage, and dysbiosis leading to a dysregulated gut mucosal barrier. However, the extent and underlying mechanisms remain largely unknown. Current treatment regimens have focused mainly on treating IBD symptoms; however, such treatment strategies do not address mucosal epithelial repair, barrier homeostasis, or intestinal dysbiosis. Although attempts have been made to identify new therapeutic modalities to enhance gut barrier functions, these are at an early developmental stage and have not been wholly successful. We review conventional therapies, the possible relevant role of gut barrier-protecting agents, and biomaterial strategies relating to combination therapies that may pave the way towards developing new therapeutic approaches for IBD.
Collapse
Affiliation(s)
- Niranjan G Kotla
- CÚRAM, Science Foundation Ireland (SFI) Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| | - Yury Rochev
- CÚRAM, Science Foundation Ireland (SFI) Research Centre for Medical Devices, University of Galway, Galway, Ireland.
| |
Collapse
|
192
|
Yang W, Ren D, Shao H, Zhang X, Li T, Zhang L, Liu L, Zhao Y, Niu P, Yang X. Theabrownin from Fu Brick Tea Improves Ulcerative Colitis by Shaping the Gut Microbiota and Modulating the Tryptophan Metabolism. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2898-2913. [PMID: 36728562 DOI: 10.1021/acs.jafc.2c06821] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Fu brick tea theabrownin (FBTB) is a kind of biomacromolecule produced by oxidative polymerization of tea polyphenols. Although a variety of diseases can be alleviated by TB, its ability to treat ulcerative colitis (UC) is still worth exploring. A dextran sulfate sodium (DSS)-induced chronic UC mouse model was designed to first explore the alleviatory effect of FBTB on UC and its underlying mechanism by the sequencing of fecal 16S rRNA genes, metabolomics, and fecal microbiota transplantation (FMT). Administration of FBTB at 400 mg/kg bw in DSS-damaged mice could effectively reduce colonic damage and inflammation and improve colonic antioxidant capacity to relieve the UC-caused symptoms. FBTB could correct the disrupted gut microbiota caused by UC and contribute to the proliferation of Lactobacillus and Parasutterella. FMT in combination with antibiotic treatment showed that FBTB could elevate the levels of microbial tryptophan metabolites, including indole-3-acetaldehyde (IAld) and indole-3-acetic acid (IAA), by selectively promoting the growth of Lactobacillus. Importantly, FBTB-elevated IAld and IAA could activate aromatic hydrocarbon receptors (AhRs) and enhance interleukin-22 production to repair the intestinal barrier. These findings demonstrated that FBTB alleviated UC mainly by targeting the gut microbiota involved in the AhR pathway for prophylactic and therapeutic treatment of UC.
Collapse
Affiliation(s)
- Wuqi Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Daoyuan Ren
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hongjun Shao
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xiangnan Zhang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Ting Li
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Li Zhang
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lei Liu
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Yan Zhao
- Key Laboratory of Ministry of Education for Medicinal Resource and Natural Pharmaceutical Chemistry, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Pengfei Niu
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xingbin Yang
- Shaanxi Engineering Laboratory for Food Green Processing and Safety Control, and Shaanxi Key Laboratory for Hazard Factors Assessment in Processing and Storage of Agricultural Products, College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
193
|
Cao Z, Liu R, Wang C, Lin S, Wang L, Pang Y. Fluorescence-Activating and Absorption-Shifting Nanoprobes for Anaerobic Tracking of Gut Microbiota Derived Vesicles. ACS NANO 2023; 17:2279-2293. [PMID: 36735721 DOI: 10.1021/acsnano.2c08780] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Outer membrane vesicles (OMVs) are crucial for bacterial intercellular communication and the crosstalk between the gut microbiota and its host. Methods capable of visualizing gut microbiota derived OMVs would be of great significance but have been rarely reported. Here, nanoprobes carrying a fluorescence-activating and absorption-shifting tag are prepared by combining genetic engineering and antibiotic-boosted vesicle formation and release. Benefiting from their natural structure and molecular oxygen-independent emission, the resulting nanovesicles can be applied as endogenous fluorescence probes to anaerobically track gut microbiota associated OMVs. These nanoprobes show flexibility in on-demand fluorescence turn-on/off and reversibly switchable emission bands for intelligent and dual-color imaging. With these special characteristics, the behaviors of microbiota OMVs to not only inhibit specific pathogenic strains through membrane fusion but also repair the intestinal barrier via entering intestinal epithelia and promoting the expressions of tight junctions are tracked and identified in the gut. Based on these discoveries, OMVs are disclosed to be able to remit inflammation in a murine model of colitis following transplantation to the intestine by oral delivery. This work provides an approach to visualize the dynamics of the gut microbiota and disclose potential targets for disease intervention.
Collapse
Affiliation(s)
- Zhenping Cao
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Rui Liu
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Chuhan Wang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| | - Sisi Lin
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Lu Wang
- Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Institute of Molecular Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Yan Pang
- Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Department of Ophthalmology, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200011, China
| |
Collapse
|
194
|
Wang M, Li B, Liu Y, Zhang M, Huang C, Cai T, Jia Y, Huang X, Ke H, Liu S, Yang S. Shu-Xie decoction alleviates oxidative stress and colon injury in acute sleep-deprived mice by suppressing p62/KEAP1/NRF2/HO1/NQO1 signaling. Front Pharmacol 2023; 14:1107507. [PMID: 36814500 PMCID: PMC9939528 DOI: 10.3389/fphar.2023.1107507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/19/2023] [Indexed: 02/09/2023] Open
Abstract
Introduction: Sleep disorders are common clinical psychosomatic disorders that can co-exist with a variety of conditions. In humans and animal models, sleep deprivation (SD) is closely related with gastrointestinal diseases. Shu-Xie Decoction (SX) is a traditional Chinese medicine (TCM) with anti-nociceptive, anti-inflammatory, and antidepressant properties. SX is effective in the clinic for treating patients with abnormal sleep and/or gastrointestinal disorders, but the underlying mechanisms are not known. This study investigated the mechanisms by which SX alleviates SD-induced colon injury in vivo. Methods: C57BL/6 mice were placed on an automated sleep deprivation system for 72 h to generate an acute sleep deprivation (ASD) model, and low-dose SX (SXL), high-dose SX (SXH), or S-zopiclone (S-z) as a positive control using the oral gavage were given during the whole ASD-induced period for one time each day. The colon length was measured and the colon morphology was visualized using hematoxylin and eosin (H&E) staining. ROS and the redox biomarkers include reduced glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD) were detected. Quantitative real-time PCR (qRT-PCR), molecular docking, immunofluorescence and western blotting assays were performed to detect the antioxidant signaling pathways. Results: ASD significantly increased FBG levels, decreased colon length, moderately increased the infiltration of inflammatory cells in the colon mucosa, altered the colon mucosal structure, increased the levels of ROS, GSH, MDA, and SOD activity compared with the controls. These adverse effects were significantly alleviated by SX treatment. ASD induced nuclear translocation of NRF2 in the colon mucosal cells and increased the expression levels of p62, NQO1, and HO1 transcripts and proteins, but these effects were reversed by SX treatment. Conclusion: SX decoction ameliorated ASD-induced oxidative stress and colon injury by suppressing the p62/KEAP1/NRF2/HO1/NQO1 signaling pathway. In conclusion, combined clinical experience, SX may be a promising drug for sleep disorder combined with colitis.
Collapse
Affiliation(s)
- Mengyuan Wang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Bo Li
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| | - Yijiang Liu
- The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Mengting Zhang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Caoxin Huang
- Xiamen Diabetes Institute, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Teng Cai
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Yibing Jia
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Xiaoqing Huang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Hongfei Ke
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Suhuan Liu
- Research Center for Translational Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| | - Shuyu Yang
- Research Studio of Traditional Chinese Medicine, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China,*Correspondence: Bo Li, ; Suhuan Liu, ; Shuyu Yang,
| |
Collapse
|
195
|
The Gut Microbiota Metabolite Urolithin B Prevents Colorectal Carcinogenesis by Remodeling Microbiota and PD-L1/HLA-B. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:6480848. [PMID: 36778211 PMCID: PMC9908333 DOI: 10.1155/2023/6480848] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023]
Abstract
Colorectal cancer has risen to the third occurring cancer in the world. Fluorouracil (5-Fu), oxaliplatin, and cisplatin are the most effective chemotherapeutic agents for clinical chemotherapy. Nevertheless, due to chemotherapeutic drug resistance, the survival rate of patients with CRC remains very low. In this study, we used the inflammation-induced or mutation-family-inherited murine CRC models to study the anticancer and immunotherapy effects of urolithin B (UB), the final metabolite of polyphenols in the gastrointestinal tract. The label-free proteomics analysis and the gene ontology (GO) classifications were used to test and analyze the proteins affected by UB. And 16S rDNA sequencing and flow cytometry were utilized to uncover gut microbiome composition and immune defense improved by UB administration. The results indicated that urolithin B prevents colorectal carcinogenesis by remodeling gut microbial and tumor immune microenvironments, such as HLA-B, NK cells, regulatory T cells, and γδ TCR cells, and decreasing the PD-L1. The combination of urolithin B with first-line therapeutic drugs improved the colorectal intestinal hematochezia by shaping gut microbiota, providing a strategy for the treatment of immunotherapy treatment for CRC treatments. UB combined with anti-PD-1 antibody could inhibit the growth of colon cancer. Urolithin B may thus contribute to anticancer treatments and provide a high immune response microenvironment for CRC patients' further immunotherapy.
Collapse
|
196
|
Ellagitannins, urolithins, and neuroprotection: Human evidence and the possible link to the gut microbiota. Mol Aspects Med 2023; 89:101109. [PMID: 35940941 DOI: 10.1016/j.mam.2022.101109] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/18/2022] [Accepted: 07/23/2022] [Indexed: 02/06/2023]
Abstract
Ellagitannins (ETs) and ellagic acid (EA) are dietary polyphenols poorly absorbed but extensively metabolized by the human gut microbiota to produce different urolithins (Uros). Depending on the individuals' microbial signatures, ETs metabolism can yield the Uro metabotypes A, B, or 0, potentially impacting human health after consuming ETs. Human evidence points to improved brain health after consuming ET-rich foods, mainly pomegranate juices and extracts containing punicalagin, punicalin, and different EA-derivatives. Although ETs and (or) EA are necessary to exert the effects, the precise mechanism, actual metabolites, or final drivers responsible for the observed effects have not been unraveled. The cause-and-effect evidence on Uro-A administration and the improvement of animal brain health is consistent but not addressed in humans. The Uro-A's in vivo anti-inflammatory, mitophagy, autophagy, and mitochondrial biogenesis activities suggest it as a possible final driver in neuroprotection. However, the precise Uro metabolic forms reaching the brain are unknown. In addition to the possible participation of direct effectors in brain tissues, the current evidence points out that improving blood flow, gut microbiota ecology, and gut barrier by ET-rich foods and (or) Uro-A could contribute to the neuroprotective effects. We show here the current human evidence on ETs and brain health, the possible link between the gut microbiota metabolism of ETs and their effects, including the preservation of the gut barrier integrity, and the possible role of Uros. Finally, we propose a roadmap to address what is missing on ETs, Uros, and neuroprotection.
Collapse
|
197
|
Cui Q, Zhang Z, Tian X, Liang X, Lu Y, Shi Y, Kuerman M, Wang R, Gong P, Lin K, Yi H, Li J, Liu T, Zhang L. Bifidobacterium bifidum Ameliorates DSS-Induced Colitis in Mice by Regulating AHR/NRF2/NLRP3 Inflammasome Pathways through Indole-3-lactic Acid Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1970-1981. [PMID: 36633059 DOI: 10.1021/acs.jafc.2c06894] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, the effectors and mechanisms of Bifidobacterium bifidum FL-276.1 and B. bifidum FL-228.1 in alleviating dextran sulfate sodium (DSS)-induced colitis were investigated. Both FL-276.1 and FL-228.1 significantly alleviated DSS-induced colitis, whether they were supplemented from the beginning of the experiment (whole course intervention) or after the DSS induction started (partial intervention). Aryl hydrocarbon receptor (AHR) and the nuclear factor erythroid 2-related factor 2 (NRF2) pathways were activated in mice colons, while the NLR family pyrin domain containing 3 (NLRP3) was downregulated under the whole course intervention modes. Indole-3-lactic acid, an AHR ligand produced by FL-276.1 and FL-228.1, could regulate the AHR/NRF2/NLRP3 pathway in Caco-2 monolayers, thus upregulating the tight junction proteins and protecting the integrity of the epithelial barrier. These results are conducive to promoting clinical trials and product development of probiotics for alleviating colitis.
Collapse
Affiliation(s)
- Qingyu Cui
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhe Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xiaoying Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Xi Liang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Youyou Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yixin Shi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Malina Kuerman
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Rui Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Pimin Gong
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Kai Lin
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Huaxi Yi
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jiadong Li
- R&D Center, China Innovation Probiotics Science Biotech (Shanghai) Co., Ltd., Shanghai 200000, China
| | - Tongjie Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Lanwei Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
198
|
Zhang K, Zhu L, Zhong Y, Xu L, Lang C, Chen J, Yan F, Li J, Qiu J, Chen Y, Sun D, Wang G, Qu K, Qin X, Wu W. Prodrug Integrated Envelope on Probiotics to Enhance Target Therapy for Ulcerative Colitis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205422. [PMID: 36507607 PMCID: PMC9896077 DOI: 10.1002/advs.202205422] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 11/23/2022] [Indexed: 05/25/2023]
Abstract
Ulcerative colitis (UC), affecting millions of patients worldwide, is associated with disorders of the gut microbiota. Probiotics-based therapy positively regulating the community structure of gut microbiota is regarded as an efficient intervention for UC. However, oral probiotics delivery is restricted by limited bioactivity, short retention time, complex pathological condition, and single therapeutic efficacy. Here, a bioengineered probiotic decorated with a multifunctional prodrug coating is constructed to ameliorate the aforementioned shortcomings. The results of UC mice induced by dextran sulfate sodium demonstrate that the intrinsic features of the fabricated coating integrate gut microbes protection, colon-targeted drug release, prolonged drug retention, and inflammation regulation. In parallel, the probiotics Lactobacillus rhamnosus GG (LGG) could regulate the composition of the gut microbiota and improve epithelial barrier function, thereby synergistically ameliorating UC. These results provide ample shreds of evidence of the therapeutic effect on UC, therefore, demonstrate a great promise as the potential therapeutic strategy for UC treatment.
Collapse
Affiliation(s)
- Kun Zhang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Li Zhu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
| | - Yuan Zhong
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
| | - Lixin Xu
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Chunhui Lang
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Jian Chen
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Fei Yan
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Jiawei Li
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Juhui Qiu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
| | - Yidan Chen
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
| | - Da Sun
- Institute of Life Sciences and Biomedical Collaborative Innovation Center of Zhejiang ProvinceWenzhou UniversityWenzhouZhejiang325035P. R. China
| | - Guixue Wang
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jin Feng LaboratoryChongqing401329P. R. China
| | - Kai Qu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Xian Qin
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Chongqing University Three Gorges HospitalChongqing Municipality Clinical Research Center for Geriatric diseasesChongqing404000P. R. China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of EducationState and Local Joint Engineering Laboratory for Vascular ImplantsBioengineering College of Chongqing UniversityChongqing400030P. R. China
- Jin Feng LaboratoryChongqing401329P. R. China
| |
Collapse
|
199
|
Dvořák Z, Li H, Mani S. Microbial Metabolites as Ligands to Xenobiotic Receptors: Chemical Mimicry as Potential Drugs of the Future. Drug Metab Dispos 2023; 51:219-227. [PMID: 36184080 PMCID: PMC9900867 DOI: 10.1124/dmd.122.000860] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 08/28/2022] [Accepted: 09/19/2022] [Indexed: 01/31/2023] Open
Abstract
Xenobiotic receptors, such as the pregnane X receptor, regulate multiple host physiologic pathways including xenobiotic metabolism, certain aspects of cellular metabolism, and innate immunity. These ligand-dependent nuclear factors regulate gene expression via genomic recognition of specific promoters and transcriptional activation of the gene. Natural or endogenous ligands are not commonly associated with this class of receptors; however, since these receptors are expressed in a cell-type specific manner in the liver and intestines, there has been significant recent effort to characterize microbially derived metabolites as ligands for these receptors. In general, these metabolites are thought to be weak micromolar affinity ligands. This journal anniversary minireview focuses on recent efforts to derive potentially nontoxic microbial metabolite chemical mimics that could one day be developed as drugs combating xenobiotic receptor-modifying pathophysiology. The review will include our perspective on the field and recommend certain directions for future research. SIGNIFICANCE STATEMENT: Xenobiotic receptors (XRs) regulate host drug metabolism, cellular metabolism, and immunity. Their presence in host intestines allows them to function not only as xenosensors but also as a response to the complex metabolic environment present in the intestines. Specifically, this review focuses on describing microbial metabolite-XR interactions and the translation of these findings toward discovery of novel chemical mimics as potential drugs of the future for diseases such as inflammatory bowel disease.
Collapse
Affiliation(s)
- Zdeněk Dvořák
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Hao Li
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sridhar Mani
- Department of Cell Biology and Genetics, Palacký University, Olomouc, Czech Republic (Z.D.); Departments of Medicine (H.L., S.M.), Molecular Pharmacology (S.M.), and Genetics (S.M.), Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
200
|
Yu J, Liu T, Guo Q, Wang Z, Chen Y, Dong Y. Disruption of the Intestinal Mucosal Barrier Induced by High Fructose and Restraint Stress Is Regulated by the Intestinal Microbiota and Microbiota Metabolites. Microbiol Spectr 2023; 11:e0469822. [PMID: 36719201 PMCID: PMC10100858 DOI: 10.1128/spectrum.04698-22] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 01/03/2023] [Indexed: 02/01/2023] Open
Abstract
Environmental (restraint stress) and dietary (high fructose) factors are key triggers for flares of inflammatory bowel disease; however, the mechanisms involved in this phenomenon are not fully elucidated. This study aimed to investigate the mechanisms by which restraint stress and high fructose damage the intestinal mucosal immune barrier. The feces of C57BL/6J mice were subjected to 16S rRNA and untargeted metabolome sequencing, and the intestinal histological structure was analyzed by immunohistochemistry and immunofluorescence staining. The mRNA and protein levels of the intestinal protein were analyzed by reverse transcription-PCR (RT-PCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). The metabolites of the microbiota were tested in vitro, and Akkermansia muciniphila was used for colonization in vivo. Dietary fructose exacerbated the development of restraint stress, with an extensive change in the composition of the gut microbiota and microbial metabolites. The disturbance of the microbiota composition led to an increase in the abundance of histamine and a decrease in the abundance of taurine, which inhibited the expression of tight junction and MUC2 proteins, destroyed the function of NLRP6, and reduced intestinal autophagy level; this in turn disrupted the function of colonic goblet cells to secrete mucus, leading to defects in the intestinal mucosal barrier, which ultimately codrives colon autoinflammation. However, A. muciniphila supplementation counteracted damage to the intestinal mucosal barrier by high fructose and restraint stress. Therefore, the gut microbiota and microbiota metabolites play an important role in maintaining microenvironment homeostasis of the intestinal mucosal barrier. IMPORTANCE A high-fructose diet aggravated restraint stress-induced changes in the composition of the intestinal microbiome, in which the abundance of A. muciniphila was significantly increased. The high-fructose diet exacerbated restraint stress-induced the changes in the composition of the microbial metabolites, with taurine abundance being downregulated and histamine abundance upregulated. High fructose and restraint stress induced colonic mucosal immune barrier damage, possibly due to changes in the abundance of the microbial metabolites taurine and histamine. Colonization with A. muciniphila stimulated the expression of the NLRP6 inflammasome and activated autophagy in goblet cells, thereby producing more new mucins, which could protect the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Jiayu Yu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Tianlong Liu
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Qingyun Guo
- Milu Conservation Research Unit, Beijing Milu Ecological Research Center, Beijing, People’s Republic of China
| | - Zixu Wang
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yaoxing Chen
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| | - Yulan Dong
- Key Laboratory of Precision Nutrition and Food Quality, Ministry of Education, College of Veterinary Medicine, China Agricultural University, Beijing, People’s Republic of China
| |
Collapse
|