151
|
Tomczyk-Warunek A, Blicharski T, Muszyński S, Tomaszewska E, Dobrowolski P, Blicharski R, Jarecki J, Arczewska-Włosek A, Świątkiewicz S, Józefiak D. Structural Changes in Trabecular Bone, Cortical Bone and Hyaline Cartilage as Well as Disturbances in Bone Metabolism and Mineralization in an Animal Model of Secondary Osteoporosis in Clostridium perfringens Infection. J Clin Med 2021; 11:205. [PMID: 35011946 PMCID: PMC8746067 DOI: 10.3390/jcm11010205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Accepted: 12/27/2021] [Indexed: 12/16/2022] Open
Abstract
There is no information regarding whether changes in the microbiological balance of the gastrointestinal tract as a result of an infection with Clostridium perfringens influence the development of metabolic bone disorders. The experiment was carried out on male broiler chickens divided into two groups: control (n = 10) and experimental (n = 10). The experimental animals were infected with Clostridium perfringens between 17 and 20 days of age. The animals were euthanized at 42 days of age. The structural parameters of the trabecular bone, cortical bone, and hyaline cartilage as well as the mineralization of the bone were determined. The metabolism of the skeletal system was assessed by determining the levels of bone turnover markers, hormones, and minerals in the blood serum. The results confirm that the disturbed composition of the gastrointestinal microflora has an impact on the mineralization and metabolism of bone tissue, leading to the structural changes in cortical bone, trabecular bone, and hyaline cartilage. On the basis of the obtained results, it can be concluded that changes in the microenvironment of the gastrointestinal tract by infection with C. perfringens may have an impact on the earlier development of osteoporosis.
Collapse
Affiliation(s)
- Agnieszka Tomczyk-Warunek
- Chair and Department of Rehabilitation and Orthopaedics, Medical University in Lublin, 20-090 Lublin, Poland; (A.T.-W.); (R.B.); (J.J.)
| | - Tomasz Blicharski
- Chair and Department of Rehabilitation and Orthopaedics, Medical University in Lublin, 20-090 Lublin, Poland; (A.T.-W.); (R.B.); (J.J.)
| | - Siemowit Muszyński
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Ewa Tomaszewska
- Department of Animal Physiology, University of Life Sciences in Lublin, 20-950 Lublin, Poland;
| | - Piotr Dobrowolski
- Department of Functional Anatomy and Cytobiology, Maria Curie-Skłodowska University, 20-033 Lublin, Poland;
| | - Rudolf Blicharski
- Chair and Department of Rehabilitation and Orthopaedics, Medical University in Lublin, 20-090 Lublin, Poland; (A.T.-W.); (R.B.); (J.J.)
| | - Jaromir Jarecki
- Chair and Department of Rehabilitation and Orthopaedics, Medical University in Lublin, 20-090 Lublin, Poland; (A.T.-W.); (R.B.); (J.J.)
| | - Anna Arczewska-Włosek
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (A.A.-W.); (S.Ś.)
| | - Sylwester Świątkiewicz
- Department of Animal Nutrition and Feed Science, National Research Institute of Animal Production, Krakowska St. 1, 32-083 Balice, Poland; (A.A.-W.); (S.Ś.)
| | - Damian Józefiak
- Department of Animal Nutrition, Faculty of Veterinary Medicine and Animal Science, Poznań University of Life Sciences, Wołyńska 33, 60-637 Poznań, Poland;
| |
Collapse
|
152
|
Chisari E, Wouthuyzen-Bakker M, Friedrich AW, Parvizi J. The relation between the gut microbiome and osteoarthritis: A systematic review of literature. PLoS One 2021; 16:e0261353. [PMID: 34914764 PMCID: PMC8675674 DOI: 10.1371/journal.pone.0261353] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/30/2021] [Indexed: 02/07/2023] Open
Abstract
Background Along with mechanical and genetic factors, emerging evidence suggests that the presence of low-grade inflammation has a role in the pathogenesis of osteoarthritis (OA) and seems to be related to the microbiome composition of the gut. Purpose To provide evidence whether there is clinical or preclinical evidence of gut-joint axis in the pathogenesis and symptoms of OA. Methods An extensive review of the current literature was performed using three different databases. Human, as well as animal studies, were included. The risk of bias was identified using ROBINS and SYRCLE tools, while the quality of evidence was assessed using GRADE and CAMADARES criteria. Results A total of nineteen articles were included. Multiple animal studies demonstrated that both obesity, and high-fat and high-sugar diets resulted in a gut dysbiosis status characterized by increased Firmicutes/Bacteroidetes (F/B) phyla ratio and increased permeability. These changes were associated with increased lipopolysaccharide serum levels, which consequently resulted in synovitis and OA severity. The administration of pre-and probiotics partially reversed this bacterial composition. In addition, in human studies, a decreased amount of gut Bacteroidetes, subsequent increased F/B ratio, have also been observed in OA patients. Conclusions Our review confirms preliminary yet sound evidence supporting a gut-joint axis in OA in primarily preclinical models, by showing an association between diet, gut dysbiosis and OA radiological severity and self-reported symptoms. Clinical studies are needed to confirm these findings, and to investigate whether interventions targeting the composition of the microbiome will have a beneficial clinical effect.
Collapse
Affiliation(s)
- Emanuele Chisari
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America.,Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, RB, Groningen, Netherlands
| | - Marjan Wouthuyzen-Bakker
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, RB, Groningen, Netherlands
| | - Alex W Friedrich
- Department of Medical Microbiology and Infection Prevention, University of Groningen, University Medical Center Groningen, RB, Groningen, Netherlands
| | - Javad Parvizi
- Rothman Orthopaedic Institute at Thomas Jefferson University, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
153
|
Jia X, Yang R, Li J, Zhao L, Zhou X, Xu X. Gut-Bone Axis: A Non-Negligible Contributor to Periodontitis. Front Cell Infect Microbiol 2021; 11:752708. [PMID: 34869062 PMCID: PMC8637199 DOI: 10.3389/fcimb.2021.752708] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/26/2021] [Indexed: 02/05/2023] Open
Abstract
Periodontitis is a polymicrobial infectious disease characterized by alveolar bone loss. Systemic diseases or local infections, such as diabetes, postmenopausal osteoporosis, obesity, and inflammatory bowel disease, promote the development and progression of periodontitis. Accumulating evidences have revealed the pivotal effects of gut microbiota on bone health via gut-alveolar-bone axis. Gut pathogens or metabolites may translocate to distant alveolar bone via circulation and regulate bone homeostasis. In addition, gut pathogens can induce aberrant gut immune responses and subsequent homing of immunocytes to distant organs, contributing to pathological bone loss. Gut microbial translocation also enhances systemic inflammation and induces trained myelopoiesis in the bone marrow, which potentially aggravates periodontitis. Furthermore, gut microbiota possibly affects bone health via regulating the production of hormone or hormone-like substances. In this review, we discussed the links between gut microbiota and periodontitis, with a particular focus on the underlying mechanisms of gut-bone axis by which systemic diseases or local infections contribute to the pathogenesis of periodontitis.
Collapse
Affiliation(s)
- Xiaoyue Jia
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ran Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Pediatric Dentistry, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jiyao Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Zhao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Periodontology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
154
|
Yu XH, Yang YQ, Cao RR, Bo L, Lei SF. The causal role of gut microbiota in development of osteoarthritis. Osteoarthritis Cartilage 2021; 29:1741-1750. [PMID: 34425228 DOI: 10.1016/j.joca.2021.08.003] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/21/2021] [Accepted: 08/13/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE There is considerable evidence for relationship between gut microbiota and osteoarthritis (OA), but no studies have investigated their causal relationship. METHOD This study utilized large-scale genome-wide association studies (GWAS) summary statistics to evaluate the causal association between gut microbiota and OA risk. Specifically, two-sample Mendelian randomization (MR) approach was used to identify the causal microbial taxa for OA. Comprehensively sensitive analyses were performed to validate the robustness of results and novel multivariable MR analyses were further conducted to ensure the independence of causal association. Reverse-direction MR analyses were performed to rule out the possibility of reverse associations. Finally, enrichment analyses were used to investigate the biofunction. RESULTS After correction, three microbial taxa were identified to be causally associated with diverse joint OA (PFDR < 0.100), namely Methanobacteriaceae family for knee OA (PFDR = 0.043) and any OA (PFDR = 0.028), Desulfovibrionales order for knee OA (PFDR = 0.045) and Ruminiclostridium5 genus for knee OA (PFDR = 0.063). In addition, we also identified five suggestive microbial taxa that were significant with three different methods under the nominal significance (P < 0.05). Sensitive analysis excluded the influence of heterogeneity and horizontal pleiotropy and multivariable MR analysis ruled out the possibility of horizontal pleiotropy of BMI. GO enrichment analysis illustrates the protective mechanism of the identified taxa against OA. CONCLUSIONS This study found that several microbial taxa were causally associated with diverse joint OA. The results enhanced our understanding of gut microbiota in the pathology of OA.
Collapse
Affiliation(s)
- X-H Yu
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, PR China
| | - Y-Q Yang
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, PR China
| | - R-R Cao
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, PR China
| | - L Bo
- Department of Rheumatology, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215004, China
| | - S-F Lei
- Center for Genetic Epidemiology and Genomics, School of Public Health, Medical College of Soochow University, Suzhou, China; Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, 199 Renai Road, Suzhou, Jiangsu, 215123, PR China.
| |
Collapse
|
155
|
Hu B, Dong Y, Zhou W, Ma Y, Li L, Fu X, Zhang W, Luo Y, Pu J, Deng X, Zhang R, Liu S. Effect of Inonotus obliquus polysaccharide on composition of the intestinal flora in mice with acute endometritis. PLoS One 2021; 16:e0259570. [PMID: 34739514 PMCID: PMC8570517 DOI: 10.1371/journal.pone.0259570] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 10/21/2021] [Indexed: 12/12/2022] Open
Abstract
Inonotus obliquus Polysaccharide (IOP) is a large molecule extracted from Inonotus obliqus, a medicinal fungus, which has a wide range of biological activities and has been shown to be associated with inflammation. The purpose of this study is to investigate whether IOP can help to reduce acute endometritis by regulating intestinal flora. We observed pathological changes in mice with endometritis following treatment with IOP and evaluated changes in the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α), and further studied the effects of IOP on the intestinal flora of endometritis mice using 16S rRNA high-throughput sequencing. The results showed that IOP improved the condition of uterine tissues and reduced the release of pro-inflammatory cytokines. Meanwhile, the 16S rRNA sequencing results showed that IOP could regulate the changes in intestinal microflora at the level of genera, possibly by changing the relative abundance of some genera.
Collapse
Affiliation(s)
- Binhong Hu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| | - Yuqing Dong
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Wenjing Zhou
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Yichuan Ma
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Luyao Li
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Xianhua Fu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Wenxuan Zhang
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Yuanyue Luo
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Jingyu Pu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Xin Deng
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
| | - Rong Zhang
- School of Physical Science and Technology, Shanghai Tech University, Shanghai, China
| | - Songqing Liu
- College of Chemistry and Life Sciences, Chengdu Normal University, Chengdu, China
- Sichuan Provincial Key Laboratory for Development and Utilization of Characteristic Horticultural Biological Resources, Chengdu Normal University, Chengdu, China
| |
Collapse
|
156
|
Xu X, Chen R, Zhan G, Wang D, Tan X, Xu H. Enterochromaffin Cells: Sentinels to Gut Microbiota in Hyperalgesia? Front Cell Infect Microbiol 2021; 11:760076. [PMID: 34722345 PMCID: PMC8552036 DOI: 10.3389/fcimb.2021.760076] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
In recent years, increasing studies have been conducted on the mechanism of gut microbiota in neuropsychiatric diseases and non-neuropsychiatric diseases. The academic community has also recognized the existence of the microbiota-gut-brain axis. Chronic pain has always been an urgent difficulty for human beings, which often causes anxiety, depression, and other mental symptoms, seriously affecting people's quality of life. Hyperalgesia is one of the main adverse reactions of chronic pain. The mechanism of gut microbiota in hyperalgesia has been extensively studied, providing a new target for pain treatment. Enterochromaffin cells, as the chief sentinel for sensing gut microbiota and its metabolites, can play an important role in the interaction between the gut microbiota and hyperalgesia through paracrine or neural pathways. Therefore, this systematic review describes the role of gut microbiota in the pathological mechanism of hyperalgesia, learns about the role of enterochromaffin cell receptors and secretions in hyperalgesia, and provides a new strategy for pain treatment by targeting enterochromaffin cells through restoring disturbed gut microbiota or supplementing probiotics.
Collapse
Affiliation(s)
- Xiaolin Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rongmin Chen
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
| | - Gaofeng Zhan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danning Wang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xi Tan
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hui Xu
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
157
|
Wei J, Zhang Y, Dalbeth N, Terkeltaub R, Yang T, Wang Y, Yang Z, Li J, Wu Z, Zeng C, Lei G. Association between gut microbiota and elevated serum urate in two independent cohorts. Arthritis Rheumatol 2021; 74:682-691. [PMID: 34725964 DOI: 10.1002/art.42009] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/14/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Hyperuricemia is a precursor to gout and is often present in other metabolic diseases that are promoted by microbiome dysbiosis; however, no study has examined the association of gut microbiota with hyperuricemia and serum urate in humans. METHODS Study participants were derived from a community-based observational study, the Xiangya Osteoarthritis Study (discovery cohort). Hyperuricemia was defined as the presence of serum urate level >357 μmol/L for women and >416 μmol/L for men. Gut microbiota was analyzed using 16S rRNA sequencing from stool samples. We examined the relation of microbiota dysbiosis (i.e., richness, diversity, composition, and relative abundance of microbiota taxa) and predicted functional pathways to prevalent hyperuricemia and serum urate levels. We verified the associations in an independent observational study, the Step Study (validation cohort). RESULTS The discovery cohort consisted of 1,392 rural participants (mean age: 61.3 years; women: 57.4%; hyperuricemia: 17.2%). Participants with hyperuricemia had decreased richness and diversity, altered composition of microbiota, and lower relative abundances of genus Coprococcus compared with those with normouricemia. Predicted Kyoto Encyclopedia of Genes and Genomes metabolism pathways belonged to amino acid and nucleotide metabolisms were significantly altered in individuals with hyperuricemia compared with those with normouricemia. Gut microbiota richness, diversity and low relative abundances of genus Coprococcus were also associated with high levels of serum urate. These findings were replicated in the validation cohort with 480 participants. CONCLUSIONS Gut microbiota dysbiosis was associated with elevated serum urate levels. Our study raises the possibility that microbiota dysbiosis may modulate serum urate levels.
Collapse
Affiliation(s)
- Jie Wei
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yuqing Zhang
- Division of Rheumatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.,The Mongan Institute, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nicola Dalbeth
- Department of Medicine, University of Auckland, Auckland, New Zealand
| | - Robert Terkeltaub
- Rheumatology, Allergy-Immunology Section, San Diego VA Medical Center, San Diego, USA.,University of California at San Diego, La Jolla, CA, USA
| | - Tuo Yang
- Health Management Center, Xiangya Hospital, Central South University, Changsha, China
| | - Yilun Wang
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Zidan Yang
- Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China
| | - Jiatian Li
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Ziying Wu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China
| | - Chao Zeng
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Guanghua Lei
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Joint Degeneration and Injury, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
158
|
Alterations in the gut microbiota and metabolite profiles of patients with Kashin-Beck disease, an endemic osteoarthritis in China. Cell Death Dis 2021; 12:1015. [PMID: 34711812 PMCID: PMC8553765 DOI: 10.1038/s41419-021-04322-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/12/2021] [Accepted: 10/18/2021] [Indexed: 12/13/2022]
Abstract
Kashin-Beck disease (KBD) is a severe osteochondral disorder that may be driven by the interaction between genetic and environmental factors. We aimed to improve our understanding of the gut microbiota structure in KBD patients of different grades and the relationship between the gut microbiota and serum metabolites. Fecal and serum samples collected from KBD patients and normal controls (NCs) were used to characterize the gut microbiota using 16S rDNA gene and metabolomic sequencing via liquid chromatography-mass spectrometry (LC/MS). To identify whether gut microbial changes at the species level are associated with the genes or functions of the gut bacteria in the KBD patients, metagenomic sequencing of fecal samples from grade I KBD, grade II KBD and NC subjects was performed. The KBD group was characterized by elevated levels of Fusobacteria and Bacteroidetes. A total of 56 genera were identified to be significantly differentially abundant between the two groups. The genera Alloprevotella, Robinsoniella, Megamonas, and Escherichia_Shigella were more abundant in the KBD group. Consistent with the 16S rDNA analysis at the genus level, most of the differentially abundant species in KBD subjects belonged to the genus Prevotella according to metagenomic sequencing. Serum metabolomic analysis identified some differentially abundant metabolites among the grade I and II KBD and NC groups that were involved in lipid metabolism metabolic networks, such as that for unsaturated fatty acids and glycerophospholipids. Furthermore, we found that these differences in metabolite levels were associated with altered abundances of specific species. Our study provides a comprehensive landscape of the gut microbiota and metabolites in KBD patients and provides substantial evidence of a novel interplay between the gut microbiome and metabolome in KBD pathogenesis.
Collapse
|
159
|
Wang TQ, Li LR, Tan CX, Yang JW, Shi GX, Wang LQ, Hu H, Liu ZS, Wang J, Wang T, Yuan Y, Jia WR, Li H, Wang XW, Wu B, Tu JF, Liu CZ. Effect of Electroacupuncture on Gut Microbiota in Participants With Knee Osteoarthritis. Front Cell Infect Microbiol 2021; 11:597431. [PMID: 34671567 PMCID: PMC8521167 DOI: 10.3389/fcimb.2021.597431] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
A close relationship between knee osteoarthritis (KOA) and gut microbiota has recently been described. Herein, we aim to investigate the effect of electroacupuncture (EA) on gut microbiota in participants with KOA. We conducted a study of 60 participants with KOA and 30 matched healthy controls (HCs). Sixty participants were allocated to either EA group (n=30) or sham acupuncture (SA) group (n=30). Five obligatory acupoints and three adjunct acupoints were punctured in the EA group. Eight non-acupoints that were separated from conventional acupoints or meridians were used for the SA group. Participants in both groups received 24 sessions within eight weeks. Fecal microbial analyses by 16S ribosomal RNA gene sequencing were carried out after collecting stools at T0 and T8 weeks (Four samples with changed defecation habits were excluded). The results showed that both Western Ontario and McMaster Universities Osteoarthritis Index (WOMAC) total score (P=0.043) and NRS score (P=0.002) decreased more in EA group than those in SA group. Moreover, EA could reverse more KOA-related bacteria including Bacteroides, [Eubacterium]_hallii_group, Agathobacter and Streptococcus. The number of significantly different genera between KOA patients and HCs were less after EA treatment than that after SA treatment. This meant that EA modified the composition of the gut microbiome, making it closer to healthy people, while not significantly affecting the microbial diversity. Two genera including Agathobacter (P=0.0163), Lachnoclostridium (P=0.0144) were statistically increased than baseline in EA group (paired Wilcoxon rank sum test). After EA treatment, Bacteroides (P=0.0394) was more abundant and Streptococcus (P=0.0306) was significantly reduced in patients who demonstrated adequate response than in those with inadequate response (Wilcoxon rank-sum test). Spearman correlation test between gut microbe and KOA clinical outcomes indicated that Bacteroides and Agathobacter was negatively correlated with NRS score, WOMAC total score, and WOMAC pain, stiffness and pain scores (P<0.001 or 0.05 or 0.01), while Streptococcus was positively correlated with them (P<0.05 or 0.01). Our study suggests that EA contributes to the improvement of KOA and gut microbiota could be a potential therapeutic target.
Collapse
Affiliation(s)
- Tian-Qi Wang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Ling-Ru Li
- National Institute of Traditional Chinese Medicine Constitution and Preventive Treatment of Diseases, Beijing University of Chinese Medicine, Beijing, China
| | - Chun-Xia Tan
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Jing-Wen Yang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Guang-Xia Shi
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Li-Qiong Wang
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hui Hu
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zhi-Shun Liu
- Department of Acupuncture and Moxibustion, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jun Wang
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tong Wang
- Department of Orthopedics, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yong Yuan
- Department of Orthopedics, Institute of Acupuncture and Moxibustion, China Academy of Chinese Medical Sciences, Beijing, China
| | - Wen-Rui Jia
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Hua Li
- Department of Acupuncture and Moxibustion, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Wei Wang
- Department of Acupuncture and Moxibustion, Guang’an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Bin Wu
- Department of Acupuncture and Moxibustion, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Jian-Feng Tu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| | - Cun-Zhi Liu
- International Acupuncture and Moxibustion Innovation Institute, School of Acupuncture-Moxibustion and Tuina, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
160
|
Mei X, Din H, Zhao J, Tong J, Zhu W. Transcription factor Krüppel-like factor 5-regulated N-myc downstream-regulated gene 2 reduces IL-1β-induced chondrocyte inflammatory injury and extracellular matrix degradation. Bioengineered 2021; 12:7020-7032. [PMID: 34551684 PMCID: PMC8806548 DOI: 10.1080/21655979.2021.1971483] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Previous research has identified N-myc downstream-regulated gene 2 (NDRG2) as one of the differentially expressed genes common to rat models of osteoarthritis (OA) and human OA. The purpose of this study was to investigate the role of NDRG2 in OA. In this study, an in vitro OA model was constructed by challenging ATDC5 chondrocytes with 10 ng/ml IL-1β. After transfection of pcDNA3.1(+)/NDRG2, qPCR and western blot were performed to assay NDRG2 expression. The analyses of cell viability, apoptosis and inflammatory molecule expression were employed respectively by CCK-8, TUNEL and ELISA. The protein expression related to apoptosis, inflammation or extracellular matrix (ECM) degradation was detected by western blot. The binding of Krüppel-like factor 5 (KLF5) to NDRG2 promoter was verified by means of dual-luciferase reporter assay. After overexpression of both NDRG2 and KLF5 in IL-1β-stimulated ATDC5 chondrocytes, corresponding assays were performed to examine cell viability, apoptosis, inflammatory response and ECM degradation. In ATDC5 chondrocytes challenged with IL-1β, NDRG2 expression was much lower than that in the control group, whereas it’s overexpression helped restored cell viability and reduce cell apoptosis, inflammatory response and ECM degradation. It was also observed that KLF5 expression was decreased in IL-1β-stimulated ATDC5 chondrocytes, and that KLF5 bound to the NDRG2 promoter. Importantly, overexpressing KLF5 could reverse the protective effect of NDRG2 overexpression on IL-1β-stimulated ATDC5. Overall, NDRG2 could be transcriptionally regulated by transcription factor KLF5 and may play a protective role against chondrocyte the inflammatory response and ECM degradation in OA.
Collapse
Affiliation(s)
- Xiaoliang Mei
- Department of Orthopedics, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, People's Republic of China
| | - Hao Din
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jianning Zhao
- Department of Orthopedics, Jinling Hospital, Jinling Clinical Medical College of Nanjing Medical University, Nanjing, People's Republic of China
| | - Jian Tong
- Department of Orthopedics, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, People's Republic of China
| | - Wei Zhu
- Department of Orthopedics, Taizhou Clinical Medical School of Nanjing Medical University (Taizhou People's Hospital), Taizhou, People's Republic of China
| |
Collapse
|
161
|
Kraus VB, Karsdal MA. Osteoarthritis: Current Molecular Biomarkers and the Way Forward. Calcif Tissue Int 2021; 109:329-338. [PMID: 32367210 DOI: 10.1007/s00223-020-00701-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/25/2020] [Indexed: 12/12/2022]
Abstract
The ultimate hope of researchers and patients is a pathway to development of treatments for osteoarthritis to modify the disease process in addition to the symptoms. However, development of disease modifying drugs requires objective endpoints such as measures of joint structure, joint tissue homeostasis and/or joint survival-measures such as provided by imaging biomarkers, molecular biomarkers and joint replacement frequency, respectively. Although biomarkers supporting investigational drug use and drug approval include surrogate endpoints that may not necessarily reflect or directly correlate with the clinical outcome of interest, a formal biomarker qualification process currently exists that is a rigorous three stage process that yields biomarker approvals (or denials) for specific contexts of use. From a cost perspective, biochemical biomarkers are the 'ones to beat'; however, even well-validated biomarkers may not cross the translation gaps for eventual use in healthcare unless they offer an advantage in terms of cost per quality adjusted life year. This review summarizes the case FOR and AGAINST biomarkers in drug development and highlights the current data for a subset of biomarkers in the osteoarthritis research field informing on cartilage homeostasis, joint inflammation and altered subchondral bone remodeling.
Collapse
Affiliation(s)
- Virginia Byers Kraus
- Division of Rheumatology, Duke Molecular Physiology Institute, Duke University School of Medicine, 300 North Duke St, Box 104775, Durham, NC, 27701, USA.
| | - Morten A Karsdal
- Rheumatology, Biomarkers and Research, Nordic Bioscience, Herlev, Denmark
| |
Collapse
|
162
|
Brenner D, Shorten GD, O'Mahony SM. Postoperative pain and the gut microbiome. NEUROBIOLOGY OF PAIN 2021; 10:100070. [PMID: 34409198 PMCID: PMC8361255 DOI: 10.1016/j.ynpai.2021.100070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 06/24/2021] [Accepted: 07/26/2021] [Indexed: 12/12/2022]
Abstract
Poorly controlled postoperative pain remains a major unresolved challenge globally. The gut microbiome impacts on inflammatory pain and neuropathic pain. Microbiota metabolites can regulate peripheral and central sensitisation. Stress is linked to both postoperative pain and an altered gut microbiome.
In excess of 300 million surgical procedures are undertaken worldwide each year. Despite recognition of the prevalence of postoperative pain, and improvements in pain management techniques, poorly controlled postoperative pain remains a major unresolved challenge globally. An estimated 71% and 51% of patients experience moderate to severe pain after surgery in in-patient and outpatient settings, respectively. Inadequately controlled pain after surgery is associated with significant perioperative morbidity including myocardial infarction and pulmonary complications. As many as 20–56% of patients develop chronic pain after commonly performed procedures such as hernia repair, hysterectomy, and thoracotomy. Traditional analgesics and interventions are often ineffective or partially effective in the treatment of postoperative pain, resulting in a chronic pain condition with related socio-economic impacts and reduced quality of life for the patient. Such chronic pain which occurs after surgery is referred to as Persistent Post-Surgical Pain (PPSP). The complex ecosystem that is the gastrointestinal microbiota (including bacteria, fungi, viruses, phage) plays essential roles in the maintenance of the healthy state of the host. A disruption to the balance of this microbiome has been implicated not only in gastrointestinal disease but also neurological disorders including chronic pain. The influence of the gut microbiome is well documented in the context of visceral pain from the gastrointestinal tract while a greater understanding is emerging of the impact on inflammatory pain and neuropathic pain (both of which can occur during the perioperative period). The gut microbiome is an essential source for driving immune maturation and maintaining appropriate immune response. Given that inflammatory processes have been implicated in postoperative pain, aberrant microbiome profiles may play a role in the development of this type of pain. Furthermore, the microorganisms in our gut produce metabolites, neurotransmitters, and neuromodulators which interact with their receptors to regulate peripheral and central sensitisation associated with chronic pain. Microbiota-derived mediators can also regulate neuroinflammation, which is associated with activation of microglia as well as infiltration by immune cells, known to modulate the development and maintenance of central sensitisation. Moreover, risk factors for developing postoperative pain include anxiety, depression, and increased stress response. These central nervous system-related disorders have been associated with an altered gut microbiome and microbiome targeted intervention studies indicate improvements. Females are more likely to suffer from postoperative pain. As gonadal hormones are associated with a differential microbiome and pre-clinical studies show that male microbiome confers protection from inflammatory pain, it is possible that the composition of the microbiome and its by-products contribute to the increased risk for the development of postoperative pain. Very little evidence exists relating the microbiome to somatic pain. Here we discuss the potential role of the gut microbiome in the aetiology and pathophysiology of postoperative pain in the context of other somatic pain syndromes and what is known about microbe-neuron interactions. Investigations are needed to determine the specific role of the gut microbiome in this type of pain which may help inform the development of preventative interventions as well as management strategies to improve patient outcome.
Collapse
Affiliation(s)
- David Brenner
- Department of Anesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Ireland
| | - George D Shorten
- Department of Anesthesia and Intensive Care Medicine, Cork University Hospital and University College Cork, Ireland
| | - Siobhain M O'Mahony
- APC Microbiome Ireland, University College Cork, Cork, Ireland.,Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| |
Collapse
|
163
|
Turroni S, Pedersini P, Villafañe JH. The Human Gut Microbiome and Its Relationship with Osteoarthritis Pain. PAIN MEDICINE 2021; 22:1467-1469. [PMID: 33313892 DOI: 10.1093/pm/pnaa422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
164
|
Koop MA, Lutke Schipholt IJ, Scholten-Peeters GGM, Coppieters MW. Identifying the most important confounders when assessing the association between low-grade systemic inflammation and musculoskeletal pain: A modified Delphi study. PAIN MEDICINE 2021; 22:2661-2669. [PMID: 34343332 PMCID: PMC8633774 DOI: 10.1093/pm/pnab243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Objective The association between low-grade systemic inflammation and musculoskeletal pain may be influenced by multiple factors. However, little is known about the relative importance of these factors, and few studies account for them. This Delphi study aimed to reach consensus on the most important confounders which influence the association between low-grade systemic inflammation and musculoskeletal pain. Methods The panel consisted of 48 experts. In Round 1, the experts proposed what they believed were important confounders. In Round 2, the experts indicated for each confounder whether they believed it was important (yes/no). At least 50% of experts had to indicate the confounder was important to be considered in the final round. In Round 3, the experts rated the importance of each confounder on a 7-point Likert scale. Consensus was reached if ≥75% of the experts considered the factor either extremely or moderately important. Results In Round 1, 120 confounders were proposed, which were synthesized into 38 distinct factors. In Round 2, 33 confounders met the criterion to be considered important. In Round 3, consensus was reached for 14 confounders: acute illness/trauma, immune disease, medication use, endocrine, nutritional, or metabolic disease, other musculoskeletal conditions, age, handling of blood samples, sex, cancer, body composition, pregnancy, cardiovascular disease, physical activity, and pain characteristics. Conclusions These findings provide insight in the complexity of the association between low-grade systemic inflammation and musculoskeletal pain. Some factors currently listed as confounders may be re-classified as moderators or mediators as insights progress.
Collapse
Affiliation(s)
- Meghan A Koop
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7 1081 BT Amsterdam, The Netherlands
| | - Ivo J Lutke Schipholt
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7 1081 BT Amsterdam, The Netherlands.,Department of Clinical Chemistry, Laboratory Medical Immunology, Amsterdam UMC, Location VU Medical Centre, De Boelelaan 1117 1081 HV Amsterdam, The Netherlands
| | - Gwendolyne G M Scholten-Peeters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7 1081 BT Amsterdam, The Netherlands
| | - Michel W Coppieters
- Department of Human Movement Sciences, Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam Movement Sciences, Van der Boechorststraat 7 1081 BT Amsterdam, The Netherlands.,Menzies Health Institute Queensland, Griffith University, Gold Coast Campus (G40; LVL 8.82), Parklands Drive, Southport, QLD 4215, Australia
| |
Collapse
|
165
|
Velasco C, Dunn C, Sturdy C, Izda V, Martin J, Rivas A, McNaughton J, Jeffries MA. Ear wound healing in MRL/MpJ mice is associated with gut microbiome composition and is transferable to non-healer mice via microbiome transplantation. PLoS One 2021; 16:e0248322. [PMID: 34283837 PMCID: PMC8291702 DOI: 10.1371/journal.pone.0248322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 06/28/2021] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE Adult elastic cartilage has limited repair capacity. MRL/MpJ (MRL) mice, by contrast, are capable of spontaneously healing ear punctures. This study was undertaken to characterize microbiome differences between healer and non-healer mice and to evaluate whether this healing phenotype can be transferred via gut microbiome transplantation. METHODS We orally transplanted C57BL/6J (B6) mice with MRL/MpJ cecal contents at weaning and as adults (n = 57) and measured ear hole closure 4 weeks after a 2.0mm punch and compared to vehicle-transplanted MRL and B6 (n = 25) and B6-transplanted MRL (n = 20) mice. Sex effects, timing of transplant relative to earpunch, and transgenerational heritability were evaluated. In a subset (n = 58), cecal microbiomes were profiled by 16S sequencing and compared to ear hole closure. Microbial metagenomes were imputed using PICRUSt. RESULTS Transplantation of B6 mice with MRL microbiota, either in weanlings or adults, improved ear hole closure. B6-vehicle mice healed ear hole punches poorly (0.25±0.03mm, mm ear hole healing 4 weeks after a 2mm ear hole punch [2.0mm-final ear hole size], mean±SEM), whereas MRL-vehicle mice healed well (1.4±0.1mm). MRL-transplanted B6 mice healed roughly three times as well as B6-vehicle mice, and half as well as MRL-vehicle mice (0.74±0.05mm, P = 6.9E-10 vs. B6-vehicle, P = 5.2E-12 vs. MRL-vehicle). Transplantation of MRL mice with B6 cecal material did not reduce MRL healing (B6-transplanted MRL 1.3±0.1 vs. MRL-vehicle 1.4±0.1, p = 0.36). Transplantation prior to ear punch was associated with the greatest ear hole closure. Offspring of transplanted mice healed significantly better than non-transplanted control mice (offspring:0.63±0.03mm, mean±SEM vs. B6-vehicle control:0.25±0.03mm, n = 39 offspring, P = 4.6E-11). Several microbiome clades were correlated with healing, including Firmicutes (R = 0.84, P = 8.0E-7), Lactobacillales (R = 0.65, P = 1.1E-3), and Verrucomicrobia (R = -0.80, P = 9.2E-6). Females of all groups tended to heal better than males (B6-vehicle P = 0.059, MRL-transplanted B6 P = 0.096, offspring of MRL-transplanted B6 P = 0.0038, B6-transplanted MRL P = 1.6E-6, MRL-vehicle P = 0.0031). Many clades characteristic of female mouse cecal microbiota vs. males were the same as clades characteristic of MRL and MRL-transplanted B6 mice vs. B6 controls, including including increases in Clostridia and reductions in Verrucomicrobia in female mice. CONCLUSION In this study, we found an association between the microbiome and tissue regeneration in MRL mice and demonstrate that this trait can be transferred to non-healer mice via microbiome transplantation. We identified several microbiome clades associated with healing.
Collapse
Affiliation(s)
- Cassandra Velasco
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, Oklahoma, United States of America
| | - Christopher Dunn
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, Oklahoma, United States of America
| | - Cassandra Sturdy
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
| | - Vladislav Izda
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
| | - Jake Martin
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
| | - Alexander Rivas
- University of Arkansas for Medical Sciences, Little Rock, Arkansas, United States of America
| | - Jeffrey McNaughton
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, Oklahoma, United States of America
| | - Matlock A. Jeffries
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, Oklahoma, United States of America
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, Oklahoma, United States of America
| |
Collapse
|
166
|
Collins KH, Schwartz DJ, Lenz KL, Harris CA, Guilak F. Taxonomic changes in the gut microbiota are associated with cartilage damage independent of adiposity, high fat diet, and joint injury. Sci Rep 2021; 11:14560. [PMID: 34267289 PMCID: PMC8282619 DOI: 10.1038/s41598-021-94125-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 06/30/2021] [Indexed: 12/02/2022] Open
Abstract
Lipodystrophic mice are protected from cartilage damage following joint injury. This protection can be reversed by the implantation of a small adipose tissue graft. The purpose of this study was to evaluate the relationship between the gut microbiota and knee cartilage damage while controlling for adiposity, high fat diet, and joint injury using lipodystrophic (LD) mice. LD and littermate control (WT) mice were fed a high fat diet, chow diet, or were rescued with fat implantation, then challenged with destabilization of the medial meniscus surgery to induce osteoarthritis (OA). 16S rRNA sequencing was conducted on feces. MaAslin2 was used to determine associations between taxonomic relative abundance and OA severity. While serum LPS levels between groups were similar, synovial fluid LPS levels were increased in both limbs of HFD WT mice compared to all groups, except for fat transplanted animals. The Bacteroidetes:Firmicutes ratio of the gut microbiota was significantly reduced in HFD and OA-rescued animals when compared to chow. Nine novel significant associations were found between gut microbiota taxa and OA severity. These findings suggest the presence of causal relationships the gut microbiome and cartilage health, independent of diet or adiposity, providing potential therapeutic targets through manipulation of the microbiome.
Collapse
Affiliation(s)
- Kelsey H Collins
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA
| | - Drew J Schwartz
- Division of Infectious Diseases, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kristin L Lenz
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA
- Shriners Hospitals for Children, St. Louis, MO, USA
| | - Charles A Harris
- Division of Endocrinology, Washington University, St. Louis, MO, USA
- Early Clinical Development & Experimental Sciences, Regeneron Pharmaceuticals, Tarrytown, NY, USA
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University, Couch Building Room 3213, 4523 Clayton Avenue, St Louis, MO, 63110, USA.
- Shriners Hospitals for Children, St. Louis, MO, USA.
- Center of Regenerative Medicine, Washington University, St. Louis, MO, USA.
| |
Collapse
|
167
|
Kim JW, Ju JH. Gut Microbiome Bridges Over Troubled Joints. JOURNAL OF RHEUMATIC DISEASES 2021; 28:111-112. [PMID: 37475991 PMCID: PMC10324901 DOI: 10.4078/jrd.2021.28.3.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 06/21/2021] [Indexed: 07/22/2023]
Affiliation(s)
- Ji Won Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Catholic University School of Medicine, Daegu, Korea
| | - Ji Hyeon Ju
- Division of Rheumatology, Department of Internal Medicine, Seoul St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul, Korea
| |
Collapse
|
168
|
Zhang Y, Xia G, Nie X, Zeng Y, Chen Y, Qian Y, Chen G, Huang J, Wang C, Zhang C, Huang X, Yang Y, Qiu X, Yang F, Chen J, Hu J. Differences in Manifestations and Gut Microbiota Composition Between Patients With Different Henoch-Schonlein Purpura Phenotypes. Front Cell Infect Microbiol 2021; 11:641997. [PMID: 34277463 PMCID: PMC8281929 DOI: 10.3389/fcimb.2021.641997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/12/2021] [Indexed: 01/08/2023] Open
Abstract
Background Gut microbiota plays an important role in the pathogenesis of immune-mediated diseases. However, the complex pathogenesis of Henoch-Schonlein Purpura (HSP) remains elusive. This study aimed to characterize the gut microbiota in HSP patients and explore the potential association between gut microbiota composition and phenotypic changes in HSP. Methods 16SrRNA gene sequencing and bioinformatic analyses were performed using total DNA extracted from the fecal microbiota of 34 children with HSP, including 18 primary cases, 16 recurrent cases, and 23 healthy children. Results The diversity indexes showed significant differences in the microbial community among the primary HSP groups, the recurrent HSP group and healthy controls. The abundance of Escherichia-Shigella in the recurrent HSP group was significantly higher than that in the primary HSP group, and the constructed ROC curve had an AUC value of 0.750. According to the Spearman correlation analysis, the abundance of Bacteroides was positively associated with the serum IgG level in children with HSP, while the abundance of Lachnoclostridium was negatively correlated with the complement component 3 (C3). The diversity indexes of gut microbiota in the HSP group with abdominal symptoms were higher than those in the HSP group without GI involvement, and also higher than those in the healthy control group. In the HSP group with GI involvement, the abundance of Faecalibacterium was decreased, while the abundance of Streptococcus and Fusobacteria was increased, compared to the HSP group without GI involvement. Conclusions The gut microbiota of children with HSP was different from that of healthy children. The genus Escherichia-Shigella has a diagnostic value for HSP recurrence. Bacteroides and Lachnoclostridium may affect IgG and complement C3 levels in children with HSP. Abdominal symptoms in HSP children were related to gut microbiota (Streptococcus and butyric acid-producing bacteria).
Collapse
Affiliation(s)
- Yuanzhen Zhang
- Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, China.,Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Guizhi Xia
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China.,Department of Pediatrics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Xiaojing Nie
- Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, China.,Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China.,Department of Pediatrics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yugui Zeng
- Department of Pediatrics, Affiliated Dongfang Hospital, Xiamen University, Fuzhou, China
| | - Yi Chen
- Department of Pediatrics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Yifang Qian
- Department of Pediatrics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Guangming Chen
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China.,Department of Pediatrics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Jun Huang
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China.,Department of Pediatrics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chengfeng Wang
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China.,Department of Pediatrics, Fuzong Clinical Medical College of Fujian Medical University, Fuzhou, China
| | - Chuanyin Zhang
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Xiaoli Huang
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Yuen Yang
- Department of Pediatrics, The 900th Hospital of Joint Logistic Support Force, Fuzhou, China
| | - Xiaojian Qiu
- Department of Pediatrics, The Fujian Provincial Maternity and Children's Hospital, Fuzhou, China
| | - Fang Yang
- Department of Pediatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Jie Chen
- Department of Pediatrics, Fujian Provincial Hospital, Fuzhou, China
| | - Jun Hu
- Department of Pediatrics, Fujian Medical University Union Hospital, Fuzhou, China
| |
Collapse
|
169
|
Hahn AK, Wallace CW, Welhaven HD, Brooks E, McAlpine M, Christiansen BA, Walk ST, June RK. The microbiome mediates epiphyseal bone loss and metabolomic changes after acute joint trauma in mice. Osteoarthritis Cartilage 2021; 29:882-893. [PMID: 33744432 PMCID: PMC8693703 DOI: 10.1016/j.joca.2021.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE To compare the early responses to joint injury in conventional and germ-free mice. DESIGN Post-traumatic osteoarthritis (PTOA) was induced using a non-invasive anterior cruciate ligament rupture model in 20-week old germ-free (GF) and conventional C57BL/6 mice. Injury was induced in the left knees of n = 8 GF and n = 10 conventional mice. To examine the effects of injury, n = 5 GF and n = 9 conventional naïve control mice were used. Mice were euthanized 7 days post-injury, followed by synovial fluid recovery for global metabolomic profiling and analysis of epiphyseal trabecular bone by micro-computed tomography (μCT). Global metabolomic profiling assessed metabolic differences in the joint response to injury between GF and conventional mice. Magnitude of trabecular bone volume loss measured using μCT assessed early OA progression in GF and conventional mice. RESULTS μCT found that GF mice had significantly less trabecular bone loss compared to conventional mice, indicating that the GF status was protective against early OA changes in bone structure. Global metabolomic profiling showed that conventional mice had greater variability in their metabolic response to injury, and a more distinct joint metabolome compared to their corresponding controls. Furthermore, differences in the response to injury in GF compared to conventional mice were linked to mouse metabolic pathways that regulate inflammation associated with the innate immune system. CONCLUSIONS These results suggest that the gut microbiota promote the development of PTOA during the acute phase following joint trauma possibly through the regulation of the innate immune system.
Collapse
Affiliation(s)
- A K Hahn
- Department of Biological and Environmental Science, Carroll College, Helena, MT, 59625, USA
| | - C W Wallace
- Montana WWAMI, University of Washington School of Medicine, Seattle, WA, 98195, USA
| | - H D Welhaven
- Department of Biological and Environmental Science, Carroll College, Helena, MT, 59625, USA
| | - E Brooks
- Department of Chemical & Biological Engineering, Montana State University, Bozeman, MT, 59717, USA
| | - M McAlpine
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - B A Christiansen
- Department of Orthopaedic Surgery, University of California Davis, Sacramento, CA, 95817, USA
| | - S T Walk
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA
| | - R K June
- Department of Microbiology & Cell Biology, Montana State University, Bozeman, MT, 59717, USA; Department of Mechanical & Industrial Engineering, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
170
|
Abstract
PURPOSE OF THE REVIEW The human gut harbors a complex community of microbes that influence many processes regulating musculoskeletal development and homeostasis. This review gives an update on the current knowledge surrounding the impact of the gut microbiota on musculoskeletal health, with an emphasis on research conducted over the last three years. RECENT FINDINGS The gut microbiota and their metabolites are associated with sarcopenia, osteoporosis, osteoarthritis, and rheumatoid arthritis. The field is moving fast from describing simple correlations to pursue establishing causation through clinical trials. The gut microbiota and their microbial-synthesized metabolites hold promise for offering new potential alternatives for the prevention and treatment of musculoskeletal diseases given its malleability and response to environmental stimuli.
Collapse
Affiliation(s)
- R Li
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - C G Boer
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
| | - L Oei
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Department of Internal Medicine, Leiden University Medical Center, Leiden, The Netherlands
| | - Carolina Medina-Gomez
- Department of Internal Medicine, Erasmus MC University Medical Center, Rotterdam, The Netherlands.
| |
Collapse
|
171
|
The Gut Microbiome and Gastrointestinal Toxicities in Pelvic Radiation Therapy: A Clinical Review. Cancers (Basel) 2021; 13:cancers13102353. [PMID: 34068216 PMCID: PMC8153110 DOI: 10.3390/cancers13102353] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/06/2021] [Accepted: 05/10/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary A substantial proportion of cancer patients receive radiotherapy (RT) during their cancer trajectory. One of the most challenging pelvic RT-related toxicities are gastrointestinal (GI) toxicities (e.g., abdominal pain, rectal bleeding, faecal incontinence, and diarrhoea) which impair the quality of life (QoL) of patients. Mounting evidence suggests that gut microbiota plays a pivotal role in health and disease, including cancer. Our current clinical review aims to assess the impact of RT on gut microbiota and GI toxicities in cancer patients to provide useful information, in addition to standard care, for clinicians and patients. Abstract Background: Gastrointestinal (GI) toxicities are common adverse effects of pelvic radiotherapy (RT). Several recent studies revealed that toxicity of RT is associated with dysbiosis of the gut microbiome. Method: A literature search was conducted in electronic databases Medline, PubMed, and ScienceDirect, with search terms “microbiome and/or microbiota” and “radiotherapy (RT) and/or chemoradiation therapy (CRT)” and “cancer”, and the relevant literature were selected for use in this article. Results: Eight prospective cohort studies were selected for review with a total of 311 participants with a range of 15–134 participants within these studies. The selected studies were conducted in patients with gynaecological (n = 3), rectal (n = 2), or prostate cancers (n = 1), or patients with various types of malignancies (n = 2). Three studies reported that cancer patients had significantly lower alpha diversity compared with healthy controls. Seven studies found that lower alpha diversity and modulated gut microbiome were associated with GI toxicities during and after pelvic RT (n = 5) and CRT (n = 2), whereas one study found that beta diversity was related to a complete response following CRT. Two further studies reported that fatigue was associated with dysbiosis of the gut microbiome and low alpha diversity during and after RT, and with dysbiosis of the gut microbiome and diarrhoea, respectively. Conclusion: Gut microbiome profiles are associated with GI toxicities and have the potential to predict RT/CRT-induced toxicities and quality of life (QoL) in patients undergoing those treatments. Further robust randomized controlled trials (RCTs) are required to elucidate the effect of gut microbiome profiles on RT-related adverse effects and responses to RT.
Collapse
|
172
|
Sirufo M, Ginaldi L, De Martinis M. Non-coding RNAs, osteoarthritis and the microbiome: new therapeutic targets? Arthritis Rheumatol 2021; 73:2146. [PMID: 33982882 DOI: 10.1002/art.41795] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 04/12/2021] [Indexed: 11/07/2022]
Abstract
we read with great interest the article by J Wei et al. "Association between gut microbiota and symptomatic hand osteoarthritis: data from the Xiangya Osteoarthritis Study" recently published in the Journal and shedding light on the association between gut microbiome and the presence of symptomatic hand osteoarthritis (OA). Their findings help understand the role of microbiome in the development of SHOA and [1] could became the target of emerging therapies [2].
Collapse
Affiliation(s)
- Maddalena Sirufo
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Lia Ginaldi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| | - Massimo De Martinis
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Italy.,Allergy and Clinical Immunology Unit, Center for the diagnosis and treatment of Osteoporosis, AUSL 04 Teramo, Italy
| |
Collapse
|
173
|
Tan TC, Chong TKY, Low AHL, Leung YY. Microbiome and osteoarthritis: New insights from animal and human studies. Int J Rheum Dis 2021; 24:984-1003. [PMID: 33961348 DOI: 10.1111/1756-185x.14123] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/15/2021] [Accepted: 04/10/2021] [Indexed: 01/08/2023]
Abstract
Osteoarthritis (OA) is a common cause of disability, especially among the elderly. With an ageing and increasingly obese population, OA will become more prevalent. Obesity and metabolic syndrome are risk factors for OA and have been implicated in its pathogenesis. The gut microbiome may shed light on this possible common pathogenesis. Recent animal and human studies have gained important insights into the relationship between OA, obesity, and the gut microbiome. Animal studies have demonstrated links between obesity and increased severity of OA and altered gut microbial DNA profile. Use of prebiotics and probiotics in animal trials provides proof-of-concept that interventional options to the gut microbiome can modulate the progression of OA favorably. Current evidence in human studies is limited. Shifts in gut microbial profile and reduced gut microbial diversity have been associated with people with OA, as well as blood and synovial fluid lipopolysaccharide endotoxemia. Linkages between microbiome dysbiosis and host responses may help in the understanding of OA pathogenesis and the discovery of therapeutic targets. This narrative review provides a summary of up-to-date animal and human studies on the gut microbiome and its link with OA.
Collapse
Affiliation(s)
- Tze Chin Tan
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore.,Duke-NUS Medical School, Singapore City, Singapore
| | - Timothy Kit Yeong Chong
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore
| | - Andrea Hsiu Ling Low
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore.,Duke-NUS Medical School, Singapore City, Singapore
| | - Ying Ying Leung
- Department of Rheumatology & Immunology, Singapore General Hospital, Singapore City, Singapore.,Duke-NUS Medical School, Singapore City, Singapore
| |
Collapse
|
174
|
Binvignat M, Sokol H, Mariotti-Ferrandiz E, Berenbaum F, Sellam J. Osteoarthritis and gut microbiome. Joint Bone Spine 2021; 88:105203. [PMID: 33962035 DOI: 10.1016/j.jbspin.2021.105203] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/03/2021] [Indexed: 12/20/2022]
Affiliation(s)
- Marie Binvignat
- Sorbonne Université, Department of Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Inserm UMRS_938, FHU PaCeMM, 184, Rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Harry Sokol
- Sorbonne Université, Department of Gastroenterology, AP-HP, Hôpital Saint-Antoine, Inserm UMRS_938, FHU PaCeMM, 75012 Paris, France
| | - Encarnita Mariotti-Ferrandiz
- Sorbonne Université, Department of Immunology-Immunopathology- Immunotherapy- Hôpitaux de Paris (AP-HP), Hôpital Pitié-Salpêtrière, Inserm URMS_959, 75013 Paris, France
| | - Francis Berenbaum
- Sorbonne Université, Department of Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Inserm UMRS_938, FHU PaCeMM, 184, Rue du Faubourg Saint-Antoine, 75012 Paris, France
| | - Jérémie Sellam
- Sorbonne Université, Department of Rheumatology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Antoine, Inserm UMRS_938, FHU PaCeMM, 184, Rue du Faubourg Saint-Antoine, 75012 Paris, France.
| |
Collapse
|
175
|
Moentadj R, Wang Y, Bowerman K, Rehaume L, Nel H, O Cuiv P, Stephens J, Baharom A, Maradana M, Lakis V, Morrison M, Wells T, Hugenholtz P, Benham H, Le Cao KA, Thomas R. Streptococcus species enriched in the oral cavity of patients with RA are a source of peptidoglycan-polysaccharide polymers that can induce arthritis in mice. Ann Rheum Dis 2021; 80:573-581. [PMID: 33397732 DOI: 10.1136/annrheumdis-2020-219009] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/12/2020] [Accepted: 12/15/2020] [Indexed: 11/04/2022]
Abstract
OBJECTIVES Analysis of oral dysbiosis in individuals sharing genetic and environmental risk factors with rheumatoid arthritis (RA) patients may illuminate how microbiota contribute to disease susceptibility. We studied the oral microbiota in a prospective cohort of patients with RA, first-degree relatives (FDR) and healthy controls (HC), then genomically and functionally characterised streptococcal species from each group to understand their potential contribution to RA development. METHODS After DNA extraction from tongue swabs, targeted 16S rRNA gene sequencing and statistical analysis, we defined a microbial dysbiosis score based on an operational taxonomic unit signature of disease. After selective culture from swabs, we identified streptococci by sequencing. We examined the ability of streptococcal cell walls (SCW) from isolates to induce cytokines from splenocytes and arthritis in ZAP-70-mutant SKG mice. RESULTS RA and FDR were more likely to have periodontitis symptoms. An oral microbial dysbiosis score discriminated RA and HC subjects and predicted similarity of FDR to RA. Streptococcaceae were major contributors to the score. We identified 10 out of 15 streptococcal isolates as S. parasalivarius sp. nov., a distinct sister species to S. salivarius. Tumour necrosis factor and interleukin 6 production in vitro differed in response to individual S. parasalivarius isolates, suggesting strain specific effects on innate immunity. Cytokine secretion was associated with the presence of proteins potentially involved in S. parasalivarius SCW synthesis. Systemic administration of SCW from RA and HC-associated S. parasalivarius strains induced similar chronic arthritis. CONCLUSIONS Dysbiosis-associated periodontal inflammation and barrier dysfunction may permit arthritogenic insoluble pro-inflammatory pathogen-associated molecules, like SCW, to reach synovial tissue.
Collapse
Affiliation(s)
- Rabia Moentadj
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Yiwen Wang
- School of Mathematics and Statistics, Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Kate Bowerman
- Australian Centre for Ecogenomics, The University of Queensland - Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Linda Rehaume
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Hendrik Nel
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Paraic O Cuiv
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Current address: Microba Life Sciences, Translational Research Institute, Woolloongabba, QLD, Australia
| | - Juliette Stephens
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Amalina Baharom
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Muralidhara Maradana
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Vanessa Lakis
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Mark Morrison
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Timothy Wells
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Philip Hugenholtz
- Australian Centre for Ecogenomics, The University of Queensland - Saint Lucia Campus, Saint Lucia, Queensland, Australia
| | - Helen Benham
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
- Department of Rheumatology, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Kim-Anh Le Cao
- School of Mathematics and Statistics, Melbourne Integrative Genomics, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ranjeny Thomas
- The University of Queensland Diamantina Institute, The University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| |
Collapse
|
176
|
Oral Administration of Lactobacillus rhamnosus Ameliorates the Progression of Osteoarthritis by Inhibiting Joint Pain and Inflammation. Cells 2021; 10:cells10051057. [PMID: 33946919 PMCID: PMC8146916 DOI: 10.3390/cells10051057] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Osteoarthritis (OA) is the most common form of arthritis and age-related degenerative joint disorder, which adversely affects quality of life and causes disability. However, the pathogenesis of OA remains unclear. This study was performed to examine the effects of Lactobacillus rhamnosus in OA progression. OA was induced in 6-week-old male Wistar rats by monosodium iodoacetate (MIA) injection, and the effects of oral administration of L. rhamnosus were examined in this OA rat model. Pain severity, cartilage destruction, and inflammation were measured in MIA-induced OA rats. The small intestines were isolated from OA rats, and the intestinal structure and inflammation were measured. Protein expression in the dorsal root ganglion was analyzed by immunohistochemistry. The effects of L. rhamnosus on mRNA and protein expression in chondrocytes stimulated with interleukin (IL)-1β and lipopolysaccharide (LPS) were analyzed by real-time polymerase chain reaction (RT-PCR) and enzyme-linked immunosorbent assay (ELISA). Pain severity was decreased in L. rhamnosus-treated MIA-induced OA rats. The levels of expression of MCP-1, a potential inflammatory cytokine, and its receptor, CCR2, were decreased, and GABA and PPAR-γ expression were increased in L. rhamnosus-treated OA rats. The inflammation, as determined by IL-1β, and cartilage destruction, as determined by MMP3, were also significantly decreased by L. rhamnosus in OA rats. Additionally, intestinal damage and inflammation were improved by L. rhamnosus. In human OA chondrocytes, TIMP1, TIMP3, SOX9, and COL2A1 which are tissue inhibitors of MMP, and IL-10, an anti-inflammatory cytokine, were increased by L. rhamnosus. L. rhamnosus treatment led to decreased pain severity and cartilage destruction in a rat model of OA. Intestinal damage and inflammation were also decreased by L. rhamnosus treatment. Our findings suggested the therapeutic potential of L. rhamnosus in OA.
Collapse
|
177
|
Abstract
There is a well-established historical observation that structural joint damage by plain X-ray correlates poorly with symptomatic disease in osteoarthritis (OA). This is often attributed to the inability to visualise soft-tissue pathology within the joint and the recognition of heterogeneous patient factors that drive central pain sensitisation. A major issue is the relative paucity of mechanistic studies in which molecular pathogenesis of pain is interrogated in relation to tissue pathology. Nonetheless, in recent years, three broad approaches have been deployed to attempt to address this: correlative clinical studies of peripheral and central pain outcomes using magnetic resonance imaging, where soft-tissue processes can be visualised; molecular studies on tissue from patients with OA; and careful molecular interrogation of preclinical models of OA across the disease time course. Studies have taken advantage of established clinical molecular targets such as nerve growth factor. Not only is the regulation of nerve growth factor within the joint being used to explore the relationship between tissue pathology and the origins of pain in OA, but it also provides a core model on which other molecules present within the joint can modulate the pain response. In this narrative review, how molecular and pathological tissue change relates to joint pain in OA will be discussed. Finally, a model for how tissue damage may lead to pain over the disease course will be proposed.
Collapse
|
178
|
Ramasamy B, Magne F, Tripathy SK, Venugopal G, Mukherjee D, Balamurugan R. Association of Gut Microbiome and Vitamin D Deficiency in Knee Osteoarthritis Patients: A Pilot Study. Nutrients 2021; 13:1272. [PMID: 33924396 PMCID: PMC8069973 DOI: 10.3390/nu13041272] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Few preclinical studies have shown that Knee osteoarthritis (KOA) is linked to gut microbiome dysbiosis and chronic inflammation. This pilot study was designed to look at the gut microbiome composition in KOA patients and normal individuals with or without vitamin D deficiency (VDD, serum vitamin D <30 ng/mL). METHODS This pilot study was conducted prospectively in 24 participants. The faecal samples of all the participants were taken for DNA extraction. The V3-V4 region of 16s rRNA was amplified, and the library was prepared and sequenced on the Illumina Miseq platform. RESULTS The mean (±SD) age was 45.5 (±10.2) years with no defined comorbidities. Of 447 total Operational Taxonomic Units (OTUs), a differential abundance of 16 nominally significant OTUs between the groups was observed. Linear discriminate analysis (LEfSe) revealed a significant difference in bacteria among the study groups. Pseudobutyrivibrio and Odoribacter were specific for VDD, while Parabacteroides, Butyricimonas and Gordonibacter were abundant in the KOA_VDD group, and Peptococcus, Intestimonas, Delftia and Oribacterium were abundant in the KOA group. About 80% of bacterial species were common among different groups and hence labelled as core bacterial species. However, the core microbiome of KOA and VDD groups were not seen in the KOA_VDD group, suggesting that these bacterial groups were affected by the interaction of the KOA and VDD factors. CONCLUSION Parabacteroides, Butyricimonas, Pseudobutyrivibrio, Odoribacter and Gordonibacter are the predominant bacteria in vitamin D deficient patients with or without KOA. Together these results indicate an association between the gut microbiome, vitamin D and knee osteoarthritis.
Collapse
Affiliation(s)
- Boopalan Ramasamy
- Department of Orthopaedics, Christian Medical College, Vellore, Tamil Nadu 632004, India;
| | - Fabien Magne
- Microbiology and Mycology Program, Biomedical Sciences Institute (ICBM), School of Medicine, University of Chile, Santiago Región Metropolitana 8380418, Chile;
| | - Sujit Kumar Tripathy
- Department of Orthopaedics, All India Institute of Medical Sciences, Bhubaneswar 110608, India;
| | - Giriprasad Venugopal
- Center of Excellence for Clinical Microbiome Research, All India Institute of Medical Sciences, Bhubaneswar 110608, India;
| | - Diptasree Mukherjee
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar 110608, India;
| | - Ramadass Balamurugan
- Center of Excellence for Clinical Microbiome Research, All India Institute of Medical Sciences, Bhubaneswar 110608, India;
- Department of Biochemistry, All India Institute of Medical Sciences, Bhubaneswar 110608, India;
| |
Collapse
|
179
|
Zhou H, Li G, Wang Y, Jiang R, Li Y, Wang H, Wang F, Ma H, Cao L. Microbial Metabolite Sodium Butyrate Attenuates Cartilage Degradation by Restoring Impaired Autophagy and Autophagic Flux in Osteoarthritis Development. Front Pharmacol 2021; 12:659597. [PMID: 33897442 PMCID: PMC8062861 DOI: 10.3389/fphar.2021.659597] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/01/2021] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative joint disease with multiple etiologies that affects individuals worldwide. No effective interventions are currently available to reverse the pathological process of OA. Sodium butyrate (NaB), a component of short-chain fatty acids (SCFAs), has multiple biological activities, including the attenuation of inflammation and anti-tumor activities in various diseases. However, whether the protective effects of NaB in OA are associated with the promotion of autophagy had not been investigated. Here, we explored the chondroprotective properties of NaB in an interleukin (IL)-1β-induced inflammatory chondrocyte model and an anterior cruciate ligament transection (ACLT) mouse model. Hematoxylin and eosin (HE), Safranin O, and immunohistochemical staining were performed to evaluate the effects of NaB treatment on articular cartilage. An optimal NaB dose for chondrocyte treatment was determined via cell counting kit-8 assays. Immunofluorescence and transmission electron microscopy were used to detect autophagy in chondrocytes. Flow cytometry was utilized to detect reactive oxygen species (ROS), cell cycle activity, and apoptosis in chondrocytes. Western blot and immunostaining were performed to evaluate the protein expression levels of relevant indicators. We found that the administration of NaB by oral gavage could attenuate cartilage degradation. In parallel, NaB treatment could enhance the activation of autophagy, increase autophagic flux, decrease extracellular matrix degradation, and reduce apoptosis by restraining inflammation, ROS production, and cell cycle arrest in IL-1β-treated chondrocytes. The protective effects of NaB could be partially abolished by the autophagy inhibitor 3-methyladenine (3-MA), which indicated that the protective effects of NaB against OA were partially governed by the enhancement of autophagy to restrain the formation of inflammatory mediators and ROS and regulate cell cycle progression and apoptosis in chondrocytes. In conclusion, NaB could attenuate OA progression by restoring impaired autophagy and autophagic flux via the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathway, both in vitro and in vivo, implying that NaB could represent a novel therapeutic approach for OA.
Collapse
Affiliation(s)
- Haikang Zhou
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Guoqing Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yang Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Rendong Jiang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Yicheng Li
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Huhu Wang
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Fei Wang
- Xinjiang Uygur Autonomous Region Clinical Research Center for Orthopedic Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hairong Ma
- Xinjiang Uygur Autonomous Region Clinical Research Center for Orthopedic Diseases, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Li Cao
- Department of Orthopaedics, First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| |
Collapse
|
180
|
Relationship between the Gut Microbiome and Osteoarthritis Pain: Review of the Literature. Nutrients 2021; 13:nu13030716. [PMID: 33668236 PMCID: PMC7996179 DOI: 10.3390/nu13030716] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 02/07/2023] Open
Abstract
Background: Osteoarthritis (OA) is the most common form of chronic pain in Europe (34%), representing a great economic and social cost to society. There are studies that suggest an intestine–brain–articulation axis and hint at the existence of low-grade intestinal inflammation in OA, which would be related to an alteration of the microbiota and to the impairment of the epithelial barrier, with leakage of the microbial components. Purpose: The purpose of this study was to review the association between gut microbiome and pain in the OA population through a review of the literature. Methods: A literature search was conducted to identify all available studies on the association between the gut microbiome and pain in the OA population, with no publication date limit until September 2020 and no language limit, in the MEDLINE, CINAHL, Web of Science and Cochrane Central Register of Controlled Trials databases. Results: Only three of 2084 studies detected and analyzed by performing the proposed searches in the detailed databases, were finally selected for this review, of which one was with and two were without intervention. These studies only weakly support a relationship between the gut microbiome and OA, specifically a correlation between certain taxa or microbial products and the inflammatory landscape and severity of OA symptoms, including knee pain. Conclusions: Despite encouraging results, this review highlights the paucity of high-quality studies addressing the potential role of the gut microbiome in OA-related pain, along with the disparity of the techniques used so far, making it impossible to draw firm conclusions on the topic.
Collapse
|
181
|
van den Bosch MHJ. Osteoarthritis year in review 2020: biology. Osteoarthritis Cartilage 2021; 29:143-150. [PMID: 33242602 DOI: 10.1016/j.joca.2020.10.006] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/08/2020] [Accepted: 10/28/2020] [Indexed: 02/06/2023]
Abstract
This year in review about osteoarthritis biology highlights a selection of articles published between the 2019 and 2020 Osteoarthritis Research Society International (OARSI) World Congress meetings, within the field of osteoarthritis biology. Highlights were selected from PubMed searches covering osteoarthritis (OA) cartilage, subchondral bone, synovium and aging. Subsequently, a personal selection was based on new and emerging themes together with common research topics that were studied by multiple groups. Themes discussed include novel insights into the inflammatory changes during OA, with a number of noteworthy publications concerning the role of macrophages in healthy and osteoarthritic joints. Next, the application of mesenchymal stem cells as OA-dampening therapy is discussed, including possible ways to improve their efficacy by pre-treatment. Other significant themes including treatment of OA with metformin, enhancing autophagy to alleviate OA and the involvement of the gastro-intestinal microbiome in development of OA symptoms and structural damage are discussed. An effort was made to connect the seemingly distant topics from which the overarching conclusion can be drawn that over the last year promising breakthroughs have been achieved in further understanding the biology of OA development and that new therapeutic possibilities have been explored.
Collapse
Affiliation(s)
- M H J van den Bosch
- Experimental Rheumatology, Radboud university medical center Nijmegen, the Netherlands..
| |
Collapse
|
182
|
Association between Arthritis and Migraine: A US Nationally Representative Study Including 2649 Adults. J Clin Med 2021; 10:jcm10020342. [PMID: 33477560 PMCID: PMC7831134 DOI: 10.3390/jcm10020342] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 01/15/2021] [Indexed: 12/13/2022] Open
Abstract
This study aimed to investigate the cross-sectional association between arthritis and migraine in a large representative sample of the US adult population. The study used data from adults who participated in the RAND American Life Panel (ALP). Arthritis (excluding rheumatoid arthritis) and migraine were self-reported. Control variables included sex, age, ethnicity, marital status, education, employment, annual family income, stroke, epilepsy, coronary artery disease, asthma, depression, anxiety, bipolar disorder, and alcohol dependence. The association between arthritis and migraine was investigated using multivariable logistic regression models, while sex and age interaction analyses were also conducted. This study included 2649 adults (51.7% women; mean (SD) age 50.6 (15.9 years). The prevalence of migraine was 10.7% in the sample. After adjusting for several potential confounders, there was a significant association between arthritis and migraine (OR = 1.83, 95% CI = 1.20-2.81). Further sensitivity analyses revealed that the association was significant in women, adults aged ≤45 years, and those aged >65 years. The mere fact that arthritis and migraine may coexist is problematic, as this could lead to an important medical and economic burden. Therefore, strategies should be implemented to reduce the cooccurrence of these two chronic conditions.
Collapse
|
183
|
Li M, Wang X, Lin X, Bian X, Jing R, Frelinger A, Zhang A. Comparison and Analysis of Gut Microbiota in Children With IgA Vasculitis With Different Clinical Symptoms. Front Pediatr 2021; 9:800677. [PMID: 35071141 PMCID: PMC8778574 DOI: 10.3389/fped.2021.800677] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 11/18/2021] [Indexed: 11/16/2022] Open
Abstract
Background: Henoch-Schönlein purpura, now called immunoglobulin A (IgA) vasculitis, is a common autoimmune disease in children, its association with gut microbiota composition remains unknown. Methods: The collected cases were divided into three groups: G1 group of simple skin type, G2 group with no digestive tract expression, G3 group of mixed digestive tract, and C group of healthy children. The fecal samples of each group of children were collected and the sequencing data was processed and analyzed. The dilution curve reflected the reasonableness of the amount of sequencing data. Results: The number of species composition sequences in the G1, G2 and G3 groups was lower than that in the C group, especially for the G2 and G3 groups. The four most abundant bacteria were Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria. The relative abundance of Proteobacteria in the G2 and G3 groups was significantly higher than that in the G1 and C groups, while the relative abundance of Actinobacteria was significantly reduced, and the relative abundance of Actinobacteria in the G1 group was lower than that in the C group. Principal component analysis of the UPGMA clustering tree and each group of samples showed that the microbial community composition of the same group of samples was similar. Conclusions: The abundance of intestinal microbes in children with IgA vasculitis is lower than in normal children. Bacteroidetes, Firmicutes, Proteobacteria and Actinobacteria are the four most abundant bacteria in the intestinal flora of children. Proteobacteria and Actinobacteria are associated with organ involvement in IgA vasculitis.
Collapse
Affiliation(s)
- Meng Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xiaoming Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xingjie Lin
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| | - Xiuju Bian
- Department of Pediatrics, The Fifth People's Hospital of Jinan, Jinan, China
| | - Rui Jing
- Department of Pediatrics, The People's Hospital of Weifang, Weifang, China
| | - Andrew Frelinger
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Harvard Medical School, Boston, MA, United States
| | - Aijun Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan, China
| |
Collapse
|
184
|
Bannerman CA, Douchant K, Sheth PM, Ghasemlou N. The gut-brain axis and beyond: Microbiome control of spinal cord injury pain in humans and rodents. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2021; 9:100059. [PMID: 33426367 PMCID: PMC7779861 DOI: 10.1016/j.ynpai.2020.100059] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 11/26/2020] [Accepted: 12/10/2020] [Indexed: 12/17/2022]
Abstract
Spinal cord injury (SCI) is a devastating injury to the central nervous system in which 60 to 80% of patients experience chronic pain. Unfortunately, this pain is notoriously difficult to treat, with few effective options currently available. Patients are also commonly faced with various compounding injuries and medical challenges, often requiring frequent hospitalization and antibiotic treatment. Change in the gut microbiome from the "normal" state to one of imbalance, referred to as gut dysbiosis, has been found in both patients and rodent models following SCI. Similarities exist in the bacterial changes observed after SCI and other diseases with chronic pain as an outcome. These changes cause a shift in the regulation of inflammation, causing immune cell activation and secretion of inflammatory mediators that likely contribute to the generation/maintenance of SCI pain. Therefore, correcting gut dysbiosis may be used as a tool towards providing patients with effective pain management and improved quality of life.
Collapse
Affiliation(s)
- Courtney A. Bannerman
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
| | - Katya Douchant
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Prameet M. Sheth
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Pathology and Molecular Medicine, Queen’s University, Kingston, Ontario, Canada
- Division of Microbiology, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Gastrointestinal Disease Research Unit, Kingston Health Sciences Center, Kingston, Ontario, Canada
| | - Nader Ghasemlou
- Department of Biomedical and Molecular Sciences, Queen’s University, Kingston, Ontario, Canada
- Department of Anesthesiology and Perioperative Medicine, Kingston Health Sciences Centre, Kingston, Ontario, Canada
- Centre for Neuroscience Studies, Queen’s University, Kingston, Ontario, Canada
| |
Collapse
|
185
|
Identification and Characterization of the Intra-Articular Microbiome in the Osteoarthritic Knee. Int J Mol Sci 2020; 21:ijms21228618. [PMID: 33207573 PMCID: PMC7697780 DOI: 10.3390/ijms21228618] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 11/04/2020] [Accepted: 11/13/2020] [Indexed: 12/21/2022] Open
Abstract
Osteoarthritis (OA) is the most common joint disorder in the United States, and the gut microbiome has recently emerged as a potential etiologic factor in OA development. Recent studies have shown that a microbiome is present at joint synovia. Therefore, we aimed to characterize the intra-articular microbiome within osteoarthritic synovia and to illustrate its role in OA disease progression. RNA-sequencing data from OA patient synovial tissue was aligned to a library of microbial reference genomes to identify microbial reads indicative of microbial abundance. Microbial abundance data of OA and normal samples was compared to identify differentially abundant microbes. We computationally explored the correlation of differentially abundant microbes to immunological gene signatures, immune signaling pathways, and immune cell infiltration. We found that microbes correlated to OA are related to dysregulation of two main functional pathways: increased inflammation-induced extracellular matrix remodeling and decreased cell signaling pathways crucial for joint and immune function. We also confirmed that the differentially abundant and biologically relevant microbes we had identified were not contaminants. Collectively, our findings contribute to the understanding of the human microbiome, well-known OA risk factors, and the role microbes play in OA pathogenesis. In conclusion, we present previously undiscovered microbes implicated in the OA disease progression that may be useful for future treatment purposes.
Collapse
|
186
|
Probiotics for pain of osteoarthritis; An N-of-1 trial of individual effects. Complement Ther Med 2020; 54:102548. [PMID: 33183666 DOI: 10.1016/j.ctim.2020.102548] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/21/2020] [Accepted: 08/24/2020] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVE This study aimed to investigate the safety and effectiveness of probiotics in osteoarthritic pain for one individual. METHODS The study was an N-of-1 trial design, divided into 3 blocks of 10 weeks. Each block included one pair of randomized interventions (AB), separated by a washout period. The trial took place in a private naturopathic practice in Sydney, Australia. The participant was a 67 year old female with osteoarthritis in her lower back and right ankle. The active intervention was two daily capsules that contained Lactobacillus rhamnosus (LGG®), Saccharomyces cerevisiae (boulardii) and Bifidobacterium animalis ssp lactis. The placebo was an identical capsule that did not contain probiotics. The primary outcome was daily pain scores, measured by the participant on a Visual Analogue Scale (VAS). Secondary outcome measures included patient preference (of intervention), General Health Questionnaire (GHQ-12), Patient Specific Functional Scale (PSFS), Comprehensive Digestive Stool Analysis (CDSA) and rescue medication usage. A dependent t-test analysed mean pain scores for the last week of each intervention across the three blocks of the study. RESULTS The probiotic intervention was associated with lower pain scores and was the preferred intervention chosen by the participant. The mean pain score on the VAS was 4.9 ± 2.2 in the placebo condition compared to 4.0 ± 1.7 in the probiotic condition (t(20) = 2.2, p = 0.04, difference = 0.9, 95 % CI [0.04, 1.77]). CONCLUSIONS The reduction in pain scores associated with the probiotic intervention was small but clinically significant for this patient. A holistic view of the patient focusing on digestive integrity and function may be crucial for clinical applications of interventions such as probiotics. N-of-1 trial designs allow for the measurement of a holistic approach to an individual, which is aligned with naturopathic practice. Further trials are required to generate data to enable reliable estimation of population effects.
Collapse
|
187
|
The possible role of a bacterial aspartate β-decarboxylase in the biosynthesis of alamandine. Med Hypotheses 2020; 144:110038. [DOI: 10.1016/j.mehy.2020.110038] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/15/2020] [Accepted: 06/22/2020] [Indexed: 01/29/2023]
|
188
|
Impacts of Green Tea on Joint and Skeletal Muscle Health: Prospects of Translational Nutrition. Antioxidants (Basel) 2020; 9:antiox9111050. [PMID: 33126483 PMCID: PMC7692648 DOI: 10.3390/antiox9111050] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 10/14/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022] Open
Abstract
Osteoarthritis and sarcopenia are two major joint and skeletal muscle diseases prevalent during aging. Osteoarthritis is a multifactorial progressive degenerative and inflammatory disorder of articular cartilage. Cartilage protection and pain management are the two most important strategies in the management of osteoarthritis. Sarcopenia, a condition of loss of muscle mass and strength, is associated with impaired neuromuscular innervation, the transition of skeletal muscle fiber type, and reduced muscle regenerative capacity. Management of sarcopenia requires addressing both skeletal muscle quantity and quality. Emerging evidence suggests that green tea catechins play an important role in maintaining healthy joints and skeletal muscle. This review covers (i) the prevalence and etiology of osteoarthritis and sarcopenia, such as excessive inflammation and oxidative stress, mitochondrial dysfunction, and reduced autophagy; (ii) the effects of green tea catechins on joint health by downregulating inflammatory signaling mediators, upregulating anabolic mediators, and modulating miRNAs expression, resulting in reduced chondrocyte death, collagen degradation, and cartilage protection; (iii) the effects of green tea catechins on skeletal muscle health via maintaining a dynamic balance between protein synthesis and degradation and boosting the synthesis of mitochondrial energy metabolism, resulting in favorable muscle homeostasis and mitigation of muscle atrophy with aging; and (iv) the current study limitations and future research directions.
Collapse
|
189
|
Biological strategies for osteoarthritis: from early diagnosis to treatment. INTERNATIONAL ORTHOPAEDICS 2020; 45:335-344. [PMID: 33078204 DOI: 10.1007/s00264-020-04838-w] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 09/28/2020] [Indexed: 12/20/2022]
Abstract
PURPOSE To provide an updated review of the literature on the use of orthobiologics as a potential treatment option to alleviate symptoms associated with osteoarthritis (OA), slow the progression of the disease, and aid in cartilage regeneration. METHODS A comprehensive review of the literature was performed to identify basic science and clinical studies examining the role of orthobiologics in the diagnosis and management of osteoarthritis. RESULTS Certain molecules (such as interleukin-6 (IL-6), interleukin-8 (IL-8), matrix metalloproteinase (MMPs), cartilage oligomeric matrix protein (COMP), and tumor necrosis factor (TNF), microRNAs, growth differentiation factor 11 (GDF-11)) have been recognized as biomarkers that are implicated in the pathogenesis and progression of degenerative joint disease (DJD). These biomarkers have been used to develop newer diagnostic applications and targeted biologic therapies for DJD. Local injection therapy with biologic agents such as platelet-rich plasma or stem cell-based preparations has been associated with significant improvement in joint pain and function in patients with OA and has increased in popularity during the last decade. The combination of PRP with kartogenin or TGF-b3 may also enhance its biologic effect. The mesenchymal stem cell secretome has been recognized as a potential target for the development of OA therapies due to its role in mediating the chondroprotective effects of these cells. Recent experiments have also suggested the modification of gut microbiome as a newer method to prevent OA or alter the progression of the disease. CONCLUSIONS The application of orthobiologics for the diagnosis and treatment of DJD is a rapidly evolving field that will continue to expand. The identification of OA-specific and joint-specific biomarker molecules for early diagnosis of OA would be extremely useful for the development of preventive and therapeutic protocols. Local injection therapies with HA, PRP, BMAC, and other stem cell-based preparations are currently being used to improve pain and function in patients with early OA or those with progressed disease who are not surgical candidates. Although the clinical outcomes of these therapies seem to be promising in clinical studies, future research will determine the true role of orthobiologic applications in the field of DJS.
Collapse
|
190
|
Santoro A, Zhao J, Wu L, Carru C, Biagi E, Franceschi C. Microbiomes other than the gut: inflammaging and age-related diseases. Semin Immunopathol 2020; 42:589-605. [PMID: 32997224 PMCID: PMC7666274 DOI: 10.1007/s00281-020-00814-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
During the course of evolution, bacteria have developed an intimate relationship with humans colonizing specific body sites at the interface with the body exterior and invaginations such as nose, mouth, lung, gut, vagina, genito-urinary tract, and skin and thus constituting an integrated meta-organism. The final result has been a mutual adaptation and functional integration which confers significant advantages to humans and bacteria. The immune system of the host co-evolved with the microbiota to develop complex mechanisms to recognize and destroy invading microbes, while preserving its own bacteria. Composition and diversity of the microbiota change according to development and aging and contribute to humans' health and fitness by modulating the immune system response and inflammaging and vice versa. In the last decades, we experienced an explosion of studies on the role of gut microbiota in aging, age-related diseases, and longevity; however, less reports are present on the role of the microbiota at different body sites. In this review, we describe the key steps of the co-evolution between Homo sapiens and microbiome and how this adaptation can impact on immunosenescence and inflammaging. We briefly summarized the role of gut microbiota in aging and longevity while bringing out the involvement of the other microbiota.
Collapse
Affiliation(s)
- Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine (DIMES), Alma Mater Studiorum, University of Bologna, Bologna, Italy.
| | - Jiangchao Zhao
- Department of Animal Science, Division of Agriculture, University of Arkansas, Fayetteville, AR, 72703, USA
| | - Lu Wu
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Ciriaco Carru
- Department of Biomedical Sciences, University Hospital (AOU) - University of Sassari, Sassari, Italy
| | - Elena Biagi
- Department of Pharmacy and Biotechnology (FABIT), Alma Mater Studiorum, University of Bologna, Bologna, Italy
| | - Claudio Franceschi
- Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| |
Collapse
|
191
|
Vincent TL. Of mice and men: converging on a common molecular understanding of osteoarthritis. THE LANCET. RHEUMATOLOGY 2020; 2:e633-e645. [PMID: 32989436 PMCID: PMC7511206 DOI: 10.1016/s2665-9913(20)30279-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Despite an increasing burden of osteoarthritis in developed societies, target discovery has been slow and there are currently no approved disease-modifying osteoarthritis drugs. This lack of progress is due in part to a series of misconceptions over the years: that osteoarthritis is an inevitable consequence of ageing, that damaged articular cartilage cannot heal itself, and that osteoarthritis is driven by synovial inflammation similar to that seen in rheumatoid arthritis. Molecular interrogation of disease through ex-vivo tissue analysis, in-vitro studies, and preclinical models have radically reshaped the knowledge landscape. Inflammation in osteoarthritis appears to be distinct from that seen in rheumatoid arthritis. Recent randomised controlled trials, using treatments repurposed from rheumatoid arthritis, have largely been unsuccessful. Genome-wide studies point to defects in repair pathways, which accords well with recent promise using growth factor therapies or Wnt pathway antagonism. Nerve growth factor has emerged as a robust target in osteoarthritis pain in phase 2-3 trials. These studies, both positive and negative, align well with those in preclinical surgical models of osteoarthritis, indicating that pathogenic mechanisms identified in mice can lead researchers to valid human targets. Several novel candidate pathways are emerging from preclinical studies that offer hope of future translational impact. Enhancing trust between industry, basic, and clinical scientists will optimise our collective chance of success.
Collapse
Affiliation(s)
- Tonia L Vincent
- Centre for Osteoarthritis Pathogenesis, Versus Arthritis, Kennedy Institute of Rheumatology, University of Oxford, Oxford, UK
| |
Collapse
|
192
|
Groot HE, van de Vegte YJ, Verweij N, Lipsic E, Karper JC, van der Harst P. Human genetic determinants of the gut microbiome and their associations with health and disease: a phenome-wide association study. Sci Rep 2020; 10:14771. [PMID: 32901066 PMCID: PMC7479141 DOI: 10.1038/s41598-020-70724-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/09/2020] [Indexed: 02/07/2023] Open
Abstract
Small-scale studies have suggested a link between the human gut microbiome and highly prevalent diseases. However, the extent to which the human gut microbiome can be considered a determinant of disease and healthy aging remains unknown. We aimed to determine the spectrum of diseases that are linked to the human gut microbiome through the utilization of its genetic determinants as a proxy for its composition. 180 single nucleotide polymorphisms (SNPs) known to influence the human gut microbiome were used to assess the association with health and disease outcomes in 422,417 UK Biobank participants. Potential causal estimates were obtained using a Mendelian randomization (MR) approach. From the total sample analysed (mean age was 57 ± 8 years), 194,567 (46%) subjects were male. Median exposure was 66-person years (interquartile range 59-72). Eleven SNPs were significantly associated with 28 outcomes (Bonferroni corrected P value < 4.63·10-6) including food intake, hypertension, atopy, COPD, BMI, and lipids. Multiple SNP MR pointed to a possible causal link between Ruminococcus flavefaciens and hypertension, and Clostridium and platelet count. Microbiota and their metabolites might be of importance in the interplay between overlapping pathophysiological processes, although challenges remain in establishing causal relationships.
Collapse
Affiliation(s)
- Hilde E Groot
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Yordi J van de Vegte
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Niek Verweij
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Erik Lipsic
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Jacco C Karper
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands
| | - Pim van der Harst
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Hanzeplein 1, 9700 RB, Groningen, The Netherlands.
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
193
|
Jung Y, Tagele SB, Son H, Ibal JC, Kerfahi D, Yun H, Lee B, Park CY, Kim ES, Kim SJ, Shin JH. Modulation of Gut Microbiota in Korean Navy Trainees following a Healthy Lifestyle Change. Microorganisms 2020; 8:microorganisms8091265. [PMID: 32825401 PMCID: PMC7569816 DOI: 10.3390/microorganisms8091265] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/11/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
Environmental factors can influence the composition of gut microbiota, but understanding the combined effect of lifestyle factors on adult gut microbiota is limited. Here, we investigated whether changes in the modifiable lifestyle factors, such as cigarette smoking, alcohol consumption, sleep duration, physical exercise, and body mass index affected the gut microbiota of Korean navy trainees. The navy trainees were instructed to stop smoking and alcohol consumption and follow a sleep schedule and physical exercise regime for eight weeks. For comparison, healthy Korean civilians, who had no significant change in lifestyles for eight weeks were included in this study. A total of 208 fecal samples were collected from navy trainees (n = 66) and civilians (n = 38) at baseline and week eight. Gut flora was assessed by sequencing the highly variable region of the 16S rRNA gene. The α-and β -diversity of gut flora of both the test and control groups were not significantly changed after eight weeks. However, there was a significant difference among individuals. Smoking had a significant impact in altering α-diversity. Our study showed that a healthy lifestyle, particularly cessation of smoking, even in short periods, can affect the gut microbiome by enhancing the abundance of beneficial taxa and reducing that of harmful taxa.
Collapse
Affiliation(s)
- YeonGyun Jung
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.J.); (S.B.T.); (H.S.); (J.C.I.)
| | - Setu Bazie Tagele
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.J.); (S.B.T.); (H.S.); (J.C.I.)
- Department of Applied Plant Sciences, University of Gondar, Gondar 196, Ethiopia
| | - HyunWoo Son
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.J.); (S.B.T.); (H.S.); (J.C.I.)
| | - Jerald Conrad Ibal
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.J.); (S.B.T.); (H.S.); (J.C.I.)
| | - Dorsaf Kerfahi
- Department of Biological Sciences, Keimyung University, Daegu 42601, Korea;
| | - Hyunju Yun
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (H.Y.); (B.L.); (C.Y.P.)
| | - Bora Lee
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (H.Y.); (B.L.); (C.Y.P.)
| | - Clara Yongjoo Park
- Department of Food and Nutrition, Chonnam National University, Gwangju 61186, Korea; (H.Y.); (B.L.); (C.Y.P.)
| | - Eun Soo Kim
- Department of Internal Medicine, School of Medicine, Kyungpook National University, Daegu 41944, Korea;
| | - Sang-Jun Kim
- Department of Natural Sciences, Republic of Korea Naval Academy, Changwon 51702, Korea;
| | - Jae-Ho Shin
- School of Applied Biosciences, Kyungpook National University, Daegu 41566, Korea; (Y.J.); (S.B.T.); (H.S.); (J.C.I.)
- Correspondence: ; Tel.: +82-53-950-5716; Fax: +82-53-953-7233
| |
Collapse
|
194
|
Crock LW, Baldridge MT. A role for the microbiota in complex regional pain syndrome? NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2020; 8:100054. [PMID: 33305068 PMCID: PMC7708695 DOI: 10.1016/j.ynpai.2020.100054] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 10/19/2020] [Accepted: 11/07/2020] [Indexed: 04/28/2023]
Abstract
Complex regional pain syndrome (CRPS) is a debilitating neuroinflammatory condition of unknown etiology. Symptoms include excruciating pain and trophic changes in the limbs as defined by the Budapest criteria. The severity and functional recovery of CRPS, unlike most pain conditions, is quantifiable using a variation of the Budapest criteria known as the CRPS severity score. Like many chronic pain conditions, CRPS is difficult to treat once pain has been present for more than 12 months. However, previous work has demonstrated that a subset of patients with new-onset CRPS (~50%) improve if treated within one year, while the rest have minimal to no symptom improvement. Unfortunately, this leads to permanent disability and often requires invasive and costly treatments such as spinal cord stimulation or long-term opioid therapy. Because the etiology is unknown, treatment is multimodal, and often supportive. Biomarkers that predict severity or resolution of symptoms would significantly change treatment but have not yet been identified. Interestingly, there are case reports of remission or resolution of CRPS symptoms with the use of antibiotics known to affect the gut flora. Mouse studies have demonstrated that modulation of the gut microbiome is anti-nociceptive in visceral, inflammatory and neuropathic pain models. We hypothesize that the variable clinical potential for recovery and response to therapy in CRPS may be secondary to or reflected in changes in the gut microbiota. We suggest that the microbiota may mediate or reflect clinical status via the metabolome, activation of the immune system and/or microglial activation. We hypothesize that the gut microbiome is a potential mediator in development and persistence of CRPS symptoms and propose that the clinical condition of CRPS could provide a unique opportunity to identify biomarkers of the microbiota and potential therapies to prevent pain chronification.
Collapse
Affiliation(s)
- Lara W. Crock
- Department of Anesthesiology and Pain Medicine, Washington University in St. Louis, St. Louis, MO, USA
- Corresponding author.
| | - Megan T. Baldridge
- Division of Infectious Diseases, Department of Medicine, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
195
|
Effect of Moxibustion on the Intestinal Flora of Rats with Knee Osteoarthritis Induced by Monosodium Iodoacetate. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:3196427. [PMID: 32714401 PMCID: PMC7355364 DOI: 10.1155/2020/3196427] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 05/07/2020] [Accepted: 06/02/2020] [Indexed: 12/16/2022]
Abstract
In this study, a knee osteoarthritis (KOA) rat model induced by monosodium iodoacetate (MIA) was used to study the effect of moxibustion on improving knee cartilage damage and its effect on the intestinal flora. The experimental rats were divided into the normal group (N), model group (M), moxibustion treatment group (MS), and diclofenac sodium treatment group (DS). After 4 weeks, cartilage pathological damage in the knee joint was evaluated using hematoxylin-eosin and safranin O-fast green staining analysis. ELISAs and Western blots were used to detect the expression levels of IL-1β and TNF-α in the serum and cartilage, respectively. The total DNA of the fecal samples was extracted and subjected to high-throughput sequencing of the V3-V4 region of the 16S rRNA gene to analyze the changes in the intestinal flora. In the model group, the cartilage was obviously damaged, the expression levels of IL-1β and TNF-α in the serum and cartilage were increased, and the abundance and diversity of the intestinal flora were decreased. Moxibustion treatment significantly improved the cartilage damage and reduced the concentration of inflammatory factors in the serum and cartilage. The high-throughput sequencing results showed that compared to the model group, the moxibustion treatment regulated some specific species in the intestinal microorganisms rather than the α diversity. In conclusion, our findings suggest that moxibustion treatment may work through two aspects in rats. On one hand, it directly acts on knee cartilage to promote repair, and on the other hand, it regulates the composition of the intestinal flora and reduces the production of inflammatory factors.
Collapse
|
196
|
Dunn CM, Velasco C, Rivas A, Andrews M, Garman C, Jacob PB, Jeffries MA. Identification of Cartilage Microbial DNA Signatures and Associations With Knee and Hip Osteoarthritis. Arthritis Rheumatol 2020; 72:1111-1122. [PMID: 31961065 PMCID: PMC7336391 DOI: 10.1002/art.41210] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 01/14/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Alterations of the gut microbiota have been implicated in many forms of arthritis, but an examination of cartilage microbial patterns has not been performed. This study was undertaken to characterize the microbial DNA profile of articular cartilage and determine changes associated with osteoarthritis (OA). METHODS We performed 16S ribosomal RNA gene deep sequencing on eroded and intact cartilage samples from knee OA patients (n = 21 eroded and 21 intact samples) and hip OA patients (n = 34 eroded and 33 intact samples) and cadaver controls (n = 10 knee samples and 10 hip samples). Microbial DNA diversity was assessed, groups were compared, and metagenomic profiles were reconstructed. Confirmation was performed in an independent cohort by clade-specific quantitative polymerase chain reaction. Findings in human cartilage were compared to those in cartilage from OA-susceptible C57BL/6 (B6) mice and OA-resistant MRL/MpJ (MRL) mice. Germ-free B6 mouse cartilage was analyzed as a methodologic control. RESULTS Alpha diversity was reduced in human OA versus control samples (P < 0.0001), and in hip versus knee samples (P < 0.0001). Numerous clades were different in human OA versus control samples, and similar findings were noted in comparisons of murine B6 versus MRL mice. Hip samples were microbiologically distinct from knee samples. OA microbial DNA demonstrated increased gram-negative constituents (P = 0.02). Functional analysis demonstrated increases in lipopolysaccharide production (P = 9.9 × 10-3 ), phosphatidylinositol signaling (P = 4.2 × 10-4 ), and nitrogen metabolism (P = 8 × 10-3 ) and decreases in sphingolipid metabolism (P = 7.7 × 10-4 ) associated with OA. CONCLUSION Our study reveals a microbial DNA signature in human and mouse cartilage. Alterations in this signature, including increases in gram-negative constituents, occur during the development and progression of human OA. Furthermore, our findings indicate that strain-specific signatures exist within mouse cartilage that mirror human patterns. Further study of the establishment and potential pathogenic role of these DNA signatures is needed.
Collapse
MESH Headings
- Aged
- Animals
- Arthroplasty, Replacement, Hip
- Arthroplasty, Replacement, Knee
- Cartilage, Articular/metabolism
- Cartilage, Articular/microbiology
- Cartilage, Articular/pathology
- Classification
- DNA, Bacterial/analysis
- Disease Susceptibility
- Female
- Genetic Variation
- Humans
- Male
- Metagenome/genetics
- Mice
- Microbiota/genetics
- Middle Aged
- Osteoarthritis, Hip/microbiology
- Osteoarthritis, Hip/surgery
- Osteoarthritis, Knee/microbiology
- Osteoarthritis, Knee/surgery
- Polymerase Chain Reaction
- RNA, Ribosomal, 16S/genetics
Collapse
Affiliation(s)
- Christopher M. Dunn
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK
| | - Cassandra Velasco
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK
| | - Alexander Rivas
- University of Arkansas for Medical Sciences, Little Rock, AR
| | - Madison Andrews
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK
| | - Cassandra Garman
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK
| | - Paul B. Jacob
- Oklahoma Joint Reconstruction Institute, Oklahoma City, OK
| | - Matlock A. Jeffries
- University of Oklahoma Health Sciences Center, Department of Internal Medicine, Division of Rheumatology, Immunology, and Allergy, Oklahoma City, OK
- Oklahoma Medical Research Foundation, Arthritis & Clinical Immunology Program, Oklahoma City, OK
| |
Collapse
|
197
|
Hamasaki M, Terkawi MA, Onodera T, Tian Y, Ebata T, Matsumae G, Alhasan H, Takahashi D, Iwasaki N. Transcriptional profiling of murine macrophages stimulated with cartilage fragments revealed a strategy for treatment of progressive osteoarthritis. Sci Rep 2020; 10:7558. [PMID: 32371954 PMCID: PMC7200748 DOI: 10.1038/s41598-020-64515-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 04/14/2020] [Indexed: 01/15/2023] Open
Abstract
Accumulating evidence suggests that synovitis is associated with osteoarthritic process. Macrophages play principal role in development of synovitis. Our earlier study suggests that interaction between cartilage fragments and macrophages exacerbates osteoarthritic process. However, molecular mechanisms by which cartilage fragments trigger cellular responses remain to be investigated. Therefore, the current study aims at analyzing molecular response of macrophages to cartilage fragments. To this end, we analyzed the transcriptional profiling of murine macrophages exposed to cartilage fragments by RNA sequencing. A total 153 genes were differentially upregulated, and 105 genes were down-regulated in response to cartilage fragments. Bioinformatic analysis revealed that the most significantly enriched terms of the upregulated genes included scavenger receptor activity, integrin binding activity, TNF signaling, and toll-like receptor signaling. To further confirm our results, immunohistochemical staining was performed to detected regulated molecules in synovial tissues of OA patients. In consistence with RNA-seq results, MARCO, TLR2 and ITGα5 were mainly detected in the intima lining layer of synovial tissues. Moreover, blockade of TLR2 or ITGα5 but not Marco using specific antibody significantly reduced production of TNF-α in stimulated macrophages by cartilage fragments. Our data suggested that blocking TLR2 or ITGα5 might be promising therapeutic strategy for treating progressive osteoarthritis.
Collapse
Affiliation(s)
- Masanari Hamasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Mohamad Alaa Terkawi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.
- Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Sapporo, Japan.
| | - Tomohiro Onodera
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan.
- Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Sapporo, Japan.
| | - Yuan Tian
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Taku Ebata
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Gen Matsumae
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Hend Alhasan
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Daisuke Takahashi
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
| | - Norimasa Iwasaki
- Department of Orthopedic Surgery, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Kita-15, Nish-7, Kita-ku, Sapporo, 060-8638, Japan
- Global Institution for Collaborative Research and Education (GI-CoRE), Frontier Research Center for Advanced Material and Life Science Bldg No 2, Hokkaido University, Sapporo, Japan
| |
Collapse
|
198
|
Huang Z, Chen J, Li B, Zeng B, Chou CH, Zheng X, Xie J, Li H, Hao Y, Chen G, Pei F, Shen B, Kraus VB, Wei H, Zhou X, Cheng L. Faecal microbiota transplantation from metabolically compromised human donors accelerates osteoarthritis in mice. Ann Rheum Dis 2020; 79:646-656. [PMID: 32205337 PMCID: PMC7384301 DOI: 10.1136/annrheumdis-2019-216471] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 02/05/2023]
Abstract
OBJECTIVES Emerging evidence suggests that the microbiome plays an important role in the pathogenesis of osteoarthritis (OA). We aimed to test the two-hit model of OA pathogenesis and potentiation in which one 'hit' is provided by an adverse gut microbiome that activates innate immunity; the other 'hit' is underlying joint damage. METHODS Medical history, faecal and blood samples were collected from human healthy controls (OA-METS-, n=4), knee OA without metabolic syndrome (OA+METS-, n=7) and knee OA with metabolic syndrome (OA+METS+, n=9). Each group of human faecal samples, whose microbial composition was identified by 16S rRNA sequencing, was pooled and transplanted into germ-free mice 2 weeks prior to meniscal/ligamentous injury (MLI) (n≥6 per group). Eight weeks after MLI, mice were evaluated for histological OA severity and synovitis, systemic inflammation and gut permeability. RESULTS Histological OA severity following MLI was minimal in germ-free mice. Compared with the other groups, transplantation with the OA+METS+ microbiome was associated with higher mean systemic concentrations of inflammatory biomarkers (interleukin-1β, interleukin-6 and macrophage inflammatory protein-1α), higher gut permeability and worse OA severity. A greater abundance of Fusobacterium and Faecalibaterium and lesser abundance of Ruminococcaceae in transplanted mice were consistently correlated with OA severity and systemic biomarkers concentrations. CONCLUSION The study clearly establishes a direct gut microbiome-OA connection that sets the stage for a new means of exploring OA pathogenesis and potentially new OA therapeutics. Alterations of Fusobacterium, Faecalibaterium and Ruminococcaceae suggest a role of these particular microbes in exacerbating OA.
Collapse
Affiliation(s)
- ZeYu Huang
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Jing Chen
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - BoLei Li
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Benhua Zeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Ching-Heng Chou
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Xin Zheng
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - JingWei Xie
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Hao Li
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yu Hao
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Guo Chen
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - FuXing Pei
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Bin Shen
- Department of Orthopaedic Surgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| | - Virginia B Kraus
- Duke Molecular Physiology Institute, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
- Division of Rheumatology, Department of Medicine, Duke University School of Medicine, Duke University, Durham, North Carolina, USA
| | - Hong Wei
- Central Laboratory, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
- State Key Laboratory of Agricultural Microbiology, College of Animal Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuedong Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Lei Cheng
- State Key Laboratory of Oral Diseases and National Clinical Research for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
199
|
Dietary Saturated Fatty Acids Modulate Pain Behaviour in Trauma-Induced Osteoarthritis in Rats. Nutrients 2020; 12:nu12020509. [PMID: 32085385 PMCID: PMC7071407 DOI: 10.3390/nu12020509] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 02/06/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022] Open
Abstract
Osteoarthritis (OA) is a degenerative condition of joints, causing pain and swelling, and can be caused or worsened by trauma and obesity. The objectives of this study were to determine whether pain behaviour and progression of OA were increased in rats with trauma-induced OA fed dietary saturated fatty acids (SFA). Male Wistar rats were fed either a corn starch diet (C) or high-carbohydrate high-fat diet (H) with either 20% beef tallow or SFA (lauric (HLA), myristic (HMA), palmitic (HPA) or stearic (HSA) acids) for 16 weeks prior to and 8 weeks after excision of the medial meniscus of right knee joint to initiate OA when pain behaviour, glial activity, progression of knee OA, inflammatory mediators and signs of metabolic syndrome were assessed. Rats fed beef tallow, palmitic or stearic acids showed increased pain symptoms characterised by decreased hind paw/limb withdrawal thresholds and grip strengths and increased spinal astrogliosis and microgliosis compared to rats fed lauric or myristic acids. However, the severity of OA joint damage was unchanged by these dietary manipulations. We conclude that pain symptoms of trauma-induced OA in rats worsen with increased dietary beef tallow or palmitic or stearic acids, but improve with lauric or myristic acids, despite unchanged OA cartilage damage.
Collapse
|
200
|
Dworsky-Fried Z, Kerr BJ, Taylor AMW. Microbes, microglia, and pain. NEUROBIOLOGY OF PAIN 2020; 7:100045. [PMID: 32072077 PMCID: PMC7016021 DOI: 10.1016/j.ynpai.2020.100045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 01/23/2020] [Accepted: 01/24/2020] [Indexed: 02/08/2023]
Abstract
Explore the connection between the gut microbiome and microglia in chronic pain. Discuss mechanisms by which gut bacteria might influence microglia to contribute to chronic pain. Highlight gaps in knowledge and discuss future directions for the field.
Globally, it is estimated that one in five people suffer from chronic pain, with prevalence increasing with age. The pathophysiology of chronic pain encompasses complex sensory, immune, and inflammatory interactions within both the central and peripheral nervous systems. Microglia, the resident macrophages of the central nervous system (CNS), are critically involved in the initiation and persistence of chronic pain. Microglia respond to local signals from the CNS but are also modulated by signals from the gastrointestinal tract. Emerging data from preclinical and clinical studies suggest that communication between the gut microbiome, the community of bacteria residing within the gut, and microglia is involved in producing chronic pain. Targeted strategies that manipulate or restore the gut microbiome have been shown to reduce microglial activation and alleviate symptoms associated with inflammation. These data indicate that manipulations of the gut microbiome in chronic pain patients might be a viable strategy in improving pain outcomes. Herein, we discuss the evidence for a connection between microglia and the gut microbiome and explore the mechanisms by which commensal bacteria might influence microglial reactivity to drive chronic pain.
Collapse
Affiliation(s)
- Zoë Dworsky-Fried
- Department of Pharmacology, University of Alberta, Edmonton T6G2H7, Canada
| | - Bradley J Kerr
- Department of Pharmacology, University of Alberta, Edmonton T6G2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton T6G2H7, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton T6G2H7, Canada
| | - Anna M W Taylor
- Department of Pharmacology, University of Alberta, Edmonton T6G2H7, Canada.,Neuroscience and Mental Health Institute, University of Alberta, Edmonton T6G2H7, Canada.,Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton T6G2H7, Canada
| |
Collapse
|