151
|
Makrygianni EA, Chrousos GP. From Brain Organoids to Networking Assembloids: Implications for Neuroendocrinology and Stress Medicine. Front Physiol 2021; 12:621970. [PMID: 34177605 PMCID: PMC8222922 DOI: 10.3389/fphys.2021.621970] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 04/19/2021] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are three-dimensional cultures that contain multiple types of cells and cytoarchitectures, and resemble fetal human brain structurally and functionally. These organoids are being used increasingly to model brain development and disorders, however, they only partially recapitulate such processes, because of several limitations, including inability to mimic the distinct cortical layers, lack of functional neuronal circuitry as well as non-neural cells and gyrification, and increased cellular stress. Efforts to create improved brain organoid culture systems have led to region-specific organoids, vascularized organoids, glia-containing organoids, assembloids, sliced organoids and polarized organoids. Assembloids are fused region-specific organoids, which attempt to recapitulate inter-regional and inter-cellular interactions as well as neural circuitry development by combining multiple brain regions and/or cell lineages. As a result, assembloids can be used to model subtle functional aberrations that reflect complex neurodevelopmental, neuropsychiatric and neurodegenerative disorders. Mammalian organisms possess a highly complex neuroendocrine system, the stress system, whose main task is the preservation of systemic homeostasis, when the latter is threatened by adverse forces, the stressors. The main central parts of the stress system are the paraventricular nucleus of the hypothalamus and the locus caeruleus/norepinephrine-autonomic nervous system nuclei in the brainstem; these centers innervate each other and interact reciprocally as well as with various other CNS structures. Chronic dysregulation of the stress system has been implicated in major pathologies, the so-called chronic non-communicable diseases, including neuropsychiatric, neurodegenerative, cardiometabolic and autoimmune disorders, which lead to significant population morbidity and mortality. We speculate that brain organoids and/or assembloids could be used to model the development, regulation and dysregulation of the stress system and to better understand stress-related disorders. Novel brain organoid technologies, combined with high-throughput single-cell omics and gene editing, could, thus, have major implications for precision medicine.
Collapse
Affiliation(s)
- Evanthia A Makrygianni
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - George P Chrousos
- University Research Institute of Maternal and Child Health and Precision Medicine, National and Kapodistrian University of Athens, Athens, Greece.,Center for Adolescent Medicine and UNESCO Chair on Adolescent Health Care, First Department of Pediatrics, School of Medicine, National and Kapodistrian University of Athens, Aghia Sophia Children's Hospital, Athens, Greece
| |
Collapse
|
152
|
Shankaran A, Prasad K, Chaudhari S, Brand A, Satyamoorthy K. Advances in development and application of human organoids. 3 Biotech 2021; 11:257. [PMID: 33977021 PMCID: PMC8105691 DOI: 10.1007/s13205-021-02815-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
Innumerable studies associated with cellular differentiation, tissue response and disease modeling have been conducted in two-dimensional (2D) culture systems or animal models. This has been invaluable in deciphering the normal and disease states in cell biology; the key shortcomings of it being suitability for translational or clinical correlations. The past decade has seen several major advances in organoid culture technologies and this has enhanced our understanding of mimicking organ reconstruction. The term organoid has generally been used to describe cellular aggregates derived from primary tissues or stem cells that can self-organize into organotypic structures. Organoids mimic the cellular microenvironment of tissues better than 2D cell culture systems and represent the tissue physiology. Human organoids of brain, thyroid, gastrointestinal, lung, cardiac, liver, pancreatic and kidney have been established from various diseases, healthy tissues and from pluripotent stem cells (PSCs). Advances in patient-derived organoid culture further provides a unique perspective from which treatment modalities can be personalized. In this review article, we have discussed the current strategies for establishing various types of organoids of ectodermal, endodermal and mesodermal origin. We have also discussed their applications in modeling human health and diseases (such as cancer, genetic, neurodegenerative and infectious diseases), applications in regenerative medicine and evolutionary studies.
Collapse
Affiliation(s)
- Abhijith Shankaran
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Keshava Prasad
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Sima Chaudhari
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| | - Angela Brand
- Department of Public Health Genomics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, 576104 Karnataka India
- Department International Health, Faculty of Medicine, Health and Life Sciences, Maastricht University, Duboisdomein 30, 6229 GT Maastricht, The Netherlands
- United Nations University- Maastricht Economic and Social Research Institute On Innovation and Technology (UNU-MERIT), Boschstraat 24, 6211 AX Maastricht, The Netherlands
| | - Kapaettu Satyamoorthy
- Department of Cell and Molecular Biology, Manipal School of Life Sciences, Manipal Academy of Higher Education, Planetarium Complex, Manipal, Karnataka 576104 India
| |
Collapse
|
153
|
Bang S, Lee S, Choi N, Kim HN. Emerging Brain-Pathophysiology-Mimetic Platforms for Studying Neurodegenerative Diseases: Brain Organoids and Brains-on-a-Chip. Adv Healthc Mater 2021; 10:e2002119. [PMID: 34028201 DOI: 10.1002/adhm.202002119] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 03/25/2021] [Indexed: 12/13/2022]
Abstract
Neurodegenerative diseases are a group of disorders characterized by progressive degeneration of the structural and functional integrity of the central and peripheral nervous systems. Millions of people suffer from degenerative brain diseases worldwide, and the mortality continues to increase every year, causing a growing demand for knowledge of the underlying mechanisms and development of therapeutic targets. Conventional 2D-based cell culture platforms and animal models cannot fully recapitulate the pathophysiology, and this has limited the capability for estimating drug efficacy. Recently, engineered platforms, including brain organoids and brain-on-a-chip, have emerged. They mimic the physiology of brain tissue and reflect the fundamental pathophysiological signatures of neurodegenerative diseases, such as the accumulation of neurotoxic proteins, structural abnormalities, and functional loss. In this paper, recent advances in brain-mimetic platforms and their potential for modeling features of neurodegenerative diseases in vitro are reviewed. The development of a physiologically relevant model should help overcome unresolved neurodegenerative diseases.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
| | - Songhyun Lee
- Department of Medical Engineering Yonsei University College of Medicine Seoul 03722 Republic of Korea
| | - Nakwon Choi
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- KU‐KIST Graduate School of Converging Science and Technology Korea University Seoul 02841 Republic of Korea
| | - Hong Nam Kim
- Brain Science Institute Korea Institute of Science and Technology (KIST) Seoul 02792 Republic of Korea
- Division of Bio‐Medical Science & Technology KIST School Korea University of Science and Technology (UST) Seoul 02792 Republic of Korea
| |
Collapse
|
154
|
Marinval N, Chew SY. Mechanotransduction assays for neural regeneration strategies: A focus on glial cells. APL Bioeng 2021; 5:021505. [PMID: 33948526 PMCID: PMC8088332 DOI: 10.1063/5.0037814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/19/2021] [Indexed: 01/22/2023] Open
Abstract
Glial cells are mechanosensitive, and thus, engineered systems have taken a step forward to design mechanotransduction platforms in order to impart diverse mechanical stresses to cells. Mechanical strain encountered in the central nervous system can arise from diverse mechanisms, such as tissue reorganization, fluid flow, and axon growth, as well as pathological events including axon swelling or mechanical trauma. Biomechanical relevance of the in vitro mechanical testing requires to be placed in line with the physiological and mechanical changes in central nervous tissues that occur during the progression of neurodegenerative diseases. Mechanotransduction signaling utilized by glial cells and the recent approaches intended to model altered microenvironment adapted to pathological context are discussed in this review. New insights in systems merging substrate's stiffness and topography should be considered for further glial mechanotransduction studies, while testing platforms for drug discoveries promise great advancements in pharmacotherapy. Potential leads and strategies for clinical outcomes are expected to be developed following the exploration of these glial mechanosensitive signaling pathways.
Collapse
Affiliation(s)
- Nicolas Marinval
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459
| | - Sing Yian Chew
- Author to whom correspondence should be addressed: . Tel.: +65 6316 8812. Fax: +65 6794 7553
| |
Collapse
|
155
|
Mansouri M, Leipzig ND. Advances in removing mass transport limitations for more physiologically relevant in vitro 3D cell constructs. BIOPHYSICS REVIEWS 2021; 2:021305. [PMID: 38505119 PMCID: PMC10903443 DOI: 10.1063/5.0048837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 05/31/2021] [Indexed: 03/21/2024]
Abstract
Spheroids and organoids are promising models for biomedical applications ranging from human disease modeling to drug discovery. A main goal of these 3D cell-based platforms is to recapitulate important physiological parameters of their in vivo organ counterparts. One way to achieve improved biomimetic architectures and functions is to culture cells at higher density and larger total numbers. However, poor nutrient and waste transport lead to low stability, survival, and functionality over extended periods of time, presenting outstanding challenges in this field. Fortunately, important improvements in culture strategies have enhanced the survival and function of cells within engineered microtissues/organs. Here, we first discuss the challenges of growing large spheroids/organoids with a focus on mass transport limitations, then highlight recent tools and methodologies that are available for producing and sustaining functional 3D in vitro models. This information points toward the fact that there is a critical need for the continued development of novel cell culture strategies that address mass transport in a physiologically relevant human setting to generate long-lasting and large-sized spheroids/organoids.
Collapse
Affiliation(s)
- Mona Mansouri
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| | - Nic D. Leipzig
- Department of Chemical, Biomolecular, and Corrosion Engineering, University of Akron, Akron, Ohio 44325, USA
| |
Collapse
|
156
|
Ryu H, Park Y, Luan H, Dalgin G, Jeffris K, Yoon HJ, Chung TS, Kim JU, Kwak SS, Lee G, Jeong H, Kim J, Bai W, Kim J, Jung YH, Tryba AK, Song JW, Huang Y, Philipson LH, Finan JD, Rogers JA. Transparent, Compliant 3D Mesostructures for Precise Evaluation of Mechanical Characteristics of Organoids. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100026. [PMID: 33984170 PMCID: PMC8719419 DOI: 10.1002/adma.202100026] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 03/06/2021] [Indexed: 05/14/2023]
Abstract
Recently developed methods for transforming 2D patterns of thin-film materials into 3D mesostructures create many interesting opportunities in microsystems design. A growing area of interest is in multifunctional thermal, electrical, chemical, and optical interfaces to biological tissues, particularly 3D multicellular, millimeter-scale constructs, such as spheroids, assembloids, and organoids. Herein, examples of 3D mechanical interfaces are presented, in which thin ribbons of parylene-C form the basis of transparent, highly compliant frameworks that can be reversibly opened and closed to capture, envelop, and mechanically restrain fragile 3D tissues in a gentle, nondestructive manner, for precise measurements of viscoelastic properties using techniques in nanoindentation. Finite element analysis serves as a design tool to guide selection of geometries and material parameters for shape-matching 3D architectures tailored to organoids of interest. These computational approaches also quantitate all aspects of deformations during the processes of opening and closing the structures and of forces imparted by them onto the surfaces of enclosed soft tissues. Studies of cerebral organoids by nanoindentation show effective Young's moduli in the range from 1.5 to 2.5 kPa depending on the age of the organoid. This collection of results suggests broad utility of compliant 3D mesostructures in noninvasive mechanical measurements of millimeter-scale, soft biological tissues.
Collapse
Affiliation(s)
- Hanjun Ryu
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Haiwen Luan
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Gokhan Dalgin
- Section of Adult and Pediatric Endocrinology, Diabetes and Metabolism, Kovler Diabetes Center, The University of Chicago, Chicago, IL, 60637, USA
| | - Kira Jeffris
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Hong-Joon Yoon
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Ted S Chung
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Jong Uk Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- School of Chemical Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Sung Soo Kwak
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Hyoyoung Jeong
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Jihye Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- School of Advanced Materials Science and Engineering, Sungkyunkwan University (SKKU), Suwon, 16419, Republic of Korea
| | - Wubin Bai
- Department of Applied Physical Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Joohee Kim
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yei Hwan Jung
- Department of Electronic Engineering Hanyang University, Seoul, 04763, Republic of Korea
| | - Andrew K Tryba
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Section of Pediatric Neurology, Department of Pediatrics, The University of Chicago, Chicago, IL, 60637, USA
| | - Joseph W Song
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL, 60208, USA
| | - Yonggang Huang
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Louis H Philipson
- Department of Medicine and Kovler Diabetes Center, The University of Chicago, Chicago, IL, 60637, USA
| | - John D Finan
- Department of Mechanical and Industrial Engineering, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Mechanical Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, 60208, USA
- Departments of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| |
Collapse
|
157
|
Zheng F, Xiao Y, Liu H, Fan Y, Dao M. Patient-Specific Organoid and Organ-on-a-Chip: 3D Cell-Culture Meets 3D Printing and Numerical Simulation. Adv Biol (Weinh) 2021; 5:e2000024. [PMID: 33856745 PMCID: PMC8243895 DOI: 10.1002/adbi.202000024] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/13/2021] [Indexed: 12/11/2022]
Abstract
The last few decades have witnessed diversified in vitro models to recapitulate the architecture and function of living organs or tissues and contribute immensely to advances in life science. Two novel 3D cell culture models: 1) Organoid, promoted mainly by the developments of stem cell biology and 2) Organ-on-a-chip, enhanced primarily due to microfluidic technology, have emerged as two promising approaches to advance the understanding of basic biological principles and clinical treatments. This review describes the comparable distinct differences between these two models and provides more insights into their complementarity and integration to recognize their merits and limitations for applicable fields. The convergence of the two approaches to produce multi-organoid-on-a-chip or human organoid-on-a-chip is emerging as a new approach for building 3D models with higher physiological relevance. Furthermore, rapid advancements in 3D printing and numerical simulations, which facilitate the design, manufacture, and results-translation of 3D cell culture models, can also serve as novel tools to promote the development and propagation of organoid and organ-on-a-chip systems. Current technological challenges and limitations, as well as expert recommendations and future solutions to address the promising combinations by incorporating organoids, organ-on-a-chip, 3D printing, and numerical simulation, are also summarized.
Collapse
Affiliation(s)
- Fuyin Zheng
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| | - Yuminghao Xiao
- Department of Mechanical Engineering, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Hui Liu
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100083, China
| | - Ming Dao
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- School of Biological Sciences, Nanyang Technological University, Singapore, 639798, Singapore
| |
Collapse
|
158
|
Zakharov A, Dasbiswas K. Mechanochemical induction of wrinkling morphogenesis on elastic shells. SOFT MATTER 2021; 17:4738-4750. [PMID: 33978668 DOI: 10.1039/d1sm00003a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Morphogenetic dynamics of tissue sheets require coordinated cell shape changes regulated by global patterning of mechanical forces. Inspired by such biological phenomena, we propose a minimal mechanochemical model based on the notion that cell shape changes are induced by diffusible biomolecules that influence tissue contractility in a concentration-dependent manner - and whose concentration is in turn affected by the macroscopic tissue shape. We perform computational simulations of thin shell elastic dynamics to reveal propagating chemical and three-dimensional deformation patterns arising due to a sequence of buckling instabilities. Depending on the concentration threshold that actuates cell shape change, we find qualitatively different patterns. The mechanochemically coupled patterning dynamics are distinct from those driven by purely mechanical or purely chemical factors, and emerge even without diffusion. Using numerical simulations and theoretical arguments, we analyze the elastic instabilities that result from our model and provide simple scaling laws to identify wrinkling morphologies.
Collapse
Affiliation(s)
- Andrei Zakharov
- Department of Physics, University of California, Merced, Merced, CA 95343, USA.
| | - Kinjal Dasbiswas
- Department of Physics, University of California, Merced, Merced, CA 95343, USA.
| |
Collapse
|
159
|
Gupta A, Lutolf MP, Hughes AJ, Sonnen KF. Bioengineering in vitro models of embryonic development. Stem Cell Reports 2021; 16:1104-1116. [PMID: 33979597 PMCID: PMC8185467 DOI: 10.1016/j.stemcr.2021.04.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/11/2021] [Accepted: 04/11/2021] [Indexed: 12/19/2022] Open
Abstract
Stem cell-based in vitro models of embryonic development have been established over the last decade. Such model systems recapitulate aspects of gametogenesis, early embryonic development, or organogenesis. They enable experimental approaches that have not been possible previously and have the potential to greatly reduce the number of animals required for research. However, each model system has its own limitations, with certain aspects, such as morphogenesis and spatiotemporal control of cell fate decisions, diverging from the in vivo counterpart. Targeted bioengineering approaches to provide defined instructive external signals or to modulate internal cellular signals could overcome some of these limitations. Here, we present the latest technical developments and discuss how bioengineering can further advance the optimization and external control of stem cell-based embryo-like structures (ELSs). In vitro models combined with sophisticated bioengineering tools will enable an even more in-depth analysis of embryonic development in the future.
Collapse
Affiliation(s)
- Ananya Gupta
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthias P Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences and School of Engineering, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland; Institute of Chemical Sciences and Engineering, School of Basic Science, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, 1015 Vaud, Switzerland.
| | - Alex J Hughes
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Katharina F Sonnen
- Hubrecht Institute-KNAW (Royal Netherlands Academy of Arts and Sciences) and University Medical Center Utrecht, Utrecht, the Netherlands.
| |
Collapse
|
160
|
Pinho D, Santos D, Vila A, Carvalho S. Establishment of Colorectal Cancer Organoids in Microfluidic-Based System. MICROMACHINES 2021; 12:497. [PMID: 33924829 PMCID: PMC8146416 DOI: 10.3390/mi12050497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/26/2021] [Accepted: 04/26/2021] [Indexed: 12/24/2022]
Abstract
Colorectal cancer is the second leading cause of cancer death worldwide. Significant advances in the molecular mechanisms underlying colorectal cancer have been made; however, the clinical approval of new drugs faces many challenges. Drug discovery is a lengthy process causing a rapid increase in global health care costs. Patient-derived tumour organoids are considered preclinical models with the potential for preclinical drug screening, prediction of patient outcomes, and guiding optimized therapy strategies at an individual level. Combining microfluidic technology with 3D tumour organoid models to recapitulate tumour organization and in vivo functions led to the development of an appropriate preclinical tumour model, organoid-on-a-chip, paving the way for personalized cancer medicine. Herein, a low-cost microfluidic device suitable for culturing and expanding organoids, OrganoidChip, was developed. Patient-derived colorectal cancer organoids were cultured within OrganoidChip, and their viability and proliferative activity increased significantly. No significant differences were verified in the organoids' response to 5-fluorouracil (5-FU) treatment on-chip and on-plate. However, the culture within the OrganoidChip led to a significant increase in colorectal cancer organoid-forming efficiency and overall size compared with conventional culture on a 24-well plate. Interestingly, early-stage and late-stage organoids were predominantly observed on-plate and within the OrganoidChip, respectively. The OrganoidChip thus has the potential to generate in vivo-like organotypic structures for disease modelling and drug screening applications.
Collapse
Affiliation(s)
- Diana Pinho
- International Iberian Nanotechnology Laboratory, Department of Nanoelectronics Engineering, 4715-330 Braga, Portugal;
| | - Denis Santos
- International Iberian Nanotechnology Laboratory, Department of Nanoelectronics Engineering, 4715-330 Braga, Portugal;
| | - Ana Vila
- International Iberian Nanotechnology Laboratory, IP Exploitation and Knowledge Transfer, 4715-330 Braga, Portugal;
| | - Sandra Carvalho
- International Iberian Nanotechnology Laboratory, Department of Nanoelectronics Engineering, 4715-330 Braga, Portugal;
| |
Collapse
|
161
|
Rothbauer M, Bachmann BE, Eilenberger C, Kratz SR, Spitz S, Höll G, Ertl P. A Decade of Organs-on-a-Chip Emulating Human Physiology at the Microscale: A Critical Status Report on Progress in Toxicology and Pharmacology. MICROMACHINES 2021; 12:470. [PMID: 33919242 PMCID: PMC8143089 DOI: 10.3390/mi12050470] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/16/2021] [Accepted: 04/19/2021] [Indexed: 12/22/2022]
Abstract
Organ-on-a-chip technology has the potential to accelerate pharmaceutical drug development, improve the clinical translation of basic research, and provide personalized intervention strategies. In the last decade, big pharma has engaged in many academic research cooperations to develop organ-on-a-chip systems for future drug discoveries. Although most organ-on-a-chip systems present proof-of-concept studies, miniaturized organ systems still need to demonstrate translational relevance and predictive power in clinical and pharmaceutical settings. This review explores whether microfluidic technology succeeded in paving the way for developing physiologically relevant human in vitro models for pharmacology and toxicology in biomedical research within the last decade. Individual organ-on-a-chip systems are discussed, focusing on relevant applications and highlighting their ability to tackle current challenges in pharmacological research.
Collapse
Affiliation(s)
- Mario Rothbauer
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Karl Chiari Lab for Orthopaedic Biology, Department of Orthopedics and Trauma Surgery, Medical University of Vienna, Währinger Gürtel 18-22, 1090 Vienna, Austria
| | - Barbara E.M. Bachmann
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology, Allgemeine Unfallversicherungsanstalt (AUVA) Research Centre, Donaueschingenstraße 13, 1200 Vienna, Austria
| | - Christoph Eilenberger
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Sebastian R.A. Kratz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
- Drug Delivery and 3R-Models Group, Buchmann Institute for Molecular Life Sciences & Institute for Pharmaceutical Technology, Goethe University Frankfurt Am Main, 60438 Frankfurt, Germany
| | - Sarah Spitz
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Gregor Höll
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| | - Peter Ertl
- Faculty of Technical Chemistry, Institute of Applied Synthetic Chemistry and Institute of Chemical Technologies and Analytics, Vienna University of Technology, Getreidemarkt 9/163-164, 1060 Vienna, Austria; (B.E.M.B.); (C.E.); (S.R.A.K.); (S.S.); (G.H.)
- Austrian Cluster for Tissue Regeneration, 1200 Vienna, Austria
| |
Collapse
|
162
|
Ando Y, Okeyo KO, Sunaga J, Adachi T. Edge-localized alteration in pluripotency state of mouse ES cells forming topography-confined layers on designed mesh substrates. Stem Cell Res 2021; 53:102352. [PMID: 33901814 DOI: 10.1016/j.scr.2021.102352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 03/15/2021] [Accepted: 04/09/2021] [Indexed: 10/21/2022] Open
Abstract
Self-organization of pluripotent stem cells during tissue formation is directed by the adhesion microenvironment, which defines the resulting tissue topography. Although the influence of tissue topography on pluripotency state has been inferred, this aspect of self-organization remains largely unexplored. In this study, to determine the effect of self-organized tissue topography on pluripotency loss, we designed novel island mesh substrates to confine the self-organization process of mouse embryonic stem cells, enabling us to generate isolated cell layers with an island-like topography and overhanging edges. Using immunofluorescence microscopy, we determined that cells at the tissue edge exhibited deformed nuclei associated with low OCT3/4, in contrast with cells nested in the tissue interior which had round-shaped nuclei and exhibited sustained OCT3/4 expression. Interestingly, F-actin and phospho-myosin light chain were visibly enriched at the tissue edge where ERK activation and elevated AP-2γ expression were also found to be localized, as determined using both immunofluorescence microscopy and RT-qPCR analysis. Since actomyosin contractility is known to cause ERK activation, these results suggest that mechanical condition at the tissue edge can contribute to loss of pluripotency leading to differentiation. Thus, our study draws attention to the influence of self-organized tissue topography in stem cell culture and differentiation.
Collapse
Affiliation(s)
- Yuta Ando
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Kennedy Omondi Okeyo
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Junko Sunaga
- Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, Kyoto daigaku-katsura, Nishikyo-ku, Kyoto 615-8530, Japan; Institute for Frontier Life and Medical Sciences, Kyoto University, 53 Shogoin Kawahara-cho, Sakyo-ku, Kyoto 606-8507, Japan; Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Yoshida-Konoecho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
163
|
Microfluidic based human-on-a-chip: A revolutionary technology in scientific research. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.02.049] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
164
|
Chen C, Rengarajan V, Kjar A, Huang Y. A matrigel-free method to generate matured human cerebral organoids using 3D-Printed microwell arrays. Bioact Mater 2021; 6:1130-1139. [PMID: 33134606 PMCID: PMC7577195 DOI: 10.1016/j.bioactmat.2020.10.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 09/05/2020] [Accepted: 10/06/2020] [Indexed: 12/11/2022] Open
Abstract
The current methods of generating human cerebral organoids rely excessively on the use of Matrigel or other external extracellular matrices (ECM) for cell micro-environmental modulation. Matrigel embedding is problematic for long-term culture and clinical applications due to high inconsistency and other limitations. In this study, we developed a novel microwell culture platform based on 3D printing. This platform, without using Matrigel or external signaling molecules (i.e., SMAD and Wnt inhibitors), successfully generated matured human cerebral organoids with robust formation of high-level features (i.e., wrinkling/folding, lumens, neuronal layers). The formation and timing were comparable or superior to the current Matrigel methods, yet with improved consistency. The effect of microwell geometries (curvature and resolution) and coating materials (i.e., mPEG, Lipidure, BSA) was studied, showing that mPEG outperformed all other coating materials, while curved-bottom microwells outperformed flat-bottom ones. In addition, high-resolution printing outperformed low-resolution printing by creating faithful, isotropically-shaped microwells. The trend of these effects was consistent across all developmental characteristics, including EB formation efficiency and sphericity, organoid size, wrinkling index, lumen size and thickness, and neuronal layer thickness. Overall, the microwell device that was mPEG-coated, high-resolution printed, and bottom curved demonstrated the highest efficacy in promoting organoid development. This platform provided a promising strategy for generating uniform and mature human cerebral organoids as an alternative to Matrigel/ECM-embedding methods.
Collapse
Affiliation(s)
| | | | - Andrew Kjar
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| | - Yu Huang
- Department of Biological Engineering, Utah State University, Logan, UT, 84322, USA
| |
Collapse
|
165
|
Oksdath Mansilla M, Salazar-Hernandez C, Perrin SL, Scheer KG, Cildir G, Toubia J, Sedivakova K, Tea MN, Lenin S, Ponthier E, Yeo ECF, Tergaonkar V, Poonnoose S, Ormsby RJ, Pitson SM, Brown MP, Ebert LM, Gomez GA. 3D-printed microplate inserts for long term high-resolution imaging of live brain organoids. BMC Biomed Eng 2021; 3:6. [PMID: 33789767 PMCID: PMC8015192 DOI: 10.1186/s42490-021-00049-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 02/02/2021] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Organoids are a reliable model used in the study of human brain development and under pathological conditions. However, current methods for brain organoid culture generate tissues that range from 0.5 to 2 mm of size, which need to be constantly agitated to allow proper oxygenation. The culture conditions are, therefore, not suitable for whole-brain organoid live imaging, required to study developmental processes and disease progression within physiologically relevant time frames (i.e. days, weeks, months). RESULTS Here we designed 3D-printed microplate inserts adaptable to standard 24 multi-well plates, which allow the growth of multiple organoids in pre-defined and fixed XYZ coordinates. This innovation facilitates high-resolution imaging of whole-cerebral organoids, allowing precise assessment of organoid growth and morphology, as well as cell tracking within the organoids, over long periods. We applied this technology to track neocortex development through neuronal progenitors in brain organoids, as well as the movement of patient-derived glioblastoma stem cells within healthy brain organoids. CONCLUSIONS This new bioengineering platform constitutes a significant advance that permits long term detailed analysis of whole-brain organoids using multimodal inverted fluorescence microscopy.
Collapse
Affiliation(s)
- Mariana Oksdath Mansilla
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia.
| | - Camilo Salazar-Hernandez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Sally L Perrin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Kaitlin G Scheer
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Gökhan Cildir
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - John Toubia
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
- ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology and University of South Australia, Frome Road, Adelaide, SA, 5000, Australia
| | - Kristyna Sedivakova
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Melinda N Tea
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Sakthi Lenin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Elise Ponthier
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Erica C F Yeo
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
| | - Vinay Tergaonkar
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A-STAR), Singapore, Singapore
- Department of Pathology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Santosh Poonnoose
- Department of Neurosurgery, Flinders Medical Centre, Adelaide, SA, 5042, Australia
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Rebecca J Ormsby
- Flinders Health & Medical Research Institute, College of Medicine & Public Health, Flinders University, Adelaide, SA, 5042, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
| | - Michael P Brown
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Lisa M Ebert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia
- School of Medicine, University of Adelaide, Adelaide, SA, 5000, Australia
- Cancer Clinical Trials Unit, Royal Adelaide Hospital, Adelaide, SA, 5000, Australia
| | - Guillermo A Gomez
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, 5000, Australia.
| |
Collapse
|
166
|
Rothenbücher TSP, Gürbüz H, Pereira MP, Heiskanen A, Emneus J, Martinez-Serrano A. Next generation human brain models: engineered flat brain organoids featuring gyrification. Biofabrication 2021; 13:011001. [PMID: 33724233 DOI: 10.1088/1758-5090/abc95e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Brain organoids are considered to be a highly promising in vitro model for the study of the human brain and, despite their various shortcomings, have already been used widely in neurobiological studies. Especially for drug screening applications, a highly reproducible protocol with simple tissue culture steps and consistent output, is required. Here we present an engineering approach that addresses several existing shortcomings of brain organoids. By culturing brain organoids with a polycaprolactone scaffold, we were able to modify their shape into a flat morphology. Engineered flat brain organoids (efBOs) possess advantageous diffusion conditions and thus their tissue is better supplied with oxygen and nutrients, preventing the formation of a necrotic tissue core. Moreover, the efBO protocol is highly simplified and allows to customize the organoid size directly from the start. By seeding cells onto 12 by 12 mm scaffolds, the brain organoid size can be significantly increased. In addition, we were able to observe folding reminiscent of gyrification around day 20, which was self-generated by the tissue. To our knowledge, this is the first study that reports intrinsically caused gyrification of neuronal tissue in vitro. We consider our efBO protocol as a next step towards the generation of a stable and reliable human brain model for drug screening applications and spatial patterning experiments.
Collapse
Affiliation(s)
- Theresa S P Rothenbücher
- Department of Molecular Biology, Autonomous University of Madrid, Center of Molecular Biology Severo Ochoa (CBMSO, UAM-CSIC), Madrid, Spain.,Shared first authorship
| | - Hakan Gürbüz
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark.,Felixrobotics BV, Utrecht, The Netherlands.,Shared first authorship
| | - Marta P Pereira
- Department of Molecular Biology, Autonomous University of Madrid, Center of Molecular Biology Severo Ochoa (CBMSO, UAM-CSIC), Madrid, Spain
| | - Arto Heiskanen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jenny Emneus
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Alberto Martinez-Serrano
- Department of Molecular Biology, Autonomous University of Madrid, Center of Molecular Biology Severo Ochoa (CBMSO, UAM-CSIC), Madrid, Spain
| |
Collapse
|
167
|
Wei Y, Zhang C, Fan G, Meng L. Organoids as Novel Models for Embryo Implantation Study. Reprod Sci 2021; 28:1637-1643. [PMID: 33650092 DOI: 10.1007/s43032-021-00501-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/14/2021] [Indexed: 10/22/2022]
Abstract
In the last decade, organoids have become emerging novel models for biomedical research. Organoids are small, self-organized three-dimensional (3D) tissue cultures derived from stem cells that mimic certain tissues or organs. In reproductive medicine, researchers have generated numerous organoids including blastoid (blastocyst organoid), endometrial organoid, and trophoblast organoid. These organdies provide useful models for studying the embryo implantation mechanism through observation of cell differentiation, gene expression, and epigenetic profiles at the implantation stage. As in vitro tissue models, organoids could be coupled with many other frontier technologies such as gene editing and genomic sequencing. However, the main drawback of organoids is that they do not fully mimic their counterparts in vivo tissues. Furthermore, there is a consensus of research ethics on organoids that may limit the types of studies that scientists perform with. Nevertheless, all discoveries and efforts surrounding organoids still greatly benefit therapy development for reproductive clinics.
Collapse
Affiliation(s)
- Yubao Wei
- Institute of Reproductive Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China.
| | - Cuilian Zhang
- Institute of Reproductive Medicine, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, 450003, China.
| | - Guoping Fan
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Li Meng
- Incinta Fertility Center, Los Angeles, CA, 90503, USA
| |
Collapse
|
168
|
Kumar P, Hajdu C, Tóth Á, Horváth D. Flow-driven Surface Instabilities of Tubular Chitosan Hydrogel. Chemphyschem 2021; 22:488-492. [PMID: 33355991 PMCID: PMC7986071 DOI: 10.1002/cphc.202000952] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 12/21/2020] [Indexed: 12/11/2022]
Abstract
Spatial structures break their symmetry under the influence of shear stress arising from fluid flow. Here, we present surface instabilities appearing on chitosan tubes when an acidic solution of chitosan with various molecular weight is injected into a pool of sodium hydroxide solution. At slow flow rates wrinkle-to-fold transition takes place along the direction of the flow yielding a banded structure. For greater injection rates we observe coexisting modes of wrinkles and folds which are stabilized to periodic wrinkles when the alkaline concentration is increased. The instabilities are characterized by the scaling laws of the pattern wavelength and amplitude with the tube characteristics. Our experimental adaptation of mechanical instabilities provides a new in situ method to create soft biomaterials with the desired surface morphology without the use of any prefabricated templates.
Collapse
Affiliation(s)
- Pawan Kumar
- Department of Physical Chemistry and Materials ScienceUniversity of SzegedRerrich Béla tér 1SzegedH-6720Hungary
| | - Cintia Hajdu
- Department of Physical Chemistry and Materials ScienceUniversity of SzegedRerrich Béla tér 1SzegedH-6720Hungary
| | - Ágota Tóth
- Department of Physical Chemistry and Materials ScienceUniversity of SzegedRerrich Béla tér 1SzegedH-6720Hungary
| | - Dezső Horváth
- Department of Applied and Environmental ChemistryUniversity of SzegedRerrich Béla tér 1SzegedH-6720Hungary
| |
Collapse
|
169
|
Jacob F, Schnoll JG, Song H, Ming GL. Building the brain from scratch: Engineering region-specific brain organoids from human stem cells to study neural development and disease. Curr Top Dev Biol 2021; 142:477-530. [PMID: 33706925 PMCID: PMC8363060 DOI: 10.1016/bs.ctdb.2020.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Human brain development is an intricate process that involves precisely timed coordination of cell proliferation, fate specification, neuronal differentiation, migration, and integration of diverse cell types. Understanding of these fundamental processes, however, has been largely constrained by limited access to fetal brain tissue and the inability to prospectively study neurodevelopment in humans at the molecular, cellular and system levels. Although non-human model organisms have provided important insights into mechanisms underlying brain development, these systems do not fully recapitulate many human-specific features that often relate to disease. To address these challenges, human brain organoids, self-assembled three-dimensional neural aggregates, have been engineered from human pluripotent stem cells to model the architecture and cellular diversity of the developing human brain. Recent advancements in neural induction and regional patterning using small molecules and growth factors have yielded protocols for generating brain organoids that recapitulate the structure and neuronal composition of distinct brain regions. Here, we first provide an overview of early mammalian brain development with an emphasis on molecular cues that guide region specification. We then focus on recent efforts in generating human brain organoids that model the development of specific brain regions and highlight endeavors to enhance the cellular complexity to better mimic the in vivo developing human brain. We also provide examples of how organoid models have enhanced our understanding of human neurological diseases and conclude by discussing limitations of brain organoids with our perspectives on future advancements to maximize their potential.
Collapse
Affiliation(s)
- Fadi Jacob
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States; Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Jordan G Schnoll
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Hongjun Song
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; The Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Guo-Li Ming
- Department of Neuroscience and Mahoney Institute for Neurosciences, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, United States; Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States.
| |
Collapse
|
170
|
Zhang S, Wan Z, Kamm RD. Vascularized organoids on a chip: strategies for engineering organoids with functional vasculature. LAB ON A CHIP 2021; 21:473-488. [PMID: 33480945 PMCID: PMC8283929 DOI: 10.1039/d0lc01186j] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Human organoids, self-organized and differentiated from homogenous pluripotent stem cells (PSC), replicate the key structural and functional characteristics of their in vivo counterparts. Despite the rapid advancement of organoid technology and its diverse applications, major limitations in achieving truly in vivo like functionality have been the lack of matured structural organization and constraints on tissue size, both of which are direct consequences of lacking a functional vasculature. In the absence of perfusable vessels, a core region within organoids quickly becomes necrotic during development due to increased metabolic demands that cannot be met by diffusion alone. Thus, incorporating functional vasculature in organoid models is indispensable for their growth in excess of several hundred microns and maturaturation beyond the embryonic and fetal phase. Here, we review recent advancements in vascularizing organoids and engineering in vitro capillary beds, and further explore strategies to integrate them on a microfluidic based platform, aiming for establishing perfused vasculature throughout organoids in vitro.
Collapse
Affiliation(s)
- Shun Zhang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Zhengpeng Wan
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Roger D Kamm
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
171
|
The role of thickness inhomogeneities in hierarchical cortical folding. Neuroimage 2021; 231:117779. [PMID: 33548459 DOI: 10.1016/j.neuroimage.2021.117779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 11/30/2020] [Accepted: 01/14/2021] [Indexed: 11/22/2022] Open
Abstract
The mammalian brain cortex is highly folded, with several developmental disorders affecting folding. On the extremes, lissencephaly, a lack of folds in humans, and polymicrogyria, an overly folded brain, can lead to severe mental retardation, short life expectancy, epileptic seizures, and tetraplegia. Not only a specific degree of folding, but also stereotyped patterns, are required for normal brain function. A quantitative model on how and why these folds appear during the development of the brain is the first step in understanding the cause of these conditions. In recent years, there have been various attempts to understand and model the mechanisms of brain folding. Previous works have shown that mechanical instabilities play a crucial role in the formation of brain folds, and that the geometry of the fetal brain is one of the main factors in dictating its folding characteristics. However, modeling higher-order folding, one of the main characteristics of the highly gyrencephalic brain, has not been fully tackled. The simulations presented in this work are used to study the effects of thickness inhomogeneity in the gyrogenesis of the mammalian brain in silico. Finite-element simulations of rectangular slabs are performed. These slabs are divided into two distinct regions, where the outer region mimicks the gray matter, and the inner region the underlying white matter. Differential growth is introduced by growing the top region tangentially, while keeping the underlying region untouched. The brain tissue is modeled as a neo-Hookean hyperelastic material. Simulations are performed with both homogeneous and inhomogeneous cortical thicknesses. Our results show that the homogeneous cortex folds into a single wavelength, as is common for bilayered materials, while the inhomogeneous cortex folds into more complex conformations. In the early stages of development of the inhomogeneous cortex, structures reminiscent of the deep sulci in the brain are obtained. As the cortex continues to develop, secondary undulations, which are shallower and more variable than the structures obtained in earlier gyrification stage emerge, reproducing well-known characteristics of higher-order folding in the mammalian, and particularly the human, brain.
Collapse
|
172
|
Garreta E, Kamm RD, Chuva de Sousa Lopes SM, Lancaster MA, Weiss R, Trepat X, Hyun I, Montserrat N. Rethinking organoid technology through bioengineering. NATURE MATERIALS 2021; 20:145-155. [PMID: 33199860 DOI: 10.1038/s41563-020-00804-4] [Citation(s) in RCA: 163] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 08/18/2020] [Indexed: 06/11/2023]
Abstract
In recent years considerable progress has been made in the development of faithful procedures for the differentiation of human pluripotent stem cells (hPSCs). An important step in this direction has also been the derivation of organoids. This technology generally relies on traditional three-dimensional culture techniques that exploit cell-autonomous self-organization responses of hPSCs with minimal control over the external inputs supplied to the system. The convergence of stem cell biology and bioengineering offers the possibility to provide these stimuli in a controlled fashion, resulting in the development of naturally inspired approaches to overcome major limitations of this nascent technology. Based on the current developments, we emphasize the achievements and ongoing challenges of bringing together hPSC organoid differentiation, bioengineering and ethics. This Review underlines the need for providing engineering solutions to gain control of self-organization and functionality of hPSC-derived organoids. We expect that this knowledge will guide the community to generate higher-grade hPSC-derived organoids for further applications in developmental biology, drug screening, disease modelling and personalized medicine.
Collapse
Affiliation(s)
- Elena Garreta
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - Roger D Kamm
- Department of Biological Engineering and Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | | | | | - Ron Weiss
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
- Synthetic Biology Center, Massachusetts Institute of Technology (MIT), Cambridge, MA, USA
| | - Xavier Trepat
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Unitat de Biofísica i Bioenginyeria, Universitat de Barcelona, Barcelona, Spain
| | - Insoo Hyun
- Department of Bioethics, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Center for Bioethics, Harvard Medical School, Boston, MA, USA
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
- Centro de Investigación Biomédica en Red en Bioingeniería, Biomateriales y Nanomedicina, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
173
|
Moysidou CM, Barberio C, Owens RM. Advances in Engineering Human Tissue Models. Front Bioeng Biotechnol 2021; 8:620962. [PMID: 33585419 PMCID: PMC7877542 DOI: 10.3389/fbioe.2020.620962] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
Research in cell biology greatly relies on cell-based in vitro assays and models that facilitate the investigation and understanding of specific biological events and processes under different conditions. The quality of such experimental models and particularly the level at which they represent cell behavior in the native tissue, is of critical importance for our understanding of cell interactions within tissues and organs. Conventionally, in vitro models are based on experimental manipulation of mammalian cells, grown as monolayers on flat, two-dimensional (2D) substrates. Despite the amazing progress and discoveries achieved with flat biology models, our ability to translate biological insights has been limited, since the 2D environment does not reflect the physiological behavior of cells in real tissues. Advances in 3D cell biology and engineering have led to the development of a new generation of cell culture formats that can better recapitulate the in vivo microenvironment, allowing us to examine cells and their interactions in a more biomimetic context. Modern biomedical research has at its disposal novel technological approaches that promote development of more sophisticated and robust tissue engineering in vitro models, including scaffold- or hydrogel-based formats, organotypic cultures, and organs-on-chips. Even though such systems are necessarily simplified to capture a particular range of physiology, their ability to model specific processes of human biology is greatly valued for their potential to close the gap between conventional animal studies and human (patho-) physiology. Here, we review recent advances in 3D biomimetic cultures, focusing on the technological bricks available to develop more physiologically relevant in vitro models of human tissues. By highlighting applications and examples of several physiological and disease models, we identify the limitations and challenges which the field needs to address in order to more effectively incorporate synthetic biomimetic culture platforms into biomedical research.
Collapse
Affiliation(s)
| | | | - Róisín Meabh Owens
- Department of Chemical Engineering and Biotechnology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
174
|
Gong J, Meng T, Yang J, Hu N, Zhao H, Tian T. Three-dimensional in vitro tissue culture models of brain organoids. Exp Neurol 2021; 339:113619. [PMID: 33497645 DOI: 10.1016/j.expneurol.2021.113619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/03/2021] [Accepted: 01/12/2021] [Indexed: 12/18/2022]
Abstract
Brain organoids are three-dimensional self-assembled structures that are derived from human induced pluripotent stem cells (hiPSCs). They can recapitulate the spatiotemporal organization and function of the brain, presenting a robust system for in vitro modeling of brain development, evolution, and diseases. Significant advances in biomaterials, microscale technologies, gene editing technologies, and stem cell biology have enabled the construction of human specific brain structures in vitro. However, the limitations of long-term culture, necrosis, and hypoxic cores in different culture models obstruct brain organoid growth and survival. The in vitro models should facilitate oxygen and nutrient absorption, which is essential to generate complex organoids and provides a biomimetic microenvironment for modeling human brain organogenesis and human diseases. This review aims to highlight the progress in the culture devices of brain organoids, including dish, bioreactor, and organ-on-a-chip models. With the modulation of bioactive molecules and biomaterials, the generated organoids recapitulate the key features of the human brain in a more reproducible and hyperoxic fashion. Furthermore, an outlook for future preclinical studies and the genetic modifications of brain organoids is presented.
Collapse
Affiliation(s)
- Jing Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Tianyue Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Jun Yang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Ning Hu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China
| | - Hezhao Zhao
- Gastrointestinal Cancer Center, Chongqing University Cancer Hospital, Chongqing 400030, China
| | - Tian Tian
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
175
|
Advances in 3D neuronal microphysiological systems: towards a functional nervous system on a chip. In Vitro Cell Dev Biol Anim 2021; 57:191-206. [PMID: 33438114 PMCID: PMC7802613 DOI: 10.1007/s11626-020-00532-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Microphysiological systems (MPS) designed to study the complexities of the peripheral and central nervous systems have made marked improvements over the years and have allowed researchers to assess in two and three dimensions the functional interconnectivity of neuronal tissues. The recent generation of brain organoids has further propelled the field into the nascent recapitulation of structural, functional, and effective connectivities which are found within the native human nervous system. Herein, we will review advances in culture methodologies, focused especially on those of human tissues, which seek to bridge the gap from 2D cultures to hierarchical and defined 3D MPS with the end goal of developing a robust nervous system-on-a-chip platform. These advances have far-reaching implications within basic science, pharmaceutical development, and translational medicine disciplines.
Collapse
|
176
|
Passaro AP, Stice SL. Electrophysiological Analysis of Brain Organoids: Current Approaches and Advancements. Front Neurosci 2021; 14:622137. [PMID: 33510616 PMCID: PMC7835643 DOI: 10.3389/fnins.2020.622137] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 12/11/2020] [Indexed: 12/23/2022] Open
Abstract
Brain organoids, or cerebral organoids, have become widely used to study the human brain in vitro. As pluripotent stem cell-derived structures capable of self-organization and recapitulation of physiological cell types and architecture, brain organoids bridge the gap between relatively simple two-dimensional human cell cultures and non-human animal models. This allows for high complexity and physiological relevance in a controlled in vitro setting, opening the door for a variety of applications including development and disease modeling and high-throughput screening. While technologies such as single cell sequencing have led to significant advances in brain organoid characterization and understanding, improved functional analysis (especially electrophysiology) is needed to realize the full potential of brain organoids. In this review, we highlight key technologies for brain organoid development and characterization, then discuss current electrophysiological methods for brain organoid analysis. While electrophysiological approaches have improved rapidly for two-dimensional cultures, only in the past several years have advances been made to overcome limitations posed by the three-dimensionality of brain organoids. Here, we review major advances in electrophysiological technologies and analytical methods with a focus on advances with applicability for brain organoid analysis.
Collapse
Affiliation(s)
- Austin P. Passaro
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA, United States
| | - Steven L. Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States
- Division of Neuroscience, Biomedical & Health Sciences Institute, University of Georgia, Athens, GA, United States
- Department of Animal and Dairy Science, University of Georgia, Athens, GA, United States
| |
Collapse
|
177
|
Abstract
Engineered human mini-brains, made possible by knowledge from the convergence of precision microengineering and cell biology, permit systematic studies of complex neurological processes and of pathogenesis beyond what can be done with animal models. By culturing human brain cells with physiological microenvironmental cues, human mini-brain models reconstitute the arrangement of structural tissues and some of the complex biological functions of the human brain. In this Review, we highlight the most significant developments that have led to microphysiological human mini-brain models. We introduce the history of mini-brain development, review methods for creating mini-brain models in static conditions, and discuss relevant state-of-the-art dynamic cell-culture systems. We also review human mini-brain models that reconstruct aspects of major neurological disorders under static or dynamic conditions. Engineered human mini-brains will contribute to advancing the study of the physiology and aetiology of neurological disorders, and to the development of personalized medicines for them.
Collapse
|
178
|
Abstract
Organoids are in vitro miniaturized and simplified model systems of organs that have gained enormous interest for modelling tissue development and disease, and for personalized medicine, drug screening and cell therapy. Despite considerable success in culturing physiologically relevant organoids, challenges remain to achieve real-life applications. In particular, the high variability of self-organizing growth and restricted experimental and analytical access hamper the translatability of organoid systems. In this Review, we argue that many limitations of traditional organoid culture can be addressed by engineering approaches at all levels of organoid systems. We investigate cell surface and genetic engineering approaches, and discuss stem cell niche engineering based on the design of matrices that allow spatiotemporal control of organoid growth and shape-guided morphogenesis. We examine how microfluidic approaches and lessons learnt from organs-on-a-chip enable the integration of mechano-physiological parameters and increase accessibility of organoids to improve functional readouts. Applying engineering principles to organoids increases reproducibility and provides experimental control, which will, ultimately, be required to enable clinical translation.
Collapse
Affiliation(s)
- Moritz Hofer
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matthias P. Lutolf
- Laboratory of Stem Cell Bioengineering, Institute of Bioengineering, School of Life Sciences (SV) and School of Engineering (STI), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Institute of Chemical Sciences and Engineering, School of Basic Science (SB), École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
179
|
Abstract
Microphysiological systems (MPS), often referred to as "organ-on-chips," are microfluidic-based in vitro models that aim to recapitulate the dynamic chemical and mechanical microenvironment of living organs. MPS promise to bridge the gap between in vitro and in vivo models and ultimately improve the translation from preclinical animal studies to clinical trials. However, despite the explosion of interest in this area in recent years, and the obvious rewards for such models that could improve R&D efficiency and reduce drug attrition in the clinic, the pharmaceutical industry has been slow to fully adopt this technology. The ability to extract robust, quantitative information from MPS at scale is a key requirement if these models are to impact drug discovery and the subsequent drug development process. Microscopy imaging remains a core technology that enables the capture of information at the single-cell level and with subcellular resolution. Furthermore, such imaging techniques can be automated, increasing throughput and enabling compound screening. In this review, we discuss a range of imaging techniques that have been applied to MPS of varying focus, such as organoids and organ-chip-type models. We outline the opportunities these technologies can bring in terms of understanding mechanistic biology, but also how they could be used in higher-throughput screens, widening the scope of their impact in drug discovery. We discuss the associated challenges of imaging these complex models and the steps required to enable full exploitation. Finally, we discuss the requirements for MPS, if they are to be applied at a scale necessary to support drug discovery projects.
Collapse
Affiliation(s)
- Samantha Peel
- Discovery Biology, Discovery Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| | - Mark Jackman
- Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Cambridge, United Kingdom
| |
Collapse
|
180
|
Poletti M, Arnauts K, Ferrante M, Korcsmaros T. Organoid-based Models to Study the Role of Host-microbiota Interactions in IBD. J Crohns Colitis 2020; 15:1222-1235. [PMID: 33341879 PMCID: PMC8256633 DOI: 10.1093/ecco-jcc/jjaa257] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gut microbiota appears to play a central role in health, and alterations in the gut microbiota are observed in both forms of inflammatory bowel disease [IBD], namely Crohn's disease and ulcerative colitis. Yet, the mechanisms behind host-microbiota interactions in IBD, especially at the intestinal epithelial cell level, are not yet fully understood. Dissecting the role of host-microbiota interactions in disease onset and progression is pivotal, and requires representative models mimicking the gastrointestinal ecosystem, including the intestinal epithelium, the gut microbiota, and immune cells. New advancements in organoid microfluidics technology are facilitating the study of IBD-related microbial-epithelial cross-talk, and the discovery of novel microbial therapies. Here, we review different organoid-based ex vivo models that are currently available, and benchmark their suitability and limitations for specific research questions. Organoid applications, such as patient-derived organoid biobanks for microbial screening and 'omics technologies, are discussed, highlighting their potential to gain better mechanistic insights into disease mechanisms and eventually allow personalised medicine.
Collapse
Affiliation(s)
- Martina Poletti
- Earlham Institute, Norwich Research Park, Norwich, UK,Quadram Institute, Norwich Research Park, Norwich, UK
| | - Kaline Arnauts
- Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium,Department of Development and Regeneration, Stem Cell Institute Leuven [SCIL], KU Leuven, Leuven, Belgium
| | - Marc Ferrante
- Department of Chronic Diseases, Metabolism and Ageing [CHROMETA], Translational Research Center for Gastrointestinal Disorders [TARGID], KU Leuven, Leuven, Belgium,Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Leuven, Belgium,Corresponding author: Marc Ferrante, MD, PhD, Department of Gastroenterology and Hepatology, University Hospitals Leuven, KU Leuven, Herestraat 49, 3000 Leuven, Belgium. Tel.: +32 16 344225;
| | - Tamas Korcsmaros
- Earlham Institute, Norwich Research Park, Norwich, UK,Quadram Institute, Norwich Research Park, Norwich, UK
| |
Collapse
|
181
|
Ben-Reuven L, Reiner O. Toward Spatial Identities in Human Brain Organoids-on-Chip Induced by Morphogen-Soaked Beads. Bioengineering (Basel) 2020; 7:E164. [PMID: 33352983 PMCID: PMC7766968 DOI: 10.3390/bioengineering7040164] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/08/2020] [Accepted: 12/14/2020] [Indexed: 12/17/2022] Open
Abstract
Recent advances in stem-cell technologies include the differentiation of human embryonic stem cells (hESCs) into organ-like structures (organoids). These organoids exhibit remarkable self-organization that resembles key aspects of in vivo organ development. However, organoids have an unpredictable anatomy, and poorly reflect the topography of the dorsoventral, mediolateral, and anteroposterior axes. In vivo the temporal and the spatial patterning of the developing tissue is orchestrated by signaling molecules called morphogens. Here, we used morphogen-soaked beads to influence the spatial identities within hESC-derived brain organoids. The morphogen- and synthetic molecules-soaked beads were interpreted as local organizers, and key transcription factor expression levels within the organoids were affected as a function of the distance from the bead. We used an on-chip imaging device that we have developed, that allows live imaging of the developing hESC-derived organoids. This platform enabled studying the effect of changes in WNT/BMP gradients on the expression of key landmark genes in the on-chip human brain organoids. Titration of CHIR99201 (WNT agonist) and BMP4 directed the expression of telencephalon and medial pallium genes; dorsal and ventral midbrain markers; and isthmus-related genes. Overall, our protocol provides an opportunity to study phenotypes of altered regional specification and defected connectivity, which are found in neurodevelopmental diseases.
Collapse
Affiliation(s)
| | - Orly Reiner
- Weizmann Institute of Science, Rehovot 7610001, Israel;
| |
Collapse
|
182
|
Abstract
Brain structures change shape dramatically during development. Elucidating the mechanisms of morphogenesis provides insights relevant to understanding brain function in health and disease. The tension-based morphogenesis (TBM) hypothesis posits that mechanical tension along axons, dendrites, and glial processes contributes to many aspects of central nervous system morphogenesis. Since TBM was proposed in 1997, extensive evidence supports a role for tension in diverse cellular phenomena, but tension’s role in cortical folding has been controversial. An extensively revised version of the TBM model for cerebral cortex addresses limitations of the original model, incorporates new features, and can be tested by many experimental approaches. For cerebellar cortex, a revised model accounts for many aspects of its development and adult architecture. Mechanical tension along the length of axons, dendrites, and glial processes has been proposed as a major contributor to morphogenesis throughout the nervous system [D. C. Van Essen, Nature 385, 313–318 (1997)]. Tension-based morphogenesis (TBM) is a conceptually simple and general hypothesis based on physical forces that help shape all living things. Moreover, if each axon and dendrite strive to shorten while preserving connectivity, aggregate wiring length would remain low. TBM can explain key aspects of how the cerebral and cerebellar cortices remain thin, expand in surface area, and acquire their distinctive folds. This article reviews progress since 1997 relevant to TBM and other candidate morphogenetic mechanisms. At a cellular level, studies of diverse cell types in vitro and in vivo demonstrate that tension plays a major role in many developmental events. At a tissue level, I propose a differential expansion sandwich plus (DES+) revision to the original TBM model for cerebral cortical expansion and folding. It invokes tangential tension and “sulcal zipping” forces along the outer cortical margin as well as tension in the white matter core, together competing against radially biased tension in the cortical gray matter. Evidence for and against the DES+ model is discussed, and experiments are proposed to address key tenets of the DES+ model. For cerebellar cortex, a cerebellar multilayer sandwich (CMS) model is proposed that can account for many distinctive features, including its unique, accordion-like folding in the adult, and experiments are proposed to address its specific tenets.
Collapse
|
183
|
Microfluidic and Microscale Assays to Examine Regenerative Strategies in the Neuro Retina. MICROMACHINES 2020; 11:mi11121089. [PMID: 33316971 PMCID: PMC7763644 DOI: 10.3390/mi11121089] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/03/2020] [Accepted: 12/05/2020] [Indexed: 12/15/2022]
Abstract
Bioengineering systems have transformed scientific knowledge of cellular behaviors in the nervous system (NS) and pioneered innovative, regenerative therapies to treat adult neural disorders. Microscale systems with characteristic lengths of single to hundreds of microns have examined the development and specialized behaviors of numerous neuromuscular and neurosensory components of the NS. The visual system is comprised of the eye sensory organ and its connecting pathways to the visual cortex. Significant vision loss arises from dysfunction in the retina, the photosensitive tissue at the eye posterior that achieves phototransduction of light to form images in the brain. Retinal regenerative medicine has embraced microfluidic technologies to manipulate stem-like cells for transplantation therapies, where de/differentiated cells are introduced within adult tissue to replace dysfunctional or damaged neurons. Microfluidic systems coupled with stem cell biology and biomaterials have produced exciting advances to restore vision. The current article reviews contemporary microfluidic technologies and microfluidics-enhanced bioassays, developed to interrogate cellular responses to adult retinal cues. The focus is on applications of microfluidics and microscale assays within mammalian sensory retina, or neuro retina, comprised of five types of retinal neurons (photoreceptors, horizontal, bipolar, amacrine, retinal ganglion) and one neuroglia (Müller), but excludes the non-sensory, retinal pigmented epithelium.
Collapse
|
184
|
Amin S, Borrell V. The Extracellular Matrix in the Evolution of Cortical Development and Folding. Front Cell Dev Biol 2020; 8:604448. [PMID: 33344456 PMCID: PMC7744631 DOI: 10.3389/fcell.2020.604448] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 11/12/2020] [Indexed: 02/02/2023] Open
Abstract
The evolution of the mammalian cerebral cortex leading to humans involved a remarkable sophistication of developmental mechanisms. Specific adaptations of progenitor cell proliferation and neuronal migration mechanisms have been proposed to play major roles in this evolution of neocortical development. One of the central elements influencing neocortex development is the extracellular matrix (ECM). The ECM provides both a structural framework during tissue formation and to present signaling molecules to cells, which directly influences cell behavior and movement. Here we review recent advances in the understanding of the role of ECM molecules on progenitor cell proliferation and neuronal migration, and how these contribute to cerebral cortex expansion and folding. We discuss how transcriptomic studies in human, ferret and mouse identify components of ECM as being candidate key players in cortex expansion during development and evolution. Then we focus on recent functional studies showing that ECM components regulate cortical progenitor cell proliferation, neuron migration and the mechanical properties of the developing cortex. Finally, we discuss how these features differ between lissencephalic and gyrencephalic species, and how the molecular evolution of ECM components and their expression profiles may have been fundamental in the emergence and evolution of cortex folding across mammalian phylogeny.
Collapse
Affiliation(s)
| | - Víctor Borrell
- Instituto de Neurociencias, Consejo Superior de Investigaciones Científicas and Universidad Miguel Hernández, Sant Joan d’Alacant, Spain
| |
Collapse
|
185
|
Matsui TK, Tsuru Y, Kuwako KI. Challenges in Modeling Human Neural Circuit Formation via Brain Organoid Technology. Front Cell Neurosci 2020; 14:607399. [PMID: 33362473 PMCID: PMC7756199 DOI: 10.3389/fncel.2020.607399] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 11/12/2020] [Indexed: 01/12/2023] Open
Abstract
Human brain organoids are three-dimensional self-organizing tissues induced from pluripotent cells that recapitulate some aspects of early development and some of the early structure of the human brain in vitro. Brain organoids consist of neural lineage cells, such as neural stem/precursor cells, neurons, astrocytes and oligodendrocytes. Additionally, brain organoids contain fluid-filled ventricle-like structures surrounded by a ventricular/subventricular (VZ/SVZ) zone-like layer of neural stem cells (NSCs). These NSCs give rise to neurons, which form multiple outer layers. Since these structures resemble some aspects of structural arrangements in the developing human brain, organoid technology has attracted great interest in the research fields of human brain development and disease modeling. Developmental brain disorders have been intensely studied through the use of human brain organoids. Relatively early steps in human brain development, such as differentiation and migration, have also been studied. However, research on neural circuit formation with brain organoids has just recently began. In this review, we summarize the current challenges in studying neural circuit formation with organoids and discuss future perspectives.
Collapse
Affiliation(s)
- Takeshi K Matsui
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| | - Yuichiro Tsuru
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| | - Ken-Ichiro Kuwako
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, Izumo, Japan
| |
Collapse
|
186
|
Ma J, Huang C. Composition and Mechanism of Three-Dimensional Hydrogel System in Regulating Stem Cell Fate. TISSUE ENGINEERING. PART B, REVIEWS 2020; 26:498-518. [PMID: 32272868 DOI: 10.1089/ten.teb.2020.0021] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Three-dimensional (3D) hydrogel systems integrating different types of stem cells and scaffolding biomaterials have an important application in tissue engineering. The biomimetic hydrogels that pattern cell suspensions within 3D configurations of biomaterial networks allow for the transport of bioactive factors and mimic the stem cell niche in vivo, thereby supporting the proliferation and differentiation of stem cells. The composition of a 3D hydrogel system determines the physical and chemical characteristics that regulate stem cell function through a biological mechanism. Here, we discuss the natural and synthetic hydrogel compositions that have been employed in 3D scaffolding, focusing on their characteristics, fabrication, biocompatibility, and regulatory effects on stem cell proliferation and differentiation. We also discuss the regulatory mechanisms of cell-matrix interaction and cell-cell interaction in stem cell activities in various types of 3D hydrogel systems. Understanding hydrogel compositions and their cellular mechanisms can yield insights into how scaffolding biomaterials and stem cells interact and can lead to the development of novel hydrogel systems of stem cells in tissue engineering and stem cell-based regenerative medicine. Impact statement Three-dimensional hydrogel system of stem cell mimicking the stemcell niche holds significant promise in tissue engineering and regenerative medicine. Exactly how hydrogel composition regulates stem cell fate is not well understood. This review focuses on the composition of hydrogel, and how the hydrogel composition and its properties regulate the stem cell adhesion, growth, and differentiation. We propose that cell-matrix interaction and cell-cell interaction are important regulatory mechanisms in stem cell activities. Our review provides key insights into how the hydrogel composition regulates the stem cell fate, untangling the engineering of three-dimensional hydrogel systems for stem cells.
Collapse
Affiliation(s)
- Jianrui Ma
- Center for Neurobiology, Shantou University Medical College, Shantou, China
| | - Chengyang Huang
- Center for Neurobiology, Shantou University Medical College, Shantou, China
- Department of Biological Chemistry, Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California at Los Angeles (UCLA), Los Angeles, California, USA
| |
Collapse
|
187
|
Javier-Torrent M, Zimmer-Bensch G, Nguyen L. Mechanical Forces Orchestrate Brain Development. Trends Neurosci 2020; 44:110-121. [PMID: 33203515 DOI: 10.1016/j.tins.2020.10.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/05/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
During brain development, progenitors generate successive waves of neurons that populate distinct cerebral regions, where they settle and differentiate within layers or nuclei. While migrating and differentiating, neurons are subjected to mechanical forces arising from the extracellular matrix, and their interaction with neighboring cells. Changes in brain biomechanical properties, during its formation or aging, are converted in neural cells by mechanotransduction into intracellular signals that control key neurobiological processes. Here, we summarize recent findings that support the contribution of mechanobiology to neurodevelopment, with focus on the cerebral cortex. Also discussed are the existing toolbox and emerging technologies made available to assess and manipulate the physical properties of neurons and their environment.
Collapse
Affiliation(s)
- Míriam Javier-Torrent
- GIGA Stem Cells, GIGA-Neurosciences, University of Liège, CHU Sart Tilman, Liège 4000, Belgium
| | | | - Laurent Nguyen
- GIGA Stem Cells, GIGA-Neurosciences, University of Liège, CHU Sart Tilman, Liège 4000, Belgium.
| |
Collapse
|
188
|
Affiliation(s)
- Irit Rosenhek‐Goldian
- Department of Chemical Research Support Weizmann Institute of Science Herzl 234 Rehovot ISRAEL
| | - Sidney R. Cohen
- Department of Chemical Research Support Weizmann Institute of Science Herzl 234 Rehovot ISRAEL
| |
Collapse
|
189
|
Chiaradia I, Lancaster MA. Brain organoids for the study of human neurobiology at the interface of in vitro and in vivo. Nat Neurosci 2020; 23:1496-1508. [PMID: 33139941 DOI: 10.1038/s41593-020-00730-3] [Citation(s) in RCA: 187] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 09/29/2020] [Indexed: 02/07/2023]
Abstract
Brain development is an extraordinarily complex process achieved through the spatially and temporally regulated release of key patterning factors. In vitro neurodevelopmental models seek to mimic these processes to recapitulate the steps of tissue fate acquisition and morphogenesis. Classic two-dimensional neural cultures present higher homogeneity but lower complexity compared to the brain. Brain organoids instead have more advanced cell composition, maturation and tissue architecture. They can thus be considered at the interface of in vitro and in vivo neurobiology, and further improvements in organoid techniques are continuing to narrow the gap with in vivo brain development. Here we describe these efforts to recapitulate brain development in neural organoids and focus on their applicability for disease modeling, evolutionary studies and neural network research.
Collapse
Affiliation(s)
- Ilaria Chiaradia
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK
| | - Madeline A Lancaster
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Cambridge, UK.
| |
Collapse
|
190
|
Deng J, Cong Y, Han X, Wei W, Lu Y, Liu T, Zhao W, Lin B, Luo Y, Zhang X. A liver-on-a-chip for hepatoprotective activity assessment. BIOMICROFLUIDICS 2020; 14:064107. [PMID: 33312328 PMCID: PMC7710384 DOI: 10.1063/5.0024767] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 11/14/2020] [Indexed: 05/02/2023]
Abstract
Hepatoprotectant is critical for the treatment of liver disease. This study first reported the application of a liver chip in the hepatoprotective effect assessment. We first established a biomimetic sinusoid-on-a-chip by laminating four types of hepatic cell lines (HepG2, HUVEC, LX-2, and U937 cells) in a single microchannel with the help of laminar flow in the microchannel and some micro-fences. This chip was straightforward to fabricate and operate and was able to be long-term cultured. It also demonstrated better hepatic activity (cell viability, albumin synthesis, urea secretion, and cytochrome P450 enzyme activities) over the traditional planar cell culture model. Then, we loaded three hepatoprotectants (tiopronin, bifendatatum, and glycyrrhizinate) into the chip followed by the addition of acetaminophen as a toxin. We successfully observed the hepatoprotective effect of these hepatoprotectants in the chip, and we also found that bifendatatum predominantly reduced alanine transaminase secretion, tiopronin predominantly reduced lactate dehydrogenase secretion, and glycyrrhizinate predominantly reduced aspartate transaminase secretion, which revealed the different mechanisms of these hepatoprotectants and provided a clue for following molecular biological study of the protecting mechanism.
Collapse
Affiliation(s)
| | - Ye Cong
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Xiahe Han
- College of Pharmaceutical Science, Soochow University, 215123 Suzhou, China
| | - Wenbo Wei
- Shenzhen Institute of Geriatrics & Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, 518000 Shenzhen, China
| | - Yao Lu
- Biotechnologhy Division, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Tingjiao Liu
- College of Stomatology, Dalian Medical University, 116044 Dalian, China
| | - Weijie Zhao
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
| | - Bingcheng Lin
- Biotechnologhy Division, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 116023 Dalian, China
| | - Yong Luo
- State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Sciences, School of Chemical Engineering, Dalian University of Technology, 116024 Dalian, China
- Authors to whom correspondence should be addressed: and
| | - Xiuli Zhang
- College of Pharmaceutical Science, Soochow University, 215123 Suzhou, China
- Authors to whom correspondence should be addressed: and
| |
Collapse
|
191
|
Holland MA, Budday S, Li G, Shen D, Goriely A, Kuhl E. Folding drives cortical thickness variations. THE EUROPEAN PHYSICAL JOURNAL. SPECIAL TOPICS 2020; 229:2757-2778. [PMID: 37275766 PMCID: PMC10237175 DOI: 10.1140/epjst/e2020-000001-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 07/27/2020] [Indexed: 06/07/2023]
Abstract
The cortical thickness is a characteristic biomarker for a wide variety of neurological disorders. While the structural organization of the cerebral cortex is tightly regulated and evolutionarily preserved, its thickness varies widely between 1.5 and 4.5 mm across the healthy adult human brain. It remains unclear whether these thickness variations are a cause or consequence of cortical development. Recent studies suggest that cortical thickness variations are primarily a result of genetic effects. Previous studies showed that a simple homogeneous bilayered system with a growing layer on an elastic substrate undergoes a unique symmetry breaking into a spatially heterogeneous system with discrete gyri and sulci. Here, we expand on that work to explore the evolution of cortical thickness variations over time to support our finding that cortical pattern formation and thickness variations can be explained - at least in part - by the physical forces that emerge during cortical folding. Strikingly, as growth progresses, the developing gyri universally thicken and the sulci thin, even in the complete absence of regional information. Using magnetic resonance images, we demonstrate that these naturally emerging thickness variations agree with the cortical folding pattern in n = 9 healthy adult human brains, in n = 564 healthy human brains ages 7-64, and in n = 73 infant brains scanned at birth, and at ages one and two. Additionally, we show that cortical organoids develop similar patterns throughout their growth. Our results suggest that genetic, geometric, and physical events during brain development are closely interrelated. Understanding regional and temporal variations in cortical thickness can provide insight into the evolution and causative factors of neurological disorders, inform the diagnosis of neurological conditions, and assess the efficacy of treatment options.
Collapse
Affiliation(s)
- Maria A. Holland
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Silvia Budday
- Department of Mechanical Engineering, Friedrich-Alexander University, 91058 Erlangen, Germany
| | - Gang Li
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Dinggang Shen
- Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alain Goriely
- Mathematical Institute, University of Oxford, Oxford, UK
| | - Ellen Kuhl
- Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
192
|
Shi Y, Wu Q, Wang X. Modeling brain development and diseases with human cerebral organoids. Curr Opin Neurobiol 2020; 66:103-115. [PMID: 33130409 DOI: 10.1016/j.conb.2020.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/03/2020] [Accepted: 09/13/2020] [Indexed: 12/12/2022]
Abstract
Understanding the mechanisms that underlie human brain development and neurological and neuropsychiatric disorders is one of the key topics of neurobiology. Because of the poor accessibility of human and non-human primate brain tissues, the current perception and understanding of human brain development have been mainly derived from studies of rodents. However, some human-specific features of neural development cannot be well characterized by these animal models. Thanks to the advances in stem cell technologies, brain organoids are being under rapid development, showing the promising applications in decoding the human brain development and uncovering the pathology of brain diseases. In this review, we mainly summarized the recent advances in the development of brain organoid technology and discussed the limitations, applications and future prospects of this promising field.
Collapse
Affiliation(s)
- Yingchao Shi
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Wu
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing, 100875, China; IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing, 100875, China
| | - Xiaoqun Wang
- State Key Laboratory of Brain and Cognitive Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Brain-Intelligence Technology (Shanghai), Bioland Laboratory (Guangzhou), Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China; Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Advanced Innovation Center for Human Brain Protection, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
193
|
Lovett ML, Nieland TJ, Dingle YTL, Kaplan DL. Innovations in 3-Dimensional Tissue Models of Human Brain Physiology and Diseases. ADVANCED FUNCTIONAL MATERIALS 2020; 30:1909146. [PMID: 34211358 PMCID: PMC8240470 DOI: 10.1002/adfm.201909146] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Indexed: 05/04/2023]
Abstract
3-dimensional (3D) laboratory tissue cultures have emerged as an alternative to traditional 2-dimensional (2D) culture systems that do not recapitulate native cell behavior. The discrepancy between in vivo and in vitro tissue-cell-molecular responses impedes understanding of human physiology in general and creates roadblocks for the discovery of therapeutic solutions. Two parallel approaches have emerged for the design of 3D culture systems. The first is biomedical engineering methodology, including bioengineered materials, bioprinting, microfluidics and bioreactors, used alone or in combination, to mimic the microenvironments of native tissues. The second approach is organoid technology, in which stem cells are exposed to chemical and/or biological cues to activate differentiation programs that are reminiscent of human (prenatal) development. This review article describes recent technological advances in engineering 3D cultures that more closely resemble the human brain. The contributions of in vitro 3D tissue culture systems to new insights in neurophysiology, neurological diseases and regenerative medicine are highlighted. Perspectives on designing improved tissue models of the human brain are offered, focusing on an integrative approach merging biomedical engineering tools with organoid biology.
Collapse
Affiliation(s)
- Michael L. Lovett
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Thomas J.F. Nieland
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - Yu-Ting L. Dingle
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| | - David L. Kaplan
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155
| |
Collapse
|
194
|
Liu HC, Xie Y, Deng CH, Liu GH. Stem cell-based therapies for fertility preservation in males: Current status and future prospects. World J Stem Cells 2020; 12:1097-1112. [PMID: 33178394 PMCID: PMC7596443 DOI: 10.4252/wjsc.v12.i10.1097] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/13/2020] [Accepted: 08/26/2020] [Indexed: 02/06/2023] Open
Abstract
With the decline in male fertility in recent years, strategies for male fertility preservation have received increasing attention. In this study, by reviewing current treatments and recent publications, we describe research progress in and the future directions of stem cell-based therapies for male fertility preservation, focusing on the use of spermatogonial stem cells (SSCs), SSC niches, SSC-based testicular organoids, other stem cell types such as mesenchymal stem cells, and stem cell-derived extracellular vesicles. In conclusion, a more comprehensive understanding of the germ cell microenvironment, stem cell-derived extracellular vesicles, and testicular organoids will play an important role in achieving male fertility preservation.
Collapse
Affiliation(s)
- Han-Chao Liu
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Yun Xie
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Chun-Hua Deng
- Department of Andrology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, Guangdong Province, China
| | - Gui-Hua Liu
- Reproductive Medicine Research Center, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510655, Guangdong Province, China
| |
Collapse
|
195
|
Shou Y, Liang F, Xu S, Li X. The Application of Brain Organoids: From Neuronal Development to Neurological Diseases. Front Cell Dev Biol 2020; 8:579659. [PMID: 33195219 PMCID: PMC7642488 DOI: 10.3389/fcell.2020.579659] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
Brain organoids are derived from induced pluripotent stem cells and embryonic stem cells under three-dimensional culture condition. The generation of an organoid requires the self-assembly of stem cells, progenitor cells, and multiple types of differentiated cells. Organoids display structures that resemble defined brain regions and simulate specific changes of neurological disorders; thus, organoids have become an excellent model for investigating brain development and neurological diseases. In the present review, we have summarized recent advances of the methods of culturing brain organoids and the applications of brain organoids in investigating neurodevelopmental and neurodegenerative diseases.
Collapse
Affiliation(s)
- Yikai Shou
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| | - Feng Liang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Shunliang Xu
- Department of Neurology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xuekun Li
- The Children's Hospital, School of Medicine, Zhejiang University, Hangzhou, China.,The Institute of Translational Medicine, School of Medicine, Zhejiang University, Hangzhou, China.,National Clinical Research Center for Child Health, Hangzhou, China
| |
Collapse
|
196
|
Francis F, Cappello S. Neuronal migration and disorders - an update. Curr Opin Neurobiol 2020; 66:57-68. [PMID: 33096394 DOI: 10.1016/j.conb.2020.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/15/2020] [Accepted: 10/04/2020] [Indexed: 12/22/2022]
Abstract
This review highlights genes, proteins and subcellular mechanisms, recently shown to influence cortical neuronal migration. A current view on mechanisms which become disrupted in a diverse array of migration disorders is presented. The microtubule (MT) cytoskeleton is a major player in migrating neurons. Recently, variable impacts on MTs have been revealed in different cell compartments. Thus there are a multiplicity of effects involving centrosomal, microtubule-associated, as well as motor proteins. However, other causative factors also emerge, illuminating cortical neuronal migration research. These include disruptions of the actin cytoskeleton, the extracellular matrix, different adhesion molecules and signaling pathways, especially revealed in disorders such as periventricular heterotopia. These recent advances often involve the use of human in vitro models as well as model organisms. Focusing on cell-type specific knockouts and knockins, as well as generating omics and functional data, all seem critical for an integrated view on neuronal migration dysfunction.
Collapse
Affiliation(s)
- Fiona Francis
- INSERM U 1270, Paris, France; Sorbonne University, UMR-S 1270, F-75005 Paris, France; Institut du Fer à Moulin, Paris, France.
| | | |
Collapse
|
197
|
Modeling human neuronal migration deficits in 3D. Curr Opin Neurobiol 2020; 66:30-36. [PMID: 33069990 DOI: 10.1016/j.conb.2020.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 06/23/2020] [Accepted: 09/02/2020] [Indexed: 10/23/2022]
Abstract
During the past few decades, we have witnessed an impressive gain in the knowledge regarding the basic mechanisms underlying human neuronal migration disorders by the usage of mouse models. Nevertheless, despite the remarkable conservation both in the genetic encoded information and the developmental processes, there are still numerous important differences between human and mouse. This may explain the vast excitement following the realization that technological breakthroughs enabled generating tissue-like human-based organoids for modeling human neuronal migration diseases. This review will provide a short introduction on human and mouse neuronal migration processes, and highlight human brain organoid models of neuronal migration diseases.
Collapse
|
198
|
Baldassari S, Musante I, Iacomino M, Zara F, Salpietro V, Scudieri P. Brain Organoids as Model Systems for Genetic Neurodevelopmental Disorders. Front Cell Dev Biol 2020; 8:590119. [PMID: 33154971 PMCID: PMC7586734 DOI: 10.3389/fcell.2020.590119] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022] Open
Abstract
Neurodevelopmental disorders (NDDs) are a group of disorders in which the development of the central nervous system (CNS) is disturbed, resulting in different neurological and neuropsychiatric features, such as impaired motor function, learning, language or non-verbal communication. Frequent comorbidities include epilepsy and movement disorders. Advances in DNA sequencing technologies revealed identifiable genetic causes in an increasingly large proportion of NDDs, highlighting the need of experimental approaches to investigate the defective genes and the molecular pathways implicated in abnormal brain development. However, targeted approaches to investigate specific molecular defects and their implications in human brain dysfunction are prevented by limited access to patient-derived brain tissues. In this context, advances of both stem cell technologies and genome editing strategies during the last decade led to the generation of three-dimensional (3D) in vitro-models of cerebral organoids, holding the potential to recapitulate precise stages of human brain development with the aim of personalized diagnostic and therapeutic approaches. Recent progresses allowed to generate 3D-structures of both neuronal and non-neuronal cell types and develop either whole-brain or region-specific cerebral organoids in order to investigate in vitro key brain developmental processes, such as neuronal cell morphogenesis, migration and connectivity. In this review, we summarized emerging methodological approaches in the field of brain organoid technologies and their application to dissect disease mechanisms underlying an array of pediatric brain developmental disorders, with a particular focus on autism spectrum disorders (ASDs) and epileptic encephalopathies.
Collapse
Affiliation(s)
- Simona Baldassari
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy
| | - Ilaria Musante
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Michele Iacomino
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy
| | - Federico Zara
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| | - Vincenzo Salpietro
- Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy.,Pediatric Neurology and Muscular Diseases Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Paolo Scudieri
- Medical Genetics Unit, IRCSS Giannina Gaslini Institute, Genoa, Italy.,Department of Neurosciences, Rehabilitation, Ophthalmology, Genetics, Maternal and Child Health (DiNOGMI), University of Genoa, Genoa, Italy
| |
Collapse
|
199
|
Velasco V, Shariati SA, Esfandyarpour R. Microtechnology-based methods for organoid models. MICROSYSTEMS & NANOENGINEERING 2020; 6:76. [PMID: 34567686 PMCID: PMC8433138 DOI: 10.1038/s41378-020-00185-3] [Citation(s) in RCA: 138] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 05/10/2020] [Accepted: 06/03/2020] [Indexed: 05/03/2023]
Abstract
Innovations in biomaterials and stem cell technology have allowed for the emergence of novel three-dimensional (3D) tissue-like structures known as organoids and spheroids. As a result, compared to conventional 2D cell culture and animal models, these complex 3D structures have improved the accuracy and facilitated in vitro investigations of human diseases, human development, and personalized medical treatment. Due to the rapid progress of this field, numerous spheroid and organoid production methodologies have been published. However, many of the current spheroid and organoid production techniques are limited by complexity, throughput, and reproducibility. Microfabricated and microscale platforms (e.g., microfluidics and microprinting) have shown promise to address some of the current limitations in both organoid and spheroid generation. Microfabricated and microfluidic devices have been shown to improve nutrient delivery and exchange and have allowed for the arrayed production of size-controlled culture areas that yield more uniform organoids and spheroids for a higher throughput at a lower cost. In this review, we discuss the most recent production methods, challenges currently faced in organoid and spheroid production, and microfabricated and microfluidic applications for improving spheroid and organoid generation. Specifically, we focus on how microfabrication methods and devices such as lithography, microcontact printing, and microfluidic delivery systems can advance organoid and spheroid applications in medicine.
Collapse
Affiliation(s)
- Vanessa Velasco
- Biochemistry Department, Stanford University, Palo Alto, CA USA
| | - S. Ali Shariati
- Department of Biomolecular Engineering, Institute for the Biology of Stem Cells, University of California, Santa Cruz, CA USA
| | - Rahim Esfandyarpour
- Department of Electrical Engineering, University of California, Irvine, CA USA
- Department of Biomedical Engineering, University of California Irvine, Irvine, CA USA
- Henry Samueli School of Engineering, University of California, Irvine, CA USA
| |
Collapse
|
200
|
Khalil AS, Jaenisch R, Mooney DJ. Engineered tissues and strategies to overcome challenges in drug development. Adv Drug Deliv Rev 2020; 158:116-139. [PMID: 32987094 PMCID: PMC7518978 DOI: 10.1016/j.addr.2020.09.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/16/2022]
Abstract
Current preclinical studies in drug development utilize high-throughput in vitro screens to identify drug leads, followed by both in vitro and in vivo models to predict lead candidates' pharmacokinetic and pharmacodynamic properties. The goal of these studies is to reduce the number of lead drug candidates down to the most likely to succeed in later human clinical trials. However, only 1 in 10 drug candidates that emerge from preclinical studies will succeed and become an approved therapeutic. Lack of efficacy or undetected toxicity represents roughly 75% of the causes for these failures, despite these parameters being the primary exclusion criteria in preclinical studies. Recently, advances in both biology and engineering have created new tools for constructing new preclinical models. These models can complement those used in current preclinical studies by helping to create more realistic representations of human tissues in vitro and in vivo. In this review, we describe current preclinical models to identify their value and limitations and then discuss select areas of research where improvements in preclinical models are particularly needed to advance drug development. Following this, we discuss design considerations for constructing preclinical models and then highlight recent advances in these efforts. Taken together, we aim to review the advances as of 2020 surrounding the prospect of biological and engineering tools for adding enhanced biological relevance to preclinical studies to aid in the challenges of failed drug candidates and the burden this poses on the drug development enterprise and thus healthcare.
Collapse
Affiliation(s)
- Andrew S Khalil
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA; Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA
| | - Rudolf Jaenisch
- Whitehead Institute for Biomedical Research, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA 02115, USA.
| |
Collapse
|