151
|
Zhao W, Xiao M, Yang J, Zhang L, Ba Y, Xu R, Liu Z, Zou H, Yu P, Wu X, Chen X. The combination of Ilexhainanoside D and ilexsaponin A 1 reduces liver inflammation and improves intestinal barrier function in mice with high-fat diet-induced non-alcoholic fatty liver disease. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 63:153039. [PMID: 31387054 DOI: 10.1016/j.phymed.2019.153039] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/08/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is becoming a major health concern worldwide. Ilex hainanensis Merr. extract was proved to have anti-inflammation effect on NAFLD, and Ilexhainanoside D (IhD) and ilexsaponin A1 (IsA) were the main triterpenoid saponins extracted from it. PURPOSES To investigate the hepatoprotective effect of the combination of IhD and IsA (IIC) against NAFLD and discuss the potential mechanisms. METHODS Male C57BL/6 mice were fed a high-fat diet (HFD) to induce NAFLD and were treated with IIC (60, 120 or 240 mg/kg) for 8 weeks. Growth parameters, abdominal fat content, serum biochemical markers, hepatic lipid accumulation and insulin tolerance were assessed. Quantitative real-time PCR was used to determine the hepatic gene expression of TLR2, TLR4, TNF-α, IL-6, and IL-1β. Western blot analysis was performed to determine the expression of the epidermal tight junction proteins ZO-1 and occludin. Gut microbiota profiles were established via high-throughput sequencing of the V3-V4 region of the bacterial 16S rRNA gene. RESULTS IIC significantly reduced the severity of NAFLD induced by HFD in a dose-dependent manner. IIC decreased the ratio of Firmicutes/Bacteroidetes, reduced the relative abundance of Desulfovibrio and increased the relative abundance of Akkermansia. The intestinal barrier was improved as evidenced by the upregulation of the expression of ZO-1 and occludin in the ileum. IIC thus reduced the entry of LPS into the circulation and decreased the hepatic gene expression levels of proinflammatory cytokines. CONCLUSION This approach demonstrated the positive effects of IIC in a mouse model of NAFLD, indicating that it possibly acts by reducing inflammation and improving the intestinal barrier function.
Collapse
Affiliation(s)
- Wenwen Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Meng Xiao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Jie Yang
- Department of Chinese Medicines Analysis, China Pharmaceutical University, Nanjing 210009, China
| | - Li Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yinying Ba
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Rongrong Xu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Zongyang Liu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Haiyan Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Ping Yu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China
| | - Xia Wu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| | - Xiaoqing Chen
- School of Traditional Chinese Medicine, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
152
|
Dendrobii Officinalis, a traditional Chinese edible and officinal plant, accelerates liver recovery by regulating the gut-liver axis in NAFLD mice. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103458] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
153
|
Regulation of Gut Microbiota and Metabolic Endotoxemia with Dietary Factors. Nutrients 2019; 11:nu11102277. [PMID: 31547555 PMCID: PMC6835897 DOI: 10.3390/nu11102277] [Citation(s) in RCA: 167] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/13/2019] [Accepted: 09/18/2019] [Indexed: 02/08/2023] Open
Abstract
Metabolic endotoxemia is a condition in which blood lipopolysaccharide (LPS) levels are elevated, regardless of the presence of obvious infection. It has been suggested to lead to chronic inflammation-related diseases such as obesity, type 2 diabetes mellitus, non-alcoholic fatty liver disease (NAFLD), pancreatitis, amyotrophic lateral sclerosis, and Alzheimer’s disease. In addition, it has attracted attention as a target for the prevention and treatment of these chronic diseases. As metabolic endotoxemia was first reported in mice that were fed a high-fat diet, research regarding its relationship with diets has been actively conducted in humans and animals. In this review, we summarize the relationship between fat intake and induction of metabolic endotoxemia, focusing on gut dysbiosis and the influx, kinetics, and metabolism of LPS. We also summarize the recent findings about dietary factors that attenuate metabolic endotoxemia, focusing on the regulation of gut microbiota. We hope that in the future, control of metabolic endotoxemia using dietary factors will help maintain human health.
Collapse
|
154
|
Zhao C, Liu L, Liu Q, Li F, Zhang L, Zhu F, Shao T, Barve S, Chen Y, Li X, McClain CJ, Feng W. Fibroblast growth factor 21 is required for the therapeutic effects of Lactobacillus rhamnosus GG against fructose-induced fatty liver in mice. Mol Metab 2019; 29:145-157. [PMID: 31668386 PMCID: PMC6812038 DOI: 10.1016/j.molmet.2019.08.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 08/24/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
Objectives High fructose feeding changes fibroblast growth factor 21 (FGF21) regulation. Lactobacillus rhamnosus GG (LGG) supplementation reduces fructose-induced non-alcoholic fatty liver disease (NAFLD). The aim of this study was to determine the role of FGF21 and underlying mechanisms in the protective effects of LGG. Methods FGF21 knockout (KO) mice and C57BL/6 wild type (WT) mice were fed 30% fructose for 12 weeks. LGG was administered to the mice in the last 4 weeks during fructose feeding. FGF21-adiponectin (ADPN)-mediated hepatic lipogenesis and inflammation were investigated. Results FGF21 expression was robustly increased after 5-weeks of feeding and significantly decreased after 12-weeks of feeding in fructose-induced NAFLD mice. LGG administration reversed the depressed FGF21 expression, increased adipose production of ADPN, and reduced hepatic fat accumulation and inflammation in the WT mice but not in the KO mice. Hepatic nuclear carbohydrate responsive-element binding protein (ChREBP) was increased by fructose and reduced by LGG, resulting in a reduction in the expression of lipogenic genes. The methylated form of protein phosphatase 2A (PP2A) C, which dephosphorylates and activates ChREBP, was upregulated by fructose and normalized by LGG. Leucine carboxyl methyltransferase-1, which methylates PP2AC, was also increased by fructose and decreased by LGG. However, those beneficial effects of LGG were blunted in the KO mice. Hepatic dihydrosphingosine-1-phosphate, which inhibits PP2A, was markedly increased by LGG in the WT mice but attenuated in the KO mice. LGG decreased adipose hypertrophy and increased serum levels of ADPN, which regulates sphingosine metabolism. This beneficial effect was decreased in the KO mice. Conclusion LGG administration increases hepatic FGF21 expression and serum ADPN concentration, resulting in a reduced ChREBP activation through dihydrosphingosine-1-phosphate-mediated PP2A deactivation, and subsequently reversed fructose-induced NAFLD. Thus, our data suggest that FGF21 is required for the beneficial effects of LGG in reversal of fructose-induced NAFLD. Lactobacillus rhamnosus GG (LGG) attenuates fructose-induced NAFLD. LGG increases FGF21 and adiponectin expression. LGG inhibits fructose-activated ChREBP and reduces hepatic lipogenesis. FGF21 is required for the therapeutic effects of LGG against fructose-induced NAFLD.
Collapse
Affiliation(s)
- Cuiqing Zhao
- College of Animal Science and Technology, Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin Agricultural Science and Technology University, Jilin, Jilin 132101, China; Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Liming Liu
- College of Animal Science and Technology, Key Lab of Preventive Veterinary Medicine in Jilin Province, Jilin Agricultural Science and Technology University, Jilin, Jilin 132101, China; Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Qi Liu
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Fengyuan Li
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Lihua Zhang
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA
| | - Fenxia Zhu
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Key Laboratory of New Drug Delivery System of Chinese Materia Medica, Jiangsu Provincial Academy of Traditional Chinese Medicine, Nanjing, Jiangsu 210028, China
| | - Tuo Shao
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA
| | - Shirish Barve
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Yiping Chen
- Second Affiliated Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xiaokun Li
- Institute of Virology, Wenzhou University, Wenzhou, Zhejiang 325035, China
| | - Craig J McClain
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Robley Rex VA Medical Center, Louisville, KY 40206, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA
| | - Wenke Feng
- Department of Medicine, University of Louisville, Louisville, KY 40202, USA; Department of Pharmacology & Toxicology, University of Louisville, Louisville, KY 40202, USA; Hepatobiology & Toxicology Center, University of Louisville, Louisville, KY 40202, USA; Alcohol Research Center, University of Louisville, Louisville, KY 40202, USA.
| |
Collapse
|
155
|
Zhang S, Fu J, Zhang Q, Liu L, Lu M, Meng G, Yao Z, Wu H, Xia Y, Bao X, Gu Y, Sun S, Wang X, Zhou M, Jia Q, Song K, Wu Y, Xiang H, Niu K. Association between habitual yogurt consumption and newly diagnosed non-alcoholic fatty liver disease. Eur J Clin Nutr 2019; 74:491-499. [PMID: 31477797 DOI: 10.1038/s41430-019-0497-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 07/20/2019] [Accepted: 08/14/2019] [Indexed: 12/31/2022]
Abstract
BACKGROUND/OBJECTIVES Many studies have suggested that probiotics may be applied as a therapeutic agent for non-alcoholic fatty liver disease (NAFLD). However, the effects of frequent yogurt consumption (as a natural probiotic source) on NAFLD remain poorly understood. This study was to examine the association of habitual yogurt consumption with newly diagnosed NAFLD in the general adult population. SUBJECT/METHODS Overall, 24,389 adults were included in this cross-sectional study. Yogurt consumption was estimated by using a validated self-administered food frequency questionnaire. NAFLD was diagnosed by abdominal ultrasonography. We used logistic regression models to assess the association between yogurt consumption categories and newly diagnosed NAFLD. RESULTS The multivariable odds ratios with 95% confidence interval of newly diagnosed NAFLD were 1.00 (0.88, 1.14) for 1 time/week, 0.91 (0.81, 1.02) for 2-3 times/week, and 0.86 (0.76, 0.98) for ≥4 times/week (P for trend = 0.01), compared with those who consumed <1 time/week yogurt. The inverse association was observed in a sensitivity analysis. CONCLUSION Higher yogurt consumption was inversely associated with the prevalence of newly diagnosed NAFLD. These results are needed to be confirmed in randomized controlled trials or prospective studies.
Collapse
Affiliation(s)
- Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jingzhu Fu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Min Lu
- Department of Gastroenterology, Tianjin Third Central Hospital, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhanxin Yao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Health and Environmental Medicine, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yang Xia
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xue Bao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yeqing Gu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Yuntang Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Huiling Xiang
- Department of Gastroenterology, Tianjin Third Central Hospital, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China. .,Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
156
|
Koopman N, Molinaro A, Nieuwdorp M, Holleboom AG. Review article: can bugs be drugs? The potential of probiotics and prebiotics as treatment for non-alcoholic fatty liver disease. Aliment Pharmacol Ther 2019; 50:628-639. [PMID: 31373710 DOI: 10.1111/apt.15416] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 05/06/2019] [Accepted: 06/23/2019] [Indexed: 12/11/2022]
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver condition. A major current research effort is ongoing to find potential strategies to treat NAFLD-non-alcoholic steatohepatitis (NASH), with special attention to the gut microbiota. Multiple animal studies and pilot clinical trials are assessing different gut microbiota modulating strategies such as faecal microbiota transplantation, antibiotics, probiotics, prebiotics and synbiotics. AIM To review the role of microbiota in NAFLD-NASH and determine whether pro- and prebiotics have potential as treatment METHODS: Information was obtained from critically reviewing literature on PubMed on targeting the gut microbiota in NAFLD. Search terms included NAFLD, NASH, non-alcoholic fatty liver disease, steatohepatitis; combined with microbiome, microbiota, gut bacteria, probiotics and prebiotics. RESULTS Animal studies and the first emerging studies in humans show promising results for both the common probiotics Lactobacillus, Bifidobacterium and Streptococci as for short chain fatty acid (SCFA) butyrate-producing bacteria. Also, prebiotics have positive effects on different mechanisms underlying NAFLD-NASH. CONCLUSIONS The most promising strategies thus far developed to alter the microbiome in NAFLD-NASH are probiotics and prebiotics. However, pre- and probiotic treatment of NAFLD-NASH is relatively new and still under development. Actual understanding of the involved mechanisms is lacking and changes in the intestinal microbiota composition after treatment are rarely measured. Furthermore, large clinical trials with comparative endpoints are unavailable. Personalised treatment based on metagenomics gut microbiota analysis will probably be part of the future diagnosis and treatment of NAFLD-NASH.
Collapse
Affiliation(s)
- Nienke Koopman
- Department of Molecular Biology and Microbial Food Safety, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Antonio Molinaro
- Wallenberg Laboratory, Department of Molecular and Clinical Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Max Nieuwdorp
- Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Adriaan G Holleboom
- Vascular Medicine, Amsterdam University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
157
|
Cheng D, Song J, Xie M, Song D. The bidirectional relationship between host physiology and microbiota and health benefits of probiotics: A review. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2019.07.044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
158
|
Zhang S, Fu J, Zhang Q, Liu L, Meng G, Yao Z, Wu H, Bao X, Gu Y, Lu M, Sun S, Wang X, Zhou M, Jia Q, Song K, Xiang H, Wu Y, Niu K. Association between nut consumption and non-alcoholic fatty liver disease in adults. Liver Int 2019; 39:1732-1741. [PMID: 31162803 DOI: 10.1111/liv.14164] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 05/22/2019] [Accepted: 05/27/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND & AIMS Increased nut consumption has been associated with reduced inflammation, insulin resistance, and oxidative stress. Although these factors are closely involved in the pathogenesis of non-alcoholic fatty liver disease (NAFLD), few studies have focused on the association between nut consumption and NAFLD in the general population. We aimed to investigate the association of nut consumption and NAFLD in an adult population. METHODS A total of 23 915 participants from Tianjin Chronic Low-Grade Systemic Inflammation and Health (TCLSIH) Cohort Study were included in this study. Information on dietary intake was collected using a validated food frequency questionnaire. Abdominal ultrasonography was done to diagnose NAFLD. Multivariable logistic regression was used to assess the association of nut consumption with NAFLD. RESULTS After adjusting for sociodemographic, medical, dietary, and lifestyle variables, the odds ratios (95% confidence interval) for NAFLD across categories of nut consumption were 1.00 (reference) for <1 time/week, 0.91 (0.82, 1.02) for 1 time/week, 0.88 (0.76, 1.02) for 2-3 times/week, and 0.80 (0.69, 0.92) for ≥4 times/week (P for trend < 0.01). These associations were attenuated but remained significant after further adjustment for blood lipids, glucose, and inflammation markers. CONCLUSIONS Higher nut consumption was significantly associated with lower prevalence of NAFLD. Further prospective studies and randomized trials are required to ascertain the causal association between nut consumption and NAFLD.
Collapse
Affiliation(s)
- Shunming Zhang
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jingzhu Fu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Qing Zhang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Li Liu
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ge Meng
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhanxin Yao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Tianjin Institute of Environmental & Operational Medicine, Tianjin, China
| | - Hongmei Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Xue Bao
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Yeqing Gu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Min Lu
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China
| | - Shaomei Sun
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Xing Wang
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Ming Zhou
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Qiyu Jia
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Kun Song
- Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| | - Huiling Xiang
- The Third Central Clinical College of Tianjin Medical University, Tianjin, China.,Department of Gastroenterology, Tianjin Third Central Hospital, Tianjin, China
| | - Yuntang Wu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China
| | - Kaijun Niu
- Nutritional Epidemiology Institute and School of Public Health, Tianjin Medical University, Tianjin, China.,Health Management Centre, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
159
|
Functional Microbiomics in Liver Transplantation: Identifying Novel Targets for Improving Allograft Outcomes. Transplantation 2019; 103:668-678. [PMID: 30507741 DOI: 10.1097/tp.0000000000002568] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Gut dysbiosis, defined as a maladaptive gut microbial imbalance, has been demonstrated in patients with end-stage liver disease, defined as a contributor to disease progression, and associated clinically with severity of disease and liver-related morbidity and mortality. Despite this well-recognized phenomena in patients with end-stage liver disease, the impact of gut dysbiosis and its rate of recovery following liver transplantation (LT) remains incompletely understood. The mechanisms by which alterations in the gut microbiota impact allograft metabolism and immunity, both directly and indirectly, are multifactorial and reflect the complexity of the gut-liver axis. Importantly, while research has largely focused on quantitative and qualitative changes in gut microbial composition, changes in microbial functionality (in the presence or absence of compositional changes) are of critical importance. Therefore, to translate functional microbiomics into clinical practice, one must understand not only the compositional but also the functional changes associated with gut dysbiosis and its resolution post-LT. In this review, we will summarize critical advances in functional microbiomics in LT recipients as they apply to immune-mediated allograft injury, posttransplant complications, and disease recurrence, while highlighting potential areas for microbial-based therapeutics in LT recipients.
Collapse
|
160
|
Ahmad AF, Dwivedi G, O'Gara F, Caparros-Martin J, Ward NC. The gut microbiome and cardiovascular disease: current knowledge and clinical potential. Am J Physiol Heart Circ Physiol 2019; 317:H923-H938. [PMID: 31469291 DOI: 10.1152/ajpheart.00376.2019] [Citation(s) in RCA: 90] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide. The human body is populated by a diverse community of microbes, dominated by bacteria, but also including viruses and fungi. The largest and most complex of these communities is located in the gastrointestinal system and, with its associated genome, is known as the gut microbiome. Gut microbiome perturbations and related dysbiosis have been implicated in the progression and pathogenesis of CVD, including atherosclerosis, hypertension, and heart failure. Although there have been advances in the characterization and analysis of the gut microbiota and associated bacterial metabolites, the exact mechanisms through which they exert their action are not well understood. This review will focus on the role of the gut microbiome and associated functional components in the development and progression of atherosclerosis. Potential treatments to alter the gut microbiome to prevent or treat atherosclerosis and CVD are also discussed.
Collapse
Affiliation(s)
- Adilah F Ahmad
- Medical School, University of Western Australia, Perth, Western Australia, Australia.,Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia
| | - Girish Dwivedi
- Medical School, University of Western Australia, Perth, Western Australia, Australia.,Department of Advanced Clinical and Translational Cardiovascular Imaging, Harry Perkins Institute of Medical Research, Perth, Western Australia, Australia.,Department of Cardiology, Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | - Fergal O'Gara
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia.,BIOMERIT Research Centre, School of Microbiology, University College Cork, National University of Ireland, Cork, Ireland.,Telethon Kids Institute, Children's Hospital, Perth, Western Australia, Australia
| | - Jose Caparros-Martin
- School of Pharmacy and Biomedical Sciences, Curtin University, Perth, Western Australia, Australia.,Curtin Health Innovation Research Institute, Curtin University, Perth, Western Australia, Australia
| | - Natalie C Ward
- Medical School, University of Western Australia, Perth, Western Australia, Australia.,School of Public Health, Curtin University, Perth Western Australia, Australia
| |
Collapse
|
161
|
Zhang Z, Zhou H, Bai L, Lv Y, Yi H, Zhang L, Li R. Protective effects of probiotics on acute alcohol-induced liver injury in mice through alcohol metabolizing enzymes activation and hepatic TNF-α response reduction. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.05.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
|
162
|
Zhu F, Li YM, Feng TT, Wu Y, Zhang HX, Jin GY, Liu JP. Freeze-dried Si-Ni-San powder can ameliorate high fat diet-induced non-alcoholic fatty liver disease. World J Gastroenterol 2019; 25:3056-3068. [PMID: 31293341 PMCID: PMC6603807 DOI: 10.3748/wjg.v25.i24.3056] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/28/2019] [Accepted: 06/01/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) is a common chronic liver disease worldwide. However, to date, there is no ideal therapy for this disease.
AIM To study the effects of Si-Ni-San freeze-dried powder on high fat diet-induced NAFLD in mice.
METHODS Twenty-four male C57BL/6 mice were randomized into three groups of eight. The control group (CON) was allowed ad libitum access to a normal chow diet. The high fat diet group (FAT) and Si-Ni-San group (SNS) were allowed ad libitum access to a high fat diet. The SNS group was intragastrically administered Si-Ni-San freeze-dried powder (5.0 g/kg) once daily, and the CON and FAT groups were intragastrically administered distilled water. After 12 wk, body weight, liver index, visceral fat index, serum alanine aminotransferase (ALT), portal lipopoly-saccharide (LPS), liver tumor necrosis factor (TNF)-α and liver triglycerides were measured. Intestinal microbiota were analyzed using a 16S r DNA sequencing technique.
RESULTS Compared with the FAT group, the SNS group exhibited decreased body weight, liver index, visceral fat index, serum ALT, portal LPS, liver TNF-α and liver triglycerides (P < 0.05). Intestinal microbiota analysis showed that the SNS group had different bacterial composition and function compared with the FAT group. In particular, Oscillospira genus was a bacterial biomarker of SNS group samples.
CONCLUSION The beneficial effects of Si-Ni-San freeze-dried powder on high fat diet-induced NAFLD in mice may be associated with its anti-inflammatory and changing intestinal microbiota effects.
Collapse
Affiliation(s)
- Feng Zhu
- Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yong-Min Li
- Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Ting-Ting Feng
- Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Yue Wu
- Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Hai-Xia Zhang
- Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Guo-Yin Jin
- Department of Traditional Chinese Medicine, Hebei North University, Zhangjiakou 075000, Hebei Province, China
| | - Jian-Ping Liu
- Department of Gastroenterology, People’s Hospital of Changshou District, Chongqing 401220, China
| |
Collapse
|
163
|
Golonka R, Yeoh BS, Vijay-Kumar M. Dietary Additives and Supplements Revisited: The Fewer, the Safer for Liver and Gut Health. ACTA ACUST UNITED AC 2019; 5:303-316. [PMID: 32864300 DOI: 10.1007/s40495-019-00187-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Purpose of Review The supplementation of dietary additives into processed foods has exponentially increased in the past few decades. Similarly, the incidence rates of various diseases, including metabolic syndrome, gut dysbiosis and hepatocarcinogenesis, have been elevating. Current research reveals that there is a positive association between food additives and these pathophysiological diseases. This review highlights the research published within the past 5 years that elucidate and update the effects of dietary supplements on liver and intestinal health. Recent Findings Some of the key findings include: enterocyte dysfunction of fructose clearance causes non-alcoholic fatty liver disease (NAFLD); non-caloric sweeteners are hepatotoxic; dietary emulsifiers instigate gut dysbiosis and hepatocarcinogenesis; and certain prebiotics can induce cholestatic hepatocellular carcinoma (HCC) in gut dysbiotic mice. Overall, multiple reports suggest that the administration of purified, dietary supplements could cause functional damage to both the liver and gut. Summary The extraction of bioactive components from natural resources was considered a brilliant method to modulate human health. However, current research highlights that such purified components may negatively affect individuals with microbiotal dysbiosis, resulting in a deeper break of the symbiotic relationship between the host and gut microbiota, which can lead to repercussions on gut and liver health. Therefore, ingestion of these dietary additives should not go without some caution!
Collapse
Affiliation(s)
- Rachel Golonka
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Beng San Yeoh
- Graduate Program in Immunology & Infectious Disease, Pennsylvania State University, University Park, PA 16802, USA
| | - Matam Vijay-Kumar
- Department of Physiology & Pharmacology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.,Department of Medical Microbiology & Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| |
Collapse
|
164
|
Metformin attenuates the onset of non-alcoholic fatty liver disease and affects intestinal microbiota and barrier in small intestine. Sci Rep 2019; 9:6668. [PMID: 31040374 PMCID: PMC6491483 DOI: 10.1038/s41598-019-43228-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 04/18/2019] [Indexed: 02/07/2023] Open
Abstract
The antidiabetic drug metformin has been proposed to affect non-alcoholic fatty liver disease (NAFLD) through its effects on intestinal microbiota and barrier function. However, so far most studies focused on long-term effects and more progressed disease stages. The aim of this study was to assess in two experimental settings, if the onset of NAFLD is associated with changes of intestinal microbiota and barrier function and to determine effects of metformin herein. C57Bl/6J mice were fed a liquid control diet (C) or fat-, fructose- and cholesterol-rich diet (FFC) for four days or six weeks ±300 mg/kg BW/day metformin (Met). Markers of liver health, intestinal barrier function and microbiota composition were assessed. Metformin treatment markedly attenuated FFC-induced NAFLD in both experiments with markers of inflammation and lipidperoxidation in livers of FFC + Met-fed mice being almost at the level of controls. Metformin treatment attenuated the loss of tight junction proteins in small intestine and the increase of bacterial endotoxin levels in portal plasma. Changes of intestinal microbiota found in FFC-fed mice were also significantly blunted in FFC + Met-fed mice. Taken together, protective effects of metformin on the onset of NAFLD are associated with changes of intestinal microbiota composition and lower translocation of bacterial endotoxins.
Collapse
|
165
|
Abstract
The term blood-bile barrier (BBlB) refers to the physical structure within a hepatic lobule that compartmentalizes and hence segregates sinusoidal blood from canalicular bile. Thus, this barrier provides physiological protection in the liver, shielding the hepatocytes from bile toxicity and restricting the mixing of blood and bile. BBlB is primarily composed of tight junctions; however, adherens junction, desmosomes, gap junctions, and hepatocyte bile transporters also contribute to the barrier function of the BBlB. Recent findings also suggest that disruption of BBlB is associated with major hepatic diseases characterized by cholestasis and aberrations in BBlB thus may be a hallmark of many chronic liver diseases. Several molecular signaling pathways have now been shown to play a role in regulating the structure and function and eventually contribute to regulation of the BBlB function within the liver. In this review, we will discuss the structure and function of the BBlB, summarize the methods to assess the integrity and function of BBlB, discuss the role of BBlB in liver pathophysiology, and finally, discuss the mechanisms of BBlB regulation. Collectively, this review will demonstrate the significance of the BBlB in both liver homeostasis and hepatic dysfunction.
Collapse
Affiliation(s)
- Tirthadipa Pradhan-Sundd
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Satdarshan Pal Monga
- *Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- †Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- ‡Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| |
Collapse
|
166
|
Gut microbiota dysbiosis worsens the severity of acute pancreatitis in patients and mice. J Gastroenterol 2019; 54:347-358. [PMID: 30519748 DOI: 10.1007/s00535-018-1529-0] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/08/2018] [Indexed: 02/04/2023]
Abstract
BACKGROUND The gut is implicated in the pathogenesis of acute pancreatitis (AP) and the infectious complications of AP are commonly associated with enteric bacteria, yet whether gut microbiota dysbiosis participants in AP severity remains largely unknown. METHODS We collected clinical information and fecal samples from 165 adult participants, including 41 with mild AP (MAP), 59 with moderately severe AP (MSAP), 30 with severe AP (SAP) and 35 healthy controls (HC). The serum inflammatory cytokines and gut barrier indexes were detected. Male C57BL/6 mice with AP were established and injuries of pancreas were evaluated in antibiotic-treated mice, germ-free mice as well as those transplanted with fecal microbiota. The gut microbiota was analyzed by 16S rRNA gene sequencing. RESULTS The structure of gut microbiota was significantly different between AP and HC, and the disturbed microbiota was closely correlated with systematic inflammation and gut barrier dysfunction. Notably, the microbial composition changed further with the worsening of AP and the abundance of beneficial bacteria such as Blautia was decreased in SAP compared with MAP and MSAP. The increased capacity for the inferred pathway, bacterial invasion of epithelial cells in AP, highly correlated with the abundance of Escherichia-Shigella. Furthermore, the antibiotic-treated mice and germ-free mice exhibited alleviated pancreatic injury after AP induction and subsequent fecal microbiota transplantation in turn exacerbated the disease. CONCLUSIONS This study identifies the gut microbiota as an important mediator during AP and its dysbiosis is associated with AP severity, which suggests its role as potential therapeutic target.
Collapse
|
167
|
Abstract
Liver cancer is the sixth most common cancer worldwide, and the third most common cause of cancer-related death. Hepatocellular carcinoma (HCC), which accounts for more than 90% of primary liver cancers, is an important public health problem. In addition to cirrhosis caused by hepatitis B viral (HBV) or hepatitis C viral (HCV) infection, non-alcoholic fatty liver disease (NAFLD) is becoming a major risk factor for liver cancer because of the prevalence of obesity. Non-alcoholic steatohepatitis (NASH) will likely become the leading indication for liver transplantation in the future. It is well recognized that gut microbiota is a key environmental factor in the pathogenesis of liver disease and cancer. The interplay between gut microbiota and liver disease has been investigated in animal and clinical studies. In this article, we summarize the roles of gut microbiota in the development of liver disease as well as gut microbiota-targeted therapies.
Collapse
Affiliation(s)
- Lijun Wang
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA,The College of Life Science, Yangtze University, Jingzhou, Hubei, China
| | - Yu-Jui Yvonne Wan
- Department of Medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA,Corresponding author. Department of medical Pathology and Laboratory Medicine, University of California, Davis, Sacramento, CA, USA. (Y.-J.Y. Wan)
| |
Collapse
|
168
|
Suk KT, Kim DJ. Gut microbiota: novel therapeutic target for nonalcoholic fatty liver disease. Expert Rev Gastroenterol Hepatol 2019; 13:193-204. [PMID: 30791767 DOI: 10.1080/17474124.2019.1569513] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Accepted: 01/10/2019] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common and increasing liver diseases worldwide with a prevalence of 20-33%. NAFLD may progress to fibrosis, compensated cirrhosis, advanced cirrhosis, or hepatocellular carcinoma. Despite the increasing prevalence of NAFLD, definitive medical treatment has not been established, with the exception of lifestyle modification with exercise. Because of the direct connection via portal vein between the intestines and the liver (gut-gut microbiota-liver axis), gut microbiota and associated dysbiosis have been known as regulators in the pathophysiology of NAFLD. Area covered: New therapeutic approaches for modulation of gut microbiota have been proposed and the effectiveness of new therapies including probiotics, prebiotics, synbiotics, bile acid regulation, absorbent, and fecal microbiota transplantation have been demonstrated in recent several studies. This review focuses on the available evidences for new therapies modulating gut microbiota in the management and the prevention of NAFLD. Expert commentary: Gut-gut microbiota-liver axis may play an important role in the etiology of many liver diseases, including NAFLD. It is logical to seek the manipulation of this axis, and further studies are required to understand the underlying precise mechanisms of microbiota-modulation on NAFLD.
Collapse
Affiliation(s)
- Ki Tae Suk
- a Division of Gastroenterology and Hepatology , Hallym University College of Medicine , Chuncheon , South Korea
| | - Dong Joon Kim
- a Division of Gastroenterology and Hepatology , Hallym University College of Medicine , Chuncheon , South Korea
| |
Collapse
|
169
|
|
170
|
Zhao W, Liu Y, Latta M, Ma W, Wu Z, Chen P. Probiotics database: a potential source of fermented foods. INTERNATIONAL JOURNAL OF FOOD PROPERTIES 2019. [DOI: 10.1080/10942912.2019.1579737] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wenbin Zhao
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Yuheng Liu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Maria Latta
- School of Pharmacy, University of Connecticut, Storrs, CT, USA
| | - Wantong Ma
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Zhengrong Wu
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| | - Peng Chen
- School of Pharmacy, Lanzhou University, Lanzhou, PR China
| |
Collapse
|
171
|
Dornas W, Lagente V. Intestinally derived bacterial products stimulate development of nonalcoholic steatohepatitis. Pharmacol Res 2019; 141:418-428. [PMID: 30658094 DOI: 10.1016/j.phrs.2019.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 01/12/2019] [Accepted: 01/14/2019] [Indexed: 02/08/2023]
Abstract
Fatty livers are susceptible to factors that cause inflammation and fibrosis, but fat deposition and the inflammatory response can be dissociated. While nonalcoholic fatty liver disease (NAFLD), caused by pathologic fat accumulation inside the liver, can remain stable for several years, in other cases NAFLD progresses to nonalcoholic steatohepatitis (NASH), which is characterized by fat accumulation and inflammation and is not a benign condition. In this review, we discuss the NASH host cells and microbial mechanisms that stimulate inflammation and predispose the liver to hepatocyte injury and fibrotic stages via increased lipid deposition. We highlight the interactions between intestine-derived bacterial products, such as lipopolysaccharide, and nutritional models of NAFLD and/or obese individuals. The results of modulating enteric microbiota suggest that gut-derived endotoxins may be essential determinants of fibrotic progression and regression in NASH.
Collapse
Affiliation(s)
- Waleska Dornas
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| | - Vincent Lagente
- NuMeCan Institute (Nutrition, Metabolism and Cancer), Université de Rennes, INSERM, INRA, F-35000 Rennes, France.
| |
Collapse
|
172
|
Ren T, Zhu L, Shen Y, Mou Q, Lin T, Feng H. Protection of hepatocyte mitochondrial function by blueberry juice and probiotics via SIRT1 regulation in non-alcoholic fatty liver disease. Food Funct 2019; 10:1540-1551. [PMID: 30785444 DOI: 10.1039/c8fo02298d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Blueberry juice and probiotics improves mitochondrial dysfunction and oxidative stress induced by nonalcoholic fatty liver disease (NAFLD), by modulating the SIRT1 pathway.
Collapse
Affiliation(s)
- Tingting Ren
- Department of Physiology and Chemistry
- Affiliated Hospital of Guizhou Medical University
- Guiyang 550004
- China
- School of Medical Examination
| | - Lili Zhu
- Department of Blood Transfusion
- Affiliated Hospital of Guizhou Medical University
- Guiyang 550004
- China
| | - Yanyan Shen
- Graduate School of Guizhou Medical University
- Guiyang 550004
- China
| | - Qiuju Mou
- Department of Blood Transfusion
- Baiyun Hospital Affiliated to Guizhou Medical University
- Guiyang 550004
- China
| | - Tao Lin
- Department of Clinical Examination
- Affiliated Hospital of Guizhou Medical University
- Guiyang 550004
- China
| | | |
Collapse
|
173
|
Porras D, Nistal E, Martínez-Flórez S, González-Gallego J, García-Mediavilla MV, Sánchez-Campos S. Intestinal Microbiota Modulation in Obesity-Related Non-alcoholic Fatty Liver Disease. Front Physiol 2018; 9:1813. [PMID: 30618824 PMCID: PMC6305464 DOI: 10.3389/fphys.2018.01813] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022] Open
Abstract
Obesity and associated comorbidities, including non-alcoholic fatty liver disease (NAFLD), are a major concern to public well-being worldwide due to their high prevalence among the population, and its tendency on the rise point to as important threats in the future. Therapeutic approaches for obesity-associated disorders have been circumscribed to lifestyle modifications and pharmacological therapies have demonstrated limited efficacy. Over the last few years, different studies have shown a significant role of intestinal microbiota (IM) on obesity establishment and NAFLD development. Therefore, modulation of IM emerges as a promising therapeutic strategy for obesity-associated diseases. Administration of prebiotic and probiotic compounds, fecal microbiota transplantation (FMT) and exercise protocols have shown a modulatory action over the IM. In this review we provide an overview of current approaches targeting IM which have shown their capacity to counteract NAFLD and metabolic syndrome features in human patients and animal models.
Collapse
Affiliation(s)
- David Porras
- Institute of Biomedicine, University of León, León, Spain
| | - Esther Nistal
- Institute of Biomedicine, University of León, León, Spain.,Department of Gastroenterology, Complejo Asistencial Universitario de León, León, Spain
| | | | - Javier González-Gallego
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - María Victoria García-Mediavilla
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Sonia Sánchez-Campos
- Institute of Biomedicine, University of León, León, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| |
Collapse
|
174
|
Zhu J, Zhou M, Zhao X, Mu M, Cheng M. Blueberry, combined with probiotics, alleviates non-alcoholic fatty liver disease via IL-22-mediated JAK1/STAT3/BAX signaling. Food Funct 2018; 9:6298-6306. [PMID: 30411754 DOI: 10.1039/c8fo01227j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most prevalent diseases worldwide. Blueberry, combined with probiotics (BP), might be a potential candidate for NAFLD treatment, due to its anti-inflammatory and anti-apoptotic properties. Here, we investigated whether the anti-inflammatory cytokine, IL-22, was involved in the therapeutic process of BP, using cell and rat models of NAFLD. Results indicated that BP significantly reduced lipid droplets and triglyceride (TG) accumulation in NAFLD cells. However, when IL-22 was deficient, the lipid droplets and TG content were significantly increased. In vivo, the serum parameters and pathological degree of NAFLD rats were significantly improved by BP, while IL-22 silencing significantly abolished the BP effect. Immunohistochemistry, immunofluorescence, qRT-PCR, and western blotting showed that the NAFLD group expressed significantly lower levels of IL-22, JAK1, and STAT3, and higher levels of BAX, than the normal group. Furthermore, BP significantly elevated the levels of IL-22, JAK1 and STAT3, and reduced the level of BAX in NAFLD, while IL-22 silencing prevented BP from restoring the expression of JAK1, STAT3, and BAX. We conclude that IL-22 is vital for the therapeutic effect of BP, and acts via activation of JAK1/STAT3 signaling and inhibition of the apoptosis factor BAX, which makes IL-22 a promising target for therapy of NAFLD.
Collapse
Affiliation(s)
- Juanjuan Zhu
- Department of Infection, Affiliated Hospital of Guizhou Medical University, No. 28, Guiyang Street, Guiyang 550001, Guizhou, China.
| | | | | | | | | |
Collapse
|
175
|
Wang H, Mei L, Deng Y, Liu Y, Wei X, Liu M, Zhou J, Ma H, Zheng P, Yuan J, Li M. Lactobacillus brevis DM9218 ameliorates fructose-induced hyperuricemia through inosine degradation and manipulation of intestinal dysbiosis. Nutrition 2018; 62:63-73. [PMID: 30852460 DOI: 10.1016/j.nut.2018.11.018] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/02/2018] [Accepted: 11/17/2018] [Indexed: 02/07/2023]
Abstract
OBJECTIVE High fructose consumption exacerbates purine degradation and intestinal dysbiosis, which are closely related to the development of hyperuricemia. Probiotics are powerful weapons to combat metabolic disturbance and intestinal dysbiosis. Previously we isolated a Lactobacillus strain named DM9218 that could reduce the serum uric acid (UA) level by assimilating purine nucleosides. The present study aimed to evaluate the effects of DM9218 on high-fructose-induced hyperuricemia and to elucidate the underlying mechanisms. METHODS Mice were fed a normal diet, a high-fructose diet, or high-fructose diet with DM9218. Metabolic parameters, fructose- and UA-related metabolites, and fecal microbiota were investigated. Whole-genome sequencing of strain DM9218 was also conducted. In addition, an inosine hydrolase from DM9218 was heterologously expressed in Escherichia coli, and its inosine-degrading activity was detected. RESULTS Our results indicated that DM9218 could decrease serum UA level and hepatic xanthine oxidase activity in fructose-fed mice. It could protect against high-fructose-induced liver damage and retard UA accumulation by degrading inosine. The modulation effect of DM9218 on high-fructose-induced intestinal dysbiosis resulted in enhancement of intestinal barrier function and reduction of liver lipopolysaccharide, which was closely correlated with the down-regulation of inflammatory cytokine-stimulated xanthine oxidase expression and activity. CONCLUSIONS Lactobacillus brevis DM9218 is a probiotic strain with the potential to ameliorate fructose-induced hyperuricemia.
Collapse
Affiliation(s)
- Haina Wang
- Department of Hematology, Liaoning Key Laboratory of Hematopoietic Stem Cell Transplantation and Translational Medicine, Second Hospital of Dalian Medical University, Dalian, China; Center for molecular medicine, School of Life Science and Biotechnology, Dalian University of Technology, Dalian, China
| | - Lu Mei
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Deng
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Yinhui Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Xiaoqing Wei
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Man Liu
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Jiaorui Zhou
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Hong Ma
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Pengyuan Zheng
- Department of Gastroenterology, the Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jieli Yuan
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China
| | - Ming Li
- College of Basic Medical Sciences, Dalian Medical University, Dalian, China.
| |
Collapse
|
176
|
Liu WC, Zhan YP, Wang XH, Hou BC, Huang J, Chen SB. Comprehensive preoperative regime of selective gut decontamination in combination with probiotics, and smectite for reducing endotoxemia and cytokine activation during cardiopulmonary bypass: A pilot randomized, controlled trial. Medicine (Baltimore) 2018; 97:e12685. [PMID: 30431563 PMCID: PMC6257461 DOI: 10.1097/md.0000000000012685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Both selective digestive decontamination (SDD) and probiotics have been reported to reduce endotoxemia. However, the available results are conflicting and few studies have investigated the combined effect of SDD and probiotics. This study aimed to examine the effectiveness of a comprehensive preoperative regimen of SDD in combination with probiotics and smectite on perioperative endotoxemia and cytokine activation in patients who underwent elective cardiac surgery with cardiopulmonary bypass (CPB) in a pilot, prospective, randomized, controlled trial. METHODS Patients who underwent elective Aortic Valve Replacement or Mitral Valve Replacement surgery from July 2010 to March 2015 were included. In total, 30 eligible patients were randomly assigned to receive either the comprehensive preoperative regimen (n = 15) (a combination of preoperative SDD, probiotics, and smectite) or the control group (n = 15) who did not receive this treatment. The levels of endotoxin, IL-6, and procalcitonin were measured at the time before anesthesia induction, immediately after cardiopulmonary bypass (CPB), 24 hours after CPB, and 48 hours after CPB. The primary outcomes were changes in endotoxin, IL-6, and procalcitonin concentrations after CPB. RESULTS The mean levels of change in endotoxin levels after CPB in patients receiving the comprehensive preoperative regimen was marginally significantly lower than those in control group (F = 4.0, P = .0552) but was not significantly different for procalcitonin (F = .14, P = .7134). An interaction between group and time for IL-6 was identified (F = 4.35, P = .0231). The increase in IL-6 concentration immediately after CPB in the comprehensive preoperative group was significantly lower than that in the control group (P = .0112). The changes in IL-6 concentration at 24 hours and 48 hours after CPB were not significant between the comprehensive preoperative group and control group. CONCLUSION The present pilot, prospective, randomized, controlled study in patients undergoing cardiac surgery with CPB demonstrated that 3 days of a comprehensive preoperative regime of SDD in combination with probiotics and smectite may reduce the endotoxin and IL-6 levels after CPB compared with the control group.
Collapse
|
177
|
Cho MS, Kim SY, Suk KT, Kim BY. Modulation of gut microbiome in nonalcoholic fatty liver disease: pro-, pre-, syn-, and antibiotics. J Microbiol 2018; 56:855-867. [PMID: 30377993 DOI: 10.1007/s12275-018-8346-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 08/08/2018] [Accepted: 08/21/2018] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common types of liver diseases worldwide and its incidence continues to increase. NAFLD occurs when the body can no longer effectively store excess energy in the adipose tissue. Despite the increasing prevalence of NAFLD, making lifestyle changes, including increased exercise, is often an elusive goal for patients with NAFLD. The liver directly connects to the gut-gastrointestinal milieu via the portal vein, which are all part of the gut-liver axis. Therefore, the gut-microbiome and microbial products have been actively studied as likely key factors in NAFLD pathophysiology. Hence, dysbiosis of the gut microbiome and therapeutic manipulation of the gut-liver axis are being investigated. Novel therapeutic approaches for modulating gut microbiota through the administration of probiotics, prebiotics, synbiotics, and antibiotics have been proposed with numerous promising initial reports on the effectiveness and clinical applications of these approaches. This review delves into the current evidence on novel therapies that modulate gut microbiota and discusses ongoing clinical trials targeting the gut-liver axis for the management and prevention of NAFLD.
Collapse
Affiliation(s)
| | - Sang Yeol Kim
- Division of Gastroenterology and Hepatology, College of Medicine, Hallym University, Chuncheon, 24253, Republic of Korea
| | - Ki Tae Suk
- Division of Gastroenterology and Hepatology, College of Medicine, Hallym University, Chuncheon, 24253, Republic of Korea.
| | | |
Collapse
|
178
|
Meng X, Li S, Li Y, Gan RY, Li HB. Gut Microbiota's Relationship with Liver Disease and Role in Hepatoprotection by Dietary Natural Products and Probiotics. Nutrients 2018; 10:E1457. [PMID: 30297615 PMCID: PMC6213031 DOI: 10.3390/nu10101457] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 09/17/2018] [Accepted: 09/26/2018] [Indexed: 12/14/2022] Open
Abstract
A variety of dietary natural products have shown hepatoprotective effects. Increasing evidence has also demonstrated that gut microorganisms play an important role in the hepatoprotection contributed by natural products. Gut dysbiosis could increase permeability of the gut barrier, resulting in translocated bacteria and leaked gut-derived products, which can reach the liver through the portal vein and might lead to increased oxidative stress and inflammation, thereby threatening liver health. Targeting gut microbiota modulation represents a promising strategy for hepatoprotection. Many natural products could protect the liver from various injuries or mitigate hepatic disorders by reverting gut dysbiosis, improving intestinal permeability, altering the primary bile acid, and inhibiting hepatic fatty acid accumulation. The mechanisms underlying their beneficial effects also include reducing oxidative stress, suppressing inflammation, attenuating fibrosis, and decreasing apoptosis. This review discusses the hepatoprotective effects of dietary natural products via modulating the gut microbiota, mainly focusing on the mechanisms of action.
Collapse
Affiliation(s)
- Xiao Meng
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Sha Li
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China.
| | - Ya Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Ren-You Gan
- Department of Food Science & Technology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Hua-Bin Li
- Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangdong Engineering Technology Research Center of Nutrition Translation, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
- South China Sea Bioresource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
179
|
Han R, Ma J, Li H. Mechanistic and therapeutic advances in non-alcoholic fatty liver disease by targeting the gut microbiota. Front Med 2018; 12:645-657. [PMID: 30178233 DOI: 10.1007/s11684-018-0645-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 04/26/2018] [Indexed: 12/11/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is one of the most common metabolic diseases currently in the context of obesity worldwide, which contains a spectrum of chronic liver diseases, including hepatic steatosis, non-alcoholic steatohepatitis and hepatic carcinoma. In addition to the classical "Two-hit" theory, NAFLD has been recognized as a typical gut microbiota-related disease because of the intricate role of gut microbiota in maintaining human health and disease formation. Moreover, gut microbiota is even regarded as a "metabolic organ" that play complementary roles to that of liver in many aspects. The mechanisms underlying gut microbiota-mediated development of NAFLD include modulation of host energy metabolism, insulin sensitivity, and bile acid and choline metabolism. As a result, gut microbiota have been emerging as a novel therapeutic target for NAFLD by manipulating it in various ways, including probiotics, prebiotics, synbiotics, antibiotics, fecal microbiota transplantation, and herbal components. In this review, we summarized the most recent advances in gut microbiota-mediated mechanisms, as well as gut microbiota-targeted therapies on NAFLD.
Collapse
Affiliation(s)
- Ruiting Han
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Junli Ma
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Houkai Li
- Functional Metabolomic and Gut Microbiome Laboratory, Institute of Interdisciplinary Integrative Biomedical Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| |
Collapse
|
180
|
Liu N, Wang J, Liu Z, Wang Y, Wang J. Comparison of probiotics and clay detoxifier on the growth performance and enterotoxic markers of broilers fed diets contaminated with aflatoxin B1. J APPL POULTRY RES 2018. [DOI: 10.3382/japr/pfy003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
181
|
Xia F, Zhou BJ. Role of gut-liver axis dysfunction in pathogenesis of non-alcoholic fatty liver disease: Implications for treatment strategies. Shijie Huaren Xiaohua Zazhi 2018; 26:1439-1447. [DOI: 10.11569/wcjd.v26.i24.1439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a chronic metabolic disease whose pathogenesis is not fully understood and involves multiple factors. Metabolic disorder caused by gut microbial imbalance is a key factor contributing to the development of NAFLD. Several studies show that gut barrier dysfunction will cause the occurrence of toxic metabolites in blood and bacterial translocation. The "dialogue" between the gut and the liver highlights the key role of the gut-liver axis in the process of NAFLD. This paper will summarize the relationship between the gut-liver axis and the pathogenesis of NAFLD, as well as its implications for the treatment of NAFLD.
Collapse
Affiliation(s)
- Fan Xia
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518017, Guangdong Province, China
| | - Ben-Jie Zhou
- Department of Pharmacy, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen 518017, Guangdong Province, China
| |
Collapse
|
182
|
Probiotic Lactobacillus paracasei HII01 protects rats against obese-insulin resistance-induced kidney injury and impaired renal organic anion transporter 3 function. Clin Sci (Lond) 2018; 132:1545-1563. [DOI: 10.1042/cs20180148] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 01/24/2023]
Abstract
The relationship between gut dysbiosis and obesity is currently acknowledged to be a health topic which causes low-grade systemic inflammation and insulin resistance and may damage the kidney. Organic anion transporter 3 (Oat3) has been shown as a transporter responsible for renal handling of gut microbiota products which are involved in the progression of metabolic disorder. The present study investigated the effect of probiotic supplementation on kidney function, renal Oat3 function, inflammation, endoplasmic reticulum (ER) stress, and apoptosis in obese, insulin-resistant rats. After 12 weeks of being provided with either a normal or a high-fat diet (HF), rats were divided into normal diet (ND); ND treated with probiotics (NDL); HF; and HF treated with probiotic (HFL). Lactobacillus paracasei HII01 1 × 108 colony forming unit (CFU)/ml was administered to the rats daily by oral gavage for 12 weeks. Obese rats showed significant increases in serum lipopolysaccharide (LPS), plasma lipid profiles, and insulin resistance. Renal Oat 3 function was decreased along with kidney dysfunction in HF-fed rats. Obese rats also demonstrated the increases in inflammation, ER stress, apoptosis, and gluconeogenesis in the kidneys. These alterations were improved by Lactobacillus paracasei HII01 treatment. In conclusion, probiotic supplementation alleviated kidney inflammation, ER stress, and apoptosis, leading to improved kidney function and renal Oat3 function in obese rats. These benefits involve the attenuation of hyperlipidemia, systemic inflammation, and insulin resistance. The present study also suggested the idea of remote sensing and signaling system between gut and kidney by which probiotic might facilitate renal handling of gut microbiota products through the improvement of Oat3 function.
Collapse
|
183
|
Do MH, Lee E, Oh MJ, Kim Y, Park HY. High-Glucose or -Fructose Diet Cause Changes of the Gut Microbiota and Metabolic Disorders in Mice without Body Weight Change. Nutrients 2018; 10:E761. [PMID: 29899272 PMCID: PMC6024874 DOI: 10.3390/nu10060761] [Citation(s) in RCA: 295] [Impact Index Per Article: 42.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 05/30/2018] [Accepted: 06/11/2018] [Indexed: 12/11/2022] Open
Abstract
High fat diet-induced changes in gut microbiota have been linked to intestinal permeability and metabolic endotoxemia, which is related to metabolic disorders. However, the influence of a high-glucose (HGD) or high-fructose (HFrD) diet on gut microbiota is largely unknown. We performed changes of gut microbiota in HGD- or HFrD-fed C57BL/6J mice by 16S rRNA analysis. Gut microbiota-derived endotoxin-induced metabolic disorders were evaluated by glucose and insulin tolerance test, gut permeability, Western blot and histological analysis. We found that the HGD and HFrD groups had comparatively higher blood glucose and endotoxin levels, fat mass, dyslipidemia, and glucose intolerance without changes in bodyweight. The HGD- and HFrD-fed mice lost gut microbial diversity, characterized by a lower proportion of Bacteroidetes and a markedly increased proportion of Proteobacteria. Moreover, the HGD and HFrD groups had increased gut permeability due to alterations to the tight junction proteins caused by gut inflammation. Hepatic inflammation and lipid accumulation were also markedly increased in the HGD and HFrD groups. High levels of glucose or fructose in the diet regulate the gut microbiota and increase intestinal permeability, which precedes the development of metabolic endotoxemia, inflammation, and lipid accumulation, ultimately leading to hepatic steatosis and normal-weight obesity.
Collapse
Affiliation(s)
- Moon Ho Do
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
| | - Eunjung Lee
- Research Division of Strategic Food Technology, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
| | - Mi-Jin Oh
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
| | - Yoonsook Kim
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
| | - Ho-Young Park
- Research Division of Food Functionality, Korea Food Research Institute, Jeollabuk-do 55365, Korea.
| |
Collapse
|
184
|
Azad MAK, Sarker M, Li T, Yin J. Probiotic Species in the Modulation of Gut Microbiota: An Overview. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9478630. [PMID: 29854813 PMCID: PMC5964481 DOI: 10.1155/2018/9478630] [Citation(s) in RCA: 435] [Impact Index Per Article: 62.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 03/29/2018] [Indexed: 12/12/2022]
Abstract
Probiotics are microbial strains that are beneficial to health, and their potential has recently led to a significant increase in research interest in their use to modulate the gut microbiota. The animal gut is a complex ecosystem of host cells, microbiota, and available nutrients, and the microbiota prevents several degenerative diseases in humans and animals via immunomodulation. The gut microbiota and its influence on human nutrition, metabolism, physiology, and immunity are addressed, and several probiotic species and strains are discussed to improve the understanding of modulation of gut microbiota. This paper provides a broad review of several Lactobacillus spp., Bifidobacterium spp., and other coliform bacteria as the most promising probiotic species and their role in the prevention of degenerative diseases, such as obesity, diabetes, cancer, cardiovascular diseases, malignancy, liver disease, and inflammatory bowel disease. This review also discusses a recent study of Saccharomyces spp. in which inflammation was prevented by promotion of proinflammatory immune function via the production of short-chain fatty acids. A summary of gut microbiota alteration with future perspectives is also provided.
Collapse
Affiliation(s)
- Md. Abul Kalam Azad
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Manobendro Sarker
- Department of Food Engineering and Technology, State University of Bangladesh, Dhaka 1205, Bangladesh
| | - Tiejun Li
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Jie Yin
- Key Laboratory of Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Changsha, Hunan 410125, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
185
|
de Faria Ghetti F, Oliveira DG, de Oliveira JM, de Castro Ferreira LEVV, Cesar DE, Moreira APB. Influence of gut microbiota on the development and progression of nonalcoholic steatohepatitis. Eur J Nutr 2018; 57:861-876. [PMID: 28875318 DOI: 10.1007/s00394-017-1524-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 08/06/2017] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Nonalcoholic steatohepatitis (NASH) is characterized by the presence of steatosis, inflammation, and ballooning degeneration of hepatocytes, with or without fibrosis. The prevalence of NASH has increased with the obesity epidemic, but its etiology is multifactorial. The current studies suggest the role of gut microbiota in the development and progression of NASH. The aim is to review the studies that investigate the relationship between gut microbiota and NASH. These review also discusses the pathophysiological mechanisms and the influence of diet on the gut-liver axis. RESULT The available literature has proposed mechanisms for an association between gut microbiota and NASH, such as: modification energy homeostasis, lipopolysaccharides (LPS)-endotoxemia, increased endogenous production of ethanol, and alteration in the metabolism of bile acid and choline. There is evidence to suggest that NASH patients have a higher prevalence of bacterial overgrowth in the small intestine and changes in the composition of the gut microbiota. However, there is still a controversy regarding the microbiome profile in this population. The abundance of Bacteroidetes phylum may be increased, decreased, or unaltered in NASH patients. There is an increase in the Escherichia and Bacteroides genus. There is depletion of certain taxa, such as Prevotella and Faecalibacterium. CONCLUSION Although few studies have evaluated the composition of the gut microbiota in patients with NASH, it is observed that these individuals have a distinct gut microbiota, compared to the control groups, which explains, at least in part, the genesis and progression of the disease through multiple mechanisms. Modulation of the gut microbiota through diet control offers new challenges for future studies.
Collapse
Affiliation(s)
- Fabiana de Faria Ghetti
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil.
- Unidade de Nutrição Clínica, Hospital Universitário, Rua Catulo Breviglieri, s/n, Bairro Santa Catarina, Juiz de Fora, Minas Gerais, CEP 36036-330, Brazil.
| | - Daiane Gonçalves Oliveira
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | - Juliano Machado de Oliveira
- Universitary Hospital and School of Medicine, Federal University of Juiz de Fora, Juiz de Fora, Minas Gerais, Brazil
| | | | | | | |
Collapse
|
186
|
Abstract
The gut microbiota, as the main member in gut microecology, is an essential mediator in health and disease. The gut microbiota interacts with various organs and systems in the body, including brain, lung, liver, bone, cardiovascular system, and others. Microbiota-derived metabolites such as the short chain fatty acid (SCFA) butyrate are primary signals, which link the gut microbiota and physiology. Recently, the gut microbiota has been identified as the origin of a number of diseases by influencing the related cell signaling pathways such as WNT/beta-catenin pathway in colorectal cancer and T cell receptor signaling in the central nervous system. Moreover, several microRNAs participate in signaling networks through the intervention of the gut microbiota. The interaction between the gut microbiota and miRNAs plays a crucial role in vascular dysfunction and hepatocellular carcinoma (HCC). In this review, we will report and discuss recent findings about the crosstalk between the gut microbiota and physical organs and how the gut microbiota and miRNAs regulate each other while influencing the host via genes, proteins, or metabolites.
Collapse
Affiliation(s)
- Qingqing Feng
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan University, Kaifeng, China.,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
187
|
Zhang N, Ju Z, Zuo T. Time for food: The impact of diet on gut microbiota and human health. Nutrition 2018; 51-52:80-85. [PMID: 29621737 DOI: 10.1016/j.nut.2017.12.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/05/2023]
Abstract
There is growing recognition of the role of diet on modulating the composition and metabolic activity of the human gut microbiota, which in turn influence health. Dietary ingredients and food additives have a substantial impact on the gut microbiota and hence affect human health. Updates on current understanding of the gut microbiota in diseases and metabolic disorders are addressed in this review, providing insights into how this can be transferred from bench to bench side as gut microbes are integrated with food. The potency of microbiota-targeted biomarkers as a state-of-art tool for diagnosis of diseases was also discussed, and it would instruct individuals with healthy dietary consumption. Herein, recent advances in understanding the effect of diet on gut microbiota from an ecological perspective, and how these insights might promote health by guiding development of prebiotic and probiotic strategies and functional foods, were explored.
Collapse
Affiliation(s)
- Na Zhang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhongjie Ju
- Yantai Center for Food and Drug Control, Yantai, Shandong, China
| | - Tao Zuo
- State Key Laboratory of Digestive Disease, Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China; Institute of Digestive Disease, Prince of Wales Hospital, Shatin, Hong Kong SAR, China.
| |
Collapse
|
188
|
Li P, Yang C, Yue R, Zhen Y, Zhuo Q, Piao J, Yang X, Xiao R. Modulation of the Fecal Microbiota in Sprague-Dawley Rats Using Genetically Modified and Isogenic Corn Lines. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:551-561. [PMID: 29264925 DOI: 10.1021/acs.jafc.7b05285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study investigated the composition and proportions of fecal microbiota in Sprague-Dawley rats after consuming two genetically modified (GM) corn lines in comparison with the isogenic corn and the AIN93G standard feed for 10 weeks using bar-coded 16S rRNA gene sequencing. As a result, GM corn did not significantly alter the overall health and alpha-diversity of fecal microbiota. Fecal microbiota structures could be separated into noncorn and corn but not non-GM and GM corn subgroups. Both non-GM and GM corn caused the increase in bacterial populations related to carbohydrates utilization, such as Lactobacillus, Barnesiella, and Bifidobacterium, and the reduction in potentially pathogenic populations, such as Tannerella and Moraxellaceae. In conclusion, similar effects on the fecal microbiota were observed after consuming a GM- and non-GM-corn-based diet for long periods. Further studies are warranted to elucidate the functional relevance of the changes in the proportions of bacterial populations in these diets.
Collapse
Affiliation(s)
- Penggao Li
- School of Public Health, Capital Medical University , Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology , Beijing 100069, People's Republic of China
| | - Chun Yang
- School of Public Health, Capital Medical University , Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology , Beijing 100069, People's Republic of China
| | - Rong Yue
- Yuncheng Central Hospital, Yuncheng , Shanxi 044000, People's Republic of China
| | - Yaping Zhen
- Youanmen Clinical Detection Center, Capital Medical University , Beijing 100069, People's Republic of China
| | - Qin Zhuo
- Key Laboratory of Trace Element Nutrition NHFPC, Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention , Beijing 100050, People's Republic of China
| | - Jianhua Piao
- Key Laboratory of Trace Element Nutrition NHFPC, Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention , Beijing 100050, People's Republic of China
| | - Xiaoguang Yang
- Key Laboratory of Trace Element Nutrition NHFPC, Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention , Beijing 100050, People's Republic of China
| | - Rong Xiao
- School of Public Health, Capital Medical University , Beijing 100069, People's Republic of China
- Beijing Key Laboratory of Environmental Toxicology , Beijing 100069, People's Republic of China
| |
Collapse
|
189
|
Castaño-Rodríguez N, Mitchell HM, Kaakoush NO. NAFLD, Helicobacter species and the intestinal microbiome. Best Pract Res Clin Gastroenterol 2017; 31:657-668. [PMID: 29566909 DOI: 10.1016/j.bpg.2017.09.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 09/03/2017] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease worldwide. It is well-accepted that gut dysbiosis is associated with NAFLD, however, there is some conflicting evidence regarding the nature of these alterations. Infection with Helicobacter species, mainly H. pylori, has also been associated with increased NAFLD risk, however, some studies have failed to reproduce this finding. Further studies including large study samples and standardised procedures for microbiota analyses, H. pylori detection and NAFLD diagnostic criteria, are required. The mechanisms involving Helicobacter species and the intestinal microbiome in NAFLD pathogenesis appear to be part of the multiple-hit theory, in which increased intestinal permeability, inflammatory responses, altered choline, bile acids and carbohydrate metabolism, production of short-chain fatty acids, urea cycle and urea transport systems, altered maintenance of hepatic γδT-17 cells, insulin resistance, hormones secreted by the adipose tissue, metabolic hormones, bacterial metabolites and Helicobacter toxins, are all implicated.
Collapse
Affiliation(s)
| | - Hazel M Mitchell
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| | - Nadeem O Kaakoush
- School of Medical Sciences, UNSW Sydney, Sydney, NSW, 2052, Australia
| |
Collapse
|
190
|
Bubnov RV, Babenko LP, Lazarenko LM, Mokrozub VV, Demchenko OA, Nechypurenko OV, Spivak MY. Comparative study of probiotic effects of Lactobacillus and Bifidobacteria strains on cholesterol levels, liver morphology and the gut microbiota in obese mice. EPMA J 2017; 8:357-376. [PMID: 29209439 PMCID: PMC5700021 DOI: 10.1007/s13167-017-0117-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Accepted: 08/18/2017] [Indexed: 12/24/2022]
Abstract
BACKGROUND Microbiome-modulating interventions are promising for treatment and prevention of metabolic syndrome. The number of probiotic strains demonstrated ability to decrease cholesterol level in vivo, however, it was poorly confirmed in a clinical setting. The aim was to study the effects of L. acidophilus IMV B-7279, L. casei IMV B-7280, B. animalіs VKL and B. animalіs VKB separately and in various compositions on the level of serum cholesterol, gut microbiota contents and liver morphology on a high-calorie-induced obesity model in BALB/c mice. MATERIALS AND METHODS We used for the study female BALB/c mice 6-8 weeks old (18-24 g). Experimental animals were fed by a fat-enriched diet (FED), and 8 experimental groups were formed (12 mice in each group) to test strains of probiotic bacteria L. delbrueckii subsp. bulgaricus IMV B-7281, L. casei IMV B-7280, B. animalіs VKL and B. animalіs VKB and compositions. We used ultrasound for in vivo assessment of the liver and visceral (mesenteric) fat size. In the blood serum of the obese mice, the level of cholesterol was estimated. The liver morphology and gut microbiota of obese mice were studied. RESULTS We revealed that after treatment with all of the studied probiotic bacteria and compositions of B. animalis VKL/B. animalis VKB/L. casei IMV B-7280, the weight of obese mice decreased, and cholesterol and its fraction levels in serum were reduced. The size of the liver slightly decreased after treatment with L. delbrueckii subsp. bulgaricus IMV B-7281, B. аnimalis VKB or probiotic compositions; we observed reduction of the mesenteric fat size after injection of all these probiotic bacteria (separately) and probiotic compositions. We defined the strain-dependent effects on serum lipid profiles, liver morphology and the gut microbiota. The B. animalis VKL/B. animalis VKB/L. casei IMV B-7280 composition effectively recovered the liver morphological structure of obese mice. The number of Lactobacillus spp., Bifidobacterium spp. and coliform bacteria increased, the number of staphylococci and streptococci reduced, and the number of microscopic fungi significantly decreased in the gut of obese mice after treatment with L. casei IMV B-7280, L. delbrueckii subsp. bulgaricus IMV B-7281, B. animalis (separately) or their compositions. CONCLUSION L. casei IMV B-7280 (separately) and a composition of B. animalis VKL/B. animalis VKB/L. casei IMV B-7280 are effective at decreasing the weight of obese mice, decreasing cholesterol level, restoring the liver morphology and beneficially modulating the gut microbiome in high-calorie-induced obesity.
Collapse
Affiliation(s)
- Rostyslav V. Bubnov
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
- Clinical Hospital ‘Pheophania’ of State Affairs Department, Zabolotny str., 21, Kyiv, 03143 Ukraine
| | - Lidiia P. Babenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Liudmyla M. Lazarenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Viktoria V. Mokrozub
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Oleksandr A. Demchenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Oleksiy V. Nechypurenko
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
| | - Mykola Ya. Spivak
- Zabolotny Institute of Microbiology and Virology, National Academy of Sciences of Ukraine, Zabolotny Str., 154, Kyiv, 03143 Ukraine
- LCL ‘DIAPROF’, Svitlycky Str., 35, Kyiv, 04123 Ukraine
| |
Collapse
|
191
|
Fang J, Sun X, Xue B, Fang N, Zhou M. Dahuang Zexie Decoction Protects against High-Fat Diet-Induced NAFLD by Modulating Gut Microbiota-Mediated Toll-Like Receptor 4 Signaling Activation and Loss of Intestinal Barrier. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2017; 2017:2945803. [PMID: 29259643 PMCID: PMC5702401 DOI: 10.1155/2017/2945803] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Revised: 09/24/2017] [Accepted: 10/04/2017] [Indexed: 02/07/2023]
Abstract
Increasing evidence suggests that intestinal dysbiosis, intestinal barrier dysfunction, and activated Toll-like receptor 4 (TLR4) signaling play key roles in the pathogenesis of NAFLD. Dahuang Zexie Decoction (DZD) has been verified to be effective for treating NAFLD, but the mechanisms remain unclear. In this study, we investigated the effects of DZD on NAFLD rats and determined whether such effects were associated with change of the gut microbiota, downregulated activity of the TLR4 signaling pathway, and increased expressions of tight junction (TJ) proteins in the gut. Male Sprague Dawley rats were fed high-fat diet (HFD) for 16 weeks to induce NAFLD and then given DZD intervention for 4 weeks. We found that DZD reduced body and liver weights of NAFLD rats, improved serum lipid levels and liver function parameters, and relieved NAFLD. We further found that DZD changed intestinal bacterial communities, inhibited the intestinal TLR4 signaling pathway, and restored the expressions of TJ proteins in the gut. Meanwhile ten potential components of DZD had been identified. These findings suggest that DZD may protects against NAFLD by modulating gut microbiota-mediated TLR4 signaling activation and loss of intestinal barrier. However, further studies are needed to clarify the mechanism by which DZD treats NAFLD.
Collapse
Affiliation(s)
- Jing Fang
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xiaoqi Sun
- Department of Police Tactics, Nanjing Forest Police College, Nanjing 210023, China
| | - Boyu Xue
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Nanyuan Fang
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| | - Min Zhou
- The First College of Clinical Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
- Department of Infectious Disease, Jiangsu Province Hospital of Traditional Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210029, China
| |
Collapse
|
192
|
An Overview of Dietary Interventions and Strategies to Optimize the Management of Non-Alcoholic Fatty Liver Disease. Diseases 2017; 5:diseases5040023. [PMID: 29065499 PMCID: PMC5750534 DOI: 10.3390/diseases5040023] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 10/17/2017] [Accepted: 10/18/2017] [Indexed: 12/25/2022] Open
Abstract
Aim: To investigate the efficacy of lifestyle adjustment strategies as a preventive measure and/or treatment of obesity-related non-alcoholic fatty liver disease in adults. Method: A systematic review of literature through 1 July 2017 on the PubMed Database was performed. A comprehensive search was conducted using key terms, such as non-alcoholic fatty liver disease (NAFLD), combined with lifestyle intervention, diet, and exercise. All of the articles and studies obtained from the search were reviewed. Redundant literature was excluded. Results: Several types of dietary compositions and exercise techniques were identified. Most studies concluded and recommended reduction in the intake of saturated and trans fatty acids, carbohydrates, and animal-based protein, and increased intake of polyunsaturated fatty acids (PUFAs), monounsaturated fatty acids (MUFAs), plant-based proteins, antioxidants, and other nutrients was recommended. The Mediterranean and Paleo diet both seem to be promising schemes for NAFLD patients to follow. Exercise was also encouraged, but the type of exercise did not affect its efficacy as a NAFLD treatment when the duration is consistent. Conclusions: Although these different dietary strategies and exercise regimens can be adopted to treat NAFLD, current literature on the topic is limited in scope. Further research should be conducted to truly elucidate which lifestyle adjustments individually, and in combination, may facilitate patients with obesity-related NAFLD.
Collapse
|
193
|
Gut Microbiota and Nonalcoholic Fatty Liver Disease: Insights on Mechanisms and Therapy. Nutrients 2017; 9:nu9101124. [PMID: 29035308 PMCID: PMC5691740 DOI: 10.3390/nu9101124] [Citation(s) in RCA: 140] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/06/2017] [Accepted: 10/10/2017] [Indexed: 12/13/2022] Open
Abstract
The gut microbiota plays critical roles in development of obese-related metabolic diseases such as nonalcoholic fatty liver disease (NAFLD), type 2 diabetes(T2D), and insulin resistance(IR), highlighting the potential of gut microbiota-targeted therapies in these diseases. There are various ways that gut microbiota can be manipulated, including through use of probiotics, prebiotics, synbiotics, antibiotics, and some active components from herbal medicines. In this review, we review the main roles of gut microbiota in mediating the development of NAFLD, and the advances in gut microbiota-targeted therapies for NAFLD in both the experimental and clinical studies, as well as the conclusions on the prospect of gut microbiota-targeted therapies in the future.
Collapse
|
194
|
Lambertz J, Weiskirchen S, Landert S, Weiskirchen R. Fructose: A Dietary Sugar in Crosstalk with Microbiota Contributing to the Development and Progression of Non-Alcoholic Liver Disease. Front Immunol 2017; 8:1159. [PMID: 28970836 PMCID: PMC5609573 DOI: 10.3389/fimmu.2017.01159] [Citation(s) in RCA: 116] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/01/2017] [Indexed: 12/12/2022] Open
Abstract
Fructose is one of the key dietary catalysts in the development of non-alcoholic fatty liver disease (NAFLD). NAFLD comprises a complex disease spectrum, including steatosis (fatty liver), non-alcoholic steatohepatitis, hepatocyte injury, inflammation, and fibrosis. It is also the hepatic manifestation of the metabolic syndrome, which covers abdominal obesity, insulin resistance, dyslipidemia, glucose intolerance, or type 2 diabetes mellitus. Commensal bacteria modulate the host immune system, protect against exogenous pathogens, and are gatekeepers in intestinal barrier function and maturation. Dysbalanced intestinal microbiota composition influences a variety of NAFLD-associated clinical conditions. Conversely, nutritional supplementation with probiotics and preobiotics impacting composition of gut microbiota can improve the outcome of NAFLD. In crosstalk with the host immune system, the gut microbiota is able to modulate inflammation, insulin resistance, and intestinal permeability. Moreover, the composition of microbiota of an individual is a kind of fingerprint highly influenced by diet. In addition, not only the microbiota itself but also its metabolites influence the metabolism and host immune system. The gut microbiota can produce vitamins and a variety of nutrients including short-chain fatty acids. Holding a healthy balance of the microbiota is therefore highly important. In the present review, we discuss the impact of long-term intake of fructose on the composition of the intestinal microbiota and its biological consequences in regard to liver homeostasis and disease. In particular, we will refer about fructose-induced alterations of the tight junction proteins affecting the gut permeability, leading to the translocation of bacteria and bacterial endotoxins into the blood circulation.
Collapse
Affiliation(s)
- Jessica Lambertz
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| | - Silvano Landert
- Culture Collection of Switzerland AG (CCOS), Wädenswil, Switzerland
| | - Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), RWTH University Hospital Aachen, Aachen, Germany
| |
Collapse
|
195
|
Gut-Liver Axis Derangement in Non-Alcoholic Fatty Liver Disease. CHILDREN-BASEL 2017; 4:children4080066. [PMID: 28767077 PMCID: PMC5575588 DOI: 10.3390/children4080066] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 07/18/2017] [Accepted: 07/21/2017] [Indexed: 02/06/2023]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most frequent type of chronic liver disease in the pediatric age group, paralleling an obesity pandemic. A “multiple-hit” hypothesis has been invoked to explain its pathogenesis. The “first hit” is liver lipid accumulation in obese children with insulin resistance. In the absence of significant lifestyle modifications leading to weight loss and increased physical activity, other factors may act as “second hits” implicated in liver damage progression leading to more severe forms of inflammation and hepatic fibrosis. In this regard, the gut–liver axis (GLA) seems to play a central role. Principal players are the gut microbiota, its bacterial products, and the intestinal barrier. A derangement of GLA (namely, dysbiosis and altered intestinal permeability) may promote bacteria/bacterial product translocation into portal circulation, activation of inflammation via toll-like receptors signaling in hepatocytes, and progression from simple steatosis to non-alcoholic steato-hepatitis (NASH). Among other factors a relevant role has been attributed to the farnesoid X receptor, a nuclear transcriptional factor activated from bile acids chemically modified by gut microbiota (GM) enzymes. The individuation and elucidation of GLA derangement in NAFLD pathomechanisms is of interest at all ages and especially in pediatrics to identify new therapeutic approaches in patients recalcitrant to lifestyle changes. Specific targeting of gut microbiota via pre-/probiotic supplementation, feces transplantation, and farnesoid X receptor modulation appear promising.
Collapse
|
196
|
Wang Y, Wu Y, Wang Y, Xu H, Mei X, Yu D, Wang Y, Li W. Antioxidant Properties of Probiotic Bacteria. Nutrients 2017; 9:nu9050521. [PMID: 28534820 PMCID: PMC5452251 DOI: 10.3390/nu9050521] [Citation(s) in RCA: 531] [Impact Index Per Article: 66.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 05/01/2017] [Accepted: 05/16/2017] [Indexed: 02/07/2023] Open
Abstract
Oxidative stress defines a condition in which the prooxidant-antioxidant balance in the cell is disturbed, resulting in DNA hydroxylation, protein denaturation, lipid peroxidation, and apoptosis, ultimately compromising cells' viability. Probiotics have been known for many beneficial health effects, and the consumption of probiotics alone or in food shows that strain-specific probiotics can present antioxidant activity and reduce damages caused by oxidation. However, the oxidation-resistant ability of probiotics, especially the underling mechanisms, is not properly understood. In this view, there is interest to figure out the antioxidant property of probiotics and summarize the mode of action of probiotic bacteria in antioxidation. Therefore, in the present paper, the antioxidant mechanisms of probiotics have been reviewed in terms of their ability to improve the antioxidant system and their ability to decrease radical generation. Since in recent years, oxidative stress has been associated with an altered gut microbiota, the effects of probiotics on intestinal flora composition are also elaborated.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yanping Wu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yuanyuan Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Han Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Xiaoqiang Mei
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Dongyou Yu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Yibing Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
197
|
Nash MJ, Frank DN, Friedman JE. Early Microbes Modify Immune System Development and Metabolic Homeostasis-The "Restaurant" Hypothesis Revisited. Front Endocrinol (Lausanne) 2017; 8:349. [PMID: 29326657 PMCID: PMC5733336 DOI: 10.3389/fendo.2017.00349] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/28/2017] [Indexed: 12/14/2022] Open
Abstract
The developing infant gut microbiome affects metabolism, maturation of the gastrointestinal tract, immune system function, and brain development. Initial seeding of the neonatal microbiota occurs through maternal and environmental contact. Maternal diet, antibiotic use, and cesarean section alter the offspring microbiota composition, at least temporarily. Nutrients are thought to regulate initial perinatal microbial colonization, a paradigm known as the "Restaurant" hypothesis. This hypothesis proposes that early nutritional stresses alter both the initial colonizing bacteria and the development of signaling pathways controlled by microbial mediators. These stresses fine-tune the immune system and metabolic homeostasis in early life, potentially setting the stage for long-term metabolic and immune health. Dysbiosis, an imbalance or a maladaptation in the microbiota, can be caused by several factors including dietary alterations and antibiotics. Dysbiosis can alter biological processes in the gut and in tissues and organs throughout the body. Misregulated development and activity of both the innate and adaptive immune systems, driven by early dysbiosis, could have long-lasting pathologic consequences such as increased autoimmunity, increased adiposity, and non-alcoholic fatty liver disease (NAFLD). This review will focus on factors during pregnancy and the neonatal period that impact a neonate's gut microbiome, as well as the mechanisms and possible links from early infancy that can drive increased risk for diseases including obesity and NAFLD. The complex pathways that connect diet, the microbiota, immune system development, and metabolism, particularly in early life, present exciting new frontiers for biomedical research.
Collapse
Affiliation(s)
- Michael J. Nash
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Daniel N. Frank
- Division of Infectious Diseases, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Jacob E. Friedman
- Department of Pediatrics, Section of Neonatology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Biochemistry and Molecular Genetics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- *Correspondence: Jacob E. Friedman,
| |
Collapse
|