151
|
Skulachev VP, Holtze S, Vyssokikh MY, Bakeeva LE, Skulachev MV, Markov AV, Hildebrandt TB, Sadovnichii VA. Neoteny, Prolongation of Youth: From Naked Mole Rats to “Naked Apes” (Humans). Physiol Rev 2017; 97:699-720. [DOI: 10.1152/physrev.00040.2015] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
It has been suggested that highly social mammals, such as naked mole rats and humans, are long-lived due to neoteny (the prolongation of youth). In both species, aging cannot operate as a mechanism facilitating natural selection because the pressure of this selection is strongly reduced due to 1) a specific social structure where only the “queen” and her “husband(s)” are involved in reproduction (naked mole rats) or 2) substituting fast technological progress for slow biological evolution (humans). Lists of numerous traits of youth that do not disappear with age in naked mole rats and humans are presented and discussed. A high resistance of naked mole rats to cancer, diabetes, cardiovascular and brain diseases, and many infections explains why their mortality rate is very low and almost age-independent and why their lifespan is more than 30 years, versus 3 years in mice. In young humans, curves of mortality versus age start at extremely low values. However, in the elderly, human mortality strongly increases. High mortality rates in other primates are observed at much younger ages than in humans. The inhibition of the aging process in humans by specific drugs seems to be a promising approach to prolong our healthspan. This might be a way to retard aging, which is already partially accomplished via the natural physiological phenomenon neoteny.
Collapse
Affiliation(s)
- Vladimir P. Skulachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Susanne Holtze
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Mikhail Y. Vyssokikh
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Lora E. Bakeeva
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Maxim V. Skulachev
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Alexander V. Markov
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Thomas B. Hildebrandt
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| | - Viktor A. Sadovnichii
- Lomonosov Moscow State University, Belozersky Institute of Physico-Chemical Biology, Moscow, Russia; Lomonosov Moscow State University, Institute of Mitoengineering, Moscow, Russia; Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany; Lomonosov Moscow State University, Biological Faculty, Moscow, Russia; Lomonosov Moscow State University, Faculty of Mechanics and Mathematics, Moscow, Russia
| |
Collapse
|
152
|
α-Synuclein binds and sequesters PIKE-L into Lewy bodies, triggering dopaminergic cell death via AMPK hyperactivation. Proc Natl Acad Sci U S A 2017; 114:1183-1188. [PMID: 28096359 DOI: 10.1073/pnas.1618627114] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The abnormal aggregation of fibrillar α-synuclein in Lewy bodies plays a critical role in the pathogenesis of Parkinson's disease. However, the molecular mechanisms regulating α-synuclein pathological effects are incompletely understood. Here we show that α-synuclein binds phosphoinositide-3 kinase enhancer L (PIKE-L) in a phosphorylation-dependent manner and sequesters it in Lewy bodies, leading to dopaminergic cell death via AMP-activated protein kinase (AMPK) hyperactivation. α-Synuclein interacts with PIKE-L, an AMPK inhibitory binding partner, and this action is increased by S129 phosphorylation through AMPK and is decreased by Y125 phosphorylation via Src family kinase Fyn. A pleckstrin homology (PH) domain in PIKE-L directly binds α-synuclein and antagonizes its aggregation. Accordingly, PIKE-L overexpression decreases dopaminergic cell death elicited by 1-methyl-4-phenylpyridinium (MPP+), whereas PIKE-L knockdown elevates α-synuclein oligomerization and cell death. The overexpression of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or α-synuclein induces greater dopaminergic cell loss and more severe motor defects in PIKE-KO and Fyn-KO mice than in wild-type mice, and these effects are attenuated by the expression of dominant-negative AMPK. Hence, our findings demonstrate that α-synuclein neutralizes PIKE-L's neuroprotective actions in synucleinopathies, triggering dopaminergic neuronal death by hyperactivating AMPK.
Collapse
|
153
|
Altered DNA methylation associated with an abnormal liver phenotype in a cattle model with a high incidence of perinatal pathologies. Sci Rep 2016; 6:38869. [PMID: 27958319 PMCID: PMC5153653 DOI: 10.1038/srep38869] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 11/14/2016] [Indexed: 02/06/2023] Open
Abstract
Cloning enables the generation of both clinically normal and pathological individuals from the same donor cells, and may therefore be a DNA sequence-independent driver of phenotypic variability. We took advantage of cattle clones with identical genotypes but different developmental abilities to investigate the role of epigenetic factors in perinatal mortality, a complex trait with increasing prevalence in dairy cattle. We studied livers from pathological clones dying during the perinatal period, clinically normal adult clones with the same genotypes as perinatal clones and conventional age-matched controls. The livers from deceased perinatal clones displayed histological lesions, modifications to quantitative histomorphometric and metabolic parameters such as glycogen storage and fatty acid composition, and an absence of birth-induced maturation. In a genome-wide epigenetic analysis, we identified DNA methylation patterns underlying these phenotypic alterations and targeting genes relevant to liver metabolism, including the type 2 diabetes gene TCF7L2. The adult clones were devoid of major phenotypic and epigenetic abnormalities in the liver, ruling out the effects of genotype on the phenotype observed. These results thus provide the first demonstration of a genome-wide association between DNA methylation and perinatal mortality in cattle, and highlight epigenetics as a driving force for phenotypic variability in farmed animals.
Collapse
|
154
|
Kobeissy FH, Guingab-Cagmat JD, Zhang Z, Moghieb A, Glushakova OY, Mondello S, Boutté AM, Anagli J, Rubenstein R, Bahmad H, Wagner AK, Hayes RL, Wang KKW. Neuroproteomics and Systems Biology Approach to Identify Temporal Biomarker Changes Post Experimental Traumatic Brain Injury in Rats. Front Neurol 2016; 7:198. [PMID: 27920753 PMCID: PMC5118702 DOI: 10.3389/fneur.2016.00198] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 10/28/2016] [Indexed: 01/15/2023] Open
Abstract
Traumatic brain injury (TBI) represents a critical health problem of which diagnosis, management, and treatment remain challenging. TBI is a contributing factor in approximately one-third of all injury-related deaths in the United States. The Centers for Disease Control and Prevention estimate that 1.7 million people suffer a TBI in the United States annually. Efforts continue to focus on elucidating the complex molecular mechanisms underlying TBI pathophysiology and defining sensitive and specific biomarkers that can aid in improving patient management and care. Recently, the area of neuroproteomics–systems biology is proving to be a prominent tool in biomarker discovery for central nervous system injury and other neurological diseases. In this work, we employed the controlled cortical impact (CCI) model of experimental TBI in rat model to assess the temporal–global proteome changes after acute (1 day) and for the first time, subacute (7 days), post-injury time frame using the established cation–anion exchange chromatography-1D SDS gel electrophoresis LC–MS/MS platform for protein separation combined with discrete systems biology analyses to identify temporal biomarker changes related to this rat TBI model. Rather than focusing on any one individual molecular entity, we used in silico systems biology approach to understand the global dynamics that govern proteins that are differentially altered post-injury. In addition, gene ontology analysis of the proteomic data was conducted in order to categorize the proteins by molecular function, biological process, and cellular localization. Results show alterations in several proteins related to inflammatory responses and oxidative stress in both acute (1 day) and subacute (7 days) periods post-TBI. Moreover, results suggest a differential upregulation of neuroprotective proteins at 7 days post-CCI involved in cellular functions such as neurite growth, regeneration, and axonal guidance. Our study is among the first to assess temporal neuroproteome changes in the CCI model. Data presented here unveil potential neural biomarkers and therapeutic targets that could be used for diagnosis, for treatment and, most importantly, for temporal prognostic assessment following brain injury. Of interest, this work relies on in silico bioinformatics approach to draw its conclusion; further work is conducted for functional studies to validate and confirm the omics data obtained.
Collapse
Affiliation(s)
- Firas H Kobeissy
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | | | - Zhiqun Zhang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ahmed Moghieb
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Olena Y Glushakova
- Department of Neurosurgery, Virginia Commonwealth University School of Medicine , Richmond, VA , USA
| | - Stefania Mondello
- Department of Neurosciences, University of Messina , Messina , Italy
| | - Angela M Boutté
- Brain Trauma Neuroprotection and Neurorestoration Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research , Silver Spring, MD , USA
| | - John Anagli
- NeuroTheranostics Inc., Detroit, MI, USA; Henry Ford Health System, Detroit, MI, USA
| | - Richard Rubenstein
- Department of Neurology, SUNY Downstate Medical Center, Brooklyn, NY, USA; Department of Physiology and Pharmacology, SUNY Downstate Medical Center, Brooklyn, NY, USA
| | - Hisham Bahmad
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon; Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Amy K Wagner
- Department of Physical Medicine and Rehabilitation, University of Pittsburgh, Pittsburgh, PA, USA; Safar Center for Resuscitation Research, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ronald L Hayes
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Department of Neurosurgery, Virginia Commonwealth University School of Medicine, Richmond, VA, USA
| | - Kevin K W Wang
- Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Psychiatry, McKnight Brain Institute, University of Florida, Gainesville, FL, USA; Program for Neurotrauma, Neuroproteomics and Biomarkers Research, Department of Neuroscience, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| |
Collapse
|
155
|
Jensen CJ, Demol F, Bauwens R, Kooijman R, Massie A, Villers A, Ris L, De Keyser J. Astrocytic β2 Adrenergic Receptor Gene Deletion Affects Memory in Aged Mice. PLoS One 2016; 11:e0164721. [PMID: 27776147 PMCID: PMC5077086 DOI: 10.1371/journal.pone.0164721] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/29/2016] [Indexed: 11/25/2022] Open
Abstract
In vitro and in vivo studies suggest that the astrocytic adrenergic signalling enhances glycogenolysis which provides energy to be transported to nearby cells and in the form of lactate. This energy source is important for motor and cognitive functioning. While it is suspected that the β2-adrenergic receptor on astrocytes might contribute to this energy balance, it has not yet been shown conclusively in vivo. Inducible astrocyte specific β2-adrenergic receptor knock-out mice were generated by crossing homozygous β2-adrenergic receptor floxed mice (Adrb2flox) and mice with heterozygous tamoxifen-inducible Cre recombinase-expression driven by the astrocyte specific L-glutamate/L-aspartate transporter promoter (GLAST-CreERT2). Assessments using the modified SHIRPA (SmithKline/Harwell/Imperial College/Royal Hospital/Phenotype Assessment) test battery, swimming ability test, and accelerating rotarod test, performed at 1, 2 and 4 weeks, 6 and 12 months after tamoxifen (or vehicle) administration did not reveal any differences in physical health or motor functions between the knock-out mice and controls. However deficits were found in the cognitive ability of aged, but not young adult mice, reflected in impaired learning in the Morris Water Maze. Similarly, long-term potentiation (LTP) was impaired in hippocampal brain slices of aged knock-out mice maintained in low glucose media. Using microdialysis in cerebellar white matter we found no significant differences in extracellular lactate or glucose between the young adult knock-out mice and controls, although trends were detected. Our results suggest that β2-adrenergic receptor expression on astrocytes in mice may be important for maintaining cognitive health at advanced age, but is dispensable for motor function.
Collapse
Affiliation(s)
- Cathy Joanna Jensen
- Department of Neurology, University Hospital Brussels and Center for Neuroscience, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Neurobiology, Vlaams Instituut voor Biotechnologie, Leuven, Belgium
- * E-mail:
| | - Frauke Demol
- Department of Neurology, University Hospital Brussels and Center for Neuroscience, Vrije Universiteit Brussel (VUB), Brussels, Belgium
| | - Romy Bauwens
- Center for Neurosiences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ron Kooijman
- Center for Neurosiences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Ann Massie
- Center for Neurosiences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Agnès Villers
- Department of Neuroscience, Health, University of Mons, Mons, Belgium
| | - Laurence Ris
- Department of Neuroscience, Health, University of Mons, Mons, Belgium
| | - Jacques De Keyser
- Department of Neurology, University Hospital Brussels and Center for Neuroscience, Vrije Universiteit Brussel (VUB), Brussels, Belgium
- Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
156
|
Farr SA, Niehoff ML, Ceddia MA, Herrlinger KA, Lewis BJ, Feng S, Welleford A, Butterfield DA, Morley JE. Effect of botanical extracts containing carnosic acid or rosmarinic acid on learning and memory in SAMP8 mice. Physiol Behav 2016; 165:328-38. [PMID: 27527000 DOI: 10.1016/j.physbeh.2016.08.013] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Revised: 06/22/2016] [Accepted: 08/11/2016] [Indexed: 10/21/2022]
Abstract
Oxidative damage is one of the hallmarks of the aging process. The current study evaluated effects of two proprietary antioxidant-based ingredients, rosemary extract and spearmint extract containing carnosic acid and rosmarinic acid, respectively, on learning and memory in the SAMP8 mouse model of accelerated aging. The two rosemary extracts contained carnosic acid (60% or 10% carnosic acid) and one spearmint extract contained 5% rosmarinic acid. Three doses of actives in each extract were tested: 32, 16, 1.6 or 0mg/kg. After 90days of treatment mice were tested in T-maze foot shock avoidance, object recognition and lever press. Rosemary extract containing 60% carnosic acid improved acquisition and retention in T-maze foot shock, object recognition and lever press. Rosemary extract with 10% carnosic acid improved retention in T-maze foot shock avoidance and lever press. Spearmint with 5% rosmarinic acid improved acquisition and retention in T-maze foot shock avoidance and object recognition. 4-hydroxynonenal (HNE) was reduced in the brain cortex after treatment with all three extracts (P<0.001) compared to the vehicle treated SAMP8. Protein carbonyls were reduced in the hippocampus after administration of rosemary with 10% carnosic acid (P<0.05) and spearmint containing 5% rosmarinic acid (P<0.001). The current results indicate that the extracts from spearmint and rosemary have beneficial effects on learning and memory and brain tissue markers of oxidation that occur with age in SAMP8 mice.
Collapse
Affiliation(s)
- Susan A Farr
- VA Medical Center, 915 North Grand Blvd, St. Louis, MO, 63106, United States; St. Louis University School of Medicine, Division of Geriatrics, 1402 South Grand Blvd., St. Louis, MO 63104, United States.
| | - Michael L Niehoff
- St. Louis University School of Medicine, Division of Geriatrics, 1402 South Grand Blvd., St. Louis, MO 63104, United States
| | - Michael A Ceddia
- Kemin Foods, L.C, 2100 Maury St., Des Moines, IA, 50307, United States
| | | | - Brandon J Lewis
- Kemin Foods, L.C, 2100 Maury St., Des Moines, IA, 50307, United States
| | - Shulin Feng
- Kemin Foods, L.C, 2100 Maury St., Des Moines, IA, 50307, United States
| | - Andrew Welleford
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, 249 Chemistry-Physics, Lexington, KY 40506, United States
| | - D Allan Butterfield
- Department of Chemistry, Center of Membrane Sciences, Sanders Brown Center on Aging, University of Kentucky, 249 Chemistry-Physics, Lexington, KY 40506, United States
| | - John E Morley
- St. Louis University School of Medicine, Division of Geriatrics, 1402 South Grand Blvd., St. Louis, MO 63104, United States; St. Louis University School of Medicine, Division of Endocrinology, 1402 South Grand Blvd., St. Louis, MO, 63104, United States
| |
Collapse
|
157
|
Lana D, Iovino L, Nosi D, Wenk GL, Giovannini MG. The neuron-astrocyte-microglia triad involvement in neuroinflammaging mechanisms in the CA3 hippocampus of memory-impaired aged rats. Exp Gerontol 2016; 83:71-88. [PMID: 27466072 DOI: 10.1016/j.exger.2016.07.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/23/2016] [Accepted: 07/20/2016] [Indexed: 01/08/2023]
Abstract
We examined the effects of inflammaging on memory encoding, and qualitative and quantitative modifications on proinflammatory proteins, apoptosis, neurodegeneration and morphological changes of neuron-astrocyte-microglia triads in CA3 Stratum Pyramidale (SP), Stratum Lucidum (SL) and Stratum Radiatum (SR) of young (3months) and aged rats (20months). Aged rats showed short-term memory impairments in the inhibitory avoidance task, increased expression of iNOS and activation of p38MAPK in SP, increase of apoptotic neurons in SP and of ectopic neurons in SL, and decrease of CA3 pyramidal neurons. The number of astrocytes and their branches length decreased in the three CA3 subregions of aged rats, with morphological signs of clasmatodendrosis. Total and activated microglia increased in the three CA3 subregions of aged rats. In aged rats CA3, astrocytes surrounded ectopic degenerating neurons forming "micro scars" around them. Astrocyte branches infiltrated the neuronal cell body, and, together with activated microglia formed "triads". In the triads, significantly more numerous in CA3 SL and SR of aged rats, astrocytes and microglia cooperated in fragmentation and phagocytosis of ectopic neurons. Inflammaging-induced modifications of astrocytes and microglia in CA3 of aged rats may help clearing neuronal debris derived from low-grade inflammation and apoptosis. These events might be common mechanisms underlying many neurodegenerative processes. The frequency to which they appear might depend upon, or might be the cause of, the burden and severity of neurodegeneration. Targeting the triads may represent a therapeutic strategy which may control inflammatory processes and spread of further cellular damage to neighboring cells.
Collapse
Affiliation(s)
- Daniele Lana
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| | - Ludovica Iovino
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, Viale Morgagni 63 and Section of Anatomy and Histology, Largo Brambilla 3, University of Florence, 50134 Firenze, Italy.
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Physiological Sciences, Viale Morgagni 63 and Section of Anatomy and Histology, Largo Brambilla 3, University of Florence, 50134 Firenze, Italy.
| | - Gary L Wenk
- Department of Psychology, The Ohio State University, OH, USA..
| | - Maria Grazia Giovannini
- Department of Health Sciences, Section of Pharmacology and Clinical Oncology, University of Florence, Viale Pieraccini 6, 50139 Firenze, Italy.
| |
Collapse
|
158
|
Aerobic Glycolysis in the Frontal Cortex Correlates with Memory Performance in Wild-Type Mice But Not the APP/PS1 Mouse Model of Cerebral Amyloidosis. J Neurosci 2016; 36:1871-8. [PMID: 26865611 DOI: 10.1523/jneurosci.3131-15.2016] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Aerobic glycolysis and lactate production in the brain plays a key role in memory, yet the role of this metabolism in the cognitive decline associated with Alzheimer's disease (AD) remains poorly understood. Here we examined the relationship between cerebral lactate levels and memory performance in an APP/PS1 mouse model of AD, which progressively accumulates amyloid-β. In vivo (1)H-magnetic resonance spectroscopy revealed an age-dependent decline in lactate levels within the frontal cortex of control mice, whereas lactate levels remained unaltered in APP/PS1 mice from 3 to 12 months of age. Analysis of hippocampal interstitial fluid by in vivo microdialysis revealed a significant elevation in lactate levels in APP/PS1 mice relative to control mice at 12 months of age. An age-dependent decline in the levels of key aerobic glycolysis enzymes and a concomitant increase in lactate transporter expression was detected in control mice. Increased expression of lactate-producing enzymes correlated with improved memory in control mice. Interestingly, in APP/PS1 mice the opposite effect was detected. In these mice, increased expression of lactate producing enzymes correlated with poorer memory performance. Immunofluorescent staining revealed localization of the aerobic glycolysis enzymes pyruvate dehydrogenase kinase and lactate dehydrogenase A within cortical and hippocampal neurons in control mice, as well as within astrocytes surrounding amyloid plaques in APP/PS1 mice. These observations collectively indicate that production of lactate, via aerobic glycolysis, is beneficial for memory function during normal aging. However, elevated lactate levels in APP/PS1 mice indicate perturbed lactate processing, a factor that may contribute to cognitive decline in AD. SIGNIFICANCE STATEMENT Lactate has recently emerged as a key metabolite necessary for memory consolidation. Lactate is the end product of aerobic glycolysis, a unique form of metabolism that occurs within certain regions of the brain. Here we detected an age-dependent decline in the expression of aerobic glycolysis enzymes and a concomitant decrease in lactate levels within the frontal cortex of wild-type mice. Improved memory performance in wild-type mice correlated with elevated expression of aerobic glycolysis enzymes. Surprisingly, lactate levels remained elevated with age and increased aerobic glycolysis enzyme expression correlated with poorer memory performance in APP/PS1 mice. These findings suggest that while lactate production is beneficial for memory in the healthy aging brain, it might be detrimental in an Alzheimer's disease context.
Collapse
|
159
|
Fang EF, Scheibye-Knudsen M, Chua KF, Mattson MP, Croteau DL, Bohr VA. Nuclear DNA damage signalling to mitochondria in ageing. Nat Rev Mol Cell Biol 2016; 17:308-21. [PMID: 26956196 PMCID: PMC5161407 DOI: 10.1038/nrm.2016.14] [Citation(s) in RCA: 284] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial dysfunction is a hallmark of ageing, and mitochondrial maintenance may lead to increased healthspan. Emerging evidence suggests a crucial role for signalling from the nucleus to mitochondria (NM signalling) in regulating mitochondrial function and ageing. An important initiator of NM signalling is nuclear DNA damage, which accumulates with age and may contribute to the development of age-associated diseases. DNA damage-dependent NM signalling constitutes a network that includes nuclear sirtuins and controls genomic stability and mitochondrial integrity. Pharmacological modulation of NM signalling is a promising novel approach for the prevention and treatment of age-associated diseases.
Collapse
Affiliation(s)
- Evandro Fei Fang
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Katrin F Chua
- Department of Medicine, Division of Endocrinology, Gerontology, and Metabolism, School of Medicine, Stanford University, Stanford, California 94305, USA
- Geriatric Research, Education, and Clinical Center, VA Palo Alto Health Care System, Palo Alto, California 94304, USA
| | - Mark P Mattson
- Laboratory of Neurosciences, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
160
|
Tsai SF, Chen PC, Calkins MJ, Wu SY, Kuo YM. Exercise Counteracts Aging-Related Memory Impairment: A Potential Role for the Astrocytic Metabolic Shuttle. Front Aging Neurosci 2016; 8:57. [PMID: 27047373 PMCID: PMC4801859 DOI: 10.3389/fnagi.2016.00057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 03/08/2016] [Indexed: 01/19/2023] Open
Abstract
Age-related cognitive impairment has become one of the most common health threats in many countries. The biological substrate of cognition is the interconnection of neurons to form complex information processing networks. Experience-based alterations in the activities of these information processing networks lead to neuroadaptation, which is physically represented at the cellular level as synaptic plasticity. Although synaptic plasticity is known to be affected by aging, the underlying molecular mechanisms are not well described. Astrocytes, a glial cell type that is infrequently investigated in cognitive science, have emerged as energy suppliers which are necessary for meeting the abundant energy demand resulting from glutamatergic synaptic activity. Moreover, the concerted action of an astrocyte-neuron metabolic shuttle is essential for cognitive function; whereas, energetic incoordination between astrocytes and neurons may contribute to cognitive impairment. Whether altered function of the astrocyte-neuron metabolic shuttle links aging to reduced synaptic plasticity is unexplored. However, accumulated evidence documents significant beneficial effects of long-term, regular exercise on cognition and synaptic plasticity. Furthermore, exercise increases the effectiveness of astrocyte-neuron metabolic shuttle by upregulation of astrocytic lactate transporter levels. This review summarizes previous findings related to the neuronal activity-dependent astrocyte-neuron metabolic shuttle. Moreover, we discuss how aging and exercise may shape the astrocyte-neuron metabolic shuttle in cognition-associated brain areas.
Collapse
Affiliation(s)
- Sheng-Feng Tsai
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Pei-Chun Chen
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Physiology, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| | - Marcus J Calkins
- Institute of Clinical Medicine, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Shih-Ying Wu
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University Tainan, Taiwan
| | - Yu-Min Kuo
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung UniversityTainan, Taiwan; Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung UniversityTainan, Taiwan
| |
Collapse
|
161
|
Mercatelli R, Lana D, Bucciantini M, Giovannini MG, Cerbai F, Quercioli F, Zecchi-Orlandini S, Delfino G, Wenk GL, Nosi D. Clasmatodendrosis and β-amyloidosis in aging hippocampus. FASEB J 2015; 30:1480-91. [PMID: 26722005 DOI: 10.1096/fj.15-275503] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 12/08/2015] [Indexed: 01/25/2023]
Abstract
Alterations of the tightly interwoven neuron/astrocyte interactions are frequent traits of aging, but also favor neurodegenerative diseases, such as Alzheimer disease (AD). These alterations reflect impairments of the innate responses to inflammation-related processes, such as β-amyloid (Aβ) burdening. Multidisciplinary studies, spanning from the tissue to the molecular level, are needed to assess how neuron/astrocyte interactions are influenced by aging. Our study addressed this requirement by joining fluorescence-lifetime imaging microscopy/phasor multiphoton analysis with confocal microscopy, implemented with a novel method to separate spectrally overlapped immunofluorescence and Aβ autofluorescence. By comparing data from young control rats, chronically inflamed rats, and old rats, we identified age-specific alterations of neuron/astrocyte interactions in the hippocampus. We found a correlation between Aβ aggregation (+300 and +800% of aggregated Aβ peptide in chronically inflamed and oldvs.control rats, respectively) and fragmentation (clasmatodendrosis) of astrocyte projections (APJs) (+250 and +1300% of APJ fragments in chronically inflamed and oldvs.control rats, respectively). Clasmatodendrosis, in aged rats, associates with impairment of astrocyte-mediated Aβ clearance (-45% of Aβ deposits on APJs, and +33% of Aβ deposits on neurons in oldvs.chronically inflamed rats). Furthermore, APJ fragments colocalize with Aβ deposits and are involved in novel Aβ-mediated adhesions between neurons. These data define the effects of Aβ deposition on astrocyte/neuron interactions as a key topic in AD biology.-Mercatelli, R., Lana, D., Bucciantini, M., Giovannini, M. G., Cerbai, F., Quercioli, F., Zecchi-Orlandini, S., Delfino, G., Wenk, G. L., Nos, D. Clasmatodendrosis and β-amyloidosis in aging hippocampus.
Collapse
Affiliation(s)
- Raffaella Mercatelli
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Daniele Lana
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Monica Bucciantini
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Maria Grazia Giovannini
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Francesca Cerbai
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Franco Quercioli
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Sandra Zecchi-Orlandini
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Giovanni Delfino
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Gary L Wenk
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| | - Daniele Nosi
- *Department of Chemistry "Ugo Schiff," Department of Health Sciences, Department of Biomedical Experimental and Clinical Sciences "Mario Serio," Department of Experimental and Clinical Medicine, and Department of Biology, University of Florence, Florence, Italy; National Institute of Optics, National Research Council (CNR), Florence, Italy; and Department of Psychology, The Ohio State University, Columbus, Ohio, USA
| |
Collapse
|
162
|
In vivo HMRS and lipidomic profiling reveals comprehensive changes of hippocampal metabolism during aging in mice. Biochem Biophys Res Commun 2015; 470:9-14. [PMID: 26707637 DOI: 10.1016/j.bbrc.2015.12.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 12/03/2015] [Indexed: 01/04/2023]
Abstract
Aging is characterized by various cellular changes in the brain. Hippocampus is important for systemic aging and lifespan control. There is still a lack of comprehensive overview of metabolic changes in hippocampus during aging. In this study, we first created an accelerated brain aging mice model through the chronic administration of d-galactose. We then performed a multiplatform metabolomic profiling of mice hippocampus using the combination of in vivo 9.4 T HMRS and in vitro LC-MS/MS based lipidomics. We found N-acetylaspartic acid (NAA), gama-aminobutyric acid (GABA), glutamate/glutamine, taurine, choline, sphingolipids (SMs), phosphatidylethanolamines (PEs), phosphatidylinositols (PIs), phosphatidylglycerols (PGs) and phosphatidylserines (PSs), all of them decreasing with the aging process in mice hippocampus. The changes of sphingolipids and phospholipids were not limited to one single class or molecular species. In contrast, we found the significant accumulation of lactate, myoinositol and phosphatidylcholines (PCs) along with aging in hippocampus. SM (d18:1/20:2), PE (36:2), PG (34:1), PI (36:4), PS (18:0/20:4) and PC (36:0) have the most significant changes along with aging. Network analysis revealed the striking loss of biochemical connectivity and interactions between hippocampal metabolites with aging. The correlation pattern between metabolites in hippocampus could function as biomarkers for aging or diagnosis of aging-related diseases.
Collapse
|
163
|
Lactate Transport and Receptor Actions in Retina: Potential Roles in Retinal Function and Disease. Neurochem Res 2015; 41:1229-36. [PMID: 26677077 DOI: 10.1007/s11064-015-1792-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 11/06/2015] [Accepted: 11/08/2015] [Indexed: 01/01/2023]
Abstract
In retina, like in brain, lactate equilibrates across cell membranes via monocarboxylate transporters and in the extracellular space by diffusion, forming a basis for the action of lactate as a transmitter of metabolic signals. In the present paper, we argue that the lactate receptor GPR81, also known as HCAR1, may contribute importantly to the control of retinal cell functions in health and disease. GPR81, a G-protein coupled receptor, is known to downregulate cAMP both in adipose and nervous tissue. The receptor also acts through other down-stream mechanisms to control functions, such as excitability, metabolism and inflammation. Recent publications predict effects of the lactate receptor on neurodegeneration. Neurodegenerative diseases in retina, where the retinal ganglion cells die, notably glaucoma and diabetic retinopathy, may be linked to disturbed lactate homeostasis. Pilot studies reveal high GPR81 mRNA in retina and indicate GPR81 localization in Müller cells and retinal ganglion cells. Moreover, monocarboxylate transporters are expressed in retinal cells. We envision that lactate receptors and transporters could be useful future targets of novel therapeutic strategies to protect neurons and prevent or counteract glaucoma as well as other retinal diseases.
Collapse
|
164
|
Pickrell AM, Huang CH, Kennedy SR, Ordureau A, Sideris DP, Hoekstra JG, Harper JW, Youle RJ. Endogenous Parkin Preserves Dopaminergic Substantia Nigral Neurons following Mitochondrial DNA Mutagenic Stress. Neuron 2015; 87:371-81. [PMID: 26182419 DOI: 10.1016/j.neuron.2015.06.034] [Citation(s) in RCA: 259] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 06/03/2015] [Accepted: 06/24/2015] [Indexed: 12/30/2022]
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by the loss of dopaminergic neurons in the substantia nigra. PARK2 mutations cause early-onset forms of PD. PARK2 encodes an E3 ubiquitin ligase, Parkin, that can selectively translocate to dysfunctional mitochondria to promote their removal by autophagy. However, Parkin knockout (KO) mice do not display signs of neurodegeneration. To assess Parkin function in vivo, we utilized a mouse model that accumulates dysfunctional mitochondria caused by an accelerated generation of mtDNA mutations (Mutator mice). In the absence of Parkin, dopaminergic neurons in Mutator mice degenerated causing an L-DOPA reversible motor deficit. Other neuronal populations were unaffected. Phosphorylated ubiquitin was increased in the brains of Mutator mice, indicating PINK1-Parkin activation. Parkin loss caused mitochondrial dysfunction and affected the pathogenicity but not the levels of mtDNA somatic mutations. A systemic loss of Parkin synergizes with mitochondrial dysfunction causing dopaminergic neuron death modeling PD pathogenic processes.
Collapse
Affiliation(s)
- Alicia M Pickrell
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Chiu-Hui Huang
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Scott R Kennedy
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dionisia P Sideris
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Jake G Hoekstra
- Department of Pathology, University of Washington, Seattle, WA 98104, USA
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Richard J Youle
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
165
|
Valvona CJ, Fillmore HL, Nunn PB, Pilkington GJ. The Regulation and Function of Lactate Dehydrogenase A: Therapeutic Potential in Brain Tumor. Brain Pathol 2015; 26:3-17. [PMID: 26269128 PMCID: PMC8029296 DOI: 10.1111/bpa.12299] [Citation(s) in RCA: 385] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/05/2015] [Indexed: 12/14/2022] Open
Abstract
There are over 120 types of brain tumor and approximately 45% of primary brain tumors are gliomas, of which glioblastoma multiforme (GBM) is the most common and aggressive with a median survival rate of 14 months. Despite progress in our knowledge, current therapies are unable to effectively combat primary brain tumors and patient survival remains poor. Tumor metabolism is important to consider in therapeutic approaches and is the focus of numerous research investigations. Lactate dehydrogenase A (LDHA) is a cytosolic enzyme, predominantly involved in anaerobic and aerobic glycolysis (the Warburg effect); however, it has multiple additional functions in non‐neoplastic and neoplastic tissues, which are not commonly known or discussed. This review summarizes what is currently known about the function of LDHA and identifies areas that would benefit from further exploration. The current knowledge of the role of LDHA in the brain and its potential as a therapeutic target for brain tumors will also be highlighted. The Warburg effect appears to be universal in tumors, including primary brain tumors, and LDHA (because of its involvement with this process) has been identified as a potential therapeutic target. Currently, there are, however, no suitable LDHA inhibitors available for tumor therapies in the clinic.
Collapse
Affiliation(s)
- Cara J Valvona
- Cellular & Molecular Neuro-oncology Research Group, University of Portsmouth, School of Pharmacy & Biomedical Sciences, Portsmouth, UK
| | - Helen L Fillmore
- Cellular & Molecular Neuro-oncology Research Group, University of Portsmouth, School of Pharmacy & Biomedical Sciences, Portsmouth, UK
| | - Peter B Nunn
- Cellular & Molecular Neuro-oncology Research Group, University of Portsmouth, School of Pharmacy & Biomedical Sciences, Portsmouth, UK
| | - Geoffrey J Pilkington
- Cellular & Molecular Neuro-oncology Research Group, University of Portsmouth, School of Pharmacy & Biomedical Sciences, Portsmouth, UK
| |
Collapse
|
166
|
Ross JM, Olson L, Coppotelli G. Mitochondrial and Ubiquitin Proteasome System Dysfunction in Ageing and Disease: Two Sides of the Same Coin? Int J Mol Sci 2015; 16:19458-76. [PMID: 26287188 PMCID: PMC4581307 DOI: 10.3390/ijms160819458] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 07/23/2015] [Accepted: 08/07/2015] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial dysfunction and impairment of the ubiquitin proteasome system have been described as two hallmarks of the ageing process. Additionally, both systems have been implicated in the etiopathogenesis of many age-related diseases, particularly neurodegenerative disorders, such as Alzheimer's and Parkinson's disease. Interestingly, these two systems are closely interconnected, with the ubiquitin proteasome system maintaining mitochondrial homeostasis by regulating organelle dynamics, the proteome, and mitophagy, and mitochondrial dysfunction impairing cellular protein homeostasis by oxidative damage. Here, we review the current literature and argue that the interplay of the two systems should be considered in order to better understand the cellular dysfunction observed in ageing and age-related diseases. Such an approach may provide valuable insights into molecular mechanisms underlying the ageing process, and further discovery of treatments to counteract ageing and its associated diseases. Furthermore, we provide a hypothetical model for the heterogeneity described among individuals during ageing.
Collapse
Affiliation(s)
- Jaime M Ross
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm 171 77, Sweden.
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm 171 77, Sweden.
| | - Giuseppe Coppotelli
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, Stockholm 171 77, Sweden.
| |
Collapse
|
167
|
Clark-Matott J, Saleem A, Dai Y, Shurubor Y, Ma X, Safdar A, Beal MF, Tarnopolsky M, Simon DK. Metabolomic analysis of exercise effects in the POLG mitochondrial DNA mutator mouse brain. Neurobiol Aging 2015; 36:2972-2983. [PMID: 26294258 DOI: 10.1016/j.neurobiolaging.2015.07.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 06/12/2015] [Accepted: 07/13/2015] [Indexed: 01/09/2023]
Abstract
Mitochondrial DNA (mtDNA) mutator mice express a mutated form of mtDNA polymerase gamma that results an accelerated accumulation of somatic mtDNA mutations in association with a premature aging phenotype. An exploratory metabolomic analysis of cortical metabolites in sedentary and exercised mtDNA mutator mice and wild-type littermate controls at 9-10 months of age was performed. Pathway analysis revealed deficits in the neurotransmitters acetylcholine, glutamate, and aspartate that were ameliorated by exercise. Nicotinamide adenine dinucleotide (NAD) depletion and evidence of increased poly(adenosine diphosphate-ribose) polymerase 1 (PARP1)activity were apparent in sedentary mtDNA mutator mouse cortex, along with deficits in carnitine metabolites and an upregulated antioxidant response that largely normalized with exercise. These data highlight specific pathways that are altered in the brain in association with an accelerated age-related accumulation of somatic mtDNA mutations. These results may have relevance to age-related neurodegenerative diseases associated with mitochondrial dysfunction, such as Alzheimer's disease and Parkinson's disease and provide insights into potential mechanisms of beneficial effects of exercise on brain function.
Collapse
Affiliation(s)
- Joanne Clark-Matott
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA.
| | - Ayesha Saleem
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada; Department of Medicine, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Ying Dai
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yevgeniya Shurubor
- Brain and Mind Institute, Weill Medical College, Cornell University, New York, NY, USA
| | - Xiaoxing Ma
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada; Department of Medicine, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - Adeel Safdar
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Myron Flint Beal
- Brain and Mind Institute, Weill Medical College, Cornell University, New York, NY, USA
| | - Mark Tarnopolsky
- Department of Pediatrics, McMaster University Medical Center, Hamilton, Ontario, Canada; Department of Medicine, McMaster University Medical Center, Hamilton, Ontario, Canada
| | - David K Simon
- Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
168
|
Sebastián C, Mostoslavsky R. The role of mammalian sirtuins in cancer metabolism. Semin Cell Dev Biol 2015; 43:33-42. [DOI: 10.1016/j.semcdb.2015.07.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 07/29/2015] [Indexed: 12/26/2022]
|
169
|
Is L-lactate a novel signaling molecule in the brain? J Cereb Blood Flow Metab 2015; 35:1069-75. [PMID: 25920953 PMCID: PMC4640281 DOI: 10.1038/jcbfm.2015.77] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Revised: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 01/01/2023]
Abstract
In the brain, L-lactate is produced by both neurons and astrocytes. There is no doubt that neurons use L-lactate as a supplementary fuel although the importance of this energy source is disputed. Irrespective of its caloric value, L-lactate might also have a signaling role in the brain. Here, we review several current hypotheses of L-lactate mediated signaling. Some proposed mechanisms require L-lactate entry into the neurons leading to a shift in ATP/ADP ratio or redox state. Others postulate interaction with either known receptor HCA1 (GPR81) or a novel, yet unidentified receptor. We argue that the sensitivity of any such mechanism has to match the concentration range of extracellular L-lactate, which is less than ~1.5 mmol/L under physiologic conditions. From that point of view, some of the proposed mechanisms require supraphysiologic levels of L-lactate and could be engaged during ischemia or seizures when L-lactate concentration rises dramatically. Currently, we do not know whether L-lactate production in the brain occurs in microdomains, which might create higher than average local concentrations. Nevertheless, it is clear that in the brain, as in the peripheral tissues, L-lactate is not only used as a source of energy but also acts as a signaling molecule.
Collapse
|
170
|
Triplett JC, Swomley A, Kirk J, Lewis K, Orr M, Rodriguez K, Cai J, Klein JB, Buffenstein R, Butterfield DA. Metabolic clues to salubrious longevity in the brain of the longest-lived rodent: the naked mole-rat. J Neurochem 2015; 134:538-50. [PMID: 25940666 DOI: 10.1111/jnc.13149] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 04/13/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022]
Abstract
Naked mole-rats (NMRs) are the oldest-living rodent species. Living underground in a thermally stable ecological niche, NMRs have evolved certain exceptional traits, resulting in sustained health spans, negligible cognitive decline, and a pronounced resistance to age-related disease. Uncovering insights into mechanisms underlying these extraordinary traits involved in successful aging may conceivably provide crucial clues to extend the human life span and health span. One of the most fundamental processes inside the cell is the production of ATP, which is an essential fuel in driving all other energy-requiring cellular activities. Not surprisingly, a prominent hallmark in age-related diseases, such as neurodegeneration and cancer, is the impairment and dysregulation of metabolic pathways. Using a two-dimensional polyacrylamide gel electrophoresis proteomics approach, alterations in expression and phosphorylation levels of metabolic proteins in the brains of NMRs, aged 2-24 years, were evaluated in an age-dependent manner. We identified 13 proteins with altered levels and/or phosphorylation states that play key roles in various metabolic pathways including glycolysis, β-oxidation, the malate-aspartate shuttle, the Tricarboxylic Acid Cycle (TCA) cycle, the electron transport chain, NADPH production, as well as the production of glutamate. New insights into potential pathways involved in metabolic aspects of successful aging have been obtained by the identification of key proteins through which the NMR brain responds and adapts to the aging process and how the NMR brain adapted to resist age-related degeneration. This study examines the changes in the proteome and phosphoproteome in the brain of the naked mole-rat aged 2-24 years. We identified 13 proteins (labeled in red) with altered expression and/or phosphorylation levels that are conceivably associated with sustained metabolic functions in the oldest NMRs that may promote a sustained health span and life span.
Collapse
Affiliation(s)
- Judy C Triplett
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Aaron Swomley
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Jessime Kirk
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
| | - Katilyn Lewis
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Cellular and Structural Biology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Miranda Orr
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Karl Rodriguez
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jian Cai
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Jon B Klein
- Department of Nephrology and Proteomics Center, University of Louisville, Louisville, Kentucky, USA
| | - Rochelle Buffenstein
- Sam and Ann Barsop Institute for Longevity and Aging Studies, University of Texas Health Science Center, San Antonio, Texas, USA.,Department of Physiology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - D Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA.,Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
171
|
Currais A. Ageing and inflammation - A central role for mitochondria in brain health and disease. Ageing Res Rev 2015; 21:30-42. [PMID: 25684584 DOI: 10.1016/j.arr.2015.02.001] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2014] [Revised: 01/29/2015] [Accepted: 02/02/2015] [Indexed: 02/08/2023]
Abstract
To develop successful therapies that prevent or treat neurodegenerative diseases requires an understanding of the upstream events. Ageing is by far the greatest risk factor for most of these diseases, and to clarify their causes will require an understanding of the process of ageing itself. Starting with the question Why do we age as individual organisms, but the line of pluripotent embryonic stem cells and germ cells carried by individuals and transmitted to descendants is immortal? this review discusses how the process of cellular differentiation leads to the accumulation of biological imperfections with ageing, and how these imperfections may be the cause of chronic inflammatory responses to stress that undermine cellular function. Both differentiation and inflammation involve drastic metabolic changes associated with alterations in mitochondrial dynamics that shift the balance between aerobic glycolysis and oxidative phosphorylation. With ageing, mitochondrial dysfunction can be both the cause and consequence of inflammatory processes and elicit metabolic adaptations that might be either protective or become progressively detrimental. It is argued here that an understanding of the relationship between metabolism, differentiation and inflammation is essential to understand the pathological mechanisms governing brain health and disease during ageing.
Collapse
|
172
|
Shabalina IG, Landreh L, Edgar D, Hou M, Gibanova N, Atanassova N, Petrovic N, Hultenby K, Söder O, Nedergaard J, Svechnikov K. Leydig cell steroidogenesis unexpectedly escapes mitochondrial dysfunction in prematurely aging mice. FASEB J 2015; 29:3274-86. [PMID: 25900807 DOI: 10.1096/fj.15-271825] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/31/2015] [Indexed: 11/11/2022]
Abstract
Point mutations and deletions of mitochondrial DNA (mtDNA) accumulate in tissues during aging in animals and humans and are the basis for mitochondrial diseases. Testosterone synthesis occurs in the mitochondria of Leydig cells. Mitochondrial dysfunction (as induced here experimentally in mtDNA mutator mice that carry a proofreading-deficient form of mtDNA polymerase γ, leading to mitochondrial dysfunction in all cells types so far studied) would therefore be expected to lead to low testosterone levels. Although mtDNA mutator mice showed a dramatic reduction in testicle weight (only 15% remaining) and similar decreases in number of spermatozoa, testosterone levels in mtDNA mutator mice were unexpectedly fully unchanged. Leydig cell did not escape mitochondrial damage (only 20% of complex I and complex IV remaining) and did show high levels of reactive oxygen species (ROS) production (>5-fold increased), and permeabilized cells demonstrated absence of normal mitochondrial function. Nevertheless, within intact cells, mitochondrial membrane potential remained high, and testosterone production was maintained. This implies development of a compensatory mechanism. A rescuing mechanism involving electrons from the pentose phosphate pathway transferred via a 3-fold up-regulated cytochrome b5 to cytochrome c, allowing for mitochondrial energization, is suggested. Thus, the Leydig cells escape mitochondrial dysfunction via a unique rescue pathway. Such a pathway, bypassing respiratory chain dysfunction, may be of relevance with regard to mitochondrial disease therapy and to managing ageing in general.
Collapse
Affiliation(s)
- Irina G Shabalina
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Luise Landreh
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Daniel Edgar
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Mi Hou
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Natalia Gibanova
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Nina Atanassova
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Natasa Petrovic
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Kjell Hultenby
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Olle Söder
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Jan Nedergaard
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| | - Konstantin Svechnikov
- *Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden; Department of Women's and Children's Health, Pediatric Endocrinology Unit, Astrid Lindgren's Children Hospital, Stockholm, Sweden; Department of Laboratory Medicine, Karolinska Institutet, Huddinge, Sweden; and Institute of Experimental Morphology, Pathology and Anthropology with Museum, Sofia, Bulgaria
| |
Collapse
|
173
|
Mountford C, Quadrelli S, Lin A, Ramadan S. Six fucose-α(1-2) sugars and α-fucose assigned in the human brain using in vivo two-dimensional MRS. NMR IN BIOMEDICINE 2015; 28:291-296. [PMID: 25534141 DOI: 10.1002/nbm.3239] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 11/02/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
A growing body of literature has indicated that fucose-α(1-2)-galactose sugars are implicated in the molecular mechanisms that underlie neuronal development, learning and memory in the human brain. An understanding of the in vivo roles played by these terminal fucose residues has been hampered by the lack of technology to non-invasively monitor their levels in the human brain. We have implemented in vivo two-dimensional MRS technology to examine the human brain in a 3-T clinical MR scanner, and report that six fucose-α(1-2)-galactose residues and free α-fucose are available for inspection. Fucose-α(1-3)-galactose residues cannot yet be assigned using this technology as they resonate under the water resonance. This new application offers an unprecedented insight into the molecular mechanisms by which fucosylated sugars contribute to neuronal processes and how they alter during development, ageing and disease.
Collapse
Affiliation(s)
- Carolyn Mountford
- Centre for MR in Health, School of Health Sciences, University of Newcastle, Newcastle, New South Wales, Australia; Center for Clinical Spectroscopy, Department of Radiology, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | | | | | | |
Collapse
|
174
|
Abstract
Sporadic Alzheimer's disease (spAD) has three successive phases: preclinical, mild cognitive impairment, and dementia. Individuals in the preclinical phase are cognitively normal. Diagnosis of preclinical spAD requires evidence of pathologic brain changes provided by established biomarkers. Histopathologic features of spAD include (i) extra-cellular cerebral amyloid plaques and intracellular neurofibrillary tangles that embody hyperphosphorylated tau; and (ii) neuronal and synaptic loss. Amyloid-PET brain scans conducted during spAD's preclinical phase have disclosed abnormal accumulations of amyloid-beta (Aβ) in cognitively normal, high-risk individuals. However, this measure correlates poorly with changes in cognitive status. In contrast, MRI measures of brain atrophy consistently parallel cognitive deterioration. By the time dementia appears, amyloid deposition has already slowed or ceased. When a new treatment offers promise of arresting or delaying progression of preclinical spAD, its effectiveness must be inferred from intervention-correlated changes in biomarkers. Herein, differing tenets of the amyloid cascade hypothesis (ACH) and the mitochondrial cascade hypothesis (MCH) are compared. Adoption of the ACH suggests therapeutic research continue to focus on aspects of the amyloid pathways. Adoption of the MCH suggests research emphasis be placed on restoration and stabilization of mitochondrial function. Ketone ester (KE)-induced elevation of plasma ketone body (KB) levels improves mitochondrial metabolism and prevents or delays progression of AD-like pathologic changes in several AD animal models. Thus, as a first step, it is imperative to determine whether KE-caused hyperketonemia can bring about favorable changes in biomarkers of AD pathology in individuals who are in an early stage of AD's preclinical phase.
Collapse
Affiliation(s)
- Theodore B VanItallie
- Department of Medicine, St. Luke's Hospital, Columbia University College of Physicians & Surgeons, New York, NY 10025.
| |
Collapse
|
175
|
Age-related changes in the central auditory system. Cell Tissue Res 2015; 361:337-58. [DOI: 10.1007/s00441-014-2107-2] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Accepted: 12/22/2014] [Indexed: 12/19/2022]
|
176
|
Gorgun FM, Zhuo M, Singh S, Englander EW. Neuroglobin mitigates mitochondrial impairments induced by acute inhalation of combustion smoke in the mouse brain. Inhal Toxicol 2015; 26:361-9. [PMID: 24730682 DOI: 10.3109/08958378.2014.902147] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONTEXT Acute inhalation of combustion smoke adversely affects brain homeostasis and energy metabolism. We previously showed that overexpressed neuroglobin (Ngb), neuron specific globin protein, attenuates the formation of smoke inhalation-induced oxidative DNA damage, in vivo, in the mouse brain, while others reported protection by Ngb in diverse models of brain injury, mainly involving oxidative stress and hypoxic/ischemic insults. OBJECTIVE To determine to what extent elevated Ngb ameliorates post smoke-inhalation brain bioenergetics and homeostasis in Ngb overexpressing transgenic mouse. METHODS Smoke inhalation induced changes in bioenergetics were measured in the wild type and Ngb transgene mouse brain. Modulations of mitochondrial respiration were analyzed using the Seahorse XF24 flux analyzer and changes in cytoplasmic energy metabolism were assessed by measuring enzymatic activities and lactate in the course of post smoke recovery. RESULTS Cortical mitochondria from Ngb transgene, better maintained ATP synthesis-linked oxygen consumption and unlike wild type mitochondria did not increase futile oxygen consumption feeding the proton leak, reflecting lesser smoke-induced mitochondrial compromise. Measurements revealed lesser reduction of mitochondrial ATP content and lesser compensatory increases in cytosolic energy metabolism, involving pyruvate kinase and lactate dehydrogenase activities as well as cytosolic lactate levels. Additionally, induction of c-Fos, the early response gene and key neuronal stress sensor, was attenuated in Ngb transgene compared to wild type brain after smoke. CONCLUSION Considered together, these differences reflect lesser perturbations produced by acute inhalation of combustion smoke in the Ngb overexpressing mouse, suggesting that Ngb mitigates mitochondrial dysfunction and neurotoxicity and raises the threshold of smoke inhalation-induced brain injury.
Collapse
Affiliation(s)
- Falih Murat Gorgun
- Department of Surgery, University of Texas Medical Branch , Galveston, TX , USA
| | | | | | | |
Collapse
|
177
|
Wahlestedt M, Ameur A, Moraghebi R, Norddahl GL, Sten G, Woods NB, Bryder D. Somatic cells with a heavy mitochondrial DNA mutational load render induced pluripotent stem cells with distinct differentiation defects. Stem Cells 2014; 32:1173-82. [PMID: 24446123 DOI: 10.1002/stem.1630] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Accepted: 12/27/2013] [Indexed: 01/19/2023]
Abstract
It has become increasingly clear that several age-associated pathologies associate with mutations in the mitochondrial genome. Experimental modeling of such events has revealed that acquisition of mitochondrial DNA (mtDNA) damage can impair respiratory function and, as a consequence, can lead to widespread decline in cellular function. This includes premature aging syndromes. By taking advantage of a mutator mouse model with an error-prone mtDNA polymerase, we here investigated the impact of an established mtDNA mutational load with regards to the generation, maintenance, and differentiation of induced pluripotent stem (iPS) cells. We demonstrate that somatic cells with a heavy mtDNA mutation burden were amenable for reprogramming into iPS cells. However, mutator iPS cells displayed delayed proliferation kinetics and harbored extensive differentiation defects. While mutator iPS cells had normal ATP levels and glycolytic activity, the induction of differentiation coincided with drastic decreases in ATP production and a hyperactive glycolysis. These data demonstrate the differential requirements of mitochondrial integrity for pluripotent stem cell self-renewal versus differentiation and highlight the relevance of assessing the mitochondrial genome when aiming to generate iPS cells with robust differentiation potential.
Collapse
Affiliation(s)
- Martin Wahlestedt
- Medical Faculty, Institution for Experimental Medical Science, Immunology Section, Lund Stem Cell Center, Lund University, Lund, Sweden
| | | | | | | | | | | | | |
Collapse
|
178
|
Li L, Trifunovic A, Köhler M, Wang Y, Petrovic Berglund J, Illies C, Juntti-Berggren L, Larsson NG, Berggren PO. Defects in β-cell Ca2+ dynamics in age-induced diabetes. Diabetes 2014; 63:4100-14. [PMID: 24985350 DOI: 10.2337/db13-1855] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Little is known about the molecular mechanisms underlying age-dependent deterioration in β-cell function. We now demonstrate that age-dependent impairment in insulin release, and thereby glucose homeostasis, is associated with subtle changes in Ca(2+) dynamics in mouse β-cells. We show that these changes are likely to be accounted for by impaired mitochondrial function and to involve phospholipase C/inositol 1,4,5-trisphosphate-mediated Ca(2+) mobilization from intracellular stores as well as decreased β-cell Ca(2+) influx over the plasma membrane. We use three mouse models, namely, a premature aging phenotype, a mature aging phenotype, and an aging-resistant phenotype. Premature aging is studied in a genetically modified mouse model with an age-dependent accumulation of mitochondrial DNA mutations. Mature aging is studied in the C57BL/6 mouse, whereas the 129 mouse represents a model that is more resistant to age-induced deterioration. Our data suggest that aging is associated with a progressive decline in β-cell mitochondrial function that negatively impacts on the fine tuning of Ca(2+) dynamics. This is conceptually important since it emphasizes that even relatively modest changes in β-cell signal transduction over time lead to compromised insulin release and a diabetic phenotype.
Collapse
Affiliation(s)
- Luosheng Li
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Aleksandra Trifunovic
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Martin Köhler
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Yixin Wang
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Jelena Petrovic Berglund
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Christopher Illies
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa Juntti-Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nils-Göran Larsson
- Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Per-Olof Berggren
- The Rolf Luft Research Center for Diabetes and Endocrinology, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden Lee Kong Chian School of Medicine, Nanyang Technological University/Imperial College London, Novena Campus, Singapore
| |
Collapse
|
179
|
Bentaib A, De Tullio P, Chneiweiss H, Hermans E, Junier MP, Leprince P. Metabolic reprogramming in transformed mouse cortical astrocytes: A proteomic study. J Proteomics 2014; 113:292-314. [PMID: 25305589 DOI: 10.1016/j.jprot.2014.09.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 09/02/2014] [Accepted: 09/22/2014] [Indexed: 11/29/2022]
Abstract
Metabolic reprogramming is thought to play a key role in sustaining the survival and proliferation of cancer cells. These changes facilitate for example the uptake and release of nutrients required for nucleotide, protein and lipid synthesis necessary for macromolecule assembly and tumor growth. We applied a 2D-DIGE (two-dimensional differential in-gel electrophoresis) quantitative proteomic analysis to characterize the proteomes of mouse astrocytes that underwent in vitro cancerous transformation, and of their normal counterparts. Metabolic reprogramming effects on enzymatic and structural protein expression as well as associated metabolites abundance were quantified. Using enzymatic activity measurements and zymography, we documented and confirmed several changes in abundance and activity of various isoenzymes likely to participate in metabolic reprogramming. We found that after transformation, the cells increase their expression of glycolytic enzymes, thus augmenting their ability to use aerobic glycolysis (Warburg effect). An increased capacity to dispose of reducing equivalents through lactate production was also documented. Major effects on carbohydrates, amino acids and nucleotides metabolic enzymes were also observed. Conversely, the transformed cells reduced their enzymatic capacity for reactions of tricarboxylic acid oxidation, for neurotransmitter (glutamate) metabolism, for oxidative stress defense and their expression of astroglial markers. BIOLOGICAL SIGNIFICANCE The use of a global approach based on a 2D DIGE analysis allows obtaining a comprehensive view of the metabolic reprogramming undergone by astrocytes upon cancerous transformation. Indeed, except for a few enzymes such as pyruvate carboxylase and glutaminase that were not detected in our initial analysis, pertinent information on the abundance of most enzymes belonging to pathways relevant to metabolic reprogramming was directly obtained. In this in vitro model, transformation causes major losses of astrocyte-specific proteins and functions and the acquisition of metabolic adaptations that favor intermediate metabolites production for increased macromolecule biosynthesis. Thus our approach appears to be readily applicable for the investigation of changes in protein abundance that determine various transformed cell phenotypes. It could similarly be applied to the evaluation of the effects of treatments aimed at correcting the consequences of cell transformation.
Collapse
Affiliation(s)
| | - Pascal De Tullio
- Pharmaceutical chemistry, Department of Pharmacy, University of Liège, Liège, Belgium
| | - Hervé Chneiweiss
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | - Emmanuel Hermans
- Institute of Neurosciences, Group of Neuropharmacology, Université Catholique de Louvain, Brussels, Belgium
| | - Marie-Pierre Junier
- Glial Plasticity and Cerebral Tumors, UMR8246 CNRS/U1130 Inserm/ UMCR18, Université Pierre et Marie Curie, Paris, France
| | | |
Collapse
|
180
|
Ross JM, Coppotelli G, Hoffer BJ, Olson L. Maternally transmitted mitochondrial DNA mutations can reduce lifespan. Sci Rep 2014; 4:6569. [PMID: 25299268 PMCID: PMC4190956 DOI: 10.1038/srep06569] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2014] [Accepted: 09/18/2014] [Indexed: 01/14/2023] Open
Abstract
We recently showed that germline transmission of mitochondrial DNA mutations via the oocyte cause aggravation of aging phenotypes in prematurely aging mtDNA mutator (PolgAmut/mut) mice. We discovered that 32% of these mice also exhibit stochastic disturbances of brain development, when maternal mtDNA mutations were combined with homozygosity for the PolgA mutation, leading to de novo somatic mtDNA mutations. Surprisingly, we also found that maternally transmitted mtDNA mutations can cause mild premature aging phenotypes also in mice with a wild-type nuclear DNA background. We now report that in addition to the early onset of aging phenotypes, these mice, burdened only by low levels of mtDNA mutations transmitted via the germline, also exhibit reduced longevity. Our data thus demonstrate that low levels of maternally inherited mtDNA mutations when present during development can affect both overall health and lifespan negatively.
Collapse
Affiliation(s)
- Jaime M Ross
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | - Giuseppe Coppotelli
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| | - Barry J Hoffer
- Department of Neurosurgery, University Hospitals, Case Western Reserve Medical Center, 11100 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Lars Olson
- Department of Neuroscience, Karolinska Institutet, Retzius väg 8, 171 77 Stockholm, Sweden
| |
Collapse
|
181
|
Galeffi F, Shetty PK, Sadgrove MP, Turner DA. Age-related metabolic fatigue during low glucose conditions in rat hippocampus. Neurobiol Aging 2014; 36:982-92. [PMID: 25443286 DOI: 10.1016/j.neurobiolaging.2014.09.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 09/03/2014] [Accepted: 09/17/2014] [Indexed: 12/14/2022]
Abstract
Previous reports have indicated that with aging, intrinsic brain tissue changes in cellular bioenergetics may hamper the brain's ability to cope with metabolic stress. Therefore, we analyzed the effects of age on neuronal sensitivity to glucose deprivation by monitoring changes in field excitatory postsynaptic potentials (fEPSPs), tissue Po2, and NADH fluorescence imaging in the CA1 region of hippocampal slices obtained from F344 rats (1-2, 3-6, 12-20, and >22 months). Forty minutes of moderate low glucose (2.5 mM) led to approximately 80% decrease of fEPSP amplitudes and NADH decline in all 4 ages that reversed after reintroduction of 10 mM glucose. However, tissue slices from 12 to 20 months and >22-month-old rats were more vulnerable to low glucose: fEPSPs decreased by 50% on average 8 minutes faster compared with younger slices. Tissue oxygen utilization increased after onset of 2.5 mM glucose in all ages of tissue slices, which persisted for 40 minutes in younger tissue slices. But, in older tissue slices the increased oxygen utilization slowly faded and tissue Po2 levels increased toward baseline values after approximately 25 minutes of glucose deprivation. In addition, with age the ability to regenerate NADH after oxidation was diminished. The NAD(+)/NADH ratio remained relatively oxidized after low glucose, even during recovery. In young slices, glycogen levels were stable throughout the exposure to low glucose. In contrast, with aging utilization of glycogen stores was increased during low glucose, particularly in hippocampal slices from >22 months old rats, indicating both inefficient metabolism and increased demand for glucose. Lactate addition (20 mM) improved oxidative metabolism by directly supplementing the mitochondrial NADH pool and maintained fEPSPs in young as well as aged tissue slices, indicating that inefficient metabolism in the aging tissue can be improved by directly enhancing NADH regeneration.
Collapse
Affiliation(s)
- Francesca Galeffi
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC, USA; Research and Surgery Services, Durham VAMC, Durham NC, USA.
| | - Pavan K Shetty
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC, USA; Research and Surgery Services, Durham VAMC, Durham NC, USA
| | - Matthew P Sadgrove
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC, USA; Research and Surgery Services, Durham VAMC, Durham NC, USA
| | - Dennis A Turner
- Department of Surgery (Neurosurgery), Duke University Medical Center, Durham, NC, USA; Research and Surgery Services, Durham VAMC, Durham NC, USA; Department of Neurobiology, Duke University Medical Center, Durham, NC, USA
| |
Collapse
|
182
|
Washington TA, Healey JM, Thompson RW, Lowe LL, Carson JA. Lactate dehydrogenase regulation in aged skeletal muscle: Regulation by anabolic steroids and functional overload. Exp Gerontol 2014; 57:66-74. [PMID: 24835193 DOI: 10.1016/j.exger.2014.05.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/23/2014] [Accepted: 05/05/2014] [Indexed: 12/17/2022]
Abstract
Aging alters the skeletal muscle response to overload-induced growth. The onset of functional overload is characterized by increased myoblast proliferation and an altered muscle metabolic profile. The onset of functional overload is associated with increased energy demands that are met through the interconversion of lactate and pyruvate via the activity of lactate dehydrogenase (LDH). Testosterone targets many of the processes activated at the onset of functional overload. However, the effect of aging on this metabolic plasticity at the onset of functional overload and how anabolic steroid administration modulates this response is not well understood. The purpose of this study was to determine if aging would alter overload-induced LDH activity and expression at the onset of functional overload and whether anabolic steroid administration would modulate this response. Five-month and 25-month male Fischer 344xF1 BRN were given nandrolone decanoate (ND) or sham injections for 14days and then the plantaris was functionally overloaded (OV) for 3days by synergist ablation. Aging reduced muscle LDH-A & LDH-B activity 70% (p<0.05). Aging also reduced LDH-A mRNA abundance, however there was no age effect on LDH-B mRNA abundance. In 5-month muscle, both ND and OV decreased LDH-A and LDH-B activity. However, there was no synergistic or additive effect. In 5-month muscle, ND and OV decreased LDH-A mRNA expression with no change in LDH-B expression. In 25-month muscle, ND and OV increased LDH-A and LDH-B activity. LDH-A mRNA expression was not altered by ND or OV in aged muscle. However, there was a main effect of OV to decrease LDH-B mRNA expression. There was also an age-induced LDH isoform shift. ND and OV treatment increased the "fast" LDH isoforms in aged muscle, whereas ND and OV increased the "slow" isoforms in young muscle. Our study provides evidence that aging alters aspects of skeletal muscle metabolic plasticity normally induced by overload and anabolic steroid administration.
Collapse
Affiliation(s)
- Tyrone A Washington
- Exercise Muscle Biology Laboratory, Human Performance Laboratory, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville AR 72701, United States; Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States.
| | - Julie M Healey
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Raymond W Thompson
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| | - Larry L Lowe
- Department of Biological and Physical Sciences, Benedict College, Columbia, SC 29208, United States
| | - James A Carson
- Integrative Muscle Biology Laboratory, Exercise Science Department, Norman J. Arnold School of Public Health, University of South Carolina, Columbia, SC 29208, United States
| |
Collapse
|
183
|
Hauser DN, Dillman AA, Ding J, Li Y, Cookson MR. Post-translational decrease in respiratory chain proteins in the Polg mutator mouse brain. PLoS One 2014; 9:e94646. [PMID: 24722488 PMCID: PMC3983222 DOI: 10.1371/journal.pone.0094646] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/19/2014] [Indexed: 01/20/2023] Open
Abstract
Mitochondrial DNA damage is thought to be a causal contributor to aging as mice with inactivating mutations in polymerase gamma (Polg) develop a progeroid phenotype. To further understand the molecular mechanisms underlying this phenotype, we used iTRAQ and RNA-Seq to determine differences in protein and mRNA abundance respectively in the brains of one year old Polg mutator mice compared to control animals. We found that mitochondrial respiratory chain proteins are specifically decreased in abundance in the brains of the mutator mice, including several nuclear encoded mitochondrial components. However, we found no evidence that the changes we observed in protein levels were the result of decreases in mRNA expression. These results show that there are post-translational effects associated with mutations in Polg.
Collapse
Affiliation(s)
- David N. Hauser
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- Brown University/National Institutes of Health Graduate Partnership Program, Department of Neuroscience, Brown University, Providence, Rhode Island, United States of America
| | - Allissa A. Dillman
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jinhui Ding
- Computational Biology Unit, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Yan Li
- Protein/Peptide Sequencing Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Mark R. Cookson
- Cell Biology and Gene Expression Section, Laboratory of Neurogenetics, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, United States of America
- * E-mail:
| |
Collapse
|
184
|
Duka T, Anderson SM, Collins Z, Raghanti MA, Ely JJ, Hof PR, Wildman DE, Goodman M, Grossman LI, Sherwood CC. Synaptosomal lactate dehydrogenase isoenzyme composition is shifted toward aerobic forms in primate brain evolution. BRAIN, BEHAVIOR AND EVOLUTION 2014; 83:216-30. [PMID: 24686273 PMCID: PMC4096905 DOI: 10.1159/000358581] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 01/13/2014] [Indexed: 01/11/2023]
Abstract
With the evolution of a relatively large brain size in haplorhine primates (i.e. tarsiers, monkeys, apes, and humans), there have been associated changes in the molecular machinery that delivers energy to the neocortex. Here we investigated variation in lactate dehydrogenase (LDH) expression and isoenzyme composition of the neocortex and striatum in primates using quantitative Western blotting and isoenzyme analysis of total homogenates and synaptosomal fractions. Analysis of isoform expression revealed that LDH in synaptosomal fractions from both forebrain regions shifted towards a predominance of the heart-type, aerobic isoform LDH-B among haplorhines as compared to strepsirrhines (i.e. lorises and lemurs), while in the total homogenate of the neocortex and striatum there was no significant difference in LDH isoenzyme composition between the primate suborders. The largest increase occurred in synapse-associated LDH-B expression in the neocortex, with an especially remarkable elevation in the ratio of LDH-B/LDH-A in humans. The phylogenetic variation in the ratio of LDH-B/LDH-A was correlated with species-typical brain mass but not the encephalization quotient. A significant LDH-B increase in the subneuronal fraction from haplorhine neocortex and striatum suggests a relatively higher rate of aerobic glycolysis that is linked to synaptosomal mitochondrial metabolism. Our results indicate that there is a differential composition of LDH isoenzymes and metabolism in synaptic terminals that evolved in primates to meet increased energy requirements in association with brain enlargement.
Collapse
Affiliation(s)
- Tetyana Duka
- Department of Anthropology, The George Washington University, Washington, DC
| | - Sarah M. Anderson
- Department of Anthropology, The George Washington University, Washington, DC
| | - Zachary Collins
- Department of Anthropology, The George Washington University, Washington, DC
| | - Mary Ann Raghanti
- Department of Anthropology and School of Biomedical Sciences, Kent State University, Kent, OH
| | - John J. Ely
- Alamogordo Primate Facility, Holloman Air Force Base, NM
| | - Patrick R. Hof
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Derek E. Wildman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Morris Goodman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI
| | - Chet C. Sherwood
- Department of Anthropology, The George Washington University, Washington, DC
| |
Collapse
|
185
|
Wu LE, Gomes AP, Sinclair DA. Geroncogenesis: metabolic changes during aging as a driver of tumorigenesis. Cancer Cell 2014; 25:12-9. [PMID: 24434207 PMCID: PMC3970212 DOI: 10.1016/j.ccr.2013.12.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 11/12/2013] [Accepted: 12/10/2013] [Indexed: 12/20/2022]
Abstract
Why does cancer risk increase as we age? Frequently attributed to the multi-hit hypothesis and the time required to accumulate genomic mutations, this question is a matter of ongoing debate. Here, we propose that the normal decline in oxidative metabolism during aging constitutes an early and important "hit" that drives tumorigenesis. Central to these metabolic changes are the sirtuins, a family of NAD(+)-dependent deacylases that have evolved as coordinators of physiological responses to nutrient intake and energetic demand. Thus, the modulation of sirtuins might be a fruitful approach to reversing the age-related metabolic changes that could underlie tumorigenesis.
Collapse
Affiliation(s)
- Lindsay E Wu
- Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Ana P Gomes
- Paul F. Glenn Labs for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - David A Sinclair
- Laboratory for Ageing Research, Department of Pharmacology, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia; Paul F. Glenn Labs for the Biological Mechanisms of Aging, Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
186
|
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci 2013; 71:2577-604. [PMID: 24363178 PMCID: PMC4059968 DOI: 10.1007/s00018-013-1539-2] [Citation(s) in RCA: 613] [Impact Index Per Article: 51.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 11/24/2013] [Accepted: 12/02/2013] [Indexed: 12/31/2022]
Abstract
Pyruvate is a keystone molecule critical for numerous aspects of eukaryotic and human metabolism. Pyruvate is the end-product of glycolysis, is derived from additional sources in the cellular cytoplasm, and is ultimately destined for transport into mitochondria as a master fuel input undergirding citric acid cycle carbon flux. In mitochondria, pyruvate drives ATP production by oxidative phosphorylation and multiple biosynthetic pathways intersecting the citric acid cycle. Mitochondrial pyruvate metabolism is regulated by many enzymes, including the recently discovered mitochondria pyruvate carrier, pyruvate dehydrogenase, and pyruvate carboxylase, to modulate overall pyruvate carbon flux. Mutations in any of the genes encoding for proteins regulating pyruvate metabolism may lead to disease. Numerous cases have been described. Aberrant pyruvate metabolism plays an especially prominent role in cancer, heart failure, and neurodegeneration. Because most major diseases involve aberrant metabolism, understanding and exploiting pyruvate carbon flux may yield novel treatments that enhance human health.
Collapse
Affiliation(s)
- Lawrence R Gray
- Department of Biochemistry, Fraternal Order of the Eagles Diabetes Research Center, and François M. Abboud Cardiovascular Research Center, Roy J. and Lucille A. Carver College of Medicine, University of Iowa, 51 Newton Rd, 4-403 BSB, Iowa City, IA, 52242, USA
| | | | | |
Collapse
|
187
|
Pre-symptomatic activation of antioxidant responses and alterations in glucose and pyruvate metabolism in Niemann-Pick Type C1-deficient murine brain. PLoS One 2013; 8:e82685. [PMID: 24367541 PMCID: PMC3867386 DOI: 10.1371/journal.pone.0082685] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Accepted: 10/26/2013] [Indexed: 11/19/2022] Open
Abstract
Niemann-Pick Type C (NPC) disease is an autosomal recessive neurodegenerative disorder caused in most cases by mutations in the NPC1 gene. NPC1-deficiency is characterized by late endosomal accumulation of cholesterol, impaired cholesterol homeostasis, and a broad range of other cellular abnormalities. Although neuronal abnormalities and glial activation are observed in nearly all areas of the brain, the most severe consequence of NPC1-deficiency is a near complete loss of Purkinje neurons in the cerebellum. The link between cholesterol trafficking and NPC pathogenesis is not yet clear; however, increased oxidative stress in symptomatic NPC disease, increases in mitochondrial cholesterol, and alterations in autophagy/mitophagy suggest that mitochondria play a role in NPC disease pathology. Alterations in mitochondrial function affect energy and neurotransmitter metabolism, and are particularly harmful to the central nervous system. To investigate early metabolic alterations that could affect NPC disease progression, we performed metabolomics analyses of different brain regions from age-matched wildtype and Npc1-/- mice at pre-symptomatic, early symptomatic and late stage disease by 1H-NMR spectroscopy. Metabolic profiling revealed markedly increased lactate and decreased acetate/acetyl-CoA levels in Npc1-/- cerebellum and cerebral cortex at all ages. Protein and gene expression analyses indicated a pre-symptomatic deficiency in the oxidative decarboxylation of pyruvate to acetyl-CoA, and an upregulation of glycolytic gene expression at the early symptomatic stage. We also observed a pre-symptomatic increase in several indicators of oxidative stress and antioxidant response systems in Npc1-/- cerebellum. Our findings suggest that energy metabolism and oxidative stress may present additional therapeutic targets in NPC disease, especially if intervention can be started at an early stage of the disease.
Collapse
|
188
|
Scialo F, Mallikarjun V, Stefanatos R, Sanz A. Regulation of lifespan by the mitochondrial electron transport chain: reactive oxygen species-dependent and reactive oxygen species-independent mechanisms. Antioxid Redox Signal 2013; 19:1953-69. [PMID: 22938137 DOI: 10.1089/ars.2012.4900] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
SIGNIFICANCE Aging is a consequence of the accumulation of cellular damage that impairs the capacity of an aging organism to adapt to stress. The Mitochondrial Free Radical Theory of Aging (MFRTA) has been one of the most influential ideas over the past 50 years. The MFRTA is supported by the accumulation of oxidative damage during aging along with comparative studies demonstrating that long-lived species or individuals produce fewer mitochondrial reactive oxygen species and have lower levels of oxidative damage. RECENT ADVANCES Recently, however, species that combine high oxidative damage with a longer lifespan (i.e., naked mole rats) have been described. Moreover, most of the interventions based on antioxidant supplementation do not increase longevity, as would be predicted by the MFRTA. Studies to date provide a clear understanding that mitochondrial function regulates the rate of aging, but the underlying mechanisms remain unclear. CRITICAL ISSUES Here, we review the reactive oxygen species (ROS)-dependent and ROS-independent mechanisms by which mitochondria can affect longevity. We discuss the role of different ROS (superoxide, hydrogen peroxide, and hydroxyl radical), both as oxidants as well as signaling molecules. We also describe how mitochondria can regulate longevity by ROS-independent mechanisms. We discuss alterations in mitochondrial DNA, accumulation of cellular waste as a consequence of glyco- and lipoxidative damage, and the regulation of DNA maintenance enzymes as mechanisms that can determine longevity without involving ROS. FUTURE DIRECTIONS We also show how the regulation of longevity is a complex process whereby ROS-dependent and ROS-independent mechanisms interact to determine the maximum lifespan of species and individuals.
Collapse
Affiliation(s)
- Filippo Scialo
- 1 Institute of Biomedical Technology and Tampere University Hospital , University of Tampere, Tampere, Finland
| | | | | | | |
Collapse
|
189
|
Bidirectional regulation of emotional memory by 5-HT1B receptors involves hippocampal p11. Mol Psychiatry 2013; 18:1096-105. [PMID: 23032875 PMCID: PMC3781317 DOI: 10.1038/mp.2012.130] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2012] [Revised: 07/16/2012] [Accepted: 07/23/2012] [Indexed: 12/25/2022]
Abstract
Cognitive impairments are common in depression and involve dysfunctional serotonin neurotransmission. The 5-HT1B receptor (5-HT(1B)R) regulates serotonin transmission, via presynaptic receptors, but can also affect transmitter release at heterosynaptic sites. This study aimed at investigating the roles of the 5-HT(1B)R, and its adapter protein p11, in emotional memory and object recognition memory processes by the use of p11 knockout (p11KO) mice, a genetic model for aspects of depression-related states. 5-HT(1B)R agonist treatment induced an impairing effect on emotional memory in wild type (WT) mice. In comparison, p11KO mice displayed reduced long-term emotional memory performance. Unexpectedly, 5-HT(1B)R agonist stimulation enhanced memory in p11KO mice, and this atypical switch was reversed after hippocampal adeno-associated virus mediated gene transfer of p11. Notably, 5-HT(1B)R stimulation increased glutamatergic neurotransmission in the hippocampus in p11KO mice, but not in WT mice, as measured by both pre- and postsynaptic criteria. Magnetic resonance spectroscopy demonstrated global hippocampal reductions of inhibitory GABA, which may contribute to the memory enhancement and potentiation of pre- and post-synaptic measures of glutamate transmission by a 5-HT(1B)R agonist in p11KO mice. It is concluded that the level of hippocampal p11 determines the directionality of 5-HT(1B)R action on emotional memory processing and modulates hippocampal functionality. These results emphasize the importance of using relevant disease models when evaluating the role of serotonin neurotransmission in cognitive deficits related to psychiatric disorders.
Collapse
|
190
|
Germline mitochondrial DNA mutations aggravate ageing and can impair brain development. Nature 2013; 501:412-5. [PMID: 23965628 PMCID: PMC3820420 DOI: 10.1038/nature12474] [Citation(s) in RCA: 222] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Accepted: 07/16/2013] [Indexed: 12/16/2022]
|
191
|
Tulpule K, Dringen R. Formaldehyde in brain: an overlooked player in neurodegeneration? J Neurochem 2013; 127:7-21. [PMID: 23800365 DOI: 10.1111/jnc.12356] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 06/12/2013] [Accepted: 06/21/2013] [Indexed: 02/06/2023]
Abstract
Formaldehyde is an environmental pollutant that is also generated in substantial amounts in the human body during normal metabolism. This aldehyde is a well-established neurotoxin that affects memory, learning, and behavior. In addition, in several pathological conditions, including Alzheimer's disease, an increase in the expression of formaldehyde-generating enzymes and elevated levels of formaldehyde in brain have been reported. This article gives an overview on the current knowledge on the generation and metabolism of formaldehyde in brain cells as well as on formaldehyde-induced alterations in metabolic processes. Brain cells have the potential to generate and to dispose formaldehyde. In culture, both astrocytes and neurons efficiently oxidize formaldehyde to formate which can be exported or further oxidized. Although moderate concentrations of formaldehyde are not acutely toxic for brain cells, exposure to formaldehyde severely affects their metabolism as demonstrated by the formaldehyde-induced acceleration of glycolytic flux and by the rapid multidrug resistance protein 1-mediated export of glutathione from both astrocytes and neurons. These formaldehyde-induced alterations in the metabolism of brain cells may contribute to the impaired cognitive performance observed after formaldehyde exposure and to the neurodegeneration in diseases that are associated with increased formaldehyde levels in brain.
Collapse
Affiliation(s)
- Ketki Tulpule
- Indian Institute of Science Education and Research, Pashan, Pune, India
| | | |
Collapse
|
192
|
Zhou Y, Dong Y, Xu Q, He Y, Tian S, Zhu S, Zhu Y, Dong X. Mussel oligopeptides ameliorate cognition deficit and attenuate brain senescence in D-galactose-induced aging mice. Food Chem Toxicol 2013; 59:412-20. [PMID: 23796539 DOI: 10.1016/j.fct.2013.06.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 06/04/2013] [Accepted: 06/09/2013] [Indexed: 11/27/2022]
Abstract
Dietary supplementation exerts beneficial effects in reducing incidence of chronic neurodegenerative diseases. The purpose of this study was to examine protective effects of mussel (Mytilus edulis) oligopeptides supplementation on brain function in D-galactose induced aging mice. Sixty female 8-month-old mice were randomly divided into five groups: vehicle control, D-galactose, and D-galactose combined with 200, 500, 1000 mg/kg mussel oligopeptides. The results showed that mussel oligopeptides could improve cognitive learning and memory ability and protect the hippocampal neurons. In addition, GSH, SOD and GSH-pX activities were increased and MDA level was significantly decreased in mice fed with mussel oligopeptides. It was also found that mussel oligopeptides supplementation prevented D-galactose-induced elevations of iNOS activity and NO production and lactate acid levels in brain. Moreover, PI3K and Akt genes were up-regulated by mussel oligopeptides supplementation. These findings suggest that mussel oligopeptides are able to enhance exercise capacity and protect against oxidative damage caused by D-galactose in aging model mice through regulating oxidation metabolism and PI3K/Akt/NOS signal pathway. Therefore, mussel oligopeptides are good materials for future development of healthcare products to combat age-related brain dysfunction and to improve healthy life span.
Collapse
Affiliation(s)
- Yue Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | | | | | | | | | | | | | | |
Collapse
|
193
|
Mehrotra A, Trigun SK. Moderate grade hyperammonemia activates lactate dehydrogenase-4 and 6-phosphofructo-2-kinase to support increased lactate turnover in the brain slices. Mol Cell Biochem 2013; 381:157-61. [PMID: 23703029 DOI: 10.1007/s11010-013-1698-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2013] [Accepted: 05/16/2013] [Indexed: 01/25/2023]
Abstract
Rapid metabolism of lactate is an important aspect of bioenergetic adaptation in the brain during non-physiological conditions. The low grade hyperammonemia (HA) is a common condition in the patients with chronic hepatic encephalopathy (HE); however, biochemistry of lactate turnover during low grade HA remains poorly defined. The present article describes profile of lactate dehydrogenase (LDH) isozymes vis-a-vis lactate level in the brain slices exposed with 0.1-0.5 mM ammonia, found to exist in the brain during chronic HE. A significant increment in LDH activity coincided with a similar increase in lactate level in the brain slices exposed with 0.5 mM ammonia. This was consistent with a selective increment of LDH-4 that synthesizes lactate from pyruvate with a concomitant decline in LDH-1 which catalyzes conversion of lactate to pyruvate; resulting into ~3-fold increase in LDH-4/LDH-1 ratio in those brain slices. The PFK2 domain of PFK2/FBPase2 (6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase) regulates glycolysis to maintain the pyruvate pool for lactate synthesis. The PFK2 expression was also observed to be increased ~2-fold (P < 0.001) in 0.5 mM ammonia treated brain slices. These findings provide enzymatic regulation of increased lactate turnover in the brain exposed with moderate HA.
Collapse
Affiliation(s)
- Aditi Mehrotra
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
194
|
Pinto M, Pickrell AM, Fukui H, Moraes CT. Mitochondrial DNA damage in a mouse model of Alzheimer's disease decreases amyloid beta plaque formation. Neurobiol Aging 2013; 34:2399-2407. [PMID: 23702344 DOI: 10.1016/j.neurobiolaging.2013.04.014] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Revised: 04/05/2013] [Accepted: 04/14/2013] [Indexed: 12/29/2022]
Abstract
Mitochondrial DNA (mtDNA) damage and the generation of reactive oxygen species have been associated with and implicated in the development and progression of Alzheimer's disease. To study how mtDNA damage affects reactive oxygen species and amyloid beta (Aβ) pathology in vivo, we generated an Alzheimer's disease mouse model expressing an inducible mitochondrial-targeted endonuclease (Mito-PstI) in the central nervous system. Mito-PstI cleaves mtDNA causing mostly an mtDNA depletion, which leads to a partial oxidative phosphorylation defect when expressed during a short period in adulthood. We found that a mild mitochondrial dysfunction in adult neurons did not exacerbate Aβ accumulation and decreased plaque pathology. Mito-PstI expression altered the cleavage pathway of amyloid precursor protein without increasing oxidative stress in the brain. These data suggest that mtDNA damage is not a primary cause of Aβ accumulation.
Collapse
Affiliation(s)
- Milena Pinto
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Alicia M Pickrell
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Hirokazu Fukui
- Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Carlos T Moraes
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL, USA.,Neuroscience Graduate Program, University of Miami Miller School of Medicine, Miami, FL, USA.,Department of Cell Biology and Anatomy, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
195
|
Metabolic changes in the auditory cortex in presbycusis demonstrated by MR spectroscopy. Exp Gerontol 2013; 48:795-800. [PMID: 23648586 DOI: 10.1016/j.exger.2013.04.012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 04/04/2013] [Accepted: 04/25/2013] [Indexed: 11/20/2022]
Abstract
In humans, aging is accompanied by the deterioration of the hearing function--presbycusis. The major etiology for presbycusis is the loss of hair cells in the inner ear; less well known are changes in the central auditory system. Therefore, we used 1H magnetic resonance spectroscopy at 3T tomograph to examine metabolite levels in the auditory cortex of three groups of subjects: young healthy subjects less than 30 years old and subjects older than 65 years either with mild presbycusis corresponding to their age or with expressed presbycusis. Hearing function in all subjects was examined by pure tone audiometry (125-16,000 Hz). Significant differences were found in the concentrations of glutamate and N-acetylaspartate, with lower levels in aged subjects. Lactate was particularly increased in subjects with expressed presbycusis. Significant differences were not found in other metabolites, including GABA, between young and elderly subjects. The results demonstrate that the age-related changes of the inner ear are accompanied by a decrease in the excitatory neurotransmitter glutamate as well as a lactate increase in the auditory cortex that is more expressed in elderly subjects with large hearing threshold shifts.
Collapse
|
196
|
Zhao D, Zou SW, Liu Y, Zhou X, Mo Y, Wang P, Xu YH, Dong B, Xiong Y, Lei QY, Guan KL. Lysine-5 acetylation negatively regulates lactate dehydrogenase A and is decreased in pancreatic cancer. Cancer Cell 2013; 23:464-76. [PMID: 23523103 PMCID: PMC3885615 DOI: 10.1016/j.ccr.2013.02.005] [Citation(s) in RCA: 264] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 12/07/2012] [Accepted: 02/06/2013] [Indexed: 12/21/2022]
Abstract
Tumor cells commonly have increased glucose uptake and lactate accumulation. Lactate is produced from pyruvate by lactate dehydrogenase A (LDH-A), which is frequently overexpressed in tumor cells and is important for cell growth. Elevated transcription by c-Myc or HIF1α may contribute to increased LDH-A in some cancer types. Here, we show that LDH-A is acetylated at lysine 5 (K5) and that this acetylation inhibits LDH-A activity. Furthermore, the K5-acetylated LDH-A is recognized by the HSC70 chaperone and delivered to lysosomes for degradation. Replacement of endogenous LDH-A with an acetylation mimetic mutant decreases cell proliferation and migration. Importantly, K5 acetylation of LDH-A is reduced in human pancreatic cancers. Our study reveals a mechanism of LDH-A upregulation in pancreatic cancers.
Collapse
Affiliation(s)
- Di Zhao
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Shao-Wu Zou
- Department of Hepatopancreatobiliary Surgery, Shanghai Tenth People’s Hospital, Tong Ji University, Shanghai 200072, China
| | - Ying Liu
- Department of Pathology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xin Zhou
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan Mo
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, Fudan University, Shanghai 200032, China
| | - Ping Wang
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Yan-Hui Xu
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- School of Life Sciences, Fudan University, Shanghai 200032, China
| | - Bo Dong
- Department of Hepatopancreatobiliary Surgery, Shanghai Tenth People’s Hospital, Tong Ji University, Shanghai 200072, China
| | - Yue Xiong
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- School of Life Sciences, Fudan University, Shanghai 200032, China
- Department of Biochemistry and Biophysics, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, NC 27599, USA
- Correspondence: (Y.X.), (Q.-Y.L.), (K.-L.G.)
| | - Qun-Ying Lei
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, Fudan University, Shanghai 200032, China
- Correspondence: (Y.X.), (Q.-Y.L.), (K.-L.G.)
| | - Kun-Liang Guan
- Ministry of Education Key Laboratory of Molecular Medicine, Shanghai Medical College and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai 200032, China
- Laboratory of Molecular Cell Biology, Institute of Biomedical Science, Fudan University, Shanghai 200032, China
- Department of Biochemistry and Molecular Biology, Fudan University, Shanghai 200032, China
- Department of Pharmacology and Moores Cancer Center, University of California San Diego, La Jolla, CA 92037-0695, USA
- Correspondence: (Y.X.), (Q.-Y.L.), (K.-L.G.)
| |
Collapse
|
197
|
Olson L, Faulkner S, Lundströmer K, Kerenyi A, Kelen D, Chandrasekaran M, Ådén U, Olson L, Golay X, Lagercrantz H, Robertson NJ, Galter D. Comparison of three hypothermic target temperatures for the treatment of hypoxic ischemia: mRNA level responses of eight genes in the piglet brain. Transl Stroke Res 2013; 4:248-257. [PMID: 24323276 DOI: 10.1007/s12975-012-0215-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Revised: 09/06/2012] [Accepted: 09/25/2012] [Indexed: 11/30/2022]
Abstract
Hypothermia can reduce neurodevelopmental disabilities in asphyxiated newborn infants. However, the optimal cooling temperature for neuroprotection is not well defined. We studied the effects of transient piglet brain hypoxic ischemia (HI) on transcriptional activity of eight genes and if mRNA level alterations could be counteracted by whole body cooling to 35, 33.5 or 30 °C. BDNF mRNA was globally upregulated by the insult, and none of the cooling temperatures counteracted this change. In contrast, MANF mRNA was downregulated, and these changes were modestly counteracted in different brain regions by hypothermic treatment at 33.5 °C, while 30 °C aggravated the MANF mRNA loss. MAP2 mRNA was markedly downregulated in all brain regions except striatum, and cooling to 33.5 °C modestly counteract this downregulation in the cortex cerebri. There was a tendency for GFAP mRNA levels in core, but not mantle regions to be downregulated and for these changes to be modestly counteracted by cooling to 33.5 or 35 °C. Cooling to 30 °C caused global GFAP mRNA decrease. HSP70 mRNA tended to become upregulated by HI and to be more pronounced in cortex and CA1 of hippocampus during cooling to 33.5 °C. We conclude that HI causes alterations of mRNA levels of many genes in superficial and deep piglet brain areas. Some of these changes may be beneficial, others detrimental, and lowering body temperature partly counteracts some, but not all changes. There may be general differences between core and mantle regions, as well as between the different cooling temperatures for protection. Comparing the three studied temperatures, cooling to 33.5 °C, appears to provide the best cooling temperature compromise.
Collapse
Affiliation(s)
- Linus Olson
- Department of Women's and Children's Health, Astrid Lindgren Children's Hospital, Karolinska Institutet, 17176, Stockholm, Sweden,
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Rayhan RU, Raksit MP, Timbol CR, Adewuyi O, VanMeter JW, Baraniuk JN. Prefrontal lactate predicts exercise-induced cognitive dysfunction in Gulf War Illness. Am J Transl Res 2013; 5:212-223. [PMID: 23573365 PMCID: PMC3612516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/02/2013] [Indexed: 06/02/2023]
Abstract
BACKGROUND 25% to 30% of Veterans deployed to the 1990 to 1991 Persian Gulf War exhibit an idiopathic syndrome of chronic fatigue, exertional exhaustion, pain, hyperalgesia, cognitive and affective dysfunction known as Gulf War Illness (GWI). METHODS Gulf War veterans (n=15) and sedentary veteran and civilian controls (n=11) completed a 2-back working memory test in an fMRI before and after two bicycle exercise stress test. We performed single voxel (1)H MRS to evaluate brain metabolic differences in the left anterior cingulate cortex and the changes associated with exercise. RESULTS Eight GWI subjects increased their 2-back scores after exercise (labelled increasers) and seven GWI subjects decreased their 2-back scores after exercise (labelled decreasers). These phenotypic responses were absent for controls. Decreasers had significantly elevated prefrontal lactate levels compared to Increasers prior to completion of the exercise stress tests. Evaluation of prefrontal lactate levels prior to exercise demonstrated predictability (ROC analysis) of the two diametrically opposed subgroups. CONCLUSION Prefrontal lactate levels may be a potential biomarker for exercise-induced subgroups in GWI. The alterations in brain energetics may be in part responsible for a subgroup of GWI and underlie some of the symptoms present in the patient population.
Collapse
Affiliation(s)
- Rakib U Rayhan
- Division of Rheumatology, Immunology and Allergy; Department of Medicine, Georgetown University Medical Center Room 3004F3rd Floor PHC Building, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| | - Megna P Raksit
- Georgetown University Department of Psychology; Cognitive Neurogenetics Laboratory305 White-Gravenor Hall, 3700 O Street, NW, Washington, DC 20057, USA
| | - Christian R Timbol
- Division of Rheumatology, Immunology and Allergy; Department of Medicine, Georgetown University Medical Center Room 3004F3rd Floor PHC Building, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| | - Oluwatoyin Adewuyi
- Division of Rheumatology, Immunology and Allergy; Department of Medicine, Georgetown University Medical Center Room 3004F3rd Floor PHC Building, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| | - John W VanMeter
- Department of Neurology, Center for Functional and Molecular Imaging; Georgetown University Medical Center Suite LM14Preclinical Sciences Building, 3900 Reservoir Road, NW Washington, DC 20057, USA
| | - James N Baraniuk
- Division of Rheumatology, Immunology and Allergy; Department of Medicine, Georgetown University Medical Center Room 3004F3rd Floor PHC Building, 3800 Reservoir Road, NW, Washington, DC 20007, USA
| |
Collapse
|
199
|
Ovariectomy induces a shift in fuel availability and metabolism in the hippocampus of the female transgenic model of familial Alzheimer's. PLoS One 2013; 8:e59825. [PMID: 23555795 PMCID: PMC3608536 DOI: 10.1371/journal.pone.0059825] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Accepted: 02/19/2013] [Indexed: 11/19/2022] Open
Abstract
Previously, we demonstrated that reproductive senescence in female triple transgenic Alzheimer's (3×TgAD) mice was paralleled by a shift towards a ketogenic profile with a concomitant decline in mitochondrial activity in brain, suggesting a potential association between ovarian hormone loss and alteration in the bioenergetic profile of the brain. In the present study, we investigated the impact of ovariectomy and 17β-estradiol replacement on brain energy substrate availability and metabolism in a mouse model of familial Alzheimer's (3×TgAD). Results of these analyses indicated that ovarian hormones deprivation by ovariectomy (OVX) induced a significant decrease in brain glucose uptake indicated by decline in 2-[18F]fluoro-2-deoxy-D-glucose uptake measured by microPET-imaging. Mechanistically, OVX induced a significant decline in blood-brain-barrier specific glucose transporter expression, hexokinase expression and activity. The decline in glucose availability was accompanied by a significant rise in glial LDH5 expression and LDH5/LDH1 ratio indicative of lactate generation and utilization. In parallel, a significant rise in ketone body concentration in serum occurred which was coupled to an increase in neuronal MCT2 expression and 3-oxoacid-CoA transferase (SCOT) required for conversion of ketone bodies to acetyl-CoA. In addition, OVX-induced decline in glucose metabolism was paralleled by a significant increase in Aβ oligomer levels. 17β-estradiol preserved brain glucose-driven metabolic capacity and partially prevented the OVX-induced shift in bioenergetic substrate as evidenced by glucose uptake, glucose transporter expression and gene expression associated with aerobic glycolysis. 17β-estradiol also partially prevented the OVX-induced increase in Aβ oligomer levels. Collectively, these data indicate that ovarian hormone loss in a preclinical model of Alzheimer's was paralleled by a shift towards the metabolic pathway required for metabolism of alternative fuels in brain with a concomitant decline in brain glucose transport and metabolism. These findings also indicate that estrogen plays a critical role in sustaining brain bioenergetic capacity through preservation of glucose metabolism.
Collapse
|
200
|
Zhang X, Wu J, Liu H, Zhang X. Age- and gender-related metabonomic alterations in striatum and cerebellar cortex in rats. Brain Res 2013; 1507:28-34. [PMID: 23454230 DOI: 10.1016/j.brainres.2013.02.033] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 01/21/2013] [Accepted: 02/19/2013] [Indexed: 11/28/2022]
Abstract
In order to identify the neurochemical alterations in motor associated subcortical nuclei, and enhance our understanding of neurophysiology of progressive reduction in fine motor control with aging, the metabolic changes in striatum and cerebellar cortex in SD rats along with aging were investigated using a metabonomic approach based on high resolution "magic angle spinning" 1H-NMR spectroscopy and partial least squares-discriminant analysis. It was found that there were increased myo-inositol and lactate, and decreased taurine in these two brain regions of old rats. The above changes may be a marker for alterations of neuronal cells, which reduce fine motor control. Besides, some of the metabolites are gender-related and region-specific. Old female rats had decreased glutamate and increased creatine in striatum, while old male rats had increased choline in striatum, and increased GABA in cerebellar cortex, respectively. However, further analyses showed that most of the metabolites in male rats were not distinctively different with those of female ones except choline, which was in a relative lower level in striatum of male rats. All this results suggest that energy metabolism is an important indication of age-related change, which is not only in male, but also in female rats.
Collapse
Affiliation(s)
- Xianrong Zhang
- Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan 430071, China.
| | | | | | | |
Collapse
|