151
|
Rensing H, Bauer I, Kubulus D, Wolf B, Winning J, Ziegeler S, Bauer M. HEME OXYGENASE-1 GENE EXPRESSION IN PERICENTRAL HEPATOCYTES THROUGH β1-ADRENOCEPTOR STIMULATION. Shock 2004; 21:376-87. [PMID: 15179140 DOI: 10.1097/00024382-200404000-00014] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Induction of heme oxygenase (HO)-1 may confer hepatocellular protection, e.g., in reperfusion injury. Previous reports suggest that intracellular cAMP up-regulates HO-1. The aim of the present study was to assess the role of adrenoceptor agonists as a means to induce HO-1 and to assess molecular mechanisms of HO-1 gene expression by adrenoceptor agonists. Induction of HO-1 in primary cultures of hepatocytes and in rat liver in vivo was assessed by Northern blot, Western blot, and immunohistochemistry. The beta-receptor agonists (+/-)isoproterenol and (-)isoproterenol induced HO-1 in primary cultures of hepatocytes but not the inactive enantiomer (+)isoproterenol. No induction of HO-1 was observed after alpha1, alpha2, beta2, or beta 3 agonists. beta1-Receptor agonists dobutamine and xamoterol induced HO-1 dose dependently, whereas the beta1-receptor antagonist metoprolol attenuated HO-1 induction by beta1-receptor agonists. Furthermore, 8 Br-cAMP and forskolin induced HO-1. Inhibition of protein kinase A (PKA) abolished induction by dobutamine and 8 Br-cAMP. Parallel changes were observed for the transcription factor AP-1. In vivo infusion of dobutamine for 6 h induced HO-1 in rat livers. Immunohistochemical detection of HO-1 revealed a pericentral expression pattern of HO-1 in hepatocytes, i.e., the area at risk for ischemia/reperfusion injury. These results suggest induction of HO-1 by beta1-adrenoceptor agonists via the PKA pathway in hepatocytes, reflecting a potential means for "pharmacological preconditioning."
Collapse
Affiliation(s)
- Hauke Rensing
- Department of Anesthesiology and Critical Care Medicine, University of the Saarland, 66421 Homburg, Germany
| | | | | | | | | | | | | |
Collapse
|
152
|
Atzori L, Chua F, Dunsmore SE, Willis D, Barbarisi M, McAnulty RJ, Laurent GJ. Attenuation of bleomycin induced pulmonary fibrosis in mice using the heme oxygenase inhibitor Zn-deuteroporphyrin IX-2,4-bisethylene glycol. Thorax 2004; 59:217-23. [PMID: 14985557 PMCID: PMC1746982 DOI: 10.1136/thx.2003.008979] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
BACKGROUND Pulmonary fibrosis is associated with a poor prognosis. The pathogenesis of fibrotic lung disorders remains unclear, but the extent of tissue damage due to the persistent presence of oxidants or proteases is believed to be important. The heme degrading enzyme heme oxygenase (HO) has been found to be expressed in experimental fibrosis, and generation of free iron and carbon monoxide (CO) by HO has been implicated in oxidant induced lung damage. A study was undertaken to examine the effects of the HO inhibitor Zn-deuteroporphyrin-IX-2,4-bisethylene glycol (Zndtp) on the development of pulmonary fibrosis in the bleomycin model of lung injury and repair. METHODS Zndtp (10 micro mol/kg) was administered subcutaneously twice daily to mice 1 week following the intratracheal instillation of 0.025 U bleomycin. Animals were killed 10 or 21 days after bleomycin instillation and indices of lung damage and fibrosis were evaluated. RESULTS Bleomycin treatment induced pulmonary cytotoxicity, increased levels of active transforming growth factor beta (TGF-beta), enhanced lung collagen accumulation, and decreased glutathione content. Zndtp administration significantly attenuated these indices. CONCLUSIONS Administration of Zndtp in the bleomycin model resulted in appreciable alveolar cytoprotection and amelioration of pulmonary fibrosis. This molecule and its analogues may warrant further consideration in the treatment of acute lung injury and fibrotic lung disorders.
Collapse
Affiliation(s)
- L Atzori
- Centre for Respiratory Research, Royal Free and University College London Medical School, London, UK.
| | | | | | | | | | | | | |
Collapse
|
153
|
Asikainen TM, White CW. Pulmonary antioxidant defenses in the preterm newborn with respiratory distress and bronchopulmonary dysplasia in evolution: implications for antioxidant therapy. Antioxid Redox Signal 2004; 6:155-67. [PMID: 14713347 DOI: 10.1089/152308604771978462] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Preterm neonates with respiratory distress are exposed not only to the relative hyperoxia ex utero, but also to life-saving mechanical ventilation with high inspired oxygen (O2) concentrations, which is considered a major risk factor for the development of bronchopulmonary dysplasia, also referred to as chronic lung disease of infancy. O2 toxicity is mediated through reactive oxygen species (ROS). ROS are constantly generated as byproducts of normal cellular metabolism, but their production is increased in various pathological states, and also upon exposure to exogenous oxidants, such as hyperoxia. Antioxidants, either enzymatic or nonenzymatic, protect the lung against the deleterious effects of ROS. Expression of various pulmonary antioxidants is developmentally regulated in many species so that the expression is increased toward term gestation, as if in anticipation of birth into an O2-rich extrauterine environment. Therefore, the lungs of prematurely born infants may be ill-adapted for protection against ROS. While premature birth interrupts normal lung development, the clinical condition necessitating the administration of high inhaled O2 concentrations may lead to permanent impairment of alveolar development. An understanding of the processes involved in lung growth, especially in alveolarization and vascularization, as well as in repair of injured lung tissue, may facilitate development of strategies to enhance these processes.
Collapse
Affiliation(s)
- Tiina M Asikainen
- Department of Pediatrics, National Jewish Medical and Research Center, Denver, CO 80206, USA
| | | |
Collapse
|
154
|
Gong P, Cederbaum AI, Nieto N. Heme oxygenase-1 protects HepG2 cells against cytochrome P450 2E1-dependent toxicity. Free Radic Biol Med 2004; 36:307-18. [PMID: 15036350 DOI: 10.1016/j.freeradbiomed.2003.10.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2003] [Revised: 09/29/2003] [Accepted: 10/27/2003] [Indexed: 11/22/2022]
Abstract
The inducible form of heme oxygenase (HO-1) is increased during oxidative injury and HO-1 is believed to be an important defense mechanism against such injury. Arachidonic acid (AA) and l-buthionine-(S,R)-sulfoximine (BSO), which lowers GSH levels, cause cytochrome P450 2E1 (CYP2E1)-dependent oxidative injuries in HepG2 cells (E47 cells). Treatment of E47 cells with 50 microM AA or 100 microM BSO for 48 h was recently shown to increase HO-1 mRNA, protein, and activity. The possible functional significance of this increase in protecting against CYP2E1-dependent toxicity was evaluated in the current study. The treatment with AA and BSO caused loss of cell viability (40 and 50%, respectively) in E47 cells. Chromium mesoporphyrin (CrMP), an inhibitor of HO activity, significantly potentiated this cytotoxicity. ROS production, lipid peroxidation, and the decline in mitochondrial membrane potential produced by AA and BSO were also enhanced in the presence of CrMP in E47 cells. Infection with an adenovirus expressing rat HO-1 protected E47 cells from AA toxicity, increasing cell viability and reducing LDH release. HO catalyzes formation of CO, bilirubin, and iron from the oxidation of heme. Bilirubin was not protective whereas iron catalyzed the AA toxicity. The carbon monoxide (CO) scavenger hemoglobin enhanced AA toxicity in E47 cells analogous to CrMP, whereas exposure to exogenous CO partially reduced AA toxicity and the enhanced AA toxicity by CrMP. Addition of exogenous CO to the cells inhibited CYP2E1 catalytic activity, as did overexpression of the rat HO-1 adenovirus. These results suggest that induction of HO-1 protects against CYP2E1-dependent toxicity and this protection may be mediated in part via production of CO and CO inhibition of CYP2E1 activity.
Collapse
Affiliation(s)
- Pengfei Gong
- Department of Pharmacology and Biological Chemistry, Mount Sinai School of Medicine, New York, NY 10029, USA
| | | | | |
Collapse
|
155
|
Lindenblatt N, Bordel R, Schareck W, Menger MD, Vollmar B. Vascular heme oxygenase-1 induction suppresses microvascular thrombus formation in vivo. Arterioscler Thromb Vasc Biol 2004; 24:601-6. [PMID: 14739126 DOI: 10.1161/01.atv.0000118279.74056.8a] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVE By heme degradation, heme oxygenase-1 (HO-1) provides endogenous carbon monoxide and bilirubin, both of which play major roles in vascular biology. The current study aimed to examine whether induction of HO-1 and its byproducts modulate the process of microvascular thrombus formation in vivo. METHODS AND RESULTS In individual microvessels of mouse cremaster muscle preparations, ferric chloride-induced thrombus formation was analyzed using intravital fluorescence microscopy. When mice were pretreated with an intraperitoneal injection of hemin, a HO-1 inducer, immunohistochemistry and Western blot protein analysis of cremaster muscle tissue displayed a marked induction of HO-1. In these animals, superfusion with ferric chloride solution induced arteriolar and venular thrombus formation, which, however, was significantly delayed when compared with thrombus formation in animals without HO-1 induction. The delay in thrombus formation in hemin-treated mice was completely blunted by tin protoporphyrin-IX, a HO-1 inhibitor, but not by copper protoporphyrin-IX, which does not inhibit the enzyme. Coadministration of the vitamin E analogue Trolox in HO-1-blocked animals almost completely restored the delay in thrombus formation, implying that, besides CO, the antioxidant HO pathway metabolite bilirubin mainly contributes to the antithrombotic property of HO-1. This was further supported by the fact that bilirubin was found as effective as hemin in delay of ferric chloride-induced thrombus formation. Animals with HO-1 induction revealed reduced P-selectin protein expression in cremaster muscle tissue, which most probably presented the molecular basis for delayed thrombus growth. CONCLUSIONS Local induction of HO-1 activity may be of preventive and therapeutic value for clinical disorders with increased risk of thrombotic events.
Collapse
Affiliation(s)
- N Lindenblatt
- Department of Experimental Surgery, University of Rostock, Rostock, Germany
| | | | | | | | | |
Collapse
|
156
|
Otterbein LE, Otterbein SL, Ifedigbo E, Liu F, Morse DE, Fearns C, Ulevitch RJ, Knickelbein R, Flavell RA, Choi AM. MKK3 mitogen-activated protein kinase pathway mediates carbon monoxide-induced protection against oxidant-induced lung injury. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 163:2555-63. [PMID: 14633627 PMCID: PMC1892354 DOI: 10.1016/s0002-9440(10)63610-3] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The stress-inducible gene heme oxygenase (HO-1) has previously been shown to provide cytoprotection against oxidative stress. The mechanism(s) by which HO-1 provides this cytoprotection is poorly understood. We demonstrate here that carbon monoxide (CO), a byproduct released during the degradation of heme by HO, plays a major role in mediating the cytoprotection against oxidant-induced lung injury. We show in vitro that CO protects cultured epithelial cells from hyperoxic damage. By using dominant negative mutants and mice deficient in the genes for the various MAP kinases, we demonstrate that the cytoprotective effects of CO are mediated by selective activation of the MKK3/p38 beta protein MAP kinase pathway. In vivo, our experiments demonstrate that CO at a low concentration protects the lungs, extends the survival of the animals, and exerts potent anti-inflammatory effects with reduced inflammatory cell influx into the lungs and marked attenuation in the expression of pro-inflammatory cytokines.
Collapse
Affiliation(s)
- Leo E Otterbein
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Li W, Iyer S, Lu L, Buelow R, Fung JJ, Rao AS, Woo J, Qian S. Attenuation of aortic graft arteriosclerosis by systemic administration of Allotrap peptide RDP58. Transpl Int 2003. [DOI: 10.1111/j.1432-2277.2003.tb00253.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
158
|
Fonseca AM, Pereira CF, Porto G, Arosa FA. Red blood cells upregulate cytoprotective proteins and the labile iron pool in dividing human T cells despite a reduction in oxidative stress. Free Radic Biol Med 2003; 35:1404-16. [PMID: 14642388 DOI: 10.1016/j.freeradbiomed.2003.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We have recently reported that red blood cells (RBC) promote T cell growth and survival by inhibiting activation-induced T cell death. In the present study, we have examined parameters of oxidative stress and intracellular iron in activated T cells and correlated these data with the expression of ferritin, heme oxygenase-1 (HO-1), and the transferrin receptor CD71. T cells growing in the presence of RBC had reduced levels of reactive oxygen species (ROS) and oxidatively modified proteins, suggesting that RBC efficiently counteracted ROS production on the activated T cells. Flow cytometry and immunodetection demonstrated that T cells dividing in the presence of RBC had increased levels of intracellular ferritin rich in L-subunits and HO-1 along with a downmodulation in CD71 expression. Finally, using the fluorescent iron indicator calcein and flow cytometry analysis, we were able to show that a relative amount of the labile iron pool (LIP) was upregulated in T cells growing in the presence of RBC. These findings are consistent with a typical response to iron overload. However, neither heme compounds nor ferric iron reproduced the levels of expansion and survival of T cells induced by intact RBC. Altogether, these data suggest that RBC inhibit apoptosis of activated T cells by a combination of ROS scavenging and upregulation of cytoprotective proteins such as ferritin and HO-1, which may counteract a possible toxic effect of the increased intracellular free iron.
Collapse
Affiliation(s)
- Ana Mafalda Fonseca
- Laboratory of Molecular Immunology, Institute for Molecular and Cell Biology (IBMC), Porto, Portugal
| | | | | | | |
Collapse
|
159
|
Frank J, Lambert C, Biesalski HK, Thews O, Vaupel P, Kelleher DK. Intensified oxidative and nitrosative stress following combined ALA-based photodynamic therapy and local hyperthermia in rat tumors. Int J Cancer 2003; 107:941-8. [PMID: 14601053 DOI: 10.1002/ijc.11507] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Oxidative stress-related changes in tumors upon localized hyperthermia (HT), 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT) and their combination (ALA+HT) were examined after the observation that the antitumor effects of ALA-PDT could be significantly enhanced upon simultaneous application of HT. Rats bearing s.c. DS-sarcomas (0.6-1.0 ml) on the hind foot dorsum were anesthetized and underwent one of the following treatments: (i) ALA-PDT (375 mg/kg 5-ALA i.v.); (ii) localized HT, 43 degrees C for 60 min; (iii) combined ALA-PDT and HT [=ALA+HT]. Appropriate control experiments were also performed. After treatment, tumors were excised and rapidly frozen for later analysis of nitrosative stress (protein nitration), apoptotic events (TUNEL, caspase activation, DNA and RNA fragmentation), expression of heat shock proteins (hsp70 and HO-1), glutathione (GSH) levels and glutathione peroxidase (GPx) activity. Protein nitration was found to increase upon treatment, being especially pronounced in the ALA+HT group, and could partially be related to areas surrounding microvessels. The extent of nitrosative stress also correlated well with the appearance of the markers of apoptosis and the inhibition of in vivo tumor growth as seen in a previous study. GSH levels decreased upon treatment, the reduction being most prominent in the ALA-PDT and ALA+HT groups. GPx activity, however, showed a significant decrease only in the ALA-PDT group. Whereas hsp70 expression increased upon HT, ALA-PDT caused a decrease, and these opposing effects were nullified with ALA+HT. The results obtained point to a number of cellular mechanisms-including effects on cellular defense mechanisms and an abrogation of the heat shock defense mechanism-that may interact to achieve the potentiated tumor response rate seen in vivo upon combined treatment.
Collapse
Affiliation(s)
- Juergen Frank
- Institute of Biological Chemistry and Nutrition, University of Hohenheim, Fruwirthstrasse 12, D-70593 Stuttgart, Germany.
| | | | | | | | | | | |
Collapse
|
160
|
Wagener FADTG, Volk HD, Willis D, Abraham NG, Soares MP, Adema GJ, Figdor CG. Different faces of the heme-heme oxygenase system in inflammation. Pharmacol Rev 2003; 55:551-71. [PMID: 12869663 DOI: 10.1124/pr.55.3.5] [Citation(s) in RCA: 430] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The heme-heme oxygenase system has recently been recognized to possess important regulatory properties. It is tightly involved in both physiological as well as pathophysiological processes, such as cytoprotection, apoptosis, and inflammation. Heme functions as a double-edged sword. In moderate quantities and bound to protein, it forms an essential element for various biological processes, but when unleashed in large amounts, it can become toxic by mediating oxidative stress and inflammation. The effect of this free heme on the vascular system is determined by extracellular factors, such as hemoglobin/heme-binding proteins, haptoglobin, albumin, and hemopexin, and intracellular factors, including heme oxygenases and ferritin. Heme oxygenase (HO) enzyme activity results in the degradation of heme and the production of iron, carbon monoxide, and biliverdin. All these heme-degradation products are potentially toxic, but may also provide strong cytoprotection, depending on the generated amounts and the microenvironment. Pre-induction of HO activity has been demonstrated to ameliorate inflammation and mediate potent resistance to oxidative injury. A better understanding of the complex heme-heme
Collapse
Affiliation(s)
- Frank A D T G Wagener
- Department of Tumor Immunology, University Medical Center Nijmegen, P.O. Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
161
|
Abstract
Administration of high concentrations of oxygen (hyperoxia) is a mainstay of supportive treatment for patients suffering from severe respiratory failure. However, hyperoxia, by generating excess systemic reactive oxygen species (ROS), can exacerbate organ failure by causing cellular injury. Therefore, a better understanding of the signal transduction pathways in hyperoxia may provide the basis for effective therapeutic interventions. The major biological effects of hyperoxia include cell death, induction of stress responses, inflammation, and modulation of cell growth. Major signaling pathways that appear to be involved include the mitogen-activated protein kinases (MAPKs), AP-1, and NF-kappa B, which converge, ultimately, to the expression of a range of stress response genes, cytokines, and growth factors.
Collapse
Affiliation(s)
- Patty J Lee
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA.
| | | |
Collapse
|
162
|
Otterbein LE, Soares MP, Yamashita K, Bach FH. Heme oxygenase-1: unleashing the protective properties of heme. Trends Immunol 2003; 24:449-55. [PMID: 12909459 DOI: 10.1016/s1471-4906(03)00181-9] [Citation(s) in RCA: 967] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heme oxygenase (HO)-1 catabolizes heme into three products: carbon monoxide (CO), biliverdin (which is rapidly converted to bilirubin) and free iron (which leads to the induction of ferritin, an iron-binding protein). HO-1 serves as a "protective" gene by virtue of the anti-inflammatory, anti-apoptotic and anti-proliferative actions of one or more of these three products. Administration of CO, biliverdin, bilirubin or iron-binding compounds is protective in rodent disease models of ischemia-reperfusion injury, allograft and xenograft survival, intimal hyperplasia following balloon injury or as seen in chronic graft rejection and others. We suggest that the products of HO-1 action could be valuable therapeutic agents and speculate that HO-1 functions as a "therapeutic funnel", mediating the beneficial effects attributed to other molecules, such as interleukin-10 (IL-10), inducible nitric oxide synthase (NOS2; iNOS) and prostaglandins. This Review is the third in a series on the regulation of the immune system by metabolic pathways.
Collapse
Affiliation(s)
- Leo E Otterbein
- Division of Pulmonary and Critical Care Medicine, Montifiore University Hospital, University of Pittsburgh School of Medicine, 3459 5th Avenue, Pittsburgh, PA 15213, USA
| | | | | | | |
Collapse
|
163
|
Li L, Grenard P, Nhieu JTV, Julien B, Mallat A, Habib A, Lotersztajn S. Heme oxygenase-1 is an antifibrogenic protein in human hepatic myofibroblasts. Gastroenterology 2003; 125:460-9. [PMID: 12891549 DOI: 10.1016/s0016-5085(03)00906-5] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Hepatic myofibroblasts play a key role in the development of liver fibrosis associated with chronic liver diseases. We have shown that oxidative stress is a messenger of 15-deoxy-delta-12,14-prostaglandin J2 (15-d-PGJ2) in human hepatic myofibroblasts. The aim of the present study was to investigate the role of a stress-inducible protein, heme oxygenase-1 (HO-1), in the action of 15-d-PGJ2. METHODS Expression of HO-1 was characterized in biopsy specimens of normal human liver and active cirrhosis by immunohistochemistry, and in cultured human hepatic myofibroblasts by Northern and Western blot analysis. Functional studies also were performed in cultured human hepatic myofibroblasts. RESULTS Immunohistochemistry showed that in biopsy specimens from normal livers, HO-1 protein expression was restricted to Kupffer cells. Biopsy specimens from cirrhotic patients displayed HO-1 protein both in macrophages and in myofibroblasts within fibrotic septa. HO-1 messenger RNA (mRNA) and protein also were detected in cultured human hepatic myofibroblasts and increased in response to 15-d-PGJ2 in a time- and dose-dependent manner. Induction of HO-1 in human hepatic myofibroblasts mediated 2 major antifibrogenic properties of 15-d-PGJ2, namely, inhibition of proliferation and of procollagen I mRNA expression. These effects were ascribed to bilirubin, one of the products of HO-1-mediated heme degradation. CONCLUSIONS This study shows that HO-1 is expressed in human hepatic myofibroblasts and induced during chronic liver injury. Moreover, these data unravel HO-1 as a major antifibrogenic pathway.
Collapse
Affiliation(s)
- Liying Li
- Unité INSERM 581, Hôpital Henri Mondor, Créteil, France
| | | | | | | | | | | | | |
Collapse
|
164
|
Hajdena-Dawson M, Zhang W, Contag PR, Wong RJ, Vreman HJ, Stevenson DK, Contag CH. Effects of Metalloporphyrins on Heme Oxygenase-1 Transcription: Correlative Cell Culture Assays Guide in Vivo Imaging. Mol Imaging 2003; 2:138-49. [PMID: 14649057 DOI: 10.1162/15353500200303139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Heme oxygenase (HO) is the rate-limiting step in the heme degradation pathway and is a potential target for the control, or prevention, of pathologic jaundice in neonates. Metalloporphyrins (Mps), a diverse set of synthetic derivatives of heme, can competitively inhibit the HO enzymes. However, certain Mps are phototoxic and some increase transcription of HO-1, the inducible HO isozyme. Therefore, effective development of this class of compounds as therapeutics for treating pathologic jaundice will require rapid and integrated biological screens to identify the most efficacious and safe Mps. To study the safety of these compounds, we assessed their cytotoxic effects and measured luciferase activity by bioluminescent imaging (BLI) as an index of HO-1 transcription, first in live cell cultures and then in living transgenic reporter mice. A total of 12 Mps were first evaluated in the correlative cell culture assay. Based on results from this study, 2 Mps, zinc protoporphyrin (ZnPP) and zinc bis glycol porphyrin (ZnBG), were selected for further studies in the live animal model. In vitro BLI showed ZnPP to be a strong inducer of HO-1 transcription in comparison to ZnBG, which showed minimal induction. Cytotoxicity studies revealed that ZnPP was phototoxic, whereas ZnBG had no effect on cell viability. In vivo BLI showed that both ZnPP and ZnBG had minimal effects on the levels of HO-1 transcription in the animals. Furthermore, serum enzyme assays indicated that neither caused detectable liver toxicity. These findings, and especially those with ZnBG, support the use of selected Mps as therapies for pathologic jaundice. Coupling the high throughput advantage of cell culture with the capability of imaging for whole-body temporal analyses could accelerate and refine the preclinical phases of drug development. Thus, this study serves as a model for understanding the effects of specific compounds in relation to defined targets using an integrated approach.
Collapse
|
165
|
Ribeiro MM, Klein D, Pileggi A, Molano RD, Fraker C, Ricordi C, Inverardi L, Pastori RL. Heme oxygenase-1 fused to a TAT peptide transduces and protects pancreatic beta-cells. Biochem Biophys Res Commun 2003; 305:876-81. [PMID: 12767912 DOI: 10.1016/s0006-291x(03)00856-8] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Transplantation of islets is becoming an established method for treating type 1 diabetes. However, viability of islets is greatly affected by necrosis/apoptosis induced by oxidative stress and other insults during isolation and subsequent in vitro culture. Expression of cytoprotective proteins, such as heme oxygenase-1 (HO-1), reduces the deleterious effects of oxidative stress in transplantable islets. We have generated a fusion protein composed of HO-1 and TAT protein transduction domain (TAT/PTD), an 11-aa cell penetrating peptide from the human immunodeficiency virus TAT protein. Transduction of TAT/PTD-HO-1 to insulin-producing cells protects against TNF-alpha-mediated cytotoxicity. TAT/PTD-HO-1 transduction to islets does not impair islet physiology, as assessed by reversion of chemically induced diabetes in immunodeficient mice. Finally, we report that transduction of HO-1 fusion protein into islets improves islet viability in culture. This approach might have a positive impact on the availability of islets for transplantation.
Collapse
Affiliation(s)
- Melina M Ribeiro
- Diabetes Research Institute, University of Miami School of Medicine, 1450 NW 10th Avenue (R-134), Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
166
|
Durante W. Heme oxygenase-1 in growth control and its clinical application to vascular disease. J Cell Physiol 2003; 195:373-82. [PMID: 12704646 DOI: 10.1002/jcp.10274] [Citation(s) in RCA: 128] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Heme oxygenase-1 (HO-1) catalyzes the degradation of heme to carbon monoxide (CO), iron, and biliverdin. Biliverdin is subsequently metabolized to bilirubin by the enzyme biliverdin reductase. Although interest in HO-1 originally centered on its heme-degrading function, recent findings indicate that HO-1 exerts other biologically important actions. Emerging evidence suggests that HO-1 plays a critical role in growth regulation. Deletion of the HO-1 gene or inhibition of HO-1 activity results in growth retardation and impaired fetal development, whereas HO-1 overexpression increases body size. Although the mechanisms responsible for the growth promoting properties of HO-1 are not well established, HO-1 can indirectly influence growth by regulating the synthesis of growth factors and by modulating the delivery of oxygen or nutrients to specific target tissues. In addition, HO-1 exerts important effects on critical determinants of tissue size, including cell proliferation, apoptosis, and hypertrophy. However, the actions of HO-1 are highly variable and may reflect a role for HO-1 in maintaining tissue homeostasis. Considerable evidence supports a crucial role for HO-1 in blocking the growth of vascular smooth muscle cells (SMCs). This antiproliferative effect of HO-1 is mediated primarily via the release of CO, which inhibits vascular SMC growth via multiple pathways. Pharmacologic or genetic approaches targeting HO-1 or CO to the blood vessel wall may represent a promising, novel therapeutic approach in treating vascular proliferative disorders.
Collapse
Affiliation(s)
- William Durante
- Houston VA Medical Center and Department of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA.
| |
Collapse
|
167
|
Ohlmann A, Giffhorn-Katz S, Becker I, Katz N, Immenschuh S. Regulation of heme oxygenase-1 gene expression by anoxia and reoxygenation in primary rat hepatocyte cultures. Exp Biol Med (Maywood) 2003; 228:584-9. [PMID: 12709591 DOI: 10.1177/15353702-0322805-51] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Heme oxygenase (HO) catalyzes the rate-limiting enzymatic step of heme degradation and regulates the cellular heme content. Gene expression of the inducible isoform of HO, HO-1, is upregulated in response to various oxidative stress stimuli. To investigate the regulatory role of anoxia and reoxygenation (A/R) on hepatic HO-1 gene expression, primary cultures of rat hepatocytes were exposed after an anoxia of 4 hr to normal oxygen tension for various lengths of time. For comparison, gene expression of the noninducible HO isoform, HO-2, and that of the heat-shock protein 70 (HSP70) were determined. During reoxygenation, a marked increase of HO-1 and HSP70 steady-state mRNA levels was observed, whereas no alteration of HO-2 mRNA levels occurred. Corresponding to HO-1 mRNA, an increase of HO-1 protein expression was determined by Western blot analysis. The anoxia-dependent induction of HO-1 was prevented by pretreatment with the transcription inhibitor, actinomycin D, but not by the protein synthesis inhibitor, cycloheximide, suggesting a transcriptional regulatory mechanism. After exposure of hepatocytes to anoxia, the relative levels of oxidized glutathione increased within the first 40 min of reoxygenation. Pretreament of cell cultures with the antioxidant agents, beta-carotene and allopurinol, before exposure to A/R led to a marked decrease of HO-1 and HSP70 mRNA expression during reoxygenation. An even more pronounced reduction of mRNA expression was observed after exposure to desferrioxamine. Taken together, the data demonstrate that HO-1 gene expression in rat hepatocyte cultures after A/R is upregulated by a transcriptional mechanism that may be, in part, mediated via the generation of ROS and the glutathione system.
Collapse
Affiliation(s)
- Andreas Ohlmann
- Institut für Klinische Chemie und Pathobiochemie der Justus-Liebig-Universität Giessen, 35392 Giessen, Germany
| | | | | | | | | |
Collapse
|
168
|
Uc A, Britigan BE. Does heme oxygenase-1 have a role in Caco-2 cell cycle progression? Exp Biol Med (Maywood) 2003; 228:590-5. [PMID: 12709592 DOI: 10.1177/15353702-0322805-52] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Intestinal epithelium undergoes a rapid self-renewal process characterized by the proliferation of the crypt cells, their differentiation into mature enterocytes as they migrate up to the villi, followed by their shedding as they become senescent villus enterocytes. The exact mechanism that regulates the intestinal epithelium renewal process is not well understood, but the differential expression of regulatory genes along the crypt-villus axis may have a role. Heme oxygenase-1 (HO-1) is involved in endothelial cell cycle progression, but its role in the intestinal epithelial cell turnover has not been explored. With its effects on cell proliferation and its differential expression along the crypt-villus axis, HO-1 may play a role in the intestinal epithelial cell renewal process. In this study, we examined the role of HO-1 in the proliferation and differentiation of Caco-2 cells, a well-established in vitro model for human enterocytes. After confluence, Caco-2 cells undergo spontaneous differentiation and mimic the crypt to villus maturation observed in vivo. In preconfluent and confluent Caco-2 cells, HO-1 protein expression was determined with the immunoblot. HO-1 activity was determined by the ability of the enzyme to generate bilirubin from hemin. The effect of a HO-1 enzyme activity inhibitor, tin protoporphyrin (SnPP), on Caco-2 cell proliferation and differentiation was examined. In preconfluent cells, cell number was determined periodically as a marker of proliferation. Cell viability was measured with MTT assay. Cell differentiation was assessed by the expression of a brush border enzyme, alkaline phophatase (ALP). HO-1 was expressed in subconfluent Caco-2 cells and remained detectable until 2 days postconfluency. This timing was consistent with cells starting their differentiation and taking the features of normal intestinal epithelial cells. HO-1 was inducible in confluent Caco-2 cells by the enzyme substrate, hemin in a dose- and time-dependent manner. SnPP decreased the cell number and viability of preconfluent cells and delayed the ALP enzyme activity of confluent cells. HO-1 may be involved in intestinal cell cycle progression.
Collapse
Affiliation(s)
- Aliye Uc
- Department of Pediatrics and Internal Medicine, Veterans Administration Medical Center and University of Iowa, Iowa City, 52242, USA.
| | | |
Collapse
|
169
|
Choi BM, Pae HO, Chung HT. Nitric oxide priming protects nitric oxide-mediated apoptosis via heme oxygenase-1 induction. Free Radic Biol Med 2003; 34:1136-45. [PMID: 12706494 DOI: 10.1016/s0891-5849(03)00064-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The role of nitric oxide (NO) as a cytotoxic effector molecule of the immune system is clearly established, but recent studies demonstrate cytoprotective functions of NO at low nontoxic concentrations. However, the mechanism of cytoprotection has not been defined completely. Thus, we investigate the involvement of heme oxygenase-1 (HO-1) in the cytoprotective effects of NO. Exposure of L929 cells to sodium nitroprusside (SNP) resulted in the induction of HO-1 protein expression and heme oxygenase activity. Pretreatment of the cells with a low dose of NO (200 microM SNP) significantly inhibited a high dose of (1000 microM SNP) NO-induced apoptosis in L929 cells. Cytoprotection by a low dose of NO was abrogated in the presence of the heme oxygenase inhibitor zinc protoporphyrin IX. A cytoprotective effect comparable to a low dose of SNP was observed when the cells were transfected with HO-1 gene or preincubated with another HO-1 inducer, hemin. Additional experiments revealed the involvement of carbon monoxide in the cytoprotective effect of SNP/HO-1 in L929 cells. Our results presented here provide evidence to support the essential role of HO-1 in the cytoprotective function of NO priming.
Collapse
Affiliation(s)
- Byung-Min Choi
- Medicinal Resources Research Center (MRRC), School of Medicine, Wonkwang University, Chonbuk, South Korea
| | | | | |
Collapse
|
170
|
Chin BY, Trush MA, Choi AMK, Risby TH. Transcriptional regulation of the HO-1 gene in cultured macrophages exposed to model airborne particulate matter. Am J Physiol Lung Cell Mol Physiol 2003; 284:L473-80. [PMID: 12456389 DOI: 10.1152/ajplung.00297.2002] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Respirable particulate matter generated during incomplete combustion of fossil fuels may principally target the cells found in the distal region of the lung. This study characterizes some of the effects that a model particulate matter has on the induction of heme oxygenase (HO)-1 in macrophages. HO-1 is a highly inducible stress response gene that has been demonstrated to modulate chemical, physical, and environmental stimuli. Cultured macrophages (RAW 264.7 cells) exposed continuously to a well-defined model of particulate matter (benzo[a]pyrene adsorbed onto carbon black) induced HO-1 gene expression in a time-dependent manner. Likewise, the addition of benzo[a]pyrene-1,6-quinone, a redox cycling metabolite of benzo[a]pyrene, to RAW cells also induced HO-1. This particle-induced gene expression of HO-1 was found to correlate with a corresponding increase in protein levels. Gene regulation studies were performed to delineate the transcriptional regulation of HO-1 after exposure to model particulate matter. Deletional analysis of the HO-1 gene and mutational analysis of activator protein (AP)-1 regulatory element on both distal enhancers demonstrated the importance of this transcriptional factor in mediating HO-1 gene transcription in response to model particulate matter. These results were supported by gel shift analysis demonstrating increased AP-1 binding activity after exposure to particulate matter. In summary, this study demonstrates that model particulate matter enhanced the expression of HO-1. This inductive process may be mediated by AP-1 activation of the regulatory elements on both the 5'-distal enhancers.
Collapse
MESH Headings
- 5' Flanking Region/genetics
- Air Pollutants/pharmacology
- Animals
- Benzo(a)pyrene/chemistry
- Benzo(a)pyrene/pharmacology
- Benzopyrenes/pharmacology
- Carbon/chemistry
- Carbon/pharmacology
- Cell Line
- Dose-Response Relationship, Drug
- Electrophoretic Mobility Shift Assay
- Enhancer Elements, Genetic/physiology
- Epithelial Cells/cytology
- Epithelial Cells/drug effects
- Epithelial Cells/enzymology
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/physiology
- Heme Oxygenase (Decyclizing)/genetics
- Heme Oxygenase (Decyclizing)/metabolism
- Heme Oxygenase-1
- Macrophages/cytology
- Macrophages/drug effects
- Macrophages/enzymology
- Macrophages, Alveolar/cytology
- Macrophages, Alveolar/drug effects
- Macrophages, Alveolar/enzymology
- Macrophages, Peritoneal/cytology
- Macrophages, Peritoneal/drug effects
- Macrophages, Peritoneal/enzymology
- Membrane Proteins
- Mice
- Models, Theoretical
- Mutagenesis, Site-Directed
- Particle Size
- RNA, Messenger/metabolism
- Sequence Deletion/genetics
- Transcription Factor AP-1/metabolism
Collapse
Affiliation(s)
- Beek Yoke Chin
- Division of Toxicological Sciences, Department of Environmental Health Sciences, School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
171
|
Ryter SW, Otterbein LE, Morse D, Choi AMK. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem 2003. [PMID: 12162441 PMCID: PMC7101540 DOI: 10.1023/a:1015957026924] [Citation(s) in RCA: 349] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Carbon monoxide (CO), a gaseous second messenger, arises in biological systems during the oxidative catabolism of heme by the heme oxygenase (HO) enzymes. HO exists as constitutive (HO-2, HO-3) and inducible isoforms (HO-1), the latter which responds to regulation by multiple stress-stimuli. HO-1 confers protection in vitro and in vivo against oxidative cellular stress. Although the redox active compounds that are generated from HO activity (i.e. iron, biliverdin-IXα, and bilirubin-IXα) potentially modulate oxidative stress resistance, increasing evidence points to cytoprotective roles for CO. Though not reactive, CO regulates vascular processes such as vessel tone, smooth muscle proliferation, and platelet aggregation, and possibly functions as a neurotransmitter. The latter effects of CO depend on the activation of guanylate cyclase activity by direct binding to the heme moiety of the enzyme, stimulating the production of cyclic 3′:5′-guanosine monophosphate. CO potentially interacts with other intracellular hemoprotein targets, though little is known about the functional significance of such interactions. Recent progress indicates that CO exerts novel anti-inflammatory and anti-apoptotic effects dependent on the modulation of the p38 mitogen activated protein kinase (MAPK)-signaling pathway. By virtue of these effects, CO confers protection in oxidative lung injury models, and likely plays a role in HO-1 mediated tissue protection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Department of Medicine, University of Pittsburgh Medical Center, PA 15213, USA.
| | | | | | | |
Collapse
|
172
|
Otterbein LE, Zuckerbraun BS, Haga M, Liu F, Song R, Usheva A, Stachulak C, Bodyak N, Smith RN, Csizmadia E, Tyagi S, Akamatsu Y, Flavell RJ, Billiar TR, Tzeng E, Bach FH, Choi AMK, Soares MP. Carbon monoxide suppresses arteriosclerotic lesions associated with chronic graft rejection and with balloon injury. Nat Med 2003; 9:183-90. [PMID: 12539038 DOI: 10.1038/nm817] [Citation(s) in RCA: 408] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2002] [Accepted: 12/18/2002] [Indexed: 01/18/2023]
Abstract
Carbon monoxide (CO), one of the products of heme oxygenase action on heme, prevents arteriosclerotic lesions that occur following aorta transplantation; pre-exposure to 250 parts per million of CO for 1 hour before injury suppresses stenosis after carotid balloon injury in rats as well as in mice. The protective effect of CO is associated with a profound inhibition of graft leukocyte infiltration/activation as well as with inhibition of smooth muscle cell proliferation. The anti-proliferative effect of CO in vitro requires the activation of guanylate cyclase, the generation of cGMP, the activation of p38 mitogen-activated protein kinases and the expression of the cell cycle inhibitor p21Cip1. These findings demonstrate a protective role for CO in vascular injury and support its use as a therapeutic agent.
Collapse
Affiliation(s)
- Leo E Otterbein
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh School of Medicine, Montefiore University Hospital, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Zhang X, Shan P, Otterbein LE, Alam J, Flavell RA, Davis RJ, Choi AMK, Lee PJ. Carbon monoxide inhibition of apoptosis during ischemia-reperfusion lung injury is dependent on the p38 mitogen-activated protein kinase pathway and involves caspase 3. J Biol Chem 2003; 278:1248-1258. [PMID: 12399465 DOI: 10.1074/jbc.m208419200] [Citation(s) in RCA: 214] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Carbon monoxide (CO), a reaction product of the cytoprotective gene heme oxygenase, has been shown to be protective against organ injury in a variety of models. One potential mechanism whereby CO affords cytoprotection is through its anti-apoptotic properties. Our studies show that low level, exogenous CO attenuates anoxia-reoxygenation (A-R)-induced lung endothelial cell apoptosis. Exposure of primary rat pulmonary artery endothelial cells to minimal levels of CO inhibits apoptosis and enhances phospho-p38 mitogen-activated protein kinase (MAPK) activation in A-R. Transfection of p38alpha dominant negative mutant or inhibition of p38 MAPK activity with SB203580 ablates the anti-apoptotic effects of CO in A-R. CO, through p38 MAPK, indirectly modulates caspase 3. Furthermore, we correlate our in vitro apoptosis model with an in vivo model of A-R by showing that CO can attenuate I-R injury of the lung. Taken together, our data are the first to demonstrate in models of A-R that the anti-apoptotic effects of CO are via modulation of p38 MAPK and caspase 3.
Collapse
Affiliation(s)
- Xuchen Zhang
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | | | |
Collapse
|
174
|
Slebos DJ, Ryter SW, Choi AMK. Heme oxygenase-1 and carbon monoxide in pulmonary medicine. Respir Res 2003; 4:7. [PMID: 12964953 PMCID: PMC193681 DOI: 10.1186/1465-9921-4-7] [Citation(s) in RCA: 100] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2003] [Accepted: 08/07/2003] [Indexed: 12/03/2022] Open
Abstract
Heme oxygenase-1 (HO-1), an inducible stress protein, confers cytoprotection against oxidative stress in vitro and in vivo. In addition to its physiological role in heme degradation, HO-1 may influence a number of cellular processes, including growth, inflammation, and apoptosis. By virtue of anti-inflammatory effects, HO-1 limits tissue damage in response to proinflammatory stimuli and prevents allograft rejection after transplantation. The transcriptional upregulation of HO-1 responds to many agents, such as hypoxia, bacterial lipopolysaccharide, and reactive oxygen/nitrogen species. HO-1 and its constitutively expressed isozyme, heme oxygenase-2, catalyze the rate-limiting step in the conversion of heme to its metabolites, bilirubin IXalpha, ferrous iron, and carbon monoxide (CO). The mechanisms by which HO-1 provides protection most likely involve its enzymatic reaction products. Remarkably, administration of CO at low concentrations can substitute for HO-1 with respect to anti-inflammatory and anti-apoptotic effects, suggesting a role for CO as a key mediator of HO-1 function. Chronic, low-level, exogenous exposure to CO from cigarette smoking contributes to the importance of CO in pulmonary medicine. The implications of the HO-1/CO system in pulmonary diseases will be discussed in this review, with an emphasis on inflammatory states.
Collapse
Affiliation(s)
- Dirk-Jan Slebos
- Department of Pulmonary Diseases, University Hospital Groningen, Groningen, The Netherlands
| | - Stefan W Ryter
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Augustine MK Choi
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
175
|
Khorchid A, Fragoso G, Shore G, Almazan G. Catecholamine-induced oligodendrocyte cell death in culture is developmentally regulated and involves free radical generation and differential activation of caspase-3. Glia 2002; 40:283-99. [PMID: 12420309 DOI: 10.1002/glia.10123] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Oligodendrocyte cultures were used to study the toxic effects of catecholamines. Our results showed that catecholamine-induced toxicity was dependent on the dose of dopamine or norepinephrine used and on the developmental stage of the cultures, with oligodendrocyte progenitors being more vulnerable. A role for oxidative stress and apoptosis on the mechanism of action of catecholamines on oligodendrocyte cell death was next assessed. Catecholamines caused a reduction in intracellular glutathione levels, an accumulation in reactive oxygen species and in heme oxygenase-1, the 32 kDa stress-induced protein. All these changes were prevented by N-acetyl-L-cysteine, a thiocompound with antioxidant activity and a precursor of glutathione, and were more pronounced in progenitors than mature cells, which could contribute to their higher susceptibility. Apoptotic cell death, as assessed by activation of caspase-9 and -3 and cleavage of poly(ADP-ribose) polymerase (a substrate of caspase-3), was only observed in oligodendrocyte progenitors. Pretreatment with zVAD, a general caspase inhibitor, prevented activation of caspase-9 and -3, DNA fragmentation, and decreased progenitors cell death. Furthermore, the expression levels of procaspase-3 and the ratio of the proapoptotic protein bax to antiapoptotic protein bcl-xl were several folds higher in immature than mature oligodendrocytes. Taken together, these results strongly suggest that the catecholamine-induced cytotoxicity in oligodendrocytes is developmentally regulated, mediated by oxidative stress, and have characteristics of apoptosis in progenitor cells.
Collapse
Affiliation(s)
- Amani Khorchid
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Quebec, Canada
| | | | | | | |
Collapse
|
176
|
Song R, Mahidhara RS, Liu F, Ning W, Otterbein LE, Choi AMK. Carbon monoxide inhibits human airway smooth muscle cell proliferation via mitogen-activated protein kinase pathway. Am J Respir Cell Mol Biol 2002; 27:603-10. [PMID: 12397020 DOI: 10.1165/rcmb.4851] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The gaseous molecule carbon monoxide (CO) is elevated in the breath of individuals with asthma. The physiologic function of CO in asthma is poorly understood. Here we demonstrate that CO (250 ppm) markedly inhibits human airway smooth muscle cell (HASMC) proliferation, arresting cells at the G0/G1 phase. This CO-induced cell growth arrest of HASMC was associated with upregulation of p21 and downregulation of cyclin D1 expression. It is generally believed that the signaling pathway by which CO affects biologic processes is primarily mediated via the guanylyl cyclase/3',5'-Guanylate cyclic monophosphate (cGMP) pathway. To examine whether guanylyl cyclase/cGMP was involved in CO-induced growth arrest of HASMC, Rp-8-Br-cGMP, a selective inhibitor of cGMP-dependent protein kinase and ODQ, a selective inhibitor of soluble guanylate cyclase, were administered to HASMC in the presence of CO. Interestingly, CO-induced cell growth arrest was not reversed by these inhibitors. We next examined whether the extracellular signal-regulated kinase (ERK) 1/ERK2 mitogen-activated protein kinase (MAPK) signaling pathway may regulate the antiproliferative effect of CO. We first showed time-dependent activation of the various MAPKs in HASMC in response to serum, including phosphorylated ERK1/ERK2, p38, and JNK and then demonstrated that CO exerted negligible effect on activated p38 and JNK; however, ERK activation was significantly attenuated in the presence of CO. These data suggest that CO can inhibit HASMC proliferation via the ERK1/ERK2 MAPK pathway, independent of a guanylyl cyclase/cGMP independent pathway. CO may act as an important mediator of remodeling of human airways in asthma via its ability to regulate cell growth of airway smooth muscle cells.
Collapse
Affiliation(s)
- Ruiping Song
- Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | | | | | | | | | |
Collapse
|
177
|
Ning W, Song R, Li C, Park E, Mohsenin A, Choi AMK, Choi ME. TGF-beta1 stimulates HO-1 via the p38 mitogen-activated protein kinase in A549 pulmonary epithelial cells. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1094-102. [PMID: 12376363 DOI: 10.1152/ajplung.00151.2002] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In lung injury and progressive lung diseases, the multifunctional cytokine transforming growth factor-beta1 (TGF-beta1) modulates inflammatory responses and wound repair. Heme oxygenase-1 (HO-1) is a stress-inducible protein that has been demonstrated to confer cytoprotection against oxidative injury and provide a vital function in maintaining tissue homeostasis. Here we report that TGF-beta1 is a potent inducer of HO-1 and examined the signaling pathway by which TGF-beta1 regulates HO-1 expression in human lung epithelial cells (A549). TGF-beta1 (1-5 ng/ml) treatment resulted in a marked time-dependent induction of HO-1 mRNA in A549 cells, followed by corresponding increases in HO-1 protein and HO enzymatic activity. Actinomycin D and cycloheximide inhibited TGF-beta1-responsive HO-1 mRNA expression, indicating a requirement for transcription and de novo protein synthesis. Furthermore, TGF-beta1 rapidly activated the p38 mitogen-activated protein kinase (p38 MAPK) pathway in A549 cells. A chemical inhibitor of p38 MAPK (SB-203580) abolished TGF-beta1-inducible HO-1 mRNA expression. Both SB-203580 and expression of a dominant-negative mutant of p38 MAPK inhibited TGF-beta1-induced ho-1 gene activation, as assayed by luciferase activity of an ho-1 enhancer/luciferase fusion construct (pMHO1luc-33+SX2). These studies demonstrate the critical intermediacy of the p38 MAPK pathway in the regulation of HO-1 expression by TGF-beta1.
Collapse
Affiliation(s)
- Wen Ning
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | | | | | | | | | | | | |
Collapse
|
178
|
Rothfuss A, Speit G. Investigations on the mechanism of hyperbaric oxygen (HBO)-induced adaptive protection against oxidative stress. Mutat Res 2002; 508:157-65. [PMID: 12379471 DOI: 10.1016/s0027-5107(02)00213-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Hyperbaric oxygen (HBO) treatment of cell cultures is a well suited model for studying genetic and cellular consequences of oxidative stress. We have previously shown that exposure of isolated human lymphocytes to HBO induces DNA damage and leads to the development of an adaptive response which protects lymphocytes from oxidative DNA damage induced by a repeated HBO exposure or by treatment with H(2)O(2). Our earlier studies also provided evidence for a functional involvement of the inducible enzyme heme oxygenase-1 (HO-1) in this adaptive protection. In contrast, V79 Chinese hamster cells did neither show a comparable adaptive protection nor an induction of HO-1 after HBO exposure. We now investigated possible mechanism(s) by which HO-1 contributes to an enhanced resistance of lymphocytes against oxidative stress. HO-1 catalyzes the rate-limiting step in heme degradation to form carbon monoxide (CO), biliverdin and free iron. We can now show that supplementation with exogenous CO does not protect V79 cells from HBO-induced oxidative DNA damage suggesting that increased generation of CO cannot account for the observed adaptive protection. On the other hand, HBO-exposed lymphocytes showed a small but reproducible increase in cellular ferritin levels, which might indicate that the underlying protective mechanism is based on an induction of ferritin, which may act antioxidatively by preventing the generation of the DNA-damaging hydroxyl radical via Fenton reaction. Our results further show that isolated lymphocytes also induce HO-1 and develop an adaptive protection when the first HBO exposure does not induce DNA damage, indicating that DNA damage is not the trigger for the development of the adaptive protection.
Collapse
Affiliation(s)
- Andreas Rothfuss
- Universitätsklinikum Ulm, Abteilung Humangenetik, D-89070 Ulm, Germany
| | | |
Collapse
|
179
|
Zhang X, Bedard EL, Potter R, Zhong R, Alam J, Choi AMK, Lee PJ. Mitogen-activated protein kinases regulate HO-1 gene transcription after ischemia-reperfusion lung injury. Am J Physiol Lung Cell Mol Physiol 2002; 283:L815-L829. [PMID: 12225959 DOI: 10.1152/ajplung.00485.2001] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Lung ischemia-reperfusion (I-R) is an important model of oxidant-mediated acute lung and vascular injury. Heme oxygenase-1 (HO-1) is a cytoprotective gene that is markedly induced by lung I-R injury. HO-1 mRNA is increased in mouse lung after 30 min of lung hilar clamping (ischemia) followed by 2-6 h of unclamping (reperfusion) compared with control mice. In a variety of vascular cell types, HO-1 mRNA is induced after 24 h of anoxia followed by 30 min-1 h of reoxygenation (A-R). Transfection studies reveal that the promoter and 5'-distal enhancer E1 are necessary and sufficient for increased HO-1 gene transcription after A-R. Immunoblotting studies show all three subfamilies of MAPKs (ERK, JNK, and p38) are activated by 15 min of reperfusion. We also demonstrate that HO-1 gene transcription after A-R involves ERK, JNK, and p38 MAPK pathways. Together, our data show that I-R not only induces HO-1 gene expression in mouse lungs and vascular cells but that gene transcription occurs via the promoter and E1 enhancer and involves upstream MAPK pathways.
Collapse
MESH Headings
- Animals
- Aorta/cytology
- Cells, Cultured
- Enhancer Elements, Genetic/physiology
- Enzyme Inhibitors/pharmacology
- Flavonoids/pharmacology
- Gene Expression Regulation, Enzymologic/physiology
- Heme Oxygenase (Decyclizing)/analysis
- Heme Oxygenase (Decyclizing)/genetics
- Heme Oxygenase-1
- Imidazoles/pharmacology
- Lung Diseases/metabolism
- Lung Diseases/physiopathology
- MAP Kinase Signaling System/physiology
- Membrane Proteins
- Mice
- Mitogen-Activated Protein Kinase 9
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Muscle, Smooth, Vascular/cytology
- Muscle, Smooth, Vascular/enzymology
- Mutagenesis/physiology
- Promoter Regions, Genetic/physiology
- Pulmonary Artery/cytology
- Pyridines/pharmacology
- RNA, Messenger/analysis
- Rats
- Reperfusion Injury/metabolism
- Reperfusion Injury/physiopathology
- Transcription, Genetic/physiology
- p38 Mitogen-Activated Protein Kinases
Collapse
Affiliation(s)
- Xuchen Zhang
- Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA
| | | | | | | | | | | | | |
Collapse
|
180
|
Rydkina E, Sahni A, Silverman DJ, Sahni SK. Rickettsia rickettsii infection of cultured human endothelial cells induces heme oxygenase 1 expression. Infect Immun 2002; 70:4045-52. [PMID: 12117910 PMCID: PMC128148 DOI: 10.1128/iai.70.8.4045-4052.2002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2002] [Revised: 04/02/2002] [Accepted: 05/03/2002] [Indexed: 01/09/2023] Open
Abstract
Existing evidence suggests that oxidative insults and antioxidant defense mechanisms play a critical role in the host cell response during infection of endothelial cells by Rickettsia rickettsii, the causative agent of Rocky Mountain spotted fever. Heme oxygenase (HO), a rate-limiting enzyme in the pathway for heme catabolism, protects against oxidant damage in a variety of stress situations. Here, we report on the expression of the inducible and constitutive HO isozymes, HO-1 and HO-2, during R. rickettsii infection of endothelial cells. Steady-state levels for HO-1 mRNA were increased two- to threefold, as early as 4 h postinfection, whereas HO-2 mRNA was not affected. Induction of HO-1 mRNA was dependent on the dose of infection and occurred in a time-dependent manner, reaching maximal levels at 4 to 7 h. The increase in HO-1 mRNA occurred at the level of trancription as it was blocked by the transcriptional inhibitors, actinomycin D and alpha-amanitin. The eukaryotic protein synthesis inhibitor, cycloheximide, caused a >50% reduction in the infection-induced increase in HO-1 mRNA level, suggesting its dependence on de novo protein synthesis of host cell. The uptake of viable organisms appeared to be necessary, since inactivation of R. rickettsii by heat or formalin fixation, or incubation of cells with cytochalasin B to prevent entry resulted in marked inhibition of HO-1 response. N-Acetyl-L-cysteine, a known oxidant scavenger, inhibited the HO-1 induction by R. rickettsii. Finally, Western analysis with a specific monoclonal antibody revealed higher levels of HO-1 protein ( approximately 32 kDa), confirming that changes in HO-1 mRNA levels were followed by increases in the levels of protein. The findings indicate that R. rickettsii infection induces HO-1 expression in host endothelial cells and suggest an important role for this enzyme in cellular response to infection, possibly by serving a protective function against oxidative injury.
Collapse
Affiliation(s)
- Elena Rydkina
- Hematology-Oncology Unit, Vascular Medicine Progam, Department of Medicine, University of Rochester School of Medicine and Dentistry, New York 14642, USA
| | | | | | | |
Collapse
|
181
|
Ejima K, Layne MD, Carvajal IM, Nanri H, Ith B, Yet SF, Perrella MA. Modulation of the thioredoxin system during inflammatory responses and its effect on heme oxygenase-1 expression. Antioxid Redox Signal 2002; 4:569-75. [PMID: 12230868 DOI: 10.1089/15230860260220067] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Heme oxygenase (HO) enzymes catalyze the initial reaction in heme catabolism. HO-1 is an inducible isoform that is up-regulated by diverse stimuli, including inflammatory cytokines and factors that promote oxidative stress. HO-1 is a cytoprotective enzyme that degrades heme, a potent oxidant, to generate carbon monoxide, biliverdin (subsequently reduced to bilirubin), and iron. Recently, we found that thioredoxin (TRX), a disulfide reductase enzyme known to be important for the binding of transcription factors to DNA, contributes to the induction of HO-1 by inflammatory mediators. In the present study, we extended this observation and determined that, similar to HO-1, TRX and TRX reductase (TR) are induced by bacterial lipopolysaccharide in macrophages at the level of mRNA and protein. However, maximal induction of TRX and TR precedes that of HO-1. Increased expression of HO-1 in the cytoplasm of inflammatory cells corresponds to a translocation of TRX into the nucleus of these cells. Finally, transfection of TRX into macrophages promoted an increase in HO-1 protein. Taken together, these data support the concept that the TRX system contributes to the up-regulation of HO-1 under conditions associated with increased oxidative stress.
Collapse
Affiliation(s)
- Kuniaki Ejima
- Pulmonary and Critical Care, Brigham and Women's Hospital, Boston, MA 02115, USA
| | | | | | | | | | | | | |
Collapse
|
182
|
Jeney V, Balla J, Yachie A, Varga Z, Vercellotti GM, Eaton JW, Balla G. Pro-oxidant and cytotoxic effects of circulating heme. Blood 2002; 100:879-87. [PMID: 12130498 DOI: 10.1182/blood.v100.3.879] [Citation(s) in RCA: 486] [Impact Index Per Article: 21.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Numerous pathologies may involve toxic side effects of free heme and heme-derived iron. Deficiency of the heme-catabolizing enzyme, heme oxygenase-1 (HO-1), in both a human patient and transgenic knockout mice leads to an abundance of circulating heme and damage to vascular endothelium. Although heme can be directly cytotoxic, the present investigations examine the possibility that hemoglobin-derived heme and iron might be indirectly toxic through the generation of oxidized forms of low-density lipoprotein (LDL). In support, hemoglobin in plasma, when oxidized to methemoglobin by oxidants such as leukocyte-derived reactive oxygen, causes oxidative modification of LDL. Heme, released from methemoglobin, catalyzes the oxidation of LDL, which in turn induces endothelial cytolysis primarily caused by lipid hydroperoxides. Exposure of endothelium to sublethal concentrations of this oxidized LDL leads to induction of both HO-1 and ferritin. Similar endothelial cytotoxicity was caused by LDL isolated from plasma of an HO-1-deficient child. Spectral analysis of the child's plasma revealed a substantial oxidation of plasma hemoglobin to methemoglobin. Iron accumulated in the HO-1-deficient child's LDL and several independent assays revealed oxidative modification of the LDL. We conclude that hemoglobin, when oxidized in plasma, can be indirectly cytotoxic through the generation of oxidized LDL by released heme and that, in response, the intracellular defense-HO-1 and ferritin-is induced. These results may be relevant to a variety of disorders-such as renal failure associated with intravascular hemolysis, hemorrhagic injury to the central nervous system, and, perhaps, atherogenesis-in which hemoglobin-derived heme may promote the formation of fatty acid hydroperoxides.
Collapse
|
183
|
Abstract
Disturbances of intracellular redox equilibrium may alter eukaryotic gene expression patterns in the manifestation of an adaptive stress response. The inducible heme oxygenase-1 gene, ho-1, responds dramatically to changes in cellular redox potential provoked by multiple agents (oxidants, xenobiotics, reactive oxygen species, nitric oxide, and ultraviolet-A radiation) as well as deviations in oxygen tension in excess or deficit of normal physiological levels. This dual response to hyperoxic and hypoxic states renders ho-1 an intriguing model system for studying oxygen-regulated gene expression. The complexation or depletion of reduced glutathione apparently represents an underlying mechanism by which oxidants trigger the response. Chelatable iron levels also influence the induction of ho-1 as evidenced by the inhibitory effects of iron-chelating compounds. Redox-sensitive protein kinase cascades (e.g., mitogen-activated protein kinases) participate in ho-1 regulation. Recent progress in understanding ho-1 transcription has identified two distal enhancer regions (E1, E2) in the mouse ho-1 gene that mediate the response to many inducing conditions. This review will examine the potential roles of iron, glutathione, and reactive oxygen species in the upstream events leading to ho-1 activation following oxygen related stress.
Collapse
Affiliation(s)
- Stefan W Ryter
- Department of Medicine, Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pittsburgh Medical Center, MUH628NW, 3459 Fifth Ave., Pittsburgh, PA 15213, USA.
| | | |
Collapse
|
184
|
Coito AJ, Buelow R, Shen XD, Amersi F, Moore C, Volk HD, Busuttil RW, Kupiec-Weglinski JW. Heme oxygenase-1 gene transfer inhibits inducible nitric oxide synthase expression and protects genetically fat Zucker rat livers from ischemia-reperfusion injury. Transplantation 2002; 74:96-102. [PMID: 12134106 DOI: 10.1097/00007890-200207150-00017] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
BACKGROUND Ischemia/reperfusion (I/R) injury is a critical factor in the dysfunction of steatotic orthotopic liver transplants. Heme oxygenase-1 (HO-1), a cytoprotective protein, may be important in ameliorating hepatic I/R injury. METHODS We used adenovirus (Ad)-based HO-1 gene transfer to analyze the effects of HO-1 overexpression in a well-established fatty Zucker rat model of I/R followed by orthotopic liver transplantation. RESULTS Ad-HO-1 gene therapy increased recipient survival (80% vs. 40-50% in controls) and significantly diminished hepatocyte injury, as compared with untreated and Ad-beta-galactosidase (Ad-beta-Gal)-treated livers. Orthotopic liver transplants in the Ad-HO-1 group exhibited less macrophage infiltration in the portal areas, as compared with controls. Unlike untreated and Ad-beta-Gal-treated orthotopic liver transplant controls, which showed elevated levels of inducible nitric oxide synthase by infiltrating macrophages, inducible nitric oxide synthase expression in the Ad-HO-1 group was almost absent. In contrast, endothelial nitric oxide synthase was comparable in Ad-HO-1- and Ad-beta-Gal-transduced fatty orthotopic liver transplants. Intragraft expression of antiapoptotic Bcl-2 and Bag-1 was increased in Ad-HO-1-treated orthotopic liver transplants, as compared with Ad-beta-Gal controls. Moreover, increased HO enzymatic activity was accompanied by inhibition of caspase-3 protein expression. CONCLUSIONS HO-1 gene transfer significantly prolongs survival of steatotic orthotopic liver transplants, depresses macrophage infiltration, suppresses local expression of inducible nitric oxide synthase, and modulates pro- and antiapoptotic pathways.
Collapse
Affiliation(s)
- Ana J Coito
- Dumont-UCLA Transplant Center, Department of Surgery, UCLA School of Medicine, 90095, USA
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Abstract
Organisms on our planet have evolved in an oxidizing environment that is intrinsically inimical to life, and cells have been forced to devise means of protecting themselves. One of the defenses used most widely in nature is the enzyme heme oxygenase-1 (HO-1). This enzyme performs the seemingly lackluster function of catabolizing heme to generate bilirubin, carbon monoxide, and free iron. Remarkably, however, the activity of this enzyme results in profound changes in cells' abilities to protect themselves against oxidative injury. HO-1 has been shown to have anti-inflammatory, antiapoptotic, and antiproliferative effects, and it is now known to have salutary effects in diseases as diverse as atherosclerosis and sepsis. The mechanism by which HO-1 confers its protective effect is as yet poorly understood, but this area of invetsigation is active and rapidly evolving. This review highlights current information on the function of HO-1 and its relevance to specific pulmonary and cardiovascular diseases.
Collapse
Affiliation(s)
- Danielle Morse
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh School of Medicine, Pennsylvania 15213, USA
| | | |
Collapse
|
186
|
Brouard S, Berberat PO, Tobiasch E, Seldon MP, Bach FH, Soares MP. Heme oxygenase-1-derived carbon monoxide requires the activation of transcription factor NF-kappa B to protect endothelial cells from tumor necrosis factor-alpha-mediated apoptosis. J Biol Chem 2002; 277:17950-61. [PMID: 11880364 DOI: 10.1074/jbc.m108317200] [Citation(s) in RCA: 245] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have shown that carbon monoxide (CO) generated by heme oxygenase-1 (HO-1) protects endothelial cells (EC) from tumor necrosis alpha (TNF-alpha)-mediated apoptosis. This effect relies on the activation of p38 MAPK. We now demonstrate that HO-1/CO requires the activation of the transcription factor NF-kappaB to exert this anti-apoptotic effect. Our data suggest that EC have basal levels of NF-kappaB activity that sustain the expression of NF-kappaB-dependent anti-apoptotic genes required to support the anti-apoptotic effect of HO-1/CO. Over-expression of the inhibitor of NF-kappaB alpha (IkappaBalpha) suppresses the anti-apoptotic action of HO-1/CO. Reconstitution of NF-kappaB activity, by co-expression of IkappaBalpha with different members of the NF-kappaB family, i.e. p65/RelA or p65/RelA plus c-Rel, restores the anti-apoptotic effect of HO-1/CO. Expression of the NF-kappaB family members p65/RelA or p65/RelA with p50 or c-Rel up-regulates the expression of the anti-apoptotic genes A1, A20, c-IAP2, and manganese superoxide dismutase (MnSOD). Inhibition of NF-kappaB activity by over-expression of IkappaBalpha suppresses the expression of some of these anti-apoptotic genes, i.e. c-IAP2. Under inhibition of NF-kappaB, co-expression of some of these anti-apoptotic genes, i.e. c-IAP2 and A1, restores the anti-apoptotic action of HO-1/CO, whereas expression of A20 or MnSOD cannot. The ability of c-IAP2 and/or A1 to restore the anti-apoptotic action of HO-1/CO is abolished when p38 MAPK activation is blocked by over-expression of a p38 MAPK dominant negative mutant. In conclusion, we demonstrate that HO-1/CO cooperates with NF-kappaB-dependent anti-apoptotic genes, i.e. c-IAP2 and A1, to protect EC from TNF-alpha-mediated apoptosis. This effect is dependent on the ability of HO-1/CO to activate the p38 MAPK signal transduction pathway.
Collapse
Affiliation(s)
- Sophie Brouard
- Immunobiology Research Center, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | | | | | |
Collapse
|
187
|
Shoshani T, Faerman A, Mett I, Zelin E, Tenne T, Gorodin S, Moshel Y, Elbaz S, Budanov A, Chajut A, Kalinski H, Kamer I, Rozen A, Mor O, Keshet E, Leshkowitz D, Einat P, Skaliter R, Feinstein E. Identification of a novel hypoxia-inducible factor 1-responsive gene, RTP801, involved in apoptosis. Mol Cell Biol 2002; 22:2283-93. [PMID: 11884613 PMCID: PMC133671 DOI: 10.1128/mcb.22.7.2283-2293.2002] [Citation(s) in RCA: 449] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Hypoxia is an important factor that elicits numerous physiological and pathological responses. One of the major gene expression programs triggered by hypoxia is mediated through hypoxia-responsive transcription factor hypoxia-inducible factor 1 (HIF-1). Here, we report the identification and cloning of a novel HIF-1-responsive gene, designated RTP801. Its strong up-regulation by hypoxia was detected both in vitro and in vivo in an animal model of ischemic stroke. When induced from a tetracycline-repressible promoter, RTP801 protected MCF7 and PC12 cells from hypoxia in glucose-free medium and from H(2)O(2)-triggered apoptosis via a dramatic reduction in the generation of reactive oxygen species. However, expression of RTP801 appeared toxic for nondividing neuron-like PC12 cells and increased their sensitivity to ischemic injury and oxidative stress. Liposomal delivery of RTP801 cDNA to mouse lungs also resulted in massive cell death. Thus, the biological effect of RTP801 overexpression depends on the cell context and may be either protecting or detrimental for cells under conditions of oxidative or ischemic stresses. Altogether, the data suggest a complex type of involvement of RTP801 in the pathogenesis of ischemic diseases.
Collapse
|
188
|
Sethi JM, Otterbein LE, Choi AMK. Differential modulation by exogenous carbon monoxide of TNF-alpha stimulated mitogen-activated protein kinases in rat pulmonary artery endothelial cells. Antioxid Redox Signal 2002; 4:241-8. [PMID: 12006175 DOI: 10.1089/152308602753666299] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Heme oxygenase-1 (HO-1) is an enzyme that is highly inducible by various cellular stressors, especially oxidant injury. Our laboratory and others have demonstrated that induction of HO-1 exerts an antiinflammatory effect both in vitro and in vivo. We hypothesized that carbon monoxide (CO), a major catalytic byproduct of heme catalysis by HO-1, may mediate this antiinflammatory effect by modulating signal transduction pathways, in particular the mitogen-activated protein (MAP) kinase pathway. Confluent primary cultures of rat pulmonary artery endothelial cells (RPAEC) were treated with tumor necrosis factor-alpha (TNF-alpha; 50 ng/ml), and whole-cell extracts were assayed for phosphorylated ERK1/2, JNK1/2, and p38 MAP kinases. These three major MAP kinase pathways were activated by TNF-alpha in a time-dependent manner. RPAEC treated with TNF-alpha in the presence of a low concentration of CO (1%) exhibited marked attenuation of the phosphorylation of ERK1/2 MAP kinase when compared with cells treated with TNF-alpha alone. A similar effect was seen on the upstream MEK 1/2 kinase. Interestingly, CO (1%) accentuated TNF-alpha-induced phosphorylated p38 MAP kinase. These effects of exogenous CO on the ERK1/2 and p38 systems could be replicated by overexpression of HO-1 in RPAEC, using an adenoviral vector. As these MAP kinases are implicated in the regulation of various inflammatory molecules and adhesion molecules, our data provide a potential mechanism by which HO-1, acting via CO, may modulate the inflammatory response by differential activation of the MAP kinase pathway.
Collapse
Affiliation(s)
- Jigme M Sethi
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA
| | | | | |
Collapse
|
189
|
Soares MP, Usheva A, Brouard S, Berberat PO, Gunther L, Tobiasch E, Bach FH. Modulation of endothelial cell apoptosis by heme oxygenase-1-derived carbon monoxide. Antioxid Redox Signal 2002; 4:321-9. [PMID: 12006183 DOI: 10.1089/152308602753666370] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
It is well established that expression of heme oxygenase-1 (HO-1) acts in a cytoprotective manner in a variety of cell types, including in endothelial cells (EC). We have recently shown that HO-1 expression protects EC from undergoing apoptosis. We have also shown that the antiapoptotic effect of HO-1 is mediated through heme catabolism into the gas carbon monoxide (CO). In this review, we discuss the possible molecular mechanisms by which HO-1-derived CO suppresses EC apoptosis. We will review data suggesting that the antiapoptotic effect of CO acts through the activation of the p38 mitogen-activated protein kinase signal transduction pathway and requires the activation of the transcription factor nuclear factor-kappa B (NF-kappa B), as well as the expression of a subset of NF-kappa B-dependent antiapoptotic genes.
Collapse
Affiliation(s)
- Miguel P Soares
- Immunobiology Research Center, Department of Surgery, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
190
|
Amersi F, Shen XD, Anselmo D, Melinek J, Iyer S, Southard DJ, Katori M, Volk HD, Busuttil RW, Buelow R, Kupiec-Weglinski JW. Ex vivo exposure to carbon monoxide prevents hepatic ischemia/reperfusion injury through p38 MAP kinase pathway. Hepatology 2002; 35:815-23. [PMID: 11915027 DOI: 10.1053/jhep.2002.32467] [Citation(s) in RCA: 187] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A direct role of carbon monoxide (CO), an effector-signaling molecule during heme oxygenase-1 (HO-1) catalysis of heme, in the protection against hepatic ischemia/reperfusion (I/R) injury needs to be established. This study was designed to determine the effects and downstream mechanisms of CO on cold I/R injury in a clinically relevant isolated perfusion rat liver model. After 24 hours of cold storage, rat livers perfused ex vivo for 2 hours with blood supplemented with CO (300 parts per million) showed significantly decreased portal venous resistance and increased bile production, as compared with control livers perfused with blood devoid of CO. These beneficial effects correlated with improved liver function (serum glutamic oxaloacetic transaminase levels) and diminished histological features of hepatocyte injury (Banff's scores). The CO-mediated cytoprotective effects were nitric oxide synthase- and cyclic guanine monophosphate-independent, but p38 mitogen-activated protein kinase (MAPK)-dependent. Moreover, adjunctive use of zinc protoporphyrin, a competitive HO-1 inhibitor, has shown that exogenous CO could fully substitute for endogenous HO-1 in preventing hepatic I/R insult. This study performed in a clinically relevant ex vivo cold ischemia model is the first to provide the evidence that HO-1-mediated cytoprotection against hepatic I/R injury depends on the generation of, and can be substituted by, exogenous CO. The p38 MAPK signaling pathway represents the key downstream mechanism by which CO prevents the I/R insult. In conclusion, regimens that employ exogenous CO should be revisited, as they may have potential applications in preventing/mitigating I/R injury, and thus expanding the liver donor pool for clinical transplantation.
Collapse
Affiliation(s)
- Farin Amersi
- The Dumont-UCLA Transplant Center, Division of Liver and Pancreas Transplantation, Department of Surgery, UCLA School of Medicine, Los Angeles, CA 90095, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Cho HY, Jedlicka AE, Reddy SPM, Kensler TW, Yamamoto M, Zhang LY, Kleeberger SR. Role of NRF2 in protection against hyperoxic lung injury in mice. Am J Respir Cell Mol Biol 2002; 26:175-82. [PMID: 11804867 DOI: 10.1165/ajrcmb.26.2.4501] [Citation(s) in RCA: 542] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
NRF2 is a transcription factor important in the protection against carcinogenesis and oxidative stress through antioxidant response element (ARE)-mediated transcriptional activation of several phase 2 detoxifying and antioxidant enzymes. This study was designed to determine the role of NRF2 in the pathogenesis of hyperoxic lung injury by comparing pulmonary responses to 95-98% oxygen between mice with site-directed mutation of the gene for NRF2 (Nrf2-/-) and wild-type mice (Nrf2+/+). Pulmonary hyperpermeability, macrophage inflammation, and epithelial injury in Nrf2-/- mice were 7.6-fold, 47%, and 43% greater, respectively, compared with Nrf2+/+ mice after 72 h hyperoxia exposure. Hyperoxia markedly elevated the expression of NRF2 mRNA and DNA-binding activity of NRF2 in the lungs of Nrf2+/+ mice. mRNA expression for ARE- responsive lung antioxidant and phase 2 enzymes was evaluated in both genotypes of mice to identify potential downstream molecular mechanisms of NRF2 in hyperoxic lung responses. Hyperoxia-induced mRNA levels of NAD(P)H:quinone oxidoreductase 1 (NQO1), glutathione-S-transferase (GST)-Ya and -Yc subunits, UDP glycosyl transferase (UGT), glutathione peroxidase-2 (GPx2), and heme oxygenase-1 (HO-1) were significantly lower in Nrf2-/- mice compared with Nrf2+/+ mice. Consistent with differential mRNA expression, NQO1 and total GST activities were significantly lower in Nrf2-/- mice compared with Nrf2+/+ mice after hyperoxia. Results demonstrated that NRF2 has a significant protective role against pulmonary hyperoxic injury in mice, possibly through transcriptional activation of lung antioxidant defense enzymes.
Collapse
Affiliation(s)
- Hye-Youn Cho
- Department of Environmental Health Sciences, The Bloomberg School of Hygiene and Public Health, Johns Hopkins University, Baltimore, Maryland, USA
| | | | | | | | | | | | | |
Collapse
|
192
|
Lu A, Ran RQ, Clark J, Reilly M, Nee A, Sharp FR. 17-beta-estradiol induces heat shock proteins in brain arteries and potentiates ischemic heat shock protein induction in glia and neurons. J Cereb Blood Flow Metab 2002; 22:183-95. [PMID: 11823716 DOI: 10.1097/00004647-200202000-00006] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Estradiol reduces brain injury from many diseases, including stroke and trauma. To investigate the molecular mechanisms of this protection, the effects of 17-beta-estradiol on heat shock protein (HSP) expression were studied in normal male and female rats and in male gerbils after global ischemia. 17-beta-estradiol was given intraperitoneally (46 or 460 ng/kg, or 4.6 microg/kg) and Western blots performed for HSPs. 17-beta-estradiol increased hemeoxygenase-1, HSP25/27, and HSP70 in the brain of male and female rats. Six hours after the administration of 17-beta-estradiol, hemeoxygenase-1 increased 3.9-fold (460 ng/kg) and 5.4-fold (4.6 microg/kg), HSP25/27 increased 2.1-fold (4.6 microg/kg), and Hsp70 increased 2.3-fold (460 ng/kg). Immunocytochemistry showed that hemeoxygenase-1, HSP25/27,and HSP70 induction was localized to cerebral arteries in male rats, possibly in vascular smooth muscle cells. 17-beta-estradiol was injected intraperitoneally 20 minutes before transient occlusion of both carotids in adult gerbils. Six hours after global cerebral ischemia, 17-beta-estradiol (460 ng/kg) increased levels of hemeoxygenase-1 protein 2.4-fold compared with ischemia alone, and HSP25/27 levels increased 1.8-fold compared with ischemia alone. Hemeoxygenase-1 was induced in striatal oligodendrocytes and hippocampal neurons, and HSP25/27 levels increased in striatal astrocytes and hippocampal neurons. Finally, Western blot analysis confirmed that estrogen induced heat shock factor-1, providing a possible mechanism by which estrogen induces HSPs in brain and other tissues. The induction of HSPs may be an important mechanism for estrogen protection against cerebral ischemia and other types of injury.
Collapse
Affiliation(s)
- Aigang Lu
- Department of Neurology and Neurosciences Program, Vontz Center for Molecular Studies, University of Cincinnati, Cincinnati, Ohio 45267, USA
| | | | | | | | | | | |
Collapse
|
193
|
Ryter SW, Otterbein LE, Morse D, Choi AMK. Heme oxygenase/carbon monoxide signaling pathways: regulation and functional significance. Mol Cell Biochem 2002; 234-235:249-63. [PMID: 12162441 PMCID: PMC7101540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/26/2023]
Abstract
Carbon monoxide (CO), a gaseous second messenger, arises in biological systems during the oxidative catabolism of heme by the heme oxygenase (HO) enzymes. HO exists as constitutive (HO-2, HO-3) and inducible isoforms (HO-1), the latter which responds to regulation by multiple stress-stimuli. HO-1 confers protection in vitro and in vivo against oxidative cellular stress. Although the redox active compounds that are generated from HO activity (i.e. iron, biliverdin-IXalpha, and bilirubin-IXa) potentially modulate oxidative stress resistance, increasing evidence points to cytoprotective roles for CO. Though not reactive, CO regulates vascular processes such as vessel tone, smooth muscle proliferation, and platelet aggregation, and possibly functions as a neurotransmitter. The latter effects of CO depend on the activation of guanylate cyclase activity by direct binding to the heme moiety of the enzyme, stimulating the production of cyclic 3':5'-guanosine monophosphate. CO potentially interacts with other intracellular hemoprotein targets, though little is known about the functional significance of such interactions. Recent progress indicates that CO exerts novel anti-inflammatory and anti-apoptotic effects dependent on the modulation of the p38 mitogen activated protein kinase (MAPK)-signaling pathway. By virtue of these effects, CO confers protection in oxidative lung injury models, and likely plays a role in HO-1 mediated tissue protection.
Collapse
Affiliation(s)
- Stefan W Ryter
- Department of Medicine, University of Pittsburgh Medical Center, PA 15213, USA.
| | | | | | | |
Collapse
|
194
|
Suzuki T, Spitz DR, Gandhi P, Lin HY, Crawford DR. Mammalian resistance to oxidative stress: a comparative analysis. Gene Expr 2002; 10:179-91. [PMID: 12173744 PMCID: PMC5977517 DOI: 10.3727/000000002783992442] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/31/2001] [Indexed: 11/24/2022]
Abstract
Changes in gene expression represent a major protective mechanism, and enforced overexpression of individual genes has been shown to protect cells. However, no large-scale comparison of genes involved in mammalian oxidative stress protection has yet been described. Using filter microarray and restriction fragment differential display technology, hydrogen peroxide (H2O2)-resistant variants of hamster HA-1 fibroblasts and human HL-60 promyelocytes were found to possess a surprising lack of commonality in specific modulated genes with the single exception of catalase, supporting the hypothesis that catalase overexpression is critical for resistance to H2O2. Comparison of two cell lines from the same species (hamster) selected with an exogenous oxidative stressing agent (H2O2) and an endogenous metabolic oxidative stressing agent (95% O2) also revealed little commonality in modulation of specific mRNAs with the exception of glutathione S-transferase enzymes and catalase. Acute oxidative stress in HL-60 led to the modulation of a limited subset of the genes associated with chronic oxidative stress resistance. Overall, these results suggest that mammalian resistance to oxidative and perhaps other stress does not require a significant number of common genes but rather only a limited number of key genes (e.g., catalase in our model systems) in combination with others that are cell type and stress agent specific.
Collapse
Affiliation(s)
- Toshihide Suzuki
- *Laboratory of Forensic Chemistry, Faculty of Pharmaceutical Sciences, Teikyo University, 1091-1 Sagamiko-machi, Tsukui-gun, Kanagawa 199-01Japan
| | - Douglas R. Spitz
- †Free Radical and Radiation Biology Program, Department of Radiation Oncology, The University of Iowa, Iowa City, IA 52242
| | - Purvee Gandhi
- ‡Center for Immunology and Microbial Disease, The Albany Medical College, Albany, NY 12208
| | - H. Y. Lin
- §Center for Cell Biology and Cancer Research, The Albany Medical College, Albany, NY 12208
| | - Dana R. Crawford
- ‡Center for Immunology and Microbial Disease, The Albany Medical College, Albany, NY 12208
- Address correspondence to Dana R. Crawford, Ph.D., Center for Immunology and Microbial Disease MC-151, The Albany Medical College, Albany, NY 12208. Tel: (518) 262-6652; Fax: (518) 262-6161; E-mail:
| |
Collapse
|
195
|
Chapman JT, Choi AM. Exhaled monoxides as a pulmonary function test: use of exhaled nitric oxide and carbon monoxide. Clin Chest Med 2001; 22:817-36. [PMID: 11787667 DOI: 10.1016/s0272-5231(05)70068-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Although there has been tremendous improvement in the technologic ability to measure exhaled gases and monitor biologic processes in the lung, it has not yet found a clinical role outside the research laboratory. Common themes seem to be significant overlap in the amount of exhaled gases in clinically distinct populations, confounding variables such as infection, smoking, and environmental exposure, and lack of consistent change with disease management. If these tests are ever to be used by the general pulmonologist, consistent links between the measurements and the response to disease modification will need to be demonstrated at the very least and, ideally, the clinician would like to see improved outcomes when these noninvasive tests are employed regularly.
Collapse
Affiliation(s)
- J T Chapman
- Department of Pulmonary and Critical Care Medicine, Cleveland Clinic Foundation, Ohio 44195, USA.
| | | |
Collapse
|
196
|
Inguaggiato P, Gonzalez-Michaca L, Croatt AJ, Haggard JJ, Alam J, Nath KA. Cellular overexpression of heme oxygenase-1 up-regulates p21 and confers resistance to apoptosis. Kidney Int 2001; 60:2181-91. [PMID: 11737592 DOI: 10.1046/j.1523-1755.2001.00046.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
BACKGROUND Induction of heme oxygenase-1 (HO-1) protects against diverse insults in the kidney and other tissues. We examined the effect of overexpression of HO-1 on cell growth, expression of p21, and susceptibility to apoptosis. METHODS LLC-PK1 cells were genetically engineered to exhibit stable overexpression of HO-1. The effects of such overexpression on cell growth, the cell cycle, and the cell cycle-inhibitory protein, p21, were assessed; additionally, the susceptibility of these HO-1 overexpressing cells to apoptosis induced by three different stimuli (TNF-alpha/cycloheximide, staurosporine, or serum deprivation) was evaluated by such methods as the quantitation of caspase-3 activity, phase contrast microscopy, and the TUNEL method. RESULTS HO-1 overexpressing LLC-PK1 cells demonstrated cellular hypertrophy, decreased hyperplastic growth, and growth arrest in the G0/G1 phase of the cell cycle. HO-1 overexpressing cells were markedly resistant to apoptosis induced by TNFalpha/cycloheximide or staurosporine as assessed by the caspase-3 activity assay. Such overexpression also conferred resistance to apoptosis induced by serum deprivation as evaluated by the TUNEL method; in these studies, inhibition of HO attenuated the resistance to apoptosis. Expression of the cyclin dependent kinase inhibitor, p21CIP1, WAF1, SDI1, as judged by Northern and Western analyses, was significantly increased in HO-1 overexpressing cells, and decreased as HO activity was inhibited. Moreover, this reduction in expression of p21 attendant upon the inhibition of HO activity in HO-1 overexpressing cells paralleled the loss of resistance of these cells to apoptosis when HO activity is inhibited. The pharmacologic inducer of HO-1, hemin, increased expression of p21 in wild-type cells and decreased apoptosis provoked by TNF-alpha/cycloheximide. CONCLUSION Cellular overexpression of HO-1 up-regulates p21, diminishes proliferative cell growth, and confers marked resistance to apoptosis. We speculate that such up-regulation of p21 contributes to the altered pattern of cell growth and resistance to apoptosis. Our studies uncover the capacity of HO-1 to markedly influence the cell cycle in renal epithelial cells. In light of the profound importance of the cell cycle as a determinant of cell fate, we speculate that the inductive effect of HO-1 on p21 and the attendant inhibitory effect on the cell cycle provide a hitherto unsuspected mechanism underlying the cytoprotective actions of HO-1.
Collapse
Affiliation(s)
- P Inguaggiato
- Division of Nephrology, Mayo Clinic/Foundation, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
197
|
Rothfuss A, Radermacher P, Speit G. Involvement of heme oxygenase-1 (HO-1) in the adaptive protection of human lymphocytes after hyperbaric oxygen (HBO) treatment. Carcinogenesis 2001; 22:1979-85. [PMID: 11751428 DOI: 10.1093/carcin/22.12.1979] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Accumulating evidence suggests that HO-1 plays an important role in cellular protection against oxidant-mediated cell injury. Our previous studies on hyperbaric oxygen (HBO; i.e. exposure to pure oxygen under high ambient pressure) indicated clearly increased levels of HO-1 in lymphocytes of volunteers 24 h after HBO treatment (1 h at 1.5 bar). Experiments with the comet assay (alkaline single cell gel electrophoresis) revealed that the same cells were almost completely protected against the induction of DNA damage by a repeated exposure or in vitro treatment with H(2)O(2) 24 h after the first HBO. In order to further investigate the role of HO-1 in HBO-induced adaptive response, we now performed experiments with isolated human lymphocytes exposed to HBO in vitro (2 h at 3 bar). Our results show that also under cell culture conditions, lymphocytes exhibit an adaptive protection similar to that observed in our previous work with healthy human subjects. The time-course of HO-1 induction proceeds in parallel to the development of an adaptive protection against the induction of oxidative DNA damage. A comparable protection was not seen in V79 cells, indicating a specific difference between the two investigated cell systems. Treatment with the specific HO-1 inhibitor tin-mesoporphyrin IX (SnMP) led to a complete abrogation of HBO-induced adaptive protection in human lymphocytes. Our results indicate a functional involvement of HO-1 in the adaptive protection of human lymphocytes against the induction of oxidative DNA damage. The exact mechanism by which HO-1 contributes to an adaptive response remains to be elucidated.
Collapse
Affiliation(s)
- A Rothfuss
- Abteilung Humangenetik and Sektion Anästhesiologie und Pathophysiologische Verfahrensentwicklung, Universitätsklinikum Ulm, D-89070 Ulm, Germany
| | | | | |
Collapse
|
198
|
Tulis DA, Durante W, Liu X, Evans AJ, Peyton KJ, Schafer AI. Adenovirus-mediated heme oxygenase-1 gene delivery inhibits injury-induced vascular neointima formation. Circulation 2001; 104:2710-5. [PMID: 11723024 DOI: 10.1161/hc4701.099585] [Citation(s) in RCA: 113] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Recent studies have demonstrated that systemic pharmacological induction of heme oxygenase-1 (HO-1), the inducible isoform of the initial and rate-limiting enzyme for heme catabolism, attenuates neointima formation after experimental vascular injury. We have now investigated the ability of localized adenovirus-mediated HO-1 (Ad-HO-1) gene delivery to modify arterial remodeling after balloon angioplasty. METHODS AND RESULTS Two weeks after balloon angioplasty in the rat carotid artery, elevated HO-1 protein was observed in the Ad-HO-1 arteries compared with those exposed to empty adenovirus (Ad-E) or to PBS. The arteries exposed to Ad-HO-1 exhibited significantly reduced neointimal area, medial wall area, neointimal area/medial wall area ratio, and neointimal thickness compared with arteries exposed to Ad-E. The Ad-E vessels showed subtle reductions in each morphometric parameter compared with PBS vessels. In a separate group of animals, concomitant treatment of Ad-HO-1 with the HO-1 inhibitor tin protoporphyrin completely restored each morphometric parameter to control levels. Arteries exposed to Ad-HO-1 demonstrated significantly increased TUNEL labeling of apoptotic nuclei and significantly decreased PCNA labeling of DNA synthesis in the medial wall 48 hours after injury. CONCLUSIONS These results indicate that HO-1 represents an important in vivo vasoprotective mediator that is capable of attenuating the pathophysiological remodeling response to endovascular injury and suggest that HO-1 may be a novel target for the treatment of vascular disease.
Collapse
Affiliation(s)
- D A Tulis
- Departments of Medicine, Baylor College of Medicine, and Veterans Affairs Medical Center, Houston, Texas, USA
| | | | | | | | | | | |
Collapse
|
199
|
Ishikawa K, Sugawara D, Goto J, Watanabe Y, Kawamura K, Shiomi M, Itabe H, Maruyama Y. Heme oxygenase-1 inhibits atherogenesis in Watanabe heritable hyperlipidemic rabbits. Circulation 2001; 104:1831-6. [PMID: 11591622 DOI: 10.1161/hc3901.095897] [Citation(s) in RCA: 95] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heme oxygenase-1 (HO-1) is proposed to have a variety of adaptive responses against oxidative stress. To examine the function of HO-1 against atherogenesis in vivo, we observed the effects of HO-1 inhibition on atherosclerotic lesion formation in Watanabe heritable hyperlipidemic rabbits (WHHL). Methods and Results- During 4 weeks of a 1% cholesterol diet, intravenous injections of Sn-protoporphyrin IX to inhibit HO-1 (S group, n=10) and saline as a control (C group, n=10) were given to 3-month-old WHHL rabbits. The percentages of en face atherosclerotic lesion areas in total descending aorta by Sudan IV staining (EFA) and the ratio of intima to media in microscopic atherosclerotic lesions in the ascending aortas (I/M) were calculated. Two different quantitative methods revealed significantly greater atherosclerotic lesions in the S group than the C group (EFA, P<0.001; I/M, P<0.005). HO-1 expression in atherosclerotic lesions was confirmed by Northern blot and immunohistochemical analyses. The dominant cell types expressing HO-1 were macrophages and foam cells, in which oxidized phospholipids were also accumulated. HO inhibition increased plasma and tissue lipid peroxide levels without affecting plasma lipid co osition. CONCLUSIONS These results suggest the possibilities that HO-1 has antiatherogenic properties in vivo and that the antiatherogenic properties of HO-1 are conducted through the prevention of lipid peroxidation.
Collapse
Affiliation(s)
- K Ishikawa
- First Department of Internal Medicine, Fukushima Medical University, Fukushima, Japan
| | | | | | | | | | | | | | | |
Collapse
|
200
|
Wheeler DS, Wong HR. The impact of molecular biology on the practice of pediatric critical care medicine. Pediatr Crit Care Med 2001; 2:299-310. [PMID: 12793931 DOI: 10.1097/00130478-200110000-00003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Molecular biology is increasingly affecting all areas of clinical medicine, including pediatric critical care medicine. Recent advances in genomics will allow for a more in-depth understanding of disease processes that are relevant to the pediatric intensivist, such as sepsis, the acute respiratory distress syndrome, and multiple organ dysfunction syndrome. In turn, understanding critical illness at the genomic level may allow for more effective stratification of patient subclasses and targeted, patient-specific therapy. The related fields of pharmacogenomics and pharmacogenetics hold the promise of improved drug development and the tailoring of drug therapy based on the individual's drug metabolism profile. Therapeutic strategies aimed at modulating host inflammatory responses remain viable but will need to take into account the inherent redundancy of the host inflammatory response and the heterogenous responses between individual patients. Thus, "immuno-phenotyping" of critically ill patients will allow for more rational immune-modulating therapies, either in the form of inhibiting or enhancing specific immune/inflammatory responses. The host also contains powerful, broad cytoprotective mechanisms that could potentially be harnessed as a strategy for organ and tissue protection in many forms of critical illness. Finally, prospects for gene therapy, although quite challenging at present, may be applicable to the intensive care unit in the near future. With these rapid advancements in molecular biology, it is imperative that all pediatric critical care practitioners become, at least, familiar with the field and its related technology. Hopefully, clinician-scientists involved in pediatric critical care will also shape the direction of these future prospects.
Collapse
Affiliation(s)
- D S Wheeler
- Division of Critical Care Medicine, Children's Hospital Medical Center and Children's Hospital Research Foundation, Cincinnati, Ohio 45244, USA
| | | |
Collapse
|