151
|
Simi A, Edling Y, Ingelman-Sundberg M, Tindberg N. Activation of c-fos by lipopolysaccharide in glial cells via p38 mitogen-activated protein kinase-dependent activation of serum or cyclic AMP/calcium response element. J Neurochem 2005; 92:915-24. [PMID: 15686494 DOI: 10.1111/j.1471-4159.2004.02938.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Pathological conditions such as ischaemic stroke and inflammatory disorders cause c-fos activation in the brain. This activation contributes to the initiation of the brain's inflammatory response, orchestrated by activated glial cells. The inflammatory signalling cascades leading to c-fos activation in glial cells are not well characterized. Thus, we have attempted a detailed analysis of the cis-acting elements, transcription factors and upstream kinase pathways involved in the activation of c-fos by lipopolysaccharide (LPS) in primary rat cortical glial cells. We found that (1) LPS-induced c-fos mRNA levels were sensitive to p38 mitogen-activated protein kinase (MAPK) inhibitors but not to mitogen-activated/extracellular signal-regulated kinase (ERK) or calcium-calmodulin-dependent kinase inhibitors, (2) LPS activated both serum response element (SRE) and cyclic AMP/calcium response element (CRE)-driven luciferase reporters in transient transfection assays, (3) LPS induced the phosphorylation of Elk1 CRE-binding protein (CREB)/activated transcription factor-1 (ATF-1) and the activation of GAL4-Elk1 and GAL4-CREB chimeric proteins, and (4) mutation of both SRE and CRE elements was necessary and sufficient to completely abolish LPS induction of a rat c-fos proximal promoter-luciferase reporter. Thus, c-fos activation by LPS in glial cells occurs via the SRE or CRE in an independent manner, and involves the Elk1 or CREB/ATF-1 transcription factors. Elk1-mediated transactivation was dependent on p38 MAPK, suggesting a crucial role of these factors in mediating inflammatory responses in the CNS.
Collapse
Affiliation(s)
- Anastasia Simi
- Institute of Environmental Medicine, Division of Molecular Toxicology, Karolinska Institute, Stockholm, Sweden.
| | | | | | | |
Collapse
|
152
|
Kim YH, Lee SH, Lee JY, Choi SW, Park JW, Kwon TK. Triptolide inhibits murine-inducible nitric oxide synthase expression by down-regulating lipopolysaccharide-induced activity of nuclear factor-kappa B and c-Jun NH2-terminal kinase. Eur J Pharmacol 2005; 494:1-9. [PMID: 15194445 DOI: 10.1016/j.ejphar.2004.04.040] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2003] [Revised: 04/07/2004] [Accepted: 04/26/2004] [Indexed: 10/26/2022]
Abstract
Triptolide (PG490) is a natural, biologically active compound extracted from the Chinese herb Tripterygium wilfordii. It has been shown to possess potent anti-inflammatory and immunosuppressive properties. In Raw 264.7 cells stimulated with lipopolysaccharide (LPS) to mimic inflammation, triptolide inhibits nitric oxide (NO) production in a dose-dependent manner and abrogates inducible nitric oxide synthase (iNOS) gene expression. To investigate the mechanism by which triptolide inhibits murine iNOS gene expression, we examined activation of mitogen-activated protein kinases (MAP kinases) and nuclear factor-kappa B (NF-kappa B) in these cells. Addition of triptolide inhibited phosphorylation of c-Jun NH(2)-terminal kinase (JNK) but not that of extracellular signal-regulated kinase (ERK) or p38 mitogen-activated protein kinase. In addition, triptolide significantly inhibited the DNA binding activity of NF-kappa B. Taken together, these results suggest that triptolide acts to inhibit inflammation through inhibition of NO production and iNOS expression through blockade of NF-kappa B and JNK activation.
Collapse
Affiliation(s)
- Young-Ho Kim
- Department of Immunology, School of Medicine, Keimyung University, 194 Dong San-Dong Jung-Gu, Taegu 700-712, South Korea
| | | | | | | | | | | |
Collapse
|
153
|
Abstract
Reactive oxygen species and reactive nitrogen species are mediators of lung tissue damage. To minimize the effect of oxidative stress, the lung is well equipped with an integrated antioxidant system. In some circumstances, antioxidants increase in response to oxidants and reduce tissue injury. The lung is somewhat unique in that it has an extracellular surface, which is often directly exposed to oxidative stresses. In this context, the extracellular antioxidant system, comprised primarily of glutathione and glutathione peroxidase, is especially important in protecting against oxidant injury. Induction of extracellular glutathione peroxidase occurs in airway inflammation and undoubtedly plays an important defense against oxidative injury to the airway surface.
Collapse
Affiliation(s)
- Suzy A A Comhair
- Department of Pulmonary and Critical Care Medicine, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH, USA.
| | | |
Collapse
|
154
|
Won JS, Im YB, Khan M, Singh AK, Singh I. Involvement of phospholipase A2 and lipoxygenase in lipopolysaccharide-induced inducible nitric oxide synthase expression in glial cells. Glia 2005; 51:13-21. [PMID: 15779087 DOI: 10.1002/glia.20178] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The present study underlines the importance of phospholipase A2 (PLA2)- and lipoxygenase (LO)-mediated signaling processes in the regulation of inducible nitric oxide synthase (iNOS) gene expression. In glial cells, lipopolysaccharide (LPS) induced the activities of PLA2 (calcium-independent PLA2; iPLA2 and cytosolic PLA2; cPLA2) as well as gene expression of iNOS. The inhibition of cPLA2 by methyl arachidonyl fluorophosphates (MAFP) or antisense oligomer against cPLA2 and inhibition of iPLA2 by bromoenol lactone reduced the LPS-induced iNOS gene expression and NFkappaB activation. In addition, the inhibition of LO by nordihydroguaiaretic acid (NDGA; general LO inhibitor) or MK886 (5-LO inhibitor), but not baicalein (12-LO inhibitor), completely abrogated the LPS-induced iNOS expression. Because NDGA could abrogate the LPS-induced activation of NFkappaB, while MK886 had no effect on it, LO-mediated inhibition of iNOS gene induction by LPS may involve an NFkappaB-dependent or -independent (by 5-LO) pathway. In contrast to LO, however, the cyclooxygenase (COX) may not be involved in the regulation of LPS-mediated induction of iNOS gene because COX inhibition by indomethacin (general COX inhibitor), SC560 (COX-1 inhibitor), and NS398 (COX-2 inhibitor) affected neither the LPS-induced iNOS expression nor activation of NFkappaB. These results indicate a role for cPLA2 and iPLA2 in LPS-mediated iNOS gene induction in glial cells and the involvement of LO in these reactions.
Collapse
Affiliation(s)
- Je-Seong Won
- Department of Pediatrics, Medical University of South Carolina, Charleston, South Carolina 29425, USA
| | | | | | | | | |
Collapse
|
155
|
Won JS, Im YB, Singh AK, Singh I. Dual role of cAMP in iNOS expression in glial cells and macrophages is mediated by differential regulation of p38-MAPK/ATF-2 activation and iNOS stability. Free Radic Biol Med 2004; 37:1834-44. [PMID: 15528042 DOI: 10.1016/j.freeradbiomed.2004.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2004] [Revised: 08/24/2004] [Accepted: 08/26/2004] [Indexed: 11/23/2022]
Abstract
We reported previously that cAMP analogues or cAMP synthesis activator (forskolin; FSK) inhibit lipopolysaccharide (LPS)-induced inducible nitric-oxide systase (iNOS) gene expression in astrocytes, while they enhance that in macrophages. Here, we report that the FSK-mediated inhibition of iNOS expression in C6 glial cells is due to its reduced transcriptional activity, while the FSK-mediated enhancement of iNOS expression in RAW264.7 macrophages is a result of increased stability of iNOS protein without transcriptional enhancement. The LPS/interferon-gamma (IFN)-induced iNOS transcription was inhibited by FSK via inhibition of p38-MAPK/ATF-2 activity in glial cells while it was not affected in macrophages. In both cell types, proteasome activities were required for the spontaneous degradation of iNOS protein, and the inhibition of proteasome activity by MG132 after maximum increase of iNOS protein levels further enhanced iNOS protein induction by LPS/IFN, suggesting the involvement of proteasome in iNOS degradation. More importantly, the iNOS protein levels were equalized by the MG132 posttreatment in macrophages treated with LPS/IFN alone and along with FSK, and ubiquitinated iNOS protein levels were reduced by FSK posttreatment, suggesting that the FSK-mediated inhibition of ubiquitination of iNOS protein and the following increased stability of iNOS protein are one of the mechanisms of cAMP-pathway-mediated enhancement of iNOS gene expression in macrophages. To our knowledge, this is the first evidence that cAMP regulates iNOS expression at the posttranslational level in macrophages.
Collapse
Affiliation(s)
- Je-Seong Won
- Developmental Neurogenetics, Department of Pediatrics; Department of Pathology, Medical University of South Carolina, 316 CSB, Charleston, SC 29425, USA
| | | | | | | |
Collapse
|
156
|
Sanguino E, Roglans N, Alegret M, Sánchez RM, Vázquez-Carrera M, Laguna JC. Prevention of age-related changes in rat cortex transcription factor activator protein-1 by hypolipidemic drugs. Biochem Pharmacol 2004; 68:1411-21. [PMID: 15345331 DOI: 10.1016/j.bcp.2004.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Accepted: 06/14/2004] [Indexed: 11/24/2022]
Abstract
We sought to investigate if, similar to what has been described in other rodent tissues, ageing changes the activity of several transcription factors, namely signal transducer and activator of transcription, nuclear factor-kappa B (NFkappaB), activated protein-1 (AP-1) and peroxisome proliferator-activated receptor (PPAR), in cortex of Sprague-Dawley rats. We also investigated if the administration of two hypolipidemic drugs, gemfibrozil (GFB) and atorvastatin (ATV), could prevent those changes. To this purpose, we determined the expression and binding activity of these transcription factors in cortex samples from 3-month and 18-month old male and female rats, and in 18-month old rats of both sexes treated for 21 days with a daily dose of 3mg GFB/kg or 10mg ATV/kg. Ageing increased rat cortex NFkappaB binding activity by 35-40%, and decreased by 22-26% the amount of PPARalpha in rats of both sexes, while cortex AP-1 binding activity and c-Jun content were reduced only in old females (-26 and -50%, respectively). Cortex cyclooxigenase-2 (COX-2) and receptor for activated C-kinase 1 (RACK1) expression was also reduced by old age. Hypolipidemic drugs prevented the age-related decrease of cortex AP-1 in old females and increased AP-1 binding activity and c-Jun protein in cortex from both old male and female rats. GFB increased also by 80% the cortex PPARalpha content in old males. Our data indicate that 18-month old rats show signs of cortex biochemical deterioration related to the ageing process, and that hypolipidemic drug administration partially prevents the appearance of some of the age-related changes in cortex biochemistry.
Collapse
Affiliation(s)
- Elena Sanguino
- Unidad de Farmacología y Farmacognosia, Facultad de Farmacia, Universidad de Barcelona Avda Diagonal 643, 08028 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
157
|
Janabi N, Jensen PN, Major EO. Differential effects of interferon-γ on the expression of cyclooxygenase-2 in high-grade human gliomas versus primary astrocytes. J Neuroimmunol 2004; 156:113-22. [PMID: 15465602 DOI: 10.1016/j.jneuroim.2004.07.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2004] [Revised: 07/22/2004] [Accepted: 07/23/2004] [Indexed: 11/30/2022]
Abstract
We compared effects of interferon-gamma (IFNgamma) on cyclooxygenase-2 (COX-2) expression in malignant human glioma cell lines and cultured primary human astrocytes. While IFNgamma inhibited interleukin-1beta (IL1beta)-induced expression of COX-2 in the glioma cells, it enhanced expression in primary astrocytes. This differential effect correlated with the observed modulation of NFkappaB and AP-1 DNA binding activity; reduced in the glioma cells, increased in primary astrocytes. Furthermore, IFNgamma had a significantly greater anti-proliferative effect on the glioma cells than COX inhibitors. This inhibitory effect of IFNgamma on expression of COX-2 in human glioma cells may have relevance for immunotherapies directed against high-grade gliomas.
Collapse
Affiliation(s)
- Nazila Janabi
- Laboratory of Molecular Medicine and Neuroscience, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-4164, USA. nazila @free.fr
| | | | | |
Collapse
|
158
|
Machida K, Cheng KTH, Sung VMH, Lee KJ, Levine AM, Lai MMC. Hepatitis C virus infection activates the immunologic (type II) isoform of nitric oxide synthase and thereby enhances DNA damage and mutations of cellular genes. J Virol 2004; 78:8835-43. [PMID: 15280491 PMCID: PMC479064 DOI: 10.1128/jvi.78.16.8835-8843.2004] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Hepatitis C virus (HCV) infection causes hepatitis, hepatocellular carcinoma, and B-cell lymphomas in a significant number of patients. Previously we have shown that HCV infection causes double-stranded DNA breaks and enhances the mutation frequency of cellular genes, including proto-oncogenes and immunoglobulin genes. To determine the mechanisms, we studied in vitro HCV infection of cell culture. Here we report that HCV infection activated the immunologic (type II) isoform of nitric oxide (NO) synthase (NOS), i.e., inducible NOS (iNOS), thereby inducing NO, which in turn induced DNA breaks and enhanced the mutation frequencies of cellular genes. Treatment of HCV-infected cells with NOS inhibitors or small interfering RNA specific for iNOS abolished most of these effects. Expression of the core protein or nonstructural protein 3 (NS3), but not the other viral proteins, in B cells or hepatocytes induced iNOS and DNA breaks, which could be blocked by NOS inhibitors. The core protein also enhanced the mutation frequency of cellular genes in hepatocytes derived from HCV core transgenic mice compared with that in control mice. The iNOS promoter was activated more than fivefold in HCV-infected cells, as revealed by a luciferase reporter assay driven by the iNOS promoter. Similarly, the core and NS3 proteins also induced the same effects. Therefore, we conclude that HCV infection can stimulate the production of NO through activation of the gene for iNOS by the viral core and NS3 proteins. NO causes DNA breaks and enhances DNA mutation. This sequence of events provides a mechanism for HCV pathogenesis and oncogenesis.
Collapse
Affiliation(s)
- Keigo Machida
- Department of Molecular Microbiology and Immunology, Keck School of Medicine, University of Southern California, 2011 Zonal Ave., Los Angeles, CA 90033, USA
| | | | | | | | | | | |
Collapse
|
159
|
Roy S, Sharma S, Sharma M, Aggarwal R, Bose M. Induction of nitric oxide release from the human alveolar epithelial cell line A549: an in vitro correlate of innate immune response to Mycobacterium tuberculosis. Immunology 2004; 112:471-80. [PMID: 15196216 PMCID: PMC1782514 DOI: 10.1046/j.1365-2567.2004.01905.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In view of the presence of a large number of epithelial cells in the alveoli of the lung and their ability to produce various cytokines and chemokines, the possible role of alveolar epithelial cells in the innate immune response to tuberculosis was examined. The human alveolar epithelial cell line A549 was used as a model. The ability of A549 cells to induce nitric oxide (NO) in response to Mycobacterium tuberculosis infection was taken as an in vitro correlate of innate immunity. M. tuberculosis infection induced A549 cells to produce significant levels of NO and to express inducible nitric oxide synthase mRNA at 48 hr of infection. However, the amount of NO released at this point was not mycobactericidal. Cytokine stimulation (interferon-gamma, tumour necrosis factor-alpha, interleukin-1beta, alone or in combination) of the infected A549 cells induced a higher concentration of NO. The study of colony-forming units (CFU) as a measure of the mycobactericidal capacity of A549 cells revealed a reduction in CFU of M. tuberculosis by 39.29% (from 10.62 +/- 0.48 - 6.392 +/- 0.54) following cytokine stimulation of the infected cells. Interestingly gamma-irradiated M. tuberculosis H37Rv could also induce higher than basal level of NO. Therefore we examined mycobacterial antigenic components for their possible role in NO production. We observed that A549 cells produced significantly higher amounts of NO at 48 hr when treated with mycobacterial whole cell lysates, cell wall or cell membrane preparations. The release of NO and the resultant mycobactericidal activity could be further enhanced by simultaneously conditioning the M. tuberculosis infected A549 cells with cytokine and mycobacterial components. These results suggest that alveolar epithelial cells respond to their microenvironment, which is constituted of various cytokines and macrophage-processed antigens and may contribute to the innate immune response to tuberculosis.
Collapse
Affiliation(s)
- Sugata Roy
- Department of Microbiology, V. P. Chest Institute, University of Delhi, Delhi, India
| | | | | | | | | |
Collapse
|
160
|
Zheng S, Xu W, Bose S, Banerjee AK, Haque SJ, Erzurum SC. Impaired nitric oxide synthase-2 signaling pathway in cystic fibrosis airway epithelium. Am J Physiol Lung Cell Mol Physiol 2004; 287:L374-81. [PMID: 15107292 DOI: 10.1152/ajplung.00039.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cystic fibrosis (CF) airway epithelial cells are more susceptible to viral infection due to impairment of the innate host defense pathway of nitric oxide (NO). NO synthase-2 (NOS2) expression is absent, and signal transducer and activator of transcription (STAT) 1 activation is reduced in CF. We hypothesized that the IFN-γ signaling pathway, which leads to NOS2 gene induction in CF airway epithelial cells, is defective. In contrast to a lack of NOS2 induction, the major histocompatibility complex class 2, an IFN-γ-regulated delayed-responsive gene, is similarly induced in CF and non-CF airway epithelial (NL) cells, suggesting an NOS2-specific defect in the IFN-γ signaling pathway. STAT1 and activator protein-1, both required for NOS2 gene expression, interact normally in CF cells. Protein inhibitor of activated STAT1 is not increased in CF cells. IFN-γ induces NOS2 expression in airway epithelial cells through an autocrine mechanism involving synthesis and secretion of IFN-γ-inducible mediator(s), which activates STAT1. Here, CF cells secrete IFN-γ-inducible factor(s), which stimulate NOS2 expression in NL cells, but not in CF cells. In contrast, IFN-γ-inducible factor(s) similarly inhibit virus in CF and NL cells. Thus autocrine activation of NOS2 is defective in CF cells, but IFN-γ induction of antiviral host defense is intact.
Collapse
Affiliation(s)
- Shuo Zheng
- Department of Pulmonary and Critical Medicine, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | | | | | |
Collapse
|
161
|
Aktan F. iNOS-mediated nitric oxide production and its regulation. Life Sci 2004; 75:639-53. [PMID: 15172174 DOI: 10.1016/j.lfs.2003.10.042] [Citation(s) in RCA: 970] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2003] [Accepted: 10/24/2003] [Indexed: 12/18/2022]
Abstract
This review focuses on the production of nitric oxide (NO) by inducible nitric oxide synthase (iNOS) and its regulation under physiological and pathophysiological conditions. NO is an important biological mediator in the living organism that is synthesized from L-arginine using NADPH and molecular oxygen. However, the overproduction of NO which is catalyzed by iNOS, a soluble enzyme and active in its dimeric form, is cytotoxic. Immunostimulating cytokines or bacterial pathogens activate iNOS and generate high concentrations of NO through the activation of inducible nuclear factors, including NFkB. iNOS activation is regulated mainly at the transcriptional level, but also at posttranscriptional, translational and postranslational levels through effects on protein stability, dimerization, phosphorylation, cofactor binding and availability of oxygen and L-arginine as substrates. The prevention of the overproduction of NO in the living organism through control of regulatory pathways may assist in the treatment of high NO-mediated disorders without changing physiological levels of NO.
Collapse
Affiliation(s)
- Fugen Aktan
- Faculty of Pharmacy, Building A15, Room N257, University of Sydney, Sydney, NSW 2006, Australia.
| |
Collapse
|
162
|
Baron RM, Carvajal IM, Fredenburgh LE, Liu X, Porrata Y, Cullivan ML, Haley KJ, Sonna LA, De Sanctis GT, Ingenito EP, Perrella MA. Nitric oxide synthase‐2 down‐regulates surfactant protein‐B expression and enhances endotoxin‐induced lung injury in mice. FASEB J 2004; 18:1276-8. [PMID: 15208261 DOI: 10.1096/fj.04-1518fje] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is a life-threatening ailment characterized by severe lung injury involving inflammatory cell recruitment to the lung, cytokine production, surfactant dysfunction, and up-regulation of nitric oxide synthase 2 (NOS2) resulting in nitric oxide (NO) production. We hypothesized that NO production from NOS2 expressed in lung parenchymal cells in a murine model of ARDS would correlate with abnormal surfactant function and reduced surfactant protein-B (SP-B) expression. Pulmonary responses to nebulized endotoxin (lipopolysaccharide, LPS) were evaluated in wild-type (WT) mice, NOS2 null (-/-) mice, and NOS2-chimeric animals derived from bone marrow transplantation. NOS2-/- animals exhibited significantly less physiologic lung dysfunction and loss of SP-B expression than did WT animals. However, lung neutrophil recruitment and bronchoalveolar lavage cytokine levels did not significantly differ between NOS2-/- and WT animals. Chimeric animals for NOS2 exhibited the phenotype of the recipient and therefore demonstrated that parenchymal production of NOS2 is critical for the development of LPS-induced lung injury. Furthermore, administration of NO donors, independent of cytokine stimulation, decreased SP-B promoter activity and mRNA expression in mouse lung epithelial cells. This study demonstrates that expression of NOS2 in lung epithelial cells is critical for the development of lung injury and mediates surfactant dysfunction independent of NOS2 inflammatory cell expression and cytokine production.
Collapse
Affiliation(s)
- Rebecca M Baron
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Qiao S, Li W, Tsubouchi R, Murakami K, Yoshino M. Role of vanilloid receptors in the capsaicin-mediated induction of iNOS in PC12 cells. Neurochem Res 2004; 29:687-93. [PMID: 15098930 DOI: 10.1023/b:nere.0000018839.59457.5c] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The vanilloid receptor 1(VR1) is a nonselective cation channel that is activated by pungent vanilloid compound, extracellular protons, or noxious heat. mRNA of VR1 and vanilloid receptor 1-like receptor (VRL1) were expressed in PC12 cells, and only VRI mRNA was detected in glioma and A10 cell lines. VRI protein was demonstrated in PC12 cells by immunocytochemistry and Western blotting. Capsaicin (CPS), the VRI receptor agonist, led to an increase in intracellular calcium ion, and this effect was blocked by pretreatment with VR1 receptor antagonist capsazepin (CPZ). Treatment of PC12 cells with low concentration of CPS (5-50 microM) increased reactive oxygen species (ROS) production, and inducible nitric oxide synthase (iNOS) was expressed after CPS treatment for 24 h. These CPS-induced changes are inhibited by pretreatment of CPZ. These findings suggest that CPS-induced iNOS expression through the VR1 and/or VRL1-mediated pathway, and this may explain the CPS-mediated physiological and pathological effects in neuron system.
Collapse
Affiliation(s)
- Shanlou Qiao
- Department of Biochemistry, Aichi Medical University School of Medicine, Nagakute, Aichi, Japan.
| | | | | | | | | |
Collapse
|
164
|
Majano PL, Medina J, Zubía I, Sunyer L, Lara-Pezzi E, Maldonado-Rodríguez A, López-Cabrera M, Moreno-Otero R. N-Acetyl-cysteine modulates inducible nitric oxide synthase gene expression in human hepatocytes. J Hepatol 2004; 40:632-7. [PMID: 15030979 DOI: 10.1016/j.jhep.2003.12.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2003] [Revised: 10/20/2003] [Accepted: 12/05/2003] [Indexed: 12/22/2022]
Abstract
BACKGROUND/AIMS A major role has been described for inducible nitric oxide (NO) synthase in several chronic inflammatory liver diseases. N-Acetyl-cysteine (NAC) is a sulfhydryl donor molecule with antioxidant and antiinflammatory effects. It attenuates NO generation following lipopolysaccharide injection in rats. Our goal was to study the effect of NAC on NO synthase induction in hepatocytes in response to proinflammatory cytokines. METHODS The effect of NAC on NO synthase induction was studied in the human hepatocyte cell lines HepG2 and 2.2.15 treated with a mixture of proinflammatory cytokines. Interactions between NAC and cytokines on nuclear factor-kappaB (NF-kappaB) activation and NO synthase promoter transactivation were investigated. RESULTS NAC dose-dependently modulated the induction of NO synthase mRNA expression, the release of nitrites and the formation of NF-kappaB binding complexes in cytokine-treated hepatocytes. NAC also reduced the transactivation of the NO synthase promoter. CONCLUSIONS Our data show that exposure of hepatocytes to NAC modulated NO synthase expression and NF-kappaB activity, the key responses of the hepatocyte to inflammatory mediators. These data constitute preliminary evidence that NAC might have hepatoprotective actions of potential relevance in chronic inflammatory liver diseases, mediated partially through the modulation of NO production.
Collapse
Affiliation(s)
- Pedro Lorenzo Majano
- Unidad de Hepatología (planta 3), Hospital Universitario de la Princesa, Universidad Autónoma, Diego de León 62, E-28006 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
165
|
Hevia H, Varela-Rey M, Corrales FJ, Berasain C, Martínez-Chantar ML, Latasa MU, Lu SC, Mato JM, García-Trevijano ER, Avila MA. 5'-methylthioadenosine modulates the inflammatory response to endotoxin in mice and in rat hepatocytes. Hepatology 2004; 39:1088-1098. [PMID: 15057913 DOI: 10.1002/hep.20154] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
5'-methylthioadenosine (MTA) is a nucleoside generated from S-adenosylmethionine (AdoMet) during polyamine synthesis. Recent evidence indicates that AdoMet modulates in vivo the production of inflammatory mediators. We have evaluated the anti-inflammatory properties of MTA in bacterial lipopolysaccharide (LPS) challenged mice, murine macrophage RAW 264.7 cells, and isolated rat hepatocytes treated with pro-inflammatory cytokines. MTA administration completely prevented LPS-induced lethality. The life-sparing effect of MTA was accompanied by the suppression of circulating tumor necrosis factor-alpha (TNF-alpha), inducible NO synthase (iNOS) expression, and by the stimulation of IL-10 synthesis. These responses to MTA were also observed in LPS-treated RAW 264.7 cells. MTA prevented the transcriptional activation of iNOS by pro-inflammatory cytokines in isolated hepatocytes, and the induction of cyclooxygenase 2 (COX2) in RAW 264.7 cells. MTA inhibited the activation of p38 mitogen-activated protein kinase (MAPK), c-jun phosphorylation, inhibitor kappa B alpha (IkappaBalpha) degradation, and nuclear factor kappaB (NFkappaB) activation, all of which are signaling pathways related to the generation of inflammatory mediators. These effects were independent of the metabolic conversion of MTA into AdoMet and the potential interaction of MTA with the cAMP signaling pathway, central to the anti-inflammatory actions of its structural analog adenosine. In conclusion, these observations demonstrate novel immunomodulatory properties for MTA that may be of value in the management of inflammatory diseases.
Collapse
Affiliation(s)
- Henar Hevia
- División de Hepatología y Terapia Génica, Departamento de Medicina Interna, CIMA, Universidad de Navarra, Pamplona, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Oleszak EL, Chang JR, Friedman H, Katsetos CD, Platsoucas CD. Theiler's virus infection: a model for multiple sclerosis. Clin Microbiol Rev 2004; 17:174-207. [PMID: 14726460 PMCID: PMC321460 DOI: 10.1128/cmr.17.1.174-207.2004] [Citation(s) in RCA: 206] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Both genetic background and environmental factors, very probably viruses, appear to play a role in the etiology of multiple sclerosis (MS). Lessons from viral experimental models suggest that many different viruses may trigger inflammatory demyelinating diseases resembling MS. Theiler's virus, a picornavirus, induces in susceptible strains of mice early acute disease resembling encephalomyelitis followed by late chronic demyelinating disease, which is one of the best, if not the best, animal model for MS. During early acute disease the virus replicates in gray matter of the central nervous system but is eliminated to very low titers 2 weeks postinfection. Late chronic demyelinating disease becomes clinically apparent approximately 2 weeks later and is characterized by extensive demyelinating lesions and mononuclear cell infiltrates, progressive spinal cord atrophy, and axonal loss. Myelin damage is immunologically mediated, but it is not clear whether it is due to molecular mimicry or epitope spreading. Cytokines, nitric oxide/reactive nitrogen species, and costimulatory molecules are involved in the pathogenesis of both diseases. Close similarities between Theiler's virus-induced demyelinating disease in mice and MS in humans, include the following: major histocompatibility complex-dependent susceptibility; substantial similarities in neuropathology, including axonal damage and remyelination; and paucity of T-cell apoptosis in demyelinating disease. Both diseases are immunologically mediated. These common features emphasize the close similarities of Theiler's virus-induced demyelinating disease in mice and MS in humans.
Collapse
Affiliation(s)
- Emilia L Oleszak
- Department of Anatomy and Cell Biology, Temple University School of Medicine, Philadelphia, Pennsylvania 19106, USA.
| | | | | | | | | |
Collapse
|
167
|
Ho FM, Lai CC, Huang LJ, Kuo TC, Chao CM, Lin WW. The anti-inflammatory carbazole, LCY-2-CHO, inhibits lipopolysaccharide-induced inflammatory mediator expression through inhibition of the p38 mitogen-activated protein kinase signaling pathway in macrophages. Br J Pharmacol 2004; 141:1037-47. [PMID: 14980980 PMCID: PMC1574272 DOI: 10.1038/sj.bjp.0705700] [Citation(s) in RCA: 78] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Revised: 11/18/2003] [Accepted: 01/15/2004] [Indexed: 11/09/2022] Open
Abstract
1. The present study was undertaken to investigate the anti-inflammatory effects of a synthetic compound, LCY-2-CHO, on the expression of inducible nitric oxide synthase (iNOS), COX-2, and TNF-alpha in murine RAW264.7 macrophages. 2. Within 1-30 microm, LCY-2-CHO concentration-dependently inhibited lipopolysaccharide (LPS)-induced nitric oxide (NO), prostaglandin E(2) (PGE(2)), and tumor necrosis factor-alpha (TNF-alpha) formation, with IC(50) values of 2.3, 1, and 0.8 microm, respectively. Accompanying inhibition of LPS-induced iNOS, cyclooxygenase-2 (COX-2), and pro-TNF-alpha proteins was observed. 3. Reverse transcription-polymerase chain reaction (RT-PCR) and promoter analyses indicated that iNOS expression was inhibited at the transcriptional level (IC(50)=2.3 microm), that inhibition of COX-2 expression only partially depended on gene transcription (IC(50)=7.6 microm), and that TNF-alpha transcription was unaffected. 4. Transcriptional assays revealed that activation of AP-1, but not NF-kappaB, was concomitantly blocked by LCY-2-CHO. Our results showed that LCY-2-CHO was capable of interfering with post-transcriptional regulation, altering the stability of COX-2 and TNF-alpha mRNAs. 5. Since the 3'-untranslated region (3' UTR) of both COX-2 and TNF-alpha mRNA contains a p38 mitogen-activated protein kinase (MAPK)-regulated element involved in mRNA stability, we assessed the effect of LCY-2-CHO on p38 MAPK. Our data clearly indicated an inhibition (IC(50)=1.7 microm) of LPS-mediated p38 MAPK activity, but not of extracellular signal-regulated kinase (ERK) or c-Jun N-terminal kinase (JNK) activity. However, kinase assays ruled out a direct inhibition of p38 MAPK action. The selective p38 MAPK inhibitor, SB203580, inhibited the promoter activities of iNOS and COX-2 rather than that of TNF-alpha. 6. In conclusion, LCY-2-CHO downregulates inflammatory iNOS, COX-2, and TNF-alpha gene expression in macrophages through interfering with p38 MAPK and AP-1 activation.
Collapse
Affiliation(s)
- Feng-Ming Ho
- Department of Internal Medicine, Tao-Yuan General Hospital, Department of Health, the Executive Yuan, Taiwan
| | - Chih-Chang Lai
- Department of Internal Medicine, Tao-Yuan General Hospital, Department of Health, the Executive Yuan, Taiwan
| | - Li-Jiau Huang
- Graduate Institute of Pharmaceutical Chemistry, China Medical College, Taichung, Taiwan
| | - Tsun Cheng Kuo
- Department of Cosmetic Science, Chia-Nan University of Pharmacy, Tainan, Taiwan
| | - Chien M Chao
- Department of Orthopedics, National Taiwan University College of Medicine, Taipei, Taiwan and
| | - Wan-Wan Lin
- Department of Pharmacology, College of Medicine, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
168
|
Pieper GM, Nilakantan V, Hilton G, Zhou X, Khanna AK, Halligan NLN, Felix CC, Kampalath B, Griffith OW, Hayward MA, Roza AM, Adams MB. Variable efficacy ofN6-(1-iminoethyl)-L-lysine in acute cardiac transplant rejection. Am J Physiol Heart Circ Physiol 2004; 286:H525-34. [PMID: 14715498 DOI: 10.1152/ajpheart.00356.2003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the efficacy and mechanism of action of N6-(1-iminoethyl)-l-lysine (l-NIL), a highly selective inhibitor of inducible nitric oxide (NO) synthase (iNOS), on acute cardiac transplant rejection. l-NIL produced a concentration-dependent attenuation of plasma NO by-products and a decrease in nitrosylation of heme protein without altering protein levels of iNOS. At postoperative day 4, l-NIL did not alter the increased binding activities for transcription factors nuclear factor-κB and activator protein-1. Whereas l-NIL decreased inflammatory cell infiltration, graft survival was only prolonged at the dose of 1.0 μg/ml that incompletely blocked NO production. Higher l-NIL concentrations (30 and 60 μg/ml) ablated the increased NO production but failed to improve graft survival and even potentiated NF-κB binding activity examined at day 6. Alloimmune activation indicated by increased cytokine gene expression for interferon-γ, interleukin-6, and interleukin-10 was inhibited in grafts only by treatment with 1.0 μg/ml l-NIL. These findings suggest a complex role of NO in acute cardiac allograft rejection. Partial inhibition of iNOS is beneficial to graft survival, whereas total ablation may oppose any benefits to graft survival. These studies have important implications in understanding the dual role of NO in acute rejection and help to reconcile discrepancies in the literature.
Collapse
Affiliation(s)
- Galen M Pieper
- Division of Transplant Surgery, Department of Surgery, Cardiovascular Center, Medical College of Wisconsin, Milwaukee 53226, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Lui P, Zeng C, Acton S, Cok S, Sexton A, Morrison AR. Effects of p38MAPK isoforms on renal mesangial cell inducible nitric oxide synthase expression. Am J Physiol Cell Physiol 2003; 286:C145-52. [PMID: 14522818 DOI: 10.1152/ajpcell.00233.2003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Several related isoforms of p38MAPK have been identified and cloned in many species. Although they all contain the dual phosphorylation motif TGY, the expression of these isoforms is not ubiquitous. p38alpha and -beta2 are ubiquitously expressed, whereas p38gamma and -delta appear to have more restricted expression. Because there is evidence for selective activation by upstream kinases and selective preference for downstream substrates, the functions of these conserved proteins is still incompletely understood. We have demonstrated that the renal mesangial cell expresses the mRNA for all the isoforms of p38MAPK, with p38alpha mRNA expressed at the highest level, followed by p38gamma and the lowest levels of expression by p38beta2 and -delta. To determine the functional effects of these proteins on interleukin (IL)-1beta-induced inducible nitric oxide synthase (iNOS) expression, we transduced TAT-p38 chimeric proteins into renal mesangial cells and assessed the effects of wild-type and mutant p38 isoforms on ligand induced iNOS expression. We show that whereas p38gamma and -delta had minimal effects on iNOS expression, p38alpha and -beta2 significantly altered its expression. p38alpha mutant and p38beta2 wild-type dose dependently inhibited IL-1beta-induced iNOS expression. These data suggest that p38alpha and beta2 have reciprocal effects on iNOS expression in the mesangial cell, and these observations may have important consequences for the development of selective inhibitors targeting the p38MAPK family of proteins.
Collapse
Affiliation(s)
- Paul Lui
- Department of Medicine, Renal Division, Washington University School of Medicine, Box 8126, 660 South Euclid, St Louis, MO 63110, USA
| | | | | | | | | | | |
Collapse
|
170
|
The involvement of glucose metabolism in the regulation of inducible nitric oxide synthase gene expression in glial cells: possible role of glucose-6-phosphate dehydrogenase and CCAAT/enhancing binding protein. J Neurosci 2003. [PMID: 12930785 DOI: 10.1523/jneurosci.23-20-07470.2003] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In rat glial cells the lipopolysaccharide (LPS)-induced inducible nitric oxide synthase (iNOS) gene expression was enhanced by extracellular glucose concentration in a dose-dependent manner. On the other hand, 2-deoxy-d-glucose decreased the LPS-induced iNOS gene expression even in the presence of glucose (6 gm/l), suggesting that glucose metabolism is linked to the regulation of iNOS gene expression. The intracellular NADPH/NADP+ directly correlated with the extracellular glucose concentration, and the reduction of NADPH generation via a block of glucose-6-phosphate dehydrogenase (G6PD) by treatment with dehydroepiandrosterone or the antisense DNA oligomer of G6PD mRNA resulted in the inhibition of iNOS gene expression. Gel shift assays showed that CAAT/enhancing binding protein (C/EBP), rather than AP-1 or NF-kappaB, correlated better with a glucose-dependent increase in iNOS gene expression. The induction of C/EBP DNA binding activity by LPS and glucose was attributable mainly to the increase in C/EBP-delta protein. The cotransfection with wild-type C/EBP-delta increased the iNOS promoter activity to the level achieved with a higher glucose concentration in the presence of LPS. Therefore, our results suggest that C/EBP-delta may be a critical mediator in glucose-mediated regulation of iNOS gene expression.
Collapse
|
171
|
Kristof AS, Marks-Konczalik J, Billings E, Moss J. Stimulation of signal transducer and activator of transcription-1 (STAT1)-dependent gene transcription by lipopolysaccharide and interferon-gamma is regulated by mammalian target of rapamycin. J Biol Chem 2003; 278:33637-44. [PMID: 12807916 DOI: 10.1074/jbc.m301053200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mammalian target of rapamycin (mTOR) and phosphatidylinositol 3-kinase (PI3K) regulate cell growth, protein synthesis, and apoptosis in response to nutrients and mitogens. As an important source of nitric oxide during inflammation, human inducible nitric oxide synthase also plays a role in the regulation of cytokine-driven cell proliferation and apoptosis. The role of mTOR and PI3K in the activation of human inducible nitric oxide synthase transcription by cytokines and lipopolysaccharide (LPS) was investigated in lung epithelial adenocarcinoma (A549) cells. LY294002, a dual mTOR and PI3K inhibitor, blocked human inducible nitric oxide synthase (hiNOS) promoter activation and mRNA induction by cytokines and LPS in a PI3K-independent fashion. On gene expression analysis, LY294002 selectively blocked the induction of a subset of 14 LPS/interferon-gamma (IFN-gamma)-induced genes, previously characterized as signal transducer and activator of transcription-1 (STAT1)-dependent. LY294002, but not wortmannin, inhibited LPS/IFN-gamma-dependent STAT1 phosphorylation at Ser-727 and STAT1 activity. Consistent with dual inhibition of mTOR and PI3K by LY294002, dominant-negative mTOR, anti-mTOR small interfering RNA, or rapamycin each inhibited phosphorylation of STAT1 only in the presence of wortmannin. LPS/IFN-gamma led to the formation of a macromolecular complex containing mTOR, STAT1, as well as protein kinase C delta, a known STAT1alpha kinase. Thus, LPS and IFN-gamma activate the PI3K and mTOR pathways, which converge to regulate STAT1-dependent transcription of pro-apoptotic and pro-inflammatory genes in a rapamycin-insensitive manner.
Collapse
Affiliation(s)
- Arnold S Kristof
- Pulmonary-Critical Care Medicine Branch, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | | | | | |
Collapse
|
172
|
Sanchez AC, Davis RL, Syapin PJ. Identification of cis-regulatory regions necessary for robust Nos2 promoter activity in glial cells: indirect role for NF-kappaB. J Neurochem 2003; 86:1379-90. [PMID: 12950447 DOI: 10.1046/j.1471-4159.2003.01943.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Previous reports suggest the nitric-oxide synthase 2 (Nos2) promoter contains negative and positive cis-regulatory regions. This study identified such regions using rat C6 glial cells. Activity of the serially deleted rat Nos2 promoter fused to a luciferase reporter gene was found to vary with construct size independent of stimuli, decreasing markedly from 160 to 130 bp then increasing significantly from 110 to 94 bp. In contrast, time to peak activity was stimulus-dependent but size-independent; 4-8 h for a cytokine mixture or lipopolysaccharide + interferon-gamma, and 8-16 h for lipopolysaccharide + phorbol 12-myristate 13-acetate. Peak activity with heterologous promoters also varied; 4 h for 3.7 kb of the human Nos2A promoter, and 36 h for 1.8 kb of the murine promoter. Electrophoretic mobility shift assays and in vivo DNA footprinting data confirmed nuclear protein binding to promoter regions suspected of containing important regulatory sites based on reporter gene data. A binding site for NF-kappaB was not required for Nos2 promoter activity. These findings provide significant new information on the relative importance of different regions of the rat Nos2 promoter for transcriptional activation and nitric oxide production by glial cells and support the existence of cell- and species-specific mechanisms for transcriptional regulation of Nos2 activation.
Collapse
Affiliation(s)
- Alma C Sanchez
- Alcohol and Brain Research Laboratory, Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas, USA
| | | | | |
Collapse
|
173
|
Guo Z, Shao L, Feng X, Reid K, Marderstein E, Nakao A, Geller DA. A critical role for C/EBPbeta binding to the AABS promoter response element in the human iNOS gene. FASEB J 2003; 17:1718-20. [PMID: 12958187 DOI: 10.1096/fj.02-1172fje] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The human iNOS (hiNOS) gene is expressed in a tissue-specific manner, but the molecular basis for this regulation has not been elucidated. Here, we show that liver cell-specific hiNOS gene activation involves protein-DNA binding to an A-activator binding site (AABS) located at -192 nucleotides in the hiNOS promoter region. Mutation of this site in the -7.2 kb hiNOS promoter construct inhibited basal hiNOS promoter activity in primary rat hepatocytes (77%), and two human liver cell lines, AKN-1 (63%) and HepG2 (60%), but had no significant effect on basal hiNOS activity in three non-hepatic human cell types. Interestingly, mutation of AABS significantly abrogated cytokine-induced promoter activity in all cell types. C/EBPbeta transcription factor bound to AABS by gel shift assay. Overexpression of C/EBPbeta active form (LAP) increased hiNOS basal promoter activity approximately sixfold in liver cells, but had minimal effect in non-hepatic cells. In contrast, overexpression of the transcriptional inhibitor (LIP) strongly suppressed both basal and cytokine-inducible promoter activity. These data show that the cis-acting AABS DNA element mediates liver-specific basal hiNOS promoter activity through binding of the trans-acting C/EBPbeta factor. Further, C/EBPbeta binding to AABS functions as a "switchpoint" that is necessary for cytokine-inducible hiNOS gene expression in all cell types examined.
Collapse
Affiliation(s)
- Zhong Guo
- Department of Surgery, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
174
|
Abstract
Asthma affects over 15 million individuals in the United States, with over 1.5 million emergency room visits, 500,000 hospitalizations, and 5500 deaths each year, many of which are children. Airway inflammation is the proximate cause of the recurrent episodes of airflow limitation in asthma. Research applying molecular biology, chemistry, and cell biology to human asthma and model systems of asthma over the last decade has revealed that numerous biologically active proinflammatory mediators lead to increased production of reactive oxygen species (ROS) and the gaseous molecule nitric oxide (NO). Persistently increased ROS and NO in asthma lead to reactive nitrogen species (RNS) formation and subsequent oxidation and nitration of proteins, which may cause alterations in protein function that are biologically relevant to airway injury/inflammation. Eosinophil peroxidase and myeloperoxidase, leukocyte-derived enzymes, amplify oxidative events and are another enzymatic source of NO-derived oxidants and nitrotyrosine formation in asthma. Concomitant with increased generation of oxidative and nitrosative molecules in asthma, loss of protective antioxidant defense, specifically superoxide dismutase (SOD), contributes to the overall toxic environment of the asthmatic airway. This review discusses the rapidly accruing data linking oxidative and nitrosative events as critical participants in the acute and chronic inflammation of asthmatic airways.
Collapse
Affiliation(s)
- Athena A Andreadis
- Department of Pulmonary and Critical Care Medicine, The Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | | | | | |
Collapse
|
175
|
Xu W, Comhair SAA, Zheng S, Chu SC, Marks-Konczalik J, Moss J, Haque SJ, Erzurum SC. STAT-1 and c-Fos interaction in nitric oxide synthase-2 gene activation. Am J Physiol Lung Cell Mol Physiol 2003; 285:L137-48. [PMID: 12788789 DOI: 10.1152/ajplung.00441.2002] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Interferon-gamma (IFN-gamma) is required for induction of the human nitric oxide synthase-2 (NOS2) gene in lung epithelium. Although the human NOS2 promoter region contains many cytokine-responsive elements, the molecular basis of induction is only partially understood. Here, the major cis-regulatory elements that control IFN-gamma-inducible NOS2 gene transcription in human lung epithelial cells are identified as composite response elements that bind signal transducer and activator of transcription 1 (STAT-1) and activator protein 1 (AP-1), which is comprised of c-Fos, Fra-2, c-Jun, and JunD. Notably, IFN-gamma activation of the human NOS2 promoter is shown to require functional AP-1 regulatory region(s), suggesting a role for AP-1 activation/binding in the IFN-gamma induction of genes. We show that c-Fos interacts with STAT-1 after IFN-gamma activation and the c-Fos/STAT-1 complex binds to the gamma-activated site (GAS) element in close proximity to AP-1 sites located at 4.9 kb upstream of the transcription start site. Taken together, our findings support a model in which a physical interaction between c-Fos and STAT-1 participates in NOS2 gene transcriptional activation.
Collapse
Affiliation(s)
- Weiling Xu
- Pulmonary and Critical Care Medicine and Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | | | | | | | | | | | |
Collapse
|
176
|
Jolivalt CG, Howard RB, Chen LS, Mizisin AP, Lai CS. A novel nitric oxide scavenger in combination with cyclosporine A ameliorates experimental autoimmune encephalomyelitis progression in mice. J Neuroimmunol 2003; 138:56-64. [PMID: 12742654 DOI: 10.1016/s0165-5728(03)00097-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Immunotherapy improves experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis (MS), while excessive production of nitric oxide (NO) has been implicated in the pathogenesis of this disease. Here, we show that disease progression in SJL/J mice with EAE is improved after treatment with either a subtherapeutic dose of cyclosporine A (CsA) or NOX-100, a nitric oxide scavenger. Importantly, the impact of subtherapeutic doses of CsA in combination with NOX-100 on disease progression in EAE was greater than that attained with either agent alone and led to near total protection. CNS inflammation and gene expression of proinflammatory cytokines and iNOS were also significantly reduced after treatment. These observations point to the potential therapeutic utility of NOX-100 as a dose-reducing agent for CsA in the treatment of MS.
Collapse
MESH Headings
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Cyclosporine/administration & dosage
- Cytokines/antagonists & inhibitors
- Cytokines/biosynthesis
- Cytokines/genetics
- Disease Progression
- Drug Therapy, Combination
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/metabolism
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Enzyme Induction/drug effects
- Enzyme Induction/genetics
- Female
- Free Radical Scavengers/administration & dosage
- Immunosuppressive Agents/administration & dosage
- Injections, Subcutaneous
- Mice
- Mice, Inbred Strains
- Nitrates/blood
- Nitric Oxide/metabolism
- Nitric Oxide Synthase/biosynthesis
- Nitric Oxide Synthase/genetics
- Nitric Oxide Synthase Type II
- Organometallic Compounds/pharmacology
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/biosynthesis
- Thiocarbamates/pharmacology
- Up-Regulation/drug effects
- Up-Regulation/genetics
- Up-Regulation/immunology
Collapse
Affiliation(s)
- Corinne G Jolivalt
- Medinox Inc., Suite 201, 11575 Sorrento Valley Road, San Diego, CA 92121, USA
| | | | | | | | | |
Collapse
|
177
|
Yoneda H, Miura K, Matsushima H, Sugi K, Murakami T, Ouchi K, Yamashita K, Itoh H, Nakazawa T, Suzuki M, Shirai M. Aspirin inhibits Chlamydia pneumoniae-induced NF-kappa B activation, cyclo-oxygenase-2 expression and prostaglandin E2 synthesis and attenuates chlamydial growth. J Med Microbiol 2003; 52:409-415. [PMID: 12721317 DOI: 10.1099/jmm.0.04992-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Infection with Chlamydia pneumoniae has been implicated as a potential risk factor for atherosclerosis. This study was designed to investigate the mechanisms of the anti-chlamydial activity of aspirin. A reporter gene assay for NF-kappa B activity, immunoblot analysis for cyclo-oxygenase (COX)-2 and radioimmunoassay for prostaglandin E(2) (PGE(2)) were performed. Following infection of HEp-2 cells with C. pneumoniae, NF-kappa B was activated, COX-2 was induced and PGE(2) was elevated. Aspirin inhibited NF-kappa B activation at a concentration of 0.1 mM, partially inhibited COX-2 induction and blocked PGE(2) synthesis completely. In addition, high doses of aspirin (1 and 2 mM) inhibited chlamydial growth in HEp-2 cells, decreasing the number and size of inclusion bodies; this effect could be overcome by adding tryptophan to the culture. Indomethacin also blocked the synthesis of PGE(2), but had no effect on COX-2 expression or chlamydial growth. These results indicate that aspirin not only has an anti-inflammatory activity through prevention of NF-kappa B activation but also has anti-chlamydial activity at high doses, possibly through depletion of tryptophan in HEp-2 cells.
Collapse
Affiliation(s)
- Hiroshi Yoneda
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| | - Koshiro Miura
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| | - Hiroshi Matsushima
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| | - Kazuro Sugi
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| | - Tomoyuki Murakami
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| | - Kazunobu Ouchi
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| | - Katsuhiro Yamashita
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| | - Haruhide Itoh
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| | - Teruko Nakazawa
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| | - Michiyasu Suzuki
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| | - Mutsunori Shirai
- Departments of Microbiology1, Neurosurgery2 and Pediatrics3, Yamaguchi University School of Medicine, Ube, Yamaguchi 755-8505, Japan 4Department of Clinical Research, National Sanyo Hospital, Ube, Yamaguchi, 755-0241, Japan 5Saiseikai General Hospital, Shimonoseki, Yamaguchi, 751-0823, Japan
| |
Collapse
|
178
|
Pieper GM, Nilakantan V, Hilton G, Halligan NLN, Felix CC, Kampalath B, Khanna AK, Roza AM, Johnson CP, Adams MB. Mechanisms of the protective action of diethyldithiocarbamate-iron complex on acute cardiac allograft rejection. Am J Physiol Heart Circ Physiol 2003; 284:H1542-51. [PMID: 12679325 DOI: 10.1152/ajpheart.00913.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In this study, we examined the actions of diethyldithiocarbamate-iron (DETC-Fe) complex in acute graft rejection heterotopically transplanted rat hearts. Chronic treatment with DETC-Fe inhibited the increase in plasma nitric oxide (NO) metabolites and nitrosylation of myocardial heme protein as determined by electron paramagnetic resonance (EPR) spectroscopy. Pulse injection with DETC-Fe normalized NO metabolites. We verified intragraft trapping of NO in vivo by pulse injection with DETC-Fe by the detection within allografts of an anisotropic triplet EPR signal for DETC-Fe-NO adduct with resonance positions (g tensor factors for perpendicular and parallel components, respectively g( perpendicular ) = 2.038 and g( parallel ) = 2.02; hyperfine coupling of 12.5 G). DETC-Fe prolonged graft survival and decreased histological rejection scores. DNA binding activity for nuclear factor (NF)-kappaB and activator protein-1 was increased in allografts and prevented by DETC-Fe. Abrogation of the activation of NF-kappaB by DETC-Fe was associated with increased IkappaBalpha inhibitory protein. Western blotting and RT-PCR analysis revealed that DETC-Fe inhibited inducible NO synthase protein and gene expression. Gene expression for the proinflammatory cytokine interferon-gamma was also decreased by DETC-Fe. Thus DETC-Fe limits NF-kappaB-dependent gene expression and possesses significant immunosuppressive properties.
Collapse
Affiliation(s)
- Galen M Pieper
- Division of Transplant Surgery, Medical College of Wisconsin, 9200 W. Wisconsin Avenue, Milwaukee, WI 53226, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
179
|
Warke VG, Nambiar MP, Krishnan S, Tenbrock K, Geller DA, Koritschoner NP, Atkins JL, Farber DL, Tsokos GC. Transcriptional activation of the human inducible nitric-oxide synthase promoter by Kruppel-like factor 6. J Biol Chem 2003; 278:14812-9. [PMID: 12590140 DOI: 10.1074/jbc.m300787200] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Nitric oxide is a ubiquitous free radical that plays a key role in a broad spectrum of signaling pathways in physiological and pathophysiological processes. We have explored the transcriptional regulation of inducible nitric-oxide synthase (iNOS) by Krüppel-like factor 6 (KLF6), an Sp1-like zinc finger transcription factor. Study of serial deletion constructs of the iNOS promoter revealed that the proximal 0.63-kb region can support a 3-6-fold reporter activity similar to that of the full-length 16-kb promoter. Within the 0.63-kb region, we identified two CACCC sites (-164 to -168 and -261 to -265) that bound KLF6 in both electrophoretic mobility shift and chromatin immunoprecipitation assays. Mutation of both these sites abrogated the KLF6-induced enhancement of the 0.63-kb iNOS promoter activity. The binding of KLF6 to the iNOS promoter was significantly increased in Jurkat cells, primary T lymphocytes, and COS-7 cells subjected to NaCN-induced hypoxia, heat shock, serum starvation, and phorbol 12-myristate 13-acetate/ ionophore stimulation. Furthermore, in KLF6-transfected and NaCN-treated COS-7 cells, there was a 3-4-fold increase in the expression of the endogenous iNOS mRNA and protein that correlated with increased production of nitric oxide. These findings indicate that KLF6 is a potential transactivator of the human iNOS promoter in diverse pathophysiological conditions.
Collapse
Affiliation(s)
- Vishal G Warke
- Department of Cellular Injury, Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
180
|
Burgner D, Usen S, Rockett K, Jallow M, Ackerman H, Cervino A, Pinder M, Kwiatkowski DP. Nucleotide and haplotypic diversity of the NOS2A promoter region and its relationship to cerebral malaria. Hum Genet 2003; 112:379-86. [PMID: 12552317 DOI: 10.1007/s00439-002-0882-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2002] [Accepted: 11/05/2002] [Indexed: 11/29/2022]
Abstract
To assess the hypothesis that nitric oxide is critical in the pathogenesis of cerebral malaria, we analysed genetic variation in the proximal promoter region of NOS2A, the gene encoding inducible nitric oxide synthase. Sequencing 72 Gambian chromosomes revealed 11 single nucleotide polymorphisms in 2.5 kB (theta=8.6 x 10(-4)). Genotyping 104 nuclear families identified six common haplotypes. A single haplotype, uniquely defined by the NOS2A-1659T allele, was associated with cerebral malaria by a transmission disequilibrium test of 334 affected children and their parents (P=0.02). An independent case-control study of 505 different children from the same population replicated the allelic association with cerebral malaria (odds ratio: 1.31, P=0.04). Taken together these data indicate a weak but significant association of the NOS2A locus with susceptibility to cerebral malaria. Despite high linkage disequilibrium across the region studied, this association would not have been detected without the initial construction of a dense marker set for haplotype tagging.
Collapse
Affiliation(s)
- David Burgner
- Wellcome Trust Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, OX2 7BN, UK
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Kleinert H, Schwarz PM, Förstermann U. Regulation of the Expression of Inducible Nitric Oxide Synthase. Biol Chem 2003; 384:1343-64. [PMID: 14669979 DOI: 10.1515/bc.2003.152] [Citation(s) in RCA: 291] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Nitric oxide (NO), generated by the inducible isoform of nitric oxide synthase (iNOS), has been described to have beneficial microbicidal, antiviral, antiparasital, immunomodulatory, and antitumoral effects. However, aberrant iNOS induction at the wrong place or at the wrong time has detrimental consequences and seems to be involved in the pathophysiology of several human diseases. iNOS is primarily regulated at the expression level by transcriptional and post-transcriptional mechanisms. iNOS expression can be induced in many cell types with suitable agents such as bacterial lipopolysaccharides (LPS), cytokines, and other compounds. Pathways resulting in the induction of iNOS expression may vary in different cells or different species. Activation of the transcription factors NF-kappaB and STAT-1alpha, and thereby activation of the iNOS promoter, seems to be an essential step for iNOS induction in most cells. However, at least in the human system, also post-transcriptional mechanism are critically involved in the regulation of iNOS expression. The induction of iNOS can be inhibited by a wide variety of immunomodulatory compounds acting at the transcriptional levels and/or post-transcriptionally.
Collapse
Affiliation(s)
- Hartmut Kleinert
- Department of Pharmacology, Johannes Gutenberg University, D-55101 Mainz, Germany
| | | | | |
Collapse
|
182
|
Arnold RE, Weigent DA. The production of nitric oxide in EL4 lymphoma cells overexpressing growth hormone. J Neuroimmunol 2003; 134:82-94. [PMID: 12507775 DOI: 10.1016/s0165-5728(02)00420-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Growth hormone (GH) is produced by immunocompetent cells and has been implicated in the regulation of a multiplicity of functions in the immune system involved in growth and activation. However, the actions of endogenous or lymphocyte GH and its contribution to immune reactivity when compared with those of serum or exogenous GH are still unclear. In the present study, we overexpressed lymphocyte GH in EL4 lymphoma cells, which lack the GH receptor (GHR), to determine the role of endogenous GH in nitric oxide (NO) production and response to genotoxic stress. Western blot analysis demonstrated that the levels of GH increased approximately 40% in cells overexpressing GH (GHo) when compared with cells with vector alone. The results also show a substantial increase in NO production in cells overexpressing GH that could be blocked by N(G)-monomethyl-L-arginine (L-NMMA), an L-arginine analogue that competitively inhibits all three isoforms of nitric oxide synthase (NOS). No evidence was obtained to support an increase in peroxynitrite in cells overexpressing GH. Overexpression of GH increased NOS activity, inducible nitric oxide synthase (iNOS) promoter activity, and iNOS protein expression, whereas endothelial nitric oxide synthase and neuronal nitric oxide synthase protein levels were essentially unchanged. In addition, cells overexpressing GH showed increased arginine transport ability and intracellular arginase activity when compared with control cells. GH overexpression appeared to protect cells from the toxic effects of the DNA alkylating agent methyl methanesulfonate. This possibility was suggested by maintenance of the mitochondrial transmembrane potential in cells overexpressing GH when compared with control cells that could be blocked by L-NMMA. Taken together, the data support the notion that lymphocyte GH, independently of the GH receptor, may play a key role in the survival of lymphocytes exposed to stressful stimuli via the production of NO.
Collapse
Affiliation(s)
- Robyn E Arnold
- Department of Physiology and Biophysics, University of Alabama at Birmingham, 1918 University Boulevard, MCLM 894, Birmingham, AL 35294-0005, USA
| | | |
Collapse
|
183
|
Zhang Y, Sun S, Wang Z, Thompson A, Kaluzhny Y, Zimmet J, Ravid K. Signaling by the Mpl receptor involves IKK and NF-kappaB. J Cell Biochem 2002; 85:523-35. [PMID: 11967992 DOI: 10.1002/jcb.10141] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Binding of tumor necrosis factor-alpha (TNF-alpha) to its receptor activates IKK complex, which leads to inducement of NF-kappaB activity. Here we report that activation of Mpl ligand is also linked to IKK and NF-kappaB activity. Mpl ligand, also known as thrombopoietin (TPO) or megakaryocyte growth and development factor (MGDF), induces megakaryocyte differentiation and inhibition of mitotic proliferation, followed by induction of polyploidization and fragmentation into platelets. The latter process is often observed in megakaryocytes undergoing apoptosis. Treatment of a Mpl ligand-responding megakaryocytic cell line with this cytokine led to an immediate, transient increase in IKK activity followed by a profound decrease in this kinase activity over time. This decrease was not due to an effect on the levels of the IKK regulatory components IKKalpha and IKKbeta. Proliferating megakaryocytes displayed a constitutive DNA-binding activity of NF-kappaB p50 homodimers and of NF-kappaB p50-p65 heterodimers. As expected, reduced IKK activity in Mpl ligand-treated cells was associated with a significant reduction in NF-kappaB DNA binding activity and in the activity of a NF-kappaB-dependent promoter. Our study is thus the first to identify a constitutive NF-kappaB activity in proliferating megakaryocytes as well as to describe a link between Mpl receptor signaling and IKK and NF-kappaB activities. Since a variety of proliferation-promoting genes and anti-apoptotic mechanisms are activated by NF-kappaB, retaining its low levels would be one potential mechanism by which inhibition of mitotic proliferation is maintained and apoptosis is promoted during late megakaryopoiesis.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Biochemistry, Whitaker Cardiovascular Institute, Cancer Research Center, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | | | |
Collapse
|
184
|
Baran-Marszak F, Fagard R, Girard B, Camilleri-Broët S, Zeng F, Lenoir GM, Raphaël M, Feuillard J. Gene array identification of Epstein Barr virus-regulated cellular genes in EBV-converted Burkitt lymphoma cell lines. J Transl Med 2002; 82:1463-79. [PMID: 12429807 DOI: 10.1097/01.lab.0000035025.51772.2b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Epstein Barr virus (EBV) is associated with various B-cell neoplasms such as post-transplant lymphoproliferative disease or Burkitt lymphoma. B-lymphocyte reprogramming by EBV involves the control of numerous cellular genes. To identify such EBV-deregulated genes, we have compared the gene expression profile of EBV-negative Burkitt lymphoma cell lines (BL) (BL2, BL30, BL70) with their EBV-converted counterpart (BL2-B95, BL30-B95, BL70-B95) by cDNA array. Statistical analysis of the results was made using Ward's cluster analysis method. Results showed that the expression of up to 26% of the 1176 cellular genes analyzed may be modified in EBV-converted BL cells. Within this set of genes, a subset of genes markedly regulated in EBV-converted BL cells was defined as those for which expression in EBV+ cells was increased or decreased more than 2-fold. Expression of various genes was modulated in agreement with their previously reported regulation by EBV or by transcription factors activated by EBV. Numerous genes were newly identified as modulated in EBV-converted BL cells. Some of these results were verified by both semiquantitative RT-PCR and Western blotting, and were consistent with functional studies. Functional classification of EBV-regulated genes gave a comprehensive picture of cellular reprogramming by EBV in BL, by pointing out cellular modules such as cell cycle, apoptosis, and signal transduction pathways, including BCR and TNF receptor family and interferon pathways. Furthermore, and perhaps most importantly, cDNA array results point to three families of transcription factors, Rel/NF-kappaB, STAT1, and Ets-related proteins Spi-B, Elf-1, and Ets-1 as putative cellular targets of EBV.
Collapse
Affiliation(s)
- Fanny Baran-Marszak
- Service d'Hématologie Biologique, Hôpital Avicenne AP-HP et EA 3406 ATHSCO Université Paris 13, Bobigny, France
| | | | | | | | | | | | | | | |
Collapse
|
185
|
Simi A, Porsmyr-Palmertz M, Hjertén A, Ingelman-Sundberg M, Tindberg N. The neuroprotective agents chlomethiazole and SB203580 inhibit IL-1beta signalling but not its biosynthesis in rat cortical glial cells. J Neurochem 2002; 83:727-37. [PMID: 12390534 DOI: 10.1046/j.1471-4159.2002.01178.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Chlomethiazole and pyridinyl imidazole compounds, exemplified by SB203580, are structurally distinct p38 mitogen-activated protein kinase inhibitors with neuroprotective properties in models of cerebral ischaemia. We have examined their effects in interleukin-1beta (IL-1beta) synthesis, release and signalling in rat cortical glial cells, given the important role of IL-1beta in cerebral ischaemia. We analysed (i) IL-1beta mRNA expression by northern blot, (ii) IL-1beta protein precursor levels within the cells by western blot, and (iii) the levels of the mature IL-1beta protein secreted into the medium by enzyme-linked immunosorbent assay (ELISA) after treatment of rat cortical glial cells with lipopolysaccharide. While the induction of IL-1beta expression by lipopolysaccharide or by IL-1beta itself was very sensitive to nuclear factor kappa B (NF-kappaB) inhibitors, chlomethiazole or SB203580 were nearly without effect, indicating a differential regulation as compared to peripheral cells, e.g. monocytes. In contrast, chlomethiazole and SB203580 potently inhibited the IL-1beta-induced expression of c-fos and inducible nitric oxide synthase, as monitored by northern blot and quantitative RT-PCR, respectively. Because IL-1beta-induced expression of c-fos and inducible nitric oxide synthase is believed to directly contribute to the pathology of cerebral ischaemic injury, the results suggest a direct mechanism for the neuroprotective effects of chlomethiazole and SB203580, and further establish the anti-inflammatory properties of chlomethiazole.
Collapse
Affiliation(s)
- Anastasia Simi
- Institute for Environmental Medicine, Division of Molecular Toxicology, Karolinska Institute, S-171 77 Stockholm, Sweden.
| | | | | | | | | |
Collapse
|
186
|
Feng X, Guo Z, Nourbakhsh M, Hauser H, Ganster R, Shao L, Geller DA. Identification of a negative response element in the human inducible nitric-oxide synthase (hiNOS) promoter: The role of NF-kappa B-repressing factor (NRF) in basal repression of the hiNOS gene. Proc Natl Acad Sci U S A 2002; 99:14212-7. [PMID: 12381793 PMCID: PMC137863 DOI: 10.1073/pnas.212306199] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Although nuclear factor (NF)-kappaB plays a central role in mediating cytokine-stimulated human inducible nitric-oxide synthase (hiNOS) gene transcription, very little is known about the factors involved in silencing of the hiNOS promoter. NF-kappaB-repressing factor (NRF) interacts with a specific negative regulatory element (NRE) to mediate transcriptional repression of certain NF-kappaB responsive genes. By sequence comparison with the IFN-beta and IL-8 promoters, we identified an NRE in the hiNOS promoter located at -6.7 kb upstream. In A549 and HeLa human cells, constitutive NRF mRNA expression is detected by RT-PCR. Gel shift assay showed constitutive NRF binding to the hiNOS NRE. Mutation of the -6.7-kb NRE site in the hiNOS promoter resulted in loss of NRF binding and increased basal but not cytokine-stimulated hiNOS transcription in promoter transfection experiments. Interestingly, overexpression of NRF suppressed both basal and cytokine-induced hiNOS promoter activity that depended on an intact cis-acting NRE motif. By using stably transformed HeLa cells with the tetracycline on/off expression system, reduction of cellular NRF by expressing antisense NRF increased basal iNOS promoter activity and resulted in constitutive iNOS mRNA expression. These data demonstrate that the transacting NRF protein is involved in constitutive silencing of the hiNOS gene by binding to a cis-acting NRE upstream in the hiNOS promoter.
Collapse
Affiliation(s)
- Xuesheng Feng
- Department of Surgery, University of Pittsburgh, Pittsburgh, PA 15213, USA
| | | | | | | | | | | | | |
Collapse
|
187
|
Kannan-Thulasiraman P, Shapiro DJ. Modulators of inflammation use nuclear factor-kappa B and activator protein-1 sites to induce the caspase-1 and granzyme B inhibitor, proteinase inhibitor 9. J Biol Chem 2002; 277:41230-9. [PMID: 12177049 DOI: 10.1074/jbc.m200379200] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Proteinase inhibitor 9 (PI-9) inhibits caspase-1 (interleukin (IL)-1beta-converting enzyme) and granzyme B, thereby regulating production of the pro-inflammatory cytokine IL-1beta and susceptibility to granzyme B-induced apoptosis. We show that cellular PI-9 mRNA and protein are induced by IL-1beta, lipopolysaccharide, and 12-O-tetradecanoylphorbol-13-acetate. We identified functional imperfect nuclear factor-kappaB (NF-kappaB) sites at -135 and -88 and a consensus activator protein-1 (AP-1) site at -308 in the PI-9 promoter region. Using transient transfections in HepG2 cells to assay PI-9 promoter mutations, we find that mutational ablation of the AP-1 site or of either NF-kappaB site reduces IL-1beta-induced expression of PI-9 by approximately 60%. Mutational ablation of the two NF-kappaB sites and of the AP-1 site nearly abolishes both basal and IL-1beta-induced expression of PI-9. Nuclear extracts from IL-1beta-treated HepG2 cells exhibited strong, IL-1beta-inducible binding to the NF-kappaB sites and to the AP-1 site. Electrophoretic mobility shift assays show that after IL-1beta treatment c-Jun/c-Fos and JunD bind to the AP-1 site, whereas the p50/p65 heterodimer binds to the two NF-kappaB sites. Estrogens induce PI-9, but induction of PI-9 by estrogens and IL-1beta is not synergistic. In transiently transfected, estrogen receptor-positive HepG2ER7 cells, estrogens do not interfere with IL-1beta induction, whereas IL-1beta exhibits dose-dependent repression of estrogen-inducible PI-9 expression. Our surprising finding that the pro-inflammatory cytokine IL-1beta strongly induces PI-9 suggests a novel mechanism for regulating inflammation and apoptosis through a negative feedback loop controlling expression of the anti-inflammatory and anti-apoptotic protein, PI-9.
Collapse
Affiliation(s)
- Padma Kannan-Thulasiraman
- Department of Biochemistry, University of Illinois, 600 S Matthews Avenue, Urbana, IL 61801-3602, USA
| | | |
Collapse
|
188
|
Liu X, Jana M, Dasgupta S, Koka S, He J, Wood C, Pahan K. Human immunodeficiency virus type 1 (HIV-1) tat induces nitric-oxide synthase in human astroglia. J Biol Chem 2002; 277:39312-9. [PMID: 12167619 PMCID: PMC2041896 DOI: 10.1074/jbc.m205107200] [Citation(s) in RCA: 110] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) infection is known to cause neuronal injury and dementia in a significant proportion of patients. However, the mechanism by which HIV-1 mediates its deleterious effects in the brain is poorly defined. The present study was undertaken to investigate the effect of the HIV-1 tat gene on the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astroglia. Expression of the tat gene as RSV-tat but not that of the CAT gene as RSV-CAT in U373MG astroglial cells led to the induction of NO production and the expression of iNOS protein and mRNA. Induction of NO production by recombinant HIV-1 Tat protein and inhibition of RSV-tat-induced NO production by anti-Tat antibodies suggest that RSV-tat-induced production of NO is dependent on Tat and that Tat is secreted from RSV-tat-transfected astroglia. Similar to U373MG astroglial cells, RSV-tat also induced the production of NO in human primary astroglia. The induction of human iNOS promoter-derived luciferase activity by the expression of RSV-tat suggests that RSV-tat induces the transcription of iNOS. To understand the mechanism of induction of iNOS, we investigated the role of NF-kappaB and C/EBPbeta, transcription factors responsible for the induction of iNOS. Activation of NF-kappaB as well as C/EBPbeta by RSV-tat, stimulation of RSV-tat-induced production of NO by the wild type of p65 and C/EBPbeta, and inhibition of RSV-tat-induced production of NO by deltap65, a dominant-negative mutant of p65, and deltaC/EBPbeta, a dominant-negative mutant of C/EBPbeta, suggest that RSV-tat induces iNOS through the activation of NF-kappaB and C/EBPbeta. In addition, we show that extracellular signal-regulated kinase (ERK) but not that p38 mitogen-activated protein kinase (MAPK) is involved in RSV-tat induced production of NO. Interestingly, PD98059, an inhibitor of the ERK pathway, and deltaERK2, a dominant-negative mutant of ERK2, inhibited RSV-tat-induced production of NO through the inhibition of C/EBPbeta but not that of NF-kappaB. This study illustrates a novel role for HIV-1 tat in inducing the expression of iNOS in human astrocytes that may participate in the pathogenesis of HIV-associated dementia.
Collapse
Affiliation(s)
- Xiaojuan Liu
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Malabendu Jana
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Subhajit Dasgupta
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Sreenivas Koka
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583
| | - Jun He
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588
| | - Charles Wood
- Nebraska Center for Virology and School of Biological Sciences, University of Nebraska, Lincoln, Nebraska 68588
| | - Kalipada Pahan
- To whom correspondence should be addressed: Dept. of Oral Biology, University of Nebraska Medical Center, 40th and Holdrege, Lincoln, NE 68583-0740. Tel.: 402-472 -1324; Fax: 402-472-2551; E-mail:
| |
Collapse
|
189
|
Korhonen R, Korpela R, Moilanen E. Signalling mechanisms involved in the induction of inducible nitric oxide synthase by Lactobacillus rhamnosus GG, endotoxin, and lipoteichoic acid. Inflammation 2002; 26:207-14. [PMID: 12238563 DOI: 10.1023/a:1019720701230] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
BACKGROUND AND AIMS Probiotic Lactobacillus rhamnosus GG (Lactobacillus GG) has been found beneficial in the treatment of viral and antibiotic-associated diarrhea. Recently, it has also been shown to induce nitric oxide (NO) production, and have some other immunostimulatory effects. The aim of the present study was to investigate the mechanisms involved in the induction of inducible nitric oxide synthase (iNOS) and NO production by Lactobacillus GG. METHODS AND RESULTS iNOS expression and NO production induced by Lactobacillus GG, lipopolysaccharide (LPS), and lipoteichoic acid (LTA) was abrogated by NOS inhibitors L-NMMA and 1400W, by a protein synthesis inhibitor cycloheximide, by a tyrosine kinase inhibitor genistein and by a NF-kappaB inhibitor pyrrolidinedithiocarbamate (PDTC) in J774 macrophages. Polymyxin B inhibited NO production induced by LPS, but did not inhibit Lactobacillus GG induced NO production. p42/44 MAP-kinase inhibitor PD98059, dexamethasone and cyclosporine A inhibited partially iNOS protein expression and NO formation in Lactobacillus GG, LPS and LTA treated cells. Ro 31-8220 (protein kinase C inhibitor) and SB203580 (p38 MAP-kinase inhibitor) had only a minor effect on NO production. CONCLUSIONS Lactobacillus GG induced NO production through iNOS pathway and the mechanisms mediating that process were very similar with those involved in LPS and LTA induced NO synthesis.
Collapse
Affiliation(s)
- Riku Korhonen
- The Immunopharmacological Research Group, Medical School, University of Tampere and Tampere University Hospital, Finland
| | | | | |
Collapse
|
190
|
Pahan K, Jana M, Liu X, Taylor BS, Wood C, Fischer SM. Gemfibrozil, a lipid-lowering drug, inhibits the induction of nitric-oxide synthase in human astrocytes. J Biol Chem 2002; 277:45984-91. [PMID: 12244038 PMCID: PMC2045648 DOI: 10.1074/jbc.m200250200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gemfibrozil, a lipid-lowering drug, inhibited cytokine-induced production of NO and the expression of inducible nitric-oxide synthase (iNOS) in human U373MG astroglial cells and primary astrocytes. Similar to gemfibrozil, clofibrate, another fibrate drug, also inhibited the expression of iNOS. Inhibition of human iNOS promoter-driven luciferase activity by gemfibrozil in cytokine-stimulated U373MG astroglial cells suggests that this compound inhibits the transcription of iNOS. Since gemfibrozil is known to activate peroxisome proliferator-activated receptor-alpha (PPAR-alpha), we investigated the role of PPAR-alpha in gemfibrozil-mediated inhibition of iNOS. Gemfibrozil induced peroxisome proliferator-responsive element (PPRE)-dependent luciferase activity, which was inhibited by the expression of DeltahPPAR-alpha, the dominant-negative mutant of human PPAR-alpha. However, DeltahPPAR-alpha was unable to abrogate gemfibrozil-mediated inhibition of iNOS suggesting that gemfibrozil inhibits iNOS independent of PPAR-alpha. The human iNOS promoter contains consensus sequences for the binding of transcription factors, including interferon-gamma (IFN-gamma) regulatory factor-1 (IRF-1) binding to interferon-stimulated responsive element (ISRE), signal transducer and activator of transcription (STAT) binding to gamma-activation site (GAS), nuclear factor-kappaB (NF-kappaB), activator protein-1 (AP-1), and CCAAT/enhancer-binding protein beta (C/EBPbeta); therefore, we investigated the effect of gemfibrozil on the activation of these transcription factors. The combination of interleukin (IL)-1beta and IFN-gamma induced the activation of NF-kappaB, AP-1, C/EBPbeta, and GAS but not that of ISRE, suggesting that IRF-1 may not be involved in cytokine-induced expression of iNOS in human astrocytes. Interestingly, gemfibrozil strongly inhibited the activation of NF-kappaB, AP-1, and C/EBPbeta but not that of GAS in cytokine-stimulated astroglial cells. These results suggest that gemfibrozil inhibits the induction of iNOS probably by inhibiting the activation of NF-kappaB, AP-1, and C/EBPbeta and that gemfibrozil, a prescribed drug for humans, may further find its therapeutic use in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Kalipada Pahan
- Department of Oral Biology, University of Nebraska Medical Center, Lincoln, Nebraska 68583, USA.
| | | | | | | | | | | |
Collapse
|
191
|
Abstract
Estrogen is believed to protect postmenopausal women from coronary vascular disease, in part by increasing production of nitric oxide (NO). In this study, we investigated the possibility that transcriptional activation of inducible NO synthase (iNOS) is responsible for a component of the estrogen-induced increase in coronary blood flow. Twenty-two ewes were instrumented with Doppler flow probes on their left circumflex coronary and pulmonary arteries. Nine ewes received 17beta-estradiol (1 microg/kg), and the coronary vascular response was followed for 16 h. Estradiol significantly increased coronary blood flow by 22 +/- 4% over baseline and the peak response occurred at 2 h (P < 0.01). To examine the effect of estrogen on NOS expression in the ovine coronary artery, 17 noninstrumented animals were killed 2 h after administration of estradiol or vehicle. Coronary arteries were analyzed for ovine iNOS and endothelial NOS (eNOS) expression by semiquantitative RT-PCR. PCR primers were based on partial cDNA clones for ovine eNOS and iNOS isolated as part of this study. The expression of iNOS was significantly increased (27-fold) by the administration of estradiol, whereas the expression of eNOS was much weaker (2-fold). To confirm these effects in vivo, additional instrumented animals received either the estrogen receptor (ER) antagonist ICI-182,780 (n = 5), the iNOS antagonist dexamethasone (n = 5), or pyrrolidine dithiocarbamic acid, an inhibitor of nuclear factor-kappaB (n = 5). All three antagonists inhibited estrogen-induced increases in coronary blood flow and increases in cardiac output by over 85%. These results strongly support the hypothesis that 17beta-estradiol increases coronary blood flow in the unanesthetized nonpregnant ewe via an ER-dependent mechanism that results in an increase in both eNOS and iNOS expression.
Collapse
Affiliation(s)
- John L Mershon
- Department of Obstetrics and Gynecology, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45267-0526, USA
| | | | | |
Collapse
|
192
|
Korhonen R, Lahti A, Hämäläinen M, Kankaanranta H, Moilanen E. Dexamethasone inhibits inducible nitric-oxide synthase expression and nitric oxide production by destabilizing mRNA in lipopolysaccharide-treated macrophages. Mol Pharmacol 2002; 62:698-704. [PMID: 12181447 DOI: 10.1124/mol.62.3.698] [Citation(s) in RCA: 132] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) production through the inducible nitric-oxide synthase (iNOS) pathway is increased in inflammatory diseases and leads to cellular injury. Anti-inflammatory steroids inhibit the expression of various inflammatory genes, including iNOS. In the present study, we investigated the mechanism how dexamethasone decreased NO production in murine J774 macrophages. Dexamethasone (0.1-10 microM) inhibited the production of NO and iNOS protein in a dose-dependent manner in cells stimulated with lipopolysaccharides (LPS). In contrast, in cells treated with a combination of LPS and interferon-gamma (IFN-gamma), dexamethasone did not reduce iNOS expression and NO formation. Dissociated glucocorticoid RU24858 inhibited iNOS expression and NO production to levels comparable with that of dexamethasone, suggesting that the reduced iNOS expression by dexamethasone is not a GRE-mediated event. In further studies, the effect of dexamethasone on iNOS mRNA levels was tested by actinomycin assay. The half-life of iNOS mRNA after LPS treatment was 5 h 40 min, and dexamethasone reduced it to 3 h. The increased degradation of iNOS mRNA was reversed by a protein synthesis inhibitor cycloheximide. iNOS mRNA was more stabile in cells treated with a combination of LPS plus IFN-gamma (half-life = 8 h 20 min), and dexamethasone had a minor effect in these conditions. In conclusion, dexamethasone decreases iNOS-dependent NO production by destabilizing iNOS mRNA in LPS-treated cells by a mechanism that requires de novo protein synthesis. Also, decreased iNOS mRNA and protein expression and NO formation by dexamethasone was not found in cells treated with a combination of LPS plus IFN-gamma, suggesting that the effect of dexamethasone is stimulus-dependent.
Collapse
Affiliation(s)
- Riku Korhonen
- The Immunopharmacological Research Group, Medical School, University of Tampere, Tampere, Finland
| | | | | | | | | |
Collapse
|
193
|
Pertosa G, Grandaliano G, Soccio M, Martino C, Gesualdo L, Schena FP. Vitamin E-modified filters modulate Jun N-terminal kinase activation in peripheral blood mononuclear cells. Kidney Int 2002; 62:602-10. [PMID: 12110024 DOI: 10.1046/j.1523-1755.2002.00458.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND The generation during hemodialysis of activated complement fragments and reactive oxygen species, including nitric oxide (NO), may affect peripheral blood mononuclear cell (PBMC) function. Currently, little is known about signal transduction pathways involved in PBMC activation. Jun N-terminal kinase (JNK) is a novel mitogen-activated protein (MAP) kinase phosphorylated and activated in response to oxidative stress and directly involved in cell activation. METHODS The present study evaluated the activation of JNK in PBMCs isolated from eight uremic patients undergoing, in a randomized manner, three month-subsequent periods of hemodialysis with a low-flux cellulose acetate (CA) and a vitamin E-modified cellulose membrane (CL-E). After each period of treatment, PBMCs were harvested before (T0), during (T15) and after three hours (T180) of dialysis. At the indicated time points, plasma C5b-9 generation by ELISA and inducible NO synthase (iNOS) gene expression by in situ hybridization were evaluated also. The activation of JNK was studied by Western blotting using a specific monoclonal anti-phospho-JNK antibody, which recognizes the activated form of JNK. RESULTS At T0, a significant increase in plasma C5b-9 levels was found in CA patients compared to CL-E-treated patients. During hemodialysis, C5b-9 levels rose more significantly in CA patients than in CL-E patients and returned to baseline values only in CL-E patients. At the same time, in CA patients an increased iNOS gene expression was observed at T180 together with a striking activation of JNK. By contrast, PBMC from CL-E-treated patients showed undetectable levels of phospho-JNK and a significant reduction in iNOS expression. Interestingly, incubation of PBMCs with normal human plasma (10%), activated by contact with a cellulosic membrane, induced a time-dependent increase in JNK phosphorylation that was completely inhibited by blocking complement cascade activation. CONCLUSION Our data suggest that JNK phosphorylation is strikingly increased in PBMCs obtained from CA-treated patients and may represent a key cellular event in PBMC activation during dialysis with bioincompatible membranes. The activation of this signaling enzyme, mediated by active complement fragments and PBMC-dialyzer interaction, can be significantly reduced by the use of vitamin E-coated membrane.
Collapse
Affiliation(s)
- Giovanni Pertosa
- Division of Nephrology, Department of Emergency and Organ Transplantation, University of Bari, Polyclinic, Bari, Italy.
| | | | | | | | | | | |
Collapse
|
194
|
Kizaki T, Suzuki K, Hitomi Y, Taniguchi N, Saitoh D, Watanabe K, Onoé K, Day NK, Good RA, Ohno H. Uncoupling protein 2 plays an important role in nitric oxide production of lipopolysaccharide-stimulated macrophages. Proc Natl Acad Sci U S A 2002; 99:9392-7. [PMID: 12089332 PMCID: PMC123151 DOI: 10.1073/pnas.142206299] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The expression of uncoupling protein 2 (UCP2) was reduced in macrophages after stimulation with lipopolysaccharide (LPS). The physiological consequence and the regulatory mechanisms of the UCP2 down-regulation by LPS were investigated in a macrophage cell line, RAW264 cells. UCP2 overexpression in RAW264 cells transfected with eukaryotic expression vector containing ucp2 cDNA markedly reduced the production of intracellular reactive oxygen species. Furthermore, in the UCP2 transfectant, nitric oxide (NO) synthesis, inducible NO synthase (NOS II) protein, NOS II mRNA, and NOS II promoter activity were definitely decreased after LPS stimulation compared with those in parental RAW264 or RAW264 cells transfected with the vector alone. Reporter assays suggested that an enhancer element was located in the region of intron 2 of the UCP2 gene and that the UCP2 expression was down-regulated not by the 7.3-kb promoter region but by the 5' region of the UCP2 gene containing two introns. Deletion of intron 2 resulted in the low transcriptional activities and abolishment of the LPS-associated negative regulation. In addition, the mRNA expression of transfected UCP2 was suppressed in RAW264 cells transfected with expression vector containing UCP2 genomic DNA, but was markedly increased in cells transfected with the vector containing UCP2 intronless cDNA. These findings suggest that the LPS-stimulated signals suppress UCP2 expression by interrupting the function of intronic enhancer, leading to an up-regulation of intracellular reactive oxygen species, which activate the signal transduction cascade of NOS II expression, probably to ensure rapid and sufficient cellular responses to a microbial attack.
Collapse
Affiliation(s)
- Takako Kizaki
- Department of Molecular Predictive Medicine and Sport Science, Kyorin University, School of Medicine, Mitaka 181-8611, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
195
|
Knuefermann P, Chen P, Misra A, Shi SP, Abdellatif M, Sivasubramanian N. Myotrophin/V-1, a protein up-regulated in the failing human heart and in postnatal cerebellum, converts NFkappa B p50-p65 heterodimers to p50-p50 and p65-p65 homodimers. J Biol Chem 2002; 277:23888-97. [PMID: 11971907 DOI: 10.1074/jbc.m202937200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Myotrophin/V-1 is a cytosolic protein found at elevated levels in failing human hearts and in postnatal cerebellum. We have previously shown that it disrupts nuclear factor of kappaB (NFkappaB)-DNA complexes in vitro. In this study, we demonstrated that in HeLa cells native myotrophin/V-1 is predominantly present in the cytoplasm and translocates to the nucleus during sustained NFkappaB activation. Three-dimensional alignment studies indicate that myotrophin/V-1 resembles a truncated IkappaBalpha without the signal response domain (SRD) and PEST domains. Co-immunoprecipitation studies reveal that myotrophin/V-1 interacts with NFkappaB proteins in vitro; however, it remains physically associated only with p65 and c-Rel proteins in vivo during NFkappaB activation. In vitro studies indicate that myotrophin/V-1 can promote the formation of p50-p50 homodimers from monomeric p50 proteins and can convert the preformed p50-p65 heterodimers into p50-p50 and p65-p65 homodimers. Furthermore, adenovirus-mediated overexpression of myotrophin/V-1 resulted in elevated levels of both p50-p50 and p65-p65 homodimers exceeding the levels of p50-p65 heterodimers compared with Adbetagal-infected cells, where the levels of p50-p65 heterodimers exceeded the levels of p50-p50 and p65-p65 homodimers. Thus, overexpression of myotrophin/V-1 during NFkappaB activation resulted in a qualitative shift by quantitatively reducing the level of transactivating heterodimers while elevating the levels of repressive p50-p50 homodimers. Correspondingly, overexpression of myotrophin/V-1 resulted in significantly reduced kappaB-luciferase reporter activity. Because myotrophin/V-1 is found at elevated levels during NFkappaB activation in postnatal cerebellum and in failing human hearts, this study cumulatively suggests that myotrophin/V-1 is a regulatory protein for modulating the levels of activated NFkappaB dimers during this period.
Collapse
Affiliation(s)
- Pascal Knuefermann
- Winters Center For Heart Failure Research, Molecular Cardiology Unit, Cardiology Section of Department of Medicine, Baylor College of Medicine, Veterans Affairs Medical Center, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
196
|
Hua LL, Zhao ML, Cosenza M, Kim MO, Huang H, Tanowitz HB, Brosnan CF, Lee SC. Role of mitogen-activated protein kinases in inducible nitric oxide synthase and TNFalpha expression in human fetal astrocytes. J Neuroimmunol 2002; 126:180-9. [PMID: 12020969 DOI: 10.1016/s0165-5728(02)00055-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Astrocytes are important sources of proinflammatory mediators such as iNOS and TNFalpha in the diseased central nervous system. In previous studies, we showed that the cytokine IL-1 plays a critical role in the activation of human astrocytes to express TNFalpha and the inducible form of nitric oxide synthase (iNOS). In the present study, we have addressed the role of the MAP-kinase pathway in the signaling events leading to the induction of these genes. Treatment with SB203580, a specific inhibitor of p38 mitogen-activated protein kinases (MAPK), potently inhibited IL-1-mediated induction of iNOS and TNFalpha in cultures of human fetal astrocytes. In contrast, PD98059, an upstream inhibitor of the extracellular regulated kinase (ERK)1/2 pathway, had little or no effect. Interestingly, SB203580 reduced the mRNA expression for iNOS, TNFalpha, and IL-6, indicating inhibition prior to translation. Transfection of astrocytes with a dominant-negative Jun-NH(2)-terminal kinase (JNK) construct also reduced iNOS expression. Western blot analysis showed phosphorylated p38 and JNK in IL-1-activated astrocytes, and phosphorylated ERK in both resting and activated cells. Electrophoretic mobility shift assay (EMSA) showed that IL-1 induced NF-kappaB and AP-1 DNA complex formation in astrocytes, and that SB203580 inhibited AP-1 complex formation. Taken together, these results demonstrate the differential roles played by the three MAP kinases in human astrocyte inflammatory gene activation and point to a crucial function of p38 and JNK MAP kinases in IL-1-mediated astrocyte activation.
Collapse
Affiliation(s)
- Liwei L Hua
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | | | | | | | |
Collapse
|
197
|
Pance A, Chantome A, Reveneau S, Bentrari F, Jeannin JF. A repressor in the proximal human inducible nitric oxide synthase promoter modulates transcriptional activation. FASEB J 2002; 16:631-3. [PMID: 11919177 DOI: 10.1096/fj.01-0450fje] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The human inducible nitric oxide synthase (iNOS or NOSII) gene is regulated through an extended and complex promoter. In this study, the transcriptional regulation of human NOSII is investigated in the human colon cell line HCT-8R. Stimulation with a cytokine mix (interferon-gamma, interleukin 1-beta, and tumor necrosis factor alpha) induces NOSII mRNA accumulation, as well as promoter activity in these cells. Several random deletions were performed within the proximal 7 kb of the promoter, which led to the identification of a region, whose deletion provokes a marked increase in transcriptional activity upon cytokine stimulation. Furthermore, this region is shown to repress a viral-driven luciferase construct, mainly at basal levels. An AP-1-like sequence present in this region that is specifically recognized by nuclear proteins is shown to be involved in the repressive effect. This element is capable of repressing a viral promoter, and its deletion augments cytokine-stimulated transcription. These findings are confirmed in various cell lines and suggest a general mechanism for the control of basal levels of NOSII expression, to avoid unnecessary toxicity under normal conditions.
Collapse
Affiliation(s)
- Alena Pance
- Cancer Immunotherapy Laboratory of the Ecole Pratique des Hautes Etudes and INSERM U-517, University of Bourgogne, Faculty of Medicine, 21000 Dijon, France.
| | | | | | | | | |
Collapse
|
198
|
Fransén K, Dimberg J, Osterström A, Olsson A, Söderkvist P, Sirsjö A. Nitric oxide synthase 2 mRNA expression in relation to p53 and adenomatous polyposis coli mutations in primary colorectal adenocarcinomas. Surgery 2002; 131:384-92. [PMID: 11935128 DOI: 10.1067/msy.2002.121888] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
BACKGROUND The inducible nitric (NO) synthase 2 (NOS2) is upregulated in breast, brain, colon, and gynecological tumors, which indicate that NO may have a role in tumorigenesis. However, little is known about the role and regulation of NOS2 in colorectal carcinomas. Recent in vitro experiments have implicated that NOS2 is downregulated by p53 accumulation. Virtual analysis of the NOS2 promoter showed putative TCF-4/Lef-1 response elements, which indicate a potential regulation of NOS2 expression by activation of the adenomatous polyposis coli (APC)/beta-catenin pathway. METHODS NOS2 mRNA expression was investigated in 59 colorectal carcinomas by reverse transcriptase/real-time polymerase chain reaction and related to mutations in the p53, APC, and beta-catenin genes. Presence of NOS2 protein was studied by Western blot, and the localization was studied by immunohistochemistry. Loss of heterozygosity was studied in the region of the NOS2 gene. RESULTS The NOS2 mRNA and protein expression were significantly higher in tumors than in control tissue. Immunohistochemistry revealed extensive NOS2 staining in the epithelial cells and, to a minor degree, in leukocytes. Increased NOS2 mRNA expression was found in Dukes' stages A and B compared with the C and D stages. No relationship was found between elevated NOS2 expression and loss of heterozygosity in the later stages according to Dukes' classification or mutations in the p53, APC, or beta-catenin genes. CONCLUSIONS Inactivating mutations in the p53 and APC pathways are not the main explanation for the increased NOS2 expression found in colorectal tumors.
Collapse
Affiliation(s)
- Karin Fransén
- Department of Biomedicine and Surgery, Division of Cell Biology, Faculty of Health Sciences, Linköping University, S-581 85 Linköping, Sweden
| | | | | | | | | | | |
Collapse
|
199
|
Oates JC, Reilly CM, Crosby MB, Gilkeson GS. Peroxisome proliferator-activated receptor gamma agonists: potential use for treating chronic inflammatory diseases. ARTHRITIS AND RHEUMATISM 2002; 46:598-605. [PMID: 11920394 DOI: 10.1002/art.10052] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- James C Oates
- Medical Research Service, Ralph H. Johnson VA Medical Center and the Medical University of South Carolina, Charleston 29425, USA.
| | | | | | | |
Collapse
|
200
|
Doi M, Shichiri M, Katsuyama K, Ishimaru S, Hirata Y. Cytokine-activated Jak-2 is involved in inducible nitric oxide synthase expression independent from NF-kappaB activation in vascular smooth muscle cells. Atherosclerosis 2002; 160:123-32. [PMID: 11755929 DOI: 10.1016/s0021-9150(01)00578-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Inflammatory cytokines, such as interleukin (IL)-1beta and tumor necrosis factor (TNF)-alpha, activate nuclear factor-kappa B (NF-kappaB) which transactivates inducible nitric oxide synthase (iNOS) gene in vascular smooth muscle cells (VSMCs). However, it remains obscure whether cytokine-mediated iNOS expression in VSMCs requires signaling pathway(s) other than NF-kappaB activation. The present study was designed to elucidate whether protein tyrosine kinases (PTKs) are involved in the cytokine-induced NF-kappaB activation and iNOS expression in cultured rat VSMCs. Both IL-1beta and TNF-alpha stimulated NF-kappaB activity, iNOS mRNA and protein expression with massive nitrite/nitrate (NOx) production in rat VSMCs. PTK inhibitors (genistein, herbimycin A) dose-dependently inhibited the cytokine-stimulated NOx production and iNOS mRNA expression. However, neither genistein nor herbimycin A affected the cytokine-stimulated phosphorylation and degradation of IkappaB-alpha, or NF-kappaB activation, whereas they completely blocked the cytokine-stimulated iNOS transcriptional activity. Tyrphostin B42 (AG490), a Jak-2 tyrosine kinase inhibitor, similarly blocked the cytokine-induced NOx production, iNOS expression and its promoter activity without affecting NF-kappaB-dependent transcription. Transfection of a dominant-negative Jak-2 mutant antagonized the cytokine-induced NOx production and iNOS expression, while wild-type Jak-2 expressing construct was without effect. These data indicate that the cytokine-induced iNOS expression involves activation of Jak-2 signaling pathway independent from NF-kappaB activation in rat VSMCs.
Collapse
Affiliation(s)
- Masaru Doi
- Department of Clinical and Molecular Endocrinology, Tokyo Medical and Dental University Graduate School, 1-5-45, Yushima, Bunkyo-ku 113-8519, Tokyo, Japan
| | | | | | | | | |
Collapse
|