151
|
Pan N, Lu L, Zhang D, Wang X. Evaluation of the effect of nitrate and chloride on Cd(II)-induced cell oxidative stress by scanning electrochemical microscopy. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2673-2681. [PMID: 35762516 DOI: 10.1039/d2ay00495j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) is one of the most prevalent toxic metal pollutants, which is widely distributed in various environmental media and organisms. Literature studies have documented that Cd could stimulate cellular oxidative stress, and the increased intracellular reactive oxygen species (ROS) might destroy certain proteins and DNA and subsequently lead to cell apoptosis. Although several studies have studied the co-exposure between cadmium and other metals, information on the potential effects of Cd and its counterions is still lacking. In the present study, we explored the effects of nitrate and chloride on oxidative stress induced by Cd(II) at environmental exposure levels in human breast cancer cells (MCF-7) using scanning electrochemical microscopy (SECM). After incubation in CdCl2 or Cd(NO3)2, ROS production is concentration-dependent and time-dependent, and the variation trend is consistent. When MCF-7 cells were incubated at a constant Cd2+ concentration, it was found that the higher the concentration ratio of Cd(NO3)2/CdCl2, the less ROS was generated. Combined with cell-viability, intracellular acidification as well as antioxidants system tests, we observed that nitrate could be reduced to nitrite and then inhibit Cd-induced oxidative stress. Benefitting from real-time in situ imaging of cells by SECM, H2O2 was detected and quantified in a noninvasive way, and the effect of Cd at environmental exposure levels on cellular oxidative stress was explored deeper and more comprehensively. Prospectively, cytotoxicological methods based on the SECM technique would be established to explore toxic pollutant co-exposure issues at environmental exposure levels.
Collapse
Affiliation(s)
- Na Pan
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
| | - Liping Lu
- Key Laboratory of Beijing on Regional Air Pollution Control, Department of Environmental Science, Beijing University of Technology, Beijing 100124, P. R. China
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Dongtang Zhang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China.
| | - Xiayan Wang
- Center of Excellence for Environmental Safety and Biological Effects, Department of Chemistry and Biology, Beijing University of Technology, Beijing 100124, P. R. China.
| |
Collapse
|
152
|
Feng X, Jin X, Zhou R, Jiang Q, Wang Y, Zhang X, Shang K, Zhang J, Yu C, Shou J. Deep learning approach identified a gene signature predictive of the severity of renal damage caused by chronic cadmium accumulation. JOURNAL OF HAZARDOUS MATERIALS 2022; 433:128795. [PMID: 35405588 DOI: 10.1016/j.jhazmat.2022.128795] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 03/07/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Epidemiology studies have indicated that environmental cadmium exposure, even at low levels, will result in chronic cadmium accumulation in the kidney with profound adverse consequences and that the diabetic population is more susceptible. However, the underlying mechanisms are yet not fully understood. In the present study, we applied an animal model to study chronic cadmium exposure-induced renal injury and performed whole transcriptome profiling studies. Repetitive CdCl2 exposure resulted in cadmium accumulation and remarkable renal injuries in the animals. The diabetic ob/ob mice manifested increased severity of renal injury compared with the wild type C57BL/6 J littermate controls. RNA-Seq data showed that cadmium treatment induced dramatic gene expression changes in a dose-dependent manner. Among the differentially expressed genes include the apoptosis hallmark genes which significantly demarcated the treatment effects. Pathway enrichment and network analyses revealed biological oxidation (mainly glucuronidation) as one of the major stress responses induced by cadmium treatment. We next implemented a deep learning algorithm in conjunction with cloud computing and discovered a gene signature that can predict the degree of renal injury induced by cadmium treatment. The present study provided, for the first time, a comprehensive mechanistic understanding of chronic cadmium-induced nephrotoxicity in normal and diabetic populations at the whole genome level.
Collapse
Affiliation(s)
- Xuefang Feng
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Xian Jin
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Rong Zhou
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Qian Jiang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Yanan Wang
- Department of Nephrology, Yangpu Hospital, School of Medicine, Tongji University, Shanghai 200090, China
| | - Xing Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China
| | - Ke Shang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Jianhua Zhang
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China
| | - Chen Yu
- Department of Nephrology, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China.
| | - Jianyong Shou
- EnnovaBio Pharmaceuticals, Shanghai 201203, China; Ennovabio (ZheJiang) Pharmaceuticals, Shaoxing, Zhejiang 312366, China.
| |
Collapse
|
153
|
Liu N, Feng Y, Zhan Y, Ma F. Relationship between blood cadmium and abdominal aortic calcification: NHANES 2013-2014. J Trace Elem Med Biol 2022; 72:126975. [PMID: 35344900 DOI: 10.1016/j.jtemb.2022.126975] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/27/2022] [Accepted: 03/17/2022] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cadmium is a common toxic heavy metal in the environment and can cause irreversible damage to the human body. It is well established that cadmium has direct cardiovascular toxicity, but the relationship between cadmium exposure and abdominal aortic calcification (AAC) is not clear. METHODS This was a cross-sectional study that aimed to assess the relationship between blood cadmium (B-Cd) and AAC in U.S. adults ≥ 40 years old. We obtained data from the 2013-2014 National Health and Nutrition Examination Survey. The AAC score was quantified by the Kauppila score system, whereas severe AAC was defined as an AAC score ≥ 6. We performed multivariate regressions, correlated subgroup analyses, and interaction terms to evaluate the relationship between B-Cd and AAC score and severe AAC. RESULTS For 1530 enrolled participants, the mean AAC score was 1.52 ± 3.32, and the prevalence of severe AAC was 8.95%. Participants with higher B-Cd levels showed higher AAC scores (β = 0.36, 95% CI: 0.03, 0.70, P = 0.0323) and an increased risk of severe AAC (OR=1.61, 95% CI: 1.01, 2.56, P = 0.0432). However, these associations were weakened after adjusting for serum cotinine to define smoking exposure. Subgroup analyses and correlated interaction terms indicated that the relationship between B-Cd and AAC was generally similar in different population settings, except for males, nonsmokers, and participants with a normal body mass index (BMI). The interaction terms indicated that smoking exposure status defined by serum cotinine interacted with the relationship between B-Cd and AAC condition (P for interaction=0.0413). CONCLUSIONS There might be positive associations between B-Cd levels and AAC scores and the risk of severe AAC, while these associations were partially explained by smoking exposure. However, more well-designed studies are still needed to validate this relationship.
Collapse
Affiliation(s)
- Nuozhou Liu
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Ying Feng
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Yuejuan Zhan
- West China Hospital, West China School of Medicine, Sichuan University, Chengdu 610041, China
| | - Fang Ma
- Center for Translational Medicine, Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu 610041, China; Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
154
|
Ikokide EJ, Oyagbemi AA, Oyeyemi MO. Impacts of cadmium on male fertility: Lessons learnt so far. Andrologia 2022; 54:e14516. [PMID: 35765120 DOI: 10.1111/and.14516] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/19/2022] [Accepted: 05/13/2022] [Indexed: 01/04/2023] Open
Abstract
Cadmium (Cd) is one of the most dangerous heavy metals in the world. Globally, toxicities associated with cadmium and its attendant negative impact on humans and animals cannot be under-estimated. Cd is a heavy metal, and people are exposed to it through contaminated foods and smoking. Cd exerts its deleterious impacts on the testes (male reproductive system) by inducing oxidative stress, spermatogenic cells apoptosis, testicular inflammation, decreasing androgenic and sperm cell functions, disrupting ionic homeostasis, pathways and epigenetic gene regulation, damaging vascular endothelium and blood testes barrier. In association with other industrial by-products, Cd has been incriminated for the recent decline of male fertility rate seen in both man and animals. Understanding the processes involved in Cd-induced testicular toxicity is vital for the innovation of techniques that will help ameliorate infertility in males. In this review, we summed up recent studies on the processes of testicular toxicity and male infertility due to Cd exposure. Also, the usage of different compounds including phytochemicals, and plant extracts to manage Cd reprotoxicity will be reviewed.
Collapse
Affiliation(s)
- Emmanuel Joseph Ikokide
- Department of Theriogenology, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | - Ademola Adetokunbo Oyagbemi
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, University of Ibadan, Ibadan, Nigeria
| | | |
Collapse
|
155
|
Güneş E, Şensoy E. Is Turkish coffee protects Drosophila melanogaster on cadmium acetate toxicity by promoting antioxidant enzymes? CHEMOSPHERE 2022; 296:133972. [PMID: 35192850 DOI: 10.1016/j.chemosphere.2022.133972] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 06/14/2023]
Abstract
With their increasing use in today's industry, heavy metals cause biochemical and biophysical changes by affecting the control and regulatory systems of living things. Cadmium (Cd), a heavy metal, spreads to the environment through both natural sources and industrial activities. It is taken into the organism through water, food, skin contact or smoke. Systems and organs of living things are directly or indirectly affected by Cd toxicity. Besides their recreational usage, herbal products such as coffee are preferred in alternative medicine because of their antioxidant, anti-inflammatory, anticancer and antidiabetic effects. Turkish coffee (TK) is a drink rich in flavorings, phenolic compounds and antioxidant compounds. The study evaluated the possible antioxidant role of TK against oxidative stress induced by Cadmium acetate (CdA) in the fat tissues of old-young female individuals of Drosophila melanogaster. The female flies were fed with either a standard diet, or CdA (10-30 mg), or TK (2%), or both (CdA + TK) for 3 and 10 days. Following the completion of the feeding period, the amounts of fatbody and oxidative stress markers (oxidative stress index, malondialdehyde), activities of antioxidant enzymes (Glutathione-S-transferase, Catalase, and Superoxide dismutase) and their levels were measured. Fat body lipid droplets were high in the individuals exposed to high concentrations of CdA. It was determined that lipid droplets decreased but did not significantly alter oxidative stress in the individuals treated with TK (p = 0.05). This article may be of help in terms of the use of TK compounds as antioxidants to evaluate their effects in preventing heavy metal accumulation and stress in the aging process.
Collapse
Affiliation(s)
- Eda Güneş
- Department of Gastronomy and Culinary Arts, Faculty of Tourism, Necmettin Erbakan University, Konya, Turkey.
| | - Erhan Şensoy
- Department of Midwifery, Faculty of Health Science, Karamanoğlu Mehmetbey University, Karaman, Turkey.
| |
Collapse
|
156
|
Majid S, Van Belleghem F, Ploem JP, Wouters A, Blust R, Smeets K. Interactive toxicity of copper and cadmium in regenerating and adult planarians. CHEMOSPHERE 2022; 297:133819. [PMID: 35114265 DOI: 10.1016/j.chemosphere.2022.133819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In a polluted environment, metals are present as complex mixtures. As a result, organisms are exposed to different metals at the same time, which affects both metal-specific as well as overall toxicity. Detailed information about the molecular mechanisms underlying the adverse effects of combined exposures remains limited in terms of different life stages. In this study, the freshwater planarian Schmidtea mediterranea was used to investigate developmental and physiological responses associated with a combined exposure to Cu and Cd. In addition, the cellular and molecular mechanisms underlying the provoked adverse effects were studied in different exposure scenarios. Mixed exposure resulted in a decline in survival, diverse non-lethal morphological changes, neuroregenerative impairments, altered behaviour and a limited repair capacity. Underlying to these effects, the cellular redox state was altered in all exposure conditions. In adult animals, this led to DNA damage and corresponding transcriptional changes in cell cycle and DNA repair genes. In regenerating animals, changes in hydrogen peroxide and glutathione contents led to regenerative defects. Overall, our results demonstrate that (1) developing organisms are more susceptible to metal exposures, and (2) the toxicity of an individual metal increases significantly in a mixed exposure scenario. These aspects have to be included in current risk assessment strategies.
Collapse
Affiliation(s)
- Sanah Majid
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Frank Van Belleghem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Department of Environmental Sciences, Faculty of Science, Open University of the Netherlands, Heerlen, 6419, AT, the Netherlands
| | - Jan-Pieter Ploem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Annelies Wouters
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Ronny Blust
- Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Karen Smeets
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
157
|
Zhang T, Zhang C, Zhang J, Lin J, Song D, Zhang P, Liu Y, Chen L, Zhang L. Cadmium impairs zebrafish swim bladder development via ROS mediated inhibition of the Wnt / Hedgehog pathway. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 247:106180. [PMID: 35490551 DOI: 10.1016/j.aquatox.2022.106180] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/15/2022] [Accepted: 04/23/2022] [Indexed: 06/14/2023]
Abstract
The posterior swim bladder is an important organ in teleost fishes, that primarily maintains buoyancy and motility for swimming and survival. In this study, we examined the molecular mechanisms of the toxicity of cadmium (Cd) on the early development of the swim bladder in zebrafish. Embryonic Cd exposure resulted in the non-inflation of the swim bladder when the ambient Cd concentration was greater than or equal to 0.25 mg/L. Cd disturbed surfactant lipid distribution and inhibited the formation of all three tissue layers in the swim bladder. Additionally, excessive Cd down-regulated Wnt (fzd3, nkd1, fzd7 and axin2) and Hedgehog (ihh, shh, ptc1 and ptc2) signaling pathways. Conversely, Wnt signaling activation partially neutralized Cd-induced swim bladder developmental defects. Moreover, ROS scavenger reduced Glutathione (GSH) effectively recovered Cd induced defects in swim bladder and Wnt/Hedgehog signaling. Taken together, our results first revealed that Cd caused swim bladder developmental defects via ROS-mediated inhibition of the Wnt and Hedgehog pathways. These results herein provide important data for future toxicological studies and risk assessments of Cd.
Collapse
Affiliation(s)
- Ting Zhang
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Canchuan Zhang
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Jin Zhang
- State Key Laboratory of Biocontrol, Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Jiangtian Lin
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Dongdong Song
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Peng Zhang
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yang Liu
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Lizhao Chen
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Li Zhang
- Key Laboratory of Tropical Marine Bio-resourcesand Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Southern Marine Science and Engineering Guangdong Laboratory, Guangzhou 511458, China; Institution of South China Sea Ecology and Environmental Engineering, Chinese Academy of Sciences, Guangzhou 510301, China.
| |
Collapse
|
158
|
Mohammadi S, Shafiee M, Faraji SN, Rezaeian M, Ghaffarian-Bahraman A. Contamination of breast milk with lead, mercury, arsenic, and cadmium in Iran: a systematic review and meta-analysis. Biometals 2022; 35:711-728. [PMID: 35575819 DOI: 10.1007/s10534-022-00395-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 04/29/2022] [Indexed: 12/29/2022]
Abstract
Breast milk is a complete food for the development of the newborn, but it can also be an important route for environmental pollutants transmission to the infants. This study was aimed to evaluate the status of heavy metals including lead (Pb), mercury (Hg), cadmium (Cd) and arsenic (As) in the breast milk of Iranian mothers. The international databases including Scopus, PubMed, Web of Science and the Persian electronic databases including Scientific Information Database, IranMedex and Magiran were examined to find relevant articles published until July 2021. A total of 23 studies examined the levels of toxic metals in Iranian breast milk samples. According to the findings, the pooled average concentrations (µg/L) of Pb, Cd, Hg and As were 25.61, 2.40, 1.29 and 1.16, respectively. The concentration of Hg and Pb in colostrum milk was more than twice of mature milk. The Hg mean concentration in the breast milk of mothers with at least one amalgam-filled tooth was approximately three times that of mothers without amalgam-filled teeth. Risk assessment analysis indicated that the intake of Pb and Hg by infants through breastfeeding can be considered a health concern in Iran. It seems necessary to reduce the Pb exposure of pregnant and lactating women in Iran. However, more extensive studies are needed to clarify the toxic metals' exposure status of infants through breast milk in other parts of the country.
Collapse
Affiliation(s)
- Salman Mohammadi
- Nutritional Health Research Center, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Maryam Shafiee
- Nephro-Urology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Nooreddin Faraji
- School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohsen Rezaeian
- Department of Epidemiology and Biostatistics, Occupational Environment Research Center, Medical School, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Ali Ghaffarian-Bahraman
- Occupational Environment Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran.
| |
Collapse
|
159
|
Kumawat R, Tomar RS. Heavy metal exposure induces Yap1 and Hac1 mediated derepression of GSH1 and KAR2 by Tup1-Cyc8 complex. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128367. [PMID: 35123133 DOI: 10.1016/j.jhazmat.2022.128367] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 01/12/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Heavy metal pollution is one of the most severe environmental problem. The toxicity of heavy metals is correlated with the production of increased reactive oxygen species and misfolded protein accumulation. Exposures of these metals even at low concentrations adversely affect human health. The Tup1-Cyc8 complex has been identified as a general repressor complex, is also involved in the derepression of few target genes in association with gene-specific activator proteins. Exposure to heavy metals activates the antioxidant defense mechanism, essential for cellular homeostasis. Here we present evidence that TUP1/CYC8 deleted cells are compromised to tolerate heavy metals exposure. Upon metal-induced oxidative stress, Yeast AP-1p (Yap1) recruits the Tup1-Cyc8 complex to the promoter of oxidative stress response gene GSH1 and derepresses its expression. We also found that the TUP1/CYC8 deficient cells have altered endoplasmic reticulum (ER) homeostasis and fail to activate the unfolded protein response pathway. In response to ER stress, the Tup1-Cyc8 complex, with the help of activated Hac1, binds to the promoter of ER chaperone KAR2 and activates its transcription. Altogether, our findings suggest that the Tup1-Cyc8 complex is crucial for the activation of genes that are involved in the mitigation of oxidative and ER stress during heavy metal exposure.
Collapse
Affiliation(s)
- Ramesh Kumawat
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, India
| | - Raghuvir Singh Tomar
- Laboratory of Chromatin Biology, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, 462066, India.
| |
Collapse
|
160
|
Gende M, Schmeling M. Development of an analytical method for determination of lead and cadmium in biological materials by GFAAS using Escherichia coli as model substance. PLoS One 2022; 17:e0267775. [PMID: 35503792 PMCID: PMC9064108 DOI: 10.1371/journal.pone.0267775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/14/2022] [Indexed: 11/18/2022] Open
Abstract
In this work, an analytical method was developed for the determination of lead and cadmium in biological samples using graphite furnace atomic absorption spectrometry. Escherichia coli (E. coli) was chosen as model substance for this purpose as it is readily available in most laboratories and can be quickly and easily prepared with a high turnaround rate. Four different sample preparation methods were initially evaluated with respect to percent recovery, limit of detection, and limit of quantification, and the most promising one was developed further. The final process involving microwave assisted digestion of the sample with nitric acid and hydrogen peroxide showed high recovery, repeatability, and specificity. The process was first applied to lead and then extended for the determination of cadmium in the same E. coli substrates. Finally, to validate the process, a certified references material was analyzed, and the results obtained were evaluated with respect to accuracy by comparing them to the reported ones.
Collapse
Affiliation(s)
- Michelle Gende
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
| | - Martina Schmeling
- Department of Chemistry and Biochemistry, Loyola University Chicago, Chicago, IL, United States of America
- * E-mail:
| |
Collapse
|
161
|
Upamalika SWAM, Wannige CT, Vidanagamachchi SM, Gunasekara SC, Kolli RT, De Silva PMCS, Kulasiri D, Jayasundara N. A review of molecular mechanisms linked to potential renal injury agents in tropical rural farming communities. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 92:103850. [PMID: 35301132 DOI: 10.1016/j.etap.2022.103850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
The chronic kidney disease of unknown etiology (CKDu) is a global health concern primarily impacting tropical farming communities. Although the precise etiology is debated, CKDu is associated with environmental exposures including heat stress and chemical contaminants such as fluoride, heavy metals, and herbicide glyphosate. However, a comprehensive synthesis is lacking on molecular networks underpinning renal damage induced by these factors. Addressing this gap, here we present key molecular events associated with heat and chemical exposures. We identified that caspase activation and lipid peroxidation are common endpoints of glyphosate exposure, while vasopressin and polyol pathways are associated with heat stress and dehydration. Heavy metal exposure is shown to induce lipid peroxidation and endoplasmic reticulum stress from ROS activated MAPK, NFĸB, and caspase. Collectively, we identify that environmental exposure induced increased cellular oxidative stress as a common mechanism mediating renal cell inflammation, apoptosis, and necrosis, likely contributing to CKDu initiation and progression.
Collapse
Affiliation(s)
| | | | | | | | - Ramya Tulasi Kolli
- Nicholas School of the Environment, Duke University, NC 27708, United States.
| | | | - Don Kulasiri
- Department of Molecular Biosciences, and Centre for Advanced Computational Solutions (C-fACS), Lincoln University, New Zealand.
| | - Nishad Jayasundara
- Nicholas School of the Environment, Duke University, NC 27708, United States.
| |
Collapse
|
162
|
Nanda KP, Firdaus H. Dietary cadmium induced declined locomotory and reproductive fitness with altered homeostasis of essential elements in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2022; 255:109289. [PMID: 35114395 DOI: 10.1016/j.cbpc.2022.109289] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/22/2022] [Accepted: 01/26/2022] [Indexed: 11/20/2022]
Abstract
Cadmium (Cd) exerts detrimental effects on multiple biological processes of the living organisms along with epigenetic transgenerational effect. Drosophila melanogaster offers unique opportunity to evaluate Cd toxicity when studying important life traits in short duration of time by designing distinct behavioural assays. Present study utilized this model organism to assess Cd induced lethality, retarded growth, decreased life span and altered behaviour of the animals either at larval or adult stage. Our investigations revealed reduced locomotion and reproductive fitness of the animals upon Cd exposure. Transgenerational effect on locomotion was found to be behaviour specific as larval crawling was affected, but adult fly negative geotaxis was comparable to the control. Mechanistically, decreased antioxidant enzymes activity, superoxide dismutase (SOD) and catalase (CAT) together with altered homeostasis of essential elements (Fe, Zn and Mg) may be responsible for the observed effects. Altogether our work showed extensive range of Cd altered Drosophila behaviour which warrants need to control environmental Cd toxicity.
Collapse
Affiliation(s)
- Kumari Pragati Nanda
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| |
Collapse
|
163
|
Fernández-Torres J, Zamudio-Cuevas Y, Martínez-Nava GA, Aztatzi-Aguilar OG, Sierra-Vargas MP, Lozada-Pérez CA, Suárez-Ahedo C, Landa-Solís C, Olivos-Meza A, Del Razo LM, Camacho-Rea MC, Martínez-Flores K. Impact of Cadmium Mediated by Tobacco Use in Musculoskeletal Diseases. Biol Trace Elem Res 2022; 200:2008-2015. [PMID: 34245425 DOI: 10.1007/s12011-021-02814-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022]
Abstract
Tobacco use has a negative impact on health due to its relationship with the development of high-mortality diseases, such as pulmonary cancer. However, the effect of cadmium (Cd), present in tobacco smoke, on the development of joint diseases has been scarcely studied. The objective of this review is to discuss the evidence regarding the mechanisms by which Cd exposure, through tobacco smoke, may lead to the development of osteoarthritis (OA), osteoporosis (OP), and rheumatoid arthritis (RA). There's evidence suggesting a string association between moderate to severe OA development and tobacco use, and that a higher blood concentration of Cd can trigger oxidative stress (OS) and inflammation, favoring cartilage loss. At the bone level, the Cd that is inhaled through tobacco smoke affects bone mineral density, resulting in OP mediated by a decrease in the antioxidant enzymes, which favors the bone resorption process. In RA, tobacco use promotes the citrullination process through Cd exposure and increases OS and inflammation. Understanding how tobacco use can increase the damage at the articular level mediated by a toxic metal, i.e., Cd, is important. Finally, we propose prevention, control, and treatment strategies for frequently disabling diseases, such as OA, OP, and RA to reduce its prevalence in the population.
Collapse
Affiliation(s)
- J Fernández-Torres
- Synovial Fluid Laboratory, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
- Biology Department, Facultad de Química, Universidad Nacional Autónoma de Mexico (UNAM), Ciudad Universitaria, Coyoacán, 04510, México City, Mexico
| | - Y Zamudio-Cuevas
- Synovial Fluid Laboratory, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
| | - G A Martínez-Nava
- Synovial Fluid Laboratory, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
| | - O G Aztatzi-Aguilar
- Department of Immunology and Environmental Medicine Research, National Institute of Respiratory Diseases, Calzada de Tlalpan No. 4502, Col. Belisario Domínguez Secc.16, C.P. 14080, México City, Mexico
| | - M P Sierra-Vargas
- Department of Immunology and Environmental Medicine Research, National Institute of Respiratory Diseases, Calzada de Tlalpan No. 4502, Col. Belisario Domínguez Secc.16, C.P. 14080, México City, Mexico
| | - C A Lozada-Pérez
- Rheumatology Service, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
| | - C Suárez-Ahedo
- Hip and Knee Joint Reconstruction Service, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
- Orthopedic Department, Surgery Office, Hospital Médica Sur, Puente de Piedra No. 150, Col. Toriello Guerra, C.P.14050, México City, Mexico
| | - C Landa-Solís
- Tissue Engineering, Cell Therapy, and Regenerative Medicine, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
| | - A Olivos-Meza
- Orthopedic Department, Surgery Office, Hospital Médica Sur, Puente de Piedra No. 150, Col. Toriello Guerra, C.P.14050, México City, Mexico
- Orthopedic Sports and Arthroscopy Service, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico
| | - L M Del Razo
- Toxicology Department, Cinvestav, Av. Politécnico Nacional2508, San Pedro Zacatenco, C.P. 07360, México City, Mexico
| | - M C Camacho-Rea
- Department of Animal Nutrition, National Institute of Medical Sciences and Nutrition Salvador Zubirán, Vasco de Quiroga No. 15, Col. Belisario Domínguez Secc. 16, C.P. 14080, México City, Mexico
| | - K Martínez-Flores
- Synovial Fluid Laboratory, National Rehabilitation Institute, Calzada México-Xochimilco No. 289, Col. Arenal de Guadalupe, C.P. 14389, México City, Mexico.
| |
Collapse
|
164
|
Antitumor Activity and Physicochemical Properties of New Thiosemicarbazide Derivative and Its Co(II), Ni(II), Cu(II), Zn(II) and Cd(II) Complexes. Molecules 2022; 27:molecules27092703. [PMID: 35566053 PMCID: PMC9100868 DOI: 10.3390/molecules27092703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/19/2022] Open
Abstract
A novel biologically active thiosemicarbazide derivative ligand L (N-[(phenylcarbamothioyl)amino]pyridine-3-carboxamide) and a series of its five metal(II) complexes, namely: [Co(L)Cl2], [Ni(L)Cl2(H2O)], [Cu(L)Cl2(H2O)], [Zn(L)Cl2] and [Cd(L)Cl2(H2O)] have been synthesized and thoroughly investigated. The physicochemical characterization of the newly obtained compounds has been performed using appropriate analytical techniques, such as 1H and l3C nuclear magnetic resonance (NMR), inductively coupled plasma (ICP), thermogravimetric analysis (TGA), Fourier-transform infrared spectroscopy (FTIR) and magnetic measurements. In order to study the pharmacokinetic profile of the compounds, ADMET analysis was performed. The in vitro studies revealed that the synthesized compounds exhibit potent biological activity against A549 human cancer cell line.
Collapse
|
165
|
Kraus A, Krunt O, Zita L, Vejvodová K, Drábek O. Laying hens under smallholder conditions: laying performance, growth and bone quality of tibia and femur including essential elements. Poult Sci 2022; 101:101927. [PMID: 35679666 PMCID: PMC9178482 DOI: 10.1016/j.psj.2022.101927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/18/2022] [Indexed: 11/29/2022] Open
Abstract
The study aimed to assess laying performance, growth rate, and bone quality properties of tibia and femur bones of various genotypes of laying hens, including determining essential element composition at the end of the laying cycle in smallholder conditions. The study included three genotypes of laying hens; Czech golden spotted (CGS), White Leghorn (LE) and Dominant Partridge D300 (D300) hens. In total, 180 hens (60/genotype) were used in 3 replications (20 hens/replication). The eggs were collected to determine egg lay and hen-day egg production. Additionally, feed consumption was recorded to determine feed consumption per day or egg, resp. The mortality rate was recorded. Hens were individually weighed every 10 wk to analyze the growth performance and body weight changes during the laying cycle. The differences in performance characteristics were observed as significant in all studied parameters. The bone quality analysis consisted of the determination of bone weight, length, width, and fracture toughness. Furthermore, dry matter, ash, and selected elements, which included boron (B), calcium (Ca), cadmium (Cd), copper (Cu), iron (Fe), magnesium (Mg), manganese (Mn), sodium (Na), phosphorus (P), lead (Pb), and zinc (Zn) were assessed. Regarding the results of tibia and femur bones, the effect of genotype was determined as significant in all evaluated properties. In terms of element composition, all evaluated elements significantly differed among the genotypes in the tibia (with one exception of Cu) and in the femur (with one exception of Cd). In conclusion, our results showed that hens’ performance, production quality, mortality and bone properties significantly differed among genotypes under smallholder conditions. Thus, every genotype needs to be carefully considered, when the rearing conditions are set.
Collapse
Affiliation(s)
- Adam Kraus
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Prague- Suchdol 165 00, Czech Republic.
| | - Ondřej Krunt
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Prague- Suchdol 165 00, Czech Republic
| | - Lukáš Zita
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Animal Science, Prague- Suchdol 165 00, Czech Republic
| | - Kateřina Vejvodová
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Soil Science and Soil Protection, Prague - Suchdol 165 00, Czech Republic
| | - Ondřej Drábek
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Soil Science and Soil Protection, Prague - Suchdol 165 00, Czech Republic
| |
Collapse
|
166
|
Hernández-Cruz EY, Amador-Martínez I, Aranda-Rivera AK, Cruz-Gregorio A, Pedraza Chaverri J. Renal damage induced by cadmium and its possible therapy by mitochondrial transplantation. Chem Biol Interact 2022; 361:109961. [DOI: 10.1016/j.cbi.2022.109961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 04/05/2022] [Accepted: 04/22/2022] [Indexed: 12/14/2022]
|
167
|
DHASARATHAN S, SHUNMUGAPERUMAL S, SELVARAJ P K. Exploration of Role of Concentration on Sensing Activities using Novel unsymmetrical Schiff bases. JOURNAL OF THE TURKISH CHEMICAL SOCIETY, SECTION A: CHEMISTRY 2022. [DOI: 10.18596/jotcsa.1008926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
168
|
Hasselberg AE, Nøstbakken OJ, Aakre I, Madsen L, Atter A, Steiner-Asiedu M, Kjellevold M. Nutrient and contaminant exposure from smoked European anchovy (Engraulis encrasicolus): Implications for children's health in Ghana. Food Control 2022. [DOI: 10.1016/j.foodcont.2021.108650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
169
|
Chemical Characterization of Taif Rose (Rosa damascena Mill var. trigentipetala) Waste Methanolic Extract and Its Hepatoprotective and Antioxidant Effects against Cadmium Chloride (CdCl2)-Induced Hepatotoxicity and Potential Anticancer Activities against Liver Cancer Cells (HepG2). CRYSTALS 2022. [DOI: 10.3390/cryst12040460] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Taif rose (Rosa damascena Mill) is one of the most important economic products of the Taif Governorate, Saudi Arabia. Cadmium chloride (CdCl2) is a common environmental pollutant that is widely used in industries and essentially induces many toxicities, including hepatotoxicity. In this study, the major compounds in the waste of Taif rose extract (WTR) were identified and chemically and biologically evaluated. GC–MS analysis of WTR indicated the presence of many saturated fatty acids, vitamin E, triterpene, dicarboxylic acid, terpene, linoleic acid, diterpenoid, monoterpenoid, flavonoids, phenylpyrazoles, and calcifediol (vitamin D derivative). The assessment of potential anticancer activity against HepG2 cells proved that WTR had a high cell killing effect with IC50 of 100–150 µg/mL. In addition, WTR successfully induced high cell cycle arrest at G0/G1, S, and G2 phases, significant apoptosis, necrosis, and increased autophagic cell death response in the HepG2 line. For the evaluation of its anti-CdCl2 toxicity, 32 male rats were allocated to four groups: control, CdCl2, WTR, and CdCl2 plus WTR. Hepatic functions and antioxidant biomarkers (SOD, CAT, GRx, GPx, and MDA) were examined. Histological changes and TEM variations in the liver were also investigated to indicate liver status. The results proved that WTR alleviated CdCl2 hepatotoxicity by improving all hepatic vitality markers. In conclusion, WTR could be used as a preventive and therapeutic natural agent for the inhibition of hepatic diseases and the improvement of redox status. Additional in vitro and in vivo studies are warranted.
Collapse
|
170
|
Komili K, Söyler G, Toros P, Çalış İ, Kükner A. Effects of Corchorus Olitorius and Protocatechuic Acid on Cadmium-Induced Rat Testicular Tissue Degeneration. CYPRUS JOURNAL OF MEDICAL SCIENCES 2022. [DOI: 10.4274/cjms.2020.1970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
171
|
Markiewicz-Górka I, Chowaniec M, Martynowicz H, Wojakowska A, Jaremków A, Mazur G, Wiland P, Pawlas K, Poręba R, Gać P. Cadmium Body Burden and Inflammatory Arthritis: A Pilot Study in Patients from Lower Silesia, Poland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:3099. [PMID: 35270791 PMCID: PMC8910441 DOI: 10.3390/ijerph19053099] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/24/2022] [Accepted: 03/04/2022] [Indexed: 12/04/2022]
Abstract
The purpose of this study was to determine the relationship between cadmium exposure and the likelihood of developing or exacerbating symptoms of inflammatory arthritis (IA). The study included 51 IA patients and 46 control subjects. Demographic and lifestyle data were collected. Haematological and biochemical parameters and blood cadmium levels (Cd-B) were determined. Cd-B correlated positively with age, smoking, living in a high-traffic area, and serum levels of inflammatory markers and negatively with mean corpuscular haemoglobin concentration (MCHC). The binary logistic regression model implied that high Cd-B (≥0.65 μg/L) is linked with an increased risk of IA in the studied population (odds ratio: 4.4). High levels of DNA oxidative damage marker (8-hydroxy-2'-deoxyguanosine) (≥7.66 ng/mL) and cyclooxygenase-2 (≥22.9 ng/mL) and frequent consumption of offal was also associated with increased risk of IA. High Cd-B was related to increased risk of disease symptoms onset in the group of IA patients, decreased the level of interleukin 10, and positively correlated with the disease activity. Increased Cd-B is associated with intensified inflammatory processes and decreased haemoglobin levels; in IA patients with decreased anti-inflammatory interleukin 10. These changes partly explain why cadmium exposure and a high cadmium body burden may raise the risk of IA and of disease symptoms exacerbation.
Collapse
Affiliation(s)
- Iwona Markiewicz-Górka
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland; (M.C.); (A.J.); (K.P.); (P.G.)
| | - Małgorzata Chowaniec
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland; (M.C.); (A.J.); (K.P.); (P.G.)
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland;
| | - Helena Martynowicz
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (H.M.); (A.W.); (G.M.); (R.P.)
| | - Anna Wojakowska
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (H.M.); (A.W.); (G.M.); (R.P.)
| | - Aleksandra Jaremków
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland; (M.C.); (A.J.); (K.P.); (P.G.)
| | - Grzegorz Mazur
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (H.M.); (A.W.); (G.M.); (R.P.)
| | - Piotr Wiland
- Department of Rheumatology and Internal Medicine, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland;
| | - Krystyna Pawlas
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland; (M.C.); (A.J.); (K.P.); (P.G.)
| | - Rafał Poręba
- Department of Internal and Occupational Diseases, Hypertension and Clinical Oncology, Wroclaw Medical University, 213 Borowska St., 50-556 Wroclaw, Poland; (H.M.); (A.W.); (G.M.); (R.P.)
| | - Paweł Gać
- Division of Environmental Health and Occupational Medicine, Department of Population Health, Wroclaw Medical University, 7 Mikulicza-Radeckiego St., 50-345 Wroclaw, Poland; (M.C.); (A.J.); (K.P.); (P.G.)
| |
Collapse
|
172
|
Wu S, Zhou Z, Zhu L, Zhong L, Dong Y, Wang G, Shi K. Cd immobilization mechanisms in a Pseudomonas strain and its application in soil Cd remediation. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127919. [PMID: 34894511 DOI: 10.1016/j.jhazmat.2021.127919] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/11/2021] [Accepted: 11/24/2021] [Indexed: 06/14/2023]
Abstract
In this study, we isolated a highly cadmium (Cd)-resistant bacterium, Pseudomonas sp. B7, which immobilized 100% Cd(II) from medium. Culturing strain B7 with Cd(II) led to the change of functional groups, mediating extracellular Cd(II) adsorption. Proteomics showed that a carbonic anhydrase, CadW, was upregulated with Cd(II). CadW expression in Escherichia coli conferred resistance to Cd(II) and increased intracellular Cd(II) accumulation. Fluorescence assays demonstrated that CadW binds Cd(II) and the His123 residue affected Cd(II) binding activity, indicating that CadW participates in intracellular Cd(II) sequestration. Chinese cabbage pot experiments were performed using strain B7 and silicate [Si(IV)]. Compared with the control, Cd content in aboveground parts significantly decreased by 21.3%, 29.4% and 32.9%, and nonbioavailable Cd in soil significantly increased by 129.4%, 45.0% and 148.7% in B7, Si(IV) and B7 +Si(IV) treatments, respectively. The application of Si(IV) alone reduced chlorophyll content by 20.8% and arylsulfatase activity in soil by 33.9%, and increased malonaldehyde activity by 15.0%. The application of strain B7 alleviated the negative effect of Si(IV) on plant and soil enzymes. Overall, application of Si(IV) is most conducive to the decreased Cd accumulation in plant, and strain B7 is beneficial to maintaining soil and plant health.
Collapse
Affiliation(s)
- Shijuan Wu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zijie Zhou
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Lin Zhu
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Limin Zhong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Yixuan Dong
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Gejiao Wang
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Kaixiang Shi
- State Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
173
|
Zheng X, Deng F, Sharma I, Kanwar YS. Myo-inositol oxygenase overexpression exacerbates cadmium-induced kidney injury via oxidant stress and necroptosis. Am J Physiol Renal Physiol 2022; 322:F344-F359. [PMID: 35100813 PMCID: PMC8897016 DOI: 10.1152/ajprenal.00460.2021] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Conceivably, like other forms of acute kidney injury, cadmium-induced renal injury may also be associated with oxidative stress and various forms of cell death, including necroptosis, a form of regulated necrosis-associated cell death. Myo-inositol oxygenase (MIOX), an enzyme localized in renal proximal tubules, regulates oxidative stress and programmed cell death in various forms of renal injuries. Herein, the role and potential mechanism(s) by which MIOX potentiates cadmium-induced renal tubular damage were investigated. Overexpression of MIOX exacerbated cadmium-induced cell death and proximal tubular injury in mice, whereas MIOX gene disruption attenuated cellular damage in vitro and in vivo. Furthermore, necroptosis was observed in the renal tubular compartment, and, more importantly, it was corroborated by inhibitor experiments with necrostatin-1 (Nec-1). Coadministration of Nec-1 dampened including receptor-interacting protein kinase (RIP)1/RIP3/mixed-lineage kinase domain-like signaling, which is relevant to the process of necroptosis. Interestingly, the necroptosis induced by cadmium in tubules was modulated by MIOX expression profile. Also, the increased reactive oxygen species generation and NADPH consumption were accelerated by MIOX overexpression, and they were mitigated by Nec-1 administration. These findings suggest that MIOX-potentiated redox injury and necroptosis are intricately involved in the pathogenesis of cadmium-induced nephropathy, and this may yield novel potential therapeutic targets for amelioration of cadmium-induced kidney injury.NEW & NOTEWORTHY This is a seminal article documenting the role of myo-inositol oxygenase (MIOX), a renal proximal tubule-specific enzyme, in the exacerbation of cadmium-induced acute kidney injury by perturbing redox balance and inducing necroptosis. MIOX gene disruption or administration of necrostatin-1 (a necroptosis inhibitor) diminished cadmium-induced renal damage, in both in vitro and in vivo systems, suggesting a therapeutic potential of MIOX to attenuate necroptosis and relevant signaling pathways in cadmium-induced renal injury.
Collapse
Affiliation(s)
- Xiaoping Zheng
- 1Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, People’s Republic of China,2Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,3Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Fei Deng
- 2Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,3Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Isha Sharma
- 2Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,3Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Yashpal S. Kanwar
- 2Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois,3Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| |
Collapse
|
174
|
Karunanidhi D, Aravinthasamy P, Subramani T, Chandrajith R, Janardhana Raju N, Antunes IMHR. Provincial and seasonal influences on heavy metals in the Noyyal River of South India and their human health hazards. ENVIRONMENTAL RESEARCH 2022; 204:111998. [PMID: 34499896 DOI: 10.1016/j.envres.2021.111998] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 06/13/2023]
Abstract
This study was carried out to evaluate the heavy metals (Lead (Pb), Nickel (Ni), Chromium (Cr), Copper (Cu), Cadmium (Cd) and Zinc (Zn)) pollution in the Noyyal River of South India by collecting 130 river water samples (65 each in pre- and post-monsoon). The heavy metals were measured using Atomic Absorption Spectrophotometer (AAS). The data were used to calculate the associated health hazards for the inhabitants consume river water. Correlation analyses and average concentration of heavy metals denoted that post-monsoon metal concentrations were lesser compared to the pre-monsoon due to dilution effect. Modified Contamination Degree (MCD) indicated that 45% of pre-monsoon and 25% of post-monsoon samples were classified under extremely polluted category. Heavy metal pollution index (HPI) showed that all the regions fall under highly polluted category except 'Region I' where 20% of samples were under safe category during the pre-monsoon, whereas 9%,28%, 17% and 26% of samples in Regions I, II, III and IV were highly polluted during the post-monsoon season, respectively. Ecological Risk Index (ERI) revealed that high risks attained in Regions II (78%) and III (82%) during pre-monsoon, and reduced risks found in Regions II (28%) and III (45%) during post-monsoon season due to dilution by monsoon rainfall. Non-carcinogenic risks as inferred by the Hazard Index (HI) indicated that 78% and 52% of samples for infants, 75% and 49% of samples for teens and 71% and 45% of samples for adults exceeded the threshold limits of USEPA (HI > 1) and possessed risks during pre- and post-monsoon, respectively. The cancer risk assessment based on ingestion of heavy metals indicated that the order of risk is Ni > Cr > Cu. The HI for infants and teens was notably high to that of adults in both the seasons. This study will be useful to develop effective strategies for improving river water quality and to reduce human health hazards.
Collapse
Affiliation(s)
- D Karunanidhi
- Department of Civil Engineering, Sri Shakthi Institute of Engineering and Technology (Autonomous), Coimbatore, 641062, India.
| | - P Aravinthasamy
- Department of Civil Engineering, Sri Shakthi Institute of Engineering and Technology (Autonomous), Coimbatore, 641062, India
| | - T Subramani
- Department of Geology, CEG, Anna University, Chennai, 600025, India
| | - Rohana Chandrajith
- Department of Geology, University of Peradeniya, Peradeniya, 20400, Sri Lanka
| | - N Janardhana Raju
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| | - I M H R Antunes
- Institute of Earth Sciences, ICT, Pole of University of Minho, Campus de Gualtar, 4710- 057, Braga, Portugal
| |
Collapse
|
175
|
Kateryna T, Monika L, Beata J, Joanna R, Edyta R, Marcin B, Agnieszka KW, Ewa J. Cadmium and breast cancer – current state and research gaps in the underlying mechanisms. Toxicol Lett 2022; 361:29-42. [DOI: 10.1016/j.toxlet.2022.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/04/2022] [Accepted: 03/17/2022] [Indexed: 01/02/2023]
|
176
|
Jacquier L, Doums C, Molet M. Spring colonies of the ant Temnothorax nylanderi tolerate cadmium better than winter colonies, in both a city and a forest habitat. ECOTOXICOLOGY (LONDON, ENGLAND) 2022; 31:324-334. [PMID: 34994914 DOI: 10.1007/s10646-021-02515-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/11/2021] [Indexed: 06/14/2023]
Abstract
A recent study showed that, in the ant Temnothorax nylanderi, city colonies are more tolerant to cadmium than forest colonies. However, because of annual variation in biological factors (e.g. body size, anti-stress protein production or trace metal accumulation rate), trace metal tolerance may vary over the year. We aimed at testing whether tolerance to cadmium of colonies of T. nylanderi differs between two different seasons within the same year (winter and spring). We also assessed whether the better cadmium tolerance of city colonies was constant over these two different time points. We collected colonies at the end of their hibernation period (winter colonies) and several weeks after (spring colonies) from two different habitats (forest and city) to assess whether response to cadmium was consistent regardless of the environment. We exposed colonies to a cadmium or a control treatment for 61 days. We compared tolerance to cadmium between spring/winter and city/forest colonies by measuring several life history traits. We found that spring colonies tolerates cadmium better than winter colonies, and that city colonies have a higher tolerance to cadmium but only in spring. Although further studies with replicated pairs of city/forest habitats and different years will be necessary to confirm those results, our study suggests that tolerance to trace metals can fluctuate along the yearly cycle.
Collapse
Affiliation(s)
- L Jacquier
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences of Paris, IEES-Paris, F-75005, Paris, France.
| | - C Doums
- Institut de Systématique, Evolution, Biodiversité (ISYEB), Muséum national d'Histoire naturelle, CNRS, Sorbonne Université, EPHE, Université des Antilles, 75005, Paris, France
- EPHE, PSL University, 75014, Paris, France
| | - M Molet
- Sorbonne Université, UPEC, CNRS, IRD, INRA, Institute of Ecology and Environmental Sciences of Paris, IEES-Paris, F-75005, Paris, France
| |
Collapse
|
177
|
Milki A, Wong D, Chan C, Sooklal S, Kapp DS, Mann AK. Increased Urinary Cadmium Levels in Foreign-Born Asian Women-An NHANES Study of 9639 U.S. Participants. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19042170. [PMID: 35206357 PMCID: PMC8872212 DOI: 10.3390/ijerph19042170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 02/09/2022] [Accepted: 02/09/2022] [Indexed: 02/04/2023]
Abstract
The purpose of this study was to determine the disparities and trends in demographics, social behaviors, and occupations for cadmium exposure in the U.S. Data were obtained from the NHANES database from 2007 to 2016. Analysis of variance tests were used to compare the association of the geometric mean values of urinary cadmium levels and various demographic and behavioral characteristics. We also conducted multivariable logistic regression while adjusting for these factors to determine the risk of toxic urinary cadmium levels (≥2 µg/g) across various patient characteristics. Of the 9639 participants, 52.8% were ≥45 years old, 51.7% female, and 48.3% male. White, Black, Mexican American, other Hispanic, and Asian comprised 66.4%, 11.5%, 8.7%, 5.8%, and 5.5%, respectively. Over 82% of participants were U.S. born. A total of 19.6% were current smokers. On multivariate analysis, older age (OR: 8.87), current smoking (OR = 5.74), Asian race (OR = 4.52), female sex (OR = 4.32), and foreign nativity (OR = 1.83) were significantly associated with higher cadmium levels. Older, Asian, foreign-born females showed a measurement of 0.69 μg/g, a value more than three-fold the sample population’s mean of 0.20 μg/g. A trend analysis demonstrated a cadmium level decrease over time (OR = 0.47). Asians had the highest urinary cadmium levels, especially older, foreign-born females. Smoking and poverty were also associated with significant elevations in cadmium levels.
Collapse
Affiliation(s)
- Anthony Milki
- School of Medicine and Health Sciences, The George Washington University, Washington, DC 20037, USA;
| | - Deanna Wong
- Department of Obstetrics and Gynecology, UCLA Medical Center, Los Angeles, CA 90095, USA;
| | - Chloe Chan
- California Pacific Medical Center, San Francisco, CA 94109, USA;
| | - Sarita Sooklal
- Keck School of Medicine of USC, University of Southern California, Los Angeles, CA 90033, USA;
| | - Daniel S. Kapp
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA;
| | - Amandeep K. Mann
- Palo Alto Medical Foundation Research Institute, Palo Alto, CA 94301, USA
- Correspondence: ; Tel.: +(650)-853-2077
| |
Collapse
|
178
|
Yang J, Lo K, Yang A. Trends in Urinary and Blood Cadmium Levels in U.S. Adults with or without Comorbidities, 1999-2018. Nutrients 2022; 14:nu14040802. [PMID: 35215454 PMCID: PMC8880632 DOI: 10.3390/nu14040802] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/10/2022] Open
Abstract
Although cadmium (Cd) exposure has been declining in the United States (U.S.) over the years, the level of exposure for people with pre-existing comorbidities is unclear. This study characterized the trends of blood Cd levels (bCd) (n = 44,498) and urinary Cd levels (uCd) (n = 15,107) by pre-existing comorbidities among adults participating in the U.S. National Health and Nutrition Examination Survey. We calculated age- and sex-standardized annual geometric mean (GM) levels, and used aJoinpoint regression model to examine the trends over time. The GM levels of bCd declined from 1999–2000 to 2017–2018 survey cycles (from 0.49 to 0.33 μg/L), while women and current smokers had higher levels. Participants with comorbidities had higher bCd and declined over time: cardiovascular disease (CVD) (0.50 to 0.42 μg/L), hypertension (0.49 to 0.35 μg/L), chronic kidney disease (CKD) (0.54 to 0.37 μg), and cancer (0.57 to 0.38 μg) versus those without these comorbidities. We observed the similar pattern of changes for uCd and participants with CVD, CKD, and cancer had higher levels. To conclude, the trend in urinary and blood Cd levels in U.S adults decreased in the past 20 years, and the levels varied by sex, smoking status, and comorbidities.
Collapse
Affiliation(s)
- Jingli Yang
- College of Earth and Environmental Sciences, Lanzhou University, Lanzhou 730000, China;
| | - Kenneth Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
- Research Institute for Smart Ageing, The Hong Kong Polytechnic University, 11 Yuk Choi Road, Hung Hom, Kowloon, Hong Kong SAR, China
- Correspondence: (K.L.); (A.Y.)
| | - Aimin Yang
- Department of Medicine and Therapeutics, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong SAR, China
- Correspondence: (K.L.); (A.Y.)
| |
Collapse
|
179
|
Alshehri AS, El-Kott AF, El-Gerbed MSA, El-Kenawy AE, Albadrani GM, Khalifa HS. Kaempferol prevents cadmium chloride-induced liver damage by upregulating Nrf2 and suppressing NF-κB and keap1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:13917-13929. [PMID: 34599712 DOI: 10.1007/s11356-021-16711-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
This study evaluated the protective effect of kaempferol, a natural flavonoid, against cadmium chloride (CdCl2)-induced liver damage and examined the possible anti-inflammatory and antioxidant mechanisms of protection. Adult male rats were divided into 4 groups (each of 8 rats) as control, kaempferol (50 mg/kg/day orally), CdCl2 (15 ppm/day), and CdCl2 (15 ppm/day) + kaempferol (50 mg/kg/day). All treatments were given for 30 days. With no effect on attenuating the reduced food intake, kaempferol significantly increased body weight and lowered serum levels of liver injury markers including bilirubin, alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase 1 (γ-GTT1) in the CdCl2-treated rats. It also restored normal liver architectures, prevented hepatocyte, loss, and swelling and reduced inflammatory cell infiltration. These effects were associated with a reduction in mitochondrial permeability transition pore, as well as in the expression of cytochrome-c and cleaved caspase-3, markers of mitochondrial damage, and intrinsic cell death. In both the control positive and CdCl2-treated rats, kaempferol significantly lowered the hepatic levels of reactive oxygen species, malondialdehyde (MDA), tumor necrosis factor-α (TNF-α), Interleukine-6 (IL-6), and the nuclear activity and localization of NF-κB p65. Besides, kaempferol significantly increased the hepatic total and nuclear levels of the nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1, as well as levels of superoxide dismutase (SOD) and reduced glutathione (GSH) but reduced the cytoplasmic protein levels of keap1. In conclusion, the protective effect of kaempferol against CdCl2-induced hepatic damage is mediated by antioxidant and anti-inflammatory effects driven by upregulating Nrf2/HO-1 axis and suppressing the NF-κB p65 and keap1.
Collapse
Affiliation(s)
- Ali S Alshehri
- Biology Department, College of Science, King Khalid University, Abha, 61421, Saudi Arabia
| | - Attalla F El-Kott
- Biology Department, College of Science, King Khalid University, Abha, 61421, Saudi Arabia.
- Zoology Department, College of Science, Damanhour University, Damanhour, 22511, Egypt.
| | - Mohamed S A El-Gerbed
- Zoology Department, College of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Ayman E El-Kenawy
- Pathology Department, College of Medicine, Taif University, Taif, 21944, Saudi Arabia
| | - Ghadeer M Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, 11474, Saudi Arabia
| | - Heba S Khalifa
- Zoology Department, College of Science, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
180
|
Yeh YH, Tsai CC, Chen TW, Lee CH, Chang WJ, Hsieh MY, Li TK. Activation of multiple proteolysis systems contributes to acute cadmium cytotoxicity. Mol Cell Biochem 2022; 477:927-937. [PMID: 35088369 DOI: 10.1007/s11010-021-04298-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 11/04/2021] [Indexed: 11/29/2022]
Abstract
Cadmium exhibits both toxic and carcinogenic effects, and its cytotoxicity is linked to various cellular pathways, such as oxidative stress, ubiquitin-proteasome, and p53-mediated response pathways. The molecular mechanism(s) underlying cadmium cytotoxicity appears to be complex, but remains largely unclear. Here, we examined the effects of cadmium on the protein catabolism using two surrogate markers, DNA topoisomerases I and II alpha and its contribution to cytotoxicity. We have found that cadmium exposure induced time- and concentration-dependent decreases in the protein level of surrogate markers and therefore suggest that cadmium may be involved in proteolysis system activation. A pharmacological study further revealed the novel role(s) of these proteolytic activities and reactive oxygen species (ROS) in the cadmium-induced acute toxicity: (i) Proteasome inhibition only partially relieved the cadmium-induced proteolysis of topoisomerases; (ii) Moreover, we report for the first time that the activation of metalloproteases, serine proteases, and cysteine proteases contributes to the acute cadmium cytotoxicity; (iii) Consistent with the notion that both ROS generation and proteolysis system activation contribute to the cadmium-induced proteolysis and cytotoxicity, the scavenger N-acetylcysteine and aforementioned protease inhibition not only reduced the cadmium-induced topoisomerase degradation but also alleviated the cadmium-induced cell killing. Taken together, acute cadmium exposure may activate multiple proteolytic systems and ROS formation, subsequently leading to intracellular damage and cytotoxicity. Thus, our results provide a novel insight into potential action mechanism(s) by which cadmium exerts its cytotoxic effect and suggest potential strategies to prevent cadmium-associated acute toxicity.
Collapse
Affiliation(s)
- Yen-Hsiu Yeh
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chia-Chih Tsai
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Tien-Wen Chen
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Chieh-Hua Lee
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Wei-Jer Chang
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Mei-Yi Hsieh
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan
| | - Tsai-Kun Li
- Department and Graduate Institute of Microbiology, College of Medicine, National Taiwan University, Room 709, No. 1, Section 1, Jen-Ai Road, Taipei, 10051, Taiwan. .,Centers for Genomic and Precision Medicine, National Taiwan University, Taipei, 10051, Taiwan. .,Center for Biotechnology, National Taiwan University, Taipei, 10051, Taiwan.
| |
Collapse
|
181
|
Kaur M, Sharma P, Kaur R, Khetarpal P. Increased incidence of spontaneous abortions on exposure to cadmium and lead: a systematic review and meta-analysis. Gynecol Endocrinol 2022; 38:16-21. [PMID: 34169802 DOI: 10.1080/09513590.2021.1942450] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Spontaneous abortions are the most severe complication of early pregnancy and are a major reproductive health problem. Although this could be caused due to various cytogenetic, immunological, or endocrinological reasons, role of environmental toxicants cannot be ruled out. In order to explore the role of cadmium and lead in causing spontaneous abortions, current systematic review and meta-analysis had been carried out. METHODOLOGY Literature search was performed using appropriate keywords in PubMed, Science Direct, Cochrane Library, and Google Scholar databases up to December 25 2020 according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines (PRISMA). Metananalysis was carried out with the help of RevMan software (version 5.3). RESULTS Meta-analysis of nine studies on cadmium concentrations in blood of women with at least one spontaneous abortions and controls revealed standardized mean difference (SMD)=3.39, 95% CI (2.17, 4.61), with p < .05. Similarly, meta-analysis of eight studies on lead concentrations revealed standardized mean difference (SMD)=6.24, 95% CI (4.34, 8.14), with p < .05. CONCLUSION Populations exposed to heavy metals such as cadmium and lead are at higher risk of pregnancy loss. Therefore, couples experiencing repeated pregnancy losses may be screened for heavy metal load.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Priya Sharma
- Laboratory for Reproductive and Developmental Disorders, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Rajinder Kaur
- Department of Human Genetics, Punjabi University, Patiala, India
| | - Preeti Khetarpal
- Department of Human Genetics, Punjabi University, Patiala, India
| |
Collapse
|
182
|
Frías-Espericueta MG, Soto-Jiménez MF, Abad-Rosales SM, López-Morales ML, Trujillo-Alvarez SY, Arellano-Sarabia JA, Quintero-Alvarez JM, Osuna-López JI, Bojórquez C, Aguilar-Juárez M. Physiological and histological effects of cadmium, lead, and combined on Artemia franciscana. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:7344-7351. [PMID: 34476687 DOI: 10.1007/s11356-021-16147-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 08/19/2021] [Indexed: 06/13/2023]
Abstract
This study analyzed the effects of cadmium (Cd) and lead (Pb) on growth, sexual couples, and histological structures of Artemia franciscana exposed to individual concentrations of these metals and combined. No histological effects were observed at tissue level in digestive, respiratory, nervous, and reproductive systems (i.e., necrosis, loss of regular structure) in individual and mixed applications on A. franciscana for 20 days of exposure. No significant differences (p > 0.05) were determined in final size and growth rate among the organisms exposed to Cd and those of control. For Pb, only the final size (3.59 ± 0.59 mm) of organisms exposed to the highest concentration was significantly lower (p < 0.05) than those of the control (4.53 ± 0.34 mm) group, whereas for the combined experiment, no significant differences (p > 0.05) were observed in final size and growth rate. At all Cd concentrations, mean sexual couples were significantly lower (p < 0.05) than those of the control, as well as for Pb. For the combined experiment (8 μg/L of Cd + 8 μg/L of Pb), sexual couples were not observed, indicating synergism and negative reproduction effects. The results showed that Cd and Pb aquatic environmental regulations (as the Criterion of Continuous Concentration) proposed by the US Environmental Protection Agency (EPA) should include their interactions with other metals.
Collapse
Affiliation(s)
| | - Martín Federico Soto-Jiménez
- Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 82040, Mazatlán, Sinaloa, Mexico
| | - Selene María Abad-Rosales
- Unidad Mazatlán en Acuicultura y Manejo Ambiental, Centro de Investigación en Alimentación y Desarrollo, CP 82000, Mazatlán, Sinaloa, Mexico
| | - Marely Lizet López-Morales
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| | - Sandy Yumee Trujillo-Alvarez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| | | | - Jesús Manuel Quintero-Alvarez
- Posgrado en Ciencias del Mar y Limnología, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, 82040, Mazatlán, Sinaloa, Mexico
| | | | - Carolina Bojórquez
- Unidad Académica de Ingeniería en Tecnología Ambiental, Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km.3 Mazatlán-Higueras Colonia Genaro Estrada, CP 82199, Mazatlán, Sinaloa, Mexico
| | - Marisela Aguilar-Juárez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, CP 82000, Mazatlán, Sinaloa, Mexico
| |
Collapse
|
183
|
Hao R, Ge J, Song X, Li F, Sun-Waterhouse D, Li D. Cadmium induces ferroptosis and apoptosis by modulating miR-34a-5p/Sirt1axis in PC12 cells. ENVIRONMENTAL TOXICOLOGY 2022; 37:41-51. [PMID: 34558789 DOI: 10.1002/tox.23376] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) is a potent neurotoxic metal present in the environment and food. In this study, CdCl2 (2 or 4 μM) induced cytotoxicity and neurotoxicity in PC12 cells, causing decreases in cell viability and NEP protein expression and increase in p-tau protein expression. For the first time, CdCl2 -initiated injury was found to result from the induction of not only apoptosis but also ferroptosis, as evidenced by the increased iron content, ROS production, and mitochondrial membrane potential along with changes in the expressions of iron death-related genes (FTH1, GPX4, ASCL4, PTGS2, and NOX1) and levels of caspase9, Bax, and Bcl-2 proteins. The molecular mechanisms leading to apoptosis and ferroptosis at least included the participation of the miR-34a-5p/Sirt1 axis, in which miR-34a-5p promoted CdCl2 -induced neurotoxicity through targeting Sirt1. Knocking out miR-34a-5p attenuated CdCl2 -induced damage of PC12 cells, cytotoxicity and neurotoxicity. This research provides the underlying molecular mechanisms of CdCl2 -induced damage and asserts the role of miRNAs as critical regulators.
Collapse
Affiliation(s)
- Rili Hao
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, China
| | - Junlin Ge
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, China
| | - Xinyu Song
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, China
| | - Feng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, China
| | - Dongxiao Sun-Waterhouse
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, China
- School of Chemical Sciences, The University of Auckland, Auckland, New Zealand
| | - Dapeng Li
- College of Food Science and Engineering, Shandong Agricultural University, Key Laboratory of Food Processing Technology and Quality Control of Shandong Higher Education Institutes, Taian, China
| |
Collapse
|
184
|
Lee HJ, Lee JH, Lee SM, Kim NH, Moon YG, Tak TK, Hyun M, Heo JD. Cadmium induces cytotoxicity in normal mouse renal MM55.K cells. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:131-140. [PMID: 32191530 DOI: 10.1080/09603123.2020.1739236] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 03/02/2020] [Indexed: 06/10/2023]
Abstract
The toxicity of cadmium (Cd) occurs through accumulation in the environment. The precise mechanism underlying Cd toxicity remains unclear. Therefore, in the present study, we studied the effects of Cd on MM55.K cells and investigated the mechanisms underlying Cd-induced cell death. CdCl2 significantly elevated apoptotic cell death, mitochondrial membrane potential (ΔΨm) loss, and caspase-dependent cell death. Moreover, immunoblotting results revealed that CdCl2 down-regulated the inhibitor of apoptotic protein such as survivin and Bcl-2 which led to the activation of caspase-3 and the cleavage of PARP in MM55.K cells. Besides, CdCl2 caused the up-regulation of ROS-related proteins such as HO-1 and ER stress-related proteins such as GRP78 and CHOP in MM55.K cells. CdCl2 toxicity resulted in the down-regulation of the AKT pathway that leads to the up-regulation of phosphorylated JNK and p38 in MM55.K cells. Thus, CdCl2 induce toxicity by AKT/MAPK regulation and causing ROS production, ER stress, ΔΨm loss, and apoptotic cell death in normal mouse renal cells.
Collapse
Affiliation(s)
- Ho Jeong Lee
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Ju Hong Lee
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Seon Min Lee
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Na Hyun Kim
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Yeon Gyu Moon
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Tae Kil Tak
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Moonjung Hyun
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| | - Jeong Doo Heo
- Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Gyeongnam Branch Institute, Korea Institute of Toxicology (KIT), Jinju, Republic of Korea
| |
Collapse
|
185
|
The Impact of Oxidative Stress of Environmental Origin on the Onset of Placental Diseases. Antioxidants (Basel) 2022; 11:antiox11010106. [PMID: 35052610 PMCID: PMC8773163 DOI: 10.3390/antiox11010106] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 12/28/2022] Open
Abstract
Oxidative stress (OS) plays a pivotal role in placental development; however, abnormal loads in oxidative stress molecules may overwhelm the placental defense mechanisms and cause pathological situations. The environment in which the mother evolves triggers an exposure of the placental tissue to chemical, physical, and biological agents of OS, with potential pathological consequences. Here we shortly review the physiological and developmental functions of OS in the placenta, and present a series of environmental pollutants inducing placental oxidative stress, for which some insights regarding the underlying mechanisms have been proposed, leading to a recapitulation of the noxious effects of OS of environmental origin upon the human placenta.
Collapse
|
186
|
Frías-Espericueta MG, Bautista-Covarrubias JC, Osuna-Martínez CC, Delgado-Alvarez C, Bojórquez C, Aguilar-Juárez M, Roos-Muñoz S, Osuna-López I, Páez-Osuna F. Metals and oxidative stress in aquatic decapod crustaceans: A review with special reference to shrimp and crabs. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 242:106024. [PMID: 34808539 DOI: 10.1016/j.aquatox.2021.106024] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
The objective of this review is to synthetize knowledge of the relationship between metals and oxidative stress in aquatic crustaceans (mainly shrimp and crabs) to analyze antioxidant responses when organisms are exposed to metals because the direct metal binding to the active site of enzymes inactivates most of the antioxidant systems. This study reviewed over 150 works, which evidenced that: (i) antioxidant defense strategies used by aquatic decapod crustaceans vary among species; (ii) antioxidant enzymes could be induced or inhibited by metals depending on species, concentration, and exposure time; and (iii) some antioxidant enzymes, as superoxide dismutase increase their activity in low metal levels and time exposures, but their activities are inhibited with higher metal concentrations and exposure time.
Collapse
Affiliation(s)
| | - Juan Carlos Bautista-Covarrubias
- Unidad Académica Escuela Nacional de Ingeniería Pesquera, Universidad Autónoma de Nayarit, Bahía de Matanchén, San Blas Nayarit C.P. 63740, Mexico
| | | | - Carolina Delgado-Alvarez
- Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km. 3 Mazatlán-Higueras Colonia Genaro Estrada, Mazatlán, Sinaloa C.P. 82199, Mexico
| | - Carolina Bojórquez
- Universidad Politécnica de Sinaloa, Carretera Municipal Libre Km. 3 Mazatlán-Higueras Colonia Genaro Estrada, Mazatlán, Sinaloa C.P. 82199, Mexico
| | - Marisela Aguilar-Juárez
- Facultad de Ciencias del Mar, Universidad Autónoma de Sinaloa, Paseo Claussen s/n, Mazatlán Sinaloa C.P. 82000, Mexico
| | - Sarahí Roos-Muñoz
- Tecnológico Nacional de México/Instituto Tecnológico de Mazatlán. Corsario 1 No. 203, Col. Urías, Mazatlán, Sinaloa C.P. 82070, Mexico
| | - Isidro Osuna-López
- Universidad Autónoma de Occidente, Blvd. Lola Beltrán s/n, Culiacán Sinaloa C.P. 80020, Mexico
| | - Federico Páez-Osuna
- Unidad Académica Mazatlán, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Joel Montes Camarena s/n, Mazatlán, Sinaloa C.P. 82040, Mexico; Miembro de El Colegio de Sinaloa, Antonio Rosales 435 Poniente, Culiacán, Sinaloa, Mexico
| |
Collapse
|
187
|
Migliaccio S, Bimonte VM, Besharat ZM, Sabato C, Lenzi A, Crescioli C, Ferretti E. Environmental Contaminants Acting as Endocrine Disruptors Modulate Atherogenic Processes: New Risk Factors for Cardiovascular Diseases in Women? Biomolecules 2021; 12:biom12010044. [PMID: 35053192 PMCID: PMC8773563 DOI: 10.3390/biom12010044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/16/2021] [Accepted: 12/24/2021] [Indexed: 12/04/2022] Open
Abstract
The number of aged individuals is increasing worldwide, rendering essential the comprehension of pathophysiological mechanisms of age-related alterations, which could facilitate the development of interventions contributing to “successful aging” and improving quality of life. Cardiovascular diseases (CVD) include pathologies affecting the heart or blood vessels, such as hypertension, peripheral artery disease and coronary heart disease. Indeed, age-associated modifications in body composition, hormonal, nutritional and metabolic factors, as well as a decline in physical activity are all involved in the increased risk of developing atherogenic alterations that raise the risk of CVD development. Several factors have been reported to play a role in the alterations observed in muscle and endothelial cells and that lead to increased CVD, such as genetic pattern, smoking and unhealthy lifestyle. Moreover, a difference in the risk of these diseases in women and men has been reported. Interestingly, in the past decades attention has been focused on a potential role of several pollutants that disrupt human health by interfering with hormonal pathways, and more specifically in non-communicable diseases such as obesity, diabetes and CVD. This review will focus on the potential alteration induced by Endocrine Disruptors (Eds) in the attempt to characterize a potential role in the cellular and molecular mechanisms involved in the atheromatous degeneration process and CVD progression.
Collapse
Affiliation(s)
- Silvia Migliaccio
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (V.M.B.); (C.C.)
- Correspondence:
| | - Viviana M. Bimonte
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (V.M.B.); (C.C.)
| | - Zein Mersini Besharat
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (C.S.); (A.L.); (E.F.)
| | - Claudia Sabato
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (C.S.); (A.L.); (E.F.)
| | - Andrea Lenzi
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (C.S.); (A.L.); (E.F.)
| | - Clara Crescioli
- Department of Movement, Human and Health Sciences, University of Rome Foro Italico, 00135 Rome, Italy; (V.M.B.); (C.C.)
| | - Elisabetta Ferretti
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy; (Z.M.B.); (C.S.); (A.L.); (E.F.)
| |
Collapse
|
188
|
Evidence for Ovarian and Testicular Toxicities of Cadmium and Detoxification by Natural Substances. STRESSES 2021. [DOI: 10.3390/stresses2010001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Cadmium (Cd) is an environmental toxicant, capable of reducing mitochondrial ATP production and promoting the formation of reactive oxygen species (ROS) with resultant oxidative stress conditions. The ovary and testis are the primary gonads in which female gametes (oocytes) and male gametes (spermatozoa), estrogen and testosterone are produced. These organs are particularly susceptible to Cd cytotoxicity due to their high metabolic activities and high energy demands. In this review, epidemiological and experimental studies examining Cd toxicities in gonads are highlighted together with studies using zinc (Zn), selenium (Se), and natural substances to reduce the effects of Cd on follicular genesis and spermatogenesis. Higher blood concentrations of Cd ([Cd]b) were associated with longer time-to-pregnancy in a prospective cohort study. Cd excretion rate (ECd) as low as 0.8 μg/g creatinine was associated with reduced spermatozoa vitality, while Zn and Se may protect against spermatozoa quality decline accompanying Cd exposure. ECd > 0.68 µg/g creatinine were associated with an increased risk of premature ovarian failure by 2.5-fold, while [Cd]b ≥ 0.34 µg/L were associated with a 2.5-fold increase in the risk of infertility in women. Of concern, urinary excretion of Cd at 0.68 and 0.8 μg/g creatinine found to be associated with fecundity are respectively 13% and 15% of the conventional threshold limit for Cd-induced kidney tubular effects of 5.24 μg/g creatinine. These findings suggest that toxicity of Cd in primary reproductive organs occurs at relatively low body burden, thereby arguing for minimization of exposure and environmental pollution by Cd and its transfer to the food web.
Collapse
|
189
|
Zhou TT, Hu B, Meng XL, Sun L, Li HB, Xu PR, Cheng BJ, Sheng J, Tao FB, Yang LS, Wu QS. The associations between urinary metals and metal mixtures and kidney function in Chinese community-dwelling older adults with diabetes mellitus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 226:112829. [PMID: 34592520 DOI: 10.1016/j.ecoenv.2021.112829] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/11/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Previous studies have found associations between single toxic metals, such as arsenic and cadmium, and kidney function in adults with diabetes. However, studies with regards to other metals and metal mixtures are still limited. OBJECTIVE Our study aimed to investigate the associations between urinary concentrations of 5 selected metals and metal mixtures and kidney function using a sample of older adults with diabetes mellitus in Chinese communities. METHODS In a sample of older adults (n = 5186), 592 eligible subjects were included in this study. Urinary concentrations of 5 metals, i.e., arsenic (As), cadmium (Cd), vanadium (V), cobalt (Co), and thallium (Tl), were measured by inductively coupled plasma mass spectrometer (ICP-MS). Estimated glomerular filtration rate (eGFR) was calculated and dichotomized into indicator of chronic kidney disease (CKD). Logistic analysis and Bayesian kernel machine regression (BKMR) were used to explore the associations between single metals and metal mixtures and CKD, respectively. RESULTS Urinary levels of As and V were positively correlated with CKD (OR=2.37, 95% CI: 1.31-4.30 for As; OR=2.24, 95% CI: 1.25-4.03 for V), when compared the 4th quartile with the 1st quartile. After adjustment for potential confounders, the significant association between As and CKD still existed (OR=2.73, 95% CI: 1.23-6.07). BKMR analyses showed strong linear positive associations between As and V and CKD. Higher urinary levels of the mixture were significantly associated with higher odds of CKD in a dose-response pattern. As and V showed the highest posterior inclusion probabilities. CONCLUSION Urine As and V were positively associated with CKD in older adults with diabetes mellitus, separately and in a mixture. The metals mixture showed a linear dose-response association with the odds of CKD. The analyses of mixtures, rather than of single metals, may provide a real-world perspective on the relationship between metals and kidney function.
Collapse
Affiliation(s)
- Ting-Ting Zhou
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui 230032, China
| | - Bing Hu
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Xiang-Long Meng
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Liang Sun
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Huai-Biao Li
- Fuyang Center for Disease Control and Prevention, Fuyang, Anhui 236069, China
| | - Pei-Ru Xu
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Bei-Jing Cheng
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jie Sheng
- School of Public Health, Experimental Center for Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Fang-Biao Tao
- School of Health Services Management, Anhui Medical University, Hefei, Anhui 230032, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Hefei, Anhui 230032, China
| | - Lin-Sheng Yang
- School of Public Health, Department of Epidemiology and Health Statistics, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Qing-Si Wu
- School of Public Health, Department of Hygiene Inspection and Quarantine, Anhui Medical University, Hefei, Anhui 230032, China; Department of Clinical Laboratory, The Second People's Hospital of Hefei, Hefei, Anhui 230011, China.
| |
Collapse
|
190
|
Fernández-Martos S, Calvo-Sánchez MI, Lobo-Aldezabal A, Sánchez-Adrada AI, Moreno C, Vitale M, Espada J. The deleterious effects induced by an acute exposure of human skin to common air pollutants are prevented by extracts of Deschampsia antarctica. Sci Rep 2021; 11:23751. [PMID: 34887500 PMCID: PMC8660883 DOI: 10.1038/s41598-021-03190-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 11/22/2021] [Indexed: 11/09/2022] Open
Abstract
The homeostatic and regenerative potential of the skin is critically impaired by an increasing accumulation of air pollutants in human ecosystems. These toxic compounds are frequently implicated in pathological processes such as premature cutaneous ageing, altered pigmentation and cancer. In this scenario, innovative strategies are required to tackle the effects of severe air pollution on skin function. Here we have used a Human Skin Organotypic Culture (HSOC) model to characterize the deleterious effects of an acute topic exposure of human skin to moderately high concentrations of common ambient pollutants, including As, Cd, Cr, dioxins and tobacco smoke. All these toxic compunds inflict severe damage in the tissue, activating the AHR-mediated response to xenobiotics. We have further evaluated the potential of an aqueous leaf extract of the polyextremophile plant Deschampsia antarctica (Edafence) to protect human skin against the acute exposure to toxic pollutants. Our results indicate that pre-treatment of HSOC samples with this aqueous extract conuterbalances the deleterious effects of the exposure to toxic comunds and triggers the activation of key genes invoved in the redox system and in the pro-inflammatory/wound healing response in the skin, suggesting that this natural compound might be effectively used in vivo to protect human skin routinely in different daily conditions.
Collapse
Affiliation(s)
- Sandra Fernández-Martos
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
| | - María I Calvo-Sánchez
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Building E, Ctra. M-515 Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Ana Lobo-Aldezabal
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain
- Biosciences Research Institute, School of Experimental Sciences, Universidad Francisco de Vitoria, UFV, Building E, Ctra. M-515 Pozuelo-Majadahonda Km 1,800, 28223, Pozuelo de Alarcón, Madrid, Spain
| | | | - Carmen Moreno
- Anatomic Pathology Service, Ramón y Cajal University Hospital, Madrid, Spain
| | - María Vitale
- Medical Affairs Department, Cantabria Labs, Madrid, Spain
| | - Jesús Espada
- Experimental Dermatology and Skin Biology Group, Ramon y Cajal Institute for Health Research (IRYCIS), Ramón y Cajal University Hospital, Madrid, Spain.
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile.
| |
Collapse
|
191
|
Fang J, Xie S, Chen Z, Wang F, Chen K, Zuo Z, Cui H, Guo H, Ouyang P, Chen Z, Huang C, Liu W, Geng Y. Protective Effect of Vitamin E on Cadmium-Induced Renal Oxidative Damage and Apoptosis in Rats. Biol Trace Elem Res 2021; 199:4675-4687. [PMID: 33565019 DOI: 10.1007/s12011-021-02606-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Cadmium (Cd), a widely distributed heavy metal, is extremely toxic to the kidney. Vitamin E (VE) is an important antioxidant in the body. It is known that VE exerts a protective effect on renal oxidative damage caused by Cd, but the effect and mechanism of VE on apoptosis are not fully understood. Thus, we conducted this study to explore the protective effect of VE on Cd-induced renal apoptosis and to elucidate its potential mechanism. Thirty-two 9-week-old male Sprague-Dawley rats were randomly divided into four groups, namely control, VE (100 mg/kg VE), Cd (5 mg/kg CdCl2), and VE + Cd (100 mg/kg VE + 5 mg/kg CdCl2), and received intragastric administration of Cd and/or VE for 4 weeks. The results showed that Cd exposure significantly reduced the weight of the body and kidney, elevated the accumulation of Cd in the kidney as well as the levels of BUN and Scr in serum, caused renal histological alterations, decreased the GSH and T-AOC contents and antioxidant enzyme (SOD, CAT, GSH-PX) activities, and increased renal MDA content. And the increased number of TUNEL-positive cells by Cd was accompanied by upregulated mRNA and protein expressions of apoptotic regulatory molecules (Bax, Caspase-3, GRP94, GRP78, Caspase-8) and downregulated Bcl-2 expressions. However, the combined treatment of Cd and VE could restore the above parameters to be close to those in the control rats. In conclusion, VE supplement could alleviate Cd-induced rat renal damage and oxidative stress through enhancing the antioxidant defense system and inhibiting apoptosis of renal cells.
Collapse
Affiliation(s)
- Jing Fang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Shenglan Xie
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhuo Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Fengyuan Wang
- College of Animal & Veterinary Sciences, Southwest Minzu University, Sichuan, 610041, Chengdu, People's Republic of China
| | - Kejie Chen
- School of Public Health, Chengdu Medical College, Chengdu, Sichuan, 610500, People's Republic of China
| | - Zhicai Zuo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China.
| | - Hengmin Cui
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Hongrui Guo
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Ping Ouyang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Zhengli Chen
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Chao Huang
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Wentao Liu
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yi Geng
- College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| |
Collapse
|
192
|
|
193
|
Li X, Zheng Y, Zhang G, Wang R, Jiang J, Zhao H. Cadmium induced cardiac toxicology in developing Japanese quail (Coturnix japonica): Histopathological damages, oxidative stress and myocardial muscle fiber formation disorder. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109168. [PMID: 34403817 DOI: 10.1016/j.cbpc.2021.109168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/24/2021] [Accepted: 08/06/2021] [Indexed: 11/24/2022]
Abstract
The anthropogenic-induced cadmium (Cd) pollution poses great threats to human health and wildlife survival. Birds also suffer from Cd contamination and Cd exerts negative impacts on multiple organs in birds. However, its toxic effects on cardiac organ of birds are still unclear. In this study, one-week old male Japanese quails were exposed to 15, 30, 60 and 75 mg/kg Cd for 5 weeks when birds in control group reached sex maturity. The results showed that Cd could cause microstructural damages including congestion and myocardial fiberolysis. Ultrastructural analysis also showed myocardial muscle fiber disarrangement and rupture as well as mitochondrial swelling, vacuolation and membrane lysis in Cd concentration groups. Moreover, Cd induced oxidative stress in the heart by decreasing antioxidant enzyme activities of catalase (CAT), glutathione peroxidase (GPX), total antioxidant capacity (T-AOC), superoxide dismutase (SOD) while increasing oxidative biomarkers such as malondialdehyde (MDA), inducible nitric oxide synthase (iNOS), and content of nitric oxide (NO). In addition, mRNA expression levels of genes involved in muscle fiber formation signaling pathway such as Follistatin (FST), paired box 3 (PAX3), myogenic differentiation 1 (MYoD1) and SRY-box transcription factor 6 (SOX6), were down-regulated by Cd exposure. Furthermore, PI3K/Akt/mTOR signaling pathway were disrupted by Cd exposure implying energy supply deficiency in the heart. We concluded that Cd caused cardiac dysfunction by inducing heart underdevelopment, histopathological injury, oxidative stress and myocardial muscle fiber formation disruption.
Collapse
Affiliation(s)
- Xuan Li
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Ying Zheng
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Gaixia Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Rui Wang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Junxia Jiang
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
| | - Hongfeng Zhao
- College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
194
|
Ilesanmi OB, Inala ER. Hepatoprotective effect of Ipomoea cairica (Convolvulaceae) leaf extract against cadmium chloride induced liver damage. TOXICOLOGIE ANALYTIQUE ET CLINIQUE 2021. [DOI: 10.1016/j.toxac.2021.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
195
|
Nanda KP, Firdaus H. Dietary cadmium (Cd) reduces hemocyte level by induction of apoptosis in Drosophila melanogaster. Comp Biochem Physiol C Toxicol Pharmacol 2021; 250:109188. [PMID: 34517133 DOI: 10.1016/j.cbpc.2021.109188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/04/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022]
Abstract
Drosophila melanogaster larvae ensure continuous proliferation and differentiation of hemocytes to maintain a fixed range of different blood cell types during its various stages of development. Variation in this number is often an indicator of animal well-being, its genotype or an effect of environmental perturbation, including exposure to heavy metals. The present study investigates the effect of Cd on larval hemocytes. Embryos were allowed to grow in metal media till third instar larvae and finally circulating hemocyte were collected. The number of major hemocytes, plasmatocytes and crystal cells was determined to be lowered in Cd exposed animals. Our results also showed modulation of antioxidant biology of Cd exposed hemocytes by changing the major antioxidant enzymes superoxide dismutase (SOD) and catalase (CAT) activity, and decreasing reduced glutathione (GSH) levels in hemocytes suspended in the hemolymph. Acridine orange (AO) staining further revealed induction of apoptosis in hemocytes of metal treated larvae. Our results suggest a negative impact of Cd exposure on the hemocytes of the Drosophila larvae culminating in their lowered count by induction of apoptosis.
Collapse
Affiliation(s)
- Kumari Pragati Nanda
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India
| | - Hena Firdaus
- Department of Life Sciences, Central University of Jharkhand, Ratu-Lohardaga Road, Brambe, Ranchi 835205, Jharkhand, India.
| |
Collapse
|
196
|
Rashwan HM, Mohammed HE, El-Nekeety AA, Hamza ZK, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Bioactive phytochemicals from Salvia officinalis attenuate cadmium-induced oxidative damage and genotoxicity in rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68498-68512. [PMID: 34275073 DOI: 10.1007/s11356-021-15407-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
This study was conducted to identify the bioactive phytochemicals in Salvia officinalis essential oil, to determine the polyphenols in the aqueous extract (SOE), and to evaluate their protective role against cadmium (Cd)-induced oxidative damage and genotoxicity in rats. Six groups of female rats were treated orally for 2 weeks including the control group, CdCl2-treated group, SOE-treated groups at low or high dose (100 and 200 mg/kg b.w), and CdCl2 plus SOE-treated groups at the two doses. The GC-MS analysis identified 39 compounds; the main compounds were 9-octadecenamide, eucalyptol, palmitic acid, and oleic acid. However, the HPLC analysis showed 12 polyphenolic compounds and the majority were coumaric acid, chlorogenic acid, coffeic acid, catechin, vanillin, gallic acid, ellagic acid, and rutin. In the biological study, rats received CdCl2 displayed severe disturbances in liver and kidney indices alanine aminotransferase (ALT), aspartate aminotransferase (AST), albumin (Alb), total protein (TP), total bilirubin (T. Bil), direct bilirubin (D. Bil), creatinine, uric acid, and urea, lipid profile, tumor necrosis factor-alpha (TNF-α), alpha-fetoprotein (AFP) and CEA), glutathione (GSH), glutathione peroxidase (GPx), superoxide dismutase (SOD) and catalase (CAT), malondialdehyde (MDA), nitric oxide (NO), gene expressions, DNA fragmentation, and histological alterations in the liver and kidney tissue. SOE showed a potent antioxidant and mitigated these alterations in serum and tissue. Moreover, the high dose succeeded to normalize most of the tested parameters and histological features. It could be concluded that S. officinalis is a promising source for bioactive compounds with therapeutic benefits against environmental toxicants.
Collapse
Affiliation(s)
- Hanan M Rashwan
- Zoology Department, Faculty of Science, Al-Arish University, North Sinai, Al-Arish, Egypt
| | - Hagar E Mohammed
- Zoology Department, Faculty of Science, Al-Arish University, North Sinai, Al-Arish, Egypt
| | - Aziza A El-Nekeety
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | - Zeinab K Hamza
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt
| | | | - Nabila S Hassan
- Pathology Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mosaad A Abdel-Wahhab
- Food Toxicology & Contaminants Department, National Research Centre, Dokki, Cairo, Egypt.
| |
Collapse
|
197
|
Abdelsalam SA, M Abdelhafez A, H Abu-Hussien S, A Abou-Taleb K. Factors Influencing Decolourization and Detoxification of Remazol Brilliant Blue R Dye by Aspergillus flavus. Pak J Biol Sci 2021; 24:1183-1194. [PMID: 34842391 DOI: 10.3923/pjbs.2021.1183.1194] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
<b>Background and Objectives:</b> Anthraquinone synthetic dyes are widely used in textile, dyeing and paper painting. The discharge of these dyes into the environment causes detriment. The removal of physiochemical dyes is sometimes unsuccessful and expensive. Biological removal is inexpensive, eco-friendly and may break down organic contaminants. In the current work, a fungal technique was applied to decolorize and detoxify dye. <b>Materials and Methods:</b> Dye decolorizing fungi isolation, selection and identification of the most effective isolate and dye decolorization optimization based on carbon and nitrogen sources. In addition, the product's cytotoxicity and metabolites were tested. The enzyme activities were measured to determine dye decolorization. <b>Results:</b> Decolorization of reactive blue 19 dye by the most effective fungal strain isolate (5BF) isolated from industrial effluents were studied. This isolate was identified as <i>Aspergillus flavus</i> based on phenotypic characteristics and confirmed using 18S rRNA gene sequencing. Thin-layer chromatography indicated that this strain is aflatoxins free. Furthermore, metabolites produced from dye treatment with <i>A. flavus</i> were assessed using gas chromatography-mass spectrometry. Toxicity data revealed that <i>A. flavus</i> metabolites were not toxic to plants. Using a one-factor-at-a-time optimization technique, a maximum decolorization percentage (99%) was obtained after 72 hrs in the presence of mannitol and NH<sub>4</sub>NO<sub>3</sub> or NH<sub>4</sub>Cl as carbon and nitrogen sources. Two enzymes (laccase and manganese peroxidase) were shown to be active during dye decolorization by <i>A. flavus</i>. <b>Conclusion:</b> The <i>A. flavus</i> strain was shown to be safe when it came to removing dye from a synthetic medium with high efficiency and their metabolites had no negative influence on the environment. As a result, this strain will be used in the future for dye wastewater bioremediation.
Collapse
|
198
|
Evaluation of oxidative stress, inflammation, apoptosis, oxidative DNA damage and metalloproteinases in the lungs of rats treated with cadmium and carvacrol. Mol Biol Rep 2021; 49:1201-1211. [PMID: 34792728 DOI: 10.1007/s11033-021-06948-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/09/2021] [Indexed: 12/17/2022]
Abstract
BACKGROUND The potential protective properties of carvacrol (CRV), which possesses various biological and pharmacological properties, against lung toxicity caused by cadmium (Cd), a major environmental pollutant, were investigated in the present study. METHODS AND RESULTS In the study, rats were given 25 or 50 mg/kg CRV orally 30 min after administrating 25 mg/kg cadmium chloride for seven days. Subsequently, the levels of 8-OHdG, MMP-2, and MMP-9, as well as markers of oxidative stress, inflammation, and apoptosis, were analyzed in the lung tissue of the animals. The results revealed that CRV exhibited antioxidant characteristics and raised SOD, CAT, GPx, and CAT levels and decreased the MDA levels induced by Cd. It also suppressed proinflammatory cytokines by lowering the levels of CRV NF-κB and p38 MAPK, thus exerting an anti-inflammatory effect against Cd. It was found that the levels of Bax, Caspase-3, and cytochrome c increased by Cd were decreased by the application of CRV. CRV also showed an anti-apoptotic effect by increasing Bcl-2 levels. The levels of 8-OHdG, MMP2, and MMP9, which increased with Cd administration, were observed to reduce after treatment with CRV. CONCLUSIONS The results indicate that CRV has protective properties against Cd-induced lung toxicity.
Collapse
|
199
|
Bhattacharyya K, Sen D, Laskar P, Saha T, Kundu G, Ghosh Chaudhuri A, Ganguly S. Pathophysiological effects of cadmium(II) on human health-a critical review. J Basic Clin Physiol Pharmacol 2021; 34:249-261. [PMID: 34766742 DOI: 10.1515/jbcpp-2021-0173] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 10/24/2021] [Indexed: 12/22/2022]
Abstract
Cadmium(II) is an omnipresent environmental toxicant emitted from various industrial sources and by anthropogenic sources such as smoking. Cadmium(II) enters our body through various sources including contaminated food and drinks and from active or passive smoking. It spares no organs in our body and the calamities it invites include primarily nephrotoxicity, osteotoxicity, teratogenicity, endocrine disruption, hepatotoxicity and carcinogenicity above all. It brings about a bolt from the blue in the cellular biochemistry by generating reactive oxygen species (ROS), disrupting the factors involved in the repair of DNA lesions and many other toxic nuisances otherwise by modulating the cell signalling machinery and acting as a potent carcinogen above all. In this review, we have tried to decipher some of the mechanisms played by cadmium(II) in exhibiting its toxic effects on various system of our body.
Collapse
Affiliation(s)
| | - Debrup Sen
- Department of Zoology, Vidyasagar College, Kolkata, West Bengal, India
| | - Payel Laskar
- Department of Physiology, Vidyasagar College, Kolkata, West Bengal, India
| | - Tania Saha
- Department of Genetics, University of Calcutta, Kolkata, West Bengal, India
| | - Gautam Kundu
- Principal, Vidyasagar College, Kolkata, West Bengal, India
| | | | - Subhadeep Ganguly
- Department of Physiology, Vidyasagar College, Kolkata, West Bengal, India
| |
Collapse
|
200
|
Alshammari GM, Al-Qahtani WH, Alshuniaber MA, Yagoub AEA, Al-Khalifah AS, Al-Harbi LN, Alhussain MH, AlSedairy SA, Yahya MA. Quercetin improves the impairment in memory function and attenuates hippocampal damage in cadmium chloride-intoxicated male rats by suppressing acetylcholinesterase and concomitant activation of SIRT1 signaling. J Funct Foods 2021. [DOI: 10.1016/j.jff.2021.104675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|