151
|
Yen CW, Kuhn R, Hu C, Zhang W, Chiang PC, Chen JZ, Hau J, Estevez A, Nagapudi K, Leung DH. Impact of surfactant selection and incorporation on in situ nanoparticle formation from amorphous solid dispersions. Int J Pharm 2021; 607:120980. [PMID: 34371147 DOI: 10.1016/j.ijpharm.2021.120980] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/15/2021] [Accepted: 08/04/2021] [Indexed: 01/26/2023]
Abstract
Spray dried amorphous solid dispersions (ASDs) stand as one of the most effective formulation strategies to address issues of low aqueous solubility when developing new chemical entities.An emerging research topic focusing on the formation of amorphous nanoparticles or nanodroplets from ASD formulations has attracted attention recently. These ASD nanoparticlescan be highly beneficial and able to further increase oral bioavailability. The incorporation of surfactants in ASD formulations has been shown to facilitate the formation of these nanoparticles. Therefore, understanding the mechanism of surfactant-promoted nanoparticle formation becomes critical for the rational design of ASD formulations. This work demonstrated the importance of inclusion of the surfactant within the ASD composition for nanoparticle formation. In contrast, when a surfactant is added externally (e.g., by inclusion in the dosing vehicle), only a limited degree of nanoparticle formation was observed even at the optimized surfactant-to-drug ratios. A variety of different surfactants were also assessed for understanding their impact on ASD nanoparticle formation. The spray drying systems containing nonionic surfactants, Tween 80 and Vitamin E TPGS, produced higher amounts of in situ ASD nanoparticles when compared to an anionic surfactant, sodium lauryl sulfate (SLS). The ASD nanoparticles produced by the Genentech developmental compound, GDC-0334, were highly stable and retained their original particle size and amorphous feature for at least 18 h under biorelevant conditions. The high degree of nanoparticle formation from spray dried GDC-0334 containing Tween 80 combined with the superior physical stability of the nanoparticles also translated to enhanced in vivo performance in a rat pharmacokinetics study.
Collapse
Affiliation(s)
- Chun-Wan Yen
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Robert Kuhn
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Chloe Hu
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Wei Zhang
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Po-Chang Chiang
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jacob Z Chen
- Drug Metabolism and Pharmacokinetics, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Jonathan Hau
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Alberto Estevez
- Structural Biology, Genentech Inc., 1 DNA Way, South San Francisco, CA 94080, USA
| | - Karthik Nagapudi
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA
| | - Dennis H Leung
- Small Molecule Pharmaceutical Sciences, 1 DNA Way, South San Francisco, CA 94080, USA.
| |
Collapse
|
152
|
Bhujbal SV, Mitra B, Jain U, Gong Y, Agrawal A, Karki S, Taylor LS, Kumar S, (Tony) Zhou Q. Pharmaceutical amorphous solid dispersion: A review of manufacturing strategies. Acta Pharm Sin B 2021; 11:2505-2536. [PMID: 34522596 PMCID: PMC8424289 DOI: 10.1016/j.apsb.2021.05.014] [Citation(s) in RCA: 241] [Impact Index Per Article: 60.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are popular for enhancing the solubility and bioavailability of poorly water-soluble drugs. Various approaches have been employed to produce ASDs and novel techniques are emerging. This review provides an updated overview of manufacturing techniques for preparing ASDs. As physical stability is a critical quality attribute for ASD, the impact of formulation, equipment, and process variables, together with the downstream processing on physical stability of ASDs have been discussed. Selection strategies are proposed to identify suitable manufacturing methods, which may aid in the development of ASDs with satisfactory physical stability.
Collapse
Key Words
- 3DP, three-dimensional printing
- ASDs, amorphous solid dispersions
- ASES, aerosol solvent extraction system
- Amorphous solid dispersions
- CAP, cellulose acetate phthalate
- CO2, carbon dioxide
- CSG, continuous-spray granulation
- Co-precipitation
- Downstream processing
- Drug delivery
- EPAS, evaporative aqueous solution precipitation
- Eudragit®, polymethacrylates derivatives
- FDM, fused deposition modeling
- GAS, gas antisolvent
- HME, hot-melt extrusion
- HPC, hydroxypropyl cellulose
- HPMC, hydroxypropyl methylcellulose
- HPMCAS, hydroxypropyl methylcellulose acetate succinate
- HPMCP, hypromellose phthalate
- Manufacturing
- Melting process
- PCA, precipitation with compressed fluid antisolvent
- PGSS, precipitation from gas-saturated solutions
- PLGA, poly(lactic-co-glycolic acid
- PVP, polyvinylpyrrolidone
- PVPVA, polyvinylpyrrolidone/vinyl acetate
- RESS, rapid expansion of a supercritical solution
- SAS, supercritical antisolvent
- SCFs, supercritical fluids
- SEDS, solution-enhanced dispersion by SCF
- SLS, selective laser sintering
- Selection criteria
- Soluplus®, polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer
- Solvent evaporation
- Stability
- Tg, glass transition temperature
- USC, ultrasound compaction
- scCO2, supercritical CO2
Collapse
Affiliation(s)
- Sonal V. Bhujbal
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Biplob Mitra
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Uday Jain
- Material Science and Engineering, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Yuchuan Gong
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Anjali Agrawal
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Shyam Karki
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Lynne S. Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| | - Sumit Kumar
- Oral Product Development, Bristol Myers Squibb, Summit, NJ 07901, USA
| | - Qi (Tony) Zhou
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
153
|
Thakore SD, Sirvi A, Joshi VC, Panigrahi SS, Manna A, Singh R, Sangamwar AT, Bansal AK. Biorelevant dissolution testing and physiologically based absorption modeling to predict in vivo performance of supersaturating drug delivery systems. Int J Pharm 2021; 607:120958. [PMID: 34332060 DOI: 10.1016/j.ijpharm.2021.120958] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 07/08/2021] [Accepted: 07/26/2021] [Indexed: 11/29/2022]
Abstract
Supersaturating drug delivery systems (SDDS) enhance the oral absorption of poorly water-soluble drugs by achieving a supersaturated state in the gastrointestinal tract. The maintenance of a supersaturated state is decided by the complex interplay among inherent properties of drug, excipients and physiological conditions of gastrointestinal tract. The biopharmaceutical advantage through SDDS can be mechanistically investigated by coupling biopredictive dissolution testing with physiologically based absorption modeling (PBAM). However, the development of biopredictive dissolution methods possess challenges due to concurrent dissolution, supersaturation, precipitation, and possible redissolution of precipitates during gastrointestinal transit of SDDS. In this comprehensive review, our effort is to critically assess the current state-of-knowledge and provide future directions for PBAM of SDDS. The review outlines various methods used to retrieve physiologically relevant values for input parameters like solubility, dissolution, precipitation, lipid-digestion and permeability of SDDS. SDDS-specific parameterization includes solubility values corresponding to apparent physical form, dissolution in physiologically relevant volumes with biorelevant media, and transfer experiments to incorporate precipitation kinetics. Interestingly, the lack of experimental permeability values and modification of absorption flux through SDDS possess the additional challenge for its PBAM. Supersaturation triggered permeability modifications are reported to fit the observed plasma concentration-time profile. Hence, the experimental insights on good fitting with modified permeability can be potential area of future research for the development of in vitro methods to reliably predict oral absorption of SDDS.
Collapse
Affiliation(s)
- Samarth D Thakore
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arvind Sirvi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Vikram C Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Sanjali S Panigrahi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arijita Manna
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Ridhima Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector 67, S.A.S. Nagar, Mohali, Punjab 160062, India.
| |
Collapse
|
154
|
Qian K, Stella L, Jones DS, Andrews GP, Du H, Tian Y. Drug-Rich Phases Induced by Amorphous Solid Dispersion: Arbitrary or Intentional Goal in Oral Drug Delivery? Pharmaceutics 2021; 13:889. [PMID: 34203969 PMCID: PMC8232734 DOI: 10.3390/pharmaceutics13060889] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 12/19/2022] Open
Abstract
Among many methods to mitigate the solubility limitations of drug compounds, amorphous solid dispersion (ASD) is considered to be one of the most promising strategies to enhance the dissolution and bioavailability of poorly water-soluble drugs. The enhancement of ASD in the oral absorption of drugs has been mainly attributed to the high apparent drug solubility during the dissolution. In the last decade, with the implementations of new knowledge and advanced analytical techniques, a drug-rich transient metastable phase was frequently highlighted within the supersaturation stage of the ASD dissolution. The extended drug absorption and bioavailability enhancement may be attributed to the metastability of such drug-rich phases. In this paper, we have reviewed (i) the possible theory behind the formation and stabilization of such metastable drug-rich phases, with a focus on non-classical nucleation; (ii) the additional benefits of the ASD-induced drug-rich phases for bioavailability enhancements. It is envisaged that a greater understanding of the non-classical nucleation theory and its application on the ASD design might accelerate the drug product development process in the future.
Collapse
Affiliation(s)
- Kaijie Qian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Lorenzo Stella
- Atomistic Simulation Centre, School of Mathematics and Physics, Queen’s University Belfast, 7–9 College Park E, Belfast BT7 1PS, UK;
- David Keir Building, School of Chemistry and Chemical Engineering, Queen’s University Belfast, Stranmillis Road, Belfast BT9 5AG, UK
| | - David S. Jones
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| | - Gavin P. Andrews
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
- School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang 110122, China
| | - Huachuan Du
- Laboratory of Applied Mechanobiology, Department of Health Sciences and Technology, ETH Zurich, Vladimir-Prelog-Weg 4, 8093 Zurich, Switzerland
- Simpson Querrey Institute, Northwestern University, 303 East Superior Street, 11th floor, Chicago, IL 60611, USA
| | - Yiwei Tian
- Pharmaceutical Engineering Group, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK; (K.Q.); (D.S.J.); (G.P.A.)
| |
Collapse
|
155
|
Liao Q, Yuan S, Cao J, Tang K, Qiu Y, Seow HC, Man RC, Shao Z, Huang Y, Liang R, Chan JF, Yuen K, Lam JK. Inhaled Dry Powder Formulation of Tamibarotene, a Broad‐Spectrum Antiviral against Respiratory Viruses Including SARS‐CoV‐2 and Influenza Virus. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Qiuying Liao
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
| | - Shuofeng Yuan
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jianli Cao
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Kaiming Tang
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Yingshan Qiu
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
| | - Han Cong Seow
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
| | - Rico Chi‐Hang Man
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
| | - Zitong Shao
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
| | - Yaoqiang Huang
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Ronghui Liang
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
| | - Jasper Fuk‐Woo Chan
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Clinical Microbiology and Infection Control The University of Hong Kong‐Shenzhen Hospital Shenzhen Guangdong Province 518053 China
- Hainan Medical University‐The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases Hainan Medical University Haikou Hainan Province 571199 China
| | - Kwok‐Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases Carol Yu Centre for Infection Department of Microbiology LKS Faculty of Medicine The University of Hong Kong Pokfulam Hong Kong SAR China
- Department of Clinical Microbiology and Infection Control The University of Hong Kong‐Shenzhen Hospital Shenzhen Guangdong Province 518053 China
- Hainan Medical University‐The University of Hong Kong Joint Laboratory of Tropical Infectious Diseases Hainan Medical University Haikou Hainan Province 571199 China
| | - Jenny Ka‐Wing Lam
- Department of Pharmacology and Pharmacy LKS Faculty of Medicine The University of Hong Kong 21 Sassoon Road Pokfulam Hong Kong SAR China
- Advanced Biomedical Instrumentation Centre Hong Kong Science Park Shatin, New Territories, Hong Kong SAR China
| |
Collapse
|
156
|
Yarlagadda DL, Sai Krishna Anand V, Nair AR, Navya Sree KS, Dengale SJ, Bhat K. Considerations for the selection of co-formers in the preparation of co-amorphous formulations. Int J Pharm 2021; 602:120649. [PMID: 33915186 DOI: 10.1016/j.ijpharm.2021.120649] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/16/2021] [Accepted: 04/22/2021] [Indexed: 10/21/2022]
Abstract
Co-amorphous drug delivery systems are evolving as a credible alternative to amorphous solid dispersions technology. In Co-amorphous systems (CAMs), a drug is stabilized in amorphous form using small molecular weight compounds called as co-formers. A wide variety of small molecular weight co-formers have been leveraged in the preparation of CAMs. The stability and supersaturation potential of prepared co-amorphous phases largely depend on the type of co-former employed in the CAMs. However, the rationality behind the co-former selection in co-amorphous systems is poorly understood and scarcely compiled in the literature. There are various facets to the rational selection of co-former for CAMs. In this context, the present review compiles various factors affecting the co-former selection. The factors have been broadly classified under Thermodynamic, Kinetic and Pharmacokinetic-Pharmacologically relevant parameters. In particular, the importance of Glass transition, Miscibility, Liquid-Liquid phase separation (LLPS), Crystallization inhibition has been deliberated in detail.
Collapse
Affiliation(s)
- Dani Lakshman Yarlagadda
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Vullendula Sai Krishna Anand
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Athira R Nair
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - K S Navya Sree
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Swapnil J Dengale
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India
| | - Krishnamurthy Bhat
- Department of Pharmaceutical Quality Assurance, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal 576 104, India.
| |
Collapse
|
157
|
Liu B, Theil F, Lehmkemper K, Gessner D, Li Y, van Lishaut H. Crystallization Risk Assessment of Amorphous Solid Dispersions by Physical Shelf-Life Modeling: A Practical Approach. Mol Pharm 2021; 18:2428-2437. [PMID: 34032433 DOI: 10.1021/acs.molpharmaceut.1c00270] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Amorphous solid dispersions (ASDs) of a poorly water-soluble active pharmaceutical ingredient (API) in a polymer matrix can enhance the water solubility and therefore generally improve the bioavailability of the API. Although examples of long-term stability are emerging in the literature, many ASD products are kinetically stabilized, and inhibition of crystallization of a drug substance within and beyond shelf life is still a matter of debate, since, in some cases, the formation of crystals may impact bioavailability. In this study, a risk assessment of API crystallization in packaged ASD drug products and a mitigation strategy are outlined. The risk of shelf-life crystallization and the respective mitigation steps are assigned for different drug product development scenarios and the scientific principles of each step are discussed. Ultimately, the physical stability of ASD drug products during shelf-life storage is modeled. The methodology is based on the quantification of crystal growth kinetics by transmission Raman spectroscopy (TRS), modeling the impact of water sorption on the glass-transition temperature of the ASD, and the prediction of moisture uptake by the packaged ASD drug product during storage. This approach is applied to an ASD of fenofibrate that features both fast API crystallization under accelerated storage conditions and long-term stability in a suitable protective packaging under conventional storage conditions.
Collapse
Affiliation(s)
- Bo Liu
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Frank Theil
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Kristin Lehmkemper
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - David Gessner
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| | - Yanxia Li
- AbbVie Inc., North Chicago, Illinois 60064, United States
| | - Holger van Lishaut
- AbbVie Deutschland GmbH & Co. KG, Knollstrasse, 67061 Ludwigshafen, Germany
| |
Collapse
|
158
|
Mukesh S, Joshi P, Bansal AK, Kashyap MC, Mandal SK, Sathe V, Sangamwar AT. Amorphous Salts Solid Dispersions of Celecoxib: Enhanced Biopharmaceutical Performance and Physical Stability. Mol Pharm 2021; 18:2334-2348. [PMID: 34003656 DOI: 10.1021/acs.molpharmaceut.1c00144] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Numerous amorphous solid dispersion (ASD) formulations of celecoxib (CEL) have been attempted for enhancing the solubility, dissolution rate, and in vivo pharmacokinetics via high drug loading, polymer combination, or by surfactant addition. However, physical stability for long-term shelf life and desired in vivo pharmacokinetics remains elusive. Therefore, newer formulation strategies are always warranted to address poor aqueous solubility and oral bioavailability with extended shelf life. The present investigation elaborates a combined strategy of amorphization and salt formation for CEL, providing the benefits of enhanced solubility, dissolution rate, in vivo pharmacokinetics, and physical stability. We generated amorphous salts solid dispersion (ASSD) formulations of CEL via an in situ acid-base reaction involving counterions (Na+ and K+) and a polymer (Soluplus) using the spray-drying technique. The generated CEL-Na and CEL-K salts were homogeneously and molecularly dispersed in the matrix of Soluplus polymer. The characterization of generated ASSDs by differential scanning calorimetry revealed a much higher glass-transition temperature (Tg) than the pure amorphous CEL, confirming the salt formation of CEL in solid dispersions. The micro-Raman and proton nuclear magnetic resonance spectroscopy further confirmed the formation of salt at the -S═O position in the CEL molecules. CEL-Na-Soluplus ASSD exhibited a synergistic enhancement in the aqueous solubility (332.82-fold) and in vivo pharmacokinetics (9.83-fold enhancement in the blood plasma concentration) than the crystalline CEL. Furthermore, ASSD formulations were physically stable for nearly 1 year (352 days) in long-term stability studies at ambient conditions. Hence, we concluded that the ASSD is a promising strategy for CEL in improving the physicochemical properties and biopharmaceutical performance.
Collapse
Affiliation(s)
- Sumit Mukesh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Prachi Joshi
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Arvind K Bansal
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Mahesh Chand Kashyap
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| | - Sanjay K Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Sector-81, S.A.S. Nagar, Punjab 140306, India
| | - Vasant Sathe
- University Grant Commission-Department of Atomic Energy Consortium for Scientific Research, University Campus, Indore, Madhya Pradesh 452017, India
| | - Abhay T Sangamwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, Punjab 160062, India
| |
Collapse
|
159
|
Müller M, Platten F, Dulle M, Fischer B, Hoheisel W, Serno P, Egelhaaf S, Breitkreutz J. Precipitation from amorphous solid dispersions in biorelevant dissolution testing: The polymorphism of regorafenib. Int J Pharm 2021; 603:120716. [PMID: 34015382 DOI: 10.1016/j.ijpharm.2021.120716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/07/2021] [Accepted: 05/14/2021] [Indexed: 11/27/2022]
Abstract
Amorphous Solid Dispersions (ASDs) are a major drug formulation technique to achieve higher bioavailability for poorly water-soluble active pharmaceutical ingredients. So far, dissolution tailoring and supersaturation enhancement have been studied in detail, whereas less is known about the importance of formed precipitates with amorphous or crystalline states at the site of drug absorption. Regorafenib monohydrate (RGF MH), a multikinase inhibitor drug categorized as Biopharmaceutics Classification System (BCS) class II compound, was formulated with povidone K25 and hypromellose acetate succinate (HPMCAS) as an ASD. Here, for the first time, the RGF precipitation process as well as the physicochemical properties of the arising precipitates are investigated. The formed precipitates from biorelevant dissolution showed varying drug content and were analyzed offline by scanning electron microscopy (SEM), differential scanning calorimetry (DSC), confocal Raman microscopy (CRM), X-ray powder diffraction (XRPD), and small angle X-ray scattering (SAXS). In addition to different crystalline RGF precipitates, an amorphous co-precipitate of RGF and HPMCAS was identified, which was suppressed in the presence of PVP. Wide angle X-ray scattering (WAXS) and isothermal calorimetry (ITC) were used to track the precipitation process of RGF in-situ. From calorimetric data, the precipitation profile was calculated. RGF forms precipitates in multiple polymorphic states dependent on the environmental conditions, i.e., dissolution media composition and chosen excipients. The engineered formation of defined amorphous structures in-vivo may be a promising future drug formulation strategy.
Collapse
Affiliation(s)
- Martin Müller
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Germany, Universitätsstraße 1, 40225 Düsseldorf, Germany; INVITE GmbH, Formulation Technology, Chempark, Building W 32, 51368 Leverkusen, Germany
| | - Florian Platten
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany; Forschungszentrum Jülich, IBI-4, Wilhelm-Johnen-Straße, 52428 Jülich Jülich, Germany
| | - Martin Dulle
- Forschungszentrum Jülich, JCNS-1/IBI-8, Wilhelm-Johnen-Straße, 52428 Jülich Jülich, Germany
| | - Björn Fischer
- FISCHER GmbH, Raman Spectroscopic Services, Necklenbroicher Str. 22, 40667 Meerbusch, Germany
| | - Werner Hoheisel
- INVITE GmbH, Formulation Technology, Chempark, Building W 32, 51368 Leverkusen, Germany
| | - Peter Serno
- Bayer AG, Research Center Wuppertal-Elberfeld, Friedrich-Ebert-Straße 217-333, 42117 Wuppertal, Germany
| | - Stefan Egelhaaf
- Condensed Matter Physics Laboratory, Heinrich Heine University, Universitätsstraße 1, 40225 Düsseldorf, Germany
| | - Jörg Breitkreutz
- Institute of Pharmaceutics and Biopharmaceutics, Heinrich Heine University Düsseldorf, Germany, Universitätsstraße 1, 40225 Düsseldorf, Germany.
| |
Collapse
|
160
|
Moseson DE, Corum ID, Lust A, Altman KJ, Hiew TN, Eren A, Nagy ZK, Taylor LS. Amorphous Solid Dispersions Containing Residual Crystallinity: Competition Between Dissolution and Matrix Crystallization. AAPS JOURNAL 2021; 23:69. [PMID: 34002256 DOI: 10.1208/s12248-021-00598-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 04/13/2021] [Indexed: 01/28/2023]
Abstract
Crystallinity in an amorphous solid dispersion (ASD) may negatively impact dissolution performance by causing lost solubility advantage and/or seeding crystal growth leading to desupersaturation. The goal of the study was to evaluate underlying dissolution and crystallization mechanisms resulting from residual crystallinity contained within bicalutamide (BCL)/polyvinylpyrrolidone vinyl acetate copolymer (PVPVA) ASDs produced by hot melt extrusion (HME). In-line Raman spectroscopy, polarized light microscopy, and scanning electron microscopy were used to characterize crystallization kinetics and mechanisms. The fully amorphous ASD (0% crystallinity) did not dissolve completely, and underwent crystallization to the metastable polymorph (form 2), initiating in the amorphous matrix at the interface of the amorphous solid with water. Under non-sink conditions, higher extents of supersaturation were achieved because dissolution initially proceeded unhindered prior to nucleation. ASDs containing residual crystallinity had markedly reduced supersaturation. Solid-mediated crystallization (matrix crystallization) consumed the amorphous solid, growing the stable polymorph (form 1). Under sink conditions, both the fully amorphous ASD and crystalline physical mixture achieve faster release than the ASDs containing residual crystallinity. In the latter systems, matrix crystallization leads to highly agglomerated crystals with high relative surface area. Solution-mediated crystallization was not a significant driver of concentration loss, due to slow crystal growth from solution in the presence of PVPVA. The high risk stemming from residual crystallinity in BCL/PVPVA ASDs stems from (1) fast matrix crystallization propagating from crystal seeds, and (2) growth of the stable crystal form. This study has implications for dissolution performance outcomes of ASDs containing residual crystallinity.
Collapse
Affiliation(s)
- Dana E Moseson
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Isaac D Corum
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Andres Lust
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Kevin J Altman
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Tze Ning Hiew
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Ayse Eren
- Charles B. Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Zoltan K Nagy
- Charles B. Davidson School of Chemical Engineering, College of Engineering, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Lynne S Taylor
- Department of Industrial and Physical Pharmacy, College of Pharmacy, Purdue University, West Lafayette, Indiana, 47907, USA.
| |
Collapse
|
161
|
Wang Y, Fang Y, Zhou F, Liang Q, Deng Y. The Amorphous Quercetin/ Hydroxypropylmethylcellulose Acetate Succinate Solid Dispersions Prepared by Co-Precipitation Method to Enhance Quercetin Dissolution. J Pharm Sci 2021; 110:3230-3237. [PMID: 34004218 DOI: 10.1016/j.xphs.2021.05.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 04/21/2021] [Accepted: 05/08/2021] [Indexed: 11/18/2022]
Abstract
HPMCAS-HF, HPMCAS-MF and HPMCAS-LF were used as carriers to prepare the amorphous solid dispersions (ASDs) of quercetin (Que) by co-precipitation. The Que ASD based on PVP K30 was prepared by solvent evaporation method. The ability of polymer to inhibit Que crystallization was evaluated. The study found the order of the ability of polymer to inhibit Que nucleation to be: HF > MF > LF > K30, and that to maintain Que supersaturation to be: HF > K30 > MF > LF. The prepared solid dispersions were characterized by IR, DSC and PXRD. Although HF was the most effective crystallization inhibitor, the release of the Que/HF ASD was poor and assigned to the carrier-controlled dissolution for the strong interactions between Que and HF. The Que/MF ASD exhibited better dissolution behavior compared to the Que/K30 ASD. The dissolution behavior of the Que ASD depended on the polymer-Que interactions and the ability of crystallization inhibition of the polymer.
Collapse
Affiliation(s)
- Yiru Wang
- School of Pharmacy, Guilin Medical University, Guilin 541004, PR China
| | - Yudan Fang
- School of Pharmacy, Guilin Medical University, Guilin 541004, PR China
| | - Feng Zhou
- School of Pharmacy, Guilin Medical University, Guilin 541004, PR China
| | - Qi Liang
- School of Pharmacy, Guilin Medical University, Guilin 541004, PR China
| | - Yueyi Deng
- School of Pharmacy, Guilin Medical University, Guilin 541004, PR China.
| |
Collapse
|
162
|
Balanuca B, Ott C, Damian CM, Iovu H, Trusca R, Stan R. Exploring the potential of inexpensive high oleic sunflower oil for new polymeric architectures. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Brindusa Balanuca
- Department of Organic Chemistry “C. Nenitescu” University Politehnica of Bucharest Bucharest Romania
- Advanced Polymer Materials Group University Politehnica of Bucharest Bucharest Romania
| | - Cristina Ott
- Department of Organic Chemistry “C. Nenitescu” University Politehnica of Bucharest Bucharest Romania
| | - Celina Maria Damian
- Advanced Polymer Materials Group University Politehnica of Bucharest Bucharest Romania
| | - Horia Iovu
- Advanced Polymer Materials Group University Politehnica of Bucharest Bucharest Romania
- Academy of Romanian Scientists Bucharest Romania
| | - Roxana Trusca
- Faculty of Engineering in Foreign Languages University Politehnica of Bucharest Bucharest Romania
| | - Raluca Stan
- Department of Organic Chemistry “C. Nenitescu” University Politehnica of Bucharest Bucharest Romania
| |
Collapse
|
163
|
Salem AH, Tao ZF, Bueno OF, Chen J, Chen S, Edalji R, Elmore SW, Fournier KM, Harper KC, Hong R, Jenkins GJ, Ji J, Judge RA, Kalvass JC, Klix RC, Ku YY, Leverson JD, Marks RA, Marsh KC, Menon RM, Park CH, Phillips DC, Pu YM, Rosenberg SH, Sanzgiri YD, Sheikh AY, Shi Y, Stolarik D, Suleiman AA, Wang X, Zhang GGZ, Catron ND, Souers AJ. Expanding the Repertoire for "Large Small Molecules": Prodrug ABBV-167 Efficiently Converts to Venetoclax with Reduced Food Effect in Healthy Volunteers. Mol Cancer Ther 2021; 20:999-1008. [PMID: 33785651 DOI: 10.1158/1535-7163.mct-21-0077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/15/2021] [Accepted: 03/15/2021] [Indexed: 11/16/2022]
Abstract
Since gaining approval for the treatment of chronic lymphocytic leukemia (CLL), the BCL-2 inhibitor venetoclax has transformed the treatment of this and other blood-related cancers. Reflecting the large and hydrophobic BH3-binding groove within BCL-2, venetoclax has significantly higher molecular weight and lipophilicity than most orally administered drugs, along with negligible water solubility. Although a technology-enabled formulation successfully achieves oral absorption in humans, venetoclax tablets have limited drug loading and therefore can present a substantial pill burden for patients in high-dose indications. We therefore generated a phosphate prodrug (3, ABBV-167) that confers significantly increased water solubility to venetoclax and, upon oral administration to healthy volunteers either as a solution or high drug-load immediate release tablet, extensively converts to the parent drug. Additionally, ABBV-167 demonstrated a lower food effect with respect to venetoclax tablets. These data indicate that beyond-rule-of-5 molecules can be successfully delivered to humans via a solubility-enhancing prodrug moiety to afford robust exposures of the parent drug following oral dosing.
Collapse
Affiliation(s)
- Ahmed Hamed Salem
- AbbVie, Inc., North Chicago, Illinois.,Ain Shams University, Cairo, Egypt
| | | | | | - Jie Chen
- AbbVie, Inc., North Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | | | - Yi-Yin Ku
- AbbVie, Inc., North Chicago, Illinois
| | | | | | | | | | | | | | | | | | | | | | - Yi Shi
- AbbVie, Inc., North Chicago, Illinois
| | | | - Ahmed A Suleiman
- AbbVie Deutschland GmbH & Co. KG, Ludwigshafen am Rhein, Germany
| | - Xilu Wang
- AbbVie, Inc., North Chicago, Illinois
| | | | | | | |
Collapse
|
164
|
Schittny A, Waldner S, Duthaler U, Vorobyev A, Abramovich R, Krähenbühl S, Puchkov M, Huwyler J. Particle Forming Amorphous Solid Dispersions: A Mechanistic Randomized Pharmacokinetic Study in Humans. Pharmaceutics 2021; 13:401. [PMID: 33803049 PMCID: PMC8003007 DOI: 10.3390/pharmaceutics13030401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/11/2021] [Accepted: 03/14/2021] [Indexed: 11/17/2022] Open
Abstract
Amorphous solid dispersions (ASDs) are a promising drug-delivery strategy to overcome poor solubility through formulation. Currently, the understanding of drug absorption mechanisms from ASDs in humans is incomplete. Aiming to gain insights in this matter, we conducted a randomized cross-over design open-label clinical study (NCT03886766) with 16 healthy male volunteers in an ambulatory setting, using micro-dosed efavirenz as a model drug. In three phases, subjects were administered (1) solid ASD of efavirenz 50 mg or (2) dissolved ASD of efavirenz 50 mg or (3) a molecular solution of efavirenz 3 mg (non-ASD) as a control in block-randomized order. Endpoints were the pharmacokinetic profiles (efavirenz plasma concentration vs. time curves) and derived pharmacokinetic parameters thereof (AUC0-t, Cmax, tmax, and ka). Results showed that the dissolved ASD (intervention 2) exhibited properties of a supersaturated solution (compared to aqueous solubility) with rapid and complete absorption of the drug from the drug-rich particles. All interventions showed similar AUC0-t and were well tolerated by subjects. The findings highlight the potential of particle forming ASDs as an advanced drug-delivery system for poorly soluble drugs and provide essential insights into underlying mechanisms of ASD functioning in humans, partially validating current conceptual models.
Collapse
Affiliation(s)
- Andreas Schittny
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, 4056 Basel, Switzerland; (U.D.); (S.K.)
| | - Samuel Waldner
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
| | - Urs Duthaler
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, 4056 Basel, Switzerland; (U.D.); (S.K.)
| | - Alexander Vorobyev
- Department of Pharmtechnology, Faculty of Advanced Training of Medical Workers, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.V.); (R.A.)
| | - Rimma Abramovich
- Department of Pharmtechnology, Faculty of Advanced Training of Medical Workers, Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (A.V.); (R.A.)
| | - Stephan Krähenbühl
- Division of Clinical Pharmacology and Toxicology, Department of Biomedicine, University Hospital Basel and University of Basel, 4056 Basel, Switzerland; (U.D.); (S.K.)
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| | - Maxim Puchkov
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
| | - Jörg Huwyler
- Division of Pharmaceutical Technology, Department of Pharmaceutical Sciences, University of Basel, 4056 Basel, Switzerland; (A.S.); (S.W.); (M.P.)
- Department of Clinical Research, University of Basel, 4056 Basel, Switzerland
| |
Collapse
|
165
|
Valenti S, Barrio M, Negrier P, Romanini M, Macovez R, Tamarit JL. Comparative Physical Study of Three Pharmaceutically Active Benzodiazepine Derivatives: Crystalline versus Amorphous State and Crystallization Tendency. Mol Pharm 2021; 18:1819-1832. [PMID: 33689364 PMCID: PMC8594866 DOI: 10.1021/acs.molpharmaceut.1c00081] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
![]()
Chemical derivatization and amorphization
are two possible strategies
to improve the solubility and bioavailability of drugs, which is a
key issue for the pharmaceutical industry. In this contribution, we
explore whether both strategies can be combined by studying how small
differences in the molecular structure of three related pharmaceutical
compounds affect their crystalline structure and melting point (Tm), the relaxation dynamics in the amorphous
phase, and the glass transition temperature (Tg), as well as the tendency toward recrystallization. Three
benzodiazepine derivatives of almost same molecular mass and structure
(Diazepam, Nordazepam and Tetrazepam) were chosen as model compounds.
Nordazepam is the only one that displays N–H···O
hydrogen bonds both in crystalline and amorphous phases, which leads
to a significantly higher Tm (by 70–80
K) and Tg (by 30–40 K) compared
to those of Tetrazepam and Diazepam (which display similar values
of characteristic temperatures). The relaxation dynamics in the amorphous
phase, as determined experimentally using broadband dielectric spectroscopy,
is dominated by a structural relaxation and a Johari–Goldstein
secondary relaxation, both of which scale with the reduced temperature T/Tg. The kinetic fragility
index is very low and virtually the same (mp ≈ 32) in all three compounds. Two more secondary relaxations
are observed in the glass state: the slower of the two has virtually
the same relaxation time and activation energy in all three compounds,
and is assigned to the inter-enantiomer conversion dynamics of the
flexible diazepine heterocycle between isoenergetic P and M conformations.
We tentatively assign the fastest secondary relaxation, present only
in Diazepam and Tetrazepam, to the rigid rotation of the fused diazepine–benzene
double ring relative to the six-membered carbon ring. Such motion
appears to be largely hindered in glassy Nordazepam, possibly due
to the presence of the hydrogen bonds. Supercooled liquid Tetrazepam
and Nordazepam are observed to crystallize into their stable crystalline
form with an Avrami exponent close to unity indicating unidimensional
growth with only sporadic nucleation, which allows a direct assessment
of the crystal growth rate. Despite the very similar growth mode,
the two derivatives exhibit very different kinetics for a fixed value
of the reduced temperature and thus of the structural relaxation time,
with Nordazepam displaying slower growth kinetics. Diazepam does not
instead display any tendency toward recrystallization over short periods
of time (even close to Tm). Both these
observations in three very similar diazepine derivatives provide direct
evidence that the kinetics of recrystallization of amorphous pharmaceuticals
is not a universal function, at least in the supercooled liquid phase,
of the structural or the conformational relaxation dynamics, and it
is not simply correlated with related parameters such as the kinetic
fragility or activation barrier of the structural relaxation. Only
the crystal growth rate, and not the nucleation rate, shows a correlation
with the presence or absence of hydrogen bonding.
Collapse
Affiliation(s)
- Sofia Valenti
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona, Catalonia 08019, Spain
| | - Maria Barrio
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona, Catalonia 08019, Spain
| | - Philippe Negrier
- Université Bordeaux, Laboratoire Ondes et Matière d'Aquitaine, UMR 5798, 351 Cours de la Libération, Talence F-33400, France
| | - Michela Romanini
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona, Catalonia 08019, Spain
| | - Roberto Macovez
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona, Catalonia 08019, Spain
| | - Josep-Lluis Tamarit
- Grup de Caracterització de Materials, Departament de Física and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politècnica de Catalunya, EEBE, Campus Diagonal-Besòs, Av. Eduard Maristany 10-14, Barcelona, Catalonia 08019, Spain
| |
Collapse
|
166
|
Bochmann ES, Steidel A, Rosenblatt KM, Gessner D, Liepold B. Assessment of the amorphous solid dispersion erosion behavior following a novel small-scale predictive approach. Eur J Pharm Sci 2021; 158:105682. [DOI: 10.1016/j.ejps.2020.105682] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2020] [Revised: 12/04/2020] [Accepted: 12/16/2020] [Indexed: 10/22/2022]
|
167
|
Butreddy A, Bandari S, Repka MA. Quality-by-design in hot melt extrusion based amorphous solid dispersions: An industrial perspective on product development. Eur J Pharm Sci 2021; 158:105655. [PMID: 33253883 PMCID: PMC7855693 DOI: 10.1016/j.ejps.2020.105655] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/21/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
An industrially feasible approach to overcome the solubility and bioavailability limitations of poorly soluble active pharmaceutical ingredients is the development of amorphous solid dispersions (ASDs) using hot-melt extrusion (HME) technique. The application of Quality by Design (QbD) had a profound impact on the development of HME-based ASDs. The formulation and process optimization of ASDs manufactured via HME techniques require an understanding of critical quality attributes, critical material attributes, critical process parameters, risk assessment tools, and experimental designs. The knowledge gained from each of these QbD elements helps ensure the consistency of product quality. The selection and implementation of appropriate Design of Experiments (DoE) methodology to screen and optimize the formulation and process variables remain a major challenge. This review provides a comprehensive overview on QbD concepts in HME-based ASDs with an emphasis on DoE methodologies. Further, the information provided in this review can assist researchers in selecting a suitable design with optimal experimental conditions. Specifically, this review has focused on the prediction of drug-polymer miscibility, the elements and sequence of QbD, and various screening and optimization designs, to provide insights into the formulation and process variables that are encountered routinely in the production of HME-based ASDs.
Collapse
Affiliation(s)
- Arun Butreddy
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Suresh Bandari
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA
| | - Michael A Repka
- Department of Pharmaceutics and Drug Delivery, School of Pharmacy, The University of Mississippi, University, MS 38677, USA; Pii Center for Pharmaceutical Technology, The University of Mississippi, University, MS 38677, USA.
| |
Collapse
|
168
|
Investigation of hyperbranched Poly(glycerol esteramide) as potential drug carrier in solid dispersion for solubility enhancement of lovastatin. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
169
|
Amorphous Solid Dispersions and the Contribution of Nanoparticles to In Vitro Dissolution and In Vivo Testing: Niclosamide as a Case Study. Pharmaceutics 2021; 13:pharmaceutics13010097. [PMID: 33466598 PMCID: PMC7828663 DOI: 10.3390/pharmaceutics13010097] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/17/2022] Open
Abstract
We developed an amorphous solid dispersion (ASD) of the poorly water-soluble molecule niclosamide that achieved a more than two-fold increase in bioavailability. Notably, this niclosamide ASD formulation increased the apparent drug solubility about 60-fold relative to the crystalline material due to the generation of nanoparticles. Niclosamide is a weakly acidic drug, Biopharmaceutics Classification System (BCS) class II, and a poor glass former with low bioavailability in vivo. Hot-melt extrusion is a high-throughput manufacturing method commonly used in the development of ASDs for increasing the apparent solubility and bioavailability of poorly water-soluble compounds. We utilized the polymer poly(1-vinylpyrrolidone-co-vinyl acetate) (PVP–VA) to manufacture niclosamide ASDs by extrusion. Samples were analyzed based on their microscopic and macroscopic behavior and their intermolecular interactions, using differential scanning calorimetry (DSC), X-ray diffraction (XRD), nuclear magnetic resonance (NMR), Fourier-transform infrared (FTIR), and dynamic light scattering (DLS). The niclosamide ASD generated nanoparticles with a mean particle size of about 100 nm in FaSSIF media. In a side-by-side diffusion test, these nanoparticles produced a four-fold increase in niclosamide diffusion. We successfully manufactured amorphous extrudates of the poor glass former niclosamide that showed remarkable in vitro dissolution and diffusion performance. These in vitro tests were translated to a rat model that also showed an increase in oral bioavailability.
Collapse
|
170
|
Luebbert C, Stoyanov E, Sadowski G. Phase behavior of ASDs based on hydroxypropyl cellulose. Int J Pharm X 2021; 3:100070. [PMID: 33409486 PMCID: PMC7773875 DOI: 10.1016/j.ijpx.2020.100070] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/02/2022] Open
Abstract
Novel polymeric carriers for amorphous solid dispersions (ASDs) are highly demanded in pharmaceutical industry to improve the bioavailability of poorly-soluble drug candidates. Besides established polymer candidates, hydroxypropyl celluloses (HPC) comes more and more into the focus of ASD production since they have the availability to stabilize drug molecules in aqueous media against crystallization. The thermodynamic long-term stability of HPC ASDs with itraconazole and fenofibrate was predicted in this work with PC-SAFT and compared to three-months enduring long-term stability studies. The glass-transition temperature is a crucial attribute of a polymer, but in case of HPC hardly detectable by differential scanning calorimetry. By investigating the glass transition of HPC blends with a miscible polymer, we were for the first time able to estimate the HPC glass transition. Although both, fenofibrate and itraconazole reveal a very low crystalline solubility in HPC regardless of the HPC molecular weight, we observed that low-molecular weight HPC grades such as HPC-UL prevent fenofibrate crystallization for a longer period than the higher molecular weight HPC grades. As predicted, the ASDs with higher drug load underwent amorphous phase separation according to the differential scanning calorimetry thermograms. This work thus showed that it is possible to predict critical drug loads above which amorphous phase separation and/or crystallization occurs in HPC ASDs.
Collapse
Affiliation(s)
| | - Edmont Stoyanov
- Nisso Chemical Europe GmbH, Berliner Allee 42, D-40212 Düsseldorf, Germany
| | - Gabriele Sadowski
- amofor GmbH, Otto-Hahn-Str. 15, D-44227 Dortmund, Germany.,TU Dortmund University, Laboratory of Thermodynamics, Emil-Figge-Str. 70, D-44227 Dortmund, Germany
| |
Collapse
|
171
|
Jelić D. Thermal Stability of Amorphous Solid Dispersions. Molecules 2021; 26:E238. [PMID: 33466393 PMCID: PMC7795217 DOI: 10.3390/molecules26010238] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 12/25/2020] [Accepted: 12/29/2020] [Indexed: 11/24/2022] Open
Abstract
Amorphous solid dispersion drug delivery systems (ASD DDS) were proved to be efficient for the enhancement of solubility and bioavailability of poorly water-soluble drugs. One of the major keys for successful preparation of ASD is the selection of appropriate excipients, mostly polymers, which have a crucial role in improving drug solubility and its physical stability. Even though, excipients should be chemically inert, there is some evidence that polymers can affect the thermal stability of active pharmaceutical ingredients (API). The thermal stability of a drug is closely related to the shelf-life of pharmaceutical products and therefore it is a matter of high pharmaceutical relevance. An overview of thermal stability of amorphous solids is provided in this paper. Evaluation of thermal stability of amorphous solid dispersion is perceived from the physicochemical perspective, from a kinetic (motions) and thermodynamic (energy) point of view, focusing on activation energy and fragility, as well all other relevant parameters for ASD design, with a glance on computational kinetic analysis of solid-state decomposition.
Collapse
Affiliation(s)
- Dijana Jelić
- Chemistry Department, Faculty of Natural Sciences and Mathematics, University of Banja Luka, dr Mladena Stojanovića 2a, 78 000 Banja Luka, Bosnia and Herzegovina
| |
Collapse
|
172
|
Sun F, Yang X, Ma C, Zhang S, Yu L, Lu H, Yin G, Liang P, Feng Y, Zhang F. The Effects of Diosgenin on Hypolipidemia and Its Underlying Mechanism: A Review. Diabetes Metab Syndr Obes 2021; 14:4015-4030. [PMID: 34552341 PMCID: PMC8450287 DOI: 10.2147/dmso.s326054] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 09/01/2021] [Indexed: 12/15/2022] Open
Abstract
Hyperlipidemia is a disorder of lipid metabolism, which is a major cause of coronary heart disease. Although there has been considerable progress in hyperlipidemia treatment, morbidity and risk associated with the condition continue to rise. The first-line treatment for hyperlipidemia, statins, has multiple side effects; therefore, development of safe and effective drugs from natural products to prevent and treat hyperlipidemia is necessary. Diosgenin is primarily derived from fenugreek (Trigonella foenum graecum) seeds, and is also abundant in medicinal herbs such as Dioscorea rhizome, Dioscorea septemloba, and Rhizoma polygonati, is a well-known steroidal sapogenin and the active ingredient in many drugs to treat cardiovascular conditions. There is abundant evidence that diosgenin has potential for application in correcting lipid metabolism disorders. In this review, we evaluated the latest evidence related to diosgenin and hyperlipidemia from clinical and animal studies. Additionally, we elaborate the pharmacological mechanism underlying the activity of diosgenin in treating hyperlipidemia in detail, including its role in inhibition of intestinal absorption of lipids, regulation of cholesterol transport, promotion of cholesterol conversion into bile acid and its excretion, inhibition of endogenous lipid biosynthesis, antioxidation and lipoprotein lipase activity, and regulation of transcription factors related to lipid metabolism. This review provides a deep exploration of the pharmacological mechanisms involved in diosgenin-hyperlipidemia interactions and suggests potential routes for the development of novel drug therapies for hyperlipidemia.
Collapse
Affiliation(s)
- Fengcui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Xiufen Yang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Chaoqun Ma
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Shizhao Zhang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Lu Yu
- Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, People's Republic of China
| | - Haifei Lu
- Hubei University of Traditional Chinese Medicine, Wuhan, 430065, People's Republic of China
| | - Guoliang Yin
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Pengpeng Liang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Yanan Feng
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, People’s Republic of China
| | - Fengxia Zhang
- Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of China
- Correspondence: Fengxia Zhang Department of Neurology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250011, People’s Republic of ChinaTel +8653168616011 Email
| |
Collapse
|
173
|
Schlauersbach J, Hanio S, Lenz B, Vemulapalli SPB, Griesinger C, Pöppler AC, Harlacher C, Galli B, Meinel L. Leveraging bile solubilization of poorly water-soluble drugs by rational polymer selection. J Control Release 2020; 330:36-48. [PMID: 33333120 DOI: 10.1016/j.jconrel.2020.12.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/03/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Poorly water-soluble drugs frequently solubilize into bile colloids and this natural mechanism is key for efficient bioavailability. We tested the impact of pharmaceutical polymers on this solubilization interplay using proton nuclear magnetic resonance spectroscopy, dynamic light scattering, and by assessing the flux across model membranes. Eudragit E, Soluplus, and a therapeutically used model polymer, Colesevelam, impacted the bile-colloidal geometry and molecular interaction. These polymer-induced changes reduced the flux of poorly water-soluble and bile interacting drugs (Perphenazine, Imatinib) but did not impact the flux of bile non-interacting Metoprolol. Non-bile interacting polymers (Kollidon VA 64, HPMC-AS) neither impacted the flux of colloid-interacting nor colloid-non-interacting drugs. These insights into the drug substance/polymer/bile colloid interplay potentially point towards a practical optimization parameter steering formulations to efficient bile-solubilization by rational polymer selection.
Collapse
Affiliation(s)
- Jonas Schlauersbach
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Simon Hanio
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | - Bettina Lenz
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | | | - Christian Griesinger
- Max Planck Institute for Biophysical Chemistry, Am Faßberg 11, DE-37077 Goetingen, Germany
| | - Ann-Christin Pöppler
- Institute of Organic Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany
| | | | - Bruno Galli
- Novartis Pharma AG, Lichtstrasse 35, CH-4056 Basel, Switzerland
| | - Lorenz Meinel
- Institute for Pharmacy and Food Chemistry, University of Wuerzburg, Am Hubland, DE-97074 Wuerzburg, Germany; Helmholtz Institute for RNA-based Infection Biology (HIRI), DE-97070 Wuerzburg, Germany.
| |
Collapse
|
174
|
Hanada M, Jermain SV, Thompson SA, Furuta H, Fukuda M, Williams RO. Ternary Amorphous Solid Dispersions Containing a High-Viscosity Polymer and Mesoporous Silica Enhance Dissolution Performance†. Mol Pharm 2020; 18:198-213. [PMID: 33291881 DOI: 10.1021/acs.molpharmaceut.0c00811] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of this study was to evaluate the benefits of a ternary amorphous solid dispersion (ASD) that was designed as an immediate-release tablet with a high drug load (e.g., 40% w/w) to produce heightened maintenance of drug supersaturation during dissolution testing, which will be henceforth referred to as the "maintenance ability". Ternary ASD granules were produced by hot melt extrusion (HME) and were comprised of itraconazole (ITZ) 50%, hypromellose (HPMC) 20%, and mesoporous silica (XDP) 30%, where amorphous ITZ incorporated into HPMC was efficiently absorbed in XDP pores. The ternary ASD granules containing a high-viscosity HPMC (AF4M) produced a significantly heightened maintenance ability of drug supersaturation in neutral pH dissolution media in which crystalline ITZ solubility is below 1 μg/mL. The final tablet formulation contained 80% w/w of the ASD granules (40% w/w ITZ), had an acceptable size, and exhibited both sufficient tablet hardness and disintegration. The dissolution behavior of the ternary ASD tablet exhibited a supersaturation maintenance ability similar to that of the ASD granules. Under neutral conditions, the ternary ASD tablet showed immediate and higher ITZ release compared with the binary ASD tablets, and this phenomenon could be explained by the difference in ITZ/AF4M particle size in the tablet. In high-resolution scanning electron microscopy (SEM), it was observed that ITZ and AF4M in the ternary formulation could easily form nano-sized particles (<1 μm) during the absorption process into/onto XDP pores prepared by HME, which contributed to the immediate ITZ release from the ternary ASD tablet under neutral pH conditions. Therefore, the ternary ASD containing high-viscosity HPMC and mesoporous silica prepared by HME made it possible to design a high ASD content, small-size tablet with an ideal dissolution profile in biorelevant media, and we expect that this technology can be applied for continuous HME ASD manufacturing.
Collapse
Affiliation(s)
- Masataka Hanada
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States.,CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Scott V Jermain
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States.,Formulation and Process Development, Gilead Sciences Inc., 333 Lakeside Drive, Foster City, California 94404, United States
| | - Stephen A Thompson
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| | - Hirosuke Furuta
- CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Mamoru Fukuda
- CMC Research Laboratory, Watarase Research Center, Kyorin Pharmaceutical Co., Ltd., 1848 Nogi, Nogi-machi, Shimotsuga-gun, Tochigi 329-0114, Japan
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, University of Texas at Austin, 2409 University Avenue, A1920, Austin, Texas 78712, United States
| |
Collapse
|
175
|
Guastaferro M, Baldino L, Cardea S, Reverchon E. Supercritical assisted electrospray/spinning to produce PVP+quercetin microparticles and microfibers. J Taiwan Inst Chem Eng 2020. [DOI: 10.1016/j.jtice.2020.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
176
|
Wu Q, Feng D, Huang Z, Chen M, Yang D, Pan X, Lu C, Quan G, Wu C. Supersaturable organic-inorganic hybrid matrix based on well-ordered mesoporous silica to improve the bioavailability of water insoluble drugs. Drug Deliv 2020; 27:1292-1300. [PMID: 32885715 PMCID: PMC7580725 DOI: 10.1080/10717544.2020.1815898] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/24/2020] [Indexed: 12/01/2022] Open
Abstract
Mesoporous silica with uniform 2-D hexagonal pores has been newly employed as facile reservoir to impove the dissolution rate of water insoluble drugs. However, rapid drug release from mesoporous silica is usually accompanied by the generation of supersaturated solution, which leads to the drug precipitation and compromised absorption. To address this issue, a supersaturated ternary hybrid system was constructed in this study by utilizing inorganic mesoporous silica and organic precipitation inhibitor. Vinylprrolidone-vinylacetate copolymer (PVP VA64) with similar solubility parameter to model drug fenofibrate (FNB) was expected to well inhibit the precipitation. Mesoporous silica Santa Barbara amorphous-15 (SBA-15) was synthesized in acidic media and hybrid matrix was produced by hot melt extrusion technique. The results of in vitro supersaturation dissolution test obviously revealed that the presence of PVP VA64 could effectively sustain a higher apparent concentration. PVP VA64 was suggested to simultaneously reduce the rate of nucleation and crystal growth and subsequently maintain a metastable supersaturated state. The absorption of FNB delivered by the organic-inorganic hybrid matrix was remarkably enhanced in beagle dogs, and its AUC value was 1.92-fold higher than that of FNB loaded mesoporous silica without PVP VA 64. In conclusion, the supersaturated organic-inorganic hybrid matrix can serve as a modular strategy to enhance the oral availability of water insoluble drugs.
Collapse
Affiliation(s)
- Qiaoli Wu
- College of Pharmacy, Jinan University, Guangzhou, China
- Department of Pharmacy, Zengcheng District People’s Hospital, Guangzhou, China
| | - Disang Feng
- College of Pharmacy, Jinan University, Guangzhou, China
| | | | - Minglong Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Dan Yang
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Xin Pan
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou, China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou, China
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
177
|
Ruiz-Picazo A, Lozoya-Agullo I, González-Álvarez I, Bermejo M, González-Álvarez M. Effect of excipients on oral absorption process according to the different gastrointestinal segments. Expert Opin Drug Deliv 2020; 18:1005-1024. [PMID: 32842776 DOI: 10.1080/17425247.2020.1813108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Excipients are necessary to develop oral dosage forms of any Active Pharmaceutical Ingredient (API). Traditionally, excipients have been considered inactive and inert substances, but, over the years, numerous studies have contradicted this belief. This review focuses on the effect of excipients on the physiological variables affecting oral absorption along the different segments of the gastrointestinal tract. The effect of excipients on the segmental absorption variables are illustrated with examples to help understand the complexity of predicting their in vivo effects. AREAS COVERED The effects of excipients on disintegration, solubility and dissolution, transit time, and absorption are analyzed in the context of the different gastrointestinal segments and the physiological factors affecting release and membrane permeation. The experimental techniques used to study excipient effects and their human predictive ability are reviewed. EXPERT OPINION The observed effects of excipient in oral absorption process have been characterized in the past, mainly in vitro (i.e. in dissolution studies, in vitro cell culture methods or in situ animal studies). Unfortunately, a clear link with their effects in vivo, i.e. their impact on Cmax or AUC, which need a mechanistic approach is still missing. The information compiled in this review leads to the conclusion that the effect of excipients in API oral absorption and bioavailability is undeniable and shows the need of implementing standardized and reproducible preclinical tools coupled with mechanistic and predictive physiological-based models to improve the current empirical retrospective approach.
Collapse
Affiliation(s)
- Alejandro Ruiz-Picazo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel Lozoya-Agullo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Isabel González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marival Bermejo
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| | - Marta González-Álvarez
- Engineering: Pharmacokinetics and Pharmaceutical Technology Area, Miguel Hernandez University, Elche, Spain
| |
Collapse
|
178
|
Shi Q, Cheng J, Li F, Xu J, Zhang C. Molecular Mobility and Crystal Growth in Amorphous Binary Drug Delivery Systems: Effects of Low-Concentration Poly(Ethylene Oxide). AAPS PharmSciTech 2020; 21:317. [PMID: 33175339 DOI: 10.1208/s12249-020-01869-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022] Open
Abstract
Polymer additives have been widely reported to affect the crystallization of amorphous drugs, while the underlying mechanism is poorly understood. The present study aims to investigate the relationship between the crystal growth and the molecular mobility of amorphous nifedipine (NIF) in the presence and absence of low-concentration poly(ethylene oxide) (PEO). The addition of 3% w/w PEO yields approximately a 5-fold increase in the crystal growth rate of NIF in the glassy matrix and a 10-fold increase in the supercooled liquid. Broadband dielectric spectroscopy is performed to investigate the molecular mobility of amorphous pure NIF system and NIF doped with low-concentration PEO. With 3% w/w PEO, the structural relaxation time τα of amorphous NIF significantly decreases, indicating an increase in the global molecular mobility. However, the increase of the molecular mobility is insufficient to explain the 5- to 10-fold increase of the crystal growth rate at the same τα scale. Moreover, we compare the accelerating effect of PEO in NIF-PEO systems to other PEO-doped systems. The accelerating effect of low-concentration PEO on the crystal growth of amorphous drugs is found to be independent of the Flory-Huggins interaction, Tg of the drug, or the increase of the global molecular mobility. These findings suggest that an in-depth understanding regarding the effects of polymer additives on the crystallization of drugs should consider the localized mobility of the host molecules near the crystal-liquid interface.
Collapse
|
179
|
Kabedev A, Hossain S, Hubert M, Larsson P, Bergström CAS. Molecular Dynamics Simulations Reveal Membrane Interactions for Poorly Water-Soluble Drugs: Impact of Bile Solubilization and Drug Aggregation. J Pharm Sci 2020; 110:176-185. [PMID: 33152373 DOI: 10.1016/j.xphs.2020.10.061] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/14/2020] [Accepted: 10/28/2020] [Indexed: 01/19/2023]
Abstract
Molecular transport mechanisms of poorly soluble hydrophobic drug compounds to lipid membranes were investigated using molecular dynamics (MD) simulations. The model compound danazol was used to investigate the mechanism(s) by which bile micelles delivered it to the membrane. The interactions between lipid membrane and pure drug aggregates-in the form of amorphous aggregates and nanocrystals-were also studied. Our simulations indicate that bile micelles formed in the intestinal fluid may facilitate danazol incorporation into cellular membranes through two different mechanisms. The micelle may be acting as: i) a shuttle that presents the danazol directly to the membrane or ii) an elevator that moves the solubilized danazol with it as the colloidal structure itself becomes incorporated and solubilized within the membrane. The elevator hypothesis was supported by complementary lipid monolayer adsorption experiments. In these experiments, colloidal structures formed with simulated intestinal fluid were observed to rapidly incorporate into the monolayer. Simulations of membrane interaction with drug aggregates showed that both the amorphous aggregates and crystalline nanostructures incorporated into the membrane. However, the amorphous aggregates solubilized more quickly than the nanocrystals into the membrane, thereby improving the danazol absorption.
Collapse
Affiliation(s)
- Aleksei Kabedev
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Shakhawath Hossain
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Madlen Hubert
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Per Larsson
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden; The Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden
| | - Christel A S Bergström
- Department of Pharmacy, Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden; The Swedish Drug Delivery Center (SweDeliver), Uppsala University, Husargatan 3, 751 23 Uppsala, Sweden.
| |
Collapse
|
180
|
Iemtsev A, Hassouna F, Mathers A, Klajmon M, Dendisová M, Malinová L, Školáková T, Fulem M. Physical stability of hydroxypropyl methylcellulose-based amorphous solid dispersions: Experimental and computational study. Int J Pharm 2020; 589:119845. [DOI: 10.1016/j.ijpharm.2020.119845] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 08/26/2020] [Accepted: 08/31/2020] [Indexed: 01/26/2023]
|
181
|
Serban BA, Barrett-Catton E, Serban MA. Tetraethyl Orthosilicate-Based Hydrogels for Drug Delivery-Effects of Their Nanoparticulate Structure on Release Properties. Gels 2020; 6:E38. [PMID: 33126579 PMCID: PMC7709574 DOI: 10.3390/gels6040038] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/14/2020] [Accepted: 10/26/2020] [Indexed: 12/21/2022] Open
Abstract
Tetraethyl orthosilicate (TEOS)-based hydrogels, with shear stress response and drug releasing properties, can be formulated simply by TEOS hydrolysis followed by volume corrections with aqueous solvents and pH adjustments. Such basic thixotropic hydrogels (thixogels) form via the colloidal aggregation of nanoparticulate silica. Herein, we investigated the effects of the nanoparticulate building blocks on the drug release properties of these materials. Our data indicate that the age of the hydrolyzed TEOS used for the formulation impacts the nanoparticulate structure and stiffness of thixogels. Moreover, the mechanism of formation or the disturbance of the nanoparticulate network significantly affects the release profiles of the incorporated drug. Collectively, our results underline the versatility of these basic, TEOS-only hydrogels for drug delivery applications.
Collapse
Affiliation(s)
- Bogdan A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA;
| | - Emma Barrett-Catton
- Department of Bioengineering, Santa Clara University, Santa Clara, CA 95053, USA;
| | - Monica A. Serban
- Department of Biomedical and Pharmaceutical Sciences, University of Montana, Missoula, MT 59812, USA;
- Department of Chemistry and Biochemistry, University of Montana, Missoula, MT 59812, USA
| |
Collapse
|
182
|
Tomar D, Singh PK, Hoque S, Modani S, Sriram A, Kumar R, Madan J, Khatri D, Dua K. Amorphous systems for delivery of nutraceuticals: challenges opportunities. Crit Rev Food Sci Nutr 2020; 62:1204-1221. [PMID: 33103462 DOI: 10.1080/10408398.2020.1836607] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Amorphous solid products have recently gained a lot of attention as key solutions to improve the solubility and bioavailability of poorly soluble nutraceuticals. A pure amorphous drug is a high-energy form; physically/chemically unstable and so easily gets recrystallized into the less soluble crystalline form limiting solubility and bioavailability issues. Amorphous solid dispersion and co-amorphous are new formulation approach that stabilized unstable amorphous form through different mechanisms such as preventing mobility, high glass transition temperature and molecular interaction. Nutraceuticals have been received the utmost importance due to their health benefits. However, most of these compounds have been associated with poor oral bioavailability due to poor solubility, high lipophilicity, high melting point, poor permeability, degradability and rapid metabolism in the gastrointestinal tract (GIT) which limits its health benefits. This review provides us a systematic application of amorphous systems to the delivery of poorly soluble nutraceuticals, with the aim of overcoming their pharmacokinetic limitations and improved pharmacological potential. In particular, it describes the challenges associated with delivery of oral nutraceuticals, various methods involved in the preparation and characterization of amorphous systems and permeability enhancement of nutraceuticals are in detail.
Collapse
Affiliation(s)
- Devendrasingh Tomar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pankaj K Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sajidul Hoque
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Sheela Modani
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Rahul Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Dharmendra Khatri
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health (GSH), The University of Technology Sydney, Ultimo, Australia
| |
Collapse
|
183
|
Muniandy A, Lee CS, Lim WH, Pichika MR, Mak KK. Hyperbranched poly(glycerol esteramide): A biocompatible drug carrier from glycerol feedstock and dicarboxylic acid. J Appl Polym Sci 2020. [DOI: 10.1002/app.50126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Amala Muniandy
- Department of Pharmaceutical Chemistry School of Pharmacy, International Medical University Kuala Lumpur Malaysia
- Advanced Oleochemical Technology Division Malaysian Palm Oil Board Bandar Baru Bangi Malaysia
| | - Choy Sin Lee
- Department of Pharmaceutical Chemistry School of Pharmacy, International Medical University Kuala Lumpur Malaysia
| | - Wen Huei Lim
- Advanced Oleochemical Technology Division Malaysian Palm Oil Board Bandar Baru Bangi Malaysia
| | - Mallikarjuna Rao Pichika
- Department of Pharmaceutical Chemistry School of Pharmacy, International Medical University Kuala Lumpur Malaysia
| | - Kit Kay Mak
- Department of Pharmaceutical Chemistry School of Pharmacy, International Medical University Kuala Lumpur Malaysia
| |
Collapse
|
184
|
Influence of particle size and manufacturing conditions on the recrystallization of amorphous Enzalutamide. Eur J Pharm Sci 2020; 153:105468. [PMID: 32679178 DOI: 10.1016/j.ejps.2020.105468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 06/20/2020] [Accepted: 07/13/2020] [Indexed: 11/23/2022]
Abstract
Non-isothermal differential scanning calorimetry was used to study the influences of particle size and mechanically induced defects on the recrystallization kinetics of amorphous Enzalutamide. Enzalutamide prepared by hot melt extrusion and spray-drying was used as a model material. The recrystallization rate was primarily accelerated by the presence of the processing-damaged surface of the powder particles. The actual surface/volume ratio associated with decreasing particle size fulfilled only a secondary role. Interestingly, higher quench rate during the extrusion led to a formation of thermally less stable material (with the worse stability being manifested via lower activation energy of crystal growth in the amorphous matrix). This can be the consequence of the formation of looser structure more prone to rearrangements. The recrystallization kinetics of the prepared Enzalutamide amorphous materials was described by the two-parameter autocatalytic kinetic model. The modified single-curve multivariate kinetic analysis (optimized for the data obtained at heating rate 0.5 °C•min-1) was used to calculate the extrapolated kinetic predictions of long-term isothermal crystal growth. The predictions were made for the temperatures from the range of drug shelf-life and processing for each particle size fraction. By the combination of the mass-weighted predictions for the individual powder fractions it was possible to obtain a very reasonable (temperature-extrapolated) prediction of the crystallization rate for the as-prepared unsieved powdered amorphous Enzalutamide.
Collapse
|
185
|
Sahoo A, Suryanarayanan R, Siegel RA. Stabilization of Amorphous Drugs by Polymers: The Role of Overlap Concentration (C*). Mol Pharm 2020; 17:4401-4406. [DOI: 10.1021/acs.molpharmaceut.0c00576] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
186
|
Mudie DM, Stewart AM, Biswas N, Brodeur TJ, Shepard KB, Smith A, Morgen MM, Baumann JM, Vodak DT. Novel High-Drug-Loaded Amorphous Dispersion Tablets of Posaconazole; In Vivo and In Vitro Assessment. Mol Pharm 2020; 17:4463-4472. [PMID: 32835489 DOI: 10.1021/acs.molpharmaceut.0c00471] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Amorphous solid dispersions (ASDs) can increase the bioavailability of drugs with poor aqueous solubility. However, concentration-sustaining dispersion polymers (CSPs) incorporated in ASDs can result in low drug loading and, therefore, a large dosage-form size or multiple units to meet dose requirements, potentially decreasing patient compliance. To address this challenge, a high-loaded dosage-form (HLDF) architecture for ASDs was developed, in which a drug is first spray-dried with a high glass-transition temperature (Tg) dispersion polymer to facilitate high drug loading while maintaining physical stability. The ASD is then granulated with a CSP designed to extend supersaturation in solution. The HLDF differs from traditional ASD architectures in which the dispersion polymer inside the ASD acts as the CSP. By strategically combining two different polymers, one "inside" and one "outside" the ASD, solubilization performance, physical stability, and overall drug loading are maximized. This study demonstrates in vivo performance of the HLDF architecture using posaconazole as a model drug. Two sizes of HLDF tablets were tested in beagle dogs, along with traditional ASD architecture (benchmark) tablets, ASD tablets without a CSP, and a commercial crystalline oral suspension (Noxafil OS). HLDF tablets performed equivalently to the benchmark tablets, the smaller HLDF tablet being 40% smaller (by mass) than the benchmark tablet. The HLDF tablets doubled the blood plasma AUC relative to Noxafil OS. In line with the in vivo outcome, in vitro results in a multicompartment dissolution apparatus demonstrated similar area under the curve (AUC) values in the intestinal compartment for ASD tablets. However, the in vitro data underpredicted the relative in vivo AUC of Noxafil OS compared to the ASD tablets. This study demonstrated that the HLDF approach can increase drug loadings while achieving good performance for ASD drug products.
Collapse
Affiliation(s)
- Deanna M Mudie
- Lonza Pharma and Biotech, Bend, Oregon 97703, United States
| | | | - Nishant Biswas
- Lonza Pharma and Biotech, Bend, Oregon 97703, United States
| | | | | | - Adam Smith
- Lonza Pharma and Biotech, Bend, Oregon 97703, United States
| | | | - John M Baumann
- Lonza Pharma and Biotech, Bend, Oregon 97703, United States
| | - David T Vodak
- Lonza Pharma and Biotech, Bend, Oregon 97703, United States
| |
Collapse
|
187
|
Pandi P, Bulusu R, Kommineni N, Khan W, Singh M. Amorphous solid dispersions: An update for preparation, characterization, mechanism on bioavailability, stability, regulatory considerations and marketed products. Int J Pharm 2020; 586:119560. [PMID: 32565285 PMCID: PMC8691091 DOI: 10.1016/j.ijpharm.2020.119560] [Citation(s) in RCA: 196] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/08/2020] [Accepted: 06/15/2020] [Indexed: 01/24/2023]
Abstract
Amorphous solid dispersions (ASDs) are being employed frequently to improve bioavailability of poorly soluble molecules by enhancing the rate and extant of dissolution in drug product development process. These systems comprise of an amorphous active pharmaceutical ingredient stabilized by a polymer matrix to provide enhanced stability. This review discussed the methodologies of preparation and characterization of ASDs with an emphasis on understanding and predicting stability. Rational selection of polymers, preparation techniques with its advantages and disadvantages and characterization of polymeric amorphous solid dispersions have discussed. Stability aspects have been described as per ICH guidelines which intend to depend on selection of polymers and preparation methods of ASD. The mechanism involved on improvement of bioavailability also considered. Regulatory importance of ASD and current evolving details of QBD approach were reviewed. Amorphous products and particularly ASDs are currently most emerging area in the pharmaceutical field. This strategic approach presents huge impact and advantageous features concerning the overall improvement of drug product performance in clinical settings which ultimately lead to drug product approval by leading regulatory agencies into the market.
Collapse
Affiliation(s)
- Palpandi Pandi
- Department of Pharmacy, Employee State Insurance Corporation Medical College and Hospital, Chennai 600078, India
| | - Raviteja Bulusu
- Department of Pharmaceutics, Jawaharlal Nehru Technological University, Kakinada 533003, India
| | - Nagavendra Kommineni
- College of Pharmacy, Florida Agriculture and Mechanical University, FL 32307, USA
| | - Wahid Khan
- Natco Research Centre, NATCO Pharma Limited, Hyderabad 500018, India.
| | - Mandip Singh
- College of Pharmacy, Florida Agriculture and Mechanical University, FL 32307, USA.
| |
Collapse
|
188
|
AboulFotouh K, Zhang Y, Maniruzzaman M, Williams RO, Cui Z. Amorphous solid dispersion dry powder for pulmonary drug delivery: Advantages and challenges. Int J Pharm 2020; 587:119711. [PMID: 32739389 DOI: 10.1016/j.ijpharm.2020.119711] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/11/2020] [Accepted: 07/27/2020] [Indexed: 12/21/2022]
Abstract
Amorphous solid dispersion (ASD) is commonly used in pharmaceutical industry. It has been mainly employed to enhance the oral bioavailability of poorly water-soluble drugs that belong to class II and IV of the biopharmaceutical classification system but has showed promise in other areas of pharmaceutical research. In this review, the potential and limitations of ASD dry powder for inhalation are discussed. ASD powder for inhalation (ASD-IP) is commonly prepared by spray drying technique. The physicochemical characteristics of ASD-IP could be tailored to achieve effective lung deposition. ASD-IP could also attain rapid dissolution behavior to achieve therapeutically effective concentration either locally or systemically before particle clearance in the lung. The key challenges of using ASD powder for inhalation include the possible chemical and/or physical instability of the amorphous phase during manufacturing and in vivo, and the moisture and temperature sensitivity of ASD-IP that affects its storage stability.
Collapse
Affiliation(s)
- Khaled AboulFotouh
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA; Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut 71526, Egypt.
| | - Yi Zhang
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Mohammed Maniruzzaman
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Robert O Williams
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Zhengrong Cui
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
189
|
Liu P, Zhou JY, Chang JH, Liu XG, Xue HF, Wang RX, Li ZS, Li CS, Wang J, Liu CZ. Soluplus-Mediated Diosgenin Amorphous Solid Dispersion with High Solubility and High Stability: Development, Characterization and Oral Bioavailability. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:2959-2975. [PMID: 32801637 PMCID: PMC7396739 DOI: 10.2147/dddt.s253405] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022]
Abstract
Background and Purpose The traditional Chinese medicine, diosgenin (Dio), has attracted increasing attention because it possesses various therapeutic effects, including anti-tumor, anti-infective and anti-allergic properties. However, the commercial application of Dio is limited by its extremely low aqueous solubility and inferior bioavailability in vivo. Soluplus, a novel excipient, has great solubilization and capacity of crystallization inhibition. The purpose of this study was to prepare Soluplus-mediated Dio amorphous solid dispersions (ASDs) to improve its solubility, bioavailability and stability. Methods The crystallization inhibition studies were firstly carried out to select excipients using a solvent shift method. According to solubility and dissolution results, the preparation methods and the ratios of drug to excipient were further optimized. The interaction between Dio and Soluplus was characterized by differential scanning calorimetry (DSC), fourier transform infrared (FT-IR) spectroscopy, scanning electron microscopy (SEM), powder X-ray diffraction (PXRD) and molecular docking. The pharmacokinetic study was conducted to explore the potential of Dio ASDs for oral administration. Furthermore, the long-term stability of Dio ASDs was also investigated. Results Soluplus was preliminarily selected from various excipients because of its potential to improve solubility and stability. The optimized ASDs significantly improved the aqueous solubility of Dio due to its amorphization and the molecular interactions between Dio and Soluplus, as evidenced by dissolution test in vitro, DSC, FT-IR spectroscopy, SEM, PXRD and molecular docking technique. Furthermore, pharmacokinetic studies in rats revealed that the bioavailability of Dio from ASDs was improved about 5 times. In addition, Dio ASDs were stable when stored at 40°C and 75% humidity for 6 months. Conclusion These results indicated that Dio ASDs, with its high solubility, high bioavailability and high stability, would open a promising way in pharmaceutical applications.
Collapse
Affiliation(s)
- Pei Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Jian-Yu Zhou
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Jin-Hua Chang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Xi-Gang Liu
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - He-Fei Xue
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Ru-Xing Wang
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Zhong-Si Li
- Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| | - Chun-Shi Li
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Jian Wang
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China
| | - Cui-Zhe Liu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, People's Republic of China.,Hebei Province Key Laboratory of Research and Development for Chinese Medicine, Chengde Medical University, Chengde, Hebei 067000, People's Republic of China
| |
Collapse
|
190
|
Ghosh MK, Wahed MII, Khan RI, Habib A, Barman RK. Pharmacological screening of fenofibrate-loaded solid dispersion in fructose-induced diabetic rat. J Pharm Pharmacol 2020; 72:909-915. [PMID: 32306394 DOI: 10.1111/jphp.13267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 03/14/2020] [Indexed: 12/31/2022]
Abstract
OBJECTIVES Hyperlipidaemia is a common phenomenon in diabetes mellitus. Fenofibrate (FF) is a good candidate for the treatment of lipid abnormalities in patients with type 2 diabetes. But the bioavailability as well as therapeutic efficacy of this drug is limited to its dissolution behaviour. Here, the authors assess the therapeutic efficacy of a newly formulated solid dispersion of fenofibrate (SDF) having enhanced dissolution profiles in contrast to pure FF using fructose-induced diabetic rat model. METHODS Fructose-induced diabetic rat model was developed to assess the pharmacological efficacy of the formulated SDF, and the results were compared with the effects of conventional FF therapy. KEY FINDINGS The 14 days treatment showed better improvement in lipid-lowering potency of SDF than pure FF. SDF containing one-third dose of pure FF showed similar effect in terms of triglyceride, total cholesterol and low-density lipoprotein lowering efficacy, whereas increased high-density lipoprotein at same extent. The similar dose of SDF produced more prominent effect than FF. Histological studies also demonstrated the enhanced lipid clearance from liver by SDF than FF that was concordant with the biochemical results. CONCLUSIONS This newly formulated SDF would be a promising alternative for conventional fenofibrate in treating hyperlipidaemia.
Collapse
Affiliation(s)
- Milon Kumar Ghosh
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh.,Department of Pharmacy, Islamic University, Kushtia, Bangladesh
| | | | | | - Anwar Habib
- Department of Pharmacology, Rajshahi Medical College, Rajshahi, Bangladesh
| | | |
Collapse
|
191
|
Rotrekl D, Devriendt B, Cox E, Kavanová L, Faldyna M, Šalamúnová P, Baďo Z, Prokopec V, Štěpánek F, Hanuš J, Hošek J. Glucan particles as suitable carriers for the natural anti-inflammatory compounds curcumin and diplacone - Evaluation in an ex vivo model. Int J Pharm 2020; 582:119318. [PMID: 32320720 DOI: 10.1016/j.ijpharm.2020.119318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/30/2022]
Abstract
Natural compounds offer a wide spectrum of potential active substances, but often they have a poor bioavailability. To increase the bioavailability and bioactivity of the natural anti-inflammatory molecules curcumin and diplacone, we used glucan particles (GPs), hollow shells from Saccharomyces cerevisiae composed mainly of β-1,3-d-glucan. Their indigestibility and relative stability in the gut combined with their immunomodulatory effects makes them promising carriers for such compounds. This study aimed to determine how curcumin and diplacone, either alone or incorporated in GPs, affect the immunomodulatory activity of the latter by assessing the respiratory burst response and the secretion of pro-inflammatory cytokines by primary porcine innate immune cells. Incorporating curcumin and diplacone into GPs by controlled evaporation of the organic solvent substantially reduced the respiratory burst response mediated by GPs. Incorporated curcumin in GPs also reduced GPs mediated secretion of IL-1β and TNF-α by innate immune cells. The obtained results indicate a potentially beneficial effect of the incorporation of curcumin or diplacone into GPs against inflammation.
Collapse
Affiliation(s)
- Dominik Rotrekl
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Bert Devriendt
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Eric Cox
- Department of Virology, Parasitology and Immunology, Faculty of Veterinary Medicine, Ghent University, Belgium
| | - Lenka Kavanová
- Department of Immunology, Veterinary Research Institute Brno, Czech Republic
| | - Martin Faldyna
- Department of Immunology, Veterinary Research Institute Brno, Czech Republic
| | - Petra Šalamúnová
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Zuzana Baďo
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences Brno, Czech Republic
| | - Vadym Prokopec
- Department of Analytical Chemistry, University of Chemistry and Technology Prague, Czech Republic
| | - František Štěpánek
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Jaroslav Hanuš
- Department of Chemical Engineering, University of Chemistry and Technology Prague, Czech Republic
| | - Jan Hošek
- Division of Biologically Active Complexes and Molecular Magnets, Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacký University in Olomouc, Czech Republic.
| |
Collapse
|
192
|
Locarno S, Argentiere S, Ruffoni A, Maggioni D, Soave R, Bucci R, Erba E, Lenardi C, Gelmi ML, Clerici F. Self-assembled hydrophobic Ala-Aib peptide encapsulating curcumin: a convenient system for water insoluble drugs. RSC Adv 2020; 10:9964-9975. [PMID: 35498617 PMCID: PMC9050355 DOI: 10.1039/c9ra10981a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Accepted: 03/03/2020] [Indexed: 12/03/2022] Open
Abstract
The exploitation of self-assembled systems to improve the solubility of drugs is getting more and more attention. Among the different types of self-assembled biomaterials, peptides and in particular peptides containing non-coded amino acids (NCAPs) are promising because their use opens the door to more stable materials inducing increased stability to proteolysis. New classes of NCAP, Ac-Ala-X-Ala-Aib-AlaCONH2 (X = alpha-aminoisobutyric acid (Aib) or X = cyclopentane amino acid (Ac5c)) have been prepared and the correlation between the different secondary peptide structure and solvent (i.e. CD3CN, CD3OH, H2O/D2O) verified by NMR. Furthermore, the formation of a nanocolloidal system in water was deeply studied by DLS and the morphology of the obtained spherical aggregates with nanometric dimensions was assessed by TEM. Aib containing pentapeptide was selected for greater ease of synthesis. Its ability to encapsulate curcumin, as a model insoluble drug molecule, was investigated using fluorescence emission and confocal microscopy analyses. Two different approaches were used to study the interaction between curcumin and peptide aggregates. In the first approach peptide aggregates were formed in the presence of curcumin, while in the second approach curcumin was added to the already formed peptide aggregates. We succeeded in our challenge by using the second approach and 53.8% of added curcumin had been encapsulated.
Collapse
Affiliation(s)
- Silvia Locarno
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | - Simona Argentiere
- CIMAINA, Interdisciplinary Center for Nanostructured Materials and Interfaces, Department of Physics Via Celoria 16 20133 Milano Italy
| | | | - Daniela Maggioni
- Department of Chemistry, Università Degli Studi di Milano Via Golgi 19 20133 Milano Italy
| | - Raffaella Soave
- Institute of Chemical Sciences and Technologies "Giulio Natta", Italian National Research Council, CNR-SCITEC Via Golgi 19 20133 Milano Italy
| | - Raffaella Bucci
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | - Emanuela Erba
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | - Cristina Lenardi
- CIMAINA, Interdisciplinary Center for Nanostructured Materials and Interfaces, Department of Physics Via Celoria 16 20133 Milano Italy
| | - Maria Luisa Gelmi
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| | - Francesca Clerici
- Department of Pharmaceutical Sciences, General and Organic Chemistry Section "A. Marchesini", University of Milan Via Venezian 21 20133 Milano Italy
| |
Collapse
|