151
|
Susa F, Limongi T, Dumontel B, Vighetto V, Cauda V. Engineered Extracellular Vesicles as a Reliable Tool in Cancer Nanomedicine. Cancers (Basel) 2019; 11:E1979. [PMID: 31835327 PMCID: PMC6966613 DOI: 10.3390/cancers11121979] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 12/15/2022] Open
Abstract
Fast diagnosis and more efficient therapies for cancer surely represent one of the huge tasks for the worldwide researchers' and clinicians' community. In the last two decades, our understanding of the biology and molecular pathology of cancer mechanisms, coupled with the continuous development of the material science and technological compounds, have successfully improved nanomedicine applications in oncology. This review argues on nanomedicine application of engineered extracellular vesicles (EVs) in oncology. All the most innovative processes of EVs engineering are discussed together with the related degree of applicability for each one of them in cancer nanomedicines.
Collapse
Affiliation(s)
| | | | | | | | - Valentina Cauda
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy; (F.S.); (T.L.); (B.D.); (V.V.)
| |
Collapse
|
152
|
Kim DH, Kothandan VK, Kim HW, Kim KS, Kim JY, Cho HJ, Lee YK, Lee DE, Hwang SR. Noninvasive Assessment of Exosome Pharmacokinetics In Vivo: A Review. Pharmaceutics 2019; 11:E649. [PMID: 31817039 PMCID: PMC6956244 DOI: 10.3390/pharmaceutics11120649] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 12/13/2022] Open
Abstract
Exosomes, intraluminal vesicles that contain informative DNA, RNA, proteins, and lipid membranes derived from the original donor cells, have recently been introduced to therapy and diagnosis. With their emergence as an alternative to cell therapy and having undergone clinical trials, proper analytical standards for evaluating their pharmacokinetics must now be established. Molecular imaging techniques such as fluorescence imaging, magnetic resonance imaging, and positron emission tomography (PET) are helpful to visualizing the absorption, distribution, metabolism, and excretion of exosomes. After exosomes labelled with a fluorescer or radioisotope are administered in vivo, they are differentially distributed according to the characteristics of each tissue or lesion, and real-time biodistribution of exosomes can be noninvasively monitored. Quantitative analysis of exosome concentration in biological fluid or tissue samples is also needed for the clinical application and industrialization of exosomes. In this review, we will discuss recent pharmacokinetic applications to exosomes, including labelling methods for in vivo imaging and analytical methods for quantifying exosomes, which will be helpful for evaluating pharmacokinetics of exosomes and improving exosome development and therapy.
Collapse
Affiliation(s)
- Do Hee Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Vinoth Kumar Kothandan
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| | - Hye Won Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Ki Seung Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Ji Young Kim
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Hyeon Jin Cho
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
| | - Yong-kyu Lee
- Department of Chemical and Biological Engineering, Korea National University of Transportation, Chungju, Chungbuk 27469, Korea;
| | - Dong-Eun Lee
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Jeonbuk 56212, Korea;
| | - Seung Rim Hwang
- College of Pharmacy, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea; (D.H.K.); (H.W.K.); (K.S.K.); (J.Y.K.); (H.J.C.)
- Department of Biomedical Sciences, Graduate School, Chosun University, 309 Pilmun-daero, Dong-gu, Gwangju 61452, Korea;
| |
Collapse
|
153
|
Ullah M, Qiao Y, Concepcion W, Thakor AS. Stem cell-derived extracellular vesicles: role in oncogenic processes, bioengineering potential, and technical challenges. Stem Cell Res Ther 2019; 10:347. [PMID: 31771657 PMCID: PMC6880555 DOI: 10.1186/s13287-019-1468-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are cellular-derived versatile transporters with a specialized property for trafficking a variety of cargo, including metabolites, growth factors, cytokines, proteins, lipids, and nucleic acids, throughout the microenvironment. EVs can act in a paracrine manner to facilitate communication between cells as well as modulate immune, inflammatory, regenerative, and remodeling processes. Of particular interest is the emerging association between EVs and stem cells, given their ability to integrate complex inputs for facilitating cellular migration to the sites of tissue injury. Additionally, stem cell-derived EVs can also act in an autocrine manner to influence stem cell proliferation, mobilization, differentiation, and self-renewal. Hence, it has been postulated that stem cells and EVs may work synergistically in the process of tissue repair and that dysregulation of EVs may cause a loss of homeostasis in the microenvironment leading to disease. By harnessing the property of EVs for delivery of small molecules, stem cell-derived EVs possess significant potential as a platform for developing bioengineering approaches for next-generation cancer therapies and targeted drug delivery methods. Although one of the main challenges of clinical cancer treatment remains a lack of specificity for the delivery of effective treatment options, EVs can be modified via genetic, biochemical, or synthetic methods for enhanced targeting ability of chemotherapeutic agents in promoting tumor regression. Here, we summarize recent research on the bioengineering potential of EV-based cancer therapies. A comprehensive understanding of EV modification may provide a novel strategy for cancer therapy and for the utilization of EVs in the targeting of oncogenic processes. Furthermore, innovative and emerging new technologies are shifting the paradigm and playing pivotal roles by continually expanding novel methods and materials for synthetic processes involved in the bioengineering of EVs for enhanced precision therapeutics.
Collapse
Affiliation(s)
- Mujib Ullah
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, 3155 Porter Dr., Stanford, CA, 94304, USA.
| | - Yang Qiao
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, 3155 Porter Dr., Stanford, CA, 94304, USA
- Texas A&M University College of Medicine, 8447 Riverside Pkwy, Bryan, TX, 77807, USA
- Department of Interventional Radiology, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX, 77030, USA
- Department of Surgery, Columbia University Irving Medical Center, 177 Fort Washington Ave, New York, NY, 10032, USA
| | - Waldo Concepcion
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, 3155 Porter Dr., Stanford, CA, 94304, USA
| | - Avnesh S Thakor
- Interventional Regenerative Medicine and Imaging Laboratory, Stanford University School of Medicine, Department of Radiology, 3155 Porter Dr., Stanford, CA, 94304, USA
| |
Collapse
|
154
|
Anger F, Camara M, Ellinger E, Germer CT, Schlegel N, Otto C, Klein I. Human Mesenchymal Stromal Cell-Derived Extracellular Vesicles Improve Liver Regeneration After Ischemia Reperfusion Injury in Mice. Stem Cells Dev 2019; 28:1451-1462. [PMID: 31495270 DOI: 10.1089/scd.2019.0085] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatic ischemia reperfusion injury (IRI) remains a major obstacle in liver resection and transplantation surgery, especially in diseased organs. Human mesenchymal stromal cells (MSCs) are reported to acutely alleviate hepatic IRI in mice by releasing bioactive membrane-enclosed extracellular vesicles (EVs), but the long-term effects of MSC-derived EV on hepatic IRI are unknown. Given the considerable differentiation capacity of fibroblasts (FBs) during wound healing and their morphological similarities with MSC, the present study aimed to investigate the potential of these two cell types and their cell-derived EV in attenuating liver damage after IRI. EVs were isolated and purified from the supernatant of MSC and FB cultures and, subsequently, characterized by electron microscopy, nanoparticle tracking analysis, and western blot. Liver injury and organ regeneration in a murine in vivo model of IRI were assessed by serum transaminase levels, histopathology, and immunohistochemistry. Changes in expression of inflammation-associated genes within liver tissue were evaluated by reverse transcriptase quantitative polymerase chain reaction. MSC, MSC-derived EV, FB, and FB-derived EV were systemically administered before hepatic IRI. We found that MSC and MSC-derived EV decreased serum transaminase levels, reduced hepatic necrosis, increased the amount of Ki67-positive hepatocytes, and repressed the transcription of inflammation-associated genes. Although they had no impact on organ damage, FB and FB-derived EV showed some regenerative potential in the late phase of hepatic IRI. Compared to FB, MSC and their derived EV had a stronger potential to attenuate liver damage and improve organ regeneration after hepatic IRI. These results suggest that the key therapeutic factors are located within EV.
Collapse
Affiliation(s)
- Friedrich Anger
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Monika Camara
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Elisabeth Ellinger
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christoph-Thomas Germer
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Nicolas Schlegel
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Christoph Otto
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| | - Ingo Klein
- Department of General, Visceral, Transplantation, Vascular and Pediatric Surgery, University Hospital of Würzburg, Würzburg, Germany
| |
Collapse
|
155
|
Exosomes: Biogenesis, Composition, Functions, and Their Role in Pre-metastatic Niche Formation. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0170-y] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
156
|
Kim H, Kim D, Nam H, Moon S, Kwon YJ, Lee JB. Engineered extracellular vesicles and their mimetics for clinical translation. Methods 2019; 177:80-94. [PMID: 31626895 DOI: 10.1016/j.ymeth.2019.10.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 10/08/2019] [Accepted: 10/11/2019] [Indexed: 12/12/2022] Open
Abstract
Cells secrete extracellular vesicles (EVs) to external environments to achieve cellular homeostasis and cell-to-cell communication. Their therapeutic potential has been constantly spotlighted since they mirror both cytoplasmic and membranous components of parental cells. Meanwhile, growing evidence suggests that EV engineering could further promote EVs with a maximized capacity. In this review, a range of engineering techniques as well as upscaling approaches to exploit EVs and their mimetics are introduced. By laying out the pros and cons of each technique from different perspectives, we sought to provide an overview potentially helpful for understanding the current state of the art EV engineering and a guideline for choosing a suitable technique for engineering EVs. Furthermore, we envision that the advances in each technique will give rise to the combinatorial engineering of EVs, taking us a step closer to a clinical translation of EV-based therapeutics.
Collapse
Affiliation(s)
- Hyejin Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Dajeong Kim
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Hyangsu Nam
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Sunghyun Moon
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea
| | - Young Jik Kwon
- Department of Chemical Engineering and Materials Science, University of California, Irvine, CA 92697, United States; Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, United States; Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, United States; Department of Biomedical Engineering, University of California, Irvine, CA 92697, United States.
| | - Jong Bum Lee
- Department of Chemical Engineering, University of Seoul, 163 Seoulsiripdaero, Dongdaemungu, Seoul 02504, Republic of Korea.
| |
Collapse
|
157
|
Cho S, Yang HC, Rhee WJ. Simultaneous multiplexed detection of exosomal microRNAs and surface proteins for prostate cancer diagnosis. Biosens Bioelectron 2019; 146:111749. [PMID: 31600625 DOI: 10.1016/j.bios.2019.111749] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 08/23/2019] [Accepted: 09/30/2019] [Indexed: 12/21/2022]
Abstract
Since the tumor is extremely heterogeneous, a single biomarker cannot reflect the exact symptoms of the disease or its stage. Exosomes are biomarker reservoirs that provide disease information with a high accuracy, especially when specific markers, including microRNAs (miRNAs) and proteins, are combined. However, currently available exosomal miRNA and protein detection methods are time consuming, expensive, and laborious. Meanwhile, simultaneous detection of an exosomal miRNA and protein in a single reaction is even more challenging. Thus, development of an efficient method for detecting multiple miRNAs and proteins in a single exosomal reaction is highly needed. Herein, to increase the value of using exosomes over other circulating biomarkers for prostate cancer (PCa) liquid biopsy, a method for simultaneous multiplexed in situ detection of exosomal miRNAs and proteins was developed. Exosomal miRNAs and surface proteins were simultaneously detected in captured exosomes with a high specificity, using nano-sized molecular beacons and fluorescent dye-conjugated antibodies. The method allowed the quantitative analysis of various disease-specific miRNAs and surface proteins in PCa cell-derived exosomes in a single exosomal reaction. Overall, simultaneous multiplexed in situ detection of exosomal miRNAs and surface proteins can be developed as a simple, cost-effective, non-invasive liquid biopsy method for diagnosing PCa.
Collapse
Affiliation(s)
- Seongcheol Cho
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Hee Cheol Yang
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea
| | - Won Jong Rhee
- Department of Bioengineering and Nano-Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea; Division of Bioengineering, Incheon National University, Incheon, 22012, Republic of Korea.
| |
Collapse
|
158
|
Hong Y, Kim YK, Kim GB, Nam GH, Kim SA, Park Y, Yang Y, Kim IS. Degradation of tumour stromal hyaluronan by small extracellular vesicle-PH20 stimulates CD103 + dendritic cells and in combination with PD-L1 blockade boosts anti-tumour immunity. J Extracell Vesicles 2019; 8:1670893. [PMID: 31632619 PMCID: PMC6781230 DOI: 10.1080/20013078.2019.1670893] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 08/21/2019] [Accepted: 09/14/2019] [Indexed: 12/13/2022] Open
Abstract
Highly accumulated hyaluronan (HA) not only provides a physiological barrier but also supports an immune-suppressive tumour microenvironment. High-molecular-weight (HMW)-HA inhibits the activation of immune cells and their access into tumour tissues, whereas, low-molecular-weight oligo-HA is known to potentially activate dendritic cells (DCs). In this paper, we investigated whether small extracellular vesicle (EVs)-PH20 hyaluronidase induces tumour HA degradation, which, in turn, activates DCs to promote anti-cancer immune responses. Informed by our previous work, we used a small EV carrying GPI-anchored PH20 hyaluronidase (Exo-PH20) that could deeply penetrate into tumour foci via HA degradation. We found that Exo-PH20-treatment successfully activates the maturation and migration of DCs in vivo, particularly CD103+ DCs leading to the activation of tumour-specific CD8+ T cells, which work together to inhibit tumour growth. Moreover, combination with anti-PD-L1 antibody provided potent tumour-specific CD8+ T cell immune responses as well as elicited prominent tumour growth inhibition both in syngenic and spontaneous breast cancer models, and this anti-tumour immunity was durable. Together, these results present new insights for HA degradation by Exo-PH20, providing a better understanding of oligo HA-triggered immune responses to cancer.
Collapse
Affiliation(s)
- Yeonsun Hong
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yoon Kyoung Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gi Beom Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Gi-Hoon Nam
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Seong A Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yoon Park
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yoosoo Yang
- Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea.,Division of Bio-Medical Science &Technology, KIST School, Korea University of Science and Technology, Seoul, Republic of Korea
| | - In-San Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| |
Collapse
|
159
|
Yerneni SS, Lathwal S, Shrestha P, Shirwan H, Matyjaszewski K, Weiss L, Yolcu ES, Campbell PG, Das SR. Rapid On-Demand Extracellular Vesicle Augmentation with Versatile Oligonucleotide Tethers. ACS NANO 2019; 13:10555-10565. [PMID: 31436946 PMCID: PMC6800810 DOI: 10.1021/acsnano.9b04651] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Exosomes show potential as ideal vehicles for drug delivery because of their natural role in transferring biological cargo between cells. However, current methods to engineer exosomes without negatively impacting their function remain challenging. Manipulating exosome-secreting cells is complex and time-consuming, while direct functionalization of exosome surface proteins suffers from low specificity and low efficiency. We demonstrate a rapid, versatile, and scalable method with oligonucleotide tethers to enable diverse surface functionalization on both human and murine exosomes. These exosome surface modifiers, which range from reactive functional groups and small molecules to aptamers and large proteins, can readily and efficiently enhance native exosome properties. We show that cellular uptake of exosomes can be specifically altered with a tethered AS1411 aptamer, and targeting specificity can be altered with a tethered protein. We functionalize exosomes with an immunomodulatory protein, FasL, and demonstrate their biological activity both in vitro and in vivo. FasL-functionalized exosomes, when bioprinted on a collagen matrix, allows spatial induction of apoptosis in tumor cells and, when injected in mice, suppresses proliferation of alloreactive T cells. This oligonucleotide tethering strategy is independent of the exosome source and further circumvents the need to genetically modify exosome-secreting cells.
Collapse
Affiliation(s)
| | - Sushil Lathwal
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Pradeep Shrestha
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Haval Shirwan
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | | | - Lee Weiss
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- The Robotics Institute, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Esma S. Yolcu
- Institute for Cellular Therapeutics and Department of Microbiology and Immunology, University of Louisville, Louisville, KY, USA
| | - Phil G. Campbell
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
- Engineering Research Accelerator, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Subha R. Das
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, USA
- Center for Nucleic Acids Science & Technology, Carnegie Mellon University, Pittsburgh, PA, USA
| |
Collapse
|
160
|
Liu J, Wang X. Focus on exosomes-From pathogenic mechanisms to the potential clinical application value in lymphoma. J Cell Biochem 2019; 120:19220-19228. [PMID: 31452241 DOI: 10.1002/jcb.29241] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 06/06/2019] [Indexed: 12/12/2022]
Abstract
Exosomes are highly specialized and functional bilayer membranous particles. They have been considered as vehicles for transporting and delivering a large number of proteins, lipids, and nucleic acids (gene, noncoding RNA, DNA) from parental to recipient cells. In hematological malignancies, exosomes are involved in the tumorigenesis, including producing growth factors, hindering antitumor immunoreaction, promote inflammation, angiogenesis, and hypercoagulation. With the deepening of understanding, exosomes have ignited great interests and ever-increasing efforts into the therapeutic application among scientists, such as biomarkers, therapeutic target, drug delivery system, and vaccines. Here, we discuss the most recent studies on the functions and the emerging therapeutic applications of exosomes in lymphoma.
Collapse
Affiliation(s)
- Jiarui Liu
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,School of Medicine, Shandong University, Jinan, Shandong, China
| | - Xin Wang
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, Shandong, China.,School of Medicine, Shandong University, Jinan, Shandong, China.,Shandong Provincial Engineering Research Center of Lymphoma, Jinan, Shandong, China.,Key Laboratory for Kidney Regeneration of Shandong Province, Jinan, Shandong, China
| |
Collapse
|
161
|
Indira Chandran V, Welinder C, Gonçalves de Oliveira K, Cerezo-Magaña M, Månsson AS, Johansson MC, Marko-Varga G, Belting M. Global extracellular vesicle proteomic signature defines U87-MG glioma cell hypoxic status with potential implications for non-invasive diagnostics. J Neurooncol 2019; 144:477-488. [PMID: 31414377 PMCID: PMC6764937 DOI: 10.1007/s11060-019-03262-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 08/06/2019] [Indexed: 12/17/2022]
Abstract
Purpose Glioblastoma multiforme (GBM) is the most common and lethal of primary malignant brain tumors. Hypoxia constitutes a major determining factor for the poor prognosis of high-grade glioma patients, and is known to contribute to the development of treatment resistance. Therefore, new strategies to comprehensively profile and monitor the hypoxic status of gliomas are of high clinical relevance. Here, we have explored how the proteome of secreted extracellular vesicles (EVs) at the global level may reflect hypoxic glioma cells. Methods We have employed shotgun proteomics and label free quantification to profile EVs isolated from human high-grade glioma U87-MG cells cultured at normoxia or hypoxia. Parallel reaction monitoring was used to quantify the identified, hypoxia-associated EV proteins. To determine the potential biological significance of hypoxia-associated proteins, the cumulative Z score of identified EV proteins was compared with GBM subtypes from HGCC and TCGA databases. Results In total, 2928 proteins were identified in EVs, out of which 1654 proteins overlapped with the ExoCarta EV-specific database. We found 1034 proteins in EVs that were unique to the hypoxic status of U87-MG cells. We subsequently identified an EV protein signature, “HYPSIGNATURE”, encompassing nine proteins that strongly represented the hypoxic situation and exhibited close proximity to the mesenchymal GBM subtype. Conclusions We propose, for the first time, an EV protein signature that could comprehensively reflect the hypoxic status of high-grade glioma cells. The presented data provide proof-of-concept for targeted proteomic profiling of glioma derived EVs, which should motivate future studies exploring its utility in non-invasive diagnosis and monitoring of brain tumor patients. Electronic supplementary material The online version of this article (10.1007/s11060-019-03262-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vineesh Indira Chandran
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden.
| | - Charlotte Welinder
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | | | - Myriam Cerezo-Magaña
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Ann-Sofie Månsson
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Maria C Johansson
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Gyorgy Marko-Varga
- Department of Biomedical Engineering, Clinical Protein Science & Imaging, Biomedical Center, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Lund, Division of Oncology and Pathology, Lund University, Lund, Sweden.,Department of Hematology, Oncology and Radiophysics, Skåne University Hospital, Lund, Sweden.,Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
162
|
Dvorská D, Škovierová H, Braný D, Halašová E, Danková Z. Liquid Biopsy as a Tool for Differentiation of Leiomyomas and Sarcomas of Corpus Uteri. Int J Mol Sci 2019; 20:E3825. [PMID: 31387281 PMCID: PMC6695893 DOI: 10.3390/ijms20153825] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/31/2019] [Accepted: 08/01/2019] [Indexed: 01/10/2023] Open
Abstract
Utilization of liquid biopsy in the management of cancerous diseases is becoming more attractive. This method can overcome typical limitations of tissue biopsies, especially invasiveness, no repeatability, and the inability to monitor responses to medication during treatment as well as condition during follow-up. Liquid biopsy also provides greater possibility of early prediction of cancer presence. Corpus uteri mesenchymal tumors are comprised of benign variants, which are mostly leiomyomas, but also a heterogenous group of malignant sarcomas. Pre-surgical differentiation between these tumors is very difficult and the final description of tumor characteristics usually requires excision and histological examination. The leiomyomas and malignant leiomyosarcomas are especially difficult to distinguish and can, therefore, be easily misdiagnosed. Because of the very aggressive character of sarcomas, liquid biopsy based on early diagnosis and differentiation of these tumors would be extremely helpful. Moreover, after excision of the tumor, liquid biopsy can contribute to an increased knowledge of sarcoma behavior at the molecular level, especially on the formation of metastases which is still not well understood. In this review, we summarize the most important knowledge of mesenchymal uterine tumors, the possibilities and benefits of liquid biopsy utilization, the types of molecules and cells that can be analyzed with this approach, and the possibility of their isolation and capture. Finally, we review the typical abnormalities of leiomyomas and sarcomas that can be searched and analyzed in liquid biopsy samples with the final aim to pre-surgically differentiate between benign and malignant mesenchymal tumors.
Collapse
Affiliation(s)
- Dana Dvorská
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Henrieta Škovierová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Dušan Braný
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia.
| | - Erika Halašová
- Division of Molecular Medicine, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| | - Zuzana Danková
- Division of Oncology, Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava, 036 01 Martin, Slovakia
| |
Collapse
|
163
|
Nawaz M, Malik MI, Hameed M, Zhou J. Research progress on the composition and function of parasite-derived exosomes. Acta Trop 2019; 196:30-36. [PMID: 31071298 DOI: 10.1016/j.actatropica.2019.05.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/04/2019] [Accepted: 05/04/2019] [Indexed: 12/20/2022]
Abstract
Parasites use excretory-secretory pathways to communicate with the host. Characterization of exosomes within the excretory-secretory products reveal by which parasites manipulate their hosts. Parasite derived exosomes provide a mechanistic framework for protein and miRNAs transfer. Transcriptomics and proteomics of parasite exosomes identified a large number of miRNAs and proteins being utilized by parasites in their survival, reproduction and development. Characterization of proteins and miRNAs in parasite secreted exosomes provide important information on host-parasite communication and forms the basis for future studies. In this review, we summarize recent advances in isolation and molecular characterization (protein and miRNAs) of parasite derived exosomes.
Collapse
Affiliation(s)
- Mohsin Nawaz
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Muhammad Irfan Malik
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Muddassar Hameed
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China
| | - Jinlin Zhou
- Key Laboratory of Animal Parasitology of Ministry of Agriculture, Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai, 200241, China.
| |
Collapse
|
164
|
Scavo MP, Depalo N, Rizzi F, Ingrosso C, Fanizza E, Chieti A, Messa C, Denora N, Laquintana V, Striccoli M, Curri ML, Giannelli G. FZD10 Carried by Exosomes Sustains Cancer Cell Proliferation. Cells 2019; 8:E777. [PMID: 31349740 PMCID: PMC6721576 DOI: 10.3390/cells8080777] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 01/10/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in intercellular communication during carcinogenesis, and cancer cells are able to secrete EVs, in particular exosomes containing molecules, that can be transferred to recipient cells to induce pathological processes and significant modifications, as metastasis, increase of proliferation, and carcinogenesis evolution. FZD proteins, a family of receptors comprised in the Wnt signaling pathway, play an important role in carcinogenesis of the gastroenteric tract. Here, a still unknown role of Frizzled 10 (FZD10) protein was identified. In particular, the presence of FZD10 and FZD10-mRNA in exosomes extracted from culture medium of the untreated colorectal, gastric, hepatic, and cholangio cancer cell lines, was detected. A substantial reduction in the FZD10 and FZD10-mRNA level was achieved in FZD10-mRNA silenced cells and in their corresponding exosomes. Concomitantly, a significant decrease in viability of the silenced cells compared to their respective controls was observed. Notably, the incubation of silenced cells with the exosomes extracted from culture medium of the same untreated cells promoted the restoration of the cell viability and, also, of the FZD10 and FZD10-mRNA level, thus indicating that the FZD10 and FZD10-mRNA delivering exosomes may be potential messengers of cancer reactivation and play an active role in long-distance metastatization.
Collapse
Affiliation(s)
- Maria Principia Scavo
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. De Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
| | - Nicoletta Depalo
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Federica Rizzi
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Chiara Ingrosso
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Elisabetta Fanizza
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Annarita Chieti
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. De Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Caterina Messa
- Laboratory of Clinical Biochemistry, National Institute of Gastroenterology "S. De Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy
| | - Nunzio Denora
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Farmacia, Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Valentino Laquintana
- Dipartimento di Farmacia, Scienze del Farmaco, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Marinella Striccoli
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
| | - Maria Lucia Curri
- Institute for Chemical and Physical Processes (IPCF)-CNR SS Bari, Via Orabona 4, 70126 Bari, Italy
- Dipartimento di Chimica, Università degli Studi di Bari Aldo Moro, Via Orabona 4, 70126 Bari, Italy
| | - Gianluigi Giannelli
- Personalized Medicine Laboratory, National Institute of Gastroenterology "S. De Bellis", Via Turi 27, Castellana Grotte, 70013 Bari, Italy.
- National Institute of Gastroenterology "S. De Bellis", Scientific Direction, Via Turi 27, Castellana Grotte 70013 Bari, Italy.
| |
Collapse
|
165
|
Microglia-neuron crosstalk: Signaling mechanism and control of synaptic transmission. Semin Cell Dev Biol 2019; 94:138-151. [PMID: 31112798 DOI: 10.1016/j.semcdb.2019.05.017] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/17/2019] [Accepted: 05/16/2019] [Indexed: 12/13/2022]
Abstract
The continuous crosstalk between microglia and neurons is required for microglia housekeeping functions and contributes to brain homeostasis. Through these exchanges, microglia take part in crucial brain functions, including development and plasticity. The alteration of neuron-microglia communication contributes to brain disease states with consequences, ranging from synaptic function to neuronal survival. This review focuses on the signaling pathways responsible for neuron-microglia crosstalk, highlighting their physiological roles and their alteration or specific involvement in disease. In particular, we discuss studies, establishing how these signaling allow microglial cells to control relevant physiological functions during brain development, including synaptic formation and circuit refinement. In addition, we highlight how microglia and neurons interact functionally to regulate highly dynamical synaptic functions. Microglia are able to release several signaling molecules involved in the regulation of synaptic activity and plasticity. On the other side, molecules of neuronal origin control microglial processes motility in an activity-dependent manner. Indeed, the continuous crosstalk between microglia and neurons is required for the sensing and housekeeping functions of microglia and contributes to the maintenance of brain homeostasis and, particularly, to the sculpting of neuronal connections during development. These interactions lay on the delicate edge between physiological processes and homeostasis alteration in pathology and are themselves altered during neuroinflammation. The full description of these processes could be fundamental for understanding brain functioning in health and disease.
Collapse
|
166
|
Santos MF, Rappa G, Karbanová J, Vanier C, Morimoto C, Corbeil D, Lorico A. Anti-human CD9 antibody Fab fragment impairs the internalization of extracellular vesicles and the nuclear transfer of their cargo proteins. J Cell Mol Med 2019; 23:4408-4421. [PMID: 30982221 PMCID: PMC6533511 DOI: 10.1111/jcmm.14334] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 02/28/2019] [Accepted: 03/21/2019] [Indexed: 12/14/2022] Open
Abstract
The intercellular communication mediated by extracellular vesicles (EVs) has gained international interest during the last decade. Interfering with the mechanisms regulating this cellular process might find application particularly in oncology where cancer cell‐derived EVs play a role in tumour microenvironment transformation. Although several mechanisms were ascribed to explain the internalization of EVs, little is our knowledge about the fate of their cargos, which are crucial to mediate their function. We recently demonstrated a new intracellular pathway in which a fraction of endocytosed EV‐associated proteins is transported into the nucleoplasm of the host cell via a subpopulation of late endosomes penetrating into the nucleoplasmic reticulum. Silencing tetraspanin CD9 both in EVs and recipient cells strongly decreased the endocytosis of EVs and abolished the nuclear transfer of their cargos. Here, we investigated whether monovalent Fab fragments derived from 5H9 anti‐CD9 monoclonal antibody (referred hereafter as CD9 Fab) interfered with these cellular processes. To monitor the intracellular transport of proteins, we used fluorescent EVs containing CD9‐green fluorescent protein fusion protein and various melanoma cell lines and bone marrow‐derived mesenchymal stromal cells as recipient cells. Interestingly, CD9 Fab considerably reduced EV uptake and the nuclear transfer of their proteins in all examined cells. In contrast, the divalent CD9 antibody stimulated both events. By impeding intercellular communication in the tumour microenvironment, CD9 Fab‐mediated inhibition of EV uptake, combined with direct targeting of cancerous cells could lead to the development of novel anti‐melanoma therapeutic strategies.
Collapse
Affiliation(s)
- Mark F Santos
- College of Medicine, Touro University Nevada, Henderson, Nevada
| | - Germana Rappa
- College of Medicine, Touro University Nevada, Henderson, Nevada
| | - Jana Karbanová
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Cheryl Vanier
- College of Medicine, Touro University Nevada, Henderson, Nevada
| | - Chikao Morimoto
- Department of Therapy Development and Innovation for Immune Disorders and Cancers, Graduate School of Medicine, Juntendo University, Bunkyo-ku, Tokyo, Japan
| | - Denis Corbeil
- Biotechnology Center and Center for Molecular and Cellular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | - Aurelio Lorico
- College of Medicine, Touro University Nevada, Henderson, Nevada.,Mediterranean Institute of Oncology, Viagrande, Italy
| |
Collapse
|
167
|
Jaiswal R, Sedger LM. Intercellular Vesicular Transfer by Exosomes, Microparticles and Oncosomes - Implications for Cancer Biology and Treatments. Front Oncol 2019; 9:125. [PMID: 30895170 PMCID: PMC6414436 DOI: 10.3389/fonc.2019.00125] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
Intercellular communication is a normal feature of most physiological interactions between cells in healthy organisms. While cells communicate directly through intimate physiology contact, other mechanisms of communication exist, such as through the influence of soluble mediators such as growth factors, cytokines and chemokines. There is, however, yet another mechanism of intercellular communication that permits the exchange of information between cells through extracellular vesicles (EVs). EVs are microscopic (50 nm−10 μM) phospholipid bilayer enclosed entities produced by virtually all eukaryotic cells. EVs are abundant in the intracellular space and are present at a cells' normal microenvironment. Irrespective of the EV “donor” cell type, or the mechanism of EV biogenesis and production, or the size and EV composition, cancer cells have the potential to utilize EVs in a manner that enhances their survival. For example, cancer cell EV overproduction confers benefits to tumor growth, and tumor metastasis, compared with neighboring healthy cells. Herein, we summarize the current status of knowledge on different populations of EVs. We review the situations that regulate EV release, and the factors that instruct differential packaging or sorting of EV content. We then highlight the functions of cancer-cell derived EVs as they impact on cancer outcomes, promoting tumor progression, metastases, and the mechanisms by which they facilitate the creation of a pre-metastatic niche. The review finishes by focusing on the beneficial (and challenging) features of tumor-derived EVs that can be adapted and utilized for cancer treatments, including those already being investigated in human clinical trials.
Collapse
Affiliation(s)
- Ritu Jaiswal
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia.,Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Sydney, NSW, Australia
| | - Lisa M Sedger
- Faculty of Science, School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| |
Collapse
|
168
|
Matsumura S, Minamisawa T, Suga K, Kishita H, Akagi T, Ichiki T, Ichikawa Y, Shiba K. Subtypes of tumour cell-derived small extracellular vesicles having differently externalized phosphatidylserine. J Extracell Vesicles 2019; 8:1579541. [PMID: 30834072 PMCID: PMC6394288 DOI: 10.1080/20013078.2019.1579541] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/30/2019] [Accepted: 02/03/2019] [Indexed: 01/08/2023] Open
Abstract
Phosphatidylserine (PS) has skewed distributions in the plasma membrane and is preferentially located in the inner leaflet of normal cells. Tumour cells, however, expose PS at the outer leaflet of cell surfaces, thereby potentially modulating the bio-signalling of cells. Interestingly, exosomes - or, more properly, small extracellular vesicles (sEVs) - which are secreted from tumour cells, are enriched with externalized PS, have been proposed as being involved in the progression of cancers, and could be used as a marker for tumour diagnostics. However, the sEV fractions prepared from various methods are composed of different subtypes of vesicles, and knowledge about the subtypes enriched with exposed PS is still limited. Here, we differentiated sEVs from cancer cell lines by density gradient centrifugation and characterized the separated fractions by using gold-labelling of PS in atomic force microscopy, thrombin generation assay, size and zeta potential measurements, and western blot analysis. These analyses revealed a previously unreported PS+-enriched sEV subtype, which is characterized by a lower density than that of canonical exosomes (1.06 g/ml vs. 1.08 g/ml), larger size (122 nm vs. 105 nm), more negative zeta potential (-28 mV vs. -21 mV), and lower abundance of canonical exosomal markers. The identification of the PS-exposed subtype of sEVs will provide deeper insight into the role of EVs in tumour biology and enhance the development of EV-based tumour diagnosis and therapy.
Collapse
Affiliation(s)
- Sachiko Matsumura
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Tamiko Minamisawa
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Kanako Suga
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Hiromi Kishita
- Department of Material Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takanori Akagi
- Department of Material Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Takanori Ichiki
- Department of Material Engineering, School of Engineering, The University of Tokyo, Tokyo, Japan
| | | | - Kiyotaka Shiba
- Division of Protein Engineering, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| |
Collapse
|
169
|
Gärtner K, Luckner M, Wanner G, Zeidler R. Engineering extracellular vesicles as novel treatment options: exploiting herpesviral immunity in CLL. J Extracell Vesicles 2019; 8:1573051. [PMID: 30788083 PMCID: PMC6374966 DOI: 10.1080/20013078.2019.1573051] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 12/17/2018] [Accepted: 01/18/2019] [Indexed: 12/18/2022] Open
Abstract
Extracellular vesicles (EVs) are important mediators of cell–cell communication. Intriguingly, EVs can be engineered and thus exploited for the targeted transfer of functional proteins of interest. Thus, engineered EVs may constitute attractive tools for the development of novel therapeutic interventions, like cancer immunotherapies, vaccinations or targeted drug delivery. Here, we describe a novel experimental immunotherapeutic approach for the adjuvant treatment of chronic lymphocytic leukaemia (CLL) based on engineered EVs carrying gp350, the major glycoprotein of Epstein–Barr virus (EBV), CD40L, a central immune accessory molecule and pp65, an immunodominant antigen of the human cytomegalovirus (CMV). We show that these engineered EVs specifically interact with malignant B cells from CLL patients and render these cells immunogenic to allogeneic and autologous EBV- and CMV-specific CD4+ and CD8+ T cells. Collectively, co-opting engineered EVs to re-target the strong herpesviral immunity in CLL patients to malignant cells constitutes an attractive strategy for the adjuvant treatment of a still incurable disease. Abbreviations: CLL: chronic lymphocytic leukaemia; EBV: Epstein-Barr virus; CMV: cytomegalovirus
Collapse
Affiliation(s)
- Kathrin Gärtner
- Research Unit Gene Vectors, Helmholtz Centre Munich German Research Centre for Environmental Health, Munich, Germany
| | - Manja Luckner
- Department of Biology I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Gerhard Wanner
- Department of Biology I, Ludwig-Maximilians-Universität, Munich, Germany
| | - Reinhard Zeidler
- Research Unit Gene Vectors, Helmholtz Centre Munich German Research Centre for Environmental Health, Munich, Germany.,German Centre for Infection Research (DZIF) - partner site, Munich, Germany.,Department of Otorhinolaryngology, Klinikum der Universität (KUM), Munich, Germany
| |
Collapse
|
170
|
Choi JS, Cho WL, Choi YJ, Kim JD, Park HA, Kim SY, Park JH, Jo DG, Cho YW. Functional recovery in photo-damaged human dermal fibroblasts by human adipose-derived stem cell extracellular vesicles. J Extracell Vesicles 2019; 8:1565885. [PMID: 30719241 PMCID: PMC6346706 DOI: 10.1080/20013078.2019.1565885] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 12/26/2018] [Accepted: 01/03/2019] [Indexed: 12/20/2022] Open
Abstract
Ultraviolet-B (UVB) irradiation causes imbalance between dermal matrix synthesis and degradation through aberrant upregulation of matrix metalloproteinases (MMPs), which leads to overall skin photoaging. We investigated the effects of extracellular vesicles (EVs) derived from human adipose-derived stem cells (HASCs) on photo-damaged human dermal fibroblasts (HDFs). EVs were isolated from conditioned media of HASCs with tangential flow filtration and characterized using transmission electron microscopy (TEM), nanoparticle tracking analysis (NTA), western blotting, micro RNA (miRNA) arrays, cytokine arrays and liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). The effects of EVs on the UVB-irradiated HDFs were evaluated using scratch assay, ELISA and real-time PCR. Microarrays exhibited that EVs are rich in various miRNAs and proteins, and that these EV contents are linked to a broad range of biological functions, including fibroblast proliferation, UV protection, collagen biosynthesis, DNA repair and cell ageing. A scratch assay showed that HASC-EVs enhanced the migration ability of UVB-irradiated HDFs. Real-time RT-PCR and ELISA analyses revealed that the HASC-derived EVs significantly suppressed the overexpression of MMP-1, -2, -3 and -9 induced by UVB irradiation and enhanced the expression of collagen types I, II, III and V and elastin. In particular, tissue inhibitor of metalloproteinase (TIMP)-1 and transforming growth factor (TGF)-β1, which are important factors involved in MMP suppression and ECM synthesis, were upregulated in EV-treated HDFs after UVB irradiation. Overall results suggest that diverse components that are enriched in HASC-derived EVs could act as a biochemical cue for recovery from skin photoaging.
Collapse
Affiliation(s)
- Ji Suk Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea.,Research Institute, Exostemtech Inc, Ansan, Republic of Korea
| | - Woo Lee Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Yeo Jin Choi
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea
| | - Jae Dong Kim
- Research Institute, Exostemtech Inc, Ansan, Republic of Korea
| | - Hyun-A Park
- Research Institute, Exostemtech Inc, Ansan, Republic of Korea
| | - Su Yeon Kim
- Research Institute, Exostemtech Inc, Ansan, Republic of Korea
| | - Jae Hyung Park
- School of Chemical Engineering, Sungkyunkwan University, Suwon, Republic of Korea
| | - Dong-Gyu Jo
- School of Pharmacy, Sungkyunkwan University, Suwon, Republic of Korea
| | - Yong Woo Cho
- Department of Chemical Engineering, Hanyang University, Ansan, Republic of Korea.,Research Institute, Exostemtech Inc, Ansan, Republic of Korea
| |
Collapse
|
171
|
Dionisi M, De Archangelis C, Battisti F, Rahimi Koshkaki H, Belleudi F, Zizzari IG, Ruscito I, Albano C, Di Filippo A, Torrisi MR, Benedetti Panici P, Napoletano C, Nuti M, Rughetti A. Tumor-Derived Microvesicles Enhance Cross-Processing Ability of Clinical Grade Dendritic Cells. Front Immunol 2018; 9:2481. [PMID: 30455687 PMCID: PMC6230586 DOI: 10.3389/fimmu.2018.02481] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 10/08/2018] [Indexed: 12/29/2022] Open
Abstract
Tumor cells release extracellular microvesicles (MVs) in the microenvironment to deliver biological signals to neighboring cells as well as to cells in distant tissues. Tumor-derived MVs appear to play contradictory role promoting both immunosuppression and tumor growth and both evoking tumor specific immune response. Recent evidences indicate that tumor-derived MVs can positively impact Dendritic Cells (DCs) immunogenicity by reprogramming DC antigen processing machinery and intracellular signaling pathways, thus promoting anti-tumor response. DCs are considered pivot cells of the immune system due to their exclusive ability to coordinate the innate and acquired immune responses, cross-present exogenous antigens, and prime naïve T cells. DCs are required for the induction and maintenance of long-lasting anti-tumor immunity and their exploitation has been extensively investigated for the design of anti-tumor vaccines. However, the clinical grade culture conditions that are required to generate DCs for therapeutic use can strongly affect their functions. Here, we investigated the immunomodulatory impact of MVs carrying the MUC1 tumor glycoantigen (MVsMUC1) as immunogen formulation on clinical grade DCs grown in X-VIVO 15 (X-DCs). Results indicated that X-DCs displayed reduced performance of the antigen processing machinery in term of diminished phagocytosis and acidification of the phagosomal compartment suggesting an altered immunogenicity of clinical grade DCs. Pulsing DCs with MVsMUC1 restored phagosomal alkalinization, triggering ROS increase. This was not observed when a soluble MUC1 protein was employed (rMUC1). Concurrently, MVsMUC1 internalization by X-DCs allowed MUC1 cross-processing. Most importantly, MVsMUC1 pulsed DCs activated IFNγ response mediated by MUC1 specific CD8+ T cells. These results strongly support the employment of tumor-derived MVs as immunogen platforms for the implementation of DC-based vaccines.
Collapse
Affiliation(s)
- Marco Dionisi
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Federico Battisti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Francesca Belleudi
- Department of Clinical and Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy
| | | | - Ilary Ruscito
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy.,European Competence Center for Ovarian Cancer, Department of Gynecology, Campus Virchow Klinikum, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Christian Albano
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | | | - Maria Rosaria Torrisi
- Department of Clinical and Molecular Medicine, Laboratory affiliated to Istituto Pasteur Italia - Fondazione Cenci Bolognetti, "Sapienza" University of Rome, Rome, Italy.,U.O.C. Genetica medica e Diagnostica cellulare avanzata, S. Andrea University Hospital, Rome, Italy
| | | | - Chiara Napoletano
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Marianna Nuti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| | - Aurelia Rughetti
- Department of Experimental Medicine, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
172
|
Li Y, Xu X, Tang X, Bian X, Shen B, Zhao H, Luo S, Chen Z, Zhang K. MicroRNA expression profile of urinary exosomes in Type IV lupus nephritis complicated by cellular crescent. ACTA ACUST UNITED AC 2018; 25:16. [PMID: 30306067 PMCID: PMC6172751 DOI: 10.1186/s40709-018-0088-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Accepted: 09/20/2018] [Indexed: 01/03/2023]
Abstract
Background Type IV lupus nephritis (LNIV) is a severe disease characterized by diffuse proliferative lesions, and its prognosis is worse with cellular crescent (LNIV-CC) involvement. Urinary exosomes have been shown to reflect the degree of kidney injury. This study was aimed to identify non-invasive diagnostic markers for LNIV-CC. We analysed the expression profile of microRNAs (miRNAs) isolated from urinary exosomes in patients with LNIV-CC and LNIV, and healthy individuals using high-throughput sequencing. Results A total of 66 differentially expressed miRNAs were identified, which were significantly enriched in 15 signalling pathways. Bioinformatic analysis revealed a co-expression network of miRNAs, predicted transcription factors and target mRNAs. Expression of three miRNAs including miR-3135b, miR-654-5p, and miR-146a-5p were further analysed and validated by reverse transcription-quantitative polymerase chain reaction. ROC analysis suggested these as candidate biomarkers for LNIV-CC. Conclusions LNIV-CC has a unique miRNA expression profile of urinary exosome and complex regulatory network. miR-3135b, miR-654-5p and miR-146a-5p in urinary exosomes could be used as novel non-invasive diagnostic markers for LNIV-CC.
Collapse
Affiliation(s)
- Yi Li
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Xiaosong Xu
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Xiaopeng Tang
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Xiuwu Bian
- Department of Pathology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Bingbing Shen
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Hongwen Zhao
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Shiyuan Luo
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Zhiwen Chen
- Department of Urology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| | - Keqin Zhang
- Department of Nephrology, The First Hospital Affiliated To Army Medical University, No. 29 Gaotanyan Street, Sha Ping Ba District, Chongqing, 400038 China
| |
Collapse
|
173
|
Kroniger T, Otto A, Becher D. Proteomic analysis of bacterial (outer) membrane vesicles: progress and clinical potential. Expert Rev Proteomics 2018; 15:623-626. [DOI: 10.1080/14789450.2018.1505509] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Tobias Kroniger
- Center for Functional Genomics of Microbes, Department Microbial Proteomics, Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Andreas Otto
- Center for Functional Genomics of Microbes, Department Microbial Proteomics, Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| | - Dörte Becher
- Center for Functional Genomics of Microbes, Department Microbial Proteomics, Institute for Microbiology, Ernst-Moritz-Arndt University Greifswald, Greifswald, Germany
| |
Collapse
|