151
|
Najafi-Ghalehlou N, Roudkenar MH, Langerodi HZ, Roushandeh AM. Taming of Covid-19: potential and emerging application of mesenchymal stem cells. Cytotechnology 2021; 73:253-298. [PMID: 33776206 PMCID: PMC7982879 DOI: 10.1007/s10616-021-00461-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 02/17/2021] [Indexed: 12/24/2022] Open
Abstract
Coronavirus Disease 2019 (COVID-19) caused by the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has turned out to cause a pandemic, with a sky scraping mortality. The virus is thought to cause tissue injury by affecting the renin-angiotensin system. Also, the role of the over-activated immune system is noteworthy, leading to severe tissue injury via the cytokine storms. Thus it would be feasible to modulate the immune system response in order to attenuate the disease severity, as well as treating the patients. Today different medicines are being administered to the patients, but regardless of the efficacy of these treatments, adverse effects are pretty probable. Meanwhile, mesenchymal stem cells (MSCs) prove to be an effective candidate for treating the patients suffering from COVID-19 pneumonia, owing to their immunomodulatory and tissue-regenerative potentials. So far, several experiments have been conducted; transplanting MSCs and results are satisfying with no adverse effects being reported. This paper aims to review the recent findings regarding the novel coronavirus and the conducted experiments to treat patients suffering from COVID-19 pneumonia utilizing MSCs.
Collapse
Affiliation(s)
- Nima Najafi-Ghalehlou
- Department of Medical Laboratory Sciences, Faculty of Paramedicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mehryar Habibi Roudkenar
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Medical Biotechnology Department, Paramedicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| | - Habib Zayeni Langerodi
- Guilan Rheumatology Research Center (GRRC), Guilan University of Medical Sciences, Rasht, Iran
| | - Amaneh Mohammadi Roushandeh
- Burn and Regenerative Medicine Research Center, Velayat Hospital, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
- Anatomical Sciences Department, Medicine Faculty, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
152
|
Alicic RZ, Cox EJ, Neumiller JJ, Tuttle KR. Incretin drugs in diabetic kidney disease: biological mechanisms and clinical evidence. Nat Rev Nephrol 2021; 17:227-244. [PMID: 33219281 DOI: 10.1038/s41581-020-00367-2] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/16/2020] [Indexed: 01/30/2023]
Abstract
As the prevalence of diabetes continues to climb, the number of individuals living with diabetic complications will reach an unprecedented magnitude. The emergence of new glucose-lowering agents - sodium-glucose cotransporter 2 inhibitors and incretin therapies - has markedly changed the treatment landscape of type 2 diabetes mellitus. In addition to effectively lowering glucose, incretin drugs, which include glucagon-like peptide 1 receptor (GLP1R) agonists and dipeptidyl peptidase 4 (DPP4) inhibitors, can also reduce blood pressure, body weight, the risk of developing or worsening chronic kidney disease and/or atherosclerotic cardiovascular events, and the risk of death. Although kidney disease events have thus far been secondary outcomes in clinical trials, an ongoing phase III trial in patients with diabetic kidney disease will test the effect of a GLP1R agonist on a primary kidney disease outcome. Experimental data have identified the modulation of innate immunity and inflammation as plausible biological mechanisms underpinning the kidney-protective effects of incretin-based agents. These drugs block the mechanisms involved in the pathogenesis of kidney damage, including the activation of resident mononuclear phagocytes, tissue infiltration by non-resident inflammatory cells, and the production of pro-inflammatory cytokines and adhesion molecules. GLP1R agonists and DPP4 inhibitors might also attenuate oxidative stress, fibrosis and cellular apoptosis in the kidney.
Collapse
Affiliation(s)
- Radica Z Alicic
- Providence Medical Research Center, Providence Health Care, Spokane, WA, USA.,Department of Medicine, University of Washington School of Medicine, Spokane and Seattle, WA, USA
| | - Emily J Cox
- Providence Medical Research Center, Providence Health Care, Spokane, WA, USA
| | - Joshua J Neumiller
- Department of Pharmacotherapy, College of Pharmacy and Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - Katherine R Tuttle
- Providence Medical Research Center, Providence Health Care, Spokane, WA, USA. .,Nephrology Division, Kidney Research Institute and Institute of Translational Health Sciences, University of Washington, Spokane and Seattle, WA, USA.
| |
Collapse
|
153
|
Abstract
PURPOSE OF REVIEW To discuss the diagnosis, treatment, and complications of diabetes in people with HIV (PWH) and to review HIV-related factors that may contribute to the development of diabetes or alter decisions in the care and treatment of PWH with diabetes. RECENT FINDINGS For those patients with atherosclerotic cardiovascular disease, heart failure, and/or chronic kidney disease, GLP-1 receptor agonists and SGLT-2 inhibitors should be considered for use. Evidence for this recommendation is, however, based on studies that were not conducted in populations consisting solely of PWH. Diabetes is a significant comorbidity in PWH and adds to their already heightened risk of cardiovascular disease. HIV-specific factors, including interactions of antiretroviral therapy with medications that either treat diabetes and/or prevent cardiovascular disease, should be evaluated.
Collapse
Affiliation(s)
- Sudipa Sarkar
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, 5501 Hopkins Bayview Circle, Asthma and Allergy Center 3B.74D, Baltimore, MD, 21224, USA.
| | - Todd T Brown
- Division of Endocrinology, Diabetes, and Metabolism, Johns Hopkins University School of Medicine, 1830 East Monument Street, Suite 333, Baltimore, MD, 21287, USA
| |
Collapse
|
154
|
Vieira C, Nery L, Martins L, Jabour L, Dias R, Simões E Silva AC. Downregulation of Membrane-bound Angiotensin Converting Enzyme 2 (ACE2) Receptor has a Pivotal Role in COVID-19 Immunopathology. Curr Drug Targets 2021; 22:254-281. [PMID: 33081670 DOI: 10.2174/1389450121666201020154033] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 09/06/2020] [Accepted: 09/22/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND The Coronavirus Disease 2019 (COVID-19) is becoming the major health issue in recent human history with thousands of deaths and millions of cases worldwide. Newer research and old experience with other coronaviruses highlighted a probable underlying mechanism of disturbance of the renin-angiotensin system (RAS) that is associated with the intrinsic effects of SARS-CoV-2 infection. OBJECTIVE In this review, we aimed to describe the intimate connections between the RAS components, the immune system and COVID-19 pathophysiology. METHODS This non-systematic review article summarizes recent evidence on the relationship between COVID-19 and the RAS. RESULTS Several studies have indicated that the downregulation of membrane-bound ACE2 may exert a key role for the impairment of immune functions and for COVID-19 patients' outcomes. The downregulation may occur by distinct mechanisms, particularly: (1) the shedding process induced by the SARS-CoV-2 fusion pathway, which reduces the amount of membrane-bound ACE2, stimulating more shedding by the high levels of Angiotensin II; (2) the endocytosis of ACE2 receptor with the virus itself and (3) by the interferon inhibition caused by SARS-CoV-2 effects on the immune system, which leads to a reduction of ACE2 receptor expression. CONCLUSION Recent research provides evidence of a reduction of the components of the alternative RAS axis, including ACE2 and Angiotensin-(1-7). In contrast, increased levels of Angiotensin II can activate the AT1 receptor in several organs. Consequently, increased inflammation, thrombosis and angiogenesis occur in patients infected with SARS-COV-2. Attention should be paid to the interactions of the RAS and COVID-19, mainly in the context of novel vaccines and proposed medications.
Collapse
Affiliation(s)
- Cristina Vieira
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Lucas Nery
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ludimila Martins
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Luiz Jabour
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Raphael Dias
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| | - Ana Cristina Simões E Silva
- Interdisciplinary Laboratory of Medical Investigation, Faculty of Medicine, Federal University of Minas Gerais (UFMG), Belo Horizonte, MG, Brazil
| |
Collapse
|
155
|
De Lorenzo R, Sciorati C, Monno A, Cavalli S, Bonomi F, Tronci S, Previtali S, Rovere-Querini P. Begelomab for severe refractory dermatomyositis: A case report. Medicine (Baltimore) 2021; 100:e24372. [PMID: 33655912 PMCID: PMC7939186 DOI: 10.1097/md.0000000000024372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/29/2020] [Indexed: 01/04/2023] Open
Abstract
RATIONALE Severe refractory idiopathic inflammatory myopathy (IIM) represents a challenge for the clinician. The lack of efficacy of available tools reflects our incomplete insight into the molecular events sustaining the inflammatory tissue damage in these patients. We present the first case of refractory IIM treated with anti-dipeptidyl peptidase-4 (DPP-4)/cluster of differentiation 26 (CD26) monoclonal antibody. PATIENT CONCERNS A 55-year old man presented with proximal muscle weakness, diffuse erythematous skin lesions which rapidly evolved into ulcerations, dysphagia and dysphonia. DIAGNOSIS Increased serum creatine kinase levels and histological findings at muscle and skin biopsies were compatible with the diagnosis of dermatomyositis (DM). Several lines of treatment failed to control the disease including steroids, mycophenolate mofetil, tacrolimus, intravenous immunoglobulins and rituximab. Despite therapy, the patient also had recurrent intestinal vasculitis causing bowel perforation. Concurrently, DPP-4/CD26 expression in the patient's skin and skeletal muscle was observed. INTERVENTIONS The patient was treated with begelomab, a murine immunoglobulin G2b monoclonal antibody against DPP-4/CD26. OUTCOMES Dysphagia, skin lesions and intestinal vasculitis resolved and the patient experienced a significant improvement of his quality of life. CONCLUSION Blockade of DPP-4/CD26, which is expressed on T cells and mediates T cell activation and function, is safe and might be effective in patients with refractory DM.
Collapse
Affiliation(s)
| | - Clara Sciorati
- Division of Immunology, Transplantation and Infectious diseases, IRCCS Ospedale San Raffaele
| | - Antonella Monno
- Division of Immunology, Transplantation and Infectious diseases, IRCCS Ospedale San Raffaele
| | | | | | - Stefano Tronci
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Stefano Previtali
- Institute of Experimental Neurology (InSpe), Division of Neuroscience, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Patrizia Rovere-Querini
- Division of Immunology, Transplantation and Infectious diseases, IRCCS Ospedale San Raffaele
- Università Vita-Salute San Raffaele
| |
Collapse
|
156
|
Devarakonda CKV, Meredith E, Ghosh M, Shapiro LH. Coronavirus Receptors as Immune Modulators. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:923-929. [PMID: 33380494 PMCID: PMC7889699 DOI: 10.4049/jimmunol.2001062] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022]
Abstract
The Coronaviridae family includes the seven known human coronaviruses (CoV) that cause mild to moderate respiratory infections (HCoV-229E, HCoV-NL63, HCoV-OC43, HCoV-HKU1) as well as severe illness and death (MERS-CoV, SARS-CoV, SARS-CoV-2). Severe infections induce hyperinflammatory responses that are often intensified by host adaptive immune pathways to profoundly advance disease severity. Proinflammatory responses are triggered by CoV entry mediated by host cell surface receptors. Interestingly, five of the seven strains use three cell surface metallopeptidases (CD13, CD26, and ACE2) as receptors, whereas the others employ O-acetylated-sialic acid (a key feature of metallopeptidases) for entry. Why CoV evolved to use peptidases as their receptors is unknown, but the peptidase activities of the receptors are dispensable, suggesting the virus uses/benefits from other functions of these molecules. Indeed, these receptors participate in the immune modulatory pathways that contribute to the pathological hyperinflammatory response. This review will focus on the role of CoV receptors in modulating immune responses.
Collapse
Affiliation(s)
| | - Emily Meredith
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Mallika Ghosh
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| | - Linda H Shapiro
- Center for Vascular Biology, University of Connecticut School of Medicine, Farmington, CT 06030
| |
Collapse
|
157
|
Benetti A, Martins FL, Sene LB, Shimizu MHM, Seguro AC, Luchi WM, Girardi ACC. Urinary DPP4 correlates with renal dysfunction, and DPP4 inhibition protects against the reduction in megalin and podocin expression in experimental CKD. Am J Physiol Renal Physiol 2021; 320:F285-F296. [PMID: 33346727 DOI: 10.1152/ajprenal.00288.2020] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/10/2020] [Indexed: 12/28/2022] Open
Abstract
This study investigated the molecular mechanisms underlying the antiproteinuric effect of DPP4 inhibition in 5/6 renal ablation rats and tested the hypothesis that the urinary activity of DPP4 correlates with chronic kidney disease (CKD) progression. Experiments were conducted in male Wistar rats who underwent 5/6 nephrectomy (Nx) or sham operation followed by 8 wk of treatment with the DPP4 inhibitor (DPP4i) sitagliptin or vehicle. Proteinuria increased progressively in Nx rats throughout the observation period. This increase was remarkably mitigated by sitagliptin. Higher levels of proteinuria in Nx rats compared to control rats were accompanied by higher urinary excretion of retinol-binding protein 4, a marker of tubular proteinuria, as well as higher urinary levels of podocin, a marker of glomerular proteinuria. Retinol-binding protein 4 and podocin were not detected in the urine of Nx + DPP4i rats. Tubular and glomerular proteinuria was associated with the reduced expression of megalin and podocin in the renal cortex of Nx rats. Sitagliptin treatment partially prevented this decrease. Besides, the angiotensin II renal content was significantly reduced in the Nx rats that received sitagliptin compared to vehicle-treated Nx rats. Interestingly, both urinary DPP4 activity and abundance increased progressively in Nx rats. Additionally, urinary DPP4 activity correlated positively with serum creatinine levels, proteinuria, and blood pressure. Collectively, these results suggest that DPP4 inhibition ameliorated both tubular and glomerular proteinuria and prevented the reduction of megalin and podocin expression in CKD rats. Furthermore, these findings suggest that urinary DPP4 activity may serve as a biomarker of renal disease and progression.
Collapse
Affiliation(s)
- Acaris Benetti
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | | | - Letícia Barros Sene
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Maria Heloisa M Shimizu
- Department of Nephrology (LIM 12), University of São Paulo Medical School, São Paulo, Brazil
| | - Antonio C Seguro
- Department of Nephrology (LIM 12), University of São Paulo Medical School, São Paulo, Brazil
| | - Weverton M Luchi
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
- Department of Internal Medicine, Federal University of Espírito Santo, Espírito Santo, Brazil
| | - Adriana C C Girardi
- Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
158
|
Alhakamy NA, Ahmed OAA, Ibrahim TS, Aldawsari HM, Eljaaly K, Fahmy UA, Alaofi AL, Caraci F, Caruso G. Evaluation of the Antiviral Activity of Sitagliptin-Glatiramer Acetate Nano-Conjugates against SARS-CoV-2 Virus. Pharmaceuticals (Basel) 2021; 14:178. [PMID: 33668390 PMCID: PMC7996174 DOI: 10.3390/ph14030178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/17/2021] [Accepted: 02/21/2021] [Indexed: 12/11/2022] Open
Abstract
The outbreak of the COVID-19 pandemic in China has become an urgent health and economic challenge. There is a current race for developing strategies to treat and/or prevent COVID-19 worldwide. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the strain of coronavirus that causes COVID-19. The aim of the present work was to evaluate the efficacy of the combined complex (nano-conjugates) of two FDA-approved drugs, sitagliptin (SIT) and glatiramer acetate (GA), against a human isolate of the SARS-CoV-2 virus. SIT-GA nano-conjugates were prepared according to a full three-factor bilevel (23) factorial design. The SIT concentration (mM, X1), GA concentration (mM, X2), and pH (X3) were selected as the factors. The particle size (nm, Y1) and zeta potential (mV, Y2) were assessed as responses. Characterization of the optimized formula for the Fourier-transform infrared (FTIR) spectroscopy and transmission electron microscopy (TEM) was carried out. In addition, the half-maximal inhibitory concentration (IC50) in Vero-E6 epithelial cells previously infected with the virus was investigated. The results revealed that the optimized formula of the prepared complex was a 1:1 SIT:GA molar ratio at a pH of 10, which met the required criteria with a desirability value of 0.878 and had a particle size and zeta potential at values of 77.42 nm and 27.67 V, respectively. The SIT-GA nano-complex showed antiviral potential against an isolate of SARS-CoV-2 with IC50 values of 16.14, 14.09, and 8.52 µM for SIT, GA, and SIT-GA nano-conjugates, respectively. Molecular docking has shown that the formula's components have a high binding affinity to the COVID 3CL protease, essential for coronavirus replication, paralleled by 3CL protease inhibition (IC50 = 2.87 µM). An optimized formulation of SIT-GA could guarantee both enhanced deliveries to target cells and improved cellular uptake. Further clinical studies are being carried out to validate the clinical efficacy of the optimized formulation against SARS-CoV-2.
Collapse
Affiliation(s)
- Nabil A. Alhakamy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Osama A. A. Ahmed
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Tarek S. Ibrahim
- Department of Organic chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
| | - Hibah M. Aldawsari
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
- Mohamed Saeed Tamer Chair for Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Khalid Eljaaly
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia;
- Pharmacy Practice and Science Department, College of Pharmacy, University of Arizona, Tucson, AZ 85721, USA
| | - Usama A. Fahmy
- Department of Pharmaceutics, Faculty of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (N.A.A.); (O.A.A.A.); (H.M.A.); (U.A.F.)
- Center of Excellence for Drug Research and Pharmaceutical Industries, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed L. Alaofi
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Filippo Caraci
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
- Oasi Research Institute—IRCCS, 94018 Troina, Italy
| | - Giuseppe Caruso
- Department of Drug and Health Sciences, University of Catania, 95125 Catania, Italy
| |
Collapse
|
159
|
Pezhman L, Tahrani A, Chimen M. Dysregulation of Leukocyte Trafficking in Type 2 Diabetes: Mechanisms and Potential Therapeutic Avenues. Front Cell Dev Biol 2021; 9:624184. [PMID: 33692997 PMCID: PMC7937619 DOI: 10.3389/fcell.2021.624184] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) is a chronic inflammatory disorder that is characterized by chronic hyperglycemia and impaired insulin signaling which in addition to be caused by common metabolic dysregulations, have also been associated to changes in various immune cell number, function and activation phenotype. Obesity plays a central role in the development of T2DM. The inflammation originating from obese adipose tissue develops systemically and contributes to insulin resistance, beta cell dysfunction and hyperglycemia. Hyperglycemia can also contribute to chronic, low-grade inflammation resulting in compromised immune function. In this review, we explore how the trafficking of innate and adaptive immune cells under inflammatory condition is dysregulated in T2DM. We particularly highlight the obesity-related accumulation of leukocytes in the adipose tissue leading to insulin resistance and beta-cell dysfunction and resulting in hyperglycemia and consequent changes of adhesion and migratory behavior of leukocytes in different vascular beds. Thus, here we discuss how potential therapeutic targeting of leukocyte trafficking could be an efficient way to control inflammation as well as diabetes and its vascular complications.
Collapse
Affiliation(s)
- Laleh Pezhman
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Abd Tahrani
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, United Kingdom.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, United Kingdom.,University Hospitals Birmingham NHS Foundation Trust, Birmingham, United Kingdom
| | - Myriam Chimen
- Institute of Inflammation and Ageing, College of Medical and Dental Sciences, University of Birmingham, Birmingham, United Kingdom
| |
Collapse
|
160
|
Zarandi PK, Zinatizadeh MR, Zinatizadeh M, Yousefi MH, Rezaei N. SARS-CoV-2: From the pathogenesis to potential anti-viral treatments. Biomed Pharmacother 2021; 137:111352. [PMID: 33550050 PMCID: PMC7969672 DOI: 10.1016/j.biopha.2021.111352] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/26/2021] [Accepted: 01/29/2021] [Indexed: 12/12/2022] Open
Abstract
Introduction The world is witnessing the spread of one of the members of Coronaviruses (CoVs) family, called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the 21st century. Considering the short time spent after its prevalence, limited information is known about the effect of the virus mechanism on different organs of the body; meanwhile the lack of specific treatment and vaccine for this virus has exposed millions of people to a big challenge. Areas covered The review article aims to describe the general and particular characteristics of CoVs, their classification, genome structure, host cell infection, cytokine storm, anti-viral treatments, and inhibition of COVID-19-related ER-mitochondrial stress. In addition, it refers to drugs such as Chloroquine/Hydroxychloroquine, Lopinavir/Ritonavir, darunavir, ribavirin, remdesivir, and favipiravir, which have undergone clinical trials for coronavirus disease 2019 (COVID-19) treatment. This analysis was derived from an extensive scientific literature search including Pubmed, ScienceDirect, and Google Scholar performed. Expert opinion The effectiveness rate and complications of these drugs can reveal new insights into the potential therapeutic goals for the disease. Moreover, lifestyle change can effectively prevent SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Peyman Kheirandish Zarandi
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Mohammad Reza Zinatizadeh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran; Cancer Biology Signaling Pathway Interest Group (CBSPIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Maryam Zinatizadeh
- Department of Anesthesiology, Semnan Branch, Islamic Azad University, Shahrood, Iran
| | - Mohammad Hadi Yousefi
- Department of Mycobacteriology and Pulmonary Research, Pasteur Institute of Iran, Tehran, Iran; Department of Mycobacteriology and Pulmonary Research, Microbiology Research Center (MRC), Pasteur Institute of Iran, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
161
|
DPP4 Inhibitors and COVID-19-Holy Grail or Another Dead End? Arch Immunol Ther Exp (Warsz) 2021; 69:1. [PMID: 33527308 PMCID: PMC7850901 DOI: 10.1007/s00005-020-00602-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Accepted: 12/10/2020] [Indexed: 01/08/2023]
Abstract
A novel coronavirus disease, COVID-19, has emerged as a global public health issue. Clinical course of disease significantly correlates with the occurrence of some comorbidities, among them type 2 diabetes. According to recent structural studies the dipeptidyl peptidase 4, a key molecule in the pathophysiology of diabetes, may influence the course of COVID-19. Since DPP4 inhibitors, gliptins, are widely used in diabetes patients, the exact role of DPP4 modulation in SARS-CoV-2 infection, at least in that group, urgently needs to be clarified. In this short review, we discuss this issue with more detail.
Collapse
|
162
|
Servidio C, Stellacci F. Therapeutic approaches against coronaviruses acute respiratory syndrome. Pharmacol Res Perspect 2021; 9:e00691. [PMID: 33378565 PMCID: PMC7773137 DOI: 10.1002/prp2.691] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/13/2020] [Accepted: 10/25/2020] [Indexed: 01/08/2023] Open
Abstract
Coronaviruses represent global health threat. In this century, they have already caused two epidemics and one serious pandemic. Although, at present, there are no approved drugs and therapies for the treatment and prevention of human coronaviruses, several agents, FDA-approved, and preclinical, have shown in vitro and/or in vivo antiviral activity. An in-depth analysis of the current situation leads to the identification of several potential drugs that could have an impact on the fight against coronaviruses infections. In this review, we discuss the virology of human coronaviruses highlighting the main biological targets and summarize the current state-of-the-art of possible therapeutic options to inhibit coronaviruses infections. We mostly focus on FDA-approved and preclinical drugs targeting viral conserved elements.
Collapse
Affiliation(s)
- Camilla Servidio
- Department of Pharmacy, Health and Nutrition SciencesUniversity of CalabriaRendeItaly
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Francesco Stellacci
- Institute of MaterialsEcole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
- Bioengineering Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| |
Collapse
|
163
|
Keleszade E, Patterson M, Trangmar S, Guinan KJ, Costabile A. Clinical Efficacy of Brown Seaweeds Ascophyllum nodosum and Fucus vesiculosus in the Prevention or Delay Progression of the Metabolic Syndrome: A Review of Clinical Trials. Molecules 2021; 26:714. [PMID: 33573121 PMCID: PMC7866543 DOI: 10.3390/molecules26030714] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome (MetS) is a global public health problem affecting nearly 25.9% of the world population characterised by a cluster of disorders dominated by abdominal obesity, high blood pressure, high fasting plasma glucose, hypertriacylglycerolaemia and low HDL-cholesterol. In recent years, marine organisms, especially seaweeds, have been highlighted as potential natural sources of bioactive compounds and useful metabolites, with many biological and physiological activities to be used in functional foods or in human nutraceuticals for the management of MetS and related disorders. Of the three groups of seaweeds, brown seaweeds are known to contain more bioactive components than either red and green seaweeds. Among the different brown seaweed species, Ascophyllum nodosum and Fucus vesiculosus have the highest antioxidant values and highest total phenolic content. However, the evidence base relies mainly on cell line and small animal models, with few studies to date involving humans. This review intends to provide an overview of the potential of brown seaweed extracts Ascophyllum nodosum and Fucus vesiculosus for the management and prevention of MetS and related conditions, based on the available evidence obtained from clinical trials.
Collapse
Affiliation(s)
- Enver Keleszade
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| | - Michael Patterson
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| | - Steven Trangmar
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| | | | - Adele Costabile
- Department of Life Sciences, University of Roehampton, London SW15 4JD, UK; (E.K.); (M.P.); (S.T.)
| |
Collapse
|
164
|
Manocha E, Bugatti A, Belleri M, Zani A, Marsico S, Caccuri F, Presta M, Caruso A. Avian Reovirus P17 Suppresses Angiogenesis by Promoting DPP4 Secretion. Cells 2021; 10:cells10020259. [PMID: 33525607 PMCID: PMC7911508 DOI: 10.3390/cells10020259] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022] Open
Abstract
Avian reovirus p17 (ARV p17) is a non-structural protein known to activate autophagy, interfere with gene transcription and induce a significant tumor cell growth inhibition in vitro and in vivo. In this study, we show that ARV p17 is capable of exerting potent antiangiogenic properties. The viral protein significantly inhibited the physiological angiogenesis of human endothelial cells (ECs) by affecting migration, capillary-like structure and new vessel formation. ARV p17 was not only able to suppress the EC physiological angiogenesis but also rendered ECs insensitive to two different potent proangiogenic inducers, such as VEGF-A and FGF-2 in the three-dimensional (3D) Matrigel and spheroid assay. ARV p17 was found to exert its antiangiogenic activity by upregulating transcription and release of the well-known tumor suppressor molecule dipeptidyl peptidase 4 (DPP4). The ability of ARV p17 to impact on angiogenesis is completely new and highlights the “two compartments” activity of the viral protein that is expected to hamper the tumor parenchymal/stromal crosstalk. The complex antitumor activities of ARV p17 open the way to a new promising field of research aimed to develop new therapeutic approaches for treating tumor and cancer metastasis.
Collapse
Affiliation(s)
- Ekta Manocha
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Antonella Bugatti
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Mirella Belleri
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.B.); (M.P.)
| | - Alberto Zani
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Stefania Marsico
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Arcavacata di Rende, 87036 Cosenza, Italy;
| | - Francesca Caccuri
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
| | - Marco Presta
- Section of Experimental Oncology and Immunology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (M.B.); (M.P.)
| | - Arnaldo Caruso
- Section of Microbiology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy; (E.M.); (A.B.); (A.Z.); (F.C.)
- Correspondence:
| |
Collapse
|
165
|
Wilson AL, Moffitt LR, Wilson KL, Bilandzic M, Wright MD, Gorrell MD, Oehler MK, Plebanski M, Stephens AN. DPP4 Inhibitor Sitagliptin Enhances Lymphocyte Recruitment and Prolongs Survival in a Syngeneic Ovarian Cancer Mouse Model. Cancers (Basel) 2021; 13:487. [PMID: 33513866 PMCID: PMC7865851 DOI: 10.3390/cancers13030487] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/12/2021] [Accepted: 01/19/2021] [Indexed: 02/07/2023] Open
Abstract
Immunity plays a key role in epithelial ovarian cancer (EOC) progression with a well-documented correlation between patient survival and high intratumoral CD8+ to T regulatory cell (Treg) ratios. We previously identified dysregulated DPP4 activity in EOCs as a potentially immune-disruptive influence contributing to a reduction in CXCR3-mediated T-cell infiltration in solid tumours. We therefore hypothesized that inhibition of DPP4 activity by sitagliptin, an FDA-approved inhibitor, would improve T-cell infiltration and function in a syngeneic ID8 mouse model of EOC. Daily oral sitagliptin at 50 mg/kg was provided to mice with established primary EOCs. Sitagliptin treatment decreased metastatic tumour burden and significantly increased overall survival and was associated with significant changes to the immune landscape. Sitagliptin increased overall CXCR3-mediated CD8+ T-cell trafficking to the tumour and enhanced the activation and proliferation of CD8+ T-cells in tumour tissue and the peritoneal cavity. Substantial reductions in suppressive cytokines, including CCL2, CCL17, CCL22 and IL-10, were also noted and were associated with reduced CD4+ CD25+ Foxp3+ Treg recruitment in the tumour. Combination therapy with paclitaxel, however, typical of standard-of-care for patients in palliative care, abolished CXCR3-specific T-cell recruitment stimulated by sitagliptin. Our data suggest that sitagliptin may be suitable as an adjunct therapy for patients between chemotherapy cycles as a novel approach to enhance immunity, optimise T-cell-mediated function and improve overall survival.
Collapse
Affiliation(s)
- Amy L. Wilson
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
- Department of Immunology and Pathology, Monash University, Clayton 3800, Australia;
| | - Laura R. Moffitt
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
| | - Kirsty L. Wilson
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia;
| | - Maree Bilandzic
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
| | - Mark D. Wright
- Department of Immunology and Pathology, Monash University, Clayton 3800, Australia;
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, University of Sydney, Camperdown 2006, Australia;
| | - Martin K. Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide 5000, Australia;
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora 3083, Australia;
| | - Andrew N. Stephens
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton 3168, Australia; (A.L.W.); (L.R.M.); (M.B.)
- Department of Molecular and Translational Sciences, Monash Health, Clayton 3168, Australia
| |
Collapse
|
166
|
Abstract
Camels are domesticated animals that are highly adapted to the extreme desert ecosystem with relatively higher resistance to a wide range of pathogens compared to many other species from the same geographical region. Recently, there has been increased interest in the field of camel immunology. As the progress in the analysis of camel immunoglobulins has previously been covered in many recent reviews, this review intends to summarize published findings related to camel cellular immunology with a focus on the phenotype and functionality of camel leukocyte subpopulations. The review also describes the impact of different physiological (age and pregnancy) and pathological (e.g. infection) conditions on camel immune cells. Despite the progress achieved in the field of camel immunology, there are gaps in our complete understanding of the camel immune system. Questions remain regarding innate recognition mechanisms, the functional characterization of antigen-presenting cells, and the characterization of camel NK and cytotoxic T cells.
Collapse
Affiliation(s)
- Jamal Hussen
- Department of Microbiology, College of Veterinary Medicine, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Hans-Joachim Schuberth
- Institute of Immunology, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
167
|
Rohmann N, Schlicht K, Geisler C, Hollstein T, Knappe C, Krause L, Hagen S, Beckmann A, Seoudy AK, Wietzke-Braun P, Hartmann K, Schulte D, Türk K, Beckmann J, von Schönfels W, Hägele FA, Bosy-Westphal A, Franke A, Schreiber S, Laudes M. Circulating sDPP-4 is Increased in Obesity and Insulin Resistance but Is Not Related to Systemic Metabolic Inflammation. J Clin Endocrinol Metab 2021; 106:e592-e601. [PMID: 33084870 DOI: 10.1210/clinem/dgaa758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Indexed: 12/18/2022]
Abstract
CONTEXT Dipeptidylpeptidase (DPP)-4 is a key regulator of the incretin system. It exists in a membrane-bound form and a soluble form (sDPP-4). Initial human studies suggested sDPP-4 to be an adipokine involved in metabolic inflammation. However, recent mechanistic data in genetically modified mice has questioned these findings. OBJECTIVES We examined circulating sDPP-4 in a cohort of n = 451 humans with different metabolic phenotypes and during 3 different weight loss interventions (n = 101) to further clarify its role in human physiology and metabolic diseases. DESIGN sDPP-4 serum concentrations were measured by enzyme-linked immunosorbent assay and related to several phenotyping data including gut microbiome analysis. RESULTS sDPP-4 increased with age and body weight and was positively associated with insulin resistance and hypertriglyceridemia but was reduced in manifest type 2 diabetes. In addition, we found reduced serum concentrations of sDPP-4 in subjects with arterial hypertension. In contrast to earlier reports, we did not identify an association with systemic markers of inflammation. Impaired kidney and liver functions significantly altered sDPP-4 concentrations while no relation to biomarkers for heart failure was observed. Having found increased levels of sDPP-4 in obesity, we studied surgical (gastric bypass and sleeve gastrectomy) and nonsurgical interventions, revealing a significant association of sDPP-4 with improvement of liver function tests but not with changes in body weight. CONCLUSIONS Our data suggest that sDPP-4 is related to hepatic abnormalities in obesity rather than primarily functioning as an adipokine and that sDPP-4 is implicated both in glucose and in lipid metabolism, but not fundamentally in systemic inflammation.
Collapse
Affiliation(s)
- Nathalie Rohmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Kristina Schlicht
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Corinna Geisler
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Tim Hollstein
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Carina Knappe
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Laura Krause
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Stefanie Hagen
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Alexia Beckmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Anna Katharina Seoudy
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Perdita Wietzke-Braun
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Katharina Hartmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Dominik Schulte
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Kathrin Türk
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Jan Beckmann
- Department of General, Visceral, Thoracic, Transplantation, and Pediatric Surgery, University of Kiel, Kiel, Germany
| | - Witigo von Schönfels
- Department of General, Visceral, Thoracic, Transplantation, and Pediatric Surgery, University of Kiel, Kiel, Germany
| | | | - Anja Bosy-Westphal
- Institut of Human Nutrition and Food Science, University of Kiel, Kiel, Germany
| | - Andre Franke
- Institut of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
- Institut of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Matthias Laudes
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| |
Collapse
|
168
|
Abstract
Glucagon-like peptide-1 (GLP-1) is an enterohormone with a key role in several processes controlling body homeostasis, including glucose homeostasis and food intake regulation. It is secreted by the intestinal cells in response to nutrients, such as glucose, fat and amino acids. In the present review, we analyse the effect of protein on GLP-1 secretion and clearance. We review the literature on the GLP-1 secretory effects of protein and protein hydrolysates, and the mechanisms through which they exert these effects. We also review the studies on protein from different sources that has inhibitory effects on dipeptidyl peptidase-4 (DPP4), the enzyme responsible for GLP-1 inactivation, with particular emphasis on specific sources and treatments, and the gaps there still are in knowledge. There is evidence that the protein source and the hydrolytic processing applied to them can influence the effects on GLP-1 signalling. The gastrointestinal digestion of proteins, for example, significantly changes their effectiveness at modulating this enterohormone secretion in both in vivo and in vitro studies. Nevertheless, little information is available regarding human studies and more research is required to understand their potential as regulators of glucose homeostasis.
Collapse
|
169
|
Therapies for the Treatment of Cardiovascular Disease Associated with Type 2 Diabetes and Dyslipidemia. Int J Mol Sci 2021; 22:ijms22020660. [PMID: 33440821 PMCID: PMC7826980 DOI: 10.3390/ijms22020660] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/04/2021] [Accepted: 01/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular disease (CVD) is the leading cause of death worldwide and is the clinical manifestation of the atherosclerosis. Elevated LDL-cholesterol levels are the first line of therapy but the increasing prevalence in type 2 diabetes mellitus (T2DM) has positioned the cardiometabolic risk as the most relevant parameter for treatment. Therefore, the control of this risk, characterized by dyslipidemia, hypertension, obesity, and insulin resistance, has become a major goal in many experimental and clinical studies in the context of CVD. In the present review, we summarized experimental studies and clinical trials of recent anti-diabetic and lipid-lowering therapies targeted to reduce CVD. Specifically, incretin-based therapies, sodium-glucose co-transporter 2 inhibitors, and proprotein convertase subtilisin kexin 9 inactivating therapies are described. Moreover, the novel molecular mechanisms explaining the CVD protection of the drugs reviewed here indicate major effects on vascular cells, inflammatory cells, and cardiomyocytes, beyond their expected anti-diabetic and lipid-lowering control. The revealed key mechanism is a prevention of acute cardiovascular events by restraining atherosclerosis at early stages, with decreased leukocyte adhesion, recruitment, and foam cell formation, and increased plaque stability and diminished necrotic core in advanced plaques. These emergent cardiometabolic therapies have a promising future to reduce CVD burden.
Collapse
|
170
|
Pillaiyar T, Wendt LL, Manickam M, Easwaran M. The recent outbreaks of human coronaviruses: A medicinal chemistry perspective. Med Res Rev 2021; 41:72-135. [PMID: 32852058 PMCID: PMC7461420 DOI: 10.1002/med.21724] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 07/22/2020] [Accepted: 08/08/2020] [Indexed: 01/18/2023]
Abstract
Coronaviruses (CoVs) infect both humans and animals. In humans, CoVs can cause respiratory, kidney, heart, brain, and intestinal infections that can range from mild to lethal. Since the start of the 21st century, three β-coronaviruses have crossed the species barrier to infect humans: severe-acute respiratory syndrome (SARS)-CoV-1, Middle East respiratory syndrome (MERS)-CoV, and SARS-CoV-2 (2019-nCoV). These viruses are dangerous and can easily be transmitted from human to human. Therefore, the development of anticoronaviral therapies is urgently needed. However, to date, no approved vaccines or drugs against CoV infections are available. In this review, we focus on the medicinal chemistry efforts toward the development of antiviral agents against SARS-CoV-1, MERS-CoV, SARS-CoV-2, targeting biochemical events important for viral replication and its life cycle. These targets include the spike glycoprotein and its host-receptors for viral entry, proteases that are essential for cleaving polyproteins to produce functional proteins, and RNA-dependent RNA polymerase for viral RNA replication.
Collapse
Affiliation(s)
- Thanigaimalai Pillaiyar
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal ChemistryUniversity of BonnBonnGermany
| | - Lukas L. Wendt
- PharmaCenter Bonn, Pharmaceutical Institute, Pharmaceutical & Medicinal ChemistryUniversity of BonnBonnGermany
| | - Manoj Manickam
- Department of ChemistryPSG Institute of Technology and Applied ResearchCoimbatoreTamil NaduIndia
| | - Maheswaran Easwaran
- Department of Biomedical EngineeringSethu Institute of TechnologyVirudhunagarTamilnaduIndia
| |
Collapse
|
171
|
Nooti SK, Rai V, Singh H, Potluri V, Agrawal DK. Strokes, Neurological, and Neuropsychiatric Disorders in COVID-19. DELINEATING HEALTH AND HEALTH SYSTEM: MECHANISTIC INSIGHTS INTO COVID 19 COMPLICATIONS 2021:209-231. [DOI: 10.1007/978-981-16-5105-2_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
172
|
Abstract
Initial studies found increased severity of coronavirus disease 2019 (COVID-19), caused by infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), in patients with diabetes mellitus. Furthermore, COVID-19 might also predispose infected individuals to hyperglycaemia. Interacting with other risk factors, hyperglycaemia might modulate immune and inflammatory responses, thus predisposing patients to severe COVID-19 and possible lethal outcomes. Angiotensin-converting enzyme 2 (ACE2), which is part of the renin-angiotensin-aldosterone system (RAAS), is the main entry receptor for SARS-CoV-2; although dipeptidyl peptidase 4 (DPP4) might also act as a binding target. Preliminary data, however, do not suggest a notable effect of glucose-lowering DPP4 inhibitors on SARS-CoV-2 susceptibility. Owing to their pharmacological characteristics, sodium-glucose cotransporter 2 (SGLT2) inhibitors might cause adverse effects in patients with COVID-19 and so cannot be recommended. Currently, insulin should be the main approach to the control of acute glycaemia. Most available evidence does not distinguish between the major types of diabetes mellitus and is related to type 2 diabetes mellitus owing to its high prevalence. However, some limited evidence is now available on type 1 diabetes mellitus and COVID-19. Most of these conclusions are preliminary, and further investigation of the optimal management in patients with diabetes mellitus is warranted.
Collapse
Affiliation(s)
- Soo Lim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, South Korea.
| | - Jae Hyun Bae
- Department of Internal Medicine, Korea University Anam Hospital, Korea University College of Medicine, Seoul, South Korea
| | - Hyuk-Sang Kwon
- Department of Internal Medicine, Yeouido St Mary's Hospital, The Catholic University of Korea, Seoul, South Korea
| | - Michael A Nauck
- Diabetes Division, Katholisches Klinikum Bochum, St Josef-Hospital (Ruhr-Universität Bochum), Bochum, Germany.
| |
Collapse
|
173
|
Ferrara F, Vitiello A. Potential pharmacological approach in the regulation of angiotensin-II conversion enzyme and dipeptidyl-peptidase 4 in diabetic COVID-19 patients. ITALIAN JOURNAL OF MEDICINE 2020. [DOI: 10.4081/itjm.2020.1435] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The global pandemic caused by coronavirus disease 2019 (COVID-19) has caused more than 1 million deaths worldwide. Some vaccines in clinical trials have reached stage 3. In the meantime, the understanding of biological and pathophysiological mechanisms of severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection is still unclear, such as the role that angiotensin-II conversion enzyme (ACE-2) and dipeptidyl-peptidase 4 (DPP-IV) may play in patients with diabetes related to COVID-19. The individual with diabetes is a known COVID-19 risk patient. Probably, the pharmacological regulation of the angiotensin renin system and ACE-2 on the one hand, and of the incretin system and DPP-IV on the other hand, could represent a therapeutic route of fundamental importance to reduce the risk of SARS-CoV-2 infection or of severe complications caused by infection.
Collapse
|
174
|
Masre SF, Jufri NF, Ibrahim FW, Abdul Raub SH. Classical and alternative receptors for SARS-CoV-2 therapeutic strategy. Rev Med Virol 2020; 31:1-9. [PMID: 33368788 PMCID: PMC7883063 DOI: 10.1002/rmv.2207] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/02/2020] [Accepted: 12/03/2020] [Indexed: 01/08/2023]
Abstract
Understanding the molecules that are essential for severe acute respiratory syndrome coronavirus‐2 (SARS‐CoV‐2) entry can provide insights into viral infection and dissemination. Recently, it has been identified from several studies that angiotensin‐converting enzyme 2 receptor and transmembrane serine protease 2 are the main entry molecules for the SARS‐CoV‐2, which produced the pandemic of Covid‐19. However, additional evidence showed several other viral receptors and cellular proteases that are also important in facilitating viral entry and transmission in the target cells. In this review, we summarized the types of SARS‐CoV‐2 entry molecules and discussed their crucial roles for virus binding, protein priming and fusion to the cellular membrane important for SARS‐CoV‐2 infection.
Collapse
Affiliation(s)
- Siti Fathiah Masre
- Faculty of Health Sciences, Centre for Toxicology and Health Risk Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Nurul Farhana Jufri
- Faculty of Health Sciences, Centre for Toxicology and Health Risk Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Farah Wahida Ibrahim
- Faculty of Health Sciences, Centre for Toxicology and Health Risk Studies, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Sayyidi Hamzi Abdul Raub
- Pantai Premier Pathology SDN BHD, Reference Specialised Laboratory, Pantai Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| |
Collapse
|
175
|
The zoonotic potential of bat-borne coronaviruses. Emerg Top Life Sci 2020; 4:353-369. [PMID: 33258903 DOI: 10.1042/etls20200097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 11/09/2020] [Indexed: 02/06/2023]
Abstract
Seven zoonoses - human infections of animal origin - have emerged from the Coronaviridae family in the past century, including three viruses responsible for significant human mortality (SARS-CoV, MERS-CoV, and SARS-CoV-2) in the past twenty years alone. These three viruses, in addition to two older CoV zoonoses (HCoV-229E and HCoV-NL63) are believed to be originally derived from wild bat reservoir species. We review the molecular biology of the bat-derived Alpha- and Betacoronavirus genera, highlighting features that contribute to their potential for cross-species emergence, including the use of well-conserved mammalian host cell machinery for cell entry and a unique capacity for adaptation to novel host environments after host switching. The adaptive capacity of coronaviruses largely results from their large genomes, which reduce the risk of deleterious mutational errors and facilitate range-expanding recombination events by offering heightened redundancy in essential genetic material. Large CoV genomes are made possible by the unique proofreading capacity encoded for their RNA-dependent polymerase. We find that bat-borne SARS-related coronaviruses in the subgenus Sarbecovirus, the source clade for SARS-CoV and SARS-CoV-2, present a particularly poignant pandemic threat, due to the extraordinary viral genetic diversity represented among several sympatric species of their horseshoe bat hosts. To date, Sarbecovirus surveillance has been almost entirely restricted to China. More vigorous field research efforts tracking the circulation of Sarbecoviruses specifically and Betacoronaviruses more generally is needed across a broader global range if we are to avoid future repeats of the COVID-19 pandemic.
Collapse
|
176
|
Hu Y, Meuret C, Martinez A, Yassine HN, Nedelkov D. Distinct patterns of apolipoprotein C-I, C-II, and C-III isoforms are associated with markers of Alzheimer's disease. J Lipid Res 2020; 62:100014. [PMID: 33518512 PMCID: PMC7859854 DOI: 10.1194/jlr.ra120000919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/07/2023] Open
Abstract
Apolipoproteins C-I, C-II, and C-III interact with ApoE to regulate lipoprotein metabolism and contribute to Alzheimer's disease pathophysiology. In plasma, apoC-I and C-II exist as truncated isoforms, while apoC-III exhibits multiple glycoforms. This study aimed to 1) delineate apoC-I, C-II, and C-III isoform profiles in cerebrospinal fluid (CSF) and plasma in a cohort of nondemented older individuals (n = 61), and 2) examine the effect of APOE4 on these isoforms and their correlation with CSF Aβ42, a surrogate of brain amyloid accumulation. The isoforms of the apoCs were immunoaffinity enriched and measured with MALDI-TOF mass spectrometry, revealing a significantly higher percentage of truncated apoC-I and apoC-II in CSF compared with matched plasma, with positive correlation between CSF and plasma. A greater percentage of monosialylated and disialylated apoC-III isoforms was detected in CSF, accompanied by a lower percentage of the two nonsialylated apoC-III isoforms, with significant linear correlations between CSF and plasma. Furthermore, a greater percentage of truncated apoC-I in CSF and apoC-II in plasma and CSF was observed in individuals carrying at least one APOE Ɛ4 allele. Increased apoC-I and apoC-II truncations were associated with lower CSF Aβ42. Finally, monosialylated apoC-III was lower, and disialylated apoC-III greater in the CSF of Ɛ4 carriers. Together, these results reveal distinct patterns of the apoCs isoforms in CSF, implying CSF-specific apoCs processing. These patterns were accentuated in APOE Ɛ4 allele carriers, suggesting an association between APOE4 genotype and Alzheimer's disease pathology with apoCs processing and function in the brain.
Collapse
Affiliation(s)
| | | | - Ashley Martinez
- University of Southern California, Los Angeles, California, USA
| | | | | |
Collapse
|
177
|
Investigation of CD26, a potential SARS-CoV-2 receptor, as a biomarker of age and pathology. Biosci Rep 2020; 40:226987. [PMID: 33205807 PMCID: PMC7693198 DOI: 10.1042/bsr20203092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/17/2020] [Accepted: 11/17/2020] [Indexed: 01/08/2023] Open
Abstract
Objective: In some individuals, coronavirus severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infection leads to a variety of serious inflammatory symptoms, including blood clotting and acute respiratory distress. Death due to COVID-19 shows a steep rise in relation to age. Comorbidities such as type 2 diabetes mellitus (T2DM), hypertension, and cardiovascular disease also increase susceptibility. It has been reported that T-cell regulatory dipeptidyl peptidase 4 (DPP4; cluster of differentiation 26 (CD26)) binds to the external spike (S) glycoprotein of SARS-CoV-2 as a receptor, for the viral entry into the host cell. CD26 is expressed on many cells, including T and natural killer (NK) cells of the immune system, as a membrane-anchored form. A soluble form (sCD26) is also found in the blood plasma and cerebrospinal fluid (CSF). Approach and results: To investigate a possible relationship between sCD26 levels, age and pathology, serum samples were collected from control, T2DM and age-related dementia (ARD) subjects. A significant reduction in serum sCD26 levels was seen in relation to age. ARD and T2DM were also associated with lower levels of sCD26. The analysis of blood smears revealed different cellular morphologies: in controls, CD26 was expressed around the neutrophil membrane, whereas in T2DM, excessive sCD26 was found around the mononucleated cells (MNCs). ARD subjects had abnormal fragmented platelets and haemolysis due to low levels of sCD26. Conclusions: These findings may help to explain the heterogeneity of SARS-CoV-2 infection. High serum sCD26 levels could protect from viral infection by competively inhibiting the virus binding to cellular CD26, whereas low sCD26 levels could increase the risk of infection. If so measuring serum sCD26 level may help to identify individuals at high risk for the COVID-19 infection.
Collapse
|
178
|
Liao YH, Zheng JQ, Zheng CM, Lu KC, Chao YC. Novel Molecular Evidence Related to COVID-19 in Patients with Diabetes Mellitus. J Clin Med 2020; 9:E3962. [PMID: 33297431 PMCID: PMC7762278 DOI: 10.3390/jcm9123962] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/25/2020] [Accepted: 12/02/2020] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has rapidly evolved into a global pandemic. The hyperglycemia in patients with diabetes mellitus (DM) substantially compromises their innate immune system. SARS-CoV-2 uses human angiotensin-converting enzyme 2 (ACE2) receptors to enter the affected cell. Uncontrolled hyperglycemia-induced glycosylation of ACE2 and the S protein of SARS-CoV-2 could facilitate the binding of S protein to ACE2, enabling viral entry. Downregulation of ACE2 activity secondary to SARS-CoV-2 infection, with consequent accumulation of angiotensin II and metabolites, eventually leads to poor outcomes. The altered binding of ACE2 with SARS-CoV-2 and the compromised innate immunity of patients with DM increase their susceptibility to COVID-19; COVID-19 induces pancreatic β-cell injury and poor glycemic control, which further compromises the immune response and aggravates hyperglycemia and COVID-19 progression, forming a vicious cycle. Sequential cleavage of viral S protein by furin and transmembrane serine protease 2 (TMPRSS2) triggers viral entry to release the viral genome into the target cell. Hence, TMPRSS2 and furin are possible drug targets. As type 1 DM exhibits a Th1-driven autoimmune process, the relatively lower mortality of COVID-19 in type 1 DM compared to type 2 DM might be attributed to an imbalance between Th1 and Th2 immunity. The anti-inflammatory effects of dipeptidyl peptidase-4 inhibitor may benefit patients with DM and COVID-19. The potential protective effects of sodium-glucose cotransporter-2 inhibitor (SGLT2i), including reduction in lactate level, prevention of lowering of cytosolic pH and reduction in pro-inflammatory cytokine levels may justify the provision of SGLT2i to patients with DM and mild or asymptomatic COVID-19. For patients with DM and COVID-19 who require hospitalization, insulin-based treatment is recommended with cessation of metformin and SGLT2i. Further evidence from randomized or case-control clinical trials is necessary to elucidate the effectiveness and pitfalls of different types of medication for DM.
Collapse
Affiliation(s)
- Yu-Huang Liao
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - Jing-Quan Zheng
- Division of Pulmonary Medicine, Department of Internal Medicine, Shuang Ho Hospital, Taipei Medical University, New Taipei City 23561, Taiwan;
- Division of Pulmonary Medicine, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Cai-Mei Zheng
- Research Center of Urology and Kidney, Taipei Medical University, Taipei 110, Taiwan;
- Division of Nephrology, Department of Internal Medicine, Taipei Medical University Shuang Ho Hospital, New Taipei City 235, Taiwan
- Division of Nephrology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Kuo-Cheng Lu
- Division of Nephrology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan;
| | - You-Chen Chao
- School of Medicine, Tzu Chi University, Hualien 970, Taiwan
- Division of Gastroenterology, Department of Internal Medicine, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City 231, Taiwan
| |
Collapse
|
179
|
Zhao X, Ding Y, Du J, Fan Y. 2020 update on human coronaviruses: One health, one world. MEDICINE IN NOVEL TECHNOLOGY AND DEVICES 2020; 8:100043. [PMID: 33521622 PMCID: PMC7836940 DOI: 10.1016/j.medntd.2020.100043] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/04/2020] [Accepted: 08/19/2020] [Indexed: 01/18/2023] Open
Abstract
Since human coronavirus (HCoVs) was first described in the 1960s, seven strains of respiratory human coronaviruses have emerged and caused human infections. After the emergence of severe acute respiratory syndrome coronavirus (SARS-CoV) and Middle East respiratory syndrome coronavirus (MERS-CoV), a pneumonia outbreak of coronavirus disease 2019 (COVID-19) caused by a novel coronavirus (SARS-CoV-2) has represented a pandemic threat to global public health in the 21st century. Without effectively prophylactic and therapeutic strategies including vaccines and antiviral drugs, these three coronaviruses have caused severe respiratory syndrome and high case-fatality rates around the world. In this review, we detail the emergence event, origin and reservoirs of all HCoVs, compare the differences with regard to structure and receptor usage, and summarize therapeutic strategies for COVID-19 that cause severe pneumonia and global pandemic.
Collapse
Affiliation(s)
- Xinbin Zhao
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Yuecheng Ding
- School of Public Health, Peking University, Beijing, 100871, China
| | - Jing Du
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Chinese Education Ministry, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
- Beijing Advanced Innovation Centre for Biomedical Engineering, Beihang University, Beijing, 100191, China
- Key Laboratory of Human Motion Analysis and Rehabilitation Technology of the Ministry of Civil Affairs, National Research Center for Rehabilitation Technical Aids, Beijing, 100176, China
| |
Collapse
|
180
|
Design, synthesis and anti-diabetic activity of novel 1, 2, 3-triazole-5-carboximidamide derivatives as dipeptidyl peptidase-4 inhibitors. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128745] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
181
|
Sheervalilou R, Shirvaliloo M, Dadashzadeh N, Shirvalilou S, Shahraki O, Pilehvar‐Soltanahmadi Y, Ghaznavi H, Khoei S, Nazarlou Z. COVID-19 under spotlight: A close look at the origin, transmission, diagnosis, and treatment of the 2019-nCoV disease. J Cell Physiol 2020; 235:8873-8924. [PMID: 32452539 PMCID: PMC7283670 DOI: 10.1002/jcp.29735] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 04/17/2020] [Indexed: 01/07/2023]
Abstract
Months after the outbreak of a new flu-like disease in China, the entire world is now in a state of caution. The subsequent less-anticipated propagation of the novel coronavirus disease, formally known as COVID-19, not only made it to headlines by an overwhelmingly high transmission rate and fatality reports, but also raised an alarm for the medical community all around the globe. Since the causative agent, SARS-CoV-2, is a recently discovered species, there is no specific medicine for downright treatment of the infection. This has led to an unprecedented societal fear of the newly born disease, adding a psychological aspect to the physical manifestation of the virus. Herein, the COVID-19 structure, epidemiology, pathogenesis, etiology, diagnosis, and therapy have been reviewed.
Collapse
Affiliation(s)
- Roghayeh Sheervalilou
- Cellular and Molecular Research Center, Resistant Tuberculosis InstituteZahedan University of Medical SciencesZahedanIran
| | | | - Nahid Dadashzadeh
- Legal Medicine Research Center, Legal Medicine OrganizationTehranIran
| | - Sakine Shirvalilou
- Finetech in Medicine Research CenterIran University of Medical SciencesTehranIran
| | - Omolbanin Shahraki
- Cellular and Molecular Research Center, Resistant Tuberculosis InstituteZahedan University of Medical SciencesZahedanIran
| | - Younes Pilehvar‐Soltanahmadi
- Cellular and Molecular Research Center, Research Institute for Cellular and Molecular MedicineUrmia University of Medical SciencesUrmiaIran
| | | | - Samideh Khoei
- Department of Medical PhysicsSchool of Medicine, Iran University of Medical SciencesTehranIran
| | - Ziba Nazarlou
- Material Engineering DepartmentCollege of Science Koç UniversityIstanbulTurkey
| |
Collapse
|
182
|
Kuranov S, Luzina O, Khvostov M, Baev D, Kuznetsova D, Zhukova N, Vassiliev P, Kochetkov A, Tolstikova T, Salakhutdinov N. Bornyl Derivatives of p-(Benzyloxy)Phenylpropionic Acid: In Vivo Evaluation of Antidiabetic Activity. Pharmaceuticals (Basel) 2020; 13:ph13110404. [PMID: 33228030 PMCID: PMC7699345 DOI: 10.3390/ph13110404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022] Open
Abstract
A series of bornyl derivatives of p-(benzyloxy)phenylpropionic acid were prepared, and their hypoglycemic activities were examined by an oral glucose tolerance test in mice. The results of this test revealed two compounds, 1 and 3, that can reduce the blood level of glucose similarly to reference compound vildagliptin. Both compounds were tested in an experiment on mice with metabolic disorders: the C57BL/6Ay strain. Along with hypoglycemic properties, the two compounds showed different abilities to correct lipid metabolism disorders. In silico prediction revealed that the studied substances are most likely bifunctional multitarget hypoglycemic compounds whose mechanism of action is based on a pronounced reduction in insulin resistance and a strong incretin-mimetic effect. The difference in the size of effects of these compounds on biochemical parameters of blood in the experiment on C57BL/6Ay mice was in good agreement with the computational prediction of the priority ranking of biological targets for these compounds. These results indicate that bornyl derivatives of p-(benzyloxy)phenylpropionic acid have a good potential as new agents for diabetes mellitus treatment due to their hypoglycemic and lipid-normalizing properties.
Collapse
Affiliation(s)
- Sergey Kuranov
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| | - Olga Luzina
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
- Correspondence: (O.L.); (M.K.)
| | - Mikhail Khvostov
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
- Correspondence: (O.L.); (M.K.)
| | - Dmitriy Baev
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| | - Darya Kuznetsova
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| | - Nataliya Zhukova
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| | - Pavel Vassiliev
- Reasearch Center of Innovative Medicines, Laboratory for Information Technology in Pharmacology and Computer Modeling of Drugs, Volgograd State Medical University, Ministry of Health of Russian Federation, 400131 Volgograd, Russia; (P.V.); (A.K.)
| | - Andrey Kochetkov
- Reasearch Center of Innovative Medicines, Laboratory for Information Technology in Pharmacology and Computer Modeling of Drugs, Volgograd State Medical University, Ministry of Health of Russian Federation, 400131 Volgograd, Russia; (P.V.); (A.K.)
| | - Tatyana Tolstikova
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| | - Nariman Salakhutdinov
- N. N. Vorozhtsov Institute of Organic Chemistry, Siberian Branch of Russian Academy of Sciences, 630090 Novosibirsk, Russia; (S.K.); (D.B.); (D.K.); (N.Z.); (T.T.); (N.S.)
| |
Collapse
|
183
|
Tavares CAM, Bailey MA, Girardi ACC. Biological Context Linking Hypertension and Higher Risk for COVID-19 Severity. Front Physiol 2020; 11:599729. [PMID: 33329052 PMCID: PMC7710931 DOI: 10.3389/fphys.2020.599729] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 10/28/2020] [Indexed: 01/08/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), represents a public health crisis of major proportions. Advanced age, male gender, and the presence of comorbidities have emerged as risk factors for severe illness or death from COVID-19 in observation studies. Hypertension is one of the most common comorbidities in patients with COVID-19. Indeed, hypertension has been shown to be associated with increased risk for mortality, acute respiratory distress syndrome, need for intensive care unit admission, and disease progression in COVID-19 patients. However, up to the present time, the precise mechanisms of how hypertension may lead to the more severe manifestations of disease in patients with COVID-19 remains unknown. This review aims to present the biological plausibility linking hypertension and higher risk for COVID-19 severity. Emphasis is given to the role of the renin-angiotensin system and its inhibitors, given the crucial role that this system plays in both viral transmissibility and the pathophysiology of arterial hypertension. We also describe the importance of the immune system, which is dysregulated in hypertension and SARS-CoV-2 infection, and the potential involvement of the multifunctional enzyme dipeptidyl peptidase 4 (DPP4), that, in addition to the angiotensin-converting enzyme 2 (ACE2), may contribute to the SARS-CoV-2 entrance into target cells. The role of hemodynamic changes in hypertension that might aggravate myocardial injury in the setting of COVID-19, including endothelial dysfunction, arterial stiffness, and left ventricle hypertrophy, are also discussed.
Collapse
Affiliation(s)
- Caio A M Tavares
- Geriatric Cardiology Unit, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| | - Matthew A Bailey
- Centre for Cardiovascular Science, The Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, United Kingdom
| | - Adriana C C Girardi
- Laboratory of Genetics and Molecular Cardiology, Heart Institute (InCor), University of São Paulo Medical School, São Paulo, Brazil
| |
Collapse
|
184
|
Dipeptidyl peptidase-4 inhibitor protects against non-alcoholic steatohepatitis in mice by targeting TRAIL receptor-mediated lipoapoptosis via modulating hepatic dipeptidyl peptidase-4 expression. Sci Rep 2020; 10:19429. [PMID: 33173107 PMCID: PMC7655829 DOI: 10.1038/s41598-020-75288-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 09/17/2020] [Indexed: 02/06/2023] Open
Abstract
Dipeptidyl peptidase-4 inhibitors (DPP4i) are antidiabetic medications that prevent cleavage of incretin hormones by dipeptidyl peptidase-4 (DPP4). DPP4 is ubiquitously expressed, and its hepatic DPP4 expression is upregulated under non-alcoholic steatohepatitis (NASH) conditions. We investigated the effect of DPP4i treatment on NASH pathogenesis, as well as its potential underlying molecular mechanisms. Mice were randomly divided into three groups: Group 1, chow-fed mice treated with vehicle for 20 weeks; Group 2, high-fat, high-fructose, and high-cholesterol Amylin liver NASH (AMLN) diet-fed mice treated with vehicle for 20 weeks; Group 3, AMLN diet-fed mice treated with vehicle for the first 10 weeks, followed by the DPP4i teneligliptin (20 mg/kg/day) for additional 10 weeks. DPP4i administration reduced serum liver enzyme and hepatic triglyceride levels and markedly improved hepatic steatosis and fibrosis in the AMLN diet-induced NASH model. In vivo, NASH alleviation significantly correlated with the suppression of tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) receptor-mediated apoptosis and downregulated hepatic DPP4 expression. In vitro, DPP4i treatment significantly decreased the markers of TRAIL receptor-mediated lipoapoptosis and suppressed DPP4 expression in palmitate-treated hepatocytes. In conclusion, DPP4i may efficiently attenuate the pathogenesis of AMLN diet-induced NASH in mice by suppressing lipotoxicity-induced apoptosis, possibly by modulating hepatic DPP4 expression.
Collapse
|
185
|
Ashraf A, Mudgil P, Palakkott A, Iratni R, Gan CY, Maqsood S, Ayoub MA. Molecular basis of the anti-diabetic properties of camel milk through profiling of its bioactive peptides on dipeptidyl peptidase IV (DPP-IV) and insulin receptor activity. J Dairy Sci 2020; 104:61-77. [PMID: 33162074 DOI: 10.3168/jds.2020-18627] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 08/18/2020] [Indexed: 12/22/2022]
Abstract
The molecular basis of the anti-diabetic properties of camel milk reported in many studies and the exact active agent are still elusive. Recent studies have reported effects of camel whey proteins (CWP) and their hydrolysates (CWPH) on the activities of dipeptidyl peptidase IV (DPP-IV) and the human insulin receptor (hIR). In this study, CWPH were generated, screened for DPP-IV binding in silico and inhibitory activity in vitro, and processed for peptide identification. Furthermore, pharmacological action of intact CWP and their selected hydrolysates on hIR activity and signaling and on glucose uptake were investigated in cell lines. Results showed inhibition of DPP-IV by CWP and CWPH and their positive action on hIR activation and glucose uptake. Interestingly, the combination of CWP or CWPH with insulin revealed a positive allosteric modulation of hIR that was drastically reduced by the competitive hIR antagonist. Our data reveal for the first time the profiling and pharmacological actions of CWP and their derived peptides fractions on hIR and their pathways involved in glucose homeostasis. This sheds more light on the anti-diabetic properties of camel milk by providing the molecular basis for the potential use of camel milk in the management of diabetes.
Collapse
Affiliation(s)
- Arshida Ashraf
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Priti Mudgil
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Abdulrasheed Palakkott
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Rabah Iratni
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates
| | - Chee-Yuen Gan
- Analytical Biochemistry Research Centre (ABrC), University of Science, Malaysia, 11800 USM, Penang, Malaysia
| | - Sajid Maqsood
- Department of Food, Nutrition and Health, College of Food and Agriculture, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| | - Mohammed Akli Ayoub
- Department of Biology, College of Science, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates; Zayed Center for Health Sciences, United Arab Emirates University, PO Box 15551, Al Ain, United Arab Emirates.
| |
Collapse
|
186
|
Almaghaslah D, Kandasamy G, Almanasef M, Vasudevan R, Chandramohan S. Review on the coronavirus disease (COVID-19) pandemic: Its outbreak and current status. Int J Clin Pract 2020; 74:e13637. [PMID: 32750190 PMCID: PMC7435532 DOI: 10.1111/ijcp.13637] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/28/2020] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND In late December 2019 and on 1st January 2020, the coronavirus (COVID-19) infecting humans was first identified in Wuhan, Hubei Province, China. Later cases have also been confirmed worldwide. Coronaviruses are RNA viruses that are phenotypically and genotypically diverse. Globally, as of 6th April 2020, laboratory confirmed cases of COVID-19 reported to the World Health Organisation (WHO) amounted to 1 211 214, including 67 666 deaths. AIM In the current study, we performed a literature review on coronavirus outbreak to summarise details about the pathogenesis, epidemiology, diagnosis and the management strategies for the disease control. PATHOGENESIS Coronaviruses are tremendously precise and mature only in differentiated respiratory epithelial cells, as seen in both organ cultures as well as human volunteers. This virus will cause the antiviral T-cell response to be erratic, owing to the T-cell apoptosis activation, triggering the immune system to collapse. TRANSMISSION The understanding of the transmission of COVID-19 risk is incomplete. The transmission mainly occurs through the respiratory droplets once an infected person sneezes, like the spread of flu and other respiratory infectious agents. CLINICAL PRESENTATION Presentations of COVID-19 includes fever, cough, shortness of breath, malaise and respiratory distress. TREATMENT There have been no approved vaccines available for COVID-19 until today. The Ministry of Science and Technology in the People's Republic of China declared three potential antiviral medicines suitable for treating COVID-19. Those three medicines are, namely, favilavir, chloroquine phosphate and remdesivir. Hydroxychloroquine combined with azithromycin enhances the reduction of the viral load in COVID-19 patients. CONCLUSION The corona virus transmits quicker than its two predecessors the MERS-CoV and SARS-CoV, but has reduced casualty. The global effects of this latest pandemic are still unclear. Nevertheless, considering that so far no vaccine has been available; preventive approaches are the best way to fight against the virus.
Collapse
Affiliation(s)
- Dalia Almaghaslah
- Department of Clinical PharmacyCollege of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Geetha Kandasamy
- Department of Clinical PharmacyCollege of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Mona Almanasef
- Department of Clinical PharmacyCollege of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | - Rajalakshimi Vasudevan
- Department of Clinical PharmacyCollege of PharmacyKing Khalid UniversityAbhaSaudi Arabia
| | | |
Collapse
|
187
|
Abstract
PURPOSE OF REVIEW The gut barrier serves as the primary interface between the environment and host in terms of surface area and complexity. Luminal chemosensing is a term used to describe how small molecules in the gut lumen interact with the host through surface receptors or via transport into the subepithelial space. In this review, we have summarized recent advances in the understanding of the luminal chemosensory system in the gastroduodenal epithelium consisting of enterocytes, enteroendocrine, and tuft cells, with particular emphasis on how chemosensing affects mucosal protective responses and the metabolic syndrome. RECENT FINDINGS Recent single-cell RNA sequencing provides detailed cell type-specific expression of chemosensory receptors and other bioactive molecules as well as cell lineages; some are similar to lingual taste cells whereas some are gut specific. Gut luminal chemosensing is not only important for the local or remote regulation of gut function, but also contributes to the systemic regulation of metabolism, energy balance, and food intake. We will discuss the chemosensory mechanisms of the proximal intestine, in particular to gastric acid, with a focus on the cell types and receptors involved in chemosensing, with emphasis on the rare chemosensory cells termed tuft cells. We will also discuss the chemosensory functions of intestinal ectoenzymes and bacterial components (e.g., lipopolysaccharide) as well as how they affect mucosal function through altering the gut-hormonal-neural axis. SUMMARY Recent updates in luminal chemosensing by different chemosensory cells have provided new possibilities for identifying novel molecular targets for the treatment of mucosal injury, metabolic disorders, and abnormal visceral sensation.
Collapse
|
188
|
Type II diabetes mellitus: a review on recent drug based therapeutics. Biomed Pharmacother 2020; 131:110708. [DOI: 10.1016/j.biopha.2020.110708] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 08/23/2020] [Accepted: 08/28/2020] [Indexed: 12/15/2022] Open
|
189
|
Moffitt LR, Bilandzic M, Wilson AL, Chen Y, Gorrell MD, Oehler MK, Plebanski M, Stephens AN. Hypoxia Regulates DPP4 Expression, Proteolytic Inactivation, and Shedding from Ovarian Cancer Cells. Int J Mol Sci 2020; 21:8110. [PMID: 33143089 PMCID: PMC7672561 DOI: 10.3390/ijms21218110] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 01/03/2023] Open
Abstract
The treatment of ovarian cancer has not significantly changed in decades and it remains one of the most lethal malignancies in women. The serine protease dipeptidyl peptidase 4 (DPP4) plays key roles in metabolism and immunity, and its expression has been associated with either pro- or anti-tumour effects in multiple tumour types. In this study, we provide the first evidence that DPP4 expression and enzyme activity are uncoupled under hypoxic conditions in ovarian cancer cells. Whilst we identified strong up-regulation of DPP4 mRNA expression under hypoxic growth, the specific activity of secreted DPP4 was paradoxically decreased. Further investigation revealed matrix metalloproteinases (MMP)-dependent inactivation and proteolytic shedding of DPP4 from the cell surface, mediated by at least MMP10 and MMP13. This is the first report of uncoupled DPP4 expression and activity in ovarian cancer cells, and suggests a previously unrecognized, cell- and tissue-type-dependent mechanism for the regulation of DPP4 in solid tumours. Further studies are necessary to identify the functional consequences of DPP4 processing and its potential prognostic or therapeutic value.
Collapse
Affiliation(s)
- Laura R. Moffitt
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Maree Bilandzic
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Amy L. Wilson
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Yiqian Chen
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| | - Mark D. Gorrell
- Centenary Institute, Faculty of Medicine and Health, University of Sydney, Camperdown, NSW 2006, Australia;
| | - Martin K. Oehler
- Department of Gynaecological Oncology, Royal Adelaide Hospital, Adelaide, SA 5000, Australia;
- Robinson Institute, University of Adelaide, Adelaide, SA 5000, Australia
| | - Magdalena Plebanski
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3082, Australia;
| | - Andrew N. Stephens
- Department of Molecular and Translational Sciences, Monash University, Clayton, VIC 3168, Australia; (L.R.M.); (M.B.); (A.L.W.); (Y.C.)
- Centre for Cancer Research, Hudson Institute of Medical Research, Clayton, VIC 3168, Australia
| |
Collapse
|
190
|
Strategic Preparations of DPP-IV Inhibitory Peptides from Val-Pro-Xaa and Ile-Pro-Xaa Peptide Mixtures. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10122-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
191
|
Chen YC, Chen TH, Sun CC, Chen JY, Chang SS, Yeung L, Tsai YW. Dipeptidyl peptidase-4 inhibitors and the risks of autoimmune diseases in type 2 diabetes mellitus patients in Taiwan: a nationwide population-based cohort study. Acta Diabetol 2020; 57:1181-1192. [PMID: 32318876 PMCID: PMC7173685 DOI: 10.1007/s00592-020-01533-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 04/01/2020] [Indexed: 02/07/2023]
Abstract
AIMS Dipeptidyl peptidase-4, a transmembrane glycoprotein expressed in various cell types, serves as a co-stimulator molecule to influence immune response. This study aimed to investigate associations between DPP-4 inhibitors and risk of autoimmune disorders in patients with type 2 diabetes mellitus in Taiwan. METHODS This retrospective cohort study used the nationwide data from the diabetes subsection of Taiwan National Health Insurance Research Database between January 1, 2009, and December 31, 2013. Cox proportional hazards models were developed to compare the risk of autoimmune disorders and the subgroup analyses between the DPP-4i and DPP-4i-naïve groups. RESULTS A total of 774,198 type 2 diabetic patients were identified. The adjusted HR of the incidence for composite autoimmune disorders in DPP-4i group was 0.56 (95% CI 0.53-0.60; P < 0.001). The subgroup analysis demonstrated that the younger patients (aged 20-40 years: HR 0.47, 95% CI 0.35-0.61; aged 41-60 years: HR 0.50, 95% CI 0.46-0.55; aged 61-80 years: HR 0.63, 95% CI 0.58-0.68, P = 0.0004) and the lesser duration of diabetes diagnosed (0-5 years: HR 0.48, 95% CI 0.44-0.52; 6-10 years: HR 0.48, 95% CI 0.43-0.53; ≧ 10 years: HR 0.86, 95% CI 0.78-0.96, P < 0.0001), the more significant the inverse association of DPP-4 inhibitors with the incidence of composite autoimmune diseases. CONCLUSIONS DPP-4 inhibitors are associated with lower risk of autoimmune disorders in type 2 diabetes mellitus patients in Taiwan, especially for the younger patients and the lesser duration of diabetes diagnosed. The significant difference was found between the four types of DPP-4 inhibitors and the risk of autoimmune diseases. This study provides clinicians with useful information regarding the use of DPP-4 inhibitors for treating diabetic patients.
Collapse
Affiliation(s)
- Yi-Chuan Chen
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Tien-Hsing Chen
- Division of Cardiology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Chi-Chin Sun
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Chinese Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Jau-Yuan Chen
- Department of Family Medicine, Chang Gung Memorial Hospital, Linkou, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Shy-Shin Chang
- Department of Family Medicine, Taipei Medical University Hospital, Taipei City, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Ling Yeung
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Ophthalmology, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Yi-Wen Tsai
- College of Medicine, Chang Gung University, Taoyuan, Taiwan.
- Department of Family Medicine, Chang Gung Memorial Hospital, Keelung Branch, No. 222, Maijin Road, Keelung, Taiwan.
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan.
| |
Collapse
|
192
|
Lin P, Wang M, Wei Y, Kim T, Wei X. Coronavirus in human diseases: Mechanisms and advances in clinical treatment. MedComm (Beijing) 2020; 1:270-301. [PMID: 33173860 PMCID: PMC7646666 DOI: 10.1002/mco2.26] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 02/05/2023] Open
Abstract
Coronaviruses (CoVs), a subfamily of coronavirinae, are a panel of single-stranded RNA virus. Human coronavirus (HCoV) strains (HCoV-229E, HCoV-OC43, HCoV-HKU1, HCoV-NL63) usually cause mild upper respiratory diseases and are believed to be harmless. However, other HCoVs, associated with severe acute respiratory syndrome, Middle East respiratory syndrome, and COVID-19, have been identified as important pathogens due to their potent infectivity and lethality worldwide. Moreover, currently, no effective antiviral drugs treatments are available so far. In this review, we summarize the biological characters of HCoVs, their association with human diseases, and current therapeutic options for the three severe HCoVs. We also highlight the discussion about novel treatment strategies for HCoVs infections.
Collapse
Affiliation(s)
- Panpan Lin
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Manni Wang
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| | - Taewan Kim
- Wexner Medical Center The Ohio State University Columbus Ohio 43210 USA
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target State Key Laboratory of Biotherapy and Cancer Center National Clinical Research Center for Geriatrics West China Hospital Sichuan University Chengdu China
| |
Collapse
|
193
|
Schlicht K, Rohmann N, Geisler C, Hollstein T, Knappe C, Hartmann K, Schwarz J, Tran F, Schunk D, Junker R, Bahmer T, Rosenstiel P, Schulte D, Türk K, Franke A, Schreiber S, Laudes M. Circulating levels of soluble Dipeptidylpeptidase-4 are reduced in human subjects hospitalized for severe COVID-19 infections. Int J Obes (Lond) 2020; 44:2335-2338. [PMID: 32958905 PMCID: PMC7503441 DOI: 10.1038/s41366-020-00689-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/20/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
Abstract
Dipeptidylpeptidase (DPP)-4 is a key regulator of the incretin system. For several years DPP-4 inhibitors in addition to GLP-1 analogues are of major importance in the clinical management of obesity and type 2 diabetes. DPP-4 is also known as CD26 and represents a membrane bound protease on the surface of several eukaryotic cell types. Of interest, DPP-4, like ACE2, has been shown to serve as a binding partner for corona-like viruses to enter host immune cells. Since metabolic diseases are major risk factors for the present COVID-19 pandemic, we examined circulating soluble DPP-4 serum concentrations in patients suffering from severe COVID-19 infection and in healthy human subjects in a case control design. In this analysis sDPP-4 levels were significantly lower in COVID-19 patients compared to controls (242.70 ± 202.12 ng/mL versus 497.70 ± 188.13 ng/mL, p = 0.02). We also examined sDPP-4 serum concentrations in patients suffering from sepsis not due to corona-like viruses. In these subjects, sDPP-4 levels were not different compared to healthy case controls (p = 0.14), which might suggest the decrease of sDPP-4 to be specific for corona-like virus infections. Currently, most data point towards membrane bound ACE2 in contrast to DPP-4 as the major binding partner for COVID-19 internalization into host immune cells. However, the finding that the circulating soluble form of DPP-4 is reduced in hospitalized patients might suggest a regulatory role for both, ACE and DPP-4, in COVID-19 infections, especially since obesity and type 2 diabetes are major risk factor for a severe course of the disease
Collapse
Affiliation(s)
- Kristina Schlicht
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Nathalie Rohmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Corinna Geisler
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Tim Hollstein
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Carina Knappe
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Katharina Hartmann
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Jeanette Schwarz
- Institute of Clinical Chemistry, University of Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Florian Tran
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany.,Division of Pneumology, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Domagoj Schunk
- Interdisciplinary Emergency Center, University of Kiel, Kiel, Germany
| | - Ralf Junker
- Institute of Clinical Chemistry, University of Kiel, Kiel, Germany
| | - Thomas Bahmer
- Division of Pneumology, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Dominik Schulte
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Kathrin Türk
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany
| | - Andre Franke
- Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Stefan Schreiber
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany.,Institute of Clinical Molecular Biology, University of Kiel, Kiel, Germany
| | - Matthias Laudes
- Division of Endocrinology, Diabetes and Clinical Nutrition, Department of Medicine 1, University of Kiel, Kiel, Germany.
| |
Collapse
|
194
|
Dunaevsky YE, Tereshchenkova VF, Oppert B, Belozersky MA, Filippova IY, Elpidina EN. Human proline specific peptidases: A comprehensive analysis. Biochim Biophys Acta Gen Subj 2020; 1864:129636. [DOI: 10.1016/j.bbagen.2020.129636] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/05/2020] [Accepted: 05/14/2020] [Indexed: 02/07/2023]
|
195
|
Cao C, Wei S, Xu X, Song S, Lai Y, Li J. Signal Peptide Optimization to Prevent N-terminal Truncation of Glucagon Like Peptide-1/IgG-Fc Fusion Protein. Int J Pept Res Ther 2020. [DOI: 10.1007/s10989-020-10112-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
196
|
Mortaz E, Tabarsi P, Varahram M, Folkerts G, Adcock IM. The Immune Response and Immunopathology of COVID-19. Front Immunol 2020; 11:2037. [PMID: 32983152 PMCID: PMC7479965 DOI: 10.3389/fimmu.2020.02037] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/27/2020] [Indexed: 01/11/2023] Open
Abstract
Coronaviruses were first discovered in the 1960s and are named due to their crown-like shape. Sometimes, but not often, a coronavirus can infect both animals and humans. An acute respiratory disease, caused by a novel coronavirus (severe acute respiratory syndrome coronavirus-2 or SARS-CoV-2 previously known as 2019-nCoV) was identified as the cause of coronavirus disease 2019 (COVID-19) as it spread throughout China and subsequently across the globe. As of 14th July 2020, a total of 13.1 million confirmed cases globally and 572,426 deaths had been reported by the World Health Organization (WHO). SARS-CoV-2 belongs to the β-coronavirus family and shares extensive genomic identity with bat coronavirus suggesting that bats are the natural host. SARS-CoV-2 uses the same receptor, angiotensin-converting enzyme 2 (ACE2), as that for SARS-CoV, the coronavirus associated with the SARS outbreak in 2003. It mainly spreads through the respiratory tract with lymphopenia and cytokine storms occuring in the blood of subjects with severe disease. This suggests the existence of immunological dysregulation as an accompanying event during severe illness caused by this virus. The early recognition of this immunological phenotype could assist prompt recognition of patients who will progress to severe disease. Here we review the data of the immune response during COVID-19 infection. The current review summarizes our understanding of how immune dysregulation and altered cytokine networks contribute to the pathophysiology of COVID-19 patients.
Collapse
Affiliation(s)
- Esmaeil Mortaz
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Payam Tabarsi
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Varahram
- Mycobacteriology Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Masih Daneshvari Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Gert Folkerts
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, Netherlands
| | - Ian M. Adcock
- Respiratory Section, Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Priority Research Centre for Asthma and Respiratory Diseases, Hunter Medical Research Institute, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
197
|
Madsen TD, Hansen LH, Hintze J, Ye Z, Jebari S, Andersen DB, Joshi HJ, Ju T, Goetze JP, Martin C, Rosenkilde MM, Holst JJ, Kuhre RE, Goth CK, Vakhrushev SY, Schjoldager KT. An atlas of O-linked glycosylation on peptide hormones reveals diverse biological roles. Nat Commun 2020; 11:4033. [PMID: 32820167 PMCID: PMC7441158 DOI: 10.1038/s41467-020-17473-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 07/02/2020] [Indexed: 12/17/2022] Open
Abstract
Peptide hormones and neuropeptides encompass a large class of bioactive peptides that regulate physiological processes like anxiety, blood glucose, appetite, inflammation and blood pressure. Here, we execute a focused discovery strategy to provide an extensive map of O-glycans on peptide hormones. We find that almost one third of the 279 classified peptide hormones carry O-glycans. Many of the identified O-glycosites are conserved and are predicted to serve roles in proprotein processing, receptor interaction, biodistribution and biostability. We demonstrate that O-glycans positioned within the receptor binding motifs of members of the neuropeptide Y and glucagon families modulate receptor activation properties and substantially extend peptide half-lives. Our study highlights the importance of O-glycosylation in the biology of peptide hormones, and our map of O-glycosites in this large class of biomolecules serves as a discovery platform for an important class of molecules with potential opportunities for drug designs.
Collapse
Affiliation(s)
- Thomas D Madsen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Lasse H Hansen
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen O, Denmark
| | - John Hintze
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Zilu Ye
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Shifa Jebari
- Biofisika Institute (UPV/EHU, CSIC), Departamento de Bioquímica, Universidad del País Vasco, Bilbao, 48080, Spain
| | - Daniel B Andersen
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Hiren J Joshi
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Tongzhong Ju
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Jens P Goetze
- Department of Clinical Biochemistry, Rigshospitalet, University of Copenhagen, Blegdamsvej 9, DK-2100, Copenhagen O, Denmark.,Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Cesar Martin
- Office of Biotechnology Products, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, 20993, USA
| | - Mette M Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Jens J Holst
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Rune E Kuhre
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.,Novo Nordisk Foundation Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Christoffer K Goth
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Sergey Y Vakhrushev
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark
| | - Katrine T Schjoldager
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3, DK-2200, Copenhagen N, Denmark.
| |
Collapse
|
198
|
Ahmed-Hassan H, Sisson B, Shukla RK, Wijewantha Y, Funderburg NT, Li Z, Hayes D, Demberg T, Liyanage NPM. Innate Immune Responses to Highly Pathogenic Coronaviruses and Other Significant Respiratory Viral Infections. Front Immunol 2020; 11:1979. [PMID: 32973803 PMCID: PMC7468245 DOI: 10.3389/fimmu.2020.01979] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 07/22/2020] [Indexed: 12/13/2022] Open
Abstract
The new pandemic virus SARS-CoV-2 emerged in China and spread around the world in <3 months, infecting millions of people, and causing countries to shut down public life and businesses. Nearly all nations were unprepared for this pandemic with healthcare systems stretched to their limits due to the lack of an effective vaccine and treatment. Infection with SARS-CoV-2 can lead to Coronavirus disease 2019 (COVID-19). COVID-19 is respiratory disease that can result in a cytokine storm with stark differences in morbidity and mortality between younger and older patient populations. Details regarding mechanisms of viral entry via the respiratory system and immune system correlates of protection or pathogenesis have not been fully elucidated. Here, we provide an overview of the innate immune responses in the lung to the coronaviruses MERS-CoV, SARS-CoV, and SARS-CoV-2. This review provides insight into key innate immune mechanisms that will aid in the development of therapeutics and preventive vaccines for SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Hanaa Ahmed-Hassan
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Zoonoses, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Brianna Sisson
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Rajni Kant Shukla
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Yasasvi Wijewantha
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Nicholas T Funderburg
- Division of Medical Laboratory Science, School of Health and Rehabilitation Sciences, The Ohio State University, Columbus, OH, United States
| | - Zihai Li
- The James Comprehensive Cancer Center, Pelotonia Institute for Immuno-Oncology, The Ohio State University, Columbus, OH, United States
| | - Don Hayes
- Division of Pulmonary Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, United States.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | | | - Namal P M Liyanage
- Department of Microbial Infection and Immunity, College of Medicine, The Ohio State University, Columbus, OH, United States.,Department of Veterinary Biosciences, College of Veterinary Medicine, Ohio State University, Columbus, OH, United States.,Infectious Diseases Institute, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
199
|
Zhang YY, Li BR, Ning BT. The Comparative Immunological Characteristics of SARS-CoV, MERS-CoV, and SARS-CoV-2 Coronavirus Infections. Front Immunol 2020; 11:2033. [PMID: 32922406 PMCID: PMC7457039 DOI: 10.3389/fimmu.2020.02033] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 07/27/2020] [Indexed: 02/06/2023] Open
Abstract
Immune dysfunction and aberrant cytokine storms often lead to rapid exacerbation of the disease during late infection stages in SARS-CoV and MERS-CoV patients. However, the underlying immunopathology mechanisms are not fully understood, and there has been little progress in research regarding the development of vaccines, anti-viral drugs, and immunotherapy. The newly discovered SARS-CoV-2 (2019-nCoV) is responsible for the third coronavirus pandemic in the human population, and this virus exhibits enhanced pathogenicity and transmissibility. SARS-CoV-2 is highly genetically homologous to SARS-CoV, and infection may result in a similar clinical disease (COVID-19). In this review, we provide detailed knowledge of the pathogenesis and immunological characteristics of SARS and MERS, and we present recent findings regarding the clinical features and potential immunopathogenesis of COVID-19. Host immunological characteristics of these three infections are summarised and compared. We aim to provide insights and scientific evidence regarding the pathogenesis of COVID-19 and therapeutic strategies targeting this disease.
Collapse
Affiliation(s)
| | - Bi-ru Li
- Department of Paediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bo-tao Ning
- Department of Paediatric Intensive Care Unit, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
200
|
Marine collagen and its derivatives: Versatile and sustainable bio-resources for healthcare. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110963. [DOI: 10.1016/j.msec.2020.110963] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 04/06/2020] [Accepted: 04/11/2020] [Indexed: 02/07/2023]
|