151
|
Thanapati S, Ganu MA, Tripathy AS. Differential inhibitory and activating NK cell receptor levels and NK/NKT-like cell functionality in chronic and recovered stages of chikungunya. PLoS One 2017; 12:e0188342. [PMID: 29182664 PMCID: PMC5705157 DOI: 10.1371/journal.pone.0188342] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Accepted: 11/06/2017] [Indexed: 11/18/2022] Open
Abstract
The role of natural killer (NK; CD3-CD56+)/NKT (CD3+CD56+)-like cells in chikungunya virus (CHIKV) disease progression/recovery remains unclear. Here, we investigated the expression profiles and function of NK and NKT-like cells from 35 chronic chikungunya patients, 30 recovered individuals, and 69 controls. Percentage of NKT-like cells was low in chronic chikungunya patients. NKp30+, CD244+, DNAM-1+, and NKG2D+ NK cell percentages were also lower (MFI and/or percentage), while those of CD94+ and NKG2A+ NKT-like cells were higher (MFI and/or percentage) in chronic patients than in recovered subjects. IFN-γ and TNF-α expression on NKT-like cells was high in the chronic patients, while only IFN-γ expression on NK cells was high in the recovered individuals. Furthermore, percentage of perforin+NK cells was low in the chronic patients. Lower cytotoxic activity was observed in the chronic patients than in the controls. CD107a expression on NK and NKT-like cells post anti-CD94/anti-NKG2A blocking was comparable among the patients and controls. Upregulated inhibitory and downregulated activating NK receptor expressions on NK/NKT-like cells, lower perforin+ and CD107a+NK cells are likely responsible for inhibiting the NK and NKT-like cell function in the chronic stage of chikungunya. Therefore, deregulation of NKR expression might underlie CHIKV-induced chronicity.
Collapse
Affiliation(s)
- Subrat Thanapati
- Hepatitis Group, National Institute of Virology, Pune, Pashan, Pune, Maharashtra, India
| | - Mohini A. Ganu
- Sanjeevan Hospital, Majage Nagar, Latur, Maharashtra, India
| | - Anuradha S. Tripathy
- Hepatitis Group, National Institute of Virology, Pune, Pashan, Pune, Maharashtra, India
- * E-mail:
| |
Collapse
|
152
|
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus responsible for several significant outbreaks of debilitating acute and chronic arthritis and arthralgia over the past decade. These include a recent outbreak in the Caribbean islands and the Americas that caused more than 1 million cases of viral arthralgia. Despite the major impact of CHIKV on global health, viral determinants that promote CHIKV-induced disease are incompletely understood. Most CHIKV strains contain a conserved opal stop codon at the end of the viral nsP3 gene. However, CHIKV strains that encode an arginine codon in place of the opal stop codon have been described, and deep-sequencing analysis of a CHIKV isolate from the Caribbean identified both arginine and opal variants within this strain. Therefore, we hypothesized that the introduction of the arginine mutation in place of the opal termination codon may influence CHIKV virulence. We tested this by introducing the arginine mutation into a well-characterized infectious clone of a CHIKV strain from Sri Lanka and designated this virus Opal524R. This mutation did not impair viral replication kinetics in vitro or in vivo. Despite this, the Opal524R virus induced significantly less swelling, inflammation, and damage within the feet and ankles of infected mice. Further, we observed delayed induction of proinflammatory cytokines and chemokines, as well as reduced CD4+ T cell and NK cell recruitment compared to those in the parental strain. Therefore, the opal termination codon plays an important role in CHIKV pathogenesis, independently of effects on viral replication. Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that causes significant outbreaks of viral arthralgia. Studies with CHIKV and other alphaviruses demonstrated that the opal termination codon within nsP3 is highly conserved. However, some strains of CHIKV and other alphaviruses contain mutations in the opal termination codon. These mutations alter the virulence of related alphaviruses in mammalian and mosquito hosts. Here, we report that a clinical isolate of a CHIKV strain from the recent outbreak in the Caribbean islands contains a mixture of viruses encoding either the opal termination codon or an arginine mutation. Mutating the opal stop codon to an arginine residue attenuates CHIKV-induced disease in a mouse model. Compared to infection with the opal-containing parental virus, infection with the arginine mutant causes limited swelling and inflammation, as well as dampened recruitment of immune mediators of pathology, including CD4+ T cells and NK cells. We propose that the opal termination codon plays an essential role in the induction of severe CHIKV disease.
Collapse
|
153
|
Thanapati S, Sudeep AB, Kulkarni SP, Tripathy AS. Regulation of the chikungunya-virus-induced innate inflammatory response by protein tyrosine phosphatase non-receptor 6 in muscle cells. Arch Virol 2017; 163:243-248. [PMID: 29058147 DOI: 10.1007/s00705-017-3615-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 09/29/2017] [Indexed: 01/03/2023]
Abstract
Chikungunya virus (CHIKV)-induced myositis is an emerging affliction with high incidence globally. Given the essential regulatory role of protein tyrosine phosphatase non-receptor 6 (PTPN6) in virus-induced myositis, the expression of the PTPN6 and TNF-α genes in a CHIKV-infected muscle cell line was examined by quantitative PCR, and the expression of PTPN6 and STAT 3 was examined by immunoblotting. In addition, the effect of PTPN6 siRNA treatment on TNF-α gene expression was assessed. Increased higher expression of PTPN6 and TNF-α, and significant upregulation of TNF-α upon PTPN6 siRNA treatment were observed, suggesting that CHIKV has the ability to induce host PTPN6 gene expression, which may lead to a decreased pro-inflammatory immune response in the host.
Collapse
Affiliation(s)
- Subrat Thanapati
- Hepatitis Group, National Institute of Virology, 130/1, Sus Road, Pashan, Pune, Maharashtra, 411021, India
| | - A B Sudeep
- Entomology group, National Institute of Virology, 130/1, Sus Road, Pashan, Pune, Maharashtra, 411021, India
| | - Shruti P Kulkarni
- Hepatitis Group, National Institute of Virology, 130/1, Sus Road, Pashan, Pune, Maharashtra, 411021, India
| | - Anuradha S Tripathy
- Hepatitis Group, National Institute of Virology, 130/1, Sus Road, Pashan, Pune, Maharashtra, 411021, India.
| |
Collapse
|
154
|
Schwameis M, Buchtele N, Wadowski PP, Schoergenhofer C, Jilma B. Chikungunya vaccines in development. Hum Vaccin Immunother 2017; 12:716-31. [PMID: 26554522 PMCID: PMC4964651 DOI: 10.1080/21645515.2015.1101197] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chikungunya virus has become a global health threat, spreading to the industrial world of Europe and the Americas; no treatment or prophylactic vaccine is available. Since the late 1960s much effort has been put into the development of a vaccine, and several heterogeneous strategies have already been explored. Only two candidates have recently qualified to enter clinical phase II trials, a chikungunya virus-like particle-based vaccine and a recombinant live attenuated measles virus-vectored vaccine. This review focuses on the current status of vaccine development against chikungunya virus in humans and discusses the diversity of immunization strategies, results of recent human trials and promising vaccine candidates.
Collapse
Affiliation(s)
- Michael Schwameis
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Nina Buchtele
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | - Patricia Pia Wadowski
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| | | | - Bernd Jilma
- a Departments of Clinical Pharmacology and Internal Medicine I , Medical University of Vienna , Vienna , Austria
| |
Collapse
|
155
|
Kennedy Amaral Pereira J, Schoen RT. Management of chikungunya arthritis. Clin Rheumatol 2017; 36:2179-2186. [PMID: 28776302 DOI: 10.1007/s10067-017-3766-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 07/12/2017] [Accepted: 07/13/2017] [Indexed: 12/29/2022]
Abstract
Chikungunya fever (CHIKF) is an emerging viral infection that has spread widely, along with its Aedes vectors, throughout the tropics and beyond, causing explosive epidemics of both acute illness and persistent disabling arthritis. There is an urgent need to mitigate the devastating impact of this illness, through vector control, personal protection, and possibly vaccine development. There is also a need to improve treatment for both acute illness and chronic arthritis. In this review, we will review the emergence of CHIK, what is known about pathogenesis and clinical manifestations, and then focus on current understanding of how to treat individual patients, in particular, those who develop chronic arthritis.
Collapse
Affiliation(s)
| | - Robert T Schoen
- Section of Rheumatology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
156
|
Mutations in the E2 Glycoprotein and the 3' Untranslated Region Enhance Chikungunya Virus Virulence in Mice. J Virol 2017; 91:JVI.00816-17. [PMID: 28747508 DOI: 10.1128/jvi.00816-17] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 07/21/2017] [Indexed: 01/22/2023] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-transmitted alphavirus that causes debilitating musculoskeletal pain and inflammation and can persist for months to years after acute infection. Although studies of humans and experimentally infected animals suggest that CHIKV infection persists in musculoskeletal tissues, the mechanisms for this remain poorly understood. To evaluate this further, we isolated CHIKV from the serum of persistently infected Rag1 -/- mice at day 28. When inoculated into naive wild-type (WT) mice, this persistently circulating CHIKV strain displayed a capacity for earlier dissemination and greater pathogenicity than the parental virus. Sequence analysis revealed a nonsynonymous mutation in the E2 glycoprotein (E2 K200R) and a deletion within the 3' untranslated region (3'-UTR). The introduction of these changes into the parental virus conferred enhanced virulence in mice, although primary tropism for musculoskeletal tissues was maintained. The E2 K200R mutation was largely responsible for enhanced viral dissemination and pathogenicity, although these effects were augmented by the 3'-UTR deletion. Finally, studies with Irf3/Irf7 -/- and Ifnar1 -/- mice suggest that the E2 K200R mutation enhances viral dissemination from the site of inoculation independently of interferon regulatory factor 3 (IRF3)-, IRF7-, and IFNAR1-mediated responses. As our findings reveal viral determinants of CHIKV dissemination and pathogenicity, their further study should help to elucidate host-virus interactions that determine acute and chronic CHIKV infection.IMPORTANCE CHIKV is a globally spreading, mosquito-transmitted virus that causes debilitating acute and chronic musculoskeletal disease in humans. The viral genetic determinants that dictate the severity of acute and chronic diseases are not understood. To improve our understanding of CHIKV pathogenesis, we evaluated a CHIKV strain isolated from the serum of chronically infected immunocompromised mice. Sequence analysis of this persistent CHIKV strain identified two mutations, an amino acid change in the E2 viral attachment protein and a deletion within the 3'-UTR of the viral genome. We identified roles for these mutations in the enhancement of viral dissemination from the inoculation site and in disease severity. These data improve our understanding of the viral determinants of CHIKV pathogenesis and adaptive changes that occur during viral persistence.
Collapse
|
157
|
Amdekar S, Parashar D, Alagarasu K. Chikungunya Virus-Induced Arthritis: Role of Host and Viral Factors in the Pathogenesis. Viral Immunol 2017; 30:691-702. [PMID: 28910194 DOI: 10.1089/vim.2017.0052] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Chikungunya virus (CHIKV), a member of Alphavirus genus, is responsible for chikungunya fever (CHIKF), which is characterized by the presence of fever, rash, myalgia, and arthralgia. Reemergence of CHIKV has become a significant public health concern in Asian and African countries and is newly emerging in the Middle East, Pacific, American, and European countries. Cytokines, innate (monocytes, natural killer cells) and adaptive immune response (role of B cells and T cells i.e. CD4+ and CD8+), and/or viral factors contribute to CHIKV-induced arthritis. Vector factors such as vector competence (that includes extrinsic and intrinsic factors) and effect of genome mutations on viral replication and fitness in mosquitoes are responsible for the spread of virus, although they are not directly responsible for CHIKV-induced arthritis. CHIKV-induced arthritis mimics arthritis by involving joints and a common pattern of leukocyte infiltrate, cytokine production, and complement activation. Successful establishment of CHIKV infection and induction of arthritis depends on its ability to manipulate host cellular processes or host factors. CHIKV-induced joint damage is due to host inflammatory response mediated by macrophages, T cells, and antibodies, as well as the possible persistence of the virus in hidden sites. This review provides insight into mechanisms of CHIKV-induced arthritis. Understanding the pathogenesis of CHIKV-induced arthritis will help in developing novel strategies to predict and prevent the disease in virus-infected subjects and combat the disease, thereby decreasing the worldwide burden of the disease.
Collapse
Affiliation(s)
- Sarika Amdekar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | - Deepti Parashar
- Dengue/Chikungunya Group, ICMR-National Institute of Virology , Pune, India
| | | |
Collapse
|
158
|
Specific inhibition of NLRP3 in chikungunya disease reveals a role for inflammasomes in alphavirus-induced inflammation. Nat Microbiol 2017; 2:1435-1445. [DOI: 10.1038/s41564-017-0015-4] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 07/28/2017] [Indexed: 01/01/2023]
|
159
|
Kulkarni SP, Ganu M, Jayawant P, Thanapati S, Ganu A, Tripathy AS. Regulatory T cells and IL-10 as modulators of chikungunya disease outcome: a preliminary study. Eur J Clin Microbiol Infect Dis 2017; 36:2475-2481. [PMID: 28840350 DOI: 10.1007/s10096-017-3087-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 07/31/2017] [Indexed: 12/26/2022]
Abstract
Regulatory T (Treg) cells hold centre stage in regulating the immune responses in most viral infections. However, their involvement in chikungunya infection is unexplored. In the current study, the frequencies and functionality of peripheral Treg and T effector (Teff) cells were assessed during different phases of chikungunya by flow cytometry and in-vitro cytokine assays. Treg cells were also studied in rheumatoid arthritis (RA) patients, whose symptoms closely mimic chronic chikungunya arthritis patients. Frequency of Treg cells was lower in acute and chronic chikungunya arthritis patients than in recovered individuals and controls, and comparable among recovered individuals and controls. Treg/Teff ratio was lower in acute than in chronic chikungunya arthritis patients, recovered individuals and controls. Higher secretion of CHIKV specific IL-10 was observed in recovered individuals than in acute, chronic chikungunya arthritis patients and controls. Frequencies of Treg and Teff cells were higher and Treg/Teff ratio was lower in RA patients than in chronic chikungunya arthritis patients. The results indicate that reduction of Treg cells was associated with ongoing CHIKV infection and normalization of Treg cells with resolution of disease. Contrasting phenotypic data in RA and chronic chikungunya arthritis suggest an altogether different mechanism of Treg-mediated pathology in both arthritis conditions. Overall, our preliminary study, suggesting an association of peripheral Treg cells and IL-10 with recovery from chikungunya, may provide insight into chikungunya disease prognosis and warrants further study.
Collapse
Affiliation(s)
- S P Kulkarni
- Hepatitis Group, National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra, 411021, India
| | - M Ganu
- Sanjeevan Hospital, Latur, Maharashtra, India
| | - P Jayawant
- Hepatitis Group, National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra, 411021, India
| | - S Thanapati
- Hepatitis Group, National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra, 411021, India
| | - A Ganu
- Sanjeevan Hospital, Latur, Maharashtra, India
| | - A S Tripathy
- Hepatitis Group, National Institute of Virology, Pune, 130/1, Sus Road, Pashan, Pune, Maharashtra, 411021, India.
| |
Collapse
|
160
|
Saint-Pastou Terrier C, Gasque P. Bone responses in health and infectious diseases: A focus on osteoblasts. J Infect 2017; 75:281-292. [PMID: 28778751 DOI: 10.1016/j.jinf.2017.07.007] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Revised: 07/13/2017] [Accepted: 07/26/2017] [Indexed: 12/16/2022]
Abstract
Historically, bone was thought to be immunologically inactive with the sole function of supporting locomotion and ensuring stromaness functions as a major lymphoid organ. However, a myriad of pathogens (bacteria such as staphylococcus as well as viruses including alphaviruses, HIV or HCV) can invade the bone. These pathogens can cause apoptosis, autophagy and necrosis of osteoblasts and lead to lymphopenia and immune paralysis. There are now several detailed studies on how osteoblasts contribute to innate immune and inflammatory responses; indeed, osteoblasts in concert with resident macrophages can engage an armory of defense mechanisms capable of detecting and controlling pathogen evasion mechanisms. Osteoblasts can express the so-called pattern recognition receptors such as TOLL-like receptors involved in the detection for example of lipids and unique sugars (polysaccharides and polyriboses) expressed by bacteria or viruses (e.g. LPS and RNA respectively). Activated osteoblasts can produce interferon type I, cytokines, chemokines and interferon-stimulated proteins through autocrine and paracrine mechanisms to control for viral replication and to promote phagocytosis or lysis of bacteria for example by defensins. Uncontrolled and sustained innate immune activation of infected osteoblasts will also lead to an imbalance in the production of osteoclastogenic factors such as RANKL and osteoprotegerin involved in bone repair.
Collapse
Affiliation(s)
- Cécile Saint-Pastou Terrier
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France
| | - Philippe Gasque
- Université de La Réunion, CNRS 9192, INSERM U1187, IRD 249, Unité Mixte Processus Infectieux en Milieu Insulaire Tropical (PIMIT), Plateforme Technologique CYROI, Sainte-Clotilde, La Réunion, France; Laboratoire de Biologie, secteur Laboratoire d'immunologie clinique et expérimentale ZOI (LICE OI), CHU La Réunion site Félix Guyon, St Denis, La Réunion, France.
| |
Collapse
|
161
|
Fox JM, Diamond MS. Immune-Mediated Protection and Pathogenesis of Chikungunya Virus. THE JOURNAL OF IMMUNOLOGY 2017; 197:4210-4218. [PMID: 27864552 DOI: 10.4049/jimmunol.1601426] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/13/2016] [Indexed: 01/16/2023]
Abstract
Chikungunya virus (CHIKV) is a re-emerging alphavirus that causes debilitating acute and chronic arthritis. Infection by CHIKV induces a robust immune response that is characterized by production of type I IFNs, recruitment of innate and adaptive immune cells, and development of neutralizing Abs. Despite this response, chronic arthritis can develop in some individuals, which may be due to a failure to eliminate viral RNA and Ag and/or persistent immune responses that cause chronic joint inflammation. In this review, based primarily on advances from recent studies in mice, we discuss the innate and adaptive immune factors that control CHIKV dissemination and clearance or contribute to pathogenesis.
Collapse
Affiliation(s)
- Julie M Fox
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael S Diamond
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110; .,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110.,Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110; and.,Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
162
|
Cirimotich CM, Vela EM, Garver J, Barnewall RE, Miller BD, Meister GT, Rogers JV. Chikungunya virus infection in Cynomolgus macaques following Intradermal and aerosol exposure. Virol J 2017; 14:135. [PMID: 28728590 PMCID: PMC5520379 DOI: 10.1186/s12985-017-0804-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 07/14/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is transmitted via mosquito bite and potentially by aerosol, causing chikungunya fever and arthritic disease in humans. There are currently no licensed vaccines or antiviral therapeutics to protect against CHIKV infection in humans. Animal models recapitulating human disease, especially for transmission by aerosol, are needed for licensure of such medical countermeasures. METHODS Cynomolgus macaques (CMs) were challenged by intradermal (ID) inoculation or exposure to an aerosol containing CHIKV Ross strain at different target infectious doses (103-107 plaque forming units (PFU)). The clinical and virologic courses of disease were monitored up to 14 days post-exposure. RESULTS ID infection of CMs led to overt clinical disease, detectable viremia, and increased blood markers of liver damage. Animals challenged by aerosol exhibited viremia and increased liver damage biomarkers with minimal observed clinical disease. All animals survived CHIKV challenge. CONCLUSIONS We have described CHIKV infection in CMs following ID inoculation and, for the first time, infection by aerosol. Based on limited reported cases in the published literature, the aerosol model recapitulates the virologic findings of human infection via this route. The results of this study provide additional evidence for the potential use of CMs as a model for evaluating medical countermeasures against CHIKV.
Collapse
Affiliation(s)
| | - Eric M Vela
- Battelle, West Jefferson, OH, 43162, USA.,Vaccine and Gene Therapy Institute, Oregon Health and Science University, Portland, OR, 97239, USA
| | | | | | | | | | | |
Collapse
|
163
|
Zingman MA, Paulino AT, Payano MP. Clinical manifestations of chikungunya among university professors and staff in Santo Domingo, the Dominican Republic. Rev Panam Salud Publica 2017. [PMID: 28902277 PMCID: PMC6612746 DOI: 10.26633/rpsp.2017.64] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Objective. To further characterize chikungunya virus infection and its associated clinical manifestations, using a sample of university professors and staff in Santo Domingo, the Dominican Republic. Methods. A cross-sectional study with quota sampling by department was performed to obtain a convenience sample of professors (n = 736) and staff (n = 499) at the Universidad Autónoma de Santo Domingo. Surveys were used to collect demographic and infection data during the fall term of 2014. Univariate and bivariate analyses were carried out to quantify infection and clinical manifestation prevalence and to assess relationships of these outcomes with age, sex, and acute phase duration. Results. Of 1 236 participants, 49% reported infection (professors = 41%; staff = 61%). Of these, 53% also reported the presence of chronic effects, largely arthralgia (48%). Significant relationships were observed between reported infection and sex (P = 0.023), age (P < 0.001), and occupation (P < 0.001). More headache (P = 0.008) and edema (P < 0.001) in females, more headache (P = 0.005) in younger subjects, and more myalgia (P = 0.006) in those with longer acute symptoms were found. Additionally, more chronic arthralgia (P < 0.001; P = 0.003) and chronic edema (P < 0.001; P = 0.001) in females and older subjects, and more chronic myalgia (P = 0.041) and chronic edema (P = 0.037) in those with longer acute symptoms were observed. Conclusions. To the authors knowledge, this is the first population-based chikungunya prevalence study in the Dominican Republic, and the first to explore clinical manifestations in a university setting. The findings reflect results from studies following the 2005 – 2006 Reunion Island outbreak: prevalence of infection and chronic arthralgia, as well as associations with sex, age, and acute intensity. Longitudinal research can provide further insight into these effects.
Collapse
Affiliation(s)
- Michael A Zingman
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, New York, United States of America
| | - Amarilis Then Paulino
- Facultad de Ciencias de Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| | - Matilde Peguero Payano
- Facultad de Ciencias de Salud, Universidad Autónoma de Santo Domingo, Santo Domingo, Dominican Republic
| |
Collapse
|
164
|
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne alphavirus in the family Togaviridae that causes outbreaks of debilitating acute and chronic arthralgia in humans. Although historically associated with localized outbreaks in Africa and Asia, recent epidemics in the Indian Ocean region and the Americas have led to the recognition that CHIKV is capable of moving into previously unaffected areas and causing significant levels of human suffering. The severity of CHIKV rheumatic disease, which can severely impact life quality of infected individuals for weeks, months, or even years, combined with the explosive nature of CHIKV outbreaks and its demonstrated ability to quickly spread into new regions, has led to renewed interest in developing strategies for the prevention or treatment of CHIKV-induced disease. Therefore, this chapter briefly discusses the biology of CHIKV and the factors contributing to CHIKV dissemination, while also discussing the pathogenesis of CHIKV-induced disease and summarizing the status of efforts to develop safe and effective therapies and vaccines against CHIKV and related viruses.
Collapse
|
165
|
Abstract
Chikungunya virus (CHIKV) is an arthropod-borne alphavirus that causes acute and chronic arthritis. The virus reemerged in the Indian Ocean islands in 2005-2006 and is responsible for outbreaks in the Caribbean islands and the Americas since late 2013. Despite the wealth of research over the past 10 years, there are no commercially available antiviral drugs or vaccines. Treatment usually involves analgesics, anti-inflammatory drugs, and supportive care. Most studies have been focused on understanding the pathogenesis of CHIKV infection through clinical observation and with animal models. In this review, the clinical manifestations of CHIKV that define the disease and the use of relevant animal models, from mice to nonhuman primates, are discussed. Understanding key cellular factors in CHIKV infection and the interplay with the immune system will aid in the development of preventive and therapeutic approaches to combat this painful viral disease in humans.
Collapse
Affiliation(s)
- Lisa F P Ng
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore 138648; .,Institute of Infection and Global Health, University of Liverpool, Liverpool L69 3BX, United Kingdom
| |
Collapse
|
166
|
Therapeutic administration of a recombinant human monoclonal antibody reduces the severity of chikungunya virus disease in rhesus macaques. PLoS Negl Trop Dis 2017. [PMID: 28628616 PMCID: PMC5491320 DOI: 10.1371/journal.pntd.0005637] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chikungunya virus (CHIKV) is a mosquito-borne virus that causes a febrile syndrome in humans associated with acute and chronic debilitating joint and muscle pain. Currently no licensed vaccines or therapeutics are available to prevent or treat CHIKV infections. We recently isolated a panel of potently neutralizing human monoclonal antibodies (mAbs), one (4N12) of which exhibited prophylactic and post-exposure therapeutic activity against CHIKV in immunocompromised mice. Here, we describe the development of an engineered CHIKV mAb, designated SVIR001, that has similar antigen binding and neutralization profiles to its parent, 4N12. Because therapeutic administration of SVIR001 in immunocompetent mice significantly reduced viral load in joint tissues, we evaluated its efficacy in a rhesus macaque model of CHIKV infection. Rhesus macaques that were treated after infection with SVIR001 showed rapid elimination of viremia and less severe joint infiltration and disease compared to animals treated with SVIR002, an isotype control mAb. SVIR001 reduced viral burden at the site of infection and at distant sites and also diminished the numbers of activated innate immune cells and levels of pro-inflammatory cytokines and chemokines. SVIR001 therapy; however, did not substantively reduce the induction of CHIKV-specific B or T cell responses. Collectively, these results show promising therapeutic activity of a human anti-CHIKV mAb in rhesus macaques and provide proof-of-principle for its possible use in humans to treat active CHIKV infections. Chikungunya virus (CHIKV) causes fever, rash, and acute and chronic arthralgia. Currently there are no approved therapies to treat or vaccines to prevent CHIKV infection in humans. In this study, we engineered SVIR001, a recombinant fully human monoclonal antibody (mAb) that eliminated viremia, reduced viral load at the site of infection, and diminished spread to distant target tissues in rhesus macaques when administered after infection. SVIR001 treatment reduced joint inflammation and disease without impairing the induction of the adaptive immune response. These results demonstrate the efficacy of mAb therapy to reduce the severity of CHIKV disease.
Collapse
|
167
|
Haese NN, Broeckel RM, Hawman DW, Heise MT, Morrison TE, Streblow DN. Animal Models of Chikungunya Virus Infection and Disease. J Infect Dis 2017; 214:S482-S487. [PMID: 27920178 DOI: 10.1093/infdis/jiw284] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Chikungunya virus (CHIKV) is a reemerging alphavirus that causes acute febrile illness and severe joint pain in humans. Although acute symptoms often resolve within a few days, chronic joint and muscle pain can be long lasting. In the last decade, CHIKV has caused widespread outbreaks of unprecedented scale in the Americas, Asia, and the Indian Ocean island regions. Despite these outbreaks and the continued expansion of CHIKV into new areas, mechanisms of chikungunya pathogenesis and disease are not well understood. Experimental animal models are indispensable to the field of CHIKV research. The most commonly used experimental animal models of CHIKV infection are mice and nonhuman primates; each model has its advantages for studying different aspects of CHIKV disease. This review will provide an overview of animal models used to study CHIKV infection and disease and major advances in our understanding of chikungunya obtained from studies performed in these models.
Collapse
Affiliation(s)
- Nicole N Haese
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton
| | - Rebecca M Broeckel
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton
| | - David W Hawman
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora
| | - Mark T Heise
- Departments of Genetics, Microbiology, and Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill
| | - Thomas E Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora
| | - Daniel N Streblow
- Vaccine and Gene Therapy Institute, Oregon Health and Science University, Beaverton
| |
Collapse
|
168
|
Would be IL-6 a missing link between chronic inflammatory rheumatism and depression after chikungunya infection? Rheumatol Int 2017; 37:1149-1151. [DOI: 10.1007/s00296-017-3747-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/17/2017] [Indexed: 10/19/2022]
|
169
|
Wada Y, Orba Y, Sasaki M, Kobayashi S, Carr MJ, Nobori H, Sato A, Hall WW, Sawa H. Discovery of a novel antiviral agent targeting the nonstructural protein 4 (nsP4) of chikungunya virus. Virology 2017; 505:102-112. [DOI: 10.1016/j.virol.2017.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 02/09/2017] [Accepted: 02/15/2017] [Indexed: 01/31/2023]
|
170
|
Brito CAAD, Sohsten AKAV, Leitão CCDS, Brito RDCCMD, Valadares LDDA, Fonte CAMD, Mesquita ZBD, Cunha RV, Luz K, Leão HMC, Brito CMD, Frutuoso LCV. Pharmacologic management of pain in patients with Chikungunya: a guideline. Rev Soc Bras Med Trop 2017; 49:668-679. [PMID: 28001212 DOI: 10.1590/0037-8682-0279-2016] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Accepted: 11/23/2016] [Indexed: 11/21/2022] Open
Abstract
From the arrival of Chikungunya virus in the Americas in 2013 until March 2016, approximately two million cases of the disease have been reported. In Brazil, the virus was identified in 2014 and thousands of people have been affected. The disease has high attack rates, infecting 50% of a population within a few months. Approximately 50% of infected people develop chronic symptoms lasting for months or years. Joint involvement is the main clinical manifestation of Chikungunya. It is characterized by swelling and intense pain that is poorly responsive to analgesics, both in the acute and chronic phase of the disease. This significantly compromises quality of life and may have immeasurable psychosocial and economic repercussions, constituting therefore, a serious public health problem requiring a targeted approach. Physicians are often not familiar with how to approach the management of pain, frequently prescribing limited analgesics, such as dipyrone, in sub-therapeutic doses. In addition, there are few published studies or guidelines on the approach to the treatment of pain in patients with Chikungunya. Some groups of specialists from different fields have thus developed a protocol for the pharmacologic treatment of Chikungunya-associated acute and chronic joint pain; this will be presented in this review.
Collapse
Affiliation(s)
| | - Ana Karla Arraes von Sohsten
- Instituto de Tratamento da Dor, Real Hospital Português de Beneficência em Pernambuco, Recife, Pernambuco, Brazil
| | | | | | | | | | - Zelina Barbosa de Mesquita
- Departamento de Pediatria, Instituto de Medicina Integral Professor Fernando Figueira, Recife, Pernambuco, Brazil
| | - Rivaldo Venâncio Cunha
- Departamento de Infectologia, Universidade Federal de Mato Grosso do Sul, Campo grande, Mato Groso do Sul, Brazil.,Fundação Oswaldo Cruz, Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Kleber Luz
- Departamento de Infectologia, Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Helena Maria Carneiro Leão
- Escola Superior de Ética e Bioética, Conselho Regional de Medicina de Pernambuco, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
171
|
Jain J, Nayak K, Tanwar N, Gaind R, Gupta B, Shastri JS, Bhatnagar RK, Kaja MK, Chandele A, Sunil S. Clinical, Serological, and Virological Analysis of 572 Chikungunya Patients From 2010 to 2013 in India. Clin Infect Dis 2017; 65:133-140. [DOI: 10.1093/cid/cix283] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Accepted: 03/28/2017] [Indexed: 01/06/2023] Open
|
172
|
Roques P, Ljungberg K, Kümmerer BM, Gosse L, Dereuddre-Bosquet N, Tchitchek N, Hallengärd D, García-Arriaza J, Meinke A, Esteban M, Merits A, Le Grand R, Liljeström P. Attenuated and vectored vaccines protect nonhuman primates against Chikungunya virus. JCI Insight 2017; 2:e83527. [PMID: 28352649 DOI: 10.1172/jci.insight.83527] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV) is rapidly spreading across the globe, and millions are infected. Morbidity due to this virus is a serious threat to public health, but at present, there is no vaccine against this debilitating disease. We have recently developed a number of vaccine candidates, and here we have evaluated 3 of them in a nonhuman primate model. A single immunization with an attenuated strain of CHIKV (Δ5nsP3), a homologous prime-boost immunization with a DNA-launched RNA replicon encoding CHIKV envelope proteins (DREP-E), and a DREP-E prime followed by a recombinant modified vaccinia virus Ankara encoding CHIKV capsid and envelope (MVA-CE) boost all induced protection against WT CHIKV infection. The attenuated Δ5nsP3 virus proved to be safe and did not show any clinical signs typically associated with WT CHIKV infections such as fever, skin rash, lymphopenia, or joint swelling. These vaccines are based on an East/Central/South African strain of Indian Ocean lineage, but they also generated neutralizing antibodies against an isolate of the Asian genotype that now is rapidly spreading across the Americas. These results form the basis for clinical development of an efficacious CHIKV vaccine that generates both humoral and cellular immunity with long-term immunological memory.
Collapse
Affiliation(s)
- Pierre Roques
- Université Paris Sud, UMR 1184, Orsay, France.,CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT center.,Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Fontenay aux Roses, France
| | - Karl Ljungberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Beate M Kümmerer
- Institute of Virology, University of Bonn Medical Centre, Bonn, Germany
| | - Leslie Gosse
- Université Paris Sud, UMR 1184, Orsay, France.,CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT center.,Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Fontenay aux Roses, France
| | - Nathalie Dereuddre-Bosquet
- Université Paris Sud, UMR 1184, Orsay, France.,CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT center.,Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Fontenay aux Roses, France
| | - Nicolas Tchitchek
- Université Paris Sud, UMR 1184, Orsay, France.,CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT center.,Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Fontenay aux Roses, France
| | - David Hallengärd
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Juan García-Arriaza
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | | - Mariano Esteban
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Roger Le Grand
- Université Paris Sud, UMR 1184, Orsay, France.,CEA, DSV/iMETI, Division of Immuno-Virology, IDMIT center.,Inserm, U1184, Center for immunology of viral infections and autoimmune diseases, Fontenay aux Roses, France
| | - Peter Liljeström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
173
|
Silva LA, Dermody TS. Chikungunya virus: epidemiology, replication, disease mechanisms, and prospective intervention strategies. J Clin Invest 2017; 127:737-749. [PMID: 28248203 PMCID: PMC5330729 DOI: 10.1172/jci84417] [Citation(s) in RCA: 251] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Chikungunya virus (CHIKV), a reemerging arbovirus, causes a crippling musculoskeletal inflammatory disease in humans characterized by fever, polyarthralgia, myalgia, rash, and headache. CHIKV is transmitted by Aedes species of mosquitoes and is capable of an epidemic, urban transmission cycle with high rates of infection. Since 2004, CHIKV has spread to new areas, causing disease on a global scale, and the potential for CHIKV epidemics remains high. Although CHIKV has caused millions of cases of disease and significant economic burden in affected areas, no licensed vaccines or antiviral therapies are available. In this Review, we describe CHIKV epidemiology, replication cycle, pathogenesis and host immune responses, and prospects for effective vaccines and highlight important questions for future research.
Collapse
|
174
|
RNA-Seq analysis of chikungunya virus infection and identification of granzyme A as a major promoter of arthritic inflammation. PLoS Pathog 2017; 13:e1006155. [PMID: 28207896 PMCID: PMC5312928 DOI: 10.1371/journal.ppat.1006155] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 12/28/2016] [Indexed: 02/07/2023] Open
Abstract
Chikungunya virus (CHIKV) is an arthritogenic alphavirus causing epidemics of acute and chronic arthritic disease. Herein we describe a comprehensive RNA-Seq analysis of feet and lymph nodes at peak viraemia (day 2 post infection), acute arthritis (day 7) and chronic disease (day 30) in the CHIKV adult wild-type mouse model. Genes previously shown to be up-regulated in CHIKV patients were also up-regulated in the mouse model. CHIKV sequence information was also obtained with up to ≈8% of the reads mapping to the viral genome; however, no adaptive viral genome changes were apparent. Although day 2, 7 and 30 represent distinct stages of infection and disease, there was a pronounced overlap in up-regulated host genes and pathways. Type I interferon response genes (IRGs) represented up to ≈50% of up-regulated genes, even after loss of type I interferon induction on days 7 and 30. Bioinformatic analyses suggested a number of interferon response factors were primarily responsible for maintaining type I IRG induction. A group of genes prominent in the RNA-Seq analysis and hitherto unexplored in viral arthropathies were granzymes A, B and K. Granzyme A-/- and to a lesser extent granzyme K-/-, but not granzyme B-/-, mice showed a pronounced reduction in foot swelling and arthritis, with analysis of granzyme A-/- mice showing no reductions in viral loads but reduced NK and T cell infiltrates post CHIKV infection. Treatment with Serpinb6b, a granzyme A inhibitor, also reduced arthritic inflammation in wild-type mice. In non-human primates circulating granzyme A levels were elevated after CHIKV infection, with the increase correlating with viral load. Elevated granzyme A levels were also seen in a small cohort of human CHIKV patients. Taken together these results suggest granzyme A is an important driver of arthritic inflammation and a potential target for therapy. Trial Registration: ClinicalTrials.gov NCT00281294 The largest chikungunya virus (CHIKV) epidemic ever recorded began in 2004 in Africa and spread across Asia reaching Europe and recently the Americas, with millions of cases reported. We undertook a detailed analysis of the mRNA expression profile during acute and chronic arthritis in an adult wild-type mouse model of CHIKV infection and disease. Gene induction profiles showed a high concordance with published human data, providing some validation of the mouse model. The host response was overwhelmingly dominated by type I interferon response genes, even after type I interferon induction was lost. The analysis also provided information on CHIKV RNA, with no adaptive viral genome changes identified. An important goal of the analysis was to identify new players in arthritic inflammation. Granzyme A was prominent in the RNA-Seq data and granzyme A deficient mice showed reduced arthritis, with no effects on viral loads. Arthritic disease could also be ameliorated in wild-type mice with a granzyme A inhibitor. Elevated circulating granzyme A levels were seen in non-human primates infected with CHIKV and in human CHIKV patients. Granzyme A thus emerges to be a major driver of CHIKV-mediated arthritic inflammation and a potential target for anti-inflammatory interventions.
Collapse
|
175
|
The neutralizing role of IgM during early Chikungunya virus infection. PLoS One 2017; 12:e0171989. [PMID: 28182795 PMCID: PMC5300252 DOI: 10.1371/journal.pone.0171989] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 01/30/2017] [Indexed: 12/13/2022] Open
Abstract
The antibody isotype IgM appears earlier than IgG, within days of onset of symptoms, and is important during the early stages of the adaptive immune response. Little is known about the functional role of IgM during infection with chikungunya virus (CHIKV), a recently reemerging arbovirus that has caused large global outbreaks. In this study, we studied antibody responses in 102 serum samples collected during CHIKV outbreaks in Malaysia. We described the neutralizing role of IgM at different times post-infection and examined the independent contributions of IgM and IgG towards the neutralizing capacity of human immune sera during the early phase of infection, including the differences in targets of neutralizing epitopes. Neutralizing IgM starts to appear as early as day 4 of symptoms, and their appearance from day 6 is associated with a reduction in viremia. IgM acts in a complementary manner with the early IgG, but plays the main neutralizing role up to a point between days 4 and 10 which varies between individuals. After this point, total neutralizing capacity is attributable almost entirely to the robust neutralizing IgG response. IgM preferentially binds and targets epitopes on the CHIKV surface E1-E2 glycoproteins, rather than individual E1 or E2. These findings provide insight into the early antibody responses to CHIKV, and have implications for design of diagnostic serological assays.
Collapse
|
176
|
van Aalst M, Nelen CM, Goorhuis A, Stijnis C, Grobusch MP. Long-term sequelae of chikungunya virus disease: A systematic review. Travel Med Infect Dis 2017; 15:8-22. [PMID: 28163198 DOI: 10.1016/j.tmaid.2017.01.004] [Citation(s) in RCA: 118] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/24/2017] [Accepted: 01/26/2017] [Indexed: 11/19/2022]
Abstract
BACKGROUND The acute phase of chikungunya is well documented; less so are its long-term effects. This systematic literature review provides an overview of the currently available data. METHODS We performed an electronic search in PubMed/Medline and checked reference lists. We included studies in English on long-term sequelae of chikungunya in adults and on long-term sequelae of congenital infection from 2000 to 2016. Case reports, reviews and studies with a follow-up shorter than 6 weeks were excluded. RESULTS In total, 37 studies were included; with follow-up periods ranging from 1.5 to 72 months. Most studies were questionnaire-based studies only, in which clinical diagnoses such as arthritis, alopecia and depression were mostly recorded without professional verification. Persisting arthralgia/arthritis (arthralgia/joint stiffness plus joint swelling) was the most frequent problem encountered. Further frequently mentioned sequelae were alopecia and depression. Quality of life was reduced in many for months to years after the acute phase of chikungunya. Female gender, older age, some co-morbidities and the severity of the acute phase were associated with persistent arthralgia. Congenital infection was associated with neurocognitive dysfunctioning in early childhood. CONCLUSION Chikungunya leads to (self-perceived) long-term sequelae in a considerable proportion of patients, impacting significantly on quality of life. Long-term chikungunya sequelae must be taken into account when dealing with this disease because of its important effect on public and individual health. Prospective large-scale, long-term studies with objective assessment of signs and symptoms attributed to the disease are needed to optimally quantify and qualify these problems.
Collapse
Affiliation(s)
- Mariëlle van Aalst
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, DD1100 Amsterdam, The Netherlands
| | - Charlotte Marieke Nelen
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, DD1100 Amsterdam, The Netherlands
| | - Abraham Goorhuis
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, DD1100 Amsterdam, The Netherlands
| | - Cornelis Stijnis
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, DD1100 Amsterdam, The Netherlands
| | - Martin Peter Grobusch
- Center of Tropical Medicine and Travel Medicine, Department of Infectious Diseases, Academic Medical Center, University of Amsterdam, Meibergdreef 9, DD1100 Amsterdam, The Netherlands.
| |
Collapse
|
177
|
Nayak TK, Mamidi P, Kumar A, Singh LPK, Sahoo SS, Chattopadhyay S, Chattopadhyay S. Regulation of Viral Replication, Apoptosis and Pro-Inflammatory Responses by 17-AAG during Chikungunya Virus Infection in Macrophages. Viruses 2017; 9:v9010003. [PMID: 28067803 PMCID: PMC5294972 DOI: 10.3390/v9010003] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Revised: 12/14/2016] [Accepted: 12/15/2016] [Indexed: 12/15/2022] Open
Abstract
Chikungunya virus (CHIKV) infection has re-emerged as a major public health concern due to its recent worldwide epidemics and lack of control measures. Although CHIKV is known to infect macrophages, regulation of CHIKV replication, apoptosis and immune responses towards macrophages are not well understood. Accordingly, the Raw264.7 cells, a mouse macrophage cell line, were infected with CHIKV and viral replication as well as new viral progeny release was assessed by flow cytometry and plaque assay, respectively. Moreover, host immune modulation and apoptosis were studied through flow cytometry, Western blot and ELISA. Our current findings suggest that expression of CHIKV proteins were maximum at 8 hpi and the release of new viral progenies were remarkably increased around 12 hpi. The induction of Annexin V binding, cleaved caspase-3, cleaved caspase-9 and cleaved caspase-8 in CHIKV infected macrophages suggests activation of apoptosis through both intrinsic and extrinsic pathways. The pro-inflammatory mediators (TNF and IL-6) MHC-I/II and B7.2 (CD86) were also up-regulated during infection over time. Further, 17-AAG, a potential HSP90 inhibitor, was found to regulate CHIKV infection, apoptosis and pro-inflammatory cytokine/chemokine productions of host macrophages significantly. Hence, the present findings might bring new insight into the therapeutic implication in CHIKV disease biology.
Collapse
Affiliation(s)
- Tapas K Nayak
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Prabhudutta Mamidi
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Abhishek Kumar
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Laishram Pradeep K Singh
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Subhransu S Sahoo
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| | - Soma Chattopadhyay
- Infectious Disease Biology, Institute of Life Sciences, (Autonomous Institute of Department of Biotechnology, Government of India), Nalco Square, Bhubaneswar, Odisha 751023, India.
| | - Subhasis Chattopadhyay
- School of Biological Sciences, National Institute of Science Education & Research, Bhubaneswar, HBNI, Jatni, Khurda, Odisha 752050, India.
| |
Collapse
|
178
|
Goupil BA, Mores CN. A Review of Chikungunya Virus-induced Arthralgia: Clinical Manifestations, Therapeutics, and Pathogenesis. Open Rheumatol J 2016; 10:129-140. [PMID: 28077980 PMCID: PMC5204064 DOI: 10.2174/1874312901610010129] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Chikungunya virus (CHIKV) is a mosquito-borne alphavirus that circulates predominantly in tropical and subtropical regions, potentially affecting over 1 billion people. Recently, an outbreak began in the western hemisphere and has resulted in over 1.8 million reported suspected cases. Infection often results in severe fever, rash and debilitating polyarthralgia lasting weeks to months. Additionally, the current literature reports that CHIKV can result in a severe chronic arthralgia and/or arthritis that can last months to years following the initial infection. Objective: The purpose of this review is to evaluate the literature and summarize the current state of knowledge regarding CHIKV-associated disease, including clinical presentation, diagnosis, risk factors for development of severe disease, treatment, and pathogenesis in human patients. Additionally, recommendations are presented regarding avenues for clinical research to help further elucidate the pathogenesis of joint disease associated with CHIKV infection. Conclusion: While there is an association between initial CHIKV infection and acute disease, a causal relationship with development of chronic arthralgia has not been established at this time. Potential causes of chronic CHIKV-induced arthritis have been postulated, including viral persistence, induction of autoimmune disease, and exacerbation of pre-existing joint disease. While there are numerous reports of chronic CHIKV-associated arthralgia and/or arthritis, there is currently no evidence of a definitive link between initial infection and development of chronic disease. Additional, prospective clinical research on CHIKV-associated disease is necessary to further determine the potential role of virus and development of chronic joint disease.
Collapse
Affiliation(s)
- Brad A Goupil
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Christopher N Mores
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America; Virology and Emerging Infections, US Naval Medical Research Unit No. 6, Lima Pampa, Peru
| |
Collapse
|
179
|
Lee WWL, Teo TH, Lum FM, Andiappan AK, Amrun SN, Rénia L, Rötzschke O, Ng LFP. Virus infection drives IL-2 antibody complexes into pro-inflammatory agonists in mice. Sci Rep 2016; 6:37603. [PMID: 27886209 PMCID: PMC5122839 DOI: 10.1038/srep37603] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 11/01/2016] [Indexed: 01/03/2023] Open
Abstract
The use of IL-2/JES6-1 Ab complex (IL-2 Ab Cx) has been considered as a potential therapeutic for inflammatory diseases due to its selective expansion of regulatory T cells (Tregs) in mice. Here, IL-2 Ab Cx was explored as a therapeutic agent to reduce joint inflammation induced by chikungunya virus, an alphavirus causing debilitating joint disease globally. Virus-infected mice treated with IL-2 Ab Cx exhibited exacerbated joint inflammation due to infiltration of highly activated CD4+ effector T cells (Teffs). Virus infection led to upregulation of CD25 on the Teffs, rendering them sensitive towards IL2 Ab Cx. Ready responsiveness of Teffs to IL-2 was further demonstrated in healthy human donors, suggesting that the use of IL-2 Ab Cx in humans is not suitable. Changes in IL-2 sensitivity during active virus infection could change the responsive pattern towards the IL-2 Ab Cx, resulting in the expansion of pro-inflammatory rather than anti-inflammatory responses.
Collapse
Affiliation(s)
- Wendy W. L. Lee
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Teck-Hui Teo
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 117456, Singapore
| | - Fok-Moon Lum
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Anand K. Andiappan
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
| | - Siti Naqiah Amrun
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
| | - Laurent Rénia
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Olaf Rötzschke
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- Department of Microbiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology and Research, Singapore (A*STAR), Singapore 138648, Singapore
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore
| |
Collapse
|
180
|
Mounce BC, Cesaro T, Moratorio G, Hooikaas PJ, Yakovleva A, Werneke SW, Smith EC, Poirier EZ, Simon-Loriere E, Prot M, Tamietti C, Vitry S, Volle R, Khou C, Frenkiel MP, Sakuntabhai A, Delpeyroux F, Pardigon N, Flamand M, Barba-Spaeth G, Lafon M, Denison MR, Albert ML, Vignuzzi M. Inhibition of Polyamine Biosynthesis Is a Broad-Spectrum Strategy against RNA Viruses. J Virol 2016; 90:9683-9692. [PMID: 27535047 PMCID: PMC5068521 DOI: 10.1128/jvi.01347-16] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/06/2016] [Indexed: 11/20/2022] Open
Abstract
RNA viruses present an extraordinary threat to human health, given their sudden and unpredictable appearance, the potential for rapid spread among the human population, and their ability to evolve resistance to antiviral therapies. The recent emergence of chikungunya virus, Zika virus, and Ebola virus highlights the struggles to contain outbreaks. A significant hurdle is the availability of antivirals to treat the infected or protect at-risk populations. While several compounds show promise in vitro and in vivo, these outbreaks underscore the need to accelerate drug discovery. The replication of several viruses has been described to rely on host polyamines, small and abundant positively charged molecules found in the cell. Here, we describe the antiviral effects of two molecules that alter polyamine levels: difluoromethylornithine (DFMO; also called eflornithine), which is a suicide inhibitor of ornithine decarboxylase 1 (ODC1), and diethylnorspermine (DENSpm), an activator of spermidine/spermine N1-acetyltransferase (SAT1). We show that reducing polyamine levels has a negative effect on diverse RNA viruses, including several viruses involved in recent outbreaks, in vitro and in vivo These findings highlight the importance of the polyamine biosynthetic pathway to viral replication, as well as its potential as a target in the development of further antivirals or currently available molecules, such as DFMO. IMPORTANCE RNA viruses present a significant hazard to human health, and combatting these viruses requires the exploration of new avenues for targeting viral replication. Polyamines, small positively charged molecules within the cell, have been demonstrated to facilitate infection for a few different viruses. Our study demonstrates that diverse RNA viruses rely on the polyamine pathway for replication and highlights polyamine biosynthesis as a promising drug target.
Collapse
Affiliation(s)
- Bryan C Mounce
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Paris, France
| | - Teresa Cesaro
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Paris, France
| | - Gonzalo Moratorio
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Paris, France
| | - Peter Jan Hooikaas
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Paris, France
| | - Anna Yakovleva
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Paris, France
| | - Scott W Werneke
- Laboratory of Dendritic Cell Biology, Institut Pasteur, Paris, France Institut National de la Santé et de la Recherche Médicale, U818, Paris, France
| | - Everett Clinton Smith
- Department of Pediatrics, the Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Enzo Z Poirier
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Paris, France University Paris Diderot, Sorbonne Paris Cite, Cellule Pasteur, Paris, France
| | - Etienne Simon-Loriere
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France
| | - Matthieu Prot
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France
| | - Carole Tamietti
- Unité de Virologie Structurale, Institut Pasteur, Paris, France
| | - Sandrine Vitry
- Unité de NeuroImmunologie Virale, Institut Pasteur, Paris, France
| | - Romain Volle
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France INSERM, Unité 994, Paris, France
| | - Cécile Khou
- Unité de Recherche et d'Expertise Environnement et Risques Infectieux, Institut Pasteur, Paris, France
| | - Marie-Pascale Frenkiel
- Unité de Recherche et d'Expertise Environnement et Risques Infectieux, Institut Pasteur, Paris, France
| | - Anavaj Sakuntabhai
- Unité de Génétique Fonctionnelle des Maladies Infectieuses, Institut Pasteur, Paris, France
| | - Francis Delpeyroux
- Unité de Biologie des Virus Entériques, Institut Pasteur, Paris, France INSERM, Unité 994, Paris, France
| | - Nathalie Pardigon
- Unité de Recherche et d'Expertise Environnement et Risques Infectieux, Institut Pasteur, Paris, France
| | - Marie Flamand
- Unité de Virologie Structurale, Institut Pasteur, Paris, France
| | | | - Monique Lafon
- Unité de NeuroImmunologie Virale, Institut Pasteur, Paris, France
| | - Mark R Denison
- Department of Pediatrics, the Elizabeth B. Lamb Center for Pediatric Research, Vanderbilt University Medical Center, Nashville, Tennessee, USA Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Matthew L Albert
- Laboratory of Dendritic Cell Biology, Institut Pasteur, Paris, France Institut National de la Santé et de la Recherche Médicale, U818, Paris, France
| | - Marco Vignuzzi
- Viral Populations and Pathogenesis Unit, Institut Pasteur, Paris, France
| |
Collapse
|
181
|
Rodríguez-Morales AJ, Cardona-Ospina JA, Fernanda Urbano-Garzón S, Sebastian Hurtado-Zapata J. Prevalence of Post-Chikungunya Infection Chronic Inflammatory Arthritis: A Systematic Review and Meta-Analysis. Arthritis Care Res (Hoboken) 2016; 68:1849-1858. [PMID: 27015439 DOI: 10.1002/acr.22900] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 03/15/2016] [Accepted: 03/22/2016] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine the percentage of patients who would develop chronic inflammatory rheumatism (CIR) following chikungunya (CHIK) virus disease. METHODS We conducted a systematic review of the literature in 3 databases (PubMed, Science Citation Index, and Scopus) to identify studies assessing the proportion of patients who progress to CHIK-CIR. We performed a random-effects model meta-analysis to calculate the pooled prevalence and 95% confidence intervals (95% CIs). A 2-tailed alpha level of 5% was used for hypothesis testing. Measures of heterogeneity, including Cochran's Q statistic, the I2 index, and the tau-squared test, were calculated and reported. Subgroup analyses were conducted by type of study and country, by studies evaluating chronic arthritis, and by studies with ≥200 patients and followup ≥18 months. Publication bias was assessed using a funnel-plot. RESULTS Up to June 15, 2015, our literature search yielded 578 citations. The pooled prevalence of CHIK-CIR in 18 selected studies among 5,702 patients was 40.22% (95% CI 31.11-49.34; τ2 = 0.0838). From studies derived from India, prevalence was 27.27% (95% CI 15.66-38.88; τ2 = 0.0411), while from France, prevalence was 50.25% (95% CI 25.38-75.12; τ2 = 0.1797). The prevalence of CHIK chronic arthritis was 13.66% (95% CI 9.31-18.00; τ2 = 0.0060). Considering just those studies with ≥200 patients assessed, prevalence was 34.14% (95% CI 23.99-44.29; τ2 = 0.0525). In studies with a followup ≥18 months, prevalence was 32.13% (95% CI 22.21-42.04; τ2 = 0.0453). CONCLUSION According to our results in the most conservative scenario, approximately 25% of CHIK cases would develop CHIK-CIR (34% if we just consider the most representative studies), and 14% would develop chronic arthritis.
Collapse
Affiliation(s)
- Alfonso J Rodríguez-Morales
- Research Group Public Health and Infection, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, and Organización Latinoamericana para el Fomento de la Investigación en Salud, Bucaramanga, Santander, Colombia
| | - Jaime A Cardona-Ospina
- Research Group Public Health and Infection, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia
| | - Sivia Fernanda Urbano-Garzón
- Research Group Public Health and Infection, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia
| | - Juan Sebastian Hurtado-Zapata
- Research Group Public Health and Infection, Faculty of Health Sciences, Universidad Tecnologica de Pereira, Pereira, Risaralda, Colombia
| |
Collapse
|
182
|
Dysregulated TGF-β Production Underlies the Age-Related Vulnerability to Chikungunya Virus. PLoS Pathog 2016; 12:e1005891. [PMID: 27736984 PMCID: PMC5063327 DOI: 10.1371/journal.ppat.1005891] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 08/23/2016] [Indexed: 02/06/2023] Open
Abstract
Chikungunya virus (CHIKV) is a re-emerging global pathogen with pandemic potential, which causes fever, rash and debilitating arthralgia. Older adults over 65 years are particularly susceptible to severe and chronic CHIKV disease (CHIKVD), accounting for >90% of all CHIKV-related deaths. There are currently no approved vaccines or antiviral treatments available to limit chronic CHIKVD. Here we show that in old mice excessive, dysregulated TGFβ production during acute infection leads to a reduced immune response and subsequent chronic disease. Humans suffering from CHIKV infection also exhibited high TGFβ levels and a pronounced age-related defect in neutralizing anti-CHIKV antibody production. In vivo reduction of TGFβ levels minimized acute joint swelling, restored neutralizing antibody production and diminished chronic joint pathology in old mice. This study identifies increased and dysregulated TGFβ secretion as one key mechanism contributing to the age-related loss of protective anti-CHIKV-immunity leading to chronic CHIKVD.
Collapse
|
183
|
Inflammatory biomarkers, disease activity index, and self-reported disability may be predictors of chronic arthritis after chikungunya infection: brief report. Clin Rheumatol 2016; 36:695-699. [DOI: 10.1007/s10067-016-3419-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 08/30/2016] [Accepted: 09/12/2016] [Indexed: 02/04/2023]
|
184
|
Chalaem P, Chusri S, Fernandez S, Chotigeat W, Anguita J, Pal U, Promnares K. Characterization of a Chikungunya virus strain isolated from banked patients' sera. Virol J 2016; 13:150. [PMID: 27590311 PMCID: PMC5009685 DOI: 10.1186/s12985-016-0606-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 08/24/2016] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Chikungunya virus (CHIKV) is a prevalent mosquito-borne pathogen that is emerging in many parts of the globe causing significant human morbidity. Here, we report the isolation and characterization of an infectious CHIKV from banked serum specimens of suspected patients from the 2009 epidemic in Thailand. METHODS Standard plaque assay was used for CHIKV isolation from the banked serum specimens. Isolated CHIKV was identified base on E1 structural gene sequence. Growth kinetic, infectivity, cell viability and cytokine gene expression throughout CHIKV infection in a permissive cell line, 293T cells, was performed using several approaches, including standard plaque assay, immunofluorescence assay, classical MTT assay, and quantitative real-time PCR. Two tailed Student's t test was used for evaluation statistically significance between the mean values of the groups. RESULTS Based on the E1 structural gene sequence and phylogenetic analysis, we identified the virus as the CHIK/SBY8/10 isolate from Indonesia. Assessment of the growth kinetics, cytopathic effects as well as its ability to induce cellular immune responses suggested that the currently isolated CHIK/SBY8/10 virus is relatively more virulent than a known CHIKV vaccine strain, which also induces more dramatic proinflammatory responses. CONCLUSIONS Our studies further add to the infectivity of a less-studied yet infectious CHIKV isolate as well as underscored the importance and utility of 293T cells as an excellent cell culture model for studying viral growth, CHIKV-induced inflammatory cellular responses and cell death. Together, these studies provide novel information on the CHIKV biology, infectivity and virus-cell interaction, which would help develop novel interventions against the infection.
Collapse
Affiliation(s)
- Pattra Chalaem
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90112 Thailand
| | - Sarunyou Chusri
- Division of Infectious Disease, Department of Internal Medicine, Faculty of Medicine, Prince of Songkla University, Hatyai, Songkhla 90112 Thailand
| | - Stefan Fernandez
- Department of Virology, Armed Forces Research Institute of Medical Sciences (AFRIMS), Bangkok, Thailand
| | - Wilaiwan Chotigeat
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90112 Thailand
| | - Juan Anguita
- CIC bioGUNE, 48160 Derio, Bizkaia Spain
- Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Bizkaia Spain
| | - Utpal Pal
- Department of Veterinary Medicine and Virginia-Maryland Regional College of Veterinary Medicine, University of Maryland, College Park, MD 20742 USA
| | - Kamoltip Promnares
- Department of Molecular Biotechnology and Bioinformatics, Faculty of Science, Prince of Songkla University, Hatyai, Songkhla 90112 Thailand
| |
Collapse
|
185
|
Bhalla N, Sun C, Metthew Lam LK, Gardner CL, Ryman KD, Klimstra WB. Host translation shutoff mediated by non-structural protein 2 is a critical factor in the antiviral state resistance of Venezuelan equine encephalitis virus. Virology 2016; 496:147-165. [PMID: 27318152 PMCID: PMC5821108 DOI: 10.1016/j.virol.2016.06.005] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 06/06/2016] [Accepted: 06/08/2016] [Indexed: 10/21/2022]
Abstract
Most previous studies of interferon-alpha/beta (IFN-α/β) response antagonism by alphaviruses have focused upon interruption of IFN-α/β induction and/or receptor signaling cascades. Infection of mice with Venezuelan equine encephalitis alphavirus (VEEV) or Sindbis virus (SINV) induces serum IFN-α/β, that elicits a systemic antiviral state in uninfected cells successfully controlling SINV but not VEEV replication. Furthermore, VEEV replication is more resistant than that of SINV to a pre-existing antiviral state in vitro. While host macromolecular shutoff is proposed as a major antagonist of IFN-α/β induction, the underlying mechanisms of alphavirus resistance to a pre-existing antiviral state are not fully defined, nor is the mechanism for the greater resistance of VEEV. Here, we have separated viral transcription and translation shutoff with multiple alphaviruses, identified the viral proteins that induce each activity, and demonstrated that VEEV nonstructural protein 2-induced translation shutoff is likely a critical factor in enhanced antiviral state resistance of this alphavirus.
Collapse
Affiliation(s)
- Nishank Bhalla
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chengqun Sun
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - L K Metthew Lam
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Christina L Gardner
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - Kate D Ryman
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States
| | - William B Klimstra
- Center for Vaccine Research, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
186
|
Ruiz Silva M, van der Ende-Metselaar H, Mulder HL, Smit JM, Rodenhuis-Zybert IA. Mechanism and role of MCP-1 upregulation upon chikungunya virus infection in human peripheral blood mononuclear cells. Sci Rep 2016; 6:32288. [PMID: 27558873 PMCID: PMC4997611 DOI: 10.1038/srep32288] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 08/04/2016] [Indexed: 12/30/2022] Open
Abstract
Monocyte chemoattractant protein-1 (MCP-1/CCL2)-mediated migration of monocytes is essential for immunological surveillance of tissues. During chikungunya virus (CHIKV) infection however, excessive production of MCP-1 has been linked to disease pathogenesis. High MCP-1 serum levels are detected during the viremic phase of CHIKV infection and correlate with the virus titre. In vitro CHIKV infection was also shown to stimulate MCP-1 production in whole blood; yet the role and the mechanism of MCP-1 production upon infection of human peripheral blood mononuclear cells remain unknown. Here we found that active CHIKV infection stimulated production of MCP-1 in monocytes. Importantly however, we found that communication with other leukocytes is crucial to yield MCP-1 by monocytes upon CHIKV infection. Indeed, blocking interferon-α/β receptor or the JAK1/JAK2 signalling downstream of the receptor abolished CHIKV-mediated MCP-1 production. Additionally, we show that despite the apparent correlation between IFN type I, CHIKV replication and MCP-1, modulating the levels of the chemokine did not influence CHIKV infection. In summary, our data disclose the complexity of MCP-1 regulation upon CHIKV infection and point to a crucial role of IFNβ in the chemokine secretion. We propose that balance between these soluble factors is imperative for an appropriate host response to CHIKV infection.
Collapse
Affiliation(s)
- Mariana Ruiz Silva
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Heidi van der Ende-Metselaar
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - H. Lie Mulder
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Jolanda M. Smit
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| | - Izabela A. Rodenhuis-Zybert
- Department of Medical Microbiology, University of Groningen and University Medical Center Groningen, 9700 RB, Groningen, The Netherlands
| |
Collapse
|
187
|
Simmons G, Brès V, Lu K, Liss NM, Brambilla DJ, Ryff KR, Bruhn R, Velez E, Ocampo D, Linnen JM, Latoni G, Petersen LR, Williamson PC, Busch MP. High Incidence of Chikungunya Virus and Frequency of Viremic Blood Donations during Epidemic, Puerto Rico, USA, 2014. Emerg Infect Dis 2016; 22:1221-8. [PMID: 27070192 PMCID: PMC4918147 DOI: 10.3201/eid2207.160116] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Deaths were rarely observed, but newborns and other vulnerable populations are at risk for severe complications. Chikungunya virus (CHIKV) caused large epidemics throughout the Caribbean in 2014. We conducted nucleic acid amplification testing (NAAT) for CHIKV RNA (n = 29,695) and serologic testing for IgG against CHIKV (n = 1,232) in archived blood donor samples collected during and after an epidemic in Puerto Rico in 2014. NAAT yields peaked in October with 2.1% of donations positive for CHIKV RNA. A total of 14% of NAAT-reactive donations posed a high risk for virus transmission by transfusion because of high virus RNA copy numbers (104–109 RNA copies/mL) and a lack of specific IgM and IgG responses. Testing of minipools of 16 donations would not have detected 62.5% of RNA-positive donations detectable by individual donor testing, including individual donations without IgM and IgG. Serosurveys before and after the epidemic demonstrated that nearly 25% of blood donors in Puerto Rico acquired CHIKV infections and seroconverted during the epidemic.
Collapse
|
188
|
The Role of Cellular Immune Responses on Chikungunya Virus Infection-Induced Arthritis. CURRENT TROPICAL MEDICINE REPORTS 2016. [DOI: 10.1007/s40475-016-0074-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
189
|
Goupil BA, McNulty MA, Martin MJ, McCracken MK, Christofferson RC, Mores CN. Novel Lesions of Bones and Joints Associated with Chikungunya Virus Infection in Two Mouse Models of Disease: New Insights into Disease Pathogenesis. PLoS One 2016; 11:e0155243. [PMID: 27182740 PMCID: PMC4868286 DOI: 10.1371/journal.pone.0155243] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 04/26/2016] [Indexed: 12/13/2022] Open
Abstract
Chikungunya virus is an arbovirus spread predominantly by Aedes aegypti and Ae. albopictus mosquitoes, and causes debilitating arthralgia and arthritis. While these are common manifestations during acute infection and it has been suggested they can recur in patients chronically, gaps in knowledge regarding the pathogenesis still exist. Two established mouse models were utilized (adult IRF 3/7 -/- -/- and wild-type C57BL/6J mice) to evaluate disease manifestations in bones and joints at various timepoints. Novel lesions in C57BL/6J mice consisted of periostitis (91%) and foci of cartilage of necrosis (50% of mice at 21 DPI). Additionally, at 21 DPI, 50% and 75% of mice exhibited periosteal bone proliferation affecting the metatarsal bones, apparent via histology and μCT, respectively. μCT analysis did not reveal any alterations in trabecular bone volume measurements in C57BL/6J mice. Novel lesions demonstrated in IRF 3/7 -/- -/- mice at 5 DPI included focal regions of cartilage necrosis (20%), periosteal necrosis (66%), and multifocal ischemic bone marrow necrosis (100%). Contralateral feet in 100% of mice of both strains had similar, though milder lesions. Additionally, comparison of control IRF 3/7 -/- -/- and wild-type C57BL/6J mice demonstrated differences in cortical bone. These experiments demonstrate novel manifestations of disease similar to those occurring in humans, adding insight into disease pathogenesis, and representing new potential targets for therapeutic interventions. Additionally, results demonstrate the utility of μCT in studies of bone and joint pathology and illustrate differences in bone dynamics between mouse strains.
Collapse
Affiliation(s)
- Brad A. Goupil
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Margaret A. McNulty
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Matthew J. Martin
- Department of Comparative Biomedical Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Michael K. McCracken
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Rebecca C. Christofferson
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| | - Christopher N. Mores
- Department of Pathobiological Sciences, Louisiana State University School of Veterinary Medicine, Skip Bertman Drive, Baton Rouge, Louisiana, United States of America
| |
Collapse
|
190
|
Gasque P, Couderc T, Lecuit M, Roques P, Ng LFP. Chikungunya virus pathogenesis and immunity. Vector Borne Zoonotic Dis 2016; 15:241-9. [PMID: 25897810 DOI: 10.1089/vbz.2014.1710] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Chikungunya virus (CHIKV) is an arbovirus associated with acute and chronic arthralgia that re-emerged in the Indian Ocean islands in 2005-2006 and is currently responsible for the ongoing outbreaks in the Caribbean islands and the Americas. We describe here the acute and chronic clinical manifestations of CHIKV in patients that define the disease. We also review the various animal models that have been developed to study CHIKV infection and pathology and further strengthened the understanding of the cellular and molecular mechanisms of CHIKV infection and immunity. A complete understanding of the immunopathogenesis of CHIKV infection will help develop the needed preventive and therapeutic approaches to combat this arbovirosis.
Collapse
Affiliation(s)
- Philippe Gasque
- 1 University of La Reunion , GRI/IRG EA4517, and Centre Hospitalier Universitaire (CHU North Felix-Guyon), Saint-Denis, La Reunion, France
| | | | | | | | | |
Collapse
|
191
|
First Chikungunya Outbreak in Suriname; Clinical and Epidemiological Features. PLoS Negl Trop Dis 2016; 10:e0004625. [PMID: 27082985 PMCID: PMC4833344 DOI: 10.1371/journal.pntd.0004625] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Accepted: 03/23/2016] [Indexed: 12/16/2022] Open
Abstract
Background In June 2014, Suriname faced the first Chikungunya outbreak. Since international reports mostly focus on hospitalized patients, the least affected group, a study was conducted to describe clinical characteristics of mainly outpatients including children. In addition, the cumulative incidence of this first epidemic was investigated. Methodology During August and September 2014, clinically suspected Chikungunya cases were included in a prospective follow-up study. Blood specimens were collected and tested for viral RNA presence. Detailed clinical information was gathered through multiple telephone surveys until day 180. In addition, a three stage household-based cluster with a cross-sectional design was conducted in October, December 2014 and March 2015 to assess the cumulative incidence. Principal Findings Sixty-eight percent of symptomatic patients tested positive for Chikungunya virus (CHIKV). Arthralgia and pain in the fingers were distinctive for viremic CHIKV infected patients. Viremic CHIKV infected children (≤12 years) characteristically displayed headache and vomiting, while arthralgia was less common at onset. The disease was cleared within seven days by 20% of the patients, while 22% of the viremic CHIKV infected patients, mostly women and elderly reported persistent arthralgia at day 180. The extrapolated cumulative CHIKV incidence in Paramaribo was 249 cases per 1000 persons, based on CHIKV self-reported cases in 53.1% of the households and 90.4% IgG detected in a subset of self-reported CHIKV+ persons. CHIKV peaked in the dry season and a drastic decrease in CHIKV patients coincided with a governmental campaign to reduce mosquito breeding sites. Conclusions/Significance This study revealed that persistent arthralgia was a concern, but occurred less frequently in an outpatient setting. The data support a less severe pathological outcome for Caribbean CHIKV infections. This study augments incidence data available for first outbreaks in the region and showed that actions undertaken at the national level to mount responses may have positively impacted containment of this CHIKV outbreak. Chikungunya virus is transmitted to humans by mosquito bites and causes fever and joint pain. Chikungunya was first detected in Africa, but recently became a worldwide concern with outbreaks in many (sub)-tropical countries. We report the characteristics of the first outbreak in Suriname (2014–2015). Mainly non-hospitalized patients were followed-up to study the clinical manifestations and course of the disease, after presentation in the respective clinics with the standard Chikungunya symptoms (fever and arthralgia). Twenty percent of follow-up patients could clear the disease within one week and 22% (mostly women and elderly) still had complaints about arthralgia up to 6 months after infection. This is consistent with the assumption that Caribbean Chikungunya viral infection has a less severe pathological outcome. Furthermore, more insight was gained into the symptomatology of children (≤12 years). In addition, house-to-house surveys in Paramaribo were carried out to identify suspected cases to assess the incidence. Almost 25% of the survey participants experienced symptoms consistent with Chikungunya during the nine months spanning the investigation. The launch of a governmental campaign to eliminate mosquito breeding sites coincided with a sharp decline of Chikungunya cases, suggesting that such measures may be important in the containment of future CHIKV outbreaks.
Collapse
|
192
|
Jaller Raad J, Segura Rosero A, Vidal Martínez J, Parody A, Jaller Raad R, Caballero Tovar D, Camargo López P, Giraldo Ramírez M, Blanco Magdaniel J, Andrade Celedón L. Respuesta inmunitaria de una población del Caribe colombiano infectada con el virus chikungunya. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.rcreu.2016.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
193
|
Adouchief S, Smura T, Sane J, Vapalahti O, Kurkela S. Sindbis virus as a human pathogen-epidemiology, clinical picture and pathogenesis. Rev Med Virol 2016; 26:221-41. [DOI: 10.1002/rmv.1876] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/02/2016] [Accepted: 02/04/2016] [Indexed: 01/24/2023]
Affiliation(s)
- Samuel Adouchief
- Department of Virology, Faculty of Medicine; University of Helsinki; Helsinki Finland
| | - Teemu Smura
- Department of Virology, Faculty of Medicine; University of Helsinki; Helsinki Finland
| | - Jussi Sane
- National institute for Health and Welfare (THL); Helsinki Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine; University of Helsinki; Helsinki Finland
- Department of Virology and Immunology, HUSLAB; Helsinki University Central Hospital; Helsinki Finland
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine; University of Helsinki; Helsinki Finland
| | - Satu Kurkela
- Department of Virology, Faculty of Medicine; University of Helsinki; Helsinki Finland
- Department of Virology and Immunology, HUSLAB; Helsinki University Central Hospital; Helsinki Finland
| |
Collapse
|
194
|
Roosenhoff R, Anfasa F, Martina B. The pathogenesis of chronic chikungunya: evolving concepts. Future Virol 2016. [DOI: 10.2217/fvl.15.107] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Chikungunya virus (CHIKV) re-emerged and caused an outbreak in the Caribbean and the Americas. CHIKV can cause incapacitating arthralgia, which may be evolved in chronic arthritis that is similar to rheumatoid arthritis that lasts for months or years. This review provides an overview of known and hypothesized mechanisms that CHIKV uses to promote chronic arthritis. We hypothesized that the chronic inflammatory response that is stimulated by persisting CHIKV replication in the joints results in the arthritic symptoms seen in patients. Most hypotheses proposed in this review need to be tested or confirmed, which may help in the development of new specific treatments and vaccines against CHIKV that will not only combat viral persistence but also prevent tissue damage.
Collapse
Affiliation(s)
- Rueshandra Roosenhoff
- ARTEMIS One Health Research Institute, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
- Curacao Biomedical & Health Research Institute, Curacao
| | - Fatih Anfasa
- Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| | - Byron Martina
- ARTEMIS One Health Research Institute, Yalelaan 1, 3584 CL, Utrecht, The Netherlands
- Department of Viroscience, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
195
|
Madariaga M, Ticona E, Resurrecion C. Chikungunya: bending over the Americas and the rest of the world. Braz J Infect Dis 2015; 20:91-8. [PMID: 26707971 PMCID: PMC9425360 DOI: 10.1016/j.bjid.2015.10.004] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 10/13/2015] [Accepted: 10/16/2015] [Indexed: 11/25/2022] Open
Abstract
Chikungunya is an arthropod-borne virus transmitted by Aedes mosquito bites. A viral mutation has allowed Aedes albopictus to become the preferred vector extending the geographic spread of the condition. The virus causes an acute febrile illness occasionally followed by a chronic rheumatic condition causing severe impairment. The diagnosis is usually confirmed with serology. No specific treatment is currently available. This article reviews the condition with emphasis on his dissemination in the Americas.
Collapse
Affiliation(s)
- Miguel Madariaga
- Section of Infectious Diseases, Naples Community Hospital, Naples, United States.
| | - Eduardo Ticona
- Hospital Nacional Dos de Mayo, Universidad Nacional Mayor de San Marcos, Lima, Peru
| | | |
Collapse
|
196
|
Rahim AA, Thekkekara RJ, Bina T, Paul BJ. Disability with Persistent Pain Following an Epidemic of Chikungunya in Rural South India. J Rheumatol 2015; 43:440-4. [DOI: 10.3899/jrheum.141609] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/11/2015] [Indexed: 02/08/2023]
Abstract
Objective.We investigated the effects of chronic rheumatic and musculoskeletal symptoms on the functional status of people affected by the chikungunya (CKG) epidemic in the Calicut District, Kerala, South India in 2009.Methods.A cross-sectional house-to-house survey was conducted 18 months after the CKG epidemic to assess functional status of individuals with post-epidemic persistent pain. All respondents over age 15 years with persistent pain fitting the epidemiological case definition were included. Participants’ functional status was assessed using the Health Assessment Questionnaire-Disability Index (HAQ-DI). Factors affecting severity of HAQ-DI were analyzed by ordinal regression.Results.Of 3869 subjects interviewed, 1195 (34.3%) had a positive history of CHIKV virus infection (epidemiological or confirmed); 36.28% (624/1720) of CKG-affected individuals had persistent pain 18 months post epidemic. Mean age of those affected was 48.22 ± 15.6 years; 23.2% had no disability, while 16.2% had moderate to severe disability on the HAQ-DI. Significant factors affecting severity of disability on HAQ-DI included previous rheumatic musculoskeletal disease (OR 2.27), joint and soft-tissue involvement (OR 3.74), only joint involvement (OR 2.14), female sex (OR 1.44), diet (OR 4.73), and history of joint swelling (OR 1.72).Conclusion.Persistence of pain noted in post-CKG disease resulted in significantly deteriorated functional status of those affected.
Collapse
|
197
|
Deeba F, Islam A, Kazim SN, Naqvi IH, Broor S, Ahmed A, Parveen S. Chikungunya virus: recent advances in epidemiology, host pathogen interaction and vaccine strategies. Pathog Dis 2015; 74:ftv119. [PMID: 26657109 DOI: 10.1093/femspd/ftv119] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2015] [Indexed: 12/22/2022] Open
Abstract
The Chikungunya virus is a re-emerging alphavirus that belongs to the family Togaviridae. The symptoms include fever, rashes, nausea and joint pain that may last for months. The laboratory diagnosis of the infection is based on the serologic assays, virus isolation and molecular methods. The pathogenesis of the Chikungunya viral infection is not completely understood. Some of the recent investigations have provided information on replication of the virus in various cells and organs. In addition, some recent reports have indicated that the severity of the disease is correlated with the viral load and cytokines. The Chikungunya virus infection re-emerged as an explosive epidemic during 2004-09 affecting millions of people in the Indian Ocean. Subsequent global attention was given to research on this viral pathogen due to its broad area of geographical distribution during this epidemic. Chikungunya viral infection has become a challenge for the public health system because of the absence of a vaccine as well as antiviral drugs. A number of potential vaccine candidates have been tested on humans and animal models during clinical and preclinical trials. In this review, we mainly discuss the host-pathogen relationship, epidemiology and recent advances in the development of drugs and vaccines for the Chikungunya viral infection.
Collapse
Affiliation(s)
- Farah Deeba
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Asimul Islam
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | - Syed Naqui Kazim
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| | | | - Shobha Broor
- Department of Microbiology, SGT University, Gurgaon 122001, Haryana, India
| | - Anwar Ahmed
- Protein Research Chair, Department of Biochemistry, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shama Parveen
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi 110025, India
| |
Collapse
|
198
|
Peptide motif analysis predicts alphaviruses as triggers for rheumatoid arthritis. Mol Immunol 2015; 68:465-75. [PMID: 26476978 DOI: 10.1016/j.molimm.2015.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 09/11/2015] [Accepted: 09/17/2015] [Indexed: 01/23/2023]
Abstract
Rheumatoid arthritis (RA) develops in response to both genetic and environmental factors. The strongest genetic determinant is HLA-DR, where polymorphisms within the P4 and P6 binding pockets confer elevated risk. However, low disease concordance across monozygotic twin pairs underscores the importance of an environmental factor, probably infectious. The goal of this investigation was to predict the microorganism most likely to interact with HLA-DR to trigger RA under the molecular mimicry hypothesis. A set of 185 structural proteins from viruses or intracellular bacteria was scanned for regions of sequence homology with a collagen peptide that binds preferentially to DR4; candidates were then evaluated against a motif required for T cell cross-reactivity. The plausibility of the predicted agent was evaluated by comparison of microbial prevalence patterns to epidemiological characteristics of RA. Peptides from alphavirus capsid proteins provided the closest fit. Variations in the P6 position suggest that the HLA binding preference may vary by species, with Ross River virus, Chikungunya virus, and Mayaro virus peptides binding preferentially to DR4, and peptides from Sindbis/Ockelbo virus showing stronger affinity to DR1. The predicted HLA preference is supported by epidemiological studies of post-infection chronic arthralgia. Parallels between the cytokine profiles of RA and chronic alphavirus infection are discussed.
Collapse
|
199
|
Santiago FW, Halsey ES, Siles C, Vilcarromero S, Guevara C, Silvas JA, Ramal C, Ampuero JS, Aguilar PV. Long-Term Arthralgia after Mayaro Virus Infection Correlates with Sustained Pro-inflammatory Cytokine Response. PLoS Negl Trop Dis 2015; 9:e0004104. [PMID: 26496497 PMCID: PMC4619727 DOI: 10.1371/journal.pntd.0004104] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 08/31/2015] [Indexed: 12/18/2022] Open
Abstract
Mayaro virus (MAYV), an alphavirus similar to chikungunya virus (CHIKV), causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals. Currently, the immune response and its role in the development of MAYV-induced persistent arthralgia remain unknown. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. We report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. The composition of these inflammatory mediators, in some cases, differed to those previously observed for CHIKV. Key mediators such as IL-13, IL-7 and VEGF were strongly induced following MAYV infection and were significantly increased in subjects that eventually developed persistent arthralgia. Although a strong neutralizing antibody response was observed in all subjects, it was not sufficient to prevent the long-term outcomes of MAYV infection. This study provides initial immunologic insight that may eventually contribute to prognostic tools and therapeutic treatments against this emerging pathogen. Mayaro virus (MAYV) causes an acute debilitating disease which results in the development of long-term arthralgia in more than 50% of infected individuals, similarly to what has been described with CHIKV. In this study, we evaluated the immune response of individuals with confirmed MAYV infection in a one-year longitudinal study carried out in Loreto, Peru. Here, we report that MAYV infection elicits robust immune responses that result in the development of a strong neutralizing antibody response and the secretion of pro-inflammatory immune mediators. These inflammatory mediators, in some cases, differed to those observed by others for CHIKV. We also observed a strong neutralizing antibody response in all the study subjects; however, this response was not sufficient to prevent the long-term outcomes of MAYV infection. Taken together, this study provides initial immunologic insight that may eventually contribute to the development of prognostic tools and potential therapeutic treatments against this emerging pathogen.
Collapse
Affiliation(s)
- Felix W. Santiago
- Institute for Human Infections and Immunity, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | | | | | | | - Jesus A. Silvas
- Institute for Human Infections and Immunity, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | | | | | - Patricia V. Aguilar
- Institute for Human Infections and Immunity, Galveston, Texas, United States of America
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, United States of America
- Center for Biodefense and Emerging Infectious Diseases, Galveston, Texas, United States of America
- * E-mail:
| |
Collapse
|
200
|
Burrack KS, Tan JJL, McCarthy MK, Her Z, Berger JN, Ng LFP, Morrison TE. Myeloid Cell Arg1 Inhibits Control of Arthritogenic Alphavirus Infection by Suppressing Antiviral T Cells. PLoS Pathog 2015; 11:e1005191. [PMID: 26436766 PMCID: PMC4593600 DOI: 10.1371/journal.ppat.1005191] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 09/04/2015] [Indexed: 11/30/2022] Open
Abstract
Arthritogenic alphaviruses, including Ross River virus (RRV) and chikungunya virus (CHIKV), are responsible for explosive epidemics involving millions of cases. These mosquito-transmitted viruses cause inflammation and injury in skeletal muscle and joint tissues that results in debilitating pain. We previously showed that arginase 1 (Arg1) was highly expressed in myeloid cells in the infected and inflamed musculoskeletal tissues of RRV- and CHIKV-infected mice, and specific deletion of Arg1 from myeloid cells resulted in enhanced viral control. Here, we show that Arg1, along with other genes associated with suppressive myeloid cells, is induced in PBMCs isolated from CHIKV-infected patients during the acute phase as well as the chronic phase, and that high Arg1 expression levels were associated with high viral loads and disease severity. Depletion of both CD4 and CD8 T cells from RRV-infected Arg1-deficient mice restored viral loads to levels detected in T cell-depleted wild-type mice. Moreover, Arg1-expressing myeloid cells inhibited virus-specific T cells in the inflamed and infected musculoskeletal tissues, but not lymphoid tissues, following RRV infection in mice, including suppression of interferon-γ and CD69 expression. Collectively, these data enhance our understanding of the immune response following arthritogenic alphavirus infection and suggest that immunosuppressive myeloid cells may contribute to the duration or severity of these debilitating infections. Mosquito-transmitted chikungunya virus (CHIKV), Ross River virus (RRV), and related alphaviruses cause epidemics involving millions of persons, such as on-going CHIKV outbreaks in the Caribbean and Central and South America. Infection with these viruses results in severe pain due to inflammation of musculoskeletal tissues that can persist for months and even years. There are no specific therapeutics or licensed vaccines for these viruses. Suppressive myeloid cells have been shown to inhibit anti-pathogen immune responses, including T cell responses, which can promote chronic disease. We showed previously that a gene associated with suppressive myeloid cells, arginase 1 (Arg1), was induced in musculoskeletal tissues and macrophages of mice infected with RRV or CHIKV, and mice that lacked Arg1 expression in myeloid cells had reduced viral loads at late times post-infection. Here, we demonstrate that Arg1 is induced in PBMCs isolated from CHIKV-infected patients, and Arg1 expression is associated with viral loads. Moreover, we found that Arg1-expressing myeloid cells inhibit the activation and function of antiviral T cells in RRV-infected mice. These studies underscore the role of suppressive myeloid cells in modulating the T cell response to arthritogenic alphaviruses and provide a therapeutic target to enhance viral clearance and potentially limit chronic disease.
Collapse
Affiliation(s)
- Kristina S. Burrack
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Jeslin J. L. Tan
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Mary K. McCarthy
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Zhisheng Her
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Jennifer N. Berger
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
| | - Lisa F. P. Ng
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Thomas E. Morrison
- Department of Immunology and Microbiology, University of Colorado School of Medicine, Aurora, Colorado, United States of America
- * E-mail:
| |
Collapse
|