151
|
Huang G, Dong R, Allen R, Davis EL, Baum TJ, Hussey RS. Two chorismate mutase genes from the root-knot nematode Meloidogyne incognita. MOLECULAR PLANT PATHOLOGY 2005; 6:23-30. [PMID: 20565635 DOI: 10.1111/j.1364-3703.2004.00257.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
SUMMARY Parasitism genes encoding secretory proteins expressed in the oesophageal glands of phytoparasitic nematodes play critical roles in nematode invasion of host plants, establishment of feeding sites and suppression of host defences. Two chorismate mutase (CM) genes potentially having a role in one or more of these processes were identified from a Meloidogyne incognita oesophageal gland-cell subtractive cDNA library. These M. incognita enzymes (designated as MI-CM-1 and MI-CM-2) with amino-terminal signal peptides, were significantly similar to chorismate mutases in M. javanica and bacteria. The complementation of an Escherichia coli CM-deficient mutant by the expression of Mi-cm-1 or Mi-cm-2 confirmed their CM activity. In-situ mRNA hybridization showed that the transcripts of Mi-cm-1 and Mi-cm-2 accumulated specifically in the two subventral oesophageal gland cells of M. incognita. RT-PCR analysis confirmed that their transcript abundances were high in the early parasitic juvenile stages, and low (Mi-cm-1) or undetectable (Mi-cm-2) in later parasitic stages of the nematode. Southern blot analysis revealed that these CM genes were members of a small multigene family in Meloidogyne species. The widespread presence of CMs in the specialized sedentary endoparasitic nematode species suggests that this multifunctional enzyme may be a key factor in modulating plant parasitism.
Collapse
Affiliation(s)
- Guozhong Huang
- Department of Plant Pathology, University of Georgia, Athens, GA 30602-7274, USA
| | | | | | | | | | | |
Collapse
|
152
|
Sharma S, Dimasi D, Higginson K, Della NG. RZF, a zinc-finger protein in the photoreceptors of human retina. Gene 2004; 342:219-29. [PMID: 15527981 DOI: 10.1016/j.gene.2004.08.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2004] [Revised: 07/19/2004] [Accepted: 08/12/2004] [Indexed: 12/21/2022]
Abstract
Photoreceptors are organized at the outer aspect of retina and host the process of phototransduction, central to the visual system. We have isolated a novel human gene, RZF, which is predominantly expressed in the photoreceptors of human retina. RZF encodes a 40-kDa protein that has three widely spaced C(2)H(2)-type zinc finger motifs. There are three potential nuclear localisation signals and clusters of charged amino acids in the protein. Expression analysis revealed that orthologues of the RZF gene are also expressed in photoreceptors of mouse and bovine retina. The RZF-GFP fusion protein localises to nucleoli and cytoplasm when expressed in HEK-293 cells. Mobility shift assay suggests that RZF may not be a nucleic acid binding protein, unlike most other zinc-finger proteins. Taken together, these observations suggest that RZF is a shuttling regulatory protein expressed in photoreceptors of the human retina that may be involved in mRNA or protein regulation of photoreceptor-specific genes and therefore have role in retinal disease mechanisms.
Collapse
Affiliation(s)
- Shiwani Sharma
- Department of Ophthalmology, School of Medicine, Flinders University, Bedford Park, SA 5042, Australia.
| | | | | | | |
Collapse
|
153
|
Guix S, Caballero S, Bosch A, Pintó RM. C-terminal nsP1a protein of human astrovirus colocalizes with the endoplasmic reticulum and viral RNA. J Virol 2004; 78:13627-36. [PMID: 15564473 PMCID: PMC533902 DOI: 10.1128/jvi.78.24.13627-13636.2004] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Computational and biological approaches were undertaken to characterize the role of the human astrovirus nonstructural protein nsP1a/4, located at the C-terminal fragment of nsP1a. Computer analysis reveals sequence similarities to other nonstructural viral proteins involved in RNA replication and/or transcription and allows the identification of a glutamine- and proline-rich region, the prediction of many phosphorylation and O-glycosylation sites, and the occurrence of a KKXX-like endoplasmic reticulum retention signal. Immunoprecipitation analysis with an antibody against a synthetic peptide of the nsP1a/4 sequence detected polyprotein precursors of 160, 75, and 38 to 40 kDa as well as five smaller proteins in the range of 21 to 27 kDa. Immunofluorescence labeling showed that the nsP1a/4 protein is accumulated at the perinuclear region, in association with the endoplasmic reticulum and the viral RNA. These results suggest the involvement of nsP1a/4 protein in the RNA replication process in endoplasmic reticulum-derived intracellular membranes.
Collapse
Affiliation(s)
- Susana Guix
- Enteric Virus Laboratory, Department of Microbiology, University of Barcelona, Avda Diagonal 645, 08028 Barcelona, Spain
| | | | | | | |
Collapse
|
154
|
Damodharan L, Pattabhi V. Hydropathy analysis to correlate structure and function of proteins. Biochem Biophys Res Commun 2004; 323:996-1002. [PMID: 15381098 DOI: 10.1016/j.bbrc.2004.08.186] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2004] [Indexed: 10/26/2022]
Abstract
In post-genomic era, a plethora of protein structures have been solved but the functions of some of them are unknown. In this context, the role of hydropathy index of amino acids in predicting the function of a structurally known and functionally unknown protein was explored. Initially serine protease class was taken for analysis. Various methodologies like calculation of average hydropathy index for a five-residue window of a given sequence, hydropathy cluster analyses, etc., were done. Among these, the distribution of hydropathy clusters seems to suggest that the location of these clusters is conserved for a given class of proteins. Hence, this methodology was extended to different classes of proteins and to a protein with unknown function.
Collapse
|
155
|
Whitfield AE, Ullman DE, German TL. Expression and characterization of a soluble form of tomato spotted wilt virus glycoprotein GN. J Virol 2004; 78:13197-206. [PMID: 15542672 PMCID: PMC524983 DOI: 10.1128/jvi.78.23.13197-13206.2004] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2004] [Accepted: 07/28/2004] [Indexed: 12/31/2022] Open
Abstract
Tomato spotted wilt virus (TSWV), a member of the Tospovirus genus within the Bunyaviridae, is an economically important plant pathogen with a worldwide distribution. TSWV is transmitted to plants via thrips (Thysanoptera: Thripidae), which transmit the virus in a persistent propagative manner. The envelope glycoproteins, G(N) and G(C), are critical for the infection of thrips, but they are not required for the initial infection of plants. Thus, it is assumed that the envelope glycoproteins play important roles in the entry of TSWV into the insect midgut, the first site of infection. To directly test the hypothesis that G(N) plays a role in TSWV acquisition by thrips, we expressed and purified a soluble, recombinant form of the G(N) protein (G(N)-S). The expression of G(N)-S allowed us to examine the function of G(N) in the absence of other viral proteins. We detected specific binding to thrips midguts when purified G(N)-S was fed to thrips in an in vivo binding assay. The TSWV nucleocapsid protein and human cytomegalovirus glycoprotein B did not bind to thrips midguts, indicating that the G(N)-S-thrips midgut interaction is specific. TSWV acquisition inhibition assays revealed that thrips that were concomitantly fed purified TSWV and G(N)-S had reduced amounts of virus in their midguts compared to thrips that were fed TSWV only. Our findings that G(N)-S binds to larval thrips guts and decreases TSWV acquisition provide evidence that G(N) may serve as a viral ligand that mediates the attachment of TSWV to receptors displayed on the epithelial cells of the thrips midgut.
Collapse
Affiliation(s)
- Anna E Whitfield
- Department of Entomology, University of Wisconsin, 1630 Linden Dr., Madison, WI 53706, USA
| | | | | |
Collapse
|
156
|
Garriga D, Dìez J, Oliva B. Modeling the helicase domain of Brome mosaic virus 1a replicase. J Mol Model 2004; 10:382-92. [PMID: 15597207 PMCID: PMC7187956 DOI: 10.1007/s00894-004-0211-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2004] [Accepted: 08/31/2004] [Indexed: 11/06/2022]
Abstract
Brome mosaic virus (BMV) is a representative member of positive-strand RNA viruses. The 1a replicase from BMV is a membrane protein of unknown structure with a methyltransferase N-terminal domain and a putative helicase activity in the C-terminal domain. In order to make a functional prediction of the helicase activity of the BMV 1a C-terminal domain, we have built a model of its structure. The use of fold recognition servers hinted at two different superfamilies of helicases [superfamily 1 (SF1) and superfamily 2 (SF2)] as putative templates for the C-terminal fragment of BMV 1a. A structural model of BMV 1a in SF2 was obtained by means of a fold recognition server (3D-PSSM). On the other hand, we used the helicase motifs described in the literature to construct a model of the structure of the BMV 1a C-terminal domain as a member of the SF1. The biological functionality and statistic potentials were used to discriminate between the two models. The results illustrate that the use of sequence profiles and patterns helps modeling. Accordingly, the C-terminal domain of BMV 1a is a potential member of the SF1 of helicases, and it can be modeled with the structure of a member of the UvrD family of helicases. The helicase mechanism was corroborated by the model and this supports the hypothesis that BMV 1a should have helicase activity.
Collapse
Affiliation(s)
- Damià Garriga
- Molecular Immunopathology Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, 08003 Spain
- Departament de Biologia Estructural (IBMB-CSIC), Parc Científic de Barcelona, Barcelona, 08028 Spain
| | - Juana Dìez
- Molecular Immunopathology Unit, Departament de Ciències Experimentals i de la Salut, Universitat Pompeu Fabra, Barcelona, 08003 Spain
| | - Baldomero Oliva
- Laboratori de Bioinformàtica Estructural (GRIB-IMIM), Departament de Ciències Experimentals i de la Salut., Universitat Pompeu Fabra, C/ Doctor Aiguader, 83, Barcelona, 08003 Spain
| |
Collapse
|
157
|
Kropinski AM, Hayward M, Agnew MD, Jarrell KF. The genome of BCJA1c: a bacteriophage active against the alkaliphilic bacterium, Bacillus clarkii. Extremophiles 2004; 9:99-109. [PMID: 15841342 DOI: 10.1007/s00792-004-0425-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2004] [Accepted: 09/17/2004] [Indexed: 10/26/2022]
Abstract
The sequence of the genome of the first alkaliphilic bacteriophage has been determined. Temperate phage BCJA1 possesses a terminally redundant genome of approximately 41 kb, with a mol% G + C content of 41.7 and 59 genes arranged predominantly into two divergent transcriptons. The integrase gene of this phage is unique in that it contains a ribosomal slippage site. While this type of translational regulation occurs in the synthesis of transposase, this is the first time that it has been observed in a bacteriophage integrase. The DNA replication, recombination, packaging, and morphogenesis proteins show their greatest sequence similarity to phages and prophages from the genus Streptococcus. Host specificity, lysin, and lysogeny maintenance functions are most closely related to genes from Bacillus species.
Collapse
Affiliation(s)
- Andrew M Kropinski
- Department of Microbiology and Immunology, Queens University, Kingston, ON, K7L 3N6, Canada.
| | | | | | | |
Collapse
|
158
|
Marabotti A, D'Auria S, Rossi M, Facchiano AM. Theoretical model of the three-dimensional structure of a sugar-binding protein from Pyrococcus horikoshii: structural analysis and sugar-binding simulations. Biochem J 2004; 380:677-84. [PMID: 15015939 PMCID: PMC1224218 DOI: 10.1042/bj20031876] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 03/11/2004] [Accepted: 03/12/2004] [Indexed: 11/17/2022]
Abstract
The three-dimensional structure of a sugar-binding protein from the thermophilic archaea Pyrococcus horikoshii has been predicted by a homology modelling procedure and investigated for its stability and its ability to bind different sugars. The model was created by using as templates the three-dimensional structures of a maltodextrin-binding protein from Pyrococcus furiosus, a trehalose-maltose-binding protein from Thermococcus litoralis and a maltodextrin-binding protein from Escherichia coli. According to the suggestions from the CASP (Critical Assessment of Structure Prediction) meetings, the homology modelling strategy was applied by assessing an accurate multiple sequence alignment, based on the high structural conservation in the family of ATP-binding cassette transporters to which all these proteins belong. The model has been deposited in the Protein Data Bank with the code 1R25. According to the origin of the protein, several characteristics in the organization of the secondary-structure elements and in the distribution of polar and non-polar amino acids are very similar to those of thermophilic proteins, compared with proteins from mesophilic organisms, and are analysed in detail. Finally, a simulation of the binding of several sugars in the binding site of this protein is presented, and interactions with amino acids are highlighted in detail.
Collapse
Affiliation(s)
- Anna Marabotti
- Laboratory of Bioinformatics, Institute of Food Science, Italian National Research Council, Via Roma 52A/C, 83100 Avellino, Italy
| | | | | | | |
Collapse
|
159
|
Johnson MC, Sangrador-Vegas A, Smith TJ, Cairns MT. Molecular cloning and expression analysis of rainbow trout (Oncorhynchus mykiss) matrix metalloproteinase-9. FISH & SHELLFISH IMMUNOLOGY 2004; 17:499-503. [PMID: 15313515 DOI: 10.1016/j.fsi.2004.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2003] [Revised: 04/28/2004] [Accepted: 05/19/2004] [Indexed: 05/24/2023]
Affiliation(s)
- Mark C Johnson
- National Diagnostics Centre, National University of Ireland, Galway, Ireland
| | | | | | | |
Collapse
|
160
|
Abstract
Protein databases have become a crucial part of modern biology. Huge amounts of data for protein structures, functions, and particularly sequences are being generated. Searching databases is often the first step in the study of a new protein. Comparison between proteins and between protein families in databases provides information about the relationship between proteins within a genome or across different species, and hence offers much more information than can be obtained by studying only an isolated protein. In addition, secondary databases derived from experimental databases are also widely available. These databases reorganize and annotate the data or provide predictions. The use of multiple databases often helps researchers understand the structure and function of proteins. Although some protein databases are widely known, they are far from being fully utilized in the protein science community. This unit provides a starting point for readers to explore the potential of protein databases on the Internet.
Collapse
Affiliation(s)
- Dong Xu
- Digital Biology Laboratory, University of Missouri-Columbia, Columbia, Missouri, USA
| | | |
Collapse
|
161
|
Chelliah V, Chen L, Blundell TL, Lovell SC. Distinguishing structural and functional restraints in evolution in order to identify interaction sites. J Mol Biol 2004; 342:1487-504. [PMID: 15364576 DOI: 10.1016/j.jmb.2004.08.022] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2003] [Revised: 07/20/2004] [Accepted: 08/09/2004] [Indexed: 11/29/2022]
Abstract
Structural genomics projects are producing many three-dimensional structures of proteins that have been identified only from their gene sequences. It is therefore important to develop computational methods that will predict sites involved in productive intermolecular interactions that might give clues about functions. Techniques based on evolutionary conservation of amino acids have the advantage over physiochemical methods in that they are more general. However, the majority of techniques neither use all available structural and sequence information, nor are able to distinguish between evolutionary restraints that arise from the need to maintain structure and those that arise from function. Three methods to identify evolutionary restraints on protein sequence and structure are described here. The first identifies those residues that have a higher degree of conservation than expected: this is achieved by comparing for each amino acid position the sequence conservation observed in the homologous family of proteins with the degree of conservation predicted on the basis of amino acid type and local environment. The second uses information theory to identify those positions where environment-specific substitution tables make poor predictions of the overall amino acid substitution pattern. The third method identifies those residues that have highly conserved positions when three-dimensional structures of proteins in a homologous family are superposed. The scores derived from these methods are mapped onto the protein three-dimensional structures and contoured, allowing identification clusters of residues with strong evolutionary restraints that are sites of interaction in proteins involved in a variety of functions. Our method differs from other published techniques by making use of structural information to identify restraints that arise from the structure of the protein and differentiating these restraints from others that derive from intermolecular interactions that mediate functions in the whole organism.
Collapse
Affiliation(s)
- Vijayalakshmi Chelliah
- Department of Biochemistry, University of Cambridge, 80 Tennis Court Road, Cambridge CB2 1GA, UK
| | | | | | | |
Collapse
|
162
|
Xu D, Xu Y. Protein databases on the internet. CURRENT PROTOCOLS IN PROTEIN SCIENCE 2004; Chapter 2:2.6.1-2.6.15. [PMID: 18429255 DOI: 10.1002/0471140864.ps0206s33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Protein databases have become a crucial part of modern biology. Huge amounts of data for protein structures, functions, and particularly sequences are being generated. Searching databases is often the first step in the study of a new protein. Comparison between proteins and between protein families in databases provides information about the relationship between proteins within a genome or across different species, and hence offers much more information than can be obtained by studying only an isolated protein. In addition, secondary databases derived from experimental databases are also widely available. These databases reorganize and annotate the data or provide predictions. The use of multiple databases often helps researchers understand the structure and function of proteins. Although some protein databases are widely known, they are far from being fully utilized in the protein science community. This unit provides a starting point for readers to explore the potential of protein databases on the Internet.
Collapse
Affiliation(s)
- Dong Xu
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Ying Xu
- Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
163
|
Martínez Zamora MG, Castagnaro AP, Díaz Ricci JC. Isolation and diversity analysis of resistance gene analogues (RGAs) from cultivated and wild strawberries. Mol Genet Genomics 2004; 272:480-7. [PMID: 15565466 DOI: 10.1007/s00438-004-1079-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2004] [Accepted: 10/05/2004] [Indexed: 10/26/2022]
Abstract
Degenerate oligonucleotide primers, designed based on conserved regions of Nucleotide Binding Site (NBS) domains from previously cloned plant resistance genes, were used to isolate Resistance Gene Analogues (RGAs) from wild and cultivated strawberries. Seven distinct families of RGAs of the NBS-LRR type were identified from two related wild species, Fragaria vesca and F. chiloensis, and six different Fragaria x ananassa cultivars. With one exception (GAV-3), the deduced amino acid sequences of strawberry RGAs showed strong similarity to TIR (Toll Interleukin I Receptor)-type R genes from Arabidopsis, tobacco and flax, suggesting the existence of common ancestors. GAV-3 seemed to be more closely related to the non-TIR type. Further studies showed that the recombination level and the ratio of non-synonymous to synonymous substitutions within families were low. These data suggest that NBS-encoding sequences of RGAs in strawberry are subject to a gradual accumulation of mutations leading to purifying selection, rather than to a diversifying process. The present paper is the first report on RGAs in strawberry.
Collapse
Affiliation(s)
- M G Martínez Zamora
- Dpto. de Bioquímica de la Nutrición, Instituto de Química Biológica "Dr. Bernabé Bloj" (UNT), INSIBIO (CONICET-UNT), Chacabuco 461, 4000 Tucumán, Argentina
| | | | | |
Collapse
|
164
|
Sodhi JS, Bryson K, McGuffin LJ, Ward JJ, Wernisch L, Jones DT. Predicting metal-binding site residues in low-resolution structural models. J Mol Biol 2004; 342:307-20. [PMID: 15313626 DOI: 10.1016/j.jmb.2004.07.019] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2004] [Revised: 07/06/2004] [Accepted: 07/08/2004] [Indexed: 11/26/2022]
Abstract
The accurate prediction of the biochemical function of a protein is becoming increasingly important, given the unprecedented growth of both structural and sequence databanks. Consequently, computational methods are required to analyse such data in an automated manner to ensure genomes are annotated accurately. Protein structure prediction methods, for example, are capable of generating approximate structural models on a genome-wide scale. However, the detection of functionally important regions in such crude models, as well as structural genomics targets, remains an extremely important problem. The method described in the current study, MetSite, represents a fully automatic approach for the detection of metal-binding residue clusters applicable to protein models of moderate quality. The method involves using sequence profile information in combination with approximate structural data. Several neural network classifiers are shown to be able to distinguish metal sites from non-sites with a mean accuracy of 94.5%. The method was demonstrated to identify metal-binding sites correctly in LiveBench targets where no obvious metal-binding sequence motifs were detectable using InterPro. Accurate detection of metal sites was shown to be feasible for low-resolution predicted structures generated using mGenTHREADER where no side-chain information was available. High-scoring predictions were observed for a recently solved hypothetical protein from Haemophilus influenzae, indicating a putative metal-binding site.
Collapse
Affiliation(s)
- Jaspreet Singh Sodhi
- Bioinformatics Unit, Department of Computer Science, University College London, Gower Street, WC1E 6BT, UK
| | | | | | | | | | | |
Collapse
|
165
|
Schneider I, Haller D, Seitzer U, Beyer D, Ahmed JS. Molecular genetic characterization and subcellular localization of a putative Theileria annulata membrane protein. Parasitol Res 2004; 94:405-15. [PMID: 15490238 DOI: 10.1007/s00436-004-1226-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/03/2004] [Indexed: 11/29/2022]
Abstract
A Theileria annulata protein (TaD) exhibiting an N-terminal signal sequence for endoplasmic reticulum membrane translocation and a conserved cysteine-rich region was isolated by screening the mRNA of a T. annulata-infected bovine lymphoblastoid cell line with degenerated primers directed against T. annulata-targeting sequences. The TaD-coding sequence was found to be most closely related to the genomic DNA sequence of T. parva (TIGR database, 72%) and the amino acid sequence of Plasmodium falciparum (41%), P. yoelii yoelii (38%) and Cryptosporidium parvum (36%). The TaD mRNA is expressed within the sporozoite, schizont and merozoite stages of the parasite, implying that it is constitutively transcribed throughout the parasite's life cycle. Allelic variants were found between isolates originating from different geographical regions, however not affecting conserved cysteines. The open reading frame encoded a protein of 19.5 kDa and non-reducing SDS-PAGE analysis demonstrated a homodimeric protein. Using confocal microscopy, the protein was found to be both located in the parasite cytoplasm and to colocalize with a transmembrane protein of the schizonts within infected cells.
Collapse
Affiliation(s)
- Ilka Schneider
- Division of Veterinary Infectiology and Immunology, Research Center Borstel, Parkallee 22, 23845 Borstel, Germany
| | | | | | | | | |
Collapse
|
166
|
Hazkani-Covo E, Levanon EY, Rotman G, Graur D, Novik A. Evolution of multicellularity in Metazoa: comparative analysis of the subcellular localization of proteins in Saccharomyces, Drosophila and Caenorhabditis. Cell Biol Int 2004; 28:171-8. [PMID: 14984742 DOI: 10.1016/j.cellbi.2003.11.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2003] [Revised: 10/21/2003] [Accepted: 11/20/2003] [Indexed: 10/26/2022]
Abstract
A comparison of the subcellular assignments of proteins between the unicellular Saccharomyces cerevisiae and the multicellular Drosophila melanogaster and Caenorhabditis elegans was performed using a computational tool for the prediction of subcellular localization. Nine subcellular compartments were studied: (1) extracellular domain, (2) cell membrane, (3) cytoplasm, (4) endoplasmic reticulum, (5) Golgi apparatus, (6) lysosome, (7) peroxisome, (8) mitochondria, and (9) nucleus. The transition to multicellularity was found to be characterized by an increase in the total number of proteins encoded by the genome. Interestingly, this increase is distributed unevenly among the subcellular compartments. That is, a disproportionate increase in the number of proteins in the extracellular domain, the cell membrane, and the cytoplasm is observed in multicellular organisms, while no such increase is seen in other subcellular compartments. A possible explanation involves signal transduction. In terms of protein numbers, signal transduction pathways may be roughly described as a pyramid with an expansive base in the extracellular domain (the numerous extracellular signal proteins), progressively narrowing at the cell membrane and cytoplasmic levels, and ending in a narrow tip consisting of only a handful of transcription modulators in the nucleus. Our observations suggest that extracellular signaling interactions among metazoan cells account for the uneven increase in the numbers of proteins among subcellular compartments during the transition to multicellularity.
Collapse
Affiliation(s)
- Einat Hazkani-Covo
- Department of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Ramat Aviv 69978, Israel
| | | | | | | | | |
Collapse
|
167
|
Navarro G, Raffinot M. Fast and simple character classes and bounded gaps pattern matching, with applications to protein searching. J Comput Biol 2004; 10:903-23. [PMID: 14980017 DOI: 10.1089/106652703322756140] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The problem of fast exact and approximate searching for a pattern that contains classes of characters and bounded size gaps (CBG) in a text has a wide range of applications, among which a very important one is protein pattern matching (for instance, one PROSITE protein site is associated with the CBG [RK] - x(2,3) - [DE] - x(2,3) - Y, where the brackets match any of the letters inside, and x(2,3) a gap of length between 2 and 3). Currently, the only way to search for a CBG in a text is to convert it into a full regular expression (RE). However, a RE is more sophisticated than a CBG, and searching for it with a RE pattern matching algorithm complicates the search and makes it slow. This is the reason why we design in this article two new practical CBG matching algorithms that are much simpler and faster than all the RE search techniques. The first one looks exactly once at each text character. The second one does not need to consider all the text characters, and hence it is usually faster than the first one, but in bad cases may have to read the same text character more than once. We then propose a criterion based on the form of the CBG to choose a priori the fastest between both. We also show how to search permitting a few mistakes in the occurrences. We performed many practical experiments using the PROSITE database, and all of them show that our algorithms are the fastest in virtually all cases.
Collapse
Affiliation(s)
- Gonzalo Navarro
- Department of Computer Science, University of Chile, Blanco Encalada 2120, Santiago, Chile.
| | | |
Collapse
|
168
|
York J, Romanowski V, Lu M, Nunberg JH. The signal peptide of the Junín arenavirus envelope glycoprotein is myristoylated and forms an essential subunit of the mature G1-G2 complex. J Virol 2004; 78:10783-92. [PMID: 15367645 PMCID: PMC516395 DOI: 10.1128/jvi.78.19.10783-10792.2004] [Citation(s) in RCA: 126] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Accepted: 04/26/2004] [Indexed: 11/20/2022] Open
Abstract
Arenaviruses comprise a diverse family of rodent-borne viruses that are responsible for recurring and emerging outbreaks of viral hemorrhagic fevers worldwide. The Junín virus, a member of the New World arenaviruses, is endemic to the pampas grasslands of Argentina and is the etiologic agent of Argentine hemorrhagic fever. In this study, we have analyzed the assembly and function of the Junín virus envelope glycoproteins. The mature envelope glycoprotein complex is proteolytically processed from the GP-C precursor polypeptide and consists of three noncovalently associated subunits, G1, G2, and a stable 58-amino-acid signal peptide. This tripartite organization is found both on virions of the attenuated Candid 1 strain and in cells expressing the pathogenic MC2 strain GP-C gene. Replacement of the Junín virus GP-C signal peptide with that of human CD4 has little effect on glycoprotein assembly while abolishing the ability of the G1-G2 complex to mediate pH-dependent cell-cell fusion. In addition, we demonstrate that the Junín virus GP-C signal peptide subunit is myristoylated at its N-terminal glycine. Alanine substitution for the modified glycine residue in the GP-C signal peptide does not affect formation of the tripartite envelope glycoprotein complex but markedly reduces its membrane fusion activity. In contrast to the classical view that signal peptides act primarily in targeting nascent polypeptides to the endoplasmic reticulum, we suggest that the signal peptide of the arenavirus GP-C may serve additional functions in envelope glycoprotein structure and trafficking.
Collapse
Affiliation(s)
- Joanne York
- Montana Biotechnology Center, The University of Montana, Missoula, MT 59812, USA
| | | | | | | |
Collapse
|
169
|
Olson GE, Winfrey VP, NagDas SK, Melner MH. Region-specific expression and secretion of the fibrinogen-related protein, fgl2, by epithelial cells of the hamster epididymis and its role in disposal of defective spermatozoa. J Biol Chem 2004; 279:51266-74. [PMID: 15377663 DOI: 10.1074/jbc.m410485200] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The cauda epididymidis functions in the storage and protection of mature, fertile spermatozoa. We previously identified a region-specific secretory glycoprotein (termed HEP64) of the hamster proximal cauda epididymidis that specifically bound and coated the nonviable, but not the viable, spermatozoa within the epididymal lumen. In this study we employed expression screening of a hamster epididymal cDNA library to obtain the full-length sequence of HEP64 and to identify it as the fibrinogen-like protein fgl2. Northern blot analysis demonstrated that fgl2 mRNA is highly expressed by the proximal cauda epididymidis in comparison to other hamster tissues examined, and, in situ hybridization analysis of the epididymis revealed that fgl2 mRNA exhibited a region- and principal cell-specific expression pattern. Immunohistochemistry confirmed the association of fgl2 with abnormal spermatozoa in the cauda epididymidis and revealed smaller fgl2-containing particles. Immunoelectron microscopy revealed that fgl2 was distributed throughout an amorphous, "death cocoon," complex assembled onto abnormal spermatozoa and that the smaller fgl2 aggregates consisted of the amorphous material with embedded sperm fragments, organelles, and membrane vesicles. A protocol was developed to isolate an enriched death cocoon fraction. SDS-PAGE and microsequence analyses revealed that the Mr 64,000 fgl2 monomer was assembled into two disulfide-linked oligomers of Mr 260,000 and 280,000. These data demonstrate that the epididymis possesses a specific mechanism to identify and envelop defective spermatozoa with a protein complex containing the fibrinogen-like protein fgl2. We propose that this represents an important protective mechanism not only to shield the viable sperm population from potentially deleterious enzymes released by dying spermatozoa but also to prevent the release of sperm proteins that could initiate an immune response if they escaped the epididymal environment.
Collapse
Affiliation(s)
- Gary E Olson
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, Tennessee 37232, USA.
| | | | | | | |
Collapse
|
170
|
Giri AV, Anishetty S, Gautam P. Functionally specified protein signatures distinctive for each of the different blue copper proteins. BMC Bioinformatics 2004; 5:127. [PMID: 15357880 PMCID: PMC517927 DOI: 10.1186/1471-2105-5-127] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2004] [Accepted: 09/09/2004] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Proteins having similar functions from different sources can be identified by the occurrence in their sequences, a conserved cluster of amino acids referred to as pattern, motif, signature or fingerprint. The wide usage of protein sequence analysis in par with the growth of databases signifies the importance of using patterns or signatures to retrieve out related sequences. Blue copper proteins are found in the electron transport chain of prokaryotes and eukaryotes. The signatures already existing in the databases like the type 1 copper blue, multiple copper oxidase, cyt b/b6, photosystem 1 psaA&B, psaG&K, and reiske iron sulphur protein are not specified signatures for blue copper proteins as the name itself suggests. Most profile and motif databases strive to classify protein sequences into a broad spectrum of protein families. This work describes the signatures designed based on the copper metal binding motifs in blue copper proteins. The common feature in all blue copper proteins is a trigonal planar arrangement of two nitrogen ligands [each from histidine] and one sulphur containing thiolate ligand [from cysteine], with strong interactions between the copper center and these ligands. RESULTS Sequences that share such conserved motifs are crucial to the structure or function of the protein and this could provide a signature of family membership. The blue copper proteins chosen for the study were plantacyanin, plastocyanin, cucumber basic protein, stellacyanin, dicyanin, umecyanin, uclacyanin, cusacyanin, rusticyanin, sulfocyanin, halocyanin, azurin, pseudoazurin, amicyanin and nitrite reductase which were identified in both eukaryotes and prokaryotes. ClustalW analysis of the protein sequences of each of the blue copper proteins was the basis for designing protein signatures or peptides. The protein signatures and peptides identified in this study were designed involving the active site region involving the amino acids bound to the copper atom. It was highly specific for each kind of blue copper protein and the false picks were minimized. The set of signatures designed specifically for the BCP's was entirely different from the existing broad spectrum signatures as mentioned in the background section. CONCLUSIONS These signatures can be very useful for the annotation of uncharacterized proteins and highly specific to retrieve blue copper protein sequences of interest from the non redundant databases containing a large deposition of protein sequences.
Collapse
Affiliation(s)
| | | | - Pennathur Gautam
- Centre for Biotechnology, Anna University, Chennai 600 025, India
- AU-KBC Research Centre, Anna University, Chennai 600 044, India
| |
Collapse
|
171
|
Reche PA, Glutting JP, Zhang H, Reinherz EL. Enhancement to the RANKPEP resource for the prediction of peptide binding to MHC molecules using profiles. Immunogenetics 2004; 56:405-19. [PMID: 15349703 DOI: 10.1007/s00251-004-0709-7] [Citation(s) in RCA: 252] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2004] [Revised: 07/12/2004] [Indexed: 01/07/2023]
Abstract
We introduced previously an on-line resource, RANKPEP that uses position specific scoring matrices (PSSMs) or profiles for the prediction of peptide-MHC class I (MHCI) binding as a basis for CD8 T-cell epitope identification. Here, using PSSMs that are structurally consistent with the binding mode of MHC class II (MHCII) ligands, we have extended RANKPEP to prediction of peptide-MHCII binding and anticipation of CD4 T-cell epitopes. Currently, 88 and 50 different MHCI and MHCII molecules, respectively, can be targeted for peptide binding predictions in RANKPEP. Because appropriate processing of antigenic peptides must occur prior to major histocompatibility complex (MHC) binding, cleavage site prediction methods are important adjuncts for T-cell epitope discovery. Given that the C-terminus of most MHCI-restricted epitopes results from proteasomal cleavage, we have modeled the cleavage site from known MHCI-restricted epitopes using statistical language models. The RANKPEP server now determines whether the C-terminus of any predicted MHCI ligand may result from such proteasomal cleavage. Also implemented is a variability masking function. This feature focuses prediction on conserved rather than highly variable protein segments encoded by infectious genomes, thereby offering identification of invariant T-cell epitopes to thwart mutation as an immune evasion mechanism.
Collapse
Affiliation(s)
- Pedro A Reche
- Laboratory of Immunobiology and Department of Medical Oncology, Dana-Farber Cancer Institute, 44 Binney Street, Boston, MA 02115, USA.
| | | | | | | |
Collapse
|
172
|
Sheng Z, Lewis JA, Chirico WJ. Nuclear and Nucleolar Localization of 18-kDa Fibroblast Growth Factor-2 Is Controlled by C-terminal Signals. J Biol Chem 2004; 279:40153-60. [PMID: 15247275 DOI: 10.1074/jbc.m400123200] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Members of high (22-, 22.5-, 24-, and 34-kDa) and low (18-kDa) molecular mass forms of fibroblast growth factor-2 (FGF-2) regulate cell proliferation, differentiation, and migration. FGF-2s have been previously shown to accumulate in the nucleus and nucleolus. Although high molecular weight forms of FGF-2 contain at least one nuclear localization signal (NLS) in their N-terminal extension, the 18-kDa FGF-2 does not contain a standard NLS. To determine signals controlling the nuclear and subnuclear localization of the 18-kDa FGF-2, its full-length cDNA was fused to that of green fluorescent protein (GFP). The fusion protein was primarily localized to the nucleus of COS-7 and HeLa cells and accumulated in the nucleolus. The subcellular distribution was confirmed using wild type FGF-2 and FGF-2 tagged with a FLAG epitope. A 17-amino acid sequence containing two groups of basic amino acid residues separated by eight amino acid residues directed GFP and a GFP dimer into the nucleus. We systematically mutated the basic amino acid residues in this nonclassical NLS and determined the effect on nuclear and nucleolar accumulation of 18-kDa FGF-2. Lys(119) and Arg(129) are the key amino acid residues in both nuclear and nucleolar localization, whereas Lys(128) regulates only nucleolar localization of 18-kDa FGF-2. Together, these results demonstrate that the 18-kDa FGF-2 harbors a C-terminal nonclassical bipartite NLS, a portion of which also regulates its nucleolar localization.
Collapse
Affiliation(s)
- Zhi Sheng
- Molecular and Cellular Biology Program, School of Graduate Studies, State University of New York Downstate Medical Center, Brooklyn, New York 11203, USA
| | | | | |
Collapse
|
173
|
Zhou D, Xue J, Gavrialov O, Haddad GG. Na+/H+ exchanger 1 deficiency alters gene expression in mouse brain. Physiol Genomics 2004; 18:331-9. [PMID: 15306696 DOI: 10.1152/physiolgenomics.00076.2004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Na(+)/H(+) exchanger 1 (NHE1) is well known to function as a major regulator of intracellular pH (pH(i)). It is activated by low pH(i) and exchanges extracellular Na(+) for intracellular H(+) to maintain cellular homeostasis. Despite the fact that we now have evidence suggesting other roles for NHE1, there has been no comprehensive study investigating its role as a signaling molecule. Toward this aim, we used in this study NHE1 null mutant mice and cDNA microarrays to investigate the effects of NHE1 on global gene expression in various regions of the brain, e.g., cortex, hippocampus, brain stem-diencephalon, and cerebellum. We found that a total of 35 to 79 genes were up- or downregulated in each brain region, with the majority being downregulated. The effect of NHE1 null mutation on gene expression is region specific, and only 11 genes were changed in all brain regions studied. Further analysis of the cis-regulatory regions of downregulated genes revealed that transcription suppressors, BCL6 and E4BP4, were probable candidates that mediated the inhibitory effect of NHE1 null mutation. One of the genes, MCT-13, was not only downregulated in the NHE1 null mutant brain but also in tissue cultures treated with an NHE1 inhibitor. We conclude that 1) a relatively small number of genes were altered in the NHE1 null mouse brain; 2) the effects of NHE1 null mutation on gene expression are region specific; and 3) several genes implicated in neurodegeneration have altered expression, potentially offering a molecular explanation for the phenotype of the NHE1 null mouse.
Collapse
Affiliation(s)
- Dan Zhou
- Department of Pediatrics, Albert Einstein College of Medicine of Yeshiva University, Bronx, New York 10461, USA
| | | | | | | |
Collapse
|
174
|
Abstract
Recent sequence analysis of complete prokaryotic proteomes suggests that in early evolutionary stages proteins were rather small, of the size 25-35 amino acids. Corroborating evidence comes from protein crystal data, which indicate this size for closed loops--universal structural units of globular proteins. In the latest development we were able to derive and structurally characterize several sequence/structure prototypes apparently representing early protein units. Structurally the prototypes appear as closed loops stabilized by end-to-end van der Waals interactions. While nearly standard in size the loops are highly diverse in terms of their secondary structure. A presentation of the protein as an assembly of descendants of the prototypes, the first of its kind, is described in detail here. The sequence and structure of the ATP-binding subunit of histidine permease of S. typhimurium is shown to contain several modified copies of different prototype elements, closed loops, and, thus, can be spelled as: x-PI-x-PIV-PVI-PII-PVII-x, where PI-PVII are the prototype elements. This study sets up the basic principles for the sequence/structure prototype spelling of globular proteins.
Collapse
Affiliation(s)
- Igor N Berezovsky
- Department of Structural Biology, The Weizmann Institute of Science, P.O.B. 26, Rehovot 76100, Israel.
| | | | | | | |
Collapse
|
175
|
Kihara D, Skolnick J. Microbial genomes have over 72% structure assignment by the threading algorithm PROSPECTOR_Q. Proteins 2004; 55:464-73. [PMID: 15048836 DOI: 10.1002/prot.20044] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The genome scale threading of five complete microbial genomes is revisited using our state-of-the-art threading algorithm, PROSPECTOR_Q. Considering that structure assignment to an ORF could be useful for predicting biochemical function as well as for analyzing pathways, it is important to assess the current status of genome scale threading. The fraction of ORFs to which we could assign protein structures with a reasonably good confidence level to each genome sequences is over 72%, which is significantly higher than earlier studies. Using the assigned structures, we have predicted the function of several ORFs through "single-function" template structures, obtained from an analysis of the relationship between protein fold and function. The fold distribution of the genomes and the effect of the number of homologous sequences on structure assignment are also discussed.
Collapse
Affiliation(s)
- Daisuke Kihara
- UB Center of Excellence in Bioinformatics, University at Buffalo, Buffalo, New York 14215, USA
| | | |
Collapse
|
176
|
Abstract
Members of the Slit family regulate axon guidance and cell migration. To date, three vertebrate slit1 genes have been identified in mammals and orthologs of two, slit2 and slit3, have been identified in zebrafish. Here, we describe the cloning of full-length cDNAs for two zebrafish slit orthologs, slit1a and slit1b. Both predicted proteins contain the conserved motifs that characterize other vertebrate Slits. slit1a and slit1b are both expressed in the midline, hypochord, telencephalon, and hindbrain. Apart from these shared expression domains, however, their expression patterns largely differ. Whereas slit1a is expressed broadly in the central nervous system (CNS) and in the somites, pectoral fin buds, tail bud, and caudal fin folds, slit1b is expressed in the olfactory system throughout embryonic and larval development, and in the retina during larval stages. Their expression patterns, particularly that of slit1a, suggest that Slit proteins may have roles in tissue morphogenesis in addition to their established roles in axon guidance and cell migration.
Collapse
Affiliation(s)
- Lara D Hutson
- Department of Neurobiology and Anatomy, University of Utah Medical Center, Salt Lake City, Utah 84132, USA
| | | | | | | | | |
Collapse
|
177
|
Hidalgo A, Betancor L, Moreno R, Zafra O, Cava F, Fernández-Lafuente R, Guisán JM, Berenguer J. Thermus thermophilus as a cell factory for the production of a thermophilic Mn-dependent catalase which fails to be synthesized in an active form in Escherichia coli. Appl Environ Microbiol 2004; 70:3839-44. [PMID: 15240253 PMCID: PMC444780 DOI: 10.1128/aem.70.7.3839-3844.2004] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 03/16/2004] [Indexed: 11/20/2022] Open
Abstract
Thermostable Mn-dependent catalases are promising enzymes in biotechnological applications as H(2)O(2)-detoxifying systems. We cloned the genes encoding Mn-dependent catalases from Thermus thermophilus HB27 and HB8 and a less thermostable mutant carrying two amino acid replacements (M129V and E293G). When the wild-type and mutant genes were overexpressed in Escherichia coli, unmodified or six-His-tagged proteins of the expected size were overproduced as inactive proteins. Several attempts to obtain active forms or to activate the overproduced proteins were unsuccessful, even when soluble and thermostable proteins were used. Therefore, a requirement for a Thermus-specific activation factor was suggested. To overcome this problem, the Mn-dependent catalase genes were overexpressed directly in T. thermophilus under the control of the Pnar promoter. This promoter belongs to a respiratory nitrate reductase from of T. thermophilus HB8, whose transcription is activated by the combined action of nitrate and anoxia. Upon induction in T. thermophilus HB8, a 20- to 30-fold increase in catalase specific activity was observed, whereas a 90- to 110-fold increase was detected when the laboratory strain T. thermophilus HB27::nar was used as the host. The thermostability of the overproduced wild-type catalase was identical to that previously reported for the native enzyme, whereas decreased stability was detected for the mutant derivative. Therefore, our results validate the use of T. thermophilus as an alternative cell factory for the overproduction of thermophilic proteins that fail to be expressed in well-known mesophilic hosts.
Collapse
Affiliation(s)
- Aurelio Hidalgo
- Departamento de Biocatálisis, Instituto de Catálisis y Petroleoquímica-CSIC, Centro de Biología Molecular Severo Ochoa CSIC-UAM, Campus de Cantoblanco, 28049 Madrid, Spain
| | | | | | | | | | | | | | | |
Collapse
|
178
|
Rost B, Yachdav G, Liu J. The PredictProtein server. Nucleic Acids Res 2004; 32:W321-6. [PMID: 15215403 PMCID: PMC441515 DOI: 10.1093/nar/gkh377] [Citation(s) in RCA: 1060] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2004] [Revised: 03/15/2004] [Accepted: 03/15/2004] [Indexed: 11/13/2022] Open
Abstract
PredictProtein (http://www.predictprotein.org) is an Internet service for sequence analysis and the prediction of protein structure and function. Users submit protein sequences or alignments; PredictProtein returns multiple sequence alignments, PROSITE sequence motifs, low-complexity regions (SEG), nuclear localization signals, regions lacking regular structure (NORS) and predictions of secondary structure, solvent accessibility, globular regions, transmembrane helices, coiled-coil regions, structural switch regions, disulfide-bonds, sub-cellular localization and functional annotations. Upon request fold recognition by prediction-based threading, CHOP domain assignments, predictions of transmembrane strands and inter-residue contacts are also available. For all services, users can submit their query either by electronic mail or interactively via the World Wide Web.
Collapse
Affiliation(s)
- Burkhard Rost
- CUBIC, Department of Biochemistry and Molecular Biophysics, Columbia University, 650 West 168th Street BB217, New York, NY 10032, USA.
| | | | | |
Collapse
|
179
|
Adler HJ, Belyantseva IA, Merritt RC, Frolenkov GI, Dougherty GW, Kachar B. Expression of prestin, a membrane motor protein, in the mammalian auditory and vestibular periphery. Hear Res 2004; 184:27-40. [PMID: 14553901 DOI: 10.1016/s0378-5955(03)00192-8] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Hair cells are specialized mechanoreceptors common to auditory and vestibular sensory organs of mammalian and non-mammalian species. Different hair cells are believed to share common features related to their mechanosensory function. It has been shown that hair cells possess various forms of motile properties that enhance their receptor function. Membrane-based electromotility is a form of hair cell motility observed in isolated outer hair cells (OHCs) of the cochlea. A novel membrane protein, prestin, recently cloned from gerbil and rat tissues, is presumably responsible for electromotility. We cloned prestin from mouse organ of Corti and confirmed strong homology of this protein among different rodent species. We explored whether or not prestin is present in hair cells of the vestibular system. Using reverse transcription-polymerase chain reaction, we demonstrated that prestin is expressed in mouse and rat auditory and vestibular organs, but not in chicken auditory periphery. In situ hybridization and immunolocalization studies confirmed the presence of prestin in OHCs as well as in vestibular hair cells (VHCs) of rodent saccule, utricle and crista ampullaris. However, in the VHCs, staining of varying intensity with anti-prestin antibodies was observed in the cytoplasm, but not in the lateral plasma membrane or in the stereociliary membrane. Whole-cell patch-clamp recordings showed that VHCs do not possess the voltage-dependent capacitance associated with membrane-based electromotility. We conclude that although prestin is expressed in VHCs, it is unlikely that it supports the form of somatic motility observed in OHCs.
Collapse
Affiliation(s)
- Henry J Adler
- Section on Structural Cell Biology, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Bldg. 50, Room 4249, Bethesda, MD 20892-8027, USA.
| | | | | | | | | | | |
Collapse
|
180
|
Sunde M, McGrath KCY, Young L, Matthews JM, Chua EL, Mackay JP, Death AK. TC-1 is a novel tumorigenic and natively disordered protein associated with thyroid cancer. Cancer Res 2004; 64:2766-73. [PMID: 15087392 DOI: 10.1158/0008-5472.can-03-2093] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A novel gene, thyroid cancer 1 (TC-1), was found recently to be overexpressed in thyroid cancer. TC-1 shows no homology to any of the known thyroid cancer-associated genes. We have produced stable transformants of normal thyroid cells that express the TC-1 gene, and these cells show increased proliferation rates and anchorage-independent growth in soft agar. Apoptosis rates also are decreased in the transformed cells. We also have expressed recombinant TC-1 protein and have undertaken a structural and functional characterization of the protein. The protein is monomeric and predominantly unstructured under conditions of physiologic salt and pH. This places it in the category of natively disordered proteins, a rapidly expanding group of proteins, many members of which play critical roles in cell regulation processes. We show that the protein can be phosphorylated by cyclic AMP-dependent protein kinase and protein kinase C, and the activity of both of these kinases is up-regulated when cells are stably transfected with TC-1. These results suggest that overexpression of TC-1 may be important in thyroid carcinogenesis.
Collapse
Affiliation(s)
- Margaret Sunde
- School of Molecular and Microbial Biosciences and Discipline of Medicine, University of Sydney, Australia
| | | | | | | | | | | | | |
Collapse
|
181
|
Grünberg K, Müller EC, Otto A, Reszka R, Linder D, Kube M, Reinhardt R, Schüler D. Biochemical and proteomic analysis of the magnetosome membrane in Magnetospirillum gryphiswaldense. Appl Environ Microbiol 2004; 70:1040-50. [PMID: 14766587 PMCID: PMC348919 DOI: 10.1128/aem.70.2.1040-1050.2004] [Citation(s) in RCA: 238] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We analyzed the biochemical composition of the magnetosome membrane (MM) in Magnetospirillum gryphiswaldense. Isolated magnetosomes were associated with phospholipids and fatty acids which were similar to phospholipids and fatty acids from other subcellular compartments (i.e., outer and cytoplasmic membranes) but were present in different proportions. The binding characteristics of MM-associated proteins were studied by selective solubilization and limited proteolysis. The MM-associated proteins were further analyzed by various proteomic approaches, including one- and two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis followed by Edman and mass spectrometric (electrospray ionization-mass spectrometry-mass spectrometry) sequencing, as well as capillary liquid chromatography-mass spectrometry-mass spectrometry of total tryptic digests of the MM. At least 18 proteins were found to constitute the magnetosome subproteome, and most of these proteins are novel for M. gryphiswaldense. Except for MM22 and Mms16, all bona fide MM proteins (MMPs) were encoded by open reading frames in the mamAB, mamDC, and mms6 clusters in the previously identified putative magnetosome island. Eight of the MMPs display homology to known families, and some of them occur in the MM in multiple homologues. Ten of the MMPs have no known homologues in nonmagnetic organisms and thus represent novel, magnetotactic bacterium-specific protein families. Several MMPs display repetitive or highly acidic sequence patterns, which are known from other biomineralizing systems and thus may have relevance for magnetite formation.
Collapse
Affiliation(s)
- Karen Grünberg
- Max-Planck-Institut für Marine Mikrobiologie, 28359 Bremen, Germany
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Hashimoto M, Ichihara M, Watanabe T, Kawai K, Koshikawa K, Yuasa N, Takahashi T, Yatabe Y, Murakumo Y, Zhang JM, Nimura Y, Takahashi M. Expression of CD109 in human cancer. Oncogene 2004; 23:3716-20. [PMID: 15116102 DOI: 10.1038/sj.onc.1207418] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
It was recently reported that the human CD109 gene encodes a glycosyl-phosphatidylinositol-anchored glycoprotein that is a member of the alpha(2)-macroglobulin/C3, C4, C5 family of thioester-containing proteins. In this study, we found that the expression of mouse CD109 gene was upregulated in NIH3T3 cells expressing RET tyrosine kinase with a multiple endocrine neoplasia 2B mutation. Northern blot analysis showed a high level of expression of the CD109 gene only in the testis in normal human and mouse tissues. In addition, its expression was high in some human tumor cell lines, which included squamous cell carcinoma and glioblastoma cell lines, whereas it was undetectable in neuroblastoma and small-cell lung carcinoma cell lines. When CD109 expression was examined in 33 cases of human lung cell carcinomas by quantitative RT-PCR, a significant high expression of CD109 was detected in about half of squamous cell carcinomas examined, but not in adenocarcinoma, large-cell carcinoma and small-cell carcinoma. Similarly, upregulation of CD109 was observed in nine out of 17 esophageal squamous cell carcinomas. Thus, these results suggested that CD109 might be a useful molecular target for the development of new therapeutics for malignant tumors, such as squamous cell carcinoma.
Collapse
Affiliation(s)
- Mizuo Hashimoto
- Department of Pathology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
183
|
Bondos SE, Catanese DJ, Tan XX, Bicknell A, Li L, Matthews KS. Hox Transcription Factor Ultrabithorax Ib Physically and Genetically Interacts with Disconnected Interacting Protein 1, a Double-stranded RNA-binding Protein. J Biol Chem 2004; 279:26433-44. [PMID: 15039447 DOI: 10.1074/jbc.m312842200] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The Hox protein family consists of homeodomain-containing transcription factors that are primary determinants of cell fate during animal development. Specific Hox function appears to rely on protein-protein interactions; however, the partners involved in these interactions and their function are largely unknown. Disconnected Interacting Protein 1 (DIP1) was isolated in a yeast two-hybrid screen of a 0-12-h Drosophila embryo library designed to identify proteins that interact with Ultrabithorax (Ubx), a Drosophila Hox protein. The Ubx.DIP1 physical interaction was confirmed using phage display, immunoprecipitation, pull-down assays, and gel retardation analysis. Ectopic expression of DIP1 in wing and haltere imaginal discs malforms the adult structures and enhances a decreased Ubx expression phenotype, establishing a genetic interaction. Ubx can generate a ternary complex by simultaneously binding its target DNA and DIP1. A large region of Ubx, including the repression domain, is required for interaction with DIP1. These more variable sequences may be key to the differential Hox function observed in vivo. The Ubx.DIP1 interaction prevents transcriptional activation by Ubx in a modified yeast one-hybrid assay, suggesting that DIP1 may modulate transcriptional regulation by Ubx. The DIP1 sequence contains two dsRNA-binding domains, and DIP1 binds double-stranded RNA with a 1000-fold higher affinity than either single-stranded RNA or double-stranded DNA. The strong interaction of Ubx with an RNA-binding protein suggests a wider range of proteins may influence Ubx function than previously appreciated.
Collapse
Affiliation(s)
- Sarah E Bondos
- Department of Biochemistry and Cell Biology, Rice University, Houston, Texas 77005, USA
| | | | | | | | | | | |
Collapse
|
184
|
Ruiz-Masó JA, López-Zumel C, Menéndez M, Espinosa M, del Solar G. Structural features of the initiator of replication protein RepB encoded by the promiscuous plasmid pMV158. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2004; 1696:113-9. [PMID: 14726211 DOI: 10.1016/j.bbapap.2003.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The promiscuous rolling circle (RC)-replicating plasmid pMV158 encodes the 210-amino-acid initiator of replication protein, RepB. The protein relaxes supercoiled cognate DNA in a topoisomeraseI-like manner. A new vector and procedure for overproduction, scaling-up, and purification of the protein has been developed. RepB purified as a hexamer in solution, as shown by analytical ultracentrifugation assays. Circular dichroism (CD) of RepB indicated that the protein has an estimated content of around 33% alpha-helices and 20% beta-strands. Characterisation of temperature-induced transitions of the protein showed an irreversible change in the spectra when the temperature was raised above 35 degrees C, indicating that the protein undergoes a conformational change that could account for the relatively high optimal temperature of the RepB-mediated cleavage.
Collapse
Affiliation(s)
- José A Ruiz-Masó
- Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Cientificas, Velázquez, 144, E-28006 Madrid, Spain
| | | | | | | | | |
Collapse
|
185
|
Burge EJ, Gauthier DT, Ottinger CA, Van Veld PA. Mycobacterium-inducible Nramp in striped bass (Morone saxatilis). Infect Immun 2004; 72:1626-36. [PMID: 14977970 PMCID: PMC356044 DOI: 10.1128/iai.72.3.1626-1636.2004] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In mammals, the natural resistance-associated macrophage protein 1 gene, Nramp1, plays a major role in resistance to mycobacterial infections. Chesapeake Bay striped bass (Morone saxatilis) is currently experiencing an epizootic of mycobacteriosis that threatens the health of this ecologically and economically important species. In the present study, we characterized an Nramp gene in this species and obtained evidence that there is induction following Mycobacterium exposure. The striped bass Nramp gene (MsNramp) and a 554-amino-acid sequence contain all the signal features of the Nramp family, including a topology of 12 transmembrane domains (TM), the transport protein-specific binding-protein-dependent transport system inner membrane component signature, three N-linked glycosylation sites between TM 7 and TM 8, sites of casein kinase and protein kinase C phosphorylation in the amino and carboxy termini, and a tyrosine kinase phosphorylation site between TM 6 and TM 7. Phylogenetic analysis most closely grouped MsNramp with other teleost Nramp genes and revealed high sequence similarity with mammalian Nramp2. MsNramp expression was present in all tissues assayed by reverse transcription-PCR. Within 1 day of injection of Mycobacterium marinum, MsNramp expression was highly induced (17-fold higher) in peritoneal exudate (PE) cells compared to the expression in controls. The levels of MsNramp were three- and sixfold higher on days 3 and 15, respectively. Injection of Mycobacterium shottsii resulted in two-, five-, and threefold increases in gene expression in PE cells over the time course. This report is the first report of induction of an Nramp gene by mycobacteria in a poikilothermic vertebrate.
Collapse
Affiliation(s)
- Erin J Burge
- Department of Environmental and Aquatic Animal Health, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, Virginia 23062, USA.
| | | | | | | |
Collapse
|
186
|
Sibthorpe D, Baker AM, Gilmartin BJ, Blackwell JM, White JK. Comparative analysis of two slc11 (Nramp) loci in Takifugu rubripes. DNA Cell Biol 2004; 23:45-58. [PMID: 14965472 DOI: 10.1089/104454904322745925] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
To study the evolution of the solute carrier family 11 (slc11; formerly Nramp) protein, we isolated and characterized two paralogs from the pufferfish Takifugu rubripes (Fugu). These teleost genes, designated Fugu slc11a-a and Fugu slc11a-b, comprise open reading frames of 1743 nucleotides (581 amino acids) and 1662 nt (554 aa), respectively. The proteins are 81% similar, and both exhibit signature features of the slc11 family of proteins including 12 transmembrane domains, a conserved transport motif and a glycosylated loop. Both Fugu paralogs are more Slc11a2-like based on sequence homology and phylogenetic studies. Analysis of gene environment placed both in the proximity of multiple loci syntenic to human chromosome 12q13, that is, within a SLC11A2 gene environment. However, Fugu slc11a-a also gave one match with chromosome 2q35, where human SLC11A1 resides. Functional diversification was suggested by differences in tissue distribution and subcellular localization. Fugu slc11a-a exhibits a restricted expression profile and a complex subcellular localization, including LAMP1 positive late endosomes/lysosomes in transiently transfected mouse macrophages. Fugu slc11a-b is expressed ubiquitously and localizes solely to late endosomes/lysosomes. This comparative analysis extends our understanding of the evolution and function of this important family of divalent cation transporters. [Sequence data from this article have been deposited with the EMBL/GenBank Data Libraries under accession nos. AJ496547/8/9 and AJ496550.]
Collapse
Affiliation(s)
- Dean Sibthorpe
- Division of Environmental and Evolutionary Biology, The Gatty Marine Laboratory, University of St. Andrews, Fife KY16 8LB, UK
| | | | | | | | | |
Collapse
|
187
|
Abstract
Herpesviruses represent an exceptionally suitable model to analyze evolutionary old pathogens, their competency to adapt to existing and changing molecular niches in host species, and the modulation of the gene content and function to comply with the requirements of life. The basis for numerous studies dealing with these questions are reliable statements about the gene content of herpesviral genomes and the functions of viral proteins. The recent determination of the coding strategy of the chimpanzee cytomegalovirus genome and the re-evaluation of the gene content of the human cytomegalovirus genome made it also necessary to restructure the putative transcription map of the Tupaia herpesvirus (THV) genome. Twenty-three THV-specific ORFs formerly predicted to be coding for viral proteins were deleted from the THV transcription map resulting in a gene layout that is now characterized by the presence of conserved genes in the genome center, that probably reflect the genome structure of common herpesviral ancestors, and species-specific genes at the termini. The conserved regions in the THV genome are characterized by high G + C contents between 60% and 80%, a high CpG dinucleotide frequency, and the presence of densely packed putative CpG islands. The genome termini seem to provide the requirements of large scale rearrangements and complements of the gene content to adapt to new environmental demands. With the help of the recently designed method of dictionary-driven, pattern-based protein annotation it was possible to assign putative functions to almost all potential THV proteins, e.g. 123 were found to be putative membrane or secreted proteins, putative signal domains were identified in 69, and 29 proteins were predicted to be glycosylated. The present study adds new aspects to the knowledge about the precise gene composition of herpesvirus genomes and viral protein functions that are of exceptional importance for studies dealing with the phylogeny, the evolution, vaccine vector development, virus-host interactions, pathogenesis and the determination of protein functions of herpesviruses.
Collapse
Affiliation(s)
- Udo Bahr
- Hygiene-Institut, Abteilung Virologie, Universität Heidelberg, Im Neuenheimer Feld 324, D-69120 Heidelberg, Germany
| | | |
Collapse
|
188
|
Roberts MD, Martin NL, Kropinski AM. The genome and proteome of coliphage T1. Virology 2004; 318:245-66. [PMID: 14972552 DOI: 10.1016/j.virol.2003.09.020] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2003] [Revised: 09/18/2003] [Accepted: 09/22/2003] [Indexed: 11/19/2022]
Abstract
The genome of enterobacterial phage T1 has been sequenced, revealing that its 50.7-kb terminally redundant, circularly permuted sequence contains 48,836 bp of nonredundant nucleotides. Seventy-seven open reading frames (ORFs) were identified, with a high percentage of small genes located at the termini of the genomes displaying no homology to existing phage or prophage proteins. Of the genes showing homologs (47%), we identified those involved in host DNA degradation (three endonucleases) and T1 replication (DNA helicase, primase, and single-stranded DNA-binding proteins) and recombination (RecE and Erf homologs). While the tail genes showed homology to those from temperate coliphage N15, the capsid biosynthetic genes were unique. Phage proteins were resolved by 2D gel electrophoresis, and mass spectrometry was used to identify several of the spots including the major head, portal, and tail proteins, thus verifying the annotation.
Collapse
Affiliation(s)
- Mary D Roberts
- Biology Department, Radford University, Radford, VA 24142, USA
| | | | | |
Collapse
|
189
|
Jasek M, Mańczak M, Sawaryn A, Obojski A, Wiśniewski A, Łuszczek W, Kuśnierczyk P. A novel polymorphism in the cytoplasmic region of the human immunoglobulin A Fc receptor gene*. ACTA ACUST UNITED AC 2004; 31:59-62. [PMID: 15086344 DOI: 10.1111/j.1365-2370.2004.00445.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The Fc receptor for immunoglobulin A (IgA), FcalphaRI, is expressed on several types of myeloid cells, and activates them upon ligand binding. However, binding of IgA to the extracellular domain of the receptor requires previous stimulation of the cell by cytokines, and the cytoplasmic tail of FcalphaRI has been shown to play a role in this. Therefore, polymorphism in this region might affect this process. However, no changes in the amino acid sequence in this region of the FcalphaRI have so far been reported. Here, we describe for the first time a single nucleotide polymorphism in exon 5 of the immunoglobulin A Fc receptor (FCAR) gene leading to a Ser-->Gly substitution at position 248 of the mature FcalphaRI protein. Prediction of structural features suggests some changes that may affect the function of the protein to some extent. However, the Gly248 variant is quite common (4% homozygotes and 38% heterozygotes) in healthy population, suggesting a weak effect, if any, on function, at least in heterozygotes.
Collapse
Affiliation(s)
- M Jasek
- Laboratory of Immunogenetics, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | | | | | | | | | | | | |
Collapse
|
190
|
Remy I, Michnick SW. Regulation of apoptosis by the Ft1 protein, a new modulator of protein kinase B/Akt. Mol Cell Biol 2004; 24:1493-504. [PMID: 14749367 PMCID: PMC344167 DOI: 10.1128/mcb.24.4.1493-1504.2004] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The serine/threonine kinase protein kinase B (PKB)/Akt plays a central role in many cellular processes, including cell growth, glucose metabolism, and apoptosis. However, the identification and validation of novel regulators or effectors is key to future advances in understanding the multiple functions of PKB. Here we report the identification of a novel PKB binding protein, called Ft1, from a cDNA library screen using a green fluorescent protein-based protein-fragment complementation assay. We show that the Ft1 protein interacts directly with PKB, enhancing the phosphorylation of both of its regulatory sites by promoting its interaction with the upstream kinase PDK1. Further, the modulation of PKB activity by Ft1 has a strong effect on the apoptosis susceptibility of T lymphocytes treated with glucocorticoids. We demonstrate that this phenomenon occurs via a PDK1/PKB/GSK3/NF-ATc signaling cascade that controls the production of the proapoptotic hormone Fas ligand. The wide distribution of Ft1 in adult tissues suggests that it could be a general regulator of PKB activity in the control of differentiation, proliferation, and apoptosis in many cell types.
Collapse
Affiliation(s)
- Ingrid Remy
- Département de Biochimie, Université de Montréal, Succursale centre-ville, Montréal, Québec H3C 3J7, Canada
| | | |
Collapse
|
191
|
Liu X, Fan K, Wang W. The number of protein folds and their distribution over families in nature. Proteins 2004; 54:491-9. [PMID: 14747997 DOI: 10.1002/prot.10514] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Currently, of the 10(6) known protein sequences, only about 10(4) structures have been solved. Based on homologies and similarities, proteins are grouped into different families in which each has a structural prototype, namely, the fold, and some share the same folds. However, the total number of folds and families, and furthermore, the distribution of folds over families in nature, are still an enigma. Here, we report a study on the distribution of folds over families and the total number of folds in nature, using a maximum probability principle and the moment method of estimation. A quadratic relation between the numbers of families and folds is found for the number of families in an interval from 6000 to 30,000. For example, about 2700 folds for 23,100 families are obtained, among them about 33 superfolds, including more than 100 families each, and the largest superfold comprises about 800 families. Our results suggest that although the majority of folds have only a single family per fold, a considerably larger number of folds include many more families each than in the database, and the distribution of folds over families in nature differs markedly from the sampled distribution. The long tail of fold distribution is first estimated in this article. The results fit the data for different versions of the structural classification of proteins (SCOP) excellently, and the goodness-of-fit tests strongly support the results. In addition, the method of directly "enlarging" the sample to the population may be useful in inferring distributions of species in different fields.
Collapse
Affiliation(s)
- Xinsheng Liu
- National Lab of Solid State Microstructure, Department of Physics and Institute of Biophysics, Nanjing University, Nanjing, China
| | | | | |
Collapse
|
192
|
Neill AT, Moy GW, Vacquier VD. Polycystin-2 associates with the polycystin-1 homolog, suREJ3, and localizes to the acrosomal region of sea urchin spermatozoa. Mol Reprod Dev 2004; 67:472-7. [PMID: 14991739 DOI: 10.1002/mrd.20033] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Polycystin-2, the protein mutated in type 2 autosomal dominant polycystic kidney disease, is an integral transmembrane protein with nonselective cation channel activity. Here we report on the sea urchin sperm homolog of polycystin-2 (suPC2). Like other polycystin-2 family members, suPC2 is a six-pass transmembrane protein containing C-terminal cytoplasmic EF hand and coiled-coil domains. The protein localizes exclusively to the plasma membrane over the sperm acrosomal vesicle. This localization coincides with the previously reported localization of the sea urchin PC1 homolog, suREJ3. Co-immunoprecipitation shows that suPC2 and suREJ3 are associated in the membrane. The location of suPC2 suggests that it may function as a cation channel mediating the sperm acrosome reaction. The low cation selectivity of PC2 channels would explain data indicating that Na(+) and Ca(2+) may enter sea urchin sperm through the same channel during the acrosome reaction.
Collapse
Affiliation(s)
- Anna T Neill
- Center for Marine Biotechnology and Biomedicine, Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA.
| | | | | |
Collapse
|
193
|
Sheps JA, Ralph S, Zhao Z, Baillie DL, Ling V. The ABC transporter gene family of Caenorhabditis elegans has implications for the evolutionary dynamics of multidrug resistance in eukaryotes. Genome Biol 2004; 5:R15. [PMID: 15003118 PMCID: PMC395765 DOI: 10.1186/gb-2004-5-3-r15] [Citation(s) in RCA: 153] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2003] [Revised: 11/27/2003] [Accepted: 01/13/2004] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Many drugs of natural origin are hydrophobic and can pass through cell membranes. Hydrophobic molecules must be susceptible to active efflux systems if they are to be maintained at lower concentrations in cells than in their environment. Multi-drug resistance (MDR), often mediated by intrinsic membrane proteins that couple energy to drug efflux, provides this function. All eukaryotic genomes encode several gene families capable of encoding MDR functions, among which the ABC transporters are the largest. The number of candidate MDR genes means that study of the drug-resistance properties of an organism cannot be effectively carried out without taking a genomic perspective. RESULTS We have annotated sequences for all 60 ABC transporters from the Caenorhabditis elegans genome, and performed a phylogenetic analysis of these along with the 49 human, 30 yeast, and 57 fly ABC transporters currently available in GenBank. Classification according to a unified nomenclature is presented. Comparison between genomes reveals much gene duplication and loss, and surprisingly little orthology among analogous genes. Proteins capable of conferring MDR are found in several distinct subfamilies and are likely to have arisen independently multiple times. CONCLUSIONS ABC transporter evolution fits a pattern expected from a process termed 'dynamic-coherence'. This is an unusual result for such a highly conserved gene family as this one, present in all domains of cellular life. Mechanistically, this may result from the broad substrate specificity of some ABC proteins, which both reduces selection against gene loss, and leads to the facile sorting of functions among paralogs following gene duplication.
Collapse
Affiliation(s)
- Jonathan A Sheps
- British Columbia Cancer Research Centre, BC Cancer Agency, 601 West 10th Avenue, Vancouver BC, V5Z 1L6 Canada
| | - Steven Ralph
- British Columbia Cancer Research Centre, BC Cancer Agency, 601 West 10th Avenue, Vancouver BC, V5Z 1L6 Canada
- Current address: Genome BC and the Departments of Botany and Forest Sciences, University of British Columbia, 6270 University Blvd., Vancouver BC, V6T 1Z4 Canada
| | - Zhongying Zhao
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby BC, V5A 1S6 Canada
| | - David L Baillie
- Department of Molecular Biology and Biochemistry, Simon Fraser University, 8888 University Drive, Burnaby BC, V5A 1S6 Canada
| | - Victor Ling
- British Columbia Cancer Research Centre, BC Cancer Agency, 601 West 10th Avenue, Vancouver BC, V5Z 1L6 Canada
| |
Collapse
|
194
|
McKie AT, Barlow DJ. The SLC40 basolateral iron transporter family (IREG1/ferroportin/MTP1). Pflugers Arch 2004; 447:801-6. [PMID: 12836025 DOI: 10.1007/s00424-003-1102-3] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2003] [Revised: 03/31/2003] [Accepted: 03/31/2003] [Indexed: 12/21/2022]
Abstract
The iron regulated-transporter-1 (Ireg1, also known as ferroportin or metal transporter protein-1, MTP1) appears to be the sole member of the SLC40 transporter family. It functions as a universal efflux pathway for iron in a number of cell types. The protein is most highly expressed in mature enterocytes of the duodenum, in syncytiotrophoblasts, which separate foetal and maternal circulations in the placenta, and in macrophages responsible for recycling iron from breakdown of aged red blood cells.
Collapse
Affiliation(s)
- Andrew T McKie
- Division of Life Sciences, Kings College London, Franklin-Wilkins Building, 150 Stamford Street, SE1 9NN, London, UK.
| | | |
Collapse
|
195
|
Abbruzzese C, Kuhn U, Molina F, Rama P, De Luca M. Novel mutations in the CHST6 gene causing macular corneal dystrophy. Clin Genet 2004; 65:120-5. [PMID: 14984470 DOI: 10.1111/j.0009-9163.2004.00191.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Macular corneal dystrophy (MCD) is an autosomal recessive disease characterized by corneal opacities and caused by mutations in a carbohydrate sulfotransferase gene, known as CHST6. MCD type I patients show missense mutations in the CHST6-coding region, and MCD type II patients show a large deletion and replacement in the upstream region of CHST6. The objective of this study was to identify the genetic defect in CHST6 gene causing MCD in Italian families. We investigated MCD genotype by using polymerase chain reaction followed by direct sequencing, and results were confirmed by restriction analysis. An enzyme-linked immunosorbent assay was performed to assess the presence of sulfated keratan sulfate in the serum of MCD patients. Biochemical analysis revealed a MCD type I phenotype in two families and a type II phenotype in another family. Two novel missense mutations and a polymorphism in the coding region of CHST6 gene were identified in patients with MCD type I. In one MCD II family, a homozygous deletion in the upstream region of CHST6 gene was found.
Collapse
Affiliation(s)
- C Abbruzzese
- Laboratory of Tissue Engineering I.D.I., Istituto Dermopatico dell' Immacolata, Rome, Italy
| | | | | | | | | |
Collapse
|
196
|
Salem LA, Boucher CL, Menees TM. Relationship between RNA lariat debranching and Ty1 element retrotransposition. J Virol 2004; 77:12795-806. [PMID: 14610201 PMCID: PMC262579 DOI: 10.1128/jvi.77.23.12795-12806.2003] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Saccharomyces cerevisiae DBR1 gene encodes a 2'-5' phosphodiesterase that debranches intron RNA lariats following splicing. Yeast dbr1 mutants accumulate intron lariats and are also defective for mobility of the retrotransposons Ty1 and Ty3. We used a mutagenic PCR method to generate a collection of dbr1 mutant alleles to explore the relationship between the roles of DBR1 in transposition and debranching. Eight mutants defective for Ty1 transposition contained single amino acid changes in Dbr1p. Two mutations, G84A and N85D, are in a conserved phosphoesterase motif that is believed to be part of the active site of the enzyme, supporting a connection between enzymatic activity and Ty1 transposition. Two other mutations, Y68F and Y68D, occur at a potential phosphorylation site, and we have shown that Dbr1p is phosphorylated on tyrosine. We have developed an RNase protection assay to quantitate intron RNA accumulation in cells. The assay uses RNA probes that hybridize to ACT1 intron RNA. Protection patterns confirm that sequences from the 5' end of the intron to the lariat branch point accumulate in dbr1 mutants in a branched (lariat) conformation. RNase protection assays indicate that all of the newly generated dbr1 mutant alleles are also deficient for debranching, further supporting a role for 2'-5' phosphodiesterase activity in Ty1 transposition. A Ty1 element lacking most of its internal sequences transposes independently of DBR1. The existence of Dbr1p-dependent Ty1 sequences raises the possibility that Dbr1p acts on Ty1 RNA.
Collapse
Affiliation(s)
- Laura A Salem
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, Missouri 64110, USA
| | | | | |
Collapse
|
197
|
Wandrey M, Trevaskis B, Brewin N, Udvardi MK. Molecular and cell biology of a family of voltage-dependent anion channel porins in Lotus japonicus. PLANT PHYSIOLOGY 2004; 134:182-93. [PMID: 14657408 PMCID: PMC316298 DOI: 10.1104/pp.103.031484] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2003] [Revised: 09/11/2003] [Accepted: 09/26/2003] [Indexed: 05/20/2023]
Abstract
Voltage-dependent anion channels (VDACs) are generally considered as the main pathway for metabolite transport across the mitochondrial outer membrane. Recent proteomic studies on isolated symbiosome membranes from legume nodules indicated that VDACs might also be involved in transport of nutrients between plants and rhizobia. In an attempt to substantiate this, we carried out a detailed molecular and cellular characterization of VDACs in Lotus japonicus and soybean (Glycine max). Database searches revealed at least five genes encoding putative VDACs in each of the legumes L. japonicus, Medicago truncatula, and soybean. We obtained and sequenced cDNA clones from L. japonicus encoding five full-length VDAC proteins (LjVDAC1.1-1.3, LjVDAC2.1, and LjVDAC3.1). Complementation of a yeast (Saccharomyces cerevisiae) mutant impaired in VDAC1, a porin of the mitochondrial outer membrane, showed that LjVDAC1.1, LjVDAC1.2, LjVDAC2.1, and LjVDAC3.1, but not LjVDAC1.3, are functional and targeted to the mitochondrial outer membrane in yeast. Studies of the expression pattern of the five L. japonicus VDAC genes revealed largely constitutive expression of each throughout the plant, including nodules. Antibodies to LjVDAC1.1 of L. japonicus and the related POM36 protein of potato (Solanum tuberosum) recognized several proteins between 30 and 36 kD on western blots, including LjVDAC1.1, LjVDAC1.2, LjVDAC1.3, and LjVDAC2.1. Immunolocalization of VDACs in L. japonicus and soybean root nodules demonstrated their presence on not only mitochondria but also on numerous, small vesicles at the cell periphery. No evidence was found for the presence of VDACs on the symbiosome membrane. Nonetheless, the data indicate that VDACs may play more diverse roles in plants than suspected previously.
Collapse
Affiliation(s)
- Maren Wandrey
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Golm, Germany
| | | | | | | |
Collapse
|
198
|
Cammer SA, Hoffman BT, Speir JA, Canady MA, Nelson MR, Knutson S, Gallina M, Baxter SM, Fetrow JS. Structure-based active site profiles for genome analysis and functional family subclassification. J Mol Biol 2003; 334:387-401. [PMID: 14623182 DOI: 10.1016/j.jmb.2003.09.062] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
In previous work, structure-based functional site descriptors, fuzzy functional forms (FFFs), were developed to recognize structurally conserved active sites in proteins. These descriptors identify members of protein families according to active-site structural similarity, rather than overall sequence or structure similarity. FFFs are defined by a minimal number of highly conserved residues and their three-dimensional arrangement. This approach is advantageous for function assignment across broad families, but is limited when applied to detailed subclassification within these families. In the work described here, we developed a method of three-dimensional, or structure-based, active-site profiling that utilizes FFFs to identify residues located in the spatial environment around the active site. Three-dimensional active-site profiling reveals similarities and differences among active sites across protein families. Using this approach, active-site profiles were constructed from known structures for 193 functional families, and these profiles were verified as distinct and characteristic. To achieve this result, a scoring function was developed that discriminates between true functional sites and those that are geometrically most similar, but do not perform the same function. In a large-scale retrospective analysis of human genome sequences, this profile score was shown to identify specific functional families correctly. The method is effective at recognizing the likely subtype of structurally uncharacterized members of the diverse family of protein kinases, categorizing sequences correctly that were misclassified by global sequence alignment methods. Subfamily information provided by this three-dimensional active-site profiling method yields key information for specific and selective inhibitor design for use in the pharmaceutical industry.
Collapse
Affiliation(s)
- Stephen A Cammer
- GeneFormatics Inc., 5830 Oberlin Drive, San Diego, CA 92121, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Hansen T, Schönheit P. ATP-dependent glucokinase from the hyperthermophilic bacterium Thermotoga maritima represents an extremely thermophilic ROK glucokinase with high substrate specificity. FEMS Microbiol Lett 2003; 226:405-11. [PMID: 14553940 DOI: 10.1016/s0378-1097(03)00642-6] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
The gene (open reading frame (ORF) Tm1469, glk) encoding ATP-dependent ROK (repressors, ORFs, sugar kinases) glucokinase (ATP-GLK, EC 2.7.1.2) of the hyperthermophilic bacterium Thermotoga maritima was cloned and functionally expressed in Escherichia coli. The purified recombinant enzyme is a homodimer with an apparent molecular mass of 80 kDa composed of 36-kDa subunits. Rate dependence (at 80 degrees C) on glucose and ATP followed Michaelis-Menten kinetics with apparent Km values of 1.0 and 0.36 mM, respectively; apparent Vmax values were about 370 U mg(-1). The enzyme was highly specific for glucose as phosphoryl acceptor. Besides glucose only 2-deoxyglucose was phosphorylated to some extent, whereas mannose and fructose were not used. With a temperature optimum of 93 degrees C the enzyme is the most thermoactive bacterial ATP-GLK described.
Collapse
Affiliation(s)
- Thomas Hansen
- Institut für Allgemeine Mikrobiologie, Christian-Albrechts-Universität Kiel, Am Botanischen Garten 1-9, D-24118 Kiel, Germany.
| | | |
Collapse
|
200
|
Valdés J, Veloso F, Jedlicki E, Holmes D. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 2003; 4:51. [PMID: 14675496 PMCID: PMC324559 DOI: 10.1186/1471-2164-4-51] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2003] [Accepted: 12/15/2003] [Indexed: 11/10/2022] Open
Abstract
Background Acidithiobacillus ferrooxidans is a gamma-proteobacterium that lives at pH2 and obtains energy by the oxidation of sulfur and iron. It is used in the biomining industry for the recovery of metals and is one of the causative agents of acid mine drainage. Effective tools for the study of its genetics and physiology are not in widespread use and, despite considerable effort, an understanding of its unusual physiology remains at a rudimentary level. Nearly complete genome sequences of A. ferrooxidans are available from two public sources and we have exploited this information to reconstruct aspects of its sulfur metabolism. Results Two candidate mechanisms for sulfate uptake from the environment were detected but both belong to large paralogous families of membrane transporters and their identification remains tentative. Prospective genes, pathways and regulatory mechanisms were identified that are likely to be involved in the assimilation of sulfate into cysteine and in the formation of Fe-S centers. Genes and regulatory networks were also uncovered that may link sulfur assimilation with nitrogen fixation, hydrogen utilization and sulfur reduction. Potential pathways were identified for sulfation of extracellular metabolites that may possibly be involved in cellular attachment to pyrite, sulfur and other solid substrates. Conclusions A bioinformatic analysis of the genome sequence of A. ferrooxidans has revealed candidate genes, metabolic process and control mechanisms potentially involved in aspects of sulfur metabolism. Metabolic modeling provides an important preliminary step in understanding the unusual physiology of this extremophile especially given the severe difficulties involved in its genetic manipulation and biochemical analysis.
Collapse
Affiliation(s)
- Jorge Valdés
- Laboratory of Bioinformatics and Genome Biology, University of Santiago (USACH), Santiago, Chile
| | - Felipe Veloso
- Laboratory of Bioinformatics and Genome Biology, University of Santiago (USACH), Santiago, Chile
- Millennium Institute of Fundamental and Applied Biology, Santiago, Chile
| | - Eugenia Jedlicki
- Program of Cellular and Molecular Biology, I.C.B.M., Faculty of Medicine, University of Chile, Santiago, Chile
| | - David Holmes
- Laboratory of Bioinformatics and Genome Biology, University of Santiago (USACH), Santiago, Chile
- Millennium Institute of Fundamental and Applied Biology, Santiago, Chile
| |
Collapse
|