151
|
Carotenuto G, Sciascia I, Oddi L, Volpe V, Genre A. Size matters: three methods for estimating nuclear size in mycorrhizal roots of Medicago truncatula by image analysis. BMC PLANT BIOLOGY 2019; 156:265-273. [PMID: 31054574 DOI: 10.1046/j.1469-8137.2002.00508.x] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND The intracellular accommodation of arbuscular mycorrhizal (AM) fungi involves a profound molecular reprogramming of the host cell architecture and metabolism, based on the activation of a symbiotic signaling pathway. In analogy with other plant biotrophs, AM fungi are reported to trigger cell cycle reactivation in their host tissues, possibly in support of the enhanced metabolic demand required for the symbiosis. RESULTS We here compare the efficiency of three Fiji/ImageJ image analysis plugins in localizing and quantifying the increase in nuclear size - a hallmark of recursive events of endoreduplication - in M. truncatula roots colonized by the AM fungus Gigaspora margarita. All three approaches proved to be versatile and upgradeable, allowing the investigation of nuclear changes in a complex tissue; 3D Object Counter provided more detailed information than both TrackMate and Round Surface Detector plugins. On this base we challenged 3D Object Counter with two case studies: verifying the lack of endoreduplication-triggering responses in Medicago truncatula mutants with a known non-symbiotic phenotype; and analysing the correlation in space and time between the induction of cortical cell division and endoreduplication upon AM colonization. Both case studies revealed important biological aspects. Mutant phenotype analyses have demonstrated that the knock-out mutation of different key genes in the symbiotic signaling pathway block AM-associated endoreduplication. Furthermore, our data show that cell divisions occur during initial stages of root colonization and are followed by recursive activation of the endocycle in preparation for arbuscule accommodation. CONCLUSIONS In conclusion, our results indicate 3D Object Counter as the best performing Fiji/ImageJ image analysis script in plant root thick sections and its application highlighted endoreduplication as a major feature of the AM pre-penetration response in root cortical cells.
Collapse
Affiliation(s)
- Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ivan Sciascia
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Ludovica Oddi
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torino, Italy.
| |
Collapse
|
152
|
MtGA2ox10 encoding C20-GA2-oxidase regulates rhizobial infection and nodule development in Medicago truncatula. Sci Rep 2019; 9:5952. [PMID: 30976084 PMCID: PMC6459840 DOI: 10.1038/s41598-019-42407-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 04/01/2019] [Indexed: 01/03/2023] Open
Abstract
Gibberellin (GA) plays a controversial role in the legume-rhizobium symbiosis. Recent studies have shown that the GA level in legumes must be precisely controlled for successful rhizobial infection and nodule organogenesis. However, regulation of the GA level via catabolism in legume roots has not been reported to date. Here, we investigate a novel GA inactivating C20-GA2-oxidase gene MtGA2ox10 in Medicago truncatula. RNA sequencing analysis and quantitative polymerase chain reaction revealed that MtGA2ox10 was induced as early as 6 h post-inoculation (hpi) of rhizobia and reached peak transcript abundance at 12 hpi. Promoter::β-glucuronidase fusion showed that the promoter activity was localized in the root infection/differentiation zone during the early stage of rhizobial infection and in the vascular bundle of the mature nodule. The CRISPR/Cas9-mediated deletion mutation of MtGA2ox10 suppressed infection thread formation, which resulted in reduced development and retarded growth of nodules on the Agrobacterium rhizogenes-transformed roots. Over-expression of MtGA2ox10 in the stable transgenic plants caused dwarfism, which was rescued by GA3 application, and increased infection thread formation but inhibition of nodule development. We conclude that MtGA2ox10 plays an important role in the rhizobial infection and the development of root nodules through fine catabolic tuning of GA in M. truncatula.
Collapse
|
153
|
Das DR, Horváth B, Kundu A, Kaló P, DasGupta M. Functional conservation of CYCLOPS in crack entry legume Arachis hypogaea. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 281:232-241. [PMID: 30824056 DOI: 10.1016/j.plantsci.2018.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/05/2018] [Accepted: 12/07/2018] [Indexed: 06/09/2023]
Abstract
Root nodule symbiosis in legumes is established following interaction of compatible rhizobia that activates an array of genes, commonly known as symbiotic-pathway, resulting in nodule development. In model legumes, bacterial entry mainly occurs through infection thread involving the expression of transcription factor CYCLOPS/IPD3. Here we show the functional analysis of AhCYCLOPS in Arachis hypogaea where bacteria invade roots through epidermal cracks. Exploiting significant cross-species domain conservation, trans-complementation experiments involving ectopic expression of AhCYCLOPS in transgenic hairy-roots of Medicago truncatula ipd3 mutants resulted in functional complementation of Medicago nodules. Moreover, native promoter of AhCYCLOPS was sufficient for this cross-species complementation irrespective of the different modes of infection of roots by rhizobia and nodule ontology. To unravel the role of AhCYCLOPS during 'crack-entry' nodulation in A. hypogaea, RNAi of AhCYCLOPS was performed which resulted in delayed nodule inception followed by drastic reduction in nodule number on transgenic hairy-roots. The infection zone of a significant number of RNAi nodules showed presence of infected cells with enlarged nucleus and rod shaped undifferentiated bacteria. Expression analysis showed downregulation of several nodulation responsible effectors endorsing the compromised condition of RNAi roots. Together, the results indicated that AhCYCLOPS plays an important role in A. hypogaea nodule development.
Collapse
Affiliation(s)
- Debapriya Rajlakshmi Das
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Beatrix Horváth
- Agricultural Biotechnology Institute, NARIC, Szent-Györgyi Albert u. 4, Gödöllő, Hungary
| | - Anindya Kundu
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India
| | - Péter Kaló
- Agricultural Biotechnology Institute, NARIC, Szent-Györgyi Albert u. 4, Gödöllő, Hungary
| | - Maitrayee DasGupta
- Department of Biochemistry, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, West Bengal, India.
| |
Collapse
|
154
|
Mandal D, Sinharoy S. A Toolbox for Nodule Development Studies in Chickpea: A Hairy-Root Transformation Protocol and an Efficient Laboratory Strain of Mesorhizobium sp. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:367-378. [PMID: 30398908 DOI: 10.1094/mpmi-09-18-0264-ta] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A Mesorhizobium sp. produces root nodules in chickpea. Chickpea and model legume Medicago truncatula are members of the inverted repeat-lacking clade (IRLC). The rhizobia, after internalization into the plant cell, are called bacteroids. Nodule-specific cysteine-rich peptides in IRLC legumes guide bacteroids to a terminally differentiated swollen (TDS) form. Bacteroids in chickpea are less TDS than those in Medicago spp. Nodule development in chickpea indicates recent evolutionary diversification and merits further study. A hairy-root transformation protocol and an efficient laboratory strain are prerequisites for performing any genetic study on nodulation. We have standardized a protocol for composite plant generation in chickpea with a transformation frequency above 50%, as shown by fluorescent markers. This protocol also works well in different ecotypes of chickpea. Localization of subcellular markers in these transformed roots is similar to the localization observed in transformed Medicago roots. When checked inside transformed nodules, peroxisomes were concentrated along the periphery of the nodules, while endoplasmic reticulum and Golgi bodies surrounded the symbiosomes. Different Mesorhizobium strains were evaluated for their ability to initiate nodule development and efficiency of nitrogen fixation. Inoculation with different strains resulted in different shapes of TDS bacteroids with variable nitrogen fixation. Our study provides a toolbox to study nodule development in the crop legume chickpea.
Collapse
Affiliation(s)
- Drishti Mandal
- National Institute of Plant Genome Research, New Delhi 110067, India
| | - Senjuti Sinharoy
- National Institute of Plant Genome Research, New Delhi 110067, India
| |
Collapse
|
155
|
Sun Y, Wu Z, Wang Y, Yang J, Wei G, Chou M. Identification of Phytocyanin Gene Family in Legume Plants and their Involvement in Nodulation of Medicago truncatula. PLANT & CELL PHYSIOLOGY 2019; 60:900-915. [PMID: 30649463 DOI: 10.1093/pcp/pcz007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 01/07/2019] [Indexed: 06/09/2023]
Abstract
The establishment of symbiosis between legume and rhizobium results in the formation of nodule. Phytocyanins (PCs) are a class of plant-specific blue copper proteins, playing critical roles in plant development including nodule formation. Although a few PC genes have been isolated from nodules, their functions are still unclear. Here, we performed a genome-wide identification of PC family in seven sequenced legume species (Medicago truncatula, Glycine max, Cicer arietinum, Cajanus cajan, Lotus japonicus, Vigna angularis and Phaseolus vulgaris) and found PCs experienced a remarkable expansion in M. truncatula and G. max. Further, we conducted an in-depth analysis of PC family in the model legume M. truncatula. Briefly, 82 MtPCs were divided into four subfamilies and clustered into seven clades, with a large proportion of tandem duplications and various cross-tissues expression patterns. Importantly, some PCs, such as MtPLC1, MtENODL27 and MtENODL28 were preferentially expressed in nodules. Further, RNA interference (RNAi) experiment revealed the knockdown of MtENDOL27 and MtENDOL28 impaired rhizobia infection, nodule numbers and nitrogenase activity. Moreover, in the MtENODL27-RNAi nodules, the infected cells were reduced and the symbiosomes did not reach the elongated stage, indicating MtENDOL27 is required for rhizobia infection and nodule development. In addition, co-expression analysis showed MtPLC1, MtENODL27 and MtENODL28 were grouped into two different functional modules and co-expressed with the known symbiotic nitrogen fixation-related genes, suggesting that they might participate in nodulation via different ways. In summary, this study provides a useful resource for future researches on the structure and function of PCs in nodulation.
Collapse
Affiliation(s)
- Yali Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Zefeng Wu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Yujie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Jieyu Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Gehong Wei
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| | - Minxia Chou
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest Agriculture and Forestry University, Yangling, China
| |
Collapse
|
156
|
Leppyanen IV, Kirienko AN, Dolgikh EA. Agrobacterium rhizogenes-mediated transformation of Pisum sativum L. roots as a tool for studying the mycorrhizal and root nodule symbioses. PeerJ 2019; 7:e6552. [PMID: 30863680 PMCID: PMC6408910 DOI: 10.7717/peerj.6552] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/01/2019] [Indexed: 11/22/2022] Open
Abstract
In this study, we demonstrated the successful transformation of two pea (Pisum sativum L.) cultivars using Agrobacterium rhizogenes, whereby transgenic roots in the resulting composite plants showed expression of the gene encoding the green fluorescent protein. Subsequent to infection with A. rhizogenes, approximately 70%–80% of pea seedlings developed transgenic hairy roots. We found out that the transgenic roots can be efficiently nodulated by Rhizobium leguminosarum bv. viciae and infected by the arbuscular mycorrhizal (AM) fungus Rhizophagus irregularis. The morphology of nodules in the transgenic roots was found to be identical to that of nodules observed in wild-type roots, and we also observed the effective induction of markers typical of the symbiotic association with AM fungi. The convenient protocol for highly efficient A. rhizogenes-mediated transformation developed in this study would be a rapid and effective tool for investigating those genes involved in the development of the two types of symbioses found in pea plants.
Collapse
Affiliation(s)
- Irina V Leppyanen
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Anna N Kirienko
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Elena A Dolgikh
- All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| |
Collapse
|
157
|
Skiada V, Faccio A, Kavroulakis N, Genre A, Bonfante P, Papadopoulou KK. Colonization of legumes by an endophytic Fusarium solani strain FsK reveals common features to symbionts or pathogens. Fungal Genet Biol 2019; 127:60-74. [PMID: 30872027 DOI: 10.1016/j.fgb.2019.03.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/31/2019] [Accepted: 03/08/2019] [Indexed: 12/22/2022]
Abstract
Plant cellular responses to endophytic filamentous fungi are scarcely reported, with the majority of described colonization processes in plant-fungal interactions referring to either pathogens or true symbionts. Fusarium solani strain K (FsK) is a root endophyte of Solanum lycopersicum, which protects against root and foliar pathogens. Here, we investigate the association of FsK with two legumes (Lotus japonicus and Medicago truncatula) and report on colonization patterns and plant responses during the establishment of the interaction. L. japonicus plants colonized by FsK complete their life cycle and exhibit no apparent growth defects under normal conditions. We followed the growth of FsK within root-inoculated plants spatiotemporally and showed the capability of the endophyte to migrate to the stem. In a bipartite system comprising of the endophyte and either whole plants or root organ cultures, we studied the plant sub-cellular responses to FsK recognition, using optical, confocal and transmission electron microscopy. A polarized reorganization of the root cell occurs: endoplasmic reticulum/cytoplasm accumulation and nuclear placement at contact sites, occasional development of papillae underneath hyphopodia and membranous material rearrangements towards penetrating hyphae. Fungal hyphae proliferate within the vascular bundle of the plant. Plant cell death is involved in fungal colonization of the root. Our data suggest that the establishment of FsK within legume tissues requires fungal growth adaptations and plant cell-autonomous responses, known to occur during both symbiotic and pathogenic plant-fungal interactions. We highlight the overlooked plasticity of endophytic fungi upon plant colonization, and introduce a novel plant-endophyte association.
Collapse
Affiliation(s)
- Vasiliki Skiada
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa 41500, Greece.
| | - Antonella Faccio
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10125, Italy.
| | - Nektarios Kavroulakis
- Hellenic Agricultural Organization "Demeter", Institute for Olive Tree, Subtropical Plants and Viticulture, Agrokipio-Souda, 73100 Chania, Greece.
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10125, Italy.
| | - Paola Bonfante
- Department of Life Sciences and Systems Biology, University of Torino, Torino 10125, Italy.
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, Larissa 41500, Greece.
| |
Collapse
|
158
|
Ivanov S, Harrison MJ. Accumulation of phosphoinositides in distinct regions of the periarbuscular membrane. THE NEW PHYTOLOGIST 2019; 221:2213-2227. [PMID: 30347433 DOI: 10.1111/nph.15553] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/15/2018] [Indexed: 05/11/2023]
Abstract
Phosphoinositides and phosphatidic acid are small anionic lipids that comprise a minor proportion of total membrane lipids in eukaryotic cells but influence a broad range of cellular processes including endomembrane trafficking, signaling, exocytosis and endocytosis. To investigate the spatial distribution of phosphoinositides during arbuscular mycorrhizal symbiosis, we generated fluorescent reporters of PI(4,5)P2 and PI4P, as well as phosphatidic acid and diacylglycerol and used them to monitor lipid distribution on the cytoplasmic side of membrane bilayers in colonized cortical cells. The PI4P reporter accumulated strongly on the periarbuscular membrane (PAM) and transiently labeled Golgi bodies, while the PA reporter showed differential labeling of endomembranes and the PAM. Surprisingly, the PI(4,5)P2 reporter accumulated in small, discrete regions of the PAM on the arbuscule trunks, frequently in two regions on opposing sides of the hypha. A mutant reporter with reduced PI(4,5)P2 binding capacity did not show these accumulations. The PI(4,5)P2 -rich regions were detected at all phases of arbuscule development following branching, co-localized with membrane marker proteins potentially indicating high membrane bilayer content, and were associated with an alteration in morphology of the hypha. A possible analogy to the biotrophic interfacial membrane complex formed in rice infected with Magnaporthe orzyae is discussed.
Collapse
Affiliation(s)
- Sergey Ivanov
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| | - Maria J Harrison
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14853, USA
| |
Collapse
|
159
|
Valdés-López O, Jayaraman D, Maeda J, Delaux PM, Venkateshwaran M, Isidra-Arellano MC, Reyero-Saavedra MDR, Sánchez-Correa MDS, Verastegui-Vidal MA, Delgado-Buenrostro N, Van Ness L, Mysore KS, Wen J, Sussman MR, Ané JM. A Novel Positive Regulator of the Early Stages of Root Nodule Symbiosis Identified by Phosphoproteomics. PLANT & CELL PHYSIOLOGY 2019; 60:575-586. [PMID: 30476329 DOI: 10.1093/pcp/pcy228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Accepted: 11/21/2018] [Indexed: 06/09/2023]
Abstract
Signals and signaling pathways underlying the symbiosis between legumes and rhizobia have been studied extensively over the past decades. In a previous phosphoproteomic study on the Medicago truncatula-Sinorhizobium meliloti symbiosis, we identified plant proteins that are differentially phosphorylated upon the perception of rhizobial signals, called Nod factors. In this study, we provide experimental evidence that one of these proteins, Early Phosphorylated Protein 1 (EPP1), is required for the initiation of this symbiosis. Upon inoculation with rhizobia, MtEPP1 expression was induced in curled root hairs. Down-regulation of MtEPP1 in M. truncatula roots almost abolished calcium spiking, reduced the expression of essential symbiosis-related genes (MtNIN, MtNF-YB1, MtERN1 and MtENOD40) and strongly decreased nodule development. Phylogenetic analyses revealed that orthologs of MtEPP1 are present in legumes and specifically in plant species able to host arbuscular mycorrhizal fungi, suggesting a possible role in this association too. Short chitin oligomers induced the phosphorylation of MtEPP1 like Nod factors. However, the down-regulation of MtEPP1 affected the colonization of M. truncatula roots by arbuscular mycorrhizal fungi only moderately. Altogether, these findings indicate that MtEPP1 is essential for the establishment of the legume-rhizobia symbiosis but might plays a limited role in the arbuscular mycorrhizal symbiosis.
Collapse
Affiliation(s)
- Oswaldo Valdés-López
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Dhileepkumar Jayaraman
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Junko Maeda
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Pierre-Marc Delaux
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Muthusubramanian Venkateshwaran
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| | - Mariel C Isidra-Arellano
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Coyoacan, Ciudad de México, México
| | - María del Rocío Reyero-Saavedra
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - María del Socorro Sánchez-Correa
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Miguel A Verastegui-Vidal
- Laboratorio de Genómica Funcional de Leguminosas, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Norma Delgado-Buenrostro
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla, Estado de México, México
| | - Lori Van Ness
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | | | - Jiangqi Wen
- Noble Research Institute, 2510 Sam Noble Parkway, Ardmore, OK, USA
| | - Michael R Sussman
- Department of Biochemistry, University of Wisconsin, Madison, WI, USA
| | - Jean-Michel Ané
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Agronomy, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
160
|
Wen L, Chen Y, Schnabel E, Crook A, Frugoli J. Comparison of efficiency and time to regeneration of Agrobacterium-mediated transformation methods in Medicago truncatula. PLANT METHODS 2019; 15:20. [PMID: 30858871 PMCID: PMC6394069 DOI: 10.1186/s13007-019-0404-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 02/18/2019] [Indexed: 05/13/2023]
Abstract
BACKGROUND Tissue culture transformation of plants has an element of art to it, with protocols passed on between labs but often not directly compared. As Medicago truncatula has become popular as a model system for legumes, rapid transformation is critical, and many protocols exist, with varying results. RESULTS The M. truncatula ecotypes, R108 and A17, were utilized to compare the effect of a modification to a previously used protocol based on shoot explants on the percentage of transformed plants produced from calli. This percentage was then compared to that of two additional transformation protocols based on root explants in the R108 ecotype. Variations in embryonic tissue sources, media components, time for transformation, and vectors were analyzed. CONCLUSIONS While no A17 transgenic plants were obtained, transgenic plantlets from the R108 ecotype were produced in as little as 4 months with a comparison of the two widely studied ecotypes under a single set of conditions. While the protocols tested gave similar results in percentage of transformed plants produced, considerations of labor and time to transgenics that vary between the root explant protocols tested were discovered. These considerations may influence which protocol to choose for introducing a single transgene versus creating lines with multiple mutations utilizing a CRISPR/Cas9 construct.
Collapse
Affiliation(s)
- Li Wen
- Department of Genetics and Biochemistry, Clemson University, Clemson, USA
- Department of Food and Biological Engineering, Changsha University of Science and Technology, Changsha, People’s Republic of China
| | - Yuanling Chen
- Department of Genetics and Biochemistry, Clemson University, Clemson, USA
- College of Life Sciences, South China Agricultural University, Guangzhou, People’s Republic of China
| | - Elise Schnabel
- Department of Genetics and Biochemistry, Clemson University, Clemson, USA
| | - Ashley Crook
- Department of Genetics and Biochemistry, Clemson University, Clemson, USA
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 USA
| | - Julia Frugoli
- Department of Genetics and Biochemistry, Clemson University, Clemson, USA
| |
Collapse
|
161
|
Gautrat P, Mortier V, Laffont C, De Keyser A, Fromentin J, Frugier F, Goormachtig S. Unraveling new molecular players involved in the autoregulation of nodulation in Medicago truncatula. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1407-1417. [PMID: 30753553 PMCID: PMC6382332 DOI: 10.1093/jxb/ery465] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 12/19/2018] [Indexed: 05/22/2023]
Abstract
The number of legume root nodules resulting from a symbiosis with rhizobia is tightly controlled by the plant. Certain members of the CLAVATA3/Embryo Surrounding Region (CLE) peptide family, specifically MtCLE12 and MtCLE13 in Medicago truncatula, act in the systemic autoregulation of nodulation (AON) pathway that negatively regulates the number of nodules. Little is known about the molecular pathways that operate downstream of the AON-related CLE peptides. Here, by means of a transcriptome analysis, we show that roots ectopically expressing MtCLE13 deregulate only a limited number of genes, including three down-regulated genes encoding lysin motif receptor-like kinases (LysM-RLKs), among which are the nodulation factor (NF) receptor NF Perception gene (NFP) and two up-regulated genes, MtTML1 and MtTML2, encoding Too Much Love (TML)-related Kelch-repeat containing F-box proteins. The observed deregulation was specific for the ectopic expression of nodulation-related MtCLE genes and depended on the Super Numeric Nodules (SUNN) AON RLK. Moreover, overexpression and silencing of these two MtTML genes demonstrated that they play a role in the negative regulation of nodule numbers. Hence, the identified MtTML genes are the functional counterpart of the Lotus japonicus TML gene shown to be central in the AON pathway. Additionally, we propose that the down-regulation of a subset of LysM-RLK-encoding genes, among which is NFP, might contribute to the restriction of further nodulation once the first nodules have been formed.
Collapse
Affiliation(s)
- Pierre Gautrat
- Institute of Plant Sciences-Paris Saclay (IPS2), Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Diderot, Université d’Evry, Institut National de la Recherche Agronomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Virginie Mortier
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Carole Laffont
- Institute of Plant Sciences-Paris Saclay (IPS2), Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Diderot, Université d’Evry, Institut National de la Recherche Agronomique, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Annick De Keyser
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Justine Fromentin
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche, Institut National de la Recherche Agronomique, Castanet-Tolosan, France
- Laboratoire des Interactions Plantes-Microorganismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), Centre National de la Recherche Scientifique, Université Paris-Sud, Université Paris-Diderot, Université d’Evry, Institut National de la Recherche Agronomique, Université Paris-Saclay, Gif-sur-Yvette, France
- Correspondence: or
| | - Sofie Goormachtig
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Center for Plant Systems Biology, VIB, Ghent, Belgium
- Correspondence: or
| |
Collapse
|
162
|
Ivanov S, Austin J, Berg RH, Harrison MJ. Extensive membrane systems at the host-arbuscular mycorrhizal fungus interface. NATURE PLANTS 2019; 5:194-203. [PMID: 30737512 DOI: 10.1038/s41477-019-0364-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 01/08/2019] [Indexed: 05/08/2023]
Abstract
During arbuscular mycorrhizal (AM) symbiosis, cells within the root cortex develop a matrix-filled apoplastic compartment in which differentiated AM fungal hyphae called arbuscules reside. Development of the compartment occurs rapidly, coincident with intracellular penetration and rapid branching of the fungal hypha, and it requires much of the plant cell's secretory machinery to generate the periarbuscular membrane that delimits the compartment. Despite recent advances, our understanding of the development of the periarbuscular membrane and the transfer of molecules across the symbiotic interface is limited. Here, using electron microscopy and tomography, we reveal that the periarbuscular matrix contains two types of membrane-bound compartments. We propose that one of these arises as a consequence of biogenesis of the periarbuscular membrane and may facilitate movement of molecules between symbiotic partners. Additionally, we show that the arbuscule contains massive arrays of membrane tubules located between the protoplast and the cell wall. We speculate that these tubules may provide the absorptive capacity needed for nutrient assimilation and possibly water absorption to enable rapid hyphal expansion.
Collapse
Affiliation(s)
| | - Jotham Austin
- Advanced Electron Microscopy Facility, University of Chicago, Chicago, IL, USA
| | - R Howard Berg
- Integrated Microscopy Facility, Donald Danforth Plant Science Center, St Louis, MS, USA
| | | |
Collapse
|
163
|
Paolis AD, Frugis G, Giannino D, Iannelli MA, Mele G, Rugini E, Silvestri C, Sparvoli F, Testone G, Mauro ML, Nicolodi C, Caretto S. Plant Cellular and Molecular Biotechnology: Following Mariotti's Steps. PLANTS (BASEL, SWITZERLAND) 2019; 8:E18. [PMID: 30634627 PMCID: PMC6359066 DOI: 10.3390/plants8010018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 12/30/2018] [Accepted: 01/07/2019] [Indexed: 01/19/2023]
Abstract
This review is dedicated to the memory of Prof. Domenico Mariotti, who significantly contributed to establishing the Italian research community in Agricultural Genetics and carried out the first experiments of Agrobacterium-mediated plant genetic transformation and regeneration in Italy during the 1980s. Following his scientific interests as guiding principles, this review summarizes the recent advances obtained in plant biotechnology and fundamental research aiming to: (i) Exploit in vitro plant cell and tissue cultures to induce genetic variability and to produce useful metabolites; (ii) gain new insights into the biochemical function of Agrobacterium rhizogenes rol genes and their application to metabolite production, fruit tree transformation, and reverse genetics; (iii) improve genetic transformation in legume species, most of them recalcitrant to regeneration; (iv) untangle the potential of KNOTTED1-like homeobox (KNOX) transcription factors in plant morphogenesis as key regulators of hormonal homeostasis; and (v) elucidate the molecular mechanisms of the transition from juvenility to the adult phase in Prunus tree species.
Collapse
Affiliation(s)
- Angelo De Paolis
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy.
| | - Giovanna Frugis
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Donato Giannino
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Adelaide Iannelli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Giovanni Mele
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Eddo Rugini
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo De Lellis S.N.C., 01100 Viterbo, Italy.
| | - Cristian Silvestri
- Dipartimento di Scienze Agrarie e Forestali (DAFNE), Università degli Studi della Tuscia, Via San Camillo De Lellis S.N.C., 01100 Viterbo, Italy.
| | - Francesca Sparvoli
- Istituto di Biologia e Biotecnologia Agraria (IBBA), Consiglio Nazionale delle Ricerche (CNR), Via Bassini 15, 20133 Milano, Italy.
| | - Giulio Testone
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Maria Luisa Mauro
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, P.le A. Moro 5, 00185 Roma, Italy.
| | - Chiara Nicolodi
- Istituto di Biologia e Biotecnologia Agraria (IBBA), UOS Roma, Consiglio Nazionale delle Ricerche (CNR), Via Salaria Km. 29,300, Monterotondo Scalo, 00015 Roma, Italy.
| | - Sofia Caretto
- Istituto di Scienze delle Produzioni Alimentari (ISPA), Consiglio Nazionale delle Ricerche (CNR), Via Monteroni, 73100 Lecce, Italy.
| |
Collapse
|
164
|
Russo G, Carotenuto G, Fiorilli V, Volpe V, Chiapello M, Van Damme D, Genre A. Ectopic activation of cortical cell division during the accommodation of arbuscular mycorrhizal fungi. THE NEW PHYTOLOGIST 2019; 221:1036-1048. [PMID: 15558330 DOI: 10.1111/nph.15398] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/17/2018] [Indexed: 05/12/2023]
Abstract
Arbuscular mycorrhizas (AMs) between plants and soil fungi are widespread symbioses with a major role in soil nutrient uptake. In this study we investigated the induction of root cortical cell division during AM colonization by combining morphometric and gene expression analyses with promoter activation and protein localization studies of the cell-plate-associated exocytic marker TPLATE. Our results show that TPLATE promoter is activated in colonized cells of the root cortex where we also observed the appearance of cells that are half the size of the surrounding cells. Furthermore, TPLATE-green fluorescent protein recruitment to developing cell plates highlighted ectopic cell division events in the inner root cortex during early AM colonization. Lastly, transcripts of TPLATE, KNOLLE and Cyclinlike 1 (CYC1) are all upregulated in the same context, alongside endocytic markers Adaptor-Related Protein complex 2 alpha 1 subunit (AP2A1) and Clathrin Heavy Chain 2 (CHC2), known to be active during cell plate formation. This pattern of gene expression was recorded in wild-type Medicago truncatula roots, but not in a common symbiotic signalling pathway mutant where fungal colonization is blocked at the epidermal level. Altogether, these results suggest the activation of cell-division-related mechanisms by AM hosts during the accommodation of the symbiotic fungus.
Collapse
Affiliation(s)
- Giulia Russo
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Gennaro Carotenuto
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Valentina Fiorilli
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Veronica Volpe
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Marco Chiapello
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Technologiepark 927, 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, Technologiepark 927, 9052, Ghent, Belgium
| | - Andrea Genre
- Department of Life Sciences and Systems Biology, University of Turin, 10125, Torin, Italy
| |
Collapse
|
165
|
Gil-Díez P, Tejada-Jiménez M, León-Mediavilla J, Wen J, Mysore KS, Imperial J, González-Guerrero M. MtMOT1.2 is responsible for molybdate supply to Medicago truncatula nodules. PLANT, CELL & ENVIRONMENT 2019; 42:310-320. [PMID: 29940074 DOI: 10.1111/pce.13388] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/17/2018] [Indexed: 05/11/2023]
Abstract
Symbiotic nitrogen fixation in legume root nodules requires a steady supply of molybdenum for synthesis of the iron-molybdenum cofactor of nitrogenase. This nutrient has to be provided by the host plant from the soil, crossing several symplastically disconnected compartments through molybdate transporters, including members of the MOT1 family. Medicago truncatula Molybdate Transporter (MtMOT) 1.2 is a Medicago truncatula MOT1 family member located in the endodermal cells in roots and nodules. Immunolocalization of a tagged MtMOT1.2 indicates that it is associated to the plasma membrane and to intracellular membrane systems, where it would be transporting molybdate towards the cytosol, as indicated in yeast transport assays. Loss-of-function mot1.2-1 mutant showed reduced growth compared with wild-type plants when nitrogen fixation was required but not when nitrogen was provided as nitrate. While no effect on molybdenum-dependent nitrate reductase activity was observed, nitrogenase activity was severely affected, explaining the observed difference of growth depending on nitrogen source. This phenotype was the result of molybdate not reaching the nitrogen-fixing nodules, since genetic complementation with a wild-type MtMOT1.2 gene or molybdate-fortification of the nutrient solution, both restored wild-type levels of growth and nitrogenase activity. These results support a model in which MtMOT1.2 would mediate molybdate delivery by the vasculature into the nodules.
Collapse
Affiliation(s)
- Patricia Gil-Díez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
- Department of Biochemistry and Molecular Biology, Universidad de Córdoba, Campus de Rabanales, Córdoba, Spain
| | - Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
| | - Jiangqi Wen
- Noble Research Institute, LCC, Ardmore, Oklahoma, 73401, USA
| | | | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Instituto de Ciencias Agrarias, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Campus de Montegancedo, Universidad Politécnica de Madrid, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
166
|
Demina IV, Maity PJ, Nagchowdhury A, Ng JLP, van der Graaff E, Demchenko KN, Roitsch T, Mathesius U, Pawlowski K. Accumulation of and Response to Auxins in Roots and Nodules of the Actinorhizal Plant Datisca glomerata Compared to the Model Legume Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2019; 10:1085. [PMID: 31608077 PMCID: PMC6773980 DOI: 10.3389/fpls.2019.01085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 08/09/2019] [Indexed: 05/13/2023]
Abstract
Actinorhizal nodules are structurally different from legume nodules and show a greater similarity to lateral roots. Because of the important role of auxins in lateral root and nodule formation, auxin profiles were examined in roots and nodules of the actinorhizal species Datisca glomerata and the model legume Medicago truncatula. The auxin response in roots and nodules of both species was analyzed in transgenic root systems expressing a beta-glucuronidase gene under control of the synthetic auxin-responsive promoter DR5. The effects of two different auxin on root development were compared for both species. The auxin present in nodules at the highest levels was phenylacetic acid (PAA). No differences were found between the concentrations of active auxins of roots vs. nodules, while levels of the auxin conjugate indole-3-acetic acid-alanine were increased in nodules compared to roots of both species. Because auxins typically act in concert with cytokinins, cytokinins were also quantified. Concentrations of cis-zeatin and some glycosylated cytokinins were dramatically increased in nodules compared to roots of D. glomerata, but not of M. truncatula. The ratio of active auxins to cytokinins remained similar in nodules compared to roots in both species. The auxin response, as shown by the activation of the DR5 promoter, seemed significantly reduced in nodules compared to roots of both species, suggesting the accumulation of auxins in cell types that do not express the signal transduction pathway leading to DR5 activation. Effects on root development were analyzed for the synthetic auxin naphthaleneacetic acid (NAA) and PAA, the dominant auxin in nodules. Both auxins had similar effects, except that the sensitivity of roots to PAA was lower than to NAA. However, while the effects of both auxins on primary root growth were similar for both species, effects on root branching were different: both auxins had the classical positive effect on root branching in M. truncatula, but a negative effect in D. glomerata. Such a negative effect of exogenous auxin on root branching has previously been found for a cucurbit that forms lateral root primordia in the meristem of the parental root; however, root branching in D. glomerata does not follow that pattern.
Collapse
Affiliation(s)
- Irina V. Demina
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Pooja Jha Maity
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Anurupa Nagchowdhury
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
| | - Jason L. P. Ng
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Eric van der Graaff
- Department of Plant Physiology, Karl-Franzens-Universität Graz, Graz, Austria
| | - Kirill N. Demchenko
- Laboratory of Cellular and Molecular Mechanisms of Plant Development, Komarov Botanical Institute, Russian Academy of Sciences, Saint-Petersburg, Russia
- Laboratory of Molecular and Cellular Biology, All-Russia Research Institute for Agricultural Microbiology, Saint-Petersburg, Russia
| | - Thomas Roitsch
- Department of Plant Physiology, Karl-Franzens-Universität Graz, Graz, Austria
| | - Ulrike Mathesius
- Division of Plant Science, Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Katharina Pawlowski
- Department of Ecology, Environment and Plant Sciences, Stockholm University, Stockholm, Sweden
- *Correspondence: Katharina Pawlowski,
| |
Collapse
|
167
|
Gaudioso-Pedraza R, Beck M, Frances L, Kirk P, Ripodas C, Niebel A, Oldroyd GED, Benitez-Alfonso Y, de Carvalho-Niebel F. Callose-Regulated Symplastic Communication Coordinates Symbiotic Root Nodule Development. Curr Biol 2018; 28:3562-3577.e6. [PMID: 30416059 DOI: 10.1016/j.cub.2018.09.031] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/27/2018] [Accepted: 09/13/2018] [Indexed: 01/08/2023]
Abstract
The formation of nitrogen-fixing nodules in legumes involves the initiation of synchronized programs in the root epidermis and cortex to allow rhizobial infection and nodule development. In this study, we provide evidence that symplastic communication, regulated by callose turnover at plasmodesmata (PD), is important for coordinating nodule development and infection in Medicago truncatula. Here, we show that rhizobia promote a reduction in callose levels in inner tissues where nodules initiate. This downregulation coincides with the localized expression of M. truncatula β-1,3-glucanase 2 (MtBG2), encoding a novel PD-associated callose-degrading enzyme. Spatiotemporal analyses revealed that MtBG2 expression expands from dividing nodule initials to rhizobia-colonized cortical and epidermal tissues. As shown by the transport of fluorescent molecules in vivo, symplastic-connected domains are created in rhizobia-colonized tissues and enhanced in roots constitutively expressing MtBG2. MtBG2-overexpressing roots additionally displayed reduced levels of PD-associated callose. Together, these findings suggest an active role for MtBG2 in callose degradation and in the formation of symplastic domains during sequential nodule developmental stages. Interfering with symplastic connectivity led to drastic nodulation phenotypes. Roots ectopically expressing β-1,3-glucanases (including MtBG2) exhibited increased nodule number, and those expressing MtBG2 RNAi constructs or a hyperactive callose synthase (under symbiotic promoters) showed defective nodulation phenotypes. Obstructing symplastic connectivity appears to block a signaling pathway required for the expression of NODULE INCEPTION (NIN) and its target NUCLEAR FACTOR-YA1 (NF-YA1) in the cortex. We conclude that symplastic intercellular communication is proactively enhanced by rhizobia, and this is necessary for appropriate coordination of bacterial infection and nodule development.
Collapse
Affiliation(s)
| | - Martina Beck
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Lisa Frances
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Philip Kirk
- Centre for Plant Sciences, School of Biology, University of Leeds, Leeds LS2 9JT, UK
| | - Carolina Ripodas
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Andreas Niebel
- LIPM, Université de Toulouse, INRA, CNRS, 31326 Castanet-Tolosan, France
| | - Giles E D Oldroyd
- Sainsbury Laboratory, Cambridge University, Bateman Street, Cambridge CB2 1LR, UK
| | | | | |
Collapse
|
168
|
Jiang Y, Xie Q, Wang W, Yang J, Zhang X, Yu N, Zhou Y, Wang E. Medicago AP2-Domain Transcription Factor WRI5a Is a Master Regulator of Lipid Biosynthesis and Transfer during Mycorrhizal Symbiosis. MOLECULAR PLANT 2018; 11:1344-1359. [PMID: 30292683 DOI: 10.1016/j.molp.2018.09.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 05/25/2023]
Abstract
Most land plants have evolved a mutualistic symbiosis with arbuscular mycorrhiza (AM) fungi that improve nutrient acquisition from the soil. In return, up to 20% of host plant photosynthate is transferred to the mycorrhizal fungus in the form of lipids and sugar. Nutrient exchange must be regulated by both partners in order to maintain a reliable symbiotic relationship. However, the mechanisms underlying the regulation of lipid transfer from the plant to the AM fungus remain elusive. Here, we show that the Medicago truncatula AP2/EREBP transcription factor WRI5a, and likely its two homologs WRI5b/Erf1 and WRI5c, are master regulators of AM symbiosis controlling lipid transfer and periarbuscular membrane formation. We found that WRI5a binds AW-box cis-regulatory elements in the promoters of M. truncatula STR, which encodes a periarbuscular membrane-localized ABC transporter required for lipid transfer from the plant to the AM fungus, and MtPT4, which encodes a phosphate transporter required for phosphate transfer from the AM fungus to the plant. The hairy roots of the M. truncatula wri5a mutant and RNAi composite plants displayed impaired arbuscule formation, whereas overexpression of WRI5a resulted in enhanced expression of STR and MtPT4, suggesting that WRI5a regulates bidirectional symbiotic nutrient exchange. Moreover, we found that WRI5a and RAM1 (Required for Arbuscular Mycorrhization symbiosis 1), which encodes a GRAS-domain transcription factor, regulate each other at the transcriptional level, forming a positive feedback loop for regulating AM symbiosis. Collectively, our data suggest a role for WRI5a in controlling bidirectional nutrient exchange and periarbuscular membrane formation via the regulation of genes involved in the biosynthesis of fatty acids and phosphate uptake in arbuscule-containing cells.
Collapse
Affiliation(s)
- Yina Jiang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiujin Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wanxiao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Yun Zhou
- Collaborative Innovation Center of Crop Stress Biology, Henan Province; Institute of Plant Stress Biology, State Key Laboratory of Cotton Biology, Department of Biology, Henan University, Kaifeng 475001, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China.
| |
Collapse
|
169
|
Voß S, Betz R, Heidt S, Corradi N, Requena N. RiCRN1, a Crinkler Effector From the Arbuscular Mycorrhizal Fungus Rhizophagus irregularis, Functions in Arbuscule Development. Front Microbiol 2018; 9:2068. [PMID: 30233541 PMCID: PMC6131194 DOI: 10.3389/fmicb.2018.02068] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 08/13/2018] [Indexed: 01/10/2023] Open
Abstract
Arbuscular mycorrhizal (AM) symbiosis is one of the most prominent and beneficial plant–microbe interactions that facilitates mineral nutrition and confers tolerance to biotic and abiotic stresses. AM fungi colonize the root cortex and develop specialized structures called arbuscules where the nutrient exchange takes place. Arbuscule development is a highly controlled and coordinated process requiring the involvement of many plant proteins recruited at that interface. In contrast, much less is known about the fungal proteins involved in this process. Here, we have identified an AM fungal effector that participates in this developmental step of the symbiosis. RiCRN1 is a crinkler (CRN) effector that belongs to a subfamily of secreted CRN proteins from R. irregularis. CRNs have been so far only functionally characterized in pathogenic microbes and shown to participate in processes controlling plant cell death and immunity. RiCRN1 accumulates during symbiosis establishment parallel to MtPT4, the gene coding for an arbuscule-specific phosphate transporter. Expression in Nicotiana benthamiana leaves and in Medicago truncatula roots suggest that RiCRN1 is not involved in cell death processes. RiCRN1 dimerizes and localizes to nuclear bodies, suggesting that, similar to other CRNs, it functions in the plant nucleus. Downregulation of RiCRN1 using host-induced gene silencing led to an impairment of the symbiosis in M. truncatula and to a reduction of MtPT4, while ectopic expression of RiCRN1, surprisingly, led to a drastic reduction in arbuscule size that correlated with a decrease not only in MtPT4 but also in MtBCP1, a marker for initial stages of arbuscule development. Altogether, our results suggest that a tightly regulated expression in time and space of RiCRN1 is critical for symbiosis progression and for the proper initiation of arbuscule development.
Collapse
Affiliation(s)
- Stefanie Voß
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Ruben Betz
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Sven Heidt
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| | - Nicolas Corradi
- Department of Biology, Canadian Institute for Advanced Research, University of Ottawa, Ottawa, ON, Canada
| | - Natalia Requena
- Molecular Phytopathology, Botanical Institute, Karlsruhe Institute of Technology (KIT), Karlsruhe, Germany
| |
Collapse
|
170
|
Bandaranayake PCG, Yoder JI. Factors affecting the efficiency of Rhizobium rhizogenes root transformation of the root parasitic plant Triphysaria versicolor and its host Arabidopsis thaliana. PLANT METHODS 2018; 14:61. [PMID: 30026789 PMCID: PMC6048883 DOI: 10.1186/s13007-018-0327-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 07/06/2018] [Indexed: 05/30/2023]
Abstract
BACKGROUND Rhizobium rhizogenes transformation is commonly used to generate transgenic roots traditionally called hairy roots, for both investigative and commercial applications. While fertile plants can be regenerated from transgenic roots, the transgenic roots are more typically used directly, either to investigate root biology or to produce valuable secondary metabolites. Hairy roots have been particularly useful for genetic studies of rhizosphere interactions; including the recognition of host plant roots by the roots of parasitic angiosperms. RESULTS In this manuscript we analyzed various environmental, nutritional and procedural conditions for their effects on transformation of the model hemi-parasitic plant Triphysaria versicolor and Arabidopsis thaliana, one of its hosts. We first examined the effects of media, gelling agents and co-incubation times on Triphysaria root transformation and determined that while all three affected transformation rates, the media were the most significant. Once those primary conditions were fixed, we examined the roles of seedling age, explant type, acetosyringone, temperature and illumination on Triphysaria hairy root transformation rates. Using the optimized procedure approximately 70% of Triphysaria seedlings developed transgenic roots as judged by expression of YFP. These conditions were then used to transform Arabidopsis and similar transformation rates were obtained. CONCLUSIONS Analyses of root transformation factors provides a method recovering transgenic roots from both parasitic plants and their hosts at high frequency. In addition to providing an effective in vitro approach for genetic investigations of parasitic plant-host plant interactions, these results are applicable to genetic studies of non-parasitic plants as well.
Collapse
Affiliation(s)
- Pradeepa C. G. Bandaranayake
- Agricultural Biotechnology Centre, Faculty of Agriculture, University of Peradeniya, Peradeniya, 20400 Sri Lanka
- Department of Plant Science, University of California Davis, Davis, CA USA
| | - John I. Yoder
- Department of Plant Science, University of California Davis, Davis, CA USA
| |
Collapse
|
171
|
León-Mediavilla J, Senovilla M, Montiel J, Gil-Díez P, Saez Á, Kryvoruchko IS, Reguera M, Udvardi MK, Imperial J, González-Guerrero M. MtMTP2-Facilitated Zinc Transport Into Intracellular Compartments Is Essential for Nodule Development in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2018; 9:990. [PMID: 30042781 PMCID: PMC6048390 DOI: 10.3389/fpls.2018.00990] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 06/19/2018] [Indexed: 05/23/2023]
Abstract
Zinc (Zn) is an essential nutrient for plants that is involved in almost every biological process. This includes symbiotic nitrogen fixation, a process carried out by endosymbiotic bacteria (rhizobia) living within differentiated plant cells of legume root nodules. Zn transport in nodules involves delivery from the root, via the vasculature, release into the apoplast and uptake into nodule cells. Once in the cytosol, Zn can be used directly by cytosolic proteins or delivered into organelles, including symbiosomes of infected cells, by Zn efflux transporters. Medicago truncatula MtMTP2 (Medtr4g064893) is a nodule-induced Zn-efflux protein that was localized to an intracellular compartment in root epidermal and endodermal cells, as well as in nodule cells. Although the MtMTP2 gene is expressed in roots, shoots, and nodules, mtp2 mutants exhibited growth defects only under symbiotic, nitrogen-fixing conditions. Loss of MtMTP2 function resulted in altered nodule development, defects in bacteroid differentiation, and severe reduction of nitrogenase activity. The results presented here support a role of MtMTP2 in intracellular compartmentation of Zn, which is required for effective symbiotic nitrogen fixation in M. truncatula.
Collapse
Affiliation(s)
- Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Marta Senovilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Jesús Montiel
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Patricia Gil-Díez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | - Ángela Saez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | | | - María Reguera
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
| | | | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Instituto de Ciencias Ambientales, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Madrid, Spain
- Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
172
|
Aggarwal PR, Nag P, Choudhary P, Chakraborty N, Chakraborty S. Genotype-independent Agrobacterium rhizogenes-mediated root transformation of chickpea: a rapid and efficient method for reverse genetics studies. PLANT METHODS 2018; 14:55. [PMID: 29988950 PMCID: PMC6034309 DOI: 10.1186/s13007-018-0315-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 06/02/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Chickpea (Cicer arietinum L.), an important legume crop is one of the major source of dietary protein. Developing an efficient and reproducible transformation method is imperative to expedite functional genomics studies in this crop. Here, we present an optimized and detailed procedure for Agrobacterium rhizogenes-mediated root transformation of chickpea. RESULTS Transformation positive roots were obtained on selection medium after two weeks of A. rhizogenes inoculation. Expression of green fluorescent protein further confirmed the success of transformation. We demonstrate that our method adequately transforms chickpea roots at early developmental stage with high efficiency. In addition, root transformation was found to be genotype-independent and the efficacy of our protocol was highest in two (Annigiri and JG-62) of the seven tested chickpea genotypes. Next, we present the functional analysis of chickpea hairy roots by expressing Arabidopsis TRANSPARENT TESTA 2 (AtTT2) gene involved in proanthocyanidins biosynthesis. Overexpression of AtTT2 enhanced the level of proanthocyanidins in hairy roots that led to the decreased colonization of fungal pathogen, Fusarium oxysporum. Furthermore, the induction of transgenic roots does not affect functional studies involving infection of roots by fungal pathogen. CONCLUSIONS Transgenic roots expressing genes of interest will be useful in downstream functional characterization using reverse genetics studies. It requires 1 day to perform the root transformation protocol described in this study and the roots expressing transgene can be maintained for 3-4 weeks, providing sufficient time for further functional studies. Overall, the current methodology will greatly facilitate the functional genomics analyses of candidate genes in root-rhizosphere interaction in this recalcitrant but economically important legume crop.
Collapse
Affiliation(s)
- Pooja Rani Aggarwal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Papri Nag
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Pooja Choudhary
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Niranjan Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Subhra Chakraborty
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
173
|
Symbiotic root infections in Medicago truncatula require remorin-mediated receptor stabilization in membrane nanodomains. Proc Natl Acad Sci U S A 2018; 115:5289-5294. [PMID: 29712849 DOI: 10.1073/pnas.1721868115] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Plant cell infection is tightly controlled by cell surface receptor-like kinases (RLKs). Like other RLKs, the Medicago truncatula entry receptor LYK3 laterally segregates into membrane nanodomains in a stimulus-dependent manner. Although nanodomain localization arises as a generic feature of plant membrane proteins, the molecular mechanisms underlying such dynamic transitions and their functional relevance have remained poorly understood. Here we demonstrate that actin and the flotillin protein FLOT4 form the primary and indispensable core of a specific nanodomain. Infection-dependent induction of the remorin protein and secondary molecular scaffold SYMREM1 results in subsequent recruitment of ligand-activated LYK3 and its stabilization within these membrane subcompartments. Reciprocally, the majority of this LYK3 receptor pool is destabilized at the plasma membrane and undergoes rapid endocytosis in symrem1 mutants on rhizobial inoculation, resulting in premature abortion of host cell infections. These data reveal that receptor recruitment into nanodomains is indispensable for their function during host cell infection.
Collapse
|
174
|
Gaulin E, Pel MJC, Camborde L, San-Clemente H, Courbier S, Dupouy MA, Lengellé J, Veyssiere M, Le Ru A, Grandjean F, Cordaux R, Moumen B, Gilbert C, Cano LM, Aury JM, Guy J, Wincker P, Bouchez O, Klopp C, Dumas B. Genomics analysis of Aphanomyces spp. identifies a new class of oomycete effector associated with host adaptation. BMC Biol 2018; 16:43. [PMID: 29669603 PMCID: PMC5907361 DOI: 10.1186/s12915-018-0508-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 03/20/2018] [Indexed: 02/07/2023] Open
Abstract
Background Oomycetes are a group of filamentous eukaryotic microorganisms that have colonized all terrestrial and oceanic ecosystems, and they include prominent plant pathogens. The Aphanomyces genus is unique in its ability to infect both plant and animal species, and as such exemplifies oomycete versatility in adapting to different hosts and environments. Dissecting the underpinnings of oomycete diversity provides insights into their specificity and pathogenic mechanisms. Results By carrying out genomic analyses of the plant pathogen A. euteiches and the crustacean pathogen A. astaci, we show that host specialization is correlated with specialized secretomes that are adapted to the deconstruction of the plant cell wall in A. euteiches and protein degradation in A. astaci. The A. euteiches genome is characterized by a large repertoire of small secreted protein (SSP)-encoding genes that are highly induced during plant infection, and are not detected in other oomycetes. Functional analysis revealed an SSP from A. euteiches containing a predicted nuclear-localization signal which shuttles to the plant nucleus and increases plant susceptibility to infection. Conclusion Collectively, our results show that Aphanomyces host adaptation is associated with evolution of specialized secretomes and identify SSPs as a new class of putative oomycete effectors. Electronic supplementary material The online version of this article (10.1186/s12915-018-0508-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Elodie Gaulin
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France.
| | - Michiel J C Pel
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Laurent Camborde
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Hélène San-Clemente
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Sarah Courbier
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France.,Present Address: Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Marie-Alexane Dupouy
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Juliette Lengellé
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Marine Veyssiere
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| | - Aurélie Le Ru
- Fédération de Recherche 3450, Plateforme Imagerie, Pôle de Biotechnologie Végétale, 31326, Castanet-Tolosan, France
| | - Frédéric Grandjean
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Richard Cordaux
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Bouziane Moumen
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Université de Poitiers, Poitiers, France
| | - Clément Gilbert
- Laboratoire Evolution, Génomes, Comportement, Ecologie CNRS Université Paris-Sud UMR 9191, IRD 247, Gif sur Yvette, France
| | - Liliana M Cano
- University of Florida, UF/IFAS, Indian River Research and Education Center IRREC, 2199 South Rock Road, Fort Pierce, FL, 34945, USA
| | - Jean-Marc Aury
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie François-Jacob, Genoscope, F-92057, Evry, France
| | - Julie Guy
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie François-Jacob, Genoscope, F-92057, Evry, France
| | - Patrick Wincker
- Commissariat à l'Energie Atomique (CEA), Institut de Biologie François-Jacob, Genoscope, CNRS UMR 8030, Université d'Evry, Evry, France
| | - Olivier Bouchez
- INRA, US 1426, GeT-PlaGe, Genotoul, Castanet-Tolosan, France
| | - Christophe Klopp
- INRA, UR875, Plateforme Bioinformatique Genotoul, Castanet-Tolosan, France
| | - Bernard Dumas
- Laboratoire de Recherche en Sciences Végétales, CNRS UMR5546 Université de Toulouse, Paul Sabatier, 24, chemin de Borde Rouge BP 42617 Auzeville, 31326, Castanet-Tolosan, France
| |
Collapse
|
175
|
Senovilla M, Castro-Rodríguez R, Abreu I, Escudero V, Kryvoruchko I, Udvardi MK, Imperial J, González-Guerrero M. Medicago truncatula copper transporter 1 (MtCOPT1) delivers copper for symbiotic nitrogen fixation. THE NEW PHYTOLOGIST 2018; 218:696-709. [PMID: 29349810 DOI: 10.1111/nph.14992] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Accepted: 12/11/2017] [Indexed: 05/16/2023]
Abstract
Copper is an essential nutrient for symbiotic nitrogen fixation. This element is delivered by the host plant to the nodule, where membrane copper (Cu) transporter would introduce it into the cell to synthesize cupro-proteins. COPT family members in the model legume Medicago truncatula were identified and their expression determined. Yeast complementation assays, confocal microscopy and phenotypical characterization of a Tnt1 insertional mutant line were carried out in the nodule-specific M. truncatula COPT family member. Medicago truncatula genome encodes eight COPT transporters. MtCOPT1 (Medtr4g019870) is the only nodule-specific COPT gene. It is located in the plasma membrane of the differentiation, interzone and early fixation zones. Loss of MtCOPT1 function results in a Cu-mitigated reduction of biomass production when the plant obtains its nitrogen exclusively from symbiotic nitrogen fixation. Mutation of MtCOPT1 results in diminished nitrogenase activity in nodules, likely an indirect effect from the loss of a Cu-dependent function, such as cytochrome oxidase activity in copt1-1 bacteroids. These data are consistent with a model in which MtCOPT1 transports Cu from the apoplast into nodule cells to provide Cu for essential metabolic processes associated with symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Marta Senovilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Igor Kryvoruchko
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Michael K Udvardi
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
- Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas, Serrano, 115 bis, Madrid, 28006, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta, M-40 km 38, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
176
|
van Zeijl A, Wardhani TAK, Seifi Kalhor M, Rutten L, Bu F, Hartog M, Linders S, Fedorova EE, Bisseling T, Kohlen W, Geurts R. CRISPR/Cas9-Mediated Mutagenesis of Four Putative Symbiosis Genes of the Tropical Tree Parasponia andersonii Reveals Novel Phenotypes. FRONTIERS IN PLANT SCIENCE 2018; 9:284. [PMID: 29559988 PMCID: PMC5845686 DOI: 10.3389/fpls.2018.00284] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Accepted: 02/19/2018] [Indexed: 05/18/2023]
Abstract
Parasponia represents five fast-growing tropical tree species in the Cannabaceae and is the only plant lineage besides legumes that can establish nitrogen-fixing nodules with rhizobium. Comparative analyses between legumes and Parasponia allows identification of conserved genetic networks controlling this symbiosis. However, such studies are hampered due to the absence of powerful reverse genetic tools for Parasponia. Here, we present a fast and efficient protocol for Agrobacterium tumefaciens-mediated transformation and CRISPR/Cas9 mutagenesis of Parasponia andersonii. Using this protocol, knockout mutants are obtained within 3 months. Due to efficient micro-propagation, bi-allelic mutants can be studied in the T0 generation, allowing phenotypic evaluation within 6 months after transformation. We mutated four genes - PanHK4, PanEIN2, PanNSP1, and PanNSP2 - that control cytokinin, ethylene, or strigolactone hormonal networks and that in legumes commit essential symbiotic functions. Knockout mutants in Panhk4 and Panein2 displayed developmental phenotypes, namely reduced procambium activity in Panhk4 and disturbed sex differentiation in Panein2 mutants. The symbiotic phenotypes of Panhk4 and Panein2 mutant lines differ from those in legumes. In contrast, PanNSP1 and PanNSP2 are essential for nodule formation, a phenotype similar as reported for legumes. This indicates a conserved role for these GRAS-type transcriptional regulators in rhizobium symbiosis, illustrating the value of Parasponia trees as a research model for reverse genetic studies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Rene Geurts
- Laboratory of Molecular Biology, Department of Plant Sciences, Wageningen University & Research, Wageningen, Netherlands
| |
Collapse
|
177
|
Laffont C, De Cuyper C, Fromentin J, Mortier V, De Keyser A, Verplancke C, Holsters M, Goormachtig S, Frugier F. MtNRLK1, a CLAVATA1-like leucine-rich repeat receptor-like kinase upregulated during nodulation in Medicago truncatula. Sci Rep 2018; 8:2046. [PMID: 29391543 PMCID: PMC5794917 DOI: 10.1038/s41598-018-20359-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 01/16/2018] [Indexed: 11/19/2022] Open
Abstract
Peptides are signaling molecules regulating various aspects of plant development, including the balance between cell division and differentiation in different meristems. Among those, CLAVATA3/Embryo Surrounding Region-related (CLE-ESR) peptide activity depends on leucine-rich-repeat receptor-like-kinases (LRR-RLK) belonging to the subclass XI. In legume plants, such as the Medicago truncatula model, specific CLE peptides were shown to regulate root symbiotic nodulation depending on the LRR-RLK SUNN (Super Numeric Nodules). Amongst the ten M. truncatula LRR-RLK most closely related to SUNN, only one showed a nodule-induced expression, and was so-called MtNRLK1 (Nodule-induced Receptor-Like Kinase 1). MtNRLK1 expression is associated to root and nodule vasculature as well as to the proximal meristem and rhizobial infection zone in the nodule apex. Except for the root vasculature, the MtNRLK1 symbiotic expression pattern is different than the one of MtSUNN. Functional analyses either based on RNA interference, insertional mutagenesis, and overexpression of MtNRLK1 however failed to identify a significant nodulation phenotype, either regarding the number, size, organization or nitrogen fixation capacity of the symbiotic organs formed.
Collapse
Affiliation(s)
- Carole Laffont
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, U Paris-Sud, U Paris-Diderot, U d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France
| | - Carolien De Cuyper
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Justine Fromentin
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Virginie Mortier
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Annick De Keyser
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Christa Verplancke
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Marcelle Holsters
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Sofie Goormachtig
- Department Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium.
- Department of Plant Systems Biology, VIB, 9052, Ghent, Belgium.
| | - Florian Frugier
- Institute of Plant Sciences-Paris Saclay (IPS2), CNRS, INRA, U Paris-Sud, U Paris-Diderot, U d'Evry, Université Paris-Saclay, Bâtiment 630, 91190, Gif-sur-Yvette, France.
| |
Collapse
|
178
|
Wang Q, Liu J, Li H, Yang S, Körmöczi P, Kereszt A, Zhu H. Nodule-Specific Cysteine-Rich Peptides Negatively Regulate Nitrogen-Fixing Symbiosis in a Strain-Specific Manner in Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:240-248. [PMID: 28990486 DOI: 10.1094/mpmi-08-17-0207-r] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Medicago truncatula shows a high level of specificity when interacting with its symbiotic partner Sinorhizobium meliloti. This specificity is mainly manifested at the nitrogen-fixing stage of nodule development, such that a particular bacterial strain forms nitrogen-fixing nodules (Nod+/Fix+) on one plant genotype but ineffective nodules (Nod+/Fix-) on another. Recent studies have just begun to reveal the underlying molecular mechanisms that control this specificity. The S. meliloti strain A145 induces the formation of Fix+ nodules on the accession DZA315.16 but Fix- nodules on Jemalong A17. A previous study reported that the formation of Fix- nodules on Jemalong A17 by S. meliloti A145 was conditioned by a single recessive allele named Mtsym6. Here we demonstrate that the specificity associated with S. meliloti A145 is controlled by multiple genes in M. truncatula, including NFS1 and NFS2 that encode nodule-specific cysteine-rich (NCR) peptides. The two NCR peptides acted dominantly to block rather than promote nitrogen fixation by S. meliloti A145. These two NCR peptides are the same ones that negatively regulate nitrogen-fixing symbiosis associated with S. meliloti Rm41.
Collapse
Affiliation(s)
- Qi Wang
- 1 Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA; and
| | - Jinge Liu
- 1 Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA; and
| | - Hua Li
- 1 Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA; and
| | - Shengming Yang
- 1 Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA; and
| | - Peter Körmöczi
- 2 Institute of Plant Biology, Biological Research Center, Szeged 6726, Hungary
| | - Attila Kereszt
- 2 Institute of Plant Biology, Biological Research Center, Szeged 6726, Hungary
| | - Hongyan Zhu
- 1 Department of Plant and Soil Sciences, University of Kentucky, Lexington, KY 40546-0312, USA; and
| |
Collapse
|
179
|
Sinorhizobium meliloti Glutathione Reductase Is Required for both Redox Homeostasis and Symbiosis. Appl Environ Microbiol 2018; 84:AEM.01937-17. [PMID: 29150514 DOI: 10.1128/aem.01937-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2017] [Accepted: 10/31/2017] [Indexed: 01/05/2023] Open
Abstract
Glutathione (l-γ-glutamyl-l-cysteinylglycine) (GSH), one of the key antioxidants in Sinorhizobium meliloti, is required for the development of alfalfa (Medicago sativa) nitrogen-fixing nodules. Glutathione exists as either reduced glutathione (GSH) or oxidized glutathione (GSSG), and its content is regulated by two pathways in S. meliloti The first pathway is the de novo synthesis of glutathione from its constituent amino acids, namely, Glu, Cys, and Gly, catalyzed by γ-glutamylcysteine synthetase (GshA) and glutathione synthetase (GshB). The second pathway is the recycling of GSSG via glutathione reductase (GR). However, whether the S. meliloti GR functions similarly to GshA and GshB1 during symbiotic interactions with alfalfa remains unknown. In this study, a plasmid insertion mutation of the S. melilotigor gene, which encodes GR, was constructed, and the mutant exhibited delayed alfalfa nodulation, with 75% reduction in nitrogen-fixing capacity. The gor mutant demonstrated increased accumulation of GSSG and a decreased GSH/GSSG ratio in cells. The mutant also showed defective growth in rich broth and minimal broth and was more sensitive to the oxidants H2O2 and sodium nitroprusside. Interestingly, the expression of gshA, gshB1, katA, and katB was induced in the mutant. These findings reveal that the recycling of glutathione is important for S. meliloti to maintain redox homeostasis and to interact symbiotically with alfalfa.IMPORTANCE The antioxidant glutathione is regulated by its synthetase and reductase in cells. In the symbiotic bacterium S. meliloti, the de novo synthesis of glutathione is essential for alfalfa nodulation and nitrogen fixation. In this study, we observed that the recycling of glutathione from GSSG not only was required for redox homeostasis and oxidative stress protection in S. meliloti cells but also contributed to alfalfa nodule development and competition capacity. Our findings demonstrate that the recycling of glutathione plays a key role in nitrogen fixation symbiosis.
Collapse
|
180
|
Li X, Feng H, Wen J, Dong J, Wang T. MtCAS31 Aids Symbiotic Nitrogen Fixation by Protecting the Leghemoglobin MtLb120-1 Under Drought Stress in Medicago truncatula. FRONTIERS IN PLANT SCIENCE 2018; 9:633. [PMID: 29868087 PMCID: PMC5960688 DOI: 10.3389/fpls.2018.00633] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 04/23/2018] [Indexed: 05/09/2023]
Abstract
Symbiotic nitrogen fixation (SNF) in legume root nodules injects millions of tons of nitrogen into agricultural lands and provides ammonia to non-legume crops under N-deficient conditions. During plant growth and development, environmental stresses, such as drought, salt, cold, and heat stress are unavoidable. This raises an interesting question as to how the legumes cope with the environmental stress along with SNF. Under drought stress, dehydrin proteins are accumulated, which function as protein protector and osmotic substances. In this study, we found that the dehydrin MtCAS31 (cold-acclimation-specific 31) functions in SNF in Medicago truncatula during drought stress. We found that MtCAS31 is expressed in nodules and interacts with leghemoglobin MtLb120-1. The interaction between the two proteins protects MtLb120-1 from denaturation under thermal stress in vivo. Compared to wild type, cas31 mutants display a lower nitrogenase activity, a lower ATP/ADP ratio, higher expression of nodule senescence genes and higher accumulation of amyloplasts under dehydration conditions. The results suggested that MtCAS31 protects MtLb120-1 from the damage of drought stress. We identified a new function for dehydrins in SNF under drought stress, which enriches the understanding of the molecular mechanism of dehydrins.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Hao Feng
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - JiangQi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK, United States
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- *Correspondence: Jiangli Dong, Tao Wang,
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- *Correspondence: Jiangli Dong, Tao Wang,
| |
Collapse
|
181
|
Ho-Plágaro T, Huertas R, Tamayo-Navarrete MI, Ocampo JA, García-Garrido JM. An improved method for Agrobacterium rhizogenes-mediated transformation of tomato suitable for the study of arbuscular mycorrhizal symbiosis. PLANT METHODS 2018; 14:34. [PMID: 29760765 PMCID: PMC5941616 DOI: 10.1186/s13007-018-0304-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 05/03/2018] [Indexed: 05/18/2023]
Abstract
BACKGROUND Solanum lycopersicum, an economically important crop grown worldwide, has been used as a model for the study of arbuscular mycorrhizal (AM) symbiosis in non-legume plants for several years and several cDNA array hybridization studies have revealed specific transcriptomic profiles of mycorrhizal tomato roots. However, a method to easily screen candidate genes which could play an important role during tomato mycorrhization is required. RESULTS We have developed an optimized procedure for composite tomato plant obtaining achieved through Agrobacterium rhizogenes-mediated transformation. This protocol involves the unusual in vitro culture of composite plants between two filter papers placed on the culture media. In addition, we show that DsRed is an appropriate molecular marker for the precise selection of cotransformed tomato hairy roots. S. lycopersicum composite plant hairy roots appear to be colonized by the AM fungus Rhizophagus irregularis in a manner similar to that of normal roots, and a modified construct useful for localizing the expression of promoters putatively associated with mycorrhization was developed and tested. CONCLUSIONS In this study, we present an easy, fast and low-cost procedure to study AM symbiosis in tomato roots.
Collapse
Affiliation(s)
- Tania Ho-Plágaro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008 Granada, Spain
| | - Raúl Huertas
- Noble Research Institute LLC, 2510 Sam Noble Parkway, Ardmore, OK 73401 USA
| | - María I. Tamayo-Navarrete
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008 Granada, Spain
| | - Juan A. Ocampo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008 Granada, Spain
| | - José M. García-Garrido
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (EEZ), CSIC, Calle Profesor Albareda n◦1, 18008 Granada, Spain
| |
Collapse
|
182
|
Kelner A, Leitão N, Chabaud M, Charpentier M, de Carvalho-Niebel F. Dual Color Sensors for Simultaneous Analysis of Calcium Signal Dynamics in the Nuclear and Cytoplasmic Compartments of Plant Cells. FRONTIERS IN PLANT SCIENCE 2018; 9:245. [PMID: 29535753 PMCID: PMC5835324 DOI: 10.3389/fpls.2018.00245] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 02/12/2018] [Indexed: 05/17/2023]
Abstract
Spatiotemporal changes in cellular calcium (Ca2+) concentrations are essential for signal transduction in a wide range of plant cellular processes. In legumes, nuclear and perinuclear-localized Ca2+ oscillations have emerged as key signatures preceding downstream symbiotic signaling responses. Förster resonance energy transfer (FRET) yellow-based Ca2+ cameleon probes have been successfully exploited to measure the spatiotemporal dynamics of symbiotic Ca2+ signaling in legumes. Although providing cellular resolution, these sensors were restricted to measuring Ca2+ changes in single subcellular compartments. In this study, we have explored the potential of single fluorescent protein-based Ca2+ sensors, the GECOs, for multicolor and simultaneous imaging of the spatiotemporal dynamics of cytoplasmic and nuclear Ca2+ signaling in root cells. Single and dual fluorescence nuclear and cytoplasmic-localized GECOs expressed in transgenic Medicago truncatula roots and Arabidopsis thaliana were used to successfully monitor Ca2+ responses to microbial biotic and abiotic elicitors. In M. truncatula, we demonstrate that GECOs detect symbiosis-related Ca2+ spiking variations with higher sensitivity than the yellow FRET-based sensors previously used. Additionally, in both M. truncatula and A. thaliana, the dual sensor is now able to resolve in a single root cell the coordinated spatiotemporal dynamics of nuclear and cytoplasmic Ca2+ signaling in vivo. The GECO-based sensors presented here therefore represent powerful tools to monitor Ca2+ signaling dynamics in vivo in response to different stimuli in multi-subcellular compartments of plant cells.
Collapse
Affiliation(s)
- Audrey Kelner
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Nuno Leitão
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
| | - Mireille Chabaud
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
| | - Myriam Charpentier
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, United Kingdom
- *Correspondence: Myriam Charpentier
| | - Fernanda de Carvalho-Niebel
- Laboratory of Plant Microbe Interactions, Université de Toulouse, Institut National de la Recherche Agronomique, Centre National de la Recherche Scientifique, Castanet-Tolosan, France
- Fernanda de Carvalho-Niebel
| |
Collapse
|
183
|
Le Signor C, Vernoud V, Noguero M, Gallardo K, Thompson RD. Functional Genomics and Seed Development in Medicago truncatula: An Overview. Methods Mol Biol 2018; 1822:175-195. [PMID: 30043305 DOI: 10.1007/978-1-4939-8633-0_13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The study of seed development in the model species Medicago truncatula has made a significant contribution to our understanding of this process in crop legumes. Thanks to the availability of comprehensive proteomics and transcriptomics databases, coupled with exhaustive mutant collections, the roles of several regulatory genes in development and maturation are beginning to be deciphered and functionally validated. Advances in next-generation sequencing and the availability of a genomic sequence have made feasible high-density SNP genotyping, allowing the identification of markers tightly linked to traits of agronomic interest. A further major advance is to be expected from the integration of omics resources in functional network construction, which has been used recently to identify "hub" genes central to important traits.
Collapse
Affiliation(s)
- Christine Le Signor
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Vanessa Vernoud
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Mélanie Noguero
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Karine Gallardo
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Richard D Thompson
- Agroécologie, AgroSup Dijon, INRA, Univ. Bourgogne Franche-Comté, F-21000 Dijon, France.
| |
Collapse
|
184
|
Jin Y, Chen Z, Yang J, Mysore KS, Wen J, Huang J, Yu N, Wang E. IPD3 and IPD3L Function Redundantly in Rhizobial and Mycorrhizal Symbioses. FRONTIERS IN PLANT SCIENCE 2018; 9:267. [PMID: 29616050 PMCID: PMC5865340 DOI: 10.3389/fpls.2018.00267] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/14/2018] [Indexed: 05/08/2023]
Abstract
Legume plants form symbiotic associations with either nitrogen-fixing bacteria or arbuscular mycorrhizal (AM) fungi, which are regulated by a set of common symbiotic signaling pathway genes. Central to the signaling pathway is the activation of the DMI3/IPD3 protein complex by Ca2+ oscillations, and the initiation of nodule organogenesis and mycorrhizal symbiosis. DMI3 is essential for rhizobial infection and nodule organogenesis; however, ipd3 mutants have been shown to be impaired only in infection thread formation but not in root nodule organogenesis in Medicago truncatula. We identified an IPD3-like (IPD3L) gene in the M. truncatula genome. A single ipd3l mutant exhibits a normal root nodule phenotype. The ipd3l/ipd3-2 double mutant is completely unable to initiate infection threads and nodule primordia. IPD3L can functionally replace IPD3 when expressed under the control of the IPD3 promoter, indicating functional redundancy between these two transcriptional regulators. We constructed a version of IPD3 that was phosphomimetic with respect to two conserved serine residues (IPD3-2D). This was sufficient to trigger root nodule organogenesis, but the increased multisite phosphorylation of IPD3 (IPD3-8D) led to low transcriptional activity, suggesting that the phosphorylation levels of IPD3 fine-tune its transcriptional activity in the root nodule symbiosis. Intriguingly, the phosphomimetic version of IPD3 triggers spontaneous root-like nodules on the roots of dmi3-1 and dmi2-1 (DMI2 is an LRR-containing receptor-like kinase gene which is required for Ca2+ spiking), but not on the roots of wild-type or ipd3l ipd3-2 plants. In addition, fully developed arbuscules were formed in the ipd3l ipd3-2 mutants but not the ccamk/dmi3-1 mutants. Collectively, our data indicate that, in addition to IPD3 and IPD3L, another new genetic component or other new phosphorylation sites of IPD3 function downstream of DMI3 in rhizobial and mycorrhizal symbioses.
Collapse
Affiliation(s)
- Yue Jin
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Zixuan Chen
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Jun Yang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Collaborative Innovation Center of Crop Stress Biology, Institute of Plant Stress Biology, Henan University, Kaifeng, China
| | - Kirankumar S. Mysore
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK, United States
| | - Jiangqi Wen
- Plant Biology Division, Samuel Roberts Noble Foundation, Ardmore, OK, United States
| | - Jirong Huang
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
| | - Nan Yu
- College of Life and Environment Sciences, Shanghai Normal University, Shanghai, China
- *Correspondence: Nan Yu
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- Ertao Wang
| |
Collapse
|
185
|
Proust H, Bazin J, Sorin C, Hartmann C, Crespi M, Lelandais-Brière C. Stable Inactivation of MicroRNAs in Medicago truncatula Roots. Methods Mol Biol 2018; 1822:123-132. [PMID: 30043301 DOI: 10.1007/978-1-4939-8633-0_9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
MicroRNAs are key regulators in the development processes or stress responses in plants. In the last decade, several conserved or non-conserved microRNAs have been identified in Medicago truncatula. Different strategies leading to the inactivation of microRNAs in plants have been described. Here, we propose a protocol for an effective inactivation of microRNAs using a STTM strategy in M. truncatula transgenic roots.
Collapse
Affiliation(s)
- Hélène Proust
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Jérémie Bazin
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Céline Sorin
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Caroline Hartmann
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Martin Crespi
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France
| | - Christine Lelandais-Brière
- Institute of Plant Sciences Paris-Saclay, IPS2, Univ. Paris-Diderot, CNRS, INRA, Univ. Paris-Sud, Univ. Evry, Sorbonne Paris-Cité, University of Paris-Saclay, Orsay, France.
| |
Collapse
|
186
|
Rey T, Bonhomme M, Chatterjee A, Gavrin A, Toulotte J, Yang W, André O, Jacquet C, Schornack S. The Medicago truncatula GRAS protein RAD1 supports arbuscular mycorrhiza symbiosis and Phytophthora palmivora susceptibility. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5871-5881. [PMID: 29186498 PMCID: PMC5854134 DOI: 10.1093/jxb/erx398] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 10/13/2017] [Indexed: 05/23/2023]
Abstract
The roots of most land plants are colonized by symbiotic arbuscular mycorrhiza (AM) fungi. To facilitate this symbiosis, plant genomes encode a set of genes required for microbial perception and accommodation. However, the extent to which infection by filamentous root pathogens also relies on some of these genes remains an open question. Here, we used genome-wide association mapping to identify genes contributing to colonization of Medicago truncatula roots by the pathogenic oomycete Phytophthora palmivora. Single-nucleotide polymorphism (SNP) markers most significantly associated with plant colonization response were identified upstream of RAD1, which encodes a GRAS transcription regulator first negatively implicated in root nodule symbiosis and recently identified as a positive regulator of AM symbiosis. RAD1 transcript levels are up-regulated both in response to AM fungus and, to a lower extent, in infected tissues by P. palmivora where its expression is restricted to root cortex cells proximal to pathogen hyphae. Reverse genetics showed that reduction of RAD1 transcript levels as well as a rad1 mutant are impaired in their full colonization by AM fungi as well as by P. palmivora. Thus, the importance of RAD1 extends beyond symbiotic interactions, suggesting a general involvement in M. truncatula microbe-induced root development and interactions with unrelated beneficial and detrimental filamentous microbes.
Collapse
Affiliation(s)
- Thomas Rey
- University of Cambridge, Sainsbury Laboratory, UK
| | - Maxime Bonhomme
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), France
| | | | | | | | - Weibing Yang
- University of Cambridge, Sainsbury Laboratory, UK
| | - Olivier André
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), France
| | - Christophe Jacquet
- Laboratoire de Recherche en Sciences Végétales, Université de Toulouse, Centre National de la Recherche Scientifique (CNRS), Université Paul Sabatier (UPS), France
| | | |
Collapse
|
187
|
Domonkos Á, Kovács S, Gombár A, Kiss E, Horváth B, Kováts GZ, Farkas A, Tóth MT, Ayaydin F, Bóka K, Fodor L, Ratet P, Kereszt A, Endre G, Kaló P. NAD1 Controls Defense-Like Responses in Medicago truncatula Symbiotic Nitrogen Fixing Nodules Following Rhizobial Colonization in a BacA-Independent Manner. Genes (Basel) 2017; 8:E387. [PMID: 29240711 PMCID: PMC5748705 DOI: 10.3390/genes8120387] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/04/2017] [Accepted: 12/11/2017] [Indexed: 11/19/2022] Open
Abstract
Legumes form endosymbiotic interaction with host compatible rhizobia, resulting in the development of nitrogen-fixing root nodules. Within symbiotic nodules, rhizobia are intracellularly accommodated in plant-derived membrane compartments, termed symbiosomes. In mature nodule, the massively colonized cells tolerate the existence of rhizobia without manifestation of visible defense responses, indicating the suppression of plant immunity in the nodule in the favur of the symbiotic partner. Medicago truncatulaDNF2 (defective in nitrogen fixation 2) and NAD1 (nodules with activated defense 1) genes are essential for the control of plant defense during the colonization of the nitrogen-fixing nodule and are required for bacteroid persistence. The previously identified nodule-specific NAD1 gene encodes a protein of unknown function. Herein, we present the analysis of novel NAD1 mutant alleles to better understand the function of NAD1 in the repression of immune responses in symbiotic nodules. By exploiting the advantage of plant double and rhizobial mutants defective in establishing nitrogen-fixing symbiotic interaction, we show that NAD1 functions following the release of rhizobia from the infection threads and colonization of nodule cells. The suppression of plant defense is self-dependent of the differentiation status of the rhizobia. The corresponding phenotype of nad1 and dnf2 mutants and the similarity in the induction of defense-associated genes in both mutants suggest that NAD1 and DNF2 operate close together in the same pathway controlling defense responses in symbiotic nodules.
Collapse
Affiliation(s)
- Ágota Domonkos
- National Agricultural and Innovation Center, Agricultural Biotechnology Institute, 2100 Gödöllő, Hungary.
| | - Szilárd Kovács
- Institute of Plant Biology, Biological Research Center, 6726 Szeged, Hungary.
- Institute of Genetics, Biological Research Center, 6726 Szeged, Hungary.
| | - Anikó Gombár
- National Agricultural and Innovation Center, Agricultural Biotechnology Institute, 2100 Gödöllő, Hungary.
| | - Ernő Kiss
- Institute of Genetics, Biological Research Center, 6726 Szeged, Hungary.
| | - Beatrix Horváth
- National Agricultural and Innovation Center, Agricultural Biotechnology Institute, 2100 Gödöllő, Hungary.
| | - Gyöngyi Z Kováts
- National Agricultural and Innovation Center, Agricultural Biotechnology Institute, 2100 Gödöllő, Hungary.
| | - Attila Farkas
- Institute of Plant Biology, Biological Research Center, 6726 Szeged, Hungary.
| | - Mónika T Tóth
- National Agricultural and Innovation Center, Agricultural Biotechnology Institute, 2100 Gödöllő, Hungary.
| | - Ferhan Ayaydin
- Cellular Imaging Laboratory, Biological Research Center, 6726 Szeged, Hungary.
| | - Károly Bóka
- Department of Plant Anatomy, Eötvös Loránd University, 1117 Budapest, Hungary.
| | - Lili Fodor
- National Agricultural and Innovation Center, Agricultural Biotechnology Institute, 2100 Gödöllő, Hungary.
| | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Bâtiment 630, 91405 Orsay, France.
- Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405 Orsay, France.
| | - Attila Kereszt
- Institute of Plant Biology, Biological Research Center, 6726 Szeged, Hungary.
| | - Gabriella Endre
- Institute of Plant Biology, Biological Research Center, 6726 Szeged, Hungary.
- Institute of Genetics, Biological Research Center, 6726 Szeged, Hungary.
| | - Péter Kaló
- National Agricultural and Innovation Center, Agricultural Biotechnology Institute, 2100 Gödöllő, Hungary.
| |
Collapse
|
188
|
Garmier M, Gentzbittel L, Wen J, Mysore KS, Ratet P. Medicago truncatula: Genetic and Genomic Resources. ACTA ACUST UNITED AC 2017; 2:318-349. [PMID: 33383982 DOI: 10.1002/cppb.20058] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Medicago truncatula was chosen by the legume community, along with Lotus japonicus, as a model plant to study legume biology. Since then, numerous resources and tools have been developed for M. truncatula. These include, for example, its genome sequence, core ecotype collections, transformation/regeneration methods, extensive mutant collections, and a gene expression atlas. This review aims to describe the different genetic and genomic tools and resources currently available for M. truncatula. We also describe how these resources were generated and provide all the information necessary to access these resources and use them from a practical point of view. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Marie Garmier
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| | - Laurent Gentzbittel
- EcoLab, Université de Toulouse, Centre National de la Recherche Scientifique, Institut National Polytechnique de Toulouse, Université Paul Sabatier, Castanet-Tolosan, France
| | | | | | - Pascal Ratet
- Institute of Plant Sciences Paris-Saclay, Centre National de la Recherche Scientifique, Institut National de Recherche Agronomique, Université Paris-Sud, Université Evry, Université Paris-Saclay, Orsay, France.,Institute of Plant Sciences Paris-Saclay, Université Paris Diderot, Université Sorbonne Paris-Cité, Orsay, France
| |
Collapse
|
189
|
Tejada-Jiménez M, Gil-Díez P, León-Mediavilla J, Wen J, Mysore KS, Imperial J, González-Guerrero M. Medicago truncatula Molybdate Transporter type 1 (MtMOT1.3) is a plasma membrane molybdenum transporter required for nitrogenase activity in root nodules under molybdenum deficiency. THE NEW PHYTOLOGIST 2017; 216:1223-1235. [PMID: 28805962 DOI: 10.1111/nph.14739] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 07/10/2017] [Indexed: 05/17/2023]
Abstract
Molybdenum, as a component of the iron-molybdenum cofactor of nitrogenase, is essential for symbiotic nitrogen fixation. This nutrient has to be provided by the host plant through molybdate transporters. Members of the molybdate transporter family Molybdate Transporter type 1 (MOT1) were identified in the model legume Medicago truncatula and their expression in nodules was determined. Yeast toxicity assays, confocal microscopy, and phenotypical characterization of a Transposable Element from Nicotiana tabacum (Tnt1) insertional mutant line were carried out in the one M. truncatula MOT1 family member specifically expressed in nodules. Among the five MOT1 members present in the M. truncatula genome, MtMOT1.3 is the only one uniquely expressed in nodules. MtMOT1.3 shows molybdate transport capabilities when expressed in yeast. Immunolocalization studies revealed that MtMOT1.3 is located in the plasma membrane of nodule cells. A mot1.3-1 knockout mutant showed impaired growth concomitant with a reduction of nitrogenase activity. This phenotype was rescued by increasing molybdate concentrations in the nutritive solution, or upon addition of an assimilable nitrogen source. Furthermore, mot1.3-1 plants transformed with a functional copy of MtMOT1.3 showed a wild-type-like phenotype. These data are consistent with a model in which MtMOT1.3 is responsible for introducing molybdate into nodule cells, which is later used to synthesize functional nitrogenase.
Collapse
Affiliation(s)
- Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Patricia Gil-Díez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Javier León-Mediavilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| | - Jiangqi Wen
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Kirankumar S Mysore
- Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK, 73401, USA
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
- Consejo Superior de Investigaciones Científicas, 28006, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Universidad Politécnica de Madrid, Campus de Montegancedo, Crta. M-40 km 38, 28223, Pozuelo de Alarcón (Madrid), Spain
| |
Collapse
|
190
|
Development of a GAL4-VP16/UAS trans-activation system for tissue specific expression in Medicago truncatula. PLoS One 2017; 12:e0188923. [PMID: 29186192 PMCID: PMC5706680 DOI: 10.1371/journal.pone.0188923] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/15/2017] [Indexed: 11/19/2022] Open
Abstract
Promoters with tissue-specific activity are very useful to address cell-autonomous and non cell autonomous functions of candidate genes. Although this strategy is widely used in Arabidopsis thaliana, its use to study tissue-specific regulation of root symbiotic interactions in legumes has only started recently. Moreover, using tissue specific promoter activity to drive a GAL4-VP16 chimeric transcription factor that can bind short upstream activation sequences (UAS) is an efficient way to target and enhance the expression of any gene of interest. Here, we developed a collection of promoters with different root cell layers specific activities in Medicago truncatula and tested their abilities to drive the expression of a chimeric GAL4-VP16 transcription factor in a trans-activation UAS: β-Glucuronidase (GUS) reporter gene system. By developing a binary vector devoted to modular Golden Gate cloning together with a collection of adapted tissue specific promoters and coding sequences we could test the activity of four of these promoters in trans-activation GAL4/UAS systems and compare them to “classical” promoter GUS fusions. Roots showing high levels of tissue specific expression of the GUS activity could be obtained with this trans-activation system. We therefore provide the legume community with new tools for efficient modular Golden Gate cloning, tissue specific expression and a trans-activation system. This study provides the ground work for future development of stable transgenic lines in Medicago truncatula.
Collapse
|
191
|
Abreu I, Saéz Á, Castro-Rodríguez R, Escudero V, Rodríguez-Haas B, Senovilla M, Larue C, Grolimund D, Tejada-Jiménez M, Imperial J, González-Guerrero M. Medicago truncatula Zinc-Iron Permease6 provides zinc to rhizobia-infected nodule cells. PLANT, CELL & ENVIRONMENT 2017; 40:2706-2719. [PMID: 28732146 DOI: 10.1111/pce.13035] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2017] [Revised: 06/07/2017] [Accepted: 07/09/2017] [Indexed: 05/16/2023]
Abstract
Zinc is a micronutrient required for symbiotic nitrogen fixation. It has been proposed that in model legume Medicago truncatula, zinc is delivered by the root vasculature into the nodule and released in the infection/differentiation zone. There, transporters must introduce this element into rhizobia-infected cells to metallate the apoproteins that use zinc as a cofactor. MtZIP6 (Medtr4g083570) is an M. truncatula Zinc-Iron Permease (ZIP) that is expressed only in roots and nodules, with the highest expression levels in the infection/differentiation zone. Immunolocalization studies indicate that it is located in the plasma membrane of nodule rhizobia-infected cells. Down-regulating MtZIP6 expression levels with RNAi does not result in any strong phenotype when plants are fed mineral nitrogen. However, these plants displayed severe growth defects when they depended on nitrogen fixed by their nodules, losing of 80% of their nitrogenase activity. The reduction of this activity was likely an indirect effect of zinc being retained in the infection/differentiation zone and not reaching the cytosol of rhizobia-infected cells. These data are consistent with a model in which MtZIP6 would be responsible for zinc uptake by rhizobia-infected nodule cells in the infection/differentiation zone.
Collapse
Affiliation(s)
- Isidro Abreu
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Crta, M-40 km 38, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Ángela Saéz
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
| | - Rosario Castro-Rodríguez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Crta, M-40 km 38, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Viviana Escudero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Crta, M-40 km 38, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Benjamín Rodríguez-Haas
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Crta, M-40 km 38, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Marta Senovilla
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Crta, M-40 km 38, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Camille Larue
- ECOLAB, Université de Toulouse, CNRS, INPT, UPS, F-31062, Toulouse, France
| | - Daniel Grolimund
- Paul Scherrer Institute, Swiss Light Source, microXAS Beamline Project, CH-5232, Villigen, Switzerland
| | - Manuel Tejada-Jiménez
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Crta, M-40 km 38, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Juan Imperial
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Crta, M-40 km 38, 28223, Pozuelo de Alarcón, Madrid, Spain
- Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - Manuel González-Guerrero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA), Campus de Montegancedo, Crta, M-40 km 38, 28223, Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
192
|
Horn P, Schlichting A, Baum C, Hammesfahr U, Thiele-Bruhn S, Leinweber P, Broer I. Reprint of "Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants". J Biotechnol 2017; 257:22-34. [PMID: 28755910 DOI: 10.1016/j.jbiotec.2017.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 10/19/2022]
Abstract
We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.
Collapse
Affiliation(s)
- Patricia Horn
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - André Schlichting
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Ute Hammesfahr
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Peter Leinweber
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Inge Broer
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.
| |
Collapse
|
193
|
Liu Y, Hassan S, Kidd BN, Garg G, Mathesius U, Singh KB, Anderson JP. Ethylene Signaling Is Important for Isoflavonoid-Mediated Resistance to Rhizoctonia solani in Roots of Medicago truncatula. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:691-700. [PMID: 28510484 DOI: 10.1094/mpmi-03-17-0057-r] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The root-infecting necrotrophic fungal pathogen Rhizoctoniasolani causes significant disease to all the world's major food crops. As a model for pathogenesis of legumes, we have examined the interaction of R. solani AG8 with Medicago truncatula. RNAseq analysis of the moderately resistant M. truncatula accession A17 and highly susceptible sickle (skl) mutant (defective in ethylene sensing) identified major early transcriptional reprogramming in A17. Responses specific to A17 included components of ethylene signaling, reactive oxygen species metabolism, and consistent upregulation of the isoflavonoid biosynthesis pathway. Mass spectrometry revealed accumulation of the isoflavonoid-related compounds liquiritigenin, formononetin, medicarpin, and biochanin A in A17. Overexpression of an isoflavone synthase in M. truncatula roots increased isoflavonoid accumulation and resistance to R. solani. Addition of exogenous medicarpin suggested this phytoalexin may be one of several isoflavonoids required to contribute to resistance to R. solani. Together, these results provide evidence for the role of ethylene-mediated accumulation of isoflavonoids during defense against root pathogens in legumes. The involvement of ethylene signaling and isoflavonoids in the regulation of both symbiont-legume and pathogen-legume interactions in the same tissue may suggest tight regulation of these responses are required in the root tissue.
Collapse
Affiliation(s)
- Yao Liu
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
- 2 Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Samira Hassan
- 3 Research School of Biology, Australian National University, Canberra, Australian Capital Territory; and
| | - Brendan N Kidd
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
| | - Gagan Garg
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
| | - Ulrike Mathesius
- 3 Research School of Biology, Australian National University, Canberra, Australian Capital Territory; and
| | - Karam B Singh
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
- 4 The UWA Institute of Agriculture, University of Western Australia, Crawley, Western Australia
| | - Jonathan P Anderson
- 1 CSIRO Agriculture and Food, Floreat, Western Australia
- 4 The UWA Institute of Agriculture, University of Western Australia, Crawley, Western Australia
| |
Collapse
|
194
|
Xue R, Wu X, Wang Y, Zhuang Y, Chen J, Wu J, Ge W, Wang L, Wang S, Blair MW. Hairy root transgene expression analysis of a secretory peroxidase (PvPOX1) from common bean infected by Fusarium wilt. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2017; 260:1-7. [PMID: 28554466 DOI: 10.1016/j.plantsci.2017.03.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/17/2017] [Accepted: 03/21/2017] [Indexed: 05/24/2023]
Abstract
Plant peroxidases (POXs) are one of the most important redox enzymes in the defense responses. However, the large number of different plant POX genes makes it necessary to carefully confirm the function of each paralogous POX gene in specific tissues and disease interactions. Fusarium wilt is a devastating disease of common bean caused by Fusarium oxysporum f. sp. phaseoli. In this study, we evaluated a peroxidase gene, PvPOX1, from a resistant common bean genotype, CAAS260205 and provided direct evidence for PvPOX1's role in resistance by transforming the resistant allele into a susceptible common bean genotype, BRB130, via hairy root transformation using Agrobacterium rhizogenes. Analysis of PvPOX1 gene over-expressing hairy roots showed it increased resistance to Fusarium wilt both in the roots and the rest of transgenic plants. Meanwhile, the PvPOX1 expressive level, the peroxidase activity and hydrogen peroxide (H2O2) accumulation were also enhanced in the interaction. The result showed that the PvPOX1 gene played an essential role in Fusarium wilt resistance through the occurrence of reactive oxygen species (ROS) induced hypersensitive response. Therefore, PvPOX1 expression was proven to be a valuable gene for further analysis which can strengthen host defense response against Fusarium wilt through a ROS activated resistance mechanism.
Collapse
Affiliation(s)
- Renfeng Xue
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Xingbo Wu
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA
| | - Yingjie Wang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Yan Zhuang
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Jian Chen
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Jing Wu
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Weide Ge
- Crop Research Institute, Liaoning Academy of Agricultural Sciences, Shenyang, Liaoning 110161, China
| | - Lanfen Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shumin Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Matthew W Blair
- Department of Agricultural and Environmental Sciences, Tennessee State University, Nashville, TN 37209, USA.
| |
Collapse
|
195
|
Host-secreted antimicrobial peptide enforces symbiotic selectivity in Medicago truncatula. Proc Natl Acad Sci U S A 2017; 114:6854-6859. [PMID: 28607058 DOI: 10.1073/pnas.1700715114] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Legumes engage in root nodule symbioses with nitrogen-fixing soil bacteria known as rhizobia. In nodule cells, bacteria are enclosed in membrane-bound vesicles called symbiosomes and differentiate into bacteroids that are capable of converting atmospheric nitrogen into ammonia. Bacteroid differentiation and prolonged intracellular survival are essential for development of functional nodules. However, in the Medicago truncatula-Sinorhizobium meliloti symbiosis, incompatibility between symbiotic partners frequently occurs, leading to the formation of infected nodules defective in nitrogen fixation (Fix-). Here, we report the identification and cloning of the M. truncatula NFS2 gene that regulates this type of specificity pertaining to S. meliloti strain Rm41. We demonstrate that NFS2 encodes a nodule-specific cysteine-rich (NCR) peptide that acts to promote bacterial lysis after differentiation. The negative role of NFS2 in symbiosis is contingent on host genetic background and can be counteracted by other genes encoded by the host. This work extends the paradigm of NCR function to include the negative regulation of symbiotic persistence in host-strain interactions. Our data suggest that NCR peptides are host determinants of symbiotic specificity in M. truncatula and possibly in closely related legumes that form indeterminate nodules in which bacterial symbionts undergo terminal differentiation.
Collapse
|
196
|
Microsymbiont discrimination mediated by a host-secreted peptide in Medicago truncatula. Proc Natl Acad Sci U S A 2017; 114:6848-6853. [PMID: 28607056 DOI: 10.1073/pnas.1700460114] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The legume-rhizobial symbiosis results in the formation of root nodules that provide an ecological niche for nitrogen-fixing bacteria. However, plant-bacteria genotypic interactions can lead to wide variation in nitrogen fixation efficiency, and it is not uncommon that a bacterial strain forms functional (Fix+) nodules on one plant genotype but nonfunctional (Fix-) nodules on another. Host genetic control of this specificity is unknown. We herein report the cloning of the Medicago truncatula NFS1 gene that regulates the fixation-level incompatibility with the microsymbiont Sinorhizobium meliloti Rm41. We show that NFS1 encodes a nodule-specific cysteine-rich (NCR) peptide. In contrast to the known role of NCR peptides as effectors of endosymbionts' differentiation to nitrogen-fixing bacteroids, we demonstrate that specific NCRs control discrimination against incompatible microsymbionts. NFS1 provokes bacterial cell death and early nodule senescence in an allele-specific and rhizobial strain-specific manner, and its function is dependent on host genetic background.
Collapse
|
197
|
Luginbuehl LH, Menard GN, Kurup S, Van Erp H, Radhakrishnan GV, Breakspear A, Oldroyd GED, Eastmond PJ. Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 2017; 356:1175-1178. [DOI: 10.1126/science.aan0081] [Citation(s) in RCA: 344] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 05/17/2017] [Indexed: 01/27/2023]
|
198
|
Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D, Wang E. Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 2017; 356:1172-1175. [DOI: 10.1126/science.aam9970] [Citation(s) in RCA: 387] [Impact Index Per Article: 48.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 05/12/2017] [Indexed: 12/14/2022]
|
199
|
Pérez-Palacios P, Romero-Aguilar A, Delgadillo J, Doukkali B, Caviedes MA, Rodríguez-Llorente ID, Pajuelo E. Double genetically modified symbiotic system for improved Cu phytostabilization in legume roots. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14910-14923. [PMID: 28480491 DOI: 10.1007/s11356-017-9092-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Accepted: 04/24/2017] [Indexed: 06/07/2023]
Abstract
Excess copper (Cu) in soils has deleterious effects on plant growth and can pose a risk to human health. In the last decade, legume-rhizobium symbioses became attractive biotechnological tools for metal phytostabilization. For this technique being useful, metal-tolerant symbionts are required, which can be generated through genetic manipulation.In this work, a double symbiotic system was engineered for Cu phytostabilization: On the one hand, composite Medicago truncatula plants expressing the metallothionein gene mt4a from Arabidopsis thaliana in roots were obtained to improve plant Cu tolerance. On the other hand, a genetically modified Ensifer medicae strain, expressing copper resistance genes copAB from Pseudomonas fluorescens driven by a nodulation promoter, nifHp, was used for plant inoculation. Our results indicated that expression of mt4a in composite plants ameliorated plant growth and nodulation and enhanced Cu tolerance. Lower levels of ROS-scavenging enzymes and of thiobarbituric acid reactive substances (TBARS), such as malondialdehyde (a marker of lipid peroxidation), suggested reduced oxidative stress. Furthermore, inoculation with the genetically modified Ensifer further improved root Cu accumulation without altering metal loading to shoots, leading to diminished values of metal translocation from roots to shoots. The double modified partnership is proposed as a suitable tool for Cu rhizo-phytostabilization.
Collapse
Affiliation(s)
- Patricia Pérez-Palacios
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain
| | - Asunción Romero-Aguilar
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain
| | - Julián Delgadillo
- Área de Microbiología, Colegio de Post-Graduados, Campus de Montecillo, Carretera Federal México-Texcoco, 56230, Montecillo, Mexico
| | - Bouchra Doukkali
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain
| | - Miguel A Caviedes
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain
| | - Ignacio D Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/ Profesor García González, 2, 41012, Sevilla, Spain.
| |
Collapse
|
200
|
Horn P, Schlichting A, Baum C, Hammesfahr U, Thiele-Bruhn S, Leinweber P, Broer I. Fast and sensitive in vivo studies under controlled environmental conditions to substitute long-term field trials with genetically modified plants. J Biotechnol 2017; 243:48-60. [PMID: 28011129 DOI: 10.1016/j.jbiotec.2016.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/14/2016] [Accepted: 12/18/2016] [Indexed: 11/30/2022]
Abstract
We introduce an easy, fast and effective method to analyze the influence of genetically modified (GM) plants on soil and model organisms in the laboratory to substitute laborious and time consuming field trials. For the studies described here we focused on two GM plants of the so-called 3rd generation: GM plants producing pharmaceuticals (PMP) and plant made industrials (PMI). Cyanophycin synthetase (cphA) was chosen as model for PMI and Choleratoxin B (CTB) as model for PMP. The model genes are expressed in transgenic roots of composite Vicia hirsuta plants grown in petri dishes for semi-sterile growth or small containers filled with non-sterile soil. No significant influence of the model gene expression on root induction, growth, biomass, interaction with symbionts such as rhizobia (number, size and functionality of nodules, selection of nodulating strains) or arbuscular mycorrhizal fungi could be detected. In vitro, but not in situ under field conditions, structural diversity of the bulk soil microbial community between transgenic and non-transgenic cultivars was determined by PLFA pattern-derived ratios of bacteria: fungi and of gram+: gram- bacteria. Significant differences in PLFA ratios were associated with dissimilarities in the quantity and molecular composition of rhizodeposits as revealed by Py-FIMS analyses. Contrary to field trials, where small effects based on the transgene expression might be hidden by the immense influence of various environmental factors, our in vitro system can detect even minor effects and correlates them to transgene expression with less space, time and labour.
Collapse
Affiliation(s)
- Patricia Horn
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - André Schlichting
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Christel Baum
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Ute Hammesfahr
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Sören Thiele-Bruhn
- Soil Science, Faculty of Regional and Environmental Sciences, University of Trier, Germany
| | - Peter Leinweber
- Soil Science, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany
| | - Inge Broer
- Agrobiotechnology, Faculty of Agricultural and Environmental Sciences, University of Rostock, Germany.
| |
Collapse
|