151
|
Deegan DF, Engel N. Sexual Dimorphism in the Age of Genomics: How, When, Where. Front Cell Dev Biol 2019; 7:186. [PMID: 31552249 PMCID: PMC6743004 DOI: 10.3389/fcell.2019.00186] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 08/22/2019] [Indexed: 12/26/2022] Open
Abstract
In mammals, sex chromosomes start to program autosomal gene expression and epigenetic patterns very soon after fertilization. Yet whether the resulting sex differences are perpetuated throughout development and how they connect to the sex-specific expression patterns in adult tissues is not known. There is a dearth of information on the timing and continuity of sex biases during development. It is also unclear whether sex-specific selection operates during embryogenesis. On the other hand, there is mounting evidence that all adult tissues exhibit sex-specific expression patterns, some of which are independent of hormonal influence and due to intrinsic regulatory effects of the sex chromosome constitution. There are many diseases with origins during embryogenesis that also exhibit sex biases. Epigenetics has provided us with viable mechanisms to explain how the genome stores the memory of developmental events. We propose that some of these marks can be traced back to the sex chromosomes, which interact with the autosomes and establish sex-specific epigenetic features soon after fertilization. Sex-biased epigenetic marks that linger after reprograming may reveal themselves at the transcriptional level at later developmental stages and possibly, throughout the lifespan. Detailed molecular information on the ontogeny of sex biases would also elucidate the sex-specific selective pressures operating on embryos and how compensatory mechanisms evolved to resolve sexual conflict.
Collapse
Affiliation(s)
| | - Nora Engel
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA, United States
| |
Collapse
|
152
|
Ni D, Huang X, Wang Z, Deng L, Zeng L, Zhang Y, Lu D, Zou X. Expression characterization and transcription regulation analysis of porcine Yip1 domain family member 3 gene. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 33:398-407. [PMID: 31480180 PMCID: PMC7054614 DOI: 10.5713/ajas.19.0076] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 06/20/2019] [Indexed: 01/17/2023]
Abstract
Objective The Yip1 domain family (YIPF) proteins were proposed to function in endoplasmic reticulum (ER) to Golgi transport and maintenance of the morphology of the Golgi, which were homologues of yeast Yip1p and Yif1p. YIPF3, the member 3 of YIPF family was a homolog of Yif1p. The aim of present study was to investigate the expression and regulation mechanism of porcine YIPF3. Methods Quantitative realtime polymerase chain reaction (qPCR) was used to analyze porcine YIPF3 mRNA expression pattern in different tissues and pig kidney epithelial (PK15) cells stimulated by polyinosine-polycytidylic acid (poly [I:C]). Site-directed mutations combined with dual luciferase reporter assays and electrophoretic mobility shift assay (EMSA) were employed to reveal transcription regulation mechanism of porcine YIPF3. Results Results showed that the mRNA of porcine YIPF3 (pYIPF3) was widely expressed with the highest levels in lymph and lung followed by spleen and liver, while weak in heart and skeletal muscle. Subcellular localization results indicated that it expressed in Golgi apparatus and plasma membranes. Upon stimulation with poly (I:C), the level of this gene was dramatically up-regulated in a time- and concentration-dependent manner. pYIPF3 core promoter region harbored three cis-acting elements which were bound by ETS proto-oncogene 2 (ETS2), zinc finger and BTB domain containing 4 (ZBTB4), and zinc finger and BTB domain containing 14 (ZBTB14), respectively. In which, ETS2 and ZBTB4 both promoted pYIPF3 transcription activity while ZBTB14 inhibited it, and these three transcription factors all played important regulation roles in tumorigenesis and apoptosis. Conclusion The pYIPF3 mRNA expression was regulated by ETS2, ZBTB4, and ZBTB14, and its higher expression in immune organs might contribute to enhancing ER to Golgi transport of proteins, thus adapting to the immune response.
Collapse
Affiliation(s)
- Dongjiao Ni
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Xiang Huang
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Zhibo Wang
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Lin Deng
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Li Zeng
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Yiwei Zhang
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Dongdong Lu
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| | - Xinhua Zou
- Key Laboratory of Biological Feed of Ministry of Agriculture and Rural Affairs, Boen Biotechnology Co. Ltd, Guangzhou 511400, China
| |
Collapse
|
153
|
Deegan DF, Karbalaei R, Madzo J, Kulathinal RJ, Engel N. The developmental origins of sex-biased expression in cardiac development. Biol Sex Differ 2019; 10:46. [PMID: 31488212 PMCID: PMC6727560 DOI: 10.1186/s13293-019-0259-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 08/20/2019] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Expression patterns between males and females vary in every adult tissue, even in organs with no conspicuous dimorphisms such as the heart. While studies of male and female differences have traditionally focused on the influence of sex hormones, these do not account for all the differences at the molecular and epigenetic levels. We previously reported that a substantial number of genes were differentially expressed in male and female mouse embryonic stem (ES) cells and revealed dose-dependent enhancer activity in response to Prdm14, a key pluripotency factor expressed more highly in female ES cells. In this work, we investigated the role of Prdm14 in establishing sex-specific gene expression networks. We surveyed the sex-specific landscape in early embryogenesis with special reference to cardiac development. We generated sex-specific co-expression networks from mouse ES cells, examined the presence of sex-specific chromatin domains, and analyzed previously published datasets from different developmental time points to characterize how sex-biased gene expression waxes and wanes to evaluate whether sex-biased networks are detectable throughout heart development. RESULTS We performed ChIP-seq on male and female mouse ES cells to determine differences in chromatin status. Our study reveals sex-biased histone modifications, underscoring the potential for the sex chromosome complement to prime the genome differently in early development with consequences for later expression biases. Upon differentiation of ES cells to cardiac precursors, we found sex-biased expression of key transcription and epigenetic factors, some of which persisted from the undifferentiated state. Using network analyses, we also found that Prdm14 plays a prominent role in regulating a subset of dimorphic expression patterns. To determine whether sex-biased expression is present throughout cardiogenesis, we re-analyzed data from two published studies that sampled the transcriptomes of mouse hearts from 8.5 days post-coitum embryos to neonates and adults. We found sex-biased expression at every stage in heart development, and interestingly, identified a subset of genes that exhibit the same bias across multiple cardiogenic stages. CONCLUSIONS Overall, our results support the existence of sexually dimorphic gene expression profiles and regulatory networks at every stage of cardiac development, some of which may be established in early embryogenesis and epigenetically perpetuated.
Collapse
Affiliation(s)
- Daniel F. Deegan
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, 3400 N. Broad St, Philadelphia, PA 19140 USA
| | - Reza Karbalaei
- Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th St, Philadelphia, PA 19122 USA
| | - Jozef Madzo
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, 3400 N. Broad St, Philadelphia, PA 19140 USA
| | - Rob J. Kulathinal
- Department of Biology, College of Science and Technology, Temple University, 1900 N. 12th St, Philadelphia, PA 19122 USA
| | - Nora Engel
- Fels Institute for Cancer Research, Lewis Katz School of Medicine, Temple University, 3400 N. Broad St, Philadelphia, PA 19140 USA
| |
Collapse
|
154
|
Kassam I, Wu Y, Yang J, Visscher PM, McRae AF. Tissue-specific sex differences in human gene expression. Hum Mol Genet 2019; 28:2976-2986. [PMID: 31044242 PMCID: PMC6736104 DOI: 10.1093/hmg/ddz090] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/12/2019] [Accepted: 04/24/2019] [Indexed: 02/07/2023] Open
Abstract
Despite extensive sex differences in human complex traits and disease, the male and female genomes differ only in the sex chromosomes. This implies that most sex-differentiated traits are the result of differences in the expression of genes that are common to both sexes. While sex differences in gene expression have been observed in a range of different tissues, the biological mechanisms for tissue-specific sex differences (TSSDs) in gene expression are not well understood. A total of 30 640 autosomal and 1021 X-linked transcripts were tested for heterogeneity in sex difference effect sizes in n = 617 individuals across 40 tissue types in Genotype-Tissue Expression (GTEx). This identified 65 autosomal and 66 X-linked TSSD transcripts (corresponding to unique genes) at a stringent significance threshold. Results for X-linked TSSD transcripts showed mainly concordant direction of sex differences across tissues and replicate previous findings. Autosomal TSSD transcripts had mainly discordant direction of sex differences across tissues. The top cis-expression quantitative trait loci (eQTLs) across tissues for autosomal TSSD transcripts are located a similar distance away from the nearest androgen and estrogen binding motifs and the nearest enhancer, as compared to cis-eQTLs for transcripts with stable sex differences in gene expression across tissue types. Enhancer regions that overlap top cis-eQTLs for TSSD transcripts, however, were found to be more dispersed across tissues. These observations suggest that androgen and estrogen regulatory elements in a cis region may play a common role in sex differences in gene expression, but TSSD in gene expression may additionally be due to causal variants located in tissue-specific enhancer regions.
Collapse
Affiliation(s)
| | - Yang Wu
- Institute for Molecular Bioscience
| | - Jian Yang
- Institute for Molecular Bioscience
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Peter M Visscher
- Institute for Molecular Bioscience
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| | - Allan F McRae
- Institute for Molecular Bioscience
- Queensland Brain Institute, The University of Queensland, Brisbane, Australia
| |
Collapse
|
155
|
Ruzzo A, Graziano F, Galli F, Galli F, Rulli E, Lonardi S, Ronzoni M, Massidda B, Zagonel V, Pella N, Mucciarini C, Labianca R, Ionta MT, Bagaloni I, Veltri E, Sozzi P, Barni S, Ricci V, Foltran L, Nicolini M, Biondi E, Bramati A, Turci D, Lazzarelli S, Verusio C, Bergamo F, Sobrero A, Frontini L, Magnani M. Sex-Related Differences in Impact on Safety of Pharmacogenetic Profile for Colon Cancer Patients Treated with FOLFOX-4 or XELOX Adjuvant Chemotherapy. Sci Rep 2019; 9:11527. [PMID: 31395900 PMCID: PMC6687727 DOI: 10.1038/s41598-019-47627-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 07/12/2019] [Indexed: 01/28/2023] Open
Abstract
Polymorphisms contribute to inter-individual differences and show a promising predictive role for chemotherapy-related toxicity in colon cancer (CC). TOSCA is a multicentre, randomized, non-inferiority, phase III study conducted in high-risk stage II/stage III CC patients treated with 6 vs 3 months of FOLFOX-4 or XELOX adjuvant chemotherapy. During this post-hoc analysis, 218 women and 294 men were genotyped for 17 polymorphisms: TYMS (rs34743033, rs2853542, rs11280056), MTHFR (rs1801133, rs1801131), ERCC1 (rs11615), XRCC1 (rs25487), XRCC3 (rs861539), XPD (rs1799793, rs13181), GSTP1 (rs1695), GSTT1/GSTM1 (deletion +/−), ABCC1 (rs2074087), and ABCC2 (rs3740066, rs1885301, rs4148386). The aim was to assess the interaction between these polymorphisms and sex, on safety in terms of time to grade ≥3 haematological (TTH), grade ≥3 gastrointestinal (TTG) and grade ≥2 neurological (TTN) toxicity. Interactions were detected on TTH for rs1801133 and rs1799793, on TTG for rs13181 and on TTN for rs11615. Rs1799793 GA genotype (p = 0.006) and A allele (p = 0.009) shortened TTH in men. In women, the rs11615 CC genotype worsened TTN (co-dominant model p = 0.008, recessive model p = 0.003) and rs13181 G allele improved the TTG (p = 0.039). Differences between the two sexes in genotype distribution of rs1885301 (p = 0.020) and rs4148386 (p = 0.005) were found. We highlight that polymorphisms could be sex-specific biomarkers. These results, however, need to be confirmed in additional series.
Collapse
Affiliation(s)
- Annamaria Ruzzo
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy.
| | | | - Francesca Galli
- Laboratory of Methodology for Clinical research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Fabio Galli
- Laboratory of Methodology for Clinical research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Eliana Rulli
- Laboratory of Methodology for Clinical research, Department of Oncology, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy
| | - Sara Lonardi
- Istituto Oncologico Veneto IOV - IRCCS, Padova, Italy
| | | | - Bruno Massidda
- Azienda Ospedaliera Universitaria di Cagliari, P.O. Monserrato, Monserrato, Italy
| | | | - Nicoletta Pella
- Azienda Ospedaliera S. Maria della Misericordia, Udine, Italy
| | | | | | - Maria Teresa Ionta
- Azienda Ospedaliera Universitaria di Cagliari, P.O. Monserrato, Monserrato, Italy
| | - Irene Bagaloni
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| | | | | | - Sandro Barni
- Ospedale "Treviglio-Caravaggio", Treviglio, Italy
| | | | - Luisa Foltran
- Azienda Ospedaliera Santa Maria degli Angeli, Pordenone, Italy
| | - Mario Nicolini
- Azienda Ospedaliera Ospedale "Cervesi", Cattolica, Italy
| | | | | | | | | | | | | | | | | | - Mauro Magnani
- Department of Biomolecular Sciences, Università degli Studi di Urbino "Carlo Bo", Urbino, Italy
| |
Collapse
|
156
|
Tirronen A, Vuorio T, Kettunen S, Hokkanen K, Ramms B, Niskanen H, Laakso H, Kaikkonen MU, Jauhiainen M, Gordts PLSM, Ylä-Herttuala S. Deletion of Lymphangiogenic and Angiogenic Growth Factor VEGF-D Leads to Severe Hyperlipidemia and Delayed Clearance of Chylomicron Remnants. Arterioscler Thromb Vasc Biol 2019; 38:2327-2337. [PMID: 30354205 DOI: 10.1161/atvbaha.118.311549] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective- Dyslipidemia is one of the key factors behind coronary heart disease. Blood and lymphatic vessels play pivotal roles in both lipoprotein metabolism and development of atherosclerotic plaques. Recent studies have linked members of VEGF (vascular endothelial growth factor) family to lipid metabolism, but the function of VEGF-D has remained unexplored. Here, we investigated how the deletion of VEGF-D affects lipid and lipoprotein metabolism in atherogenic LDLR-/- ApoB100/100 mice. Approach and Results- Deletion of VEGF-D (VEGF-D-/-LDLR-/-ApoB100/100) led to markedly elevated plasma cholesterol and triglyceride levels without an increase in atherogenesis. Size distribution and hepatic lipid uptake studies confirmed a delayed clearance of large chylomicron remnant particles that cannot easily penetrate through the vascular endothelium. Mechanistically, the inhibition of VEGF-D signaling significantly decreased the hepatic expression of SDC1 (syndecan 1), which is one of the main receptors for chylomicron remnant uptake when LDLR is absent. Immunohistochemical staining confirmed reduced expression of SDC1 in the sinusoidal surface of hepatocytes in VEGF-D deficient mice. Furthermore, hepatic RNA-sequencing revealed that VEGF-D is also an important regulator of genes related to lipid metabolism and inflammation. The lack of VEGF-D signaling via VEGFR3 (VEGF receptor 3) led to lowered expression of genes regulating triglyceride and cholesterol production, as well as downregulation of peroxisomal β-oxidation pathway. Conclusions- These results demonstrate that VEGF-D, a powerful lymphangiogenic and angiogenic growth factor, is also a major regulator of chylomicron metabolism in mice.
Collapse
Affiliation(s)
- Annakaisa Tirronen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Taina Vuorio
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Sanna Kettunen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Krista Hokkanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Bastian Ramms
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Department of Chemistry, Biochemistry I, Bielefeld University, Germany (B.R.)
| | - Henri Niskanen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Hanne Laakso
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Minna U Kaikkonen
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.)
| | - Matti Jauhiainen
- Genomics and Biomarkers Unit, National Institute for Health and Welfare, Biomedicum, Helsinki, Finland (M.J.)
| | - Philip L S M Gordts
- Division of Endocrinology and Metabolism, Department of Medicine (B.R., P.L.S.M.G.), University of California San Diego, La Jolla, CA.,Glycobiology Research and Training Center (P.L.S.M.G.), University of California San Diego, La Jolla, CA
| | - Seppo Ylä-Herttuala
- From the A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio (A.T., T.V., S.K., K.H., H.N., H.L., M.U.K., S.Y.-H.).,Heart Center and Gene Therapy Unit, Kuopio University Hospital, Finland (S.Y.-H.)
| |
Collapse
|
157
|
Naqvi S, Godfrey AK, Hughes JF, Goodheart ML, Mitchell RN, Page DC. Conservation, acquisition, and functional impact of sex-biased gene expression in mammals. Science 2019; 365:eaaw7317. [PMID: 31320509 PMCID: PMC6896219 DOI: 10.1126/science.aaw7317] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Abstract
Sex differences abound in human health and disease, as they do in other mammals used as models. The extent to which sex differences are conserved at the molecular level across species and tissues is unknown. We surveyed sex differences in gene expression in human, macaque, mouse, rat, and dog, across 12 tissues. In each tissue, we identified hundreds of genes with conserved sex-biased expression-findings that, combined with genomic analyses of human height, explain ~12% of the difference in height between females and males. We surmise that conserved sex biases in expression of genes otherwise operating equivalently in females and males contribute to sex differences in traits. However, most sex-biased expression arose during the mammalian radiation, which suggests that careful attention to interspecies divergence is needed when modeling human sex differences.
Collapse
Affiliation(s)
- Sahin Naqvi
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alexander K Godfrey
- Whitehead Institute, Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Mary L Goodheart
- Whitehead Institute, Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| | - Richard N Mitchell
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - David C Page
- Whitehead Institute, Cambridge, MA 02142, USA.
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Howard Hughes Medical Institute, Whitehead Institute, Cambridge, MA 02142, USA
| |
Collapse
|
158
|
Khramtsova EA, Davis LK, Stranger BE. The role of sex in the genomics of human complex traits. Nat Rev Genet 2019; 20:173-190. [PMID: 30581192 DOI: 10.1038/s41576-018-0083-1] [Citation(s) in RCA: 197] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Nearly all human complex traits and disease phenotypes exhibit some degree of sex differences, including differences in prevalence, age of onset, severity or disease progression. Until recently, the underlying genetic mechanisms of such sex differences have been largely unexplored. Advances in genomic technologies and analytical approaches are now enabling a deeper investigation into the effect of sex on human health traits. In this Review, we discuss recent insights into the genetic models and mechanisms that lead to sex differences in complex traits. This knowledge is critical for developing deeper insight into the fundamental biology of sex differences and disease processes, thus facilitating precision medicine.
Collapse
Affiliation(s)
- Ekaterina A Khramtsova
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA.,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA
| | - Lea K Davis
- Division of Medical Genetics, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA. .,Department of Psychiatry and Behavioral Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Barbara E Stranger
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA. .,Institute for Genomics and Systems Biology, University of Chicago, Chicago, IL, USA. .,Center for Data Intensive Science, University of Chicago, Chicago, IL, USA.
| |
Collapse
|
159
|
Cossard GG, Toups MA, Pannell JR. Sexual dimorphism and rapid turnover in gene expression in pre-reproductive seedlings of a dioecious herb. ANNALS OF BOTANY 2019; 123:1119-1131. [PMID: 30289430 PMCID: PMC6612945 DOI: 10.1093/aob/mcy183] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 09/06/2018] [Indexed: 05/06/2023]
Abstract
BACKGROUND AND AIMS Sexual dimorphism in morphology, physiology or life history traits is common in dioecious plants at reproductive maturity, but it is typically inconspicuous or absent in juveniles. Although plants of different sexes probably begin to diverge in gene expression both before their reproduction commences and before dimorphism becomes readily apparent, to our knowledge transcriptome-wide differential gene expression has yet to be demonstrated for any angiosperm species. METHODS The present study documents differences in gene expression in both above- and below-ground tissues of early pre-reproductive individuals of the wind-pollinated dioecious annual herb, Mercurialis annua, which otherwise shows clear sexual dimorphism only at the adult stage. KEY RESULTS Whereas males and females differed in their gene expression at the first leaf stage, sex-biased gene expression peaked just prior to, and after, flowering, as might be expected if sexual dimorphism is partly a response to differential costs of reproduction. Sex-biased genes were over-represented among putative sex-linked genes in M. annua but showed no evidence for more rapid evolution than unbiased genes. CONCLUSIONS Sex-biased gene expression in M. annua occurs as early as the first whorl of leaves is produced, is highly dynamic during plant development and varies substantially between vegetative tissues.
Collapse
Affiliation(s)
- Guillaume G Cossard
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| | - Melissa A Toups
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - John R Pannell
- Department of Ecology and Evolution, Biophore Building, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
160
|
Batchu SN, Dugbartey GJ, Wadosky KM, Mickelsen DM, Ko KA, Wood RW, Zhao Y, Yang X, Fowell DJ, Korshunov VA. Innate Immune Cells Are Regulated by Axl in Hypertensive Kidney. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 188:1794-1806. [PMID: 30033030 DOI: 10.1016/j.ajpath.2018.04.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/03/2018] [Accepted: 04/12/2018] [Indexed: 11/26/2022]
Abstract
The balance between adaptive and innate immunity in kidney damage in salt-dependent hypertension is unclear. We investigated early renal dysfunction and the influence of Axl, a receptor tyrosine kinase, on innate immune response in hypertensive kidney in mice with lymphocyte deficiency (Rag1-/-). The data suggest that increased presence of CD11b+ myeloid cells in the medulla might explain intensified salt and water retention as well as initial hypertensive response in Rag1-/- mice. Global deletion of Axl on Rag1-/- background reversed kidney dysfunction and accumulation of myeloid cells in the kidney medulla. Chimeric mice that lack Axl in innate immune cells (in the absence of lymphocytes) significantly improved kidney function and abolished early hypertensive response. The bioinformatics analyses of Axl-related gene-gene interaction networks established tissue-specific variation in regulatory pathways. It was confirmed that complement C3 is important for Axl-mediated interactions between myeloid and vascular cells in hypertensive kidney. In summary, innate immunity is crucial for renal dysfunction in early hypertension, and is highly influenced by the presence of Axl.
Collapse
Affiliation(s)
- Sri N Batchu
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - George J Dugbartey
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kristine M Wadosky
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Deanne M Mickelsen
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Kyung A Ko
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Ronald W Wood
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, California
| | - Deborah J Fowell
- Department of Microbiology and Immunology and David H. Smith Center for Vaccine Biology and Immunology, University of Rochester School of Medicine and Dentistry, Rochester, New York
| | - Vyacheslav A Korshunov
- Department of Medicine and Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, New York; Department of Biomedical Genetics, University of Rochester School of Medicine and Dentistry, Rochester, New York.
| |
Collapse
|
161
|
Buchberger E, Reis M, Lu TH, Posnien N. Cloudy with a Chance of Insights: Context Dependent Gene Regulation and Implications for Evolutionary Studies. Genes (Basel) 2019; 10:E492. [PMID: 31261769 PMCID: PMC6678813 DOI: 10.3390/genes10070492] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 06/20/2019] [Accepted: 06/26/2019] [Indexed: 12/20/2022] Open
Abstract
Research in various fields of evolutionary biology has shown that divergence in gene expression is a key driver for phenotypic evolution. An exceptional contribution of cis-regulatory divergence has been found to contribute to morphological diversification. In the light of these findings, the analysis of genome-wide expression data has become one of the central tools to link genotype and phenotype information on a more mechanistic level. However, in many studies, especially if general conclusions are drawn from such data, a key feature of gene regulation is often neglected. With our article, we want to raise awareness that gene regulation and thus gene expression is highly context dependent. Genes show tissue- and stage-specific expression. We argue that the regulatory context must be considered in comparative expression studies.
Collapse
Affiliation(s)
- Elisa Buchberger
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Micael Reis
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| | - Ting-Hsuan Lu
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
- International Max Planck Research School for Genome Science, Am Fassberg 11, 37077 Göttingen, Germany.
| | - Nico Posnien
- University Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Dpt. of Developmental Biology, Justus-von-Liebig-Weg 11, 37077 Göttingen, Germany.
| |
Collapse
|
162
|
Abstract
Extensive research demonstrates unequivocally that nutrition plays a fundamental role in maintaining health and preventing disease. In parallel nutrition research provides evidence that the risks and benefits of diet and lifestyle choices do not affect people equally, as people are inherently variable in their responses to nutrition and associated interventions to maintain health and prevent disease. To simplify the inherent complexity of human subjects and their nutrition, with the aim of managing expectations for dietary guidance required to ensure healthy populations and individuals, nutrition researchers often seek to group individuals based on commonly used criteria. This strategy relies on demonstrating meaningful conclusions based on comparison of group mean responses of assigned groups. Such studies are often confounded by the heterogeneous nutrition response. Commonly used criteria applied in grouping study populations and individuals to identify mechanisms and determinants of responses to nutrition often contribute to the problem of interpreting the results of group comparisons. Challenges of interpreting the group mean using diverse populations will be discussed with respect to studies in human subjects, in vivo and in vitro model systems. Future advances in nutrition research to tackle inter-individual variation require a coordinated approach from funders, learned societies, nutrition scientists, publishers and reviewers of the scientific literature. This will be essential to develop and implement improved study design, data recording, analysis and reporting to facilitate more insightful interpretation of the group mean with respect to population diversity and the heterogeneous nutrition response.
Collapse
|
163
|
Khristi V, Ratri A, Ghosh S, Pathak D, Borosha S, Dai E, Roy R, Chakravarthi VP, Wolfe MW, Karim Rumi MA. Disruption of ESR1 alters the expression of genes regulating hepatic lipid and carbohydrate metabolism in male rats. Mol Cell Endocrinol 2019; 490:47-56. [PMID: 30974146 DOI: 10.1016/j.mce.2019.04.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 04/01/2019] [Accepted: 04/03/2019] [Indexed: 02/05/2023]
Abstract
The liver helps maintain energy homeostasis by synthesizing and storing glucose and lipids. Gonadal steroids, particularly estrogens, play an important role in regulating metabolism. As estrogens are considered female hormones, metabolic disorders related to the disruption of estrogen signaling have mostly been studied in females. Estrogen receptor alpha (ESR1) is the predominant receptor in both the male and female liver, and it mediates the hepatic response to estrogens. Loss of ESR1 increases weight gain and obesity in female rats, while reducing the normal growth in males. Although Esr1-/- male rats have a reduced body weight, they exhibit increased adipose deposition and impaired glucose tolerance. We further investigated whether these metabolic disorders in Esr1-/- male rats were linked with the loss of transcriptional regulation by ESR1 in the liver. To identify the ESR-regulated genes, RNA-sequencing was performed on liver mRNAs from wildtype and Esr1-/- male rats. Based on an absolute fold change of ≥2 with a p-value ≤ 0.05, a total of 706 differentially expressed genes were identified in the Esr1-/- male liver: 478 downregulated, and 228 upregulated. Pathway analyses demonstrate that the differentially expressed genes include transcriptional regulators (Cry1, Nr1d1, Nr0b2), transporters (Slc1a2), and regulators of biosynthesis (Cyp7b1, Cyp8b1), and hormone metabolism (Hsd17b2, Sult1e1). Many of these genes are also integral parts of the lipid and carbohydrate metabolism pathways in the liver. Interestingly, certain critical regulators of the metabolic pathways displayed a sexual dimorphism in expression, which may explain the divergent weight gain in Esr1-/- male and female rats despite common metabolic dysfunctions.
Collapse
Affiliation(s)
- Vincentaben Khristi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Anamika Ratri
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Subhra Ghosh
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Devansh Pathak
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Shaon Borosha
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Eddie Dai
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Richita Roy
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - V Praveen Chakravarthi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - Michael W Wolfe
- Department of Molecular and Integrative Physiology, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA
| | - M A Karim Rumi
- Department of Pathology and Laboratory Medicine, University of Kansas Medical Center, Kansas City, KS, 66160, USA; Institute for Reproduction and Perinatal Research, University of Kansas Medical Center, Kansas City, KS, 66160, USA.
| |
Collapse
|
164
|
Abstract
Reduction of insulin/insulin-like growth factor 1 (IGF1) signaling (IIS) extends the lifespan of various species. So far, several longevity mouse models have been developed containing mutations related to growth signaling deficiency by targeting growth hormone (GH), IGF1, IGF1 receptor, insulin receptor, and insulin receptor substrate. In addition, p70 ribosomal protein S6 kinase 1 (S6K1) knockout leads to lifespan extension. S6K1 encodes an important kinase in the regulation of cell growth. S6K1 is regulated by mechanistic target of rapamycin (mTOR) complex 1. The v-myc myelocytomatosis viral oncogene homolog (MYC)-deficient mice also exhibits a longevity phenotype. The gene expression profiles of these mice models have been measured to identify their longevity mechanisms. Here, we summarize our knowledge of long-lived mouse models related to growth and discuss phenotypic characteristics, including organ-specific gene expression patterns.
Collapse
Affiliation(s)
- Seung-Soo Kim
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841, Korea
| | - Cheol-Koo Lee
- Institute of Animal Molecular Biotechnology, Korea University, Seoul 02841; Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02481, Korea
| |
Collapse
|
165
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019. [PMID: 30526773 PMCID: PMC6386224 DOI: 10.5483/bmbrep.2019.52.1.296] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans.
Collapse
Affiliation(s)
- Rochelle W Lai
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Ryan Lu
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Prakroothi S Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | - Juan I Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089, USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089, USA
| | | | - Bérénice A Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089; USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089; USC Stem Cell Initiative, Los Angeles, CA 90089, USA
| |
Collapse
|
166
|
Ågren JA, Munasinghe M, Clark AG. Sexual conflict through mother's curse and father's curse. Theor Popul Biol 2019; 129:9-17. [PMID: 31054851 DOI: 10.1016/j.tpb.2018.12.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 11/15/2018] [Accepted: 12/27/2018] [Indexed: 12/31/2022]
Abstract
In contrast with autosomes, lineages of sex chromosomes reside for different amounts of time in males and females, and this transmission asymmetry makes them hotspots for sexual conflict. Similarly, the maternal inheritance of the mitochondrial genome (mtDNA) means that mutations that are beneficial in females can spread in a population even if they are deleterious in males, a form of sexual conflict known as Mother's Curse. While both Mother's Curse and sex chromosome induced sexual conflict have been well studied on their own, the interaction between mitochondrial genes and genes on sex chromosomes is poorly understood. Here, we use analytical models and computer simulations to perform a comprehensive examination of how transmission asymmetries of nuclear, mitochondrial, and sex chromosome-linked genes may both cause and resolve sexual conflicts. For example, the accumulation of male-biased Mother's Curse mtDNA mutations will lead to selection in males for compensatory nuclear modifier loci that alleviate the effect. We show how the Y chromosome, being strictly paternally transmitted provides a particularly safe harbor for such modifiers. This analytical framework also allows us to discover a novel kind of sexual conflict, by which Y chromosome-autosome epistasis may result in the spread of male beneficial but female deleterious mutations in a population. We christen this phenomenon Father's Curse. Extending this analytical framework to ZW sex chromosome systems, where males are the heterogametic sex, we also show how W-autosome epistasis can lead to a novel kind of nuclear Mother's Curse. Overall, this study provides a comprehensive framework to understand how genetic transmission asymmetries may both cause and resolve sexual conflicts.
Collapse
Affiliation(s)
- J Arvid Ågren
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14583, USA
| | - Manisha Munasinghe
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Andrew G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, 14583, USA; Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
167
|
Norheim F, Hasin-Brumshtein Y, Vergnes L, Chella Krishnan K, Pan C, Seldin MM, Hui ST, Mehrabian M, Zhou Z, Gupta S, Parks BW, Walch A, Reue K, Hofmann SM, Arnold AP, Lusis AJ. Gene-by-Sex Interactions in Mitochondrial Functions and Cardio-Metabolic Traits. Cell Metab 2019; 29:932-949.e4. [PMID: 30639359 PMCID: PMC6447452 DOI: 10.1016/j.cmet.2018.12.013] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/29/2018] [Accepted: 12/17/2018] [Indexed: 12/20/2022]
Abstract
We studied sex differences in over 50 cardio-metabolic traits in a panel of 100 diverse inbred strains of mice. The results clearly showed that the effects of sex on both clinical phenotypes and gene expression depend on the genetic background. In support of this, genetic loci associated with the traits frequently showed sex specificity. For example, Lyplal1, a gene implicated in human obesity, was shown to underlie a sex-specific locus for diet-induced obesity. Global gene expression analyses of tissues across the panel implicated adipose tissue "beiging" and mitochondrial functions in the sex differences. Isolated mitochondria showed gene-by-sex interactions in oxidative functions, such that some strains (C57BL/6J) showed similar function between sexes, whereas others (DBA/2J and A/J) showed increased function in females. Reduced adipose mitochondrial function in males as compared to females was associated with increased susceptibility to obesity and insulin resistance. Gonadectomy studies indicated that gonadal hormones acting in a tissue-specific manner were responsible in part for the sex differences.
Collapse
Affiliation(s)
- Frode Norheim
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Nutrition, Institute of Basic Medical Sciences, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Yehudit Hasin-Brumshtein
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Laurent Vergnes
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Karthickeyan Chella Krishnan
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Calvin Pan
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Marcus M Seldin
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Simon T Hui
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Margarete Mehrabian
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zhiqiang Zhou
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sonul Gupta
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Axel Walch
- Research Unit Analytical Pathology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Karen Reue
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Susanna M Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum Muenchen, German Research Center for Environmental Health (GmbH), Neuherberg, Germany; German Center for Diabetes Research (DZD), Neuherberg, München 80336, Germany; Medizinische Klinik und Poliklinik IV, Klinikum der Ludwig Maximilian Universität (LMU), Munich, Germany
| | - Arthur P Arnold
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology and Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
168
|
Grossmann M, Wierman ME, Angus P, Handelsman DJ. Reproductive Endocrinology of Nonalcoholic Fatty Liver Disease. Endocr Rev 2019; 40:417-446. [PMID: 30500887 DOI: 10.1210/er.2018-00158] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Accepted: 11/19/2018] [Indexed: 02/07/2023]
Abstract
The liver and the reproductive system interact in a multifaceted bidirectional fashion. Sex steroid signaling influences hepatic endobiotic and xenobiotic metabolism and contributes to the pathogenesis of functional and structural disorders of the liver. In turn, liver function affects the reproductive axis via modulating sex steroid metabolism and transport to tissues via sex hormone-binding globulin (SHBG). The liver senses the body's metabolic status and adapts its energy homeostasis in a sex-dependent fashion, a dimorphism signaled by the sex steroid milieu and possibly related to the metabolic costs of reproduction. Sex steroids impact the pathogenesis of nonalcoholic fatty liver disease, including development of hepatic steatosis, fibrosis, and carcinogenesis. Preclinical studies in male rodents demonstrate that androgens protect against hepatic steatosis and insulin resistance both via androgen receptor signaling and, following aromatization to estradiol, estrogen receptor signaling, through regulating genes involved in hepatic lipogenesis and glucose metabolism. In female rodents in contrast to males, androgens promote hepatic steatosis and dysglycemia, whereas estradiol is similarly protective against liver disease. In men, hepatic steatosis is associated with modest reductions in circulating testosterone, in part consequent to a reduction in circulating SHBG. Testosterone treatment has not been demonstrated to improve hepatic steatosis in randomized controlled clinical trials. Consistent with sex-dimorphic preclinical findings, androgens promote hepatic steatosis and dysglycemia in women, whereas endogenous estradiol appears protective in both men and women. In both sexes, androgens promote hepatic fibrosis and the development of hepatocellular carcinoma, whereas estradiol is protective.
Collapse
Affiliation(s)
- Mathis Grossmann
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Department of Endocrinology, Austin Health, Heidelberg, Victoria, Australia
| | - Margaret E Wierman
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado.,Research Service, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Peter Angus
- Department of Medicine Austin Health, University of Melbourne, Heidelberg, Victoria, Australia.,Departments of Gastroenterology and Hepatology, Heidelberg, Victoria, Australia
| | - David J Handelsman
- ANZAC Research Institute, University of Sydney, Concord Hospital, Sydney, New South Wales, Australia
| |
Collapse
|
169
|
Mizukami H, Kim JD, Tabara S, Lu W, Kwon C, Nakashima M, Fukamizu A. KDM5D-mediated H3K4 demethylation is required for sexually dimorphic gene expression in mouse embryonic fibroblasts. J Biochem 2019; 165:335-342. [PMID: 30541083 DOI: 10.1093/jb/mvy106] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/10/2018] [Indexed: 11/14/2022] Open
Abstract
Males and females share the same genetic code, but gene expression profile often displays differences between two sexes. Mouse embryonic fibroblasts (MEFs) have been used to experiment as a useful tool to test gene function. They have also been characterized by gender-based differences in expressed genes such as Y-linked Sry or X-linked Hprt. However, there is no report on sex differences in global gene expression. Here, using the next-generation RNA sequencing, we compared the comprehensive transcriptome of MEFs derived from two sexes. In comparison with the female group, the male group up-regulated 27 differentially expressed genes (DEGs), in which a male-specific histone demethylase KDM5D gene is included, and 7 DEGs were down-regulated. Based on the results by searching the ENCODE analysis, it was shown that the expression of 15 genes identified is potentially regulated by the methylation of H3K4me1 or H3K4me3. Interestingly, we demonstrated that both of H3K4 methylation are induced by knocking down KDM5D, which causes changes in patterns of eight DEGs found in male MEFs. Collectively, these data not only suggest an importance of KDM5D-mediated demethylation of H3K4 involved in the sexually dimorphic gene expression in male MEFs, but also may provide information regarding sex-dependent changes in gene expression when MEFs are used for experiments.
Collapse
Affiliation(s)
- Hayase Mizukami
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA).,Graduate School of Life and Environmental Sciences
| | - Jun-Dal Kim
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA)
| | | | - Weizhe Lu
- Ph.D. Program in Human Biology, School of Integrative Global Majors (SIGMA)
| | - Chulwon Kwon
- Graduate School of Life and Environmental Sciences
| | | | - Akiyoshi Fukamizu
- Life Science Center for Survival Dynamics, Tsukuba Advanced Research Alliance (TARA).,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
170
|
Piles M, Fernandez-Lozano C, Velasco-Galilea M, González-Rodríguez O, Sánchez JP, Torrallardona D, Ballester M, Quintanilla R. Machine learning applied to transcriptomic data to identify genes associated with feed efficiency in pigs. Genet Sel Evol 2019; 51:10. [PMID: 30866799 PMCID: PMC6417084 DOI: 10.1186/s12711-019-0453-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 03/04/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND To date, the molecular mechanisms that underlie residual feed intake (RFI) in pigs are unknown. Results from different genome-wide association studies and gene expression analyses are not always consistent. The aim of this research was to use machine learning to identify genes associated with feed efficiency (FE) using transcriptomic (RNA-Seq) data from pigs that are phenotypically extreme for RFI. METHODS RFI was computed by considering within-sex regression on mean metabolic body weight, average daily gain, and average backfat gain. RNA-Seq analyses were performed on liver and duodenum tissue from 32 high and 33 low RFI pigs collected at 153 d of age. Machine-learning algorithms were used to predict RFI class based on gene expression levels in liver and duodenum after adjusting for batch effects. Genes were ranked according to their contribution to the classification using the permutation accuracy importance score in an unbiased random forest (RF) algorithm based on conditional inference. Support vector machine, RF, elastic net (ENET) and nearest shrunken centroid algorithms were tested using different subsets of the top rank genes. Nested resampling for hyperparameter tuning was implemented with tenfold cross-validation in the outer and inner loops. RESULTS The best classification was obtained with ENET using the expression of 200 genes in liver [area under the receiver operating characteristic curve (AUROC): 0.85; accuracy: 0.78] and 100 genes in duodenum (AUROC: 0.76; accuracy: 0.69). Canonical pathways and candidate genes that were previously reported as associated with FE in several species were identified. The most remarkable pathways and genes identified were NRF2-mediated oxidative stress response and aldosterone signalling in epithelial cells, the DNAJC6, DNAJC1, MAPK8, PRKD3 genes in duodenum, and melatonin degradation II, PPARα/RXRα activation, and GPCR-mediated nutrient sensing in enteroendocrine cells and SMOX, IL4I1, PRKAR2B, CLOCK and CCK genes in liver. CONCLUSIONS ML algorithms and RNA-Seq expression data were found to provide good performance for classifying pigs into high or low RFI groups. Classification was better with gene expression data from liver than from duodenum. Genes associated with FE in liver and duodenum tissue that can be used as predictive biomarkers for this trait were identified.
Collapse
Affiliation(s)
- Miriam Piles
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Carlos Fernandez-Lozano
- Computer Science Department, University of A Coruña, Campus Elviña s/n, 15071 A Coruña, Spain
| | - María Velasco-Galilea
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Juan Pablo Sánchez
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - David Torrallardona
- Animal Nutrition Program, Institute of Agriculture and Food Research and Technology (IRTA), Mas de Bover, 43120 Constantí, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institute of Agriculture and Food Research and Technology (IRTA), Torre Marimon s/n, 08140 Caldes de Montbui, Barcelona, Spain
| |
Collapse
|
171
|
Zhao Y, Blencowe M, Shi X, Shu L, Levian C, Ahn IS, Kim SK, Huan T, Levy D, Yang X. Integrative Genomics Analysis Unravels Tissue-Specific Pathways, Networks, and Key Regulators of Blood Pressure Regulation. Front Cardiovasc Med 2019; 6:21. [PMID: 30931314 PMCID: PMC6423920 DOI: 10.3389/fcvm.2019.00021] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/18/2019] [Indexed: 01/23/2023] Open
Abstract
Blood pressure (BP) is a highly heritable trait and a major cardiovascular disease risk factor. Genome wide association studies (GWAS) have implicated a number of susceptibility loci for systolic (SBP) and diastolic (DBP) blood pressure. However, a large portion of the heritability cannot be explained by the top GWAS loci and a comprehensive understanding of the underlying molecular mechanisms is still lacking. Here, we utilized an integrative genomics approach that leveraged multiple genetic and genomic datasets including (a) GWAS for SBP and DBP from the International Consortium for Blood Pressure (ICBP), (b) expression quantitative trait loci (eQTLs) from genetics of gene expression studies of human tissues related to BP, (c) knowledge-driven biological pathways, and (d) data-driven tissue-specific regulatory gene networks. Integration of these multidimensional datasets revealed tens of pathways and gene subnetworks in vascular tissues, liver, adipose, blood, and brain functionally associated with DBP and SBP. Diverse processes such as platelet production, insulin secretion/signaling, protein catabolism, cell adhesion and junction, immune and inflammation, and cardiac/smooth muscle contraction, were shared between DBP and SBP. Furthermore, "Wnt signaling" and "mammalian target of rapamycin (mTOR) signaling" pathways were found to be unique to SBP, while "cytokine network", and "tryptophan catabolism" to DBP. Incorporation of gene regulatory networks in our analysis informed on key regulator genes that orchestrate tissue-specific subnetworks of genes whose variants together explain ~20% of BP heritability. Our results shed light on the complex mechanisms underlying BP regulation and highlight potential novel targets and pathways for hypertension and cardiovascular diseases.
Collapse
Affiliation(s)
- Yuqi Zhao
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Montgomery Blencowe
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Xingyi Shi
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Le Shu
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Candace Levian
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - In Sook Ahn
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stuart K. Kim
- Department of Genetics, Department of Developmental Biology, Stanford University Medical Center, Stanford, CA, United States
| | - Tianxiao Huan
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, United States
- The Population Sciences Branch and the Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Daniel Levy
- The National Heart Lung and Blood Institute's Framingham Heart Study, Framingham, MA, United States
- The Population Sciences Branch and the Division of Intramural Research, National Heart, Lung and Blood Institute, Bethesda, MD, United States
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
172
|
Whittle CA, Extavour CG. Selection shapes turnover and magnitude of sex-biased expression in Drosophila gonads. BMC Evol Biol 2019; 19:60. [PMID: 30786879 PMCID: PMC6383255 DOI: 10.1186/s12862-019-1377-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 01/23/2019] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Sex-biased gene expression is thought to drive the phenotypic differences in males and females in metazoans. Drosophila has served as a primary model for studying male-female differences in gene expression, and its effects on protein sequence divergence. However, the forces shaping evolution of sex-biased expression remain largely unresolved, including the roles of selection and pleiotropy. Research on sex organs in Drosophila, employing original approaches and multiple-species contrasts, provides a means to gain insights into factors shaping the turnover and magnitude (fold-bias) of sex-biased expression. RESULTS Here, using recent RNA-seq data, we studied sex-biased gonadal expression in 10,740 protein coding sequences in four species of Drosophila, D. melanogaster, D. simulans, D. yakuba and D. ananassae (5 to 44 My divergence). Using an approach wherein we identified genes with lineage-specific transitions (LSTs) in sex-biased status (amongst testis-biased, ovary-biased and unbiased; thus, six transition types) standardized to the number of genes with the ancestral state (S-LSTs), and those with clade-wide expression bias status, we reveal several key findings. First, the six categorical types of S-LSTs in sex-bias showed disparate rates of turnover, consistent with differential selection pressures. Second, the turnover in sex-biased status was largely unrelated to cross-tissue expression breadth, suggesting pleiotropy does not restrict evolution of sex-biased expression. Third, the fold-sex-biased expression, for both testis-biased and ovary-biased genes, evolved directionally over time toward higher values, a crucial finding that could be interpreted as a selective advantage of greater sex-bias, and sexual antagonism. Fourth, in terms of protein divergence, genes with LSTs to testis-biased expression exhibited weak signals of elevated rates of evolution (than ovary-biased) in as little as 5 My, which strengthened over time. Moreover, genes with clade-wide testis-specific expression (44 My), a status not observed for any ovary-biased genes, exhibited striking acceleration of protein divergence, which was linked to low pleiotropy. CONCLUSIONS By studying LSTs and clade-wide sex-biased gonadal expression in a multi-species clade of Drosophila, we describe evidence that interspecies turnover and magnitude of sex-biased expression have been influenced by selection. Further, whilst pleiotropy was not connected to turnover in sex-biased gonadal expression, it likely explains protein sequence divergence.
Collapse
Affiliation(s)
- Carrie A Whittle
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Cassandra G Extavour
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
- Department of Molecular and Cellular Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA.
| |
Collapse
|
173
|
Sexual dimorphism in the expression of GKN2 and FOXA2 genes in the human stomach. Mol Biol Rep 2019; 46:2355-2362. [DOI: 10.1007/s11033-019-04692-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 02/09/2019] [Indexed: 01/04/2023]
|
174
|
Yoon J, Kim H. Multi-tissue observation of the long non-coding RNA effects on sexually biased gene expression in cattle. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2019; 32:1044-1051. [PMID: 30744377 PMCID: PMC6603329 DOI: 10.5713/ajas.18.0516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/14/2018] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Recent studies have implied that gene expression has high tissue-specificity, and therefore it is essential to investigate gene expression in a variety of tissues when performing the transcriptomic analysis. In addition, the gradual increase of long non-coding RNA (lncRNA) annotation database has increased the importance and proportion of mapped reads accordingly. METHODS We employed simple statistical models to detect the sexually biased/dimorphic genes and their conjugate lncRNAs in 40 RNA-seq samples across two factors: sex and tissue. We employed two quantification pipeline: mRNA annotation only and mRNA+lncRNA annotation. RESULTS As a result, the tissue-specific sexually dimorphic genes are affected by the addition of lncRNA annotation at a non-negligible level. In addition, many lncRNAs are expressed in a more tissue-specific fashion and with greater variation between tissues compared to protein-coding genes. Due to the genic region lncRNAs, the differentially expressed gene list changes, which results in certain sexually biased genes to become ambiguous across the tissues. CONCLUSION In a past study, it has been reported that tissue-specific patterns can be seen throughout the differentially expressed genes between sexes in cattle. Using the same dataset, this study used a more recent reference, and the addition of conjugate lncRNA information, which revealed alterations of differentially expressed gene lists that result in an apparent distinction in the downstream analysis and interpretation. We firmly believe such misquantification of genic lncRNAs can be vital in both future and past studies.
Collapse
Affiliation(s)
- Joon Yoon
- Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea
| | - Heebal Kim
- Department of Natural Science, Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul 08826, Korea.,Department of Agricultural Biotechnology, Animal Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
175
|
Exploring the involvement of Tac2 in the mouse hippocampal stress response through gene networking. Gene 2019; 696:176-185. [PMID: 30769143 DOI: 10.1016/j.gene.2019.02.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 01/05/2019] [Accepted: 02/01/2019] [Indexed: 01/15/2023]
Abstract
Tachykinin 2 (Tac2) is expressed in a number of areas throughout the brain, including the hippocampus. However, knowledge about its function has been only well explored in the hypothalamus in the context of reproductive health. In this study, we identified and validated increased hippocampal Tac2 mRNA expression in response to chronic mild stress in mice. Expression quantitative trait locus (eQTL) analysis showed Tac2 is cis-regulated in the hippocampus. Using a systems genetics approach, we constructed a Tac2 co-expression network to better understand the relationship between Tac2 and the hippocampal stress response. Our network identified 69 total genes associated with Tac2, several of which encode major neuropeptides involved in hippocampal stress signaling as well as critical genes for producing neural plasticity, indicating that Tac2 is involved in these processes. Pathway analysis for the member of Tac2 gene network revealed a strong connection between Tac2 and neuroactive ligand-receptor interaction, calcium signaling pathway, as well as cardiac muscle contraction. In addition, we also identified 46 stress-related phenotypes, specifically fear conditioning response, that were significantly correlated with Tac2 expression. Our results provide evidence for Tac2 as a strong candidate gene who likely plays a role in hippocampal stress processing and neural plasticity.
Collapse
|
176
|
Maternal Choline Supplementation Modulates Placental Markers of Inflammation, Angiogenesis, and Apoptosis in a Mouse Model of Placental Insufficiency. Nutrients 2019; 11:nu11020374. [PMID: 30759768 PMCID: PMC6412879 DOI: 10.3390/nu11020374] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/23/2019] [Accepted: 02/05/2019] [Indexed: 01/18/2023] Open
Abstract
Dlx3 (distal-less homeobox 3) haploinsufficiency in mice has been shown to result in restricted fetal growth and placental defects. We previously showed that maternal choline supplementation (4X versus 1X choline) in the Dlx3+/− mouse increased fetal and placental growth in mid-gestation. The current study sought to test the hypothesis that prenatal choline would modulate indicators of placenta function and development. Pregnant Dlx3+/− mice consuming 1X (control), 2X, or 4X choline from conception were sacrificed at embryonic (E) days E10.5, E12.5, E15.5, and E18.5, and placentas and embryos were harvested. Data were analyzed separately for each gestational day controlling for litter size, fetal genotype (except for models including only +/− pups), and fetal sex (except when data were stratified by this variable). 4X choline tended to increase (p < 0.1) placental labyrinth size at E10.5 and decrease (p < 0.05) placental apoptosis at E12.5. Choline supplementation decreased (p < 0.05) expression of pro-angiogenic genes Eng (E10.5, E12.5, and E15.5), and Vegf (E12.5, E15.5); and pro-inflammatory genes Il1b (at E15.5 and 18.5), Tnfα (at E12.5) and Nfκb (at E15.5) in a fetal sex-dependent manner. These findings provide support for a modulatory effect of maternal choline supplementation on biomarkers of placental function and development in a mouse model of placental insufficiency.
Collapse
|
177
|
Weger BD, Gobet C, Yeung J, Martin E, Jimenez S, Betrisey B, Foata F, Berger B, Balvay A, Foussier A, Charpagne A, Boizet-Bonhoure B, Chou CJ, Naef F, Gachon F. The Mouse Microbiome Is Required for Sex-Specific Diurnal Rhythms of Gene Expression and Metabolism. Cell Metab 2019; 29:362-382.e8. [PMID: 30344015 PMCID: PMC6370974 DOI: 10.1016/j.cmet.2018.09.023] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 06/27/2018] [Accepted: 09/25/2018] [Indexed: 02/08/2023]
Abstract
The circadian clock and associated feeding rhythms have a profound impact on metabolism and the gut microbiome. To what extent microbiota reciprocally affect daily rhythms of physiology in the host remains elusive. Here, we analyzed transcriptome and metabolome profiles of male and female germ-free mice. While mRNA expression of circadian clock genes revealed subtle changes in liver, intestine, and white adipose tissue, germ-free mice showed considerably altered expression of genes associated with rhythmic physiology. Strikingly, the absence of the microbiome attenuated liver sexual dimorphism and sex-specific rhythmicity. The resulting feminization of male and masculinization of female germ-free animals is likely caused by altered sexual development and growth hormone secretion, associated with differential activation of xenobiotic receptors. This defines a novel mechanism by which the microbiome regulates host metabolism.
Collapse
Affiliation(s)
- Benjamin D Weger
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Cédric Gobet
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Jake Yeung
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Eva Martin
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Sonia Jimenez
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland
| | - Bertrand Betrisey
- Cellular Metabolism, Department of Cell Biology, Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Francis Foata
- Host-Microbe Interaction, Department of Gastro-Intestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Bernard Berger
- Host-Microbe Interaction, Department of Gastro-Intestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Aurélie Balvay
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Anne Foussier
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Aline Charpagne
- Genomics, Department of Multi-Omics, Nestlé Institute of Health Sciences, Nestlé Research, 1015 Lausanne, Switzerland
| | - Brigitte Boizet-Bonhoure
- Institut de Génétique Humaine, CNRS-Université de Montpellier UMR9002, 34396 Montpellier, France
| | - Chieh Jason Chou
- Host-Microbe Interaction, Department of Gastro-Intestinal Health, Nestlé Institute of Health Sciences, Nestlé Research, 1000 Lausanne, Switzerland
| | - Felix Naef
- Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Frédéric Gachon
- Department of Diabetes and Circadian Rhythms, Nestlé Institute of Health Sciences, 1015 Lausanne, Switzerland; School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland.
| |
Collapse
|
178
|
Chang RC, Wang H, Bedi Y, Golding MC. Preconception paternal alcohol exposure exerts sex-specific effects on offspring growth and long-term metabolic programming. Epigenetics Chromatin 2019; 12:9. [PMID: 30670059 PMCID: PMC6341619 DOI: 10.1186/s13072-019-0254-0] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 01/17/2019] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Although clinical data support an association between paternal alcohol use and deficits in child neurocognitive development, the relationship between paternal drinking and alcohol-induced growth phenotypes remains challenging to define. Using an established mouse model of chronic exposure, previous work by our group has linked preconception paternal alcohol use to sex-specific patterns of fetal growth restriction and placental dysfunction. The aim of the present study was to investigate the long-term impact of chronic preconception paternal alcohol use on offspring growth and metabolic programming. RESULTS Preconception paternal alcohol exposure induced a prolonged period of fetal gestation and an increased incidence of intrauterine growth restriction, which affected the male offspring to a greater extent than the females. While the female offspring of ethanol-exposed males were able to match the body weights of the controls within the first 2 weeks of postnatal life, male offspring continued to display an 11% reduction in weight at 5 weeks of age and a 6% reduction at 8 weeks of age. The observed growth deficits associated with insulin hypersensitivity in the male offspring, while in contrast, females displayed a modest lag in their glucose tolerance test. These metabolic defects were associated with an up-regulation of genes within the pro-fibrotic TGF-β signaling pathway and increased levels of cellular hydroxyproline within the livers of the male offspring. We observed suppressed cytokine profiles within the liver and pancreas of both the male and female offspring, which correlated with the up-regulation of genes in the LiverX/RetinoidX/FarnesoidX receptor pathways. However, patterns of gene expression were highly variable between the offspring of alcohol-exposed sires. In the adult offspring of alcohol-exposed males, we did not observe any differences in the allelic expression of Igf2 or any other imprinted genes. CONCLUSIONS The impact of paternal alcohol use on child development is poorly explored and represents a significant gap in our understanding of the teratogenic effects of ethanol. Our studies implicate paternal exposure history as an additional and important modifier of alcohol-induced growth phenotypes and challenge the current maternal-centric exposure paradigm.
Collapse
Affiliation(s)
- Richard C. Chang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466 USA
| | - Haiqing Wang
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466 USA
| | - Yudhishtar Bedi
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466 USA
| | - Michael C. Golding
- Department of Veterinary Physiology and Pharmacology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843-4466 USA
| |
Collapse
|
179
|
Ritchie SC, Watts S, Fearnley LG, Holt KE, Abraham G, Inouye M. A Scalable Permutation Approach Reveals Replication and Preservation Patterns of Network Modules in Large Datasets. Cell Syst 2019; 3:71-82. [PMID: 27467248 DOI: 10.1016/j.cels.2016.06.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 02/09/2016] [Accepted: 06/29/2016] [Indexed: 01/15/2023]
Abstract
Network modules-topologically distinct groups of edges and nodes-that are preserved across datasets can reveal common features of organisms, tissues, cell types, and molecules. Many statistics to identify such modules have been developed, but testing their significance requires heuristics. Here, we demonstrate that current methods for assessing module preservation are systematically biased and produce skewed p values. We introduce NetRep, a rapid and computationally efficient method that uses a permutation approach to score module preservation without assuming data are normally distributed. NetRep produces unbiased p values and can distinguish between true and false positives during multiple hypothesis testing. We use NetRep to quantify preservation of gene coexpression modules across murine brain, liver, adipose, and muscle tissues. Complex patterns of multi-tissue preservation were revealed, including a liver-derived housekeeping module that displayed adipose- and muscle-specific association with body weight. Finally, we demonstrate the broader applicability of NetRep by quantifying preservation of bacterial networks in gut microbiota between men and women.
Collapse
Affiliation(s)
- Scott C Ritchie
- Centre for Systems Genomics, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia.
| | - Stephen Watts
- Centre for Systems Genomics, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Liam G Fearnley
- Centre for Systems Genomics, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Kathryn E Holt
- Centre for Systems Genomics, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Gad Abraham
- Centre for Systems Genomics, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Michael Inouye
- Centre for Systems Genomics, The University of Melbourne, Parkville, VIC 3010, Australia; Department of Pathology, The University of Melbourne, Parkville, VIC 3010, Australia; School of BioSciences, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
180
|
Ruszkiewicz JA, Miranda-Vizuete A, Tinkov AA, Skalnaya MG, Skalny AV, Tsatsakis A, Aschner M. Sex-Specific Differences in Redox Homeostasis in Brain Norm and Disease. J Mol Neurosci 2019; 67:312-342. [DOI: 10.1007/s12031-018-1241-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/10/2018] [Indexed: 12/12/2022]
|
181
|
Sex differences and the neurobiology of affective disorders. Neuropsychopharmacology 2019; 44:111-128. [PMID: 30061743 PMCID: PMC6235863 DOI: 10.1038/s41386-018-0148-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/14/2018] [Accepted: 06/25/2018] [Indexed: 12/11/2022]
Abstract
Observations of the disproportionate incidence of depression in women compared with men have long preceded the recent explosion of interest in sex differences. Nonetheless, the source and implications of this epidemiologic sex difference remain unclear, as does the practical significance of the multitude of sex differences that have been reported in brain structure and function. In this article, we attempt to provide a framework for thinking about how sex and reproductive hormones (particularly estradiol as an example) might contribute to affective illness. After briefly reviewing some observed sex differences in depression, we discuss how sex might alter brain function through hormonal effects (both organizational (programmed) and activational (acute)), sex chromosome effects, and the interaction of sex with the environment. We next review sex differences in the brain at the structural, cellular, and network levels. We then focus on how sex and reproductive hormones regulate systems implicated in the pathophysiology of depression, including neuroplasticity, genetic and neural networks, the stress axis, and immune function. Finally, we suggest several models that might explain a sex-dependent differential regulation of affect and susceptibility to affective illness. As a disclaimer, the studies cited in this review are not intended to be comprehensive but rather serve as examples of the multitude of levels at which sex and reproductive hormones regulate brain structure and function. As such and despite our current ignorance regarding both the ontogeny of affective illness and the impact of sex on that ontogeny, sex differences may provide a lens through which we may better view the mechanisms underlying affective regulation and dysfunction.
Collapse
|
182
|
Lai RW, Lu R, Danthi PS, Bravo JI, Goumba A, Sampathkumar NK, Benayoun BA. Multi-level remodeling of transcriptional landscapes in aging and longevity. BMB Rep 2019; 52:86-108. [PMID: 30526773 PMCID: PMC6386224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Indexed: 07/15/2024] Open
Abstract
In multi-cellular organisms, the control of gene expression is key not only for development, but also for adult cellular homeostasis, and gene expression has been observed to be deregulated with aging. In this review, we discuss the current knowledge on the transcriptional alterations that have been described to occur with age in metazoans. First, we discuss age-related transcriptional changes in protein-coding genes, the expected functional impact of such changes, and how known pro-longevity interventions impact these changes. Second, we discuss the changes and impact of emerging aspects of transcription in aging, including age-related changes in splicing, lncRNAs and circRNAs. Third, we discuss the changes and potential impact of transcription of transposable elements with aging. Fourth, we highlight small ncRNAs and their potential impact on the regulation of aging phenotypes. Understanding the aging transcriptome will be key to identify important regulatory targets, and ultimately slow-down or reverse aging and extend healthy lifespan in humans. [BMB Reports 2019; 52(1): 86-108].
Collapse
Affiliation(s)
| | | | - Prakroothi S. Danthi
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | - Juan I. Bravo
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- Graduate program in the Biology of Aging, University of Southern California, Los Angeles, CA 90089,
USA
| | - Alexandre Goumba
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
| | | | - Bérénice A. Benayoun
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA 90089,
USA
- USC Norris Comprehensive Cancer Center, Epigenetics and Gene Regulation, Los Angeles, CA 90089,
USA
- USC Stem Cell Initiative, Los Angeles, CA 90089,
USA
| |
Collapse
|
183
|
Sexual dimorphism in hepatitis B and C and hepatocellular carcinoma. Semin Immunopathol 2018; 41:203-211. [PMID: 30498927 DOI: 10.1007/s00281-018-0727-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 11/04/2018] [Indexed: 12/14/2022]
Abstract
The incidence of viral hepatitis B or C (HBV/HCV) infection and hepatocellular carcinoma is higher in male compared to female populations, showing a faster disease progression and results in a worse overall survival. Indeed, women are in general better protected from viral infections and show a lower risk of death from malignant cancer in comparison to men. Females mount stronger innate and adaptive immune responses than males, and therefore, most of the autoimmune diseases occur predominantly in females. Next to occupational and/or behavioral factors, cellular and molecular differences between the two sexes contribute to this observation. In this review, we will discuss underlying mechanisms that are important for the observed sex-related differences in liver diseases. A better appreciation of these differences between the two sexes might be of value for better and gender-specific treatment options.
Collapse
|
184
|
Fullam A, Gu L, Höhn Y, Schröder M. DDX3 directly facilitates IKKα activation and regulates downstream signalling pathways. Biochem J 2018; 475:3595-3607. [PMID: 30341167 DOI: 10.1042/bcj20180163] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 10/18/2018] [Accepted: 10/19/2018] [Indexed: 02/07/2023]
Abstract
DDX3 is a DEAD-box RNA helicase that we and others have previously implicated in antiviral immune signalling pathways leading to type I interferon (IFN) induction. We previously demonstrated that it directly interacts with the kinase IKKε (IκB kinase ε), enhances it activation, and then facilitates phosphorylation of the transcription factor IRF3 by IKKε. However, the TLR7/9 (Toll-like receptor 7/9)-mediated pathway, one of the most physiologically relevant IFN induction pathways, proceeds independently of IKKε or the related kinase TBK1 (TANK-binding kinase 1). This pathway induces type I IFN production via the kinases NIK (NF-κB-inducing kinase) and IKKα and is activated when plasmacytoid dendritic cells sense viral nucleic acids. In the present study, we demonstrate that DDX3 also directly interacts with IKKα and enhances its autophosphorylation and -activation. Modulation of DDX3 expression consequently affected NIK/IKKα-mediated IRF7 phosphorylation and induction of type I interferons. In addition, alternative NF-κB (nuclear factor-κB) activation, another pathway regulated by NIK and IKKα, was also down-regulated in DDX3 knockdown cells. This substantially broadens the effects of DDX3 in innate immune signalling to pathways beyond TBK1/IKKε and IFN induction. Dysregulation of these pathways is involved in disease states, and thus, our research might implicate DDX3 as a potential target for their therapeutic manipulation.
Collapse
Affiliation(s)
- Anthony Fullam
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Lili Gu
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Yvette Höhn
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Martina Schröder
- Department of Biology, Institute of Immunology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
185
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
186
|
Wankhade UD, Zhong Y, Kang P, Alfaro M, Chintapalli SV, Piccolo BD, Mercer KE, Andres A, Thakali KM, Shankar K. Maternal High-Fat Diet Programs Offspring Liver Steatosis in a Sexually Dimorphic Manner in Association with Changes in Gut Microbial Ecology in Mice. Sci Rep 2018; 8:16502. [PMID: 30405201 PMCID: PMC6220325 DOI: 10.1038/s41598-018-34453-0] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 10/15/2018] [Indexed: 12/14/2022] Open
Abstract
The contributions of maternal diet and obesity in shaping offspring microbiome remain unclear. Here we employed a mouse model of maternal diet-induced obesity via high-fat diet feeding (HFD, 45% fat calories) for 12 wk prior to conception on offspring gut microbial ecology. Male and female offspring were provided access to control or HFD from weaning until 17 wk of age. Maternal HFD-associated programming was sexually dimorphic, with male offspring from HFD dams showing hyper-responsive weight gain to postnatal HFD. Likewise, microbiome analysis of offspring cecal contents showed differences in α-diversity, β-diversity and higher Firmicutes in male compared to female mice. Weight gain in offspring was significantly associated with abundance of Lachnospiraceae and Clostridiaceae families and Adlercreutzia, Coprococcus and Lactococcus genera. Sex differences in metagenomic pathways relating to lipid metabolism, bile acid biosynthesis and immune response were also observed. HFD-fed male offspring from HFD dams also showed worse hepatic pathology, increased pro-inflammatory cytokines, altered expression of bile acid regulators (Cyp7a1, Cyp8b1 and Cyp39a1) and serum bile acid concentrations. These findings suggest that maternal HFD alters gut microbiota composition and weight gain of offspring in a sexually dimorphic manner, coincident with fatty liver and a pro-inflammatory state in male offspring.
Collapse
Affiliation(s)
- Umesh D Wankhade
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ying Zhong
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Ping Kang
- Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Maria Alfaro
- Molecular Genetic Pathology Laboratory, Arkansas Children's Hospital, Little Rock, Arkansas, USA
| | - Sree V Chintapalli
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Brian D Piccolo
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kelly E Mercer
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Aline Andres
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Keshari M Thakali
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA
| | - Kartik Shankar
- Arkansas Children's Nutrition Center, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA. .,Department of Pediatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas, USA.
| |
Collapse
|
187
|
Dean R, Hammer C, Higham V, Dowling DK. Masculinization of gene expression is associated with male quality in Drosophila melanogaster. Evolution 2018; 72:2736-2748. [PMID: 30382578 DOI: 10.1111/evo.13618] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022]
Abstract
The signature of sexual selection has been revealed through the study of differences in patterns of genome-wide gene expression, both between the sexes and between alternative reproductive morphs within a single sex. What remains unclear, however, is whether differences in gene expression patterns between individuals of a given sex consistently map to variation in individual quality. Such a pattern, particularly if found in males, would provide unambiguous evidence that the phenotypic response to sexual selection is shaped through sex-specific alterations to the transcriptome. To redress this knowledge gap, we explored whether patterns of sex-biased gene expression are associated with variation in male reproductive quality in Drosophila melanogaster. We measured two male reproductive phenotypes, and their association with sex-biased gene expression, across a selection of inbred lines from the Drosophila Genetic Reference Panel. Genotypes with higher expression of male-biased genes produced males exhibiting shorter latencies to copulation, and higher capacity to inseminate females. Conversely, female-biased genes tended to show negative associations with these male reproductive traits across genotypes. We uncovered similar patterns, by reanalyzing a published dataset from a second D. melanogaster population. Our results reveal the footprint of sexual selection in masculinising the male transcriptome.
Collapse
Affiliation(s)
- Rebecca Dean
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia.,Department of Genetics, Evolution and Environment, University College London, WC1E 6BT, United Kingdom
| | - Camille Hammer
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Vanessa Higham
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| | - Damian K Dowling
- School of Biological Sciences, Monash University, Clayton, Victoria, 3800, Australia
| |
Collapse
|
188
|
Ghiselli F, Iannello M, Puccio G, Chang PL, Plazzi F, Nuzhdin SV, Passamonti M. Comparative Transcriptomics in Two Bivalve Species Offers Different Perspectives on the Evolution of Sex-Biased Genes. Genome Biol Evol 2018; 10:1389-1402. [PMID: 29897459 PMCID: PMC6007409 DOI: 10.1093/gbe/evy082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2018] [Indexed: 12/13/2022] Open
Abstract
Comparative genomics has become a central tool for evolutionary biology, and a better knowledge of understudied taxa represents the foundation for future work. In this study, we characterized the transcriptome of male and female mature gonads in the European clam Ruditapes decussatus, compared with that in the Manila clam Ruditapes philippinarum providing, for the first time in bivalves, information about transcription dynamics and sequence evolution of sex-biased genes. In both the species, we found a relatively low number of sex-biased genes (1,284, corresponding to 41.3% of the orthologous genes between the two species), probably due to the absence of sexual dimorphism, and the transcriptional bias is maintained in only 33% of the orthologs. The dN/dS is generally low, indicating purifying selection, with genes where the female-biased transcription is maintained between the two species showing a significantly higher dN/dS. Genes involved in embryo development, cell proliferation, and maintenance of genome stability show a faster sequence evolution. Finally, we report a lack of clear correlation between transcription level and evolutionary rate in these species, in contrast with studies that reported a negative correlation. We discuss such discrepancy and call into question some methodological approaches and rationales generally used in this type of comparative studies.
Collapse
Affiliation(s)
- Fabrizio Ghiselli
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Mariangela Iannello
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Guglielmo Puccio
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Peter L Chang
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Federico Plazzi
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| | - Sergey V Nuzhdin
- Program in Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, USA
| | - Marco Passamonti
- Department of Biological, Geological, and Environmental Sciences, University of Bologna, Italy
| |
Collapse
|
189
|
Kurt Z, Barrere-Cain R, LaGuardia J, Mehrabian M, Pan C, Hui ST, Norheim F, Zhou Z, Hasin Y, Lusis AJ, Yang X. Tissue-specific pathways and networks underlying sexual dimorphism in non-alcoholic fatty liver disease. Biol Sex Differ 2018; 9:46. [PMID: 30343673 PMCID: PMC6196429 DOI: 10.1186/s13293-018-0205-7] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/03/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Non-alcoholic fatty liver disease (NAFLD) encompasses benign steatosis and more severe conditions such as non-alcoholic steatohepatitis (NASH), cirrhosis, and liver cancer. This chronic liver disease has a poorly understood etiology and demonstrates sexual dimorphisms. We aim to examine the molecular mechanisms underlying sexual dimorphisms in NAFLD pathogenesis through a comprehensive multi-omics study. We integrated genomics (DNA variations), transcriptomics of liver and adipose tissue, and phenotypic data of NAFLD derived from female mice of ~ 100 strains included in the hybrid mouse diversity panel (HMDP) and compared the NAFLD molecular pathways and gene networks between sexes. RESULTS We identified both shared and sex-specific biological processes for NAFLD. Adaptive immunity, branched chain amino acid metabolism, oxidative phosphorylation, and cell cycle/apoptosis were shared between sexes. Among the sex-specific pathways were vitamins and cofactors metabolism and ion channel transport for females, and phospholipid, lysophospholipid, and phosphatidylinositol metabolism and insulin signaling for males. Additionally, numerous lipid and insulin-related pathways and inflammatory processes in the adipose and liver tissue appeared to show more prominent association with NAFLD in male HMDP. Using data-driven network modeling, we identified plausible sex-specific and tissue-specific regulatory genes as well as those that are shared between sexes. These key regulators orchestrate the NAFLD pathways in a sex- and tissue-specific manner. Gonadectomy experiments support that sex hormones may partially underlie the sexually dimorphic genes and pathways involved in NAFLD. CONCLUSIONS Our multi-omics integrative study reveals sex- and tissue-specific genes, processes, and networks underlying sexual dimorphism in NAFLD and may facilitate sex-specific precision medicine.
Collapse
Affiliation(s)
- Zeyneb Kurt
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Rio Barrere-Cain
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Jonnby LaGuardia
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| | - Margarete Mehrabian
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Calvin Pan
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Simon T Hui
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Frode Norheim
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Zhiqiang Zhou
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Yehudit Hasin
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Aldons J Lusis
- Department of Medicine/Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA USA
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California, Los Angeles, Los Angeles, CA USA
| |
Collapse
|
190
|
Jaquiéry J, Peccoud J, Ouisse T, Legeai F, Prunier-Leterme N, Gouin A, Nouhaud P, Brisson JA, Bickel R, Purandare S, Poulain J, Battail C, Lemaitre C, Mieuzet L, Le Trionnaire G, Simon JC, Rispe C. Disentangling the Causes for Faster-X Evolution in Aphids. Genome Biol Evol 2018; 10:507-520. [PMID: 29360959 PMCID: PMC5798017 DOI: 10.1093/gbe/evy015] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2018] [Indexed: 12/22/2022] Open
Abstract
The faster evolution of X chromosomes has been documented in several species, and results from the increased efficiency of selection on recessive alleles in hemizygous males and/or from increased drift due to the smaller effective population size of X chromosomes. Aphids are excellent models for evaluating the importance of selection in faster-X evolution because their peculiar life cycle and unusual inheritance of sex chromosomes should generally lead to equivalent effective population sizes for X and autosomes. Because we lack a high-density genetic map for the pea aphid, whose complete genome has been sequenced, we first assigned its entire genome to the X or autosomes based on ratios of sequencing depth in males (X0) to females (XX). Then, we computed nonsynonymous to synonymous substitutions ratios (dN/dS) for the pea aphid gene set and found faster evolution of X-linked genes. Our analyses of substitution rates, together with polymorphism and expression data, showed that relaxed selection is likely to be the greatest contributor to faster-X because a large fraction of X-linked genes are expressed at low rates and thus escape selection. Yet, a minor role for positive selection is also suggested by the difference between substitution rates for X and autosomes for male-biased genes (but not for asexual female-biased genes) and by lower Tajima’s D for X-linked compared with autosomal genes with highly male-biased expression patterns. This study highlights the relevance of organisms displaying alternative chromosomal inheritance to the understanding of forces shaping genome evolution.
Collapse
Affiliation(s)
- Julie Jaquiéry
- INRA UMR IGEPP Domaine de la Motte, Le Rheu, France.,CNRS UMR 6553 ECOBIO, Université de Rennes 1, France
| | - Jean Peccoud
- CNRS UMR 7267 Ecologie et Biologie des Interactions, Equipe Ecologie Evolution Symbiose, Université de Poitiers, France
| | | | - Fabrice Legeai
- INRA UMR IGEPP Domaine de la Motte, Le Rheu, France.,INRIA Centre Rennes - Bretagne Atlantique, GenOuest, Rennes, France
| | | | - Anais Gouin
- INRA UMR IGEPP Domaine de la Motte, Le Rheu, France.,INRIA Centre Rennes - Bretagne Atlantique, GenOuest, Rennes, France
| | - Pierre Nouhaud
- Institute of Population Genetics, Vetmeduni Vienna, Vienna, Austria
| | | | - Ryan Bickel
- Department of Biology, University of Rochester
| | - Swapna Purandare
- Multidisciplinary Center for Advance Research and Studies (MCARS), Jamia Millia Islamia, New Delhi, India
| | - Julie Poulain
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Genoscope, Evry, France
| | - Christophe Battail
- Commissariat à l'Energie Atomique (CEA), Institut de Génomique (IG), Centre National de Génotypage (CNG), Evry, France
| | - Claire Lemaitre
- INRIA Centre Rennes - Bretagne Atlantique, GenOuest, Rennes, France
| | | | | | | | - Claude Rispe
- BIOEPAR, INRA, ONIRIS, La Chantrerie, Nantes, France
| |
Collapse
|
191
|
Ma WJ, Veltsos P, Sermier R, Parker DJ, Perrin N. Evolutionary and developmental dynamics of sex-biased gene expression in common frogs with proto-Y chromosomes. Genome Biol 2018; 19:156. [PMID: 30290841 PMCID: PMC6173898 DOI: 10.1186/s13059-018-1548-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 09/20/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND The patterns of gene expression on highly differentiated sex chromosomes differ drastically from those on autosomes, due to sex-specific patterns of selection and inheritance. As a result, X chromosomes are often enriched in female-biased genes (feminization) and Z chromosomes in male-biased genes (masculinization). However, it is not known how quickly sexualization of gene expression and transcriptional degeneration evolve after sex-chromosome formation. Furthermore, little is known about how sex-biased gene expression varies throughout development. RESULTS We sample a population of common frogs (Rana temporaria) with limited sex-chromosome differentiation (proto-sex chromosome), leaky genetic sex determination evidenced by the occurrence of XX males, and delayed gonadal development, meaning that XY individuals may first develop ovaries before switching to testes. Using high-throughput RNA sequencing, we investigate the dynamics of gene expression throughout development, spanning from early embryo to froglet stages. Our results show that sex-biased expression affects different genes at different developmental stages and increases during development, reaching highest levels in XX female froglets. Additionally, sex-biased gene expression depends on phenotypic, rather than genotypic sex, with similar expression in XX and XY males; correlates with gene evolutionary rates; and is not localized to the proto-sex chromosome nor near the candidate sex-determining gene Dmrt1. CONCLUSIONS The proto-sex chromosome of common frogs does not show evidence of sexualization of gene expression, nor evidence for a faster rate of evolution. This challenges the notion that sexually antagonistic genes play a central role in the initial stages of sex-chromosome evolution.
Collapse
Affiliation(s)
- Wen-Juan Ma
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Current address: Department of Biology, Amherst College, Amherst, MA USA
| | - Paris Veltsos
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Roberto Sermier
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| | - Darren J Parker
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicolas Perrin
- Department of Ecology and Evolution, University of Lausanne, CH 1015 Lausanne, Switzerland
| |
Collapse
|
192
|
Spaanderman DCE, Nixon M, Buurstede JC, Sips HC, Schilperoort M, Kuipers EN, Backer EA, Kooijman S, Rensen PCN, Homer NZM, Walker BR, Meijer OC, Kroon J. Androgens modulate glucocorticoid receptor activity in adipose tissue and liver. J Endocrinol 2018; 240:JOE-18-0503.R1. [PMID: 30400038 DOI: 10.1530/joe-18-0503] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 10/04/2018] [Indexed: 12/16/2022]
Abstract
Glucocorticoid signaling is context-dependent, and in certain scenarios glucocorticoid receptors (GR) are able to engage with other members of the nuclear receptor subfamily. Glucocorticoid signaling can exert sexually dimorphic effects, suggesting a possible interaction with androgen sex hormones. We therefore set out to determine the crosstalk between glucocorticoids and androgens in metabolic tissues including white adipose tissue, liver and brown adipose tissue. Thereto we exposed male C57BL/6J mice to elevated levels of corticosterone in combination with an androgen receptor (AR) agonist or an AR antagonist. Systemic and local glucocorticoid levels were determined by mass spectrometry, tissue expression of glucocorticoid-responsive genes and protein was measured by RT-qPCR and Western blot, respectively. To evaluate crosstalk in vitro, cultured white and brown adipocytes were exposed to a combination of corticosterone and an androgen agonist. We found that AR agonism potentiated transcriptional response to GR in vitro in white and brown adipocytes and in vivo in white and brown adipose tissue. Conversely, AR antagonism substantially attenuated glucocorticoid signaling in white adipose tissue and liver. In white adipose tissue this effect could partially be attributed to decreased 11B-hydroxysteroid dehydrogenase type 1-mediated glucocorticoid regeneration upon AR antagonism. In liver, attenuated GR activity was independent of active glucocorticoid ligand levels. We conclude that androgen signaling modulates GR transcriptional output in a tissue-specific manner.
Collapse
Affiliation(s)
- Dieuwertje C E Spaanderman
- D Spaanderman, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Mark Nixon
- M Nixon, BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom of Great Britain and Northern Ireland
| | - Jacobus C Buurstede
- J Buurstede, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Hetty Cm Sips
- H Sips, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Maaike Schilperoort
- M Schilperoort, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Eline N Kuipers
- E Kuipers, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Emma A Backer
- E Backer, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Sander Kooijman
- S Kooijman, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Patrick C N Rensen
- P Rensen, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Natalie Z M Homer
- N Homer, BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom of Great Britain and Northern Ireland
| | - Brian R Walker
- B Walker, BHF Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom of Great Britain and Northern Ireland
| | - Onno C Meijer
- O Meijer, Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, Netherlands
| | - Jan Kroon
- J Kroon, Urology, Leiden University Medical Center, Leiden, 2333ZA, Netherlands
| |
Collapse
|
193
|
Abstract
PURPOSE OF REVIEW Sex differences are pervasive in metabolic and cardiovascular traits, yet they have often been ignored in human and animal model research. Sex differences can arise from reversible hormonal effects, from irreversible organizational (developmental) processes, and from gene expression differences from the X and Y chromosomes. We briefly review our current understanding of the impact of these factors in metabolic traits and disorders, with an emphasis on the recent literature. RECENT FINDINGS Novel sex differences continue to be identified for metabolic and cardiovascular traits. For example, it is now clear that gut microbiota tend to differ between men and women, with potentially large implications for disease susceptibility. Also, tissue-specific gene regulation differs between men and women, contributing to differential metabolism. These new insights will open up personalized therapeutic avenues for cardiometabolic diseases. SUMMARY Sex differences in body fat distribution, glucose homeostasis, insulin signaling, ectopic fat accumulation, and lipid metabolism during normal growth and in response to hormonal or nutritional imbalance are mediated partly through sex hormones and the sex chromosome complement. Most of these differences are mediated in a tissue-specific manner. Important future goals are to better understand the interactions between genetic variation and sex differences, and to bring an understanding of sex differences into clinical practice.
Collapse
Affiliation(s)
| | | | - Aldons J. Lusis
- Department of Medicine/Division of Cardiology
- Department of Micro-biology, Immunology and Molecular Genetics
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, California, USA
| |
Collapse
|
194
|
Maejima Y, Yokota S, O'Hashi R, Aoyama M, Shimomura K. The effect of avertin anesthesia and a mixture of three types of anesthetic agents on food intakeand body weight in high fat-induced obese maleand female mice. Exp Anim 2018; 68:57-69. [PMID: 30210091 PMCID: PMC6389510 DOI: 10.1538/expanim.17-0145] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Basic research on obesity is becoming more important due to an increasing number of obese
people. Experiments using obesity-model animals often require surgical interventions, such
as gastric operation, and proper selection of anesthesia is important. Avertin, an agent
mainly composed of 2,2,2-Tribromoethanol, has been used as general anesthesia for a long
time, without the use of narcotic drugs. In the current study, we found that a single
injection of avertin can decrease body weight (BW) in male and female C57BL/6J and ICR
mice with high fat-diet (HFD)-induced obesity, but not in standard diet-fed nonobese males
and females. Because the BW-reducing effect was more prominent in the female mice, we
compared the effects of avertin and a mixture of three types of anesthetic agents (3MIX),
which was developed in 2011, on BW reduction in HFD-induced obese female mice. Although
both avertin and 3MIX decreased food intake and BW, the effects of avertin were
significantly more potent than those of 3MIX. C-Fos expression, a neural activation
marker, was dramatically increased in the brain regions related to the regulation of both
food intake and the autonomic nervous system after avertin injection, but not after 3MIX
injection. This suggests that avertin strongly stimulates the center of feeding regulation
and the autonomic nervous system and therefore decreases BW. The current study suggests
the advantages of using 3MIX for surgical interventions in mice in obesity research, as it
is ideal to prevent anesthesia-induced BW decline.
Collapse
Affiliation(s)
- Yuko Maejima
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan
| | - Shoko Yokota
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan
| | - Rie O'Hashi
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan
| | - Masato Aoyama
- Department of Animal Science, Faculty of Agriculture, Utsunomiya University, 350 Minemachi, Utsunomiya-shi, Tochigi 321-8505, Japan
| | - Kenju Shimomura
- Department of Bioregulation and Pharmacological Medicine, Fukushima Medical University School of Medicine, 1 Hikarigaoka, Fukushima-shi, Fukushima 960-1295, Japan
| |
Collapse
|
195
|
Sex-specific differences in cannabinoid-induced extracellular-signal-regulated kinase phosphorylation in the cingulate cortex, prefrontal cortex, and nucleus accumbens of Lister Hooded rats. Behav Pharmacol 2018; 29:473-481. [DOI: 10.1097/fbp.0000000000000395] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
196
|
Šilkūnienė G, Žūkienė R, Naučienė Z, Degutytė-Fomins L, Mildažienė V. Impact of Gender and Age on Hyperthermia-Induced Changes in Respiration of Liver Mitochondria. ACTA ACUST UNITED AC 2018; 54:medicina54040062. [PMID: 30344293 PMCID: PMC6174333 DOI: 10.3390/medicina54040062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 08/29/2018] [Indexed: 11/29/2022]
Abstract
Aim: This study aimed to compare hyperthermia-induced changes in respiration and generation of reactive oxygen species (ROS) in liver mitochondria derived from animals of different gender and age. Methods: The effects of hyperthermia (40–47 °C) on oxidation of different substrates and ROS production were estimated in mitochondria isolated from the liver of male and female rats of the 1–1.5, 3–4, or 6–7 months age. Results: Gender-dependent differences in response of respiration to hyperthermia were the highest at 3–4 months of age, less so at 6–7 months of age, and only minor at juvenile age. Mild hyperthermia (40–42 °C) stimulated pyruvate + malate oxidation in mitochondria of females, but inhibited in mitochondria of males in the 3–4 month age group. The resistance of mitochondrial membrane to hyperthermia was the highest at 3–4 month males, and the lowest in the 6–7 month age group. Inhibition of glutamate + malate oxidation by hyperthermia was caused by thermal inactivation of glutamate dehydrogenase. ROS generation at 37 °C was higher at 1–1.5 month of age, but the increase in ROS generation with rise in temperature in this age group was the smallest, and the strongest in 6–7 month old animals of both genders. Conclusions: The response to hyperthermia varies during the first 6–7 months of life of experimental animals: stronger gender dependence is characteristic at 3–4 months of age, while mitochondria from 6–7 months animals are less resistant to hyperthermia.
Collapse
Affiliation(s)
- Giedrė Šilkūnienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania.
| | - Rasa Žūkienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania.
| | - Zita Naučienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania.
| | - Laima Degutytė-Fomins
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania.
| | - Vida Mildažienė
- Department of Biochemistry, Faculty of Natural Sciences, Vytautas Magnus University, LT-44404 Kaunas, Lithuania.
| |
Collapse
|
197
|
Pinares-Garcia P, Stratikopoulos M, Zagato A, Loke H, Lee J. Sex: A Significant Risk Factor for Neurodevelopmental and Neurodegenerative Disorders. Brain Sci 2018; 8:E154. [PMID: 30104506 PMCID: PMC6120011 DOI: 10.3390/brainsci8080154] [Citation(s) in RCA: 119] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/08/2018] [Accepted: 08/10/2018] [Indexed: 12/11/2022] Open
Abstract
Males and females sometimes significantly differ in their propensity to develop neurological disorders. Females suffer more from mood disorders such as depression and anxiety, whereas males are more susceptible to deficits in the dopamine system including Parkinson's disease (PD), attention-deficit hyperactivity disorder (ADHD) and autism. Despite this, biological sex is rarely considered when making treatment decisions in neurological disorders. A better understanding of the molecular mechanism(s) underlying sex differences in the healthy and diseased brain will help to devise diagnostic and therapeutic strategies optimal for each sex. Thus, the aim of this review is to discuss the available evidence on sex differences in neuropsychiatric and neurodegenerative disorders regarding prevalence, progression, symptoms and response to therapy. We also discuss the sex-related factors such as gonadal sex hormones and sex chromosome genes and how these might help to explain some of the clinically observed sex differences in these disorders. In particular, we highlight the emerging role of the Y-chromosome gene, SRY, in the male brain and its potential role as a male-specific risk factor for disorders such as PD, autism, and ADHD in many individuals.
Collapse
Affiliation(s)
- Paulo Pinares-Garcia
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Marielle Stratikopoulos
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| | - Alice Zagato
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia.
| | - Hannah Loke
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
| | - Joohyung Lee
- Brain and Gender laboratory, Centre for Endocrinology and Metabolism, Hudson Institute of Medical Research, Clayton, Victoria 3168, Australia.
- Department of Anatomy and Developmental Biology, Monash University, Clayton, Victoria 3168, Australia.
| |
Collapse
|
198
|
Ward MJ, Ellsworth SA, Hogan MP, Nystrom GS, Martinez P, Budhdeo A, Zelaya R, Perez A, Powell B, He H, Rokyta DR. Female-biased population divergence in the venom of the Hentz striped scorpion (Centruroides hentzi). Toxicon 2018; 152:137-149. [PMID: 30096334 DOI: 10.1016/j.toxicon.2018.07.026] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/27/2018] [Accepted: 07/31/2018] [Indexed: 11/16/2022]
Abstract
Sex-biased genes are expressed at higher levels in one sex and contribute to phenotypic differences between males and females, as well as overall phenotypic variation within and among populations. Venom has evolved primarily for predation and defense, making venom expression a highly variable phenotype as a result of local adaptation. Several scorpion species have shown both intraspecific and intersexual venom variation, and males have been observed using venom in courtship and mating, suggesting the existence of venom-specific, sex-biased genes that may contribute to population divergence. We used reversed-phase high-performance liquid chromatography (RP-HPLC), Agilent protein bioanalyzer chips, nano-liquid chromatography mass spectrometry (nLC/MS/MS), and median lethal dose (LD50) assays in fruit flies (Drosophila melanogaster) and banded crickets (Gryllodes sigillatus) to investigate proteomic and functional venom variation within and among three Florida populations of the Hentz striped scorpion (Centruroides hentzi). We found significant venom variation among populations, with females, not males, being responsible for this divergence. We also found significant variation in venom expression within populations, with males contributing more to within population variation than females. Our results provide evidence that male and female scorpions experience different natural and sexual selective pressures that have led to the expression of sex-biased venom genes and that these genes may be consequential in population divergence.
Collapse
Affiliation(s)
- Micaiah J Ward
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Schyler A Ellsworth
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Michael P Hogan
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Gunnar S Nystrom
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Paul Martinez
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Amisha Budhdeo
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Roxana Zelaya
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Alexander Perez
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Barclay Powell
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA
| | - Huan He
- Institute of Molecular Biophysics and College of Medicine, Florida State University, Tallahassee, FL, 32306, USA
| | - Darin R Rokyta
- Department of Biological Science, Florida State University, Tallahassee, FL, 32306, USA.
| |
Collapse
|
199
|
Ben-Zvi D, Meoli L, Abidi WM, Nestoridi E, Panciotti C, Castillo E, Pizarro P, Shirley E, Gourash WF, Thompson CC, Munoz R, Clish CB, Anafi RC, Courcoulas AP, Stylopoulos N. Time-Dependent Molecular Responses Differ between Gastric Bypass and Dieting but Are Conserved Across Species. Cell Metab 2018; 28:310-323.e6. [PMID: 30043755 PMCID: PMC6628900 DOI: 10.1016/j.cmet.2018.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/19/2017] [Accepted: 06/04/2018] [Indexed: 12/22/2022]
Abstract
The effectiveness of Roux-en-Y gastric bypass (RYGB) against obesity and its comorbidities has generated excitement about developing new, less invasive treatments that use the same molecular mechanisms. Although controversial, RYGB-induced improvement of metabolic function may not depend entirely upon weight loss. To elucidate the differences between RYGB and dieting, we studied several individual organ molecular responses and generated an integrative, interorgan view of organismal physiology. We also compared murine and human molecular signatures. We show that, although dieting and RYGB can bring about the same degree of weight loss, post-RYGB physiology is very different. RYGB induces distinct, organ-specific adaptations in a temporal pattern that is characterized by energetically demanding processes, which may be coordinated by HIF1a activation and the systemic repression of growth hormone receptor signaling. Many of these responses are conserved in rodents and humans and may contribute to the remarkable ability of surgery to induce and sustain metabolic improvement.
Collapse
Affiliation(s)
- Danny Ben-Zvi
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Department of Developmental Biology and Cancer Research, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem 91120, Israel; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA 02138, USA.
| | - Luca Meoli
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Wasif M Abidi
- Developmental Endoscopy Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Eirini Nestoridi
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Courtney Panciotti
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
| | - Erick Castillo
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Palmenia Pizarro
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Eleanor Shirley
- Division of Minimally Invasive and Metabolic Surgery, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - William F Gourash
- Division of Minimally Invasive and Metabolic Surgery, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Christopher C Thompson
- Developmental Endoscopy Laboratory, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Rodrigo Munoz
- Department of Digestive Surgery, School of Medicine, Pontificia Universidad Católica, Santiago 8331150, Chile
| | - Clary B Clish
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - Ron C Anafi
- Center for Sleep and Circadian Neurobiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Anita P Courcoulas
- Division of Minimally Invasive and Metabolic Surgery, Magee-Womens Hospital, University of Pittsburgh Medical Center, Pittsburgh, PA 15213, USA
| | - Nicholas Stylopoulos
- Center for Basic and Translational Obesity Research, Division of Endocrinology, CLS16066, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
200
|
Laing L, Viana J, Dempster E, Uren Webster T, van Aerle R, Mill J, Santos E. Sex-specific transcription and DNA methylation profiles of reproductive and epigenetic associated genes in the gonads and livers of breeding zebrafish. Comp Biochem Physiol A Mol Integr Physiol 2018; 222:16-25. [DOI: 10.1016/j.cbpa.2018.04.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/09/2018] [Accepted: 04/10/2018] [Indexed: 12/19/2022]
|