151
|
Ye YQ, Jin CW, Fan SK, Mao QQ, Sun CL, Yu Y, Lin XY. Elevation of NO production increases Fe immobilization in the Fe-deficiency roots apoplast by decreasing pectin methylation of cell wall. Sci Rep 2015; 5:10746. [PMID: 26073914 PMCID: PMC4466582 DOI: 10.1038/srep10746] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 04/29/2015] [Indexed: 12/15/2022] Open
Abstract
Cell wall is the major component of root apoplast which is the main reservoir for iron in roots, while nitric oxide (NO) is involved in regulating the synthesis of cell wall. However, whether such regulation could influence the reutilization of iron stored in root apoplast remains unclear. In this study, we observed that iron deficiency elevated NO level in tomato (Solanum lycopersicum) roots. However, application of S-nitrosoglutathione, a NO donor, significantly enhanced iron retention in root apoplast of iron-deficient plants, accompanied with a decrease of iron level in xylem sap. Consequently, S-nitrosoglutathione treatment increased iron concentration in roots, but decreased it in shoots. The opposite was true for the NO scavenging treatment with 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO). Interestingly, S-nitrosoglutathione treatment increased pectin methylesterase activity and decreased degree of pectin methylation in root cell wall of both iron-deficient and iron-sufficient plants, which led to an increased iron retention in pectin fraction, thus increasing the binding capacity of iron to the extracted cell wall. Altogether, these results suggested that iron-deficiency-induced elevation of NO increases iron immobilization in root apoplast by decreasing pectin methylation in cell wall.
Collapse
Affiliation(s)
- Yi Quan Ye
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chong Wei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Shi Kai Fan
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qian Qian Mao
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Cheng Liang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xian Yong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, PR China
| |
Collapse
|
152
|
Corpas FJ, Barroso JB. Functions of Nitric Oxide (NO) in Roots during Development and under Adverse Stress Conditions. PLANTS 2015; 4:240-52. [PMID: 27135326 PMCID: PMC4844326 DOI: 10.3390/plants4020240] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/14/2015] [Indexed: 02/04/2023]
Abstract
The free radical molecule, nitric oxide (NO), is present in the principal organs of plants, where it plays an important role in a wide range of physiological functions. Root growth and development are highly regulated by both internal and external factors such as nutrient availability, hormones, pattern formation, cell polarity and cell cycle control. The presence of NO in roots has opened up new areas of research on the role of NO, including root architecture, nutrient acquisition, microorganism interactions and the response mechanisms to adverse environmental conditions, among others. Additionally, the exogenous application of NO throughout the roots has the potential to counteract specific damages caused by certain stresses. This review aims to provide an up-to-date perspective on NO functions in the roots of higher plants.
Collapse
Affiliation(s)
- Francisco J Corpas
- Group of Antioxidants, Free Radicals and Nitric Oxide in Biotechnology, Food and Agriculture, Department of Biochemistry, Cell and Molecular Biology of Plants, Estación Experimental del Zaidín, CSIC, Apartado 419, E-18080 Granada, Spain.
| | - Juan B Barroso
- Group of Biochemistry and Cell Signaling in Nitric Oxide, Department of Biochemistry and Molecular Biology, University of Jaén, Campus "Las Lagunillas", E-23071 Jaén, Spain.
- Department of Experimental Biology, Center for Advanced Studies in Olive Grove and Olive Oils, University of Jaén, E-23071 Jaén, Spain.
| |
Collapse
|
153
|
Sun H, Li J, Song W, Tao J, Huang S, Chen S, Hou M, Xu G, Zhang Y. Nitric oxide generated by nitrate reductase increases nitrogen uptake capacity by inducing lateral root formation and inorganic nitrogen uptake under partial nitrate nutrition in rice. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2449-59. [PMID: 25784715 PMCID: PMC4986861 DOI: 10.1093/jxb/erv030] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Increasing evidence shows that partial nitrate nutrition (PNN) can be attributed to improved plant growth and nitrogen-use efficiency (NUE) in rice. Nitric oxide (NO) is a signalling molecule involved in many physiological processes during plant development and nitrogen (N) assimilation. It remains unclear whether molecular NO improves NUE through PNN. Two rice cultivars (cvs Nanguang and Elio), with high and low NUE, respectively, were used in the analysis of NO production, nitrate reductase (NR) activity, lateral root (LR) density, and (15)N uptake under PNN, with or without NO production donor and inhibitors. PNN increased NO accumulation in cv. Nanguang possibly through the NIA2-dependent NR pathway. PNN-mediated NO increases contributed to LR initiation, (15)NH₄(+)/(15)NO₃(-) influx into the root, and levels of ammonium and nitrate transporters in cv. Nanguang but not cv. Elio. Further results revealed marked and specific induction of LR initiation and (15)NH₄(+)/(15)NO₃(-) influx into the roots of plants supplied with NH₄(+)+sodium nitroprusside (SNP) relative to those supplied with NH₄(+) alone, and considerable inhibition upon the application of cPTIO or tungstate (NR inhibitor) in addition to PNN, which is in agreement with the change in NO fluorescence in the two rice cultivars. The findings suggest that NO generated by the NR pathway plays a pivotal role in improving the N acquisition capacity by increasing LR initiation and the inorganic N uptake rate, which may represent a strategy for rice plants to adapt to a fluctuating nitrate supply and increase NUE.
Collapse
Affiliation(s)
- Huwei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiao Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Wenjing Song
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Qingdao 266101, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuangjie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Si Chen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Mengmeng Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
154
|
Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Lorenzo O. Nitric oxide (NO) and phytohormones crosstalk during early plant development. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2857-68. [PMID: 25954048 DOI: 10.1093/jxb/erv213] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
During the past two decades, nitric oxide (NO) has evolved from a mere gaseous free radical to become a new messenger in plant biology with an important role in a plethora of physiological processes. This molecule is involved in the regulation of plant growth and development, pathogen defence and abiotic stress responses, and in most cases this is achieved through its interaction with phytohormones. Understanding the role of plant growth regulators is essential to elucidate how plants activate the appropriate set of responses to a particular developmental stage or a particular stress. The first task to achieve this goal is the identification of molecular targets, especially those involved in the regulation of the crosstalk. The nature of NO targets in these growth and development processes and stress responses remains poorly described. Currently, the molecular mechanisms underlying the effects of NO in these processes and their interaction with other plant hormones are beginning to unravel. In this review, we made a compilation of the described interactions between NO and phytohormones during early plant developmental processes (i.e. seed dormancy and germination, hypocotyl elongation and root development).
Collapse
Affiliation(s)
- Luis Sanz
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Pablo Albertos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Isabel Mateos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Inmaculada Sánchez-Vicente
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Tamara Lechón
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - María Fernández-Marcos
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| | - Oscar Lorenzo
- Dpto. de Microbiología y Genética, Instituto Hispano-Luso de Investigaciones Agrarias (CIALE), Facultad de Biología, Universidad de Salamanca, C/ Río Duero 12, 37185 Salamanca, Spain
| |
Collapse
|
155
|
Kawahara Y, Kitamura Y. Changes in cell size and number and in rhizodermal development contribute to root tip swelling of Hyoscyamus albus roots subjected to iron deficiency. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2015; 89:107-111. [PMID: 25734329 DOI: 10.1016/j.plaphy.2015.02.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 02/24/2015] [Indexed: 06/04/2023]
Abstract
Root tip swelling is a common phenomenon observed when plant roots are subjected to Fe deficiency. We analysed whether an increase in cell number or an enlargement of cell width was involved in this phenomenon. Root tips of Hyoscyamus albus cultured with or without Fe were stained with fluorescent SYTO14 and analysed by confocal laser-scanning microscopy. Time-course and position-based examination revealed that the inhibition of longitudinal cell elongation and acceleration of transverse cell enlargement under Fe deficiency started from the tips and then extended towards the base during the time-course period. An increase in cell number also occurred behind the tips. In addition, the development of rhizodermal protrusions was observed on the surface of roots subjected to Fe deficiency. These results indicated that changes in cell size and number and in root hair development were all involved in root tip swelling.
Collapse
Affiliation(s)
- Yuki Kawahara
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, Japan
| | - Yoshie Kitamura
- Graduate School of Fisheries Science and Environmental Studies, Nagasaki University, Nagasaki, Japan.
| |
Collapse
|
156
|
Domingos P, Prado AM, Wong A, Gehring C, Feijo JA. Nitric oxide: a multitasked signaling gas in plants. MOLECULAR PLANT 2015; 8:506-20. [PMID: 25680232 DOI: 10.1016/j.molp.2014.12.010] [Citation(s) in RCA: 256] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/11/2014] [Accepted: 12/14/2014] [Indexed: 05/20/2023]
Abstract
Nitric oxide (NO) is a gaseous reactive oxygen species (ROS) that has evolved as a signaling hormone in many physiological processes in animals. In plants it has been demonstrated to be a crucial regulator of development, acting as a signaling molecule present at each step of the plant life cycle. NO has also been implicated as a signal in biotic and abiotic responses of plants to the environment. Remarkably, despite this plethora of effects and functional relationships, the fundamental knowledge of NO production, sensing, and transduction in plants remains largely unknown or inadequately characterized. In this review we cover the current understanding of NO production, perception, and action in different physiological scenarios. We especially address the issues of enzymatic and chemical generation of NO in plants, NO sensing and downstream signaling, namely the putative cGMP and Ca(2+) pathways, ion-channel activity modulation, gene expression regulation, and the interface with other ROS, which can have a profound effect on both NO accumulation and function. We also focus on the importance of NO in cell-cell communication during developmental processes and sexual reproduction, namely in pollen tube guidance and embryo sac fertilization, pathogen defense, and responses to abiotic stress.
Collapse
Affiliation(s)
| | | | - Aloysius Wong
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Christoph Gehring
- Division of Biological and Environmental Sciences and Engineering, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Jose A Feijo
- Instituto Gulbenkian de Ciência, P-2780-156 Oeiras, Portugal; Department of Cell Biology and Molecular Genetics, University of Maryland, 0118 BioScience Research Building, College Park, MD 20742-5815, USA.
| |
Collapse
|
157
|
Li J, Zhu D, Wang R, Shen W, Guo Y, Ren Y, Shen W, Huang L. β-Cyclodextrin-hemin complex-induced lateral root formation in tomato: involvement of nitric oxide and heme oxygenase 1. PLANT CELL REPORTS 2015; 34:381-93. [PMID: 25433859 DOI: 10.1007/s00299-014-1716-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 11/06/2014] [Accepted: 11/20/2014] [Indexed: 05/26/2023]
Abstract
β-Cyclodextrin-hemin complex-induced tomato lateral root formation was associated with nitric oxide and heme oxygenase 1 by modulating cell cycle regulatory genes. β-Cyclodextrin-hemin complex (β-CDH), a complex by combining β-cyclodextrin (β-CD) with hemin, a heme oxygenase 1 (HO1) inducer, was a trigger of cucumber adventitious root formation by enhancing HO1 gene expression. In this report, our results identified the previously unknown function of β-CDH in plants: the inducer of tomato lateral root (LR) formation. β-CDH-triggered LR formation is hemin-specific, since β-CD failed to induce LR development. Because nitric oxide (NO) is involved in LR formation, the correlation of β-CDH with NO and HO1 was investigated. Our analysis suggested that β-CDH induced an increase in endogenous NO production, followed by up-regulation of tomato HO1 gene and LR formation, all of which were mimicked by hemin and two NO-releasing compounds (SNP and GSNO). The induction of HO1 gene expression and LR formation triggered by β-CDH or hemin were significantly blocked by an inhibitor of HO1. Further results revealed that both β-CDH- and SNP-stimulated HO1 gene expression and thereafter LR formation were sensitive to the removal of NO with a potent NO scavenger, and the responses of SNP were significantly blocked by an inhibitor of HO1. Molecular evidence illustrated that representative cell cycle regulatory genes, including SlCDKA1, SlCYCA3;1, SlCYCA2;1, and SlCYCD3;1, were significantly up-regulated by β-CDH and SNP, but obviously blocked when seedlings were co-treated with the scavenger of NO or the inhibitor of HO1. In summary, our physiological and molecular evidence demonstrated that both NO and HO1 were involved in the β-CDH-induced LR formation with, at least partially, HO1 acting downstream of NO signaling.
Collapse
Affiliation(s)
- Jiale Li
- College of Life Sciences, Laboratory Center of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | | | | | | | | | | | | | | |
Collapse
|
158
|
Brumbarova T, Bauer P, Ivanov R. Molecular mechanisms governing Arabidopsis iron uptake. TRENDS IN PLANT SCIENCE 2015; 20:124-33. [PMID: 25499025 DOI: 10.1016/j.tplants.2014.11.004] [Citation(s) in RCA: 207] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 11/07/2014] [Accepted: 11/17/2014] [Indexed: 05/18/2023]
Abstract
Plants are the principal source of dietary iron (Fe) for most of Earth's population and Fe deficiency can lead to major health problems. Developing strategies to improve plant Fe content is a challenge because Fe is essential and toxic and therefore regulating Fe uptake is crucial for plant survival. Acquiring soil Fe relies on complex regulatory events that occur in root epidermal cells. We review recent advances in elucidating many aspects of the regulation of Fe acquisition. These include the expanding protein network involved in FER-LIKE IRON DEFICIENCY INDUCED TRANSCRIPTION FACTOR (FIT)-dependent gene regulation and novel findings on the intracellular trafficking of the Fe transporter IRON-REGULATED TRANSPORTER 1 (IRT1). We outline future challenges and propose strategies, such as exploiting natural variation, to further expand our knowledge.
Collapse
Affiliation(s)
- Tzvetina Brumbarova
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany
| | - Petra Bauer
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich-Heine University, D-40225 Düsseldorf, Germany
| | - Rumen Ivanov
- Institute of Botany, Heinrich-Heine University, Universitätstrasse 1, D-40225 Düsseldorf, Germany.
| |
Collapse
|
159
|
Shen C, Yue R, Sun T, Zhang L, Yang Y, Wang H. OsARF16, a transcription factor regulating auxin redistribution, is required for iron deficiency response in rice (Oryza sativa L.). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 231:148-58. [PMID: 25576000 DOI: 10.1016/j.plantsci.2014.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/24/2014] [Accepted: 12/01/2014] [Indexed: 05/18/2023]
Abstract
Plant response to iron deficiency is the most important feature for survival in Fe-limited soils. Several phytohormones, including auxin, are involved in iron uptake and homeostasis. However, the mechanisms behind how auxin participates in the iron deficiency response in rice are largely unknown. We found that OsARF16 was involved in the iron deficiency response and the induction of iron deficiency response genes. Most Fe-deficient symptoms could be partially restored in the osarf16 mutant, including dwarfism, photosynthesis decline, a reduction in iron content and root system architecture (RSA) regulation. OsARF16 expression was induced in the roots and shoots by Fe deprivation. Restoration of the phenotype could also be mimicked by 1-NOA, an auxin influx inhibitor. Furthermore, the qRT-PCR data indicated that the induction of Fe-deficiency response genes by iron deficiency was more compromised in the osarf16 mutant than in Nipponbare. In conclusion, osarf16, an auxin insensitive mutant, was involved in iron deficiency response in rice. Our results reveal a new biological function for OsARF16 and provide important information on how ARF-medicated auxin signaling affects iron signaling and the iron deficiency response. This work may help us to improve production or increased Fe nutrition of rice to iron deficiency by regulating auxin signaling.
Collapse
Affiliation(s)
- Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| | - Runqing Yue
- Henan Academy of Agricultural Sciences, Zhengzhou 450002, China
| | - Tao Sun
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Yanjun Yang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Huizhong Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China.
| |
Collapse
|
160
|
Affiliation(s)
- Agustina Buet
- Instituto de Fisiología Vegetal (INFIVE); Universidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| | - Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE); Universidad Nacional de La Plata (UNLP) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET); Buenos Aires Argentina
| |
Collapse
|
161
|
Osuna D, Prieto P, Aguilar M. Control of Seed Germination and Plant Development by Carbon and Nitrogen Availability. FRONTIERS IN PLANT SCIENCE 2015; 6:1023. [PMID: 26635847 PMCID: PMC4649081 DOI: 10.3389/fpls.2015.01023] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Accepted: 11/05/2015] [Indexed: 05/20/2023]
Abstract
Little is known about the molecular basis of the influence of external carbon/nitrogen (C/N) ratio and other abiotic factors on phytohormones regulation during seed germination and plant developmental processes, and the identification of elements that participate in this response is essential to understand plant nutrient perception and signaling. Sugars (sucrose, glucose) and nitrate not only act as nutrients but also as signaling molecules in plant development. A connection between changes in auxin transport and nitrate signal transduction has been reported in Arabidopsis thaliana through the NRT1.1, a nitrate sensor and transporter that also functions as a repressor of lateral root growth under low concentrations of nitrate by promoting auxin transport. Nitrate inhibits the elongation of lateral roots, but this effect is significantly reduced in abscisic acid (ABA)-insensitive mutants, what suggests that ABA might mediate the inhibition of lateral root elongation by nitrate. Gibberellin (GA) biosynthesis has been also related to nitrate level in seed germination and its requirement is determined by embryonic ABA. These mechanisms connect nutrients and hormones signaling during seed germination and plant development. Thus, the genetic identification of the molecular components involved in nutrients-dependent pathways would help to elucidate the potential crosstalk between nutrients, nitric oxide (NO) and phytohormones (ABA, auxins and GAs) in seed germination and plant development. In this review we focus on changes in C and N levels and how they control seed germination and plant developmental processes through the interaction with other plant growth regulators, such as phytohormones.
Collapse
Affiliation(s)
- Daniel Osuna
- Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, Córdoba, Spain,
- *Correspondence: Daniel Osuna,
| | - Pilar Prieto
- Institute for Sustainable Agriculture, Agencia Estatal Consejo Superior de Investigaciones Científicas, Córdoba, Spain,
| | - Miguel Aguilar
- Área de Fisiología Vegetal, Facultad de Ciencias, Universidad de Córdoba, Córdoba, Spain
| |
Collapse
|
162
|
Zargar SM, Fujiwara M, Inaba S, Kobayashi M, Kurata R, Ogata Y, Fukao Y. Correlation analysis of proteins responsive to Zn, Mn, or Fe deficiency in Arabidopsis roots based on iTRAQ analysis. PLANT CELL REPORTS 2015; 34:157-66. [PMID: 25366567 DOI: 10.1007/s00299-014-1696-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/21/2014] [Accepted: 10/07/2014] [Indexed: 05/25/2023]
Abstract
For discovering the functional correlation between the identified and quantified proteins by iTRAQ analysis, here we propose a correlation analysis method with cosine correlation coefficients as a powerful tool. iTRAQ analysis is a quantitative proteomics approach that enables identification and quantification of a large number of proteins. In order to obtain proteins responsive to Zn, Mn, or Fe mineral deficiency, we conducted iTRAQ analysis using a microsomal fraction of protein extractions from Arabidopsis root tissues. We identified and quantified 730 common proteins in three biological replicates with less than 1 % false discovery rate. To determine the role of these proteins in tolerating mineral deficiencies and their relation to each other, we calculated cosine correlation coefficients and represented the outcomes on a correlation map for visual understanding of functional relations among the identified proteins. Functionally similar proteins were gathered into the same clusters. Interestingly, a cluster of proteins (FRO2, IRT1, AHA2, PDR9/ABCG37, and GLP5) highly responsive to Fe deficiency was identified, which included both known and unknown novel proteins involved in tolerating Fe deficiency. We propose that the correlation analysis with the cosine correlation coefficients is a powerful method for finding important proteins of interest to several biological processes through comprehensive data sets.
Collapse
Affiliation(s)
- Sajad Majeed Zargar
- Plant Global Education Project Graduate School of Biological Sciences, Nara Institute of Science and Technology, Takayama, 8916-5, Ikoma, 630-0192, Japan
| | | | | | | | | | | | | |
Collapse
|
163
|
Finatto T, de Oliveira AC, Chaparro C, da Maia LC, Farias DR, Woyann LG, Mistura CC, Soares-Bresolin AP, Llauro C, Panaud O, Picault N. Abiotic stress and genome dynamics: specific genes and transposable elements response to iron excess in rice. RICE (NEW YORK, N.Y.) 2015; 8:13. [PMID: 25844118 PMCID: PMC4385019 DOI: 10.1186/s12284-015-0045-6] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 01/21/2015] [Indexed: 05/04/2023]
Abstract
BACKGROUND Iron toxicity is a root related abiotic stress, occurring frequently in flooded soils. It can affect the yield of rice in lowland production systems. This toxicity is associated with high concentrations of reduced iron (Fe(2+)) in the soil solution. Although the first interface of the element is in the roots, the consequences of an excessive uptake can be observed in several rice tissues. In an original attempt to find both genes and transposable elements involved in the response to an iron toxicity stress, we used a microarray approach to study the transcriptional responses of rice leaves of cv. Nipponbare (Oryza sativa L. ssp. japonica) to iron excess in nutrient solution. RESULTS A large number of genes were significantly up- or down-regulated in leaves under the treatment. We analyzed the gene ontology and metabolic pathways of genes involved in the response to this stress and the cis-regulatory elements (CREs) present in the promoter region of up-regulated genes. The majority of genes act in the pathways of lipid metabolic process, carbohydrate metabolism, biosynthesis of secondary metabolites and plant hormones. We also found genes involved in iron acquisition and mobilization, transport of cations and regulatory mechanisms for iron responses, and in oxidative stress and reactive oxygen species detoxification. Promoter regions of 27% of genes up-regulated present at least one significant occurrence of an ABA-responsive CRE. Furthermore, and for the first time, we were able to show that iron stress triggers the up-regulation of many LTR-retrotransposons. We have established a complete inventory of transposable elements transcriptionally activated under iron excess and the CREs which are present in their LTRs. CONCLUSION The short-term response of Nipponbare seedlings to iron excess, includes activation of genes involved in iron homeostasis, in particular transporters, transcription factors and ROS detoxification in the leaves, but also many transposable elements. Our data led to the identification of CREs which are associated with both genes and LTR-retrotransposons up-regulated under iron excess. Our results strengthen the idea that LTR-retrotransposons participate in the transcriptional response to stress and could thus confer an adaptive advantage for the plant.
Collapse
Affiliation(s)
- Taciane Finatto
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
- />Present address: Universidade Tecnológica Federal do Paraná, Campus Pato Branco, 85503-390 Pato Branco, PR Brazil
| | - Antonio Costa de Oliveira
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Cristian Chaparro
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
- />Present address: Laboratoire Ecologie et Evolution des Interactions, UMR 5244, F-66860, Université de Perpignan Via Domitia, Perpignan, France
| | - Luciano C da Maia
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Daniel R Farias
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Leomar G Woyann
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Claudete C Mistura
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Adriana P Soares-Bresolin
- />Plant Genomics and Breeding Center, Eliseu Maciel School of Agronomy, Federal University of Pelotas, 96010-610 Pelotas, RS Brazil
| | - Christel Llauro
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Olivier Panaud
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| | - Nathalie Picault
- />Laboratoire Génome et Développement des Plantes, UMR 5096, Université de Perpignan Via Domitia, F-66860 Perpignan, France
- />CNRS, Laboratoire Génome et Développement des Plantes, UMR 5096, F-66860 Perpignan, France
| |
Collapse
|
164
|
Kong J, Dong Y, Xu L, Liu S, Bai X. Effects of foliar application of salicylic acid and nitric oxide in alleviating iron deficiency induced chlorosis of Arachis hypogaea L. BOTANICAL STUDIES 2014; 55:9. [PMID: 28510913 PMCID: PMC5432746 DOI: 10.1186/1999-3110-55-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Accepted: 11/07/2013] [Indexed: 05/04/2023]
Abstract
BACKGROUND The aim of this experiment was to analyze the alleviation mechanism of exogenous salicylic acid (SA) and sodium nitroprusside (SNP, a nitric oxide donor) on peanut seedlings under Fe deficiency. The effects of SA and SNP on iron uptake and availability, ions balance and oxidant damage were studied with foliar application of exogenous 1.0 mM SA (SA) or 2.5 mM SNP (SNP) or 0.5 mM SA+1.25 mM SNP [1/2(SA+SNP)] or 1.0 mM SA+2.5 mM SNP (SA+SNP). RESULTS The results showed that after 21 days treatment, the peanut seedlings growing under iron deficiency conditions exhibited leaf interveinal chlorosis, and this iron-deficiency induced symptom was prevented by foliar application of SA, SNP, 1/2 (SA+SNP), especially SA+SNP. The increased contents of chlorophyll and active iron, and increased Fe accumulation in cell organelles were observed in SA+SNP treated young leaves, suggesting that an improvement of iron availability in plants. Moreover, the improved nutrient solution pH, increased H+-ATPase activity and increased iron concentration in roots in SA+SNP treated plants, suggesting that SA+SNP is effective in modulating iron uptake. Furthermore, the increased calcium (Ca), magnesium (Mg) and zinc (Zn) concentrations and decreased manganese (Mn) and copper (Cu) concentrations in the leaves and roots of peanut indicated that SA+SNP stimulated the maintenance of ions disturbed by Fe deficiency. In addition, SA+SNP alleviated the increased accumulation of superoxide anion (O2•-) generation rate and malondialdehyde (MDA), and modulated the antioxidant enzymes. CONCLUSIONS These results indicated that the interaction of SA and SNP promoted Fe uptake, translocation and activation; modulated the balance of mineral elements; and protected Fe deficiency induced oxidative stress. Therefore, SA and SNP had synergistic effects in alleviating chlorosis induced by Fe deficiency.
Collapse
Affiliation(s)
- Jing Kong
- College of Resources and Environment, Shandong Agricultural University, Tai’an, 271018 China
| | - Yuanjie Dong
- College of Resources and Environment, Shandong Agricultural University, Tai’an, 271018 China
| | - Linlin Xu
- College of Resources and Environment, Shandong Agricultural University, Tai’an, 271018 China
| | - Shuang Liu
- College of Resources and Environment, Shandong Agricultural University, Tai’an, 271018 China
| | - Xiaoying Bai
- College of Resources and Environment, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
165
|
Sanz L, Fernández-Marcos M, Modrego A, Lewis DR, Muday GK, Pollmann S, Dueñas M, Santos-Buelga C, Lorenzo O. Nitric oxide plays a role in stem cell niche homeostasis through its interaction with auxin. PLANT PHYSIOLOGY 2014; 166:1972-84. [PMID: 25315603 PMCID: PMC4256006 DOI: 10.1104/pp.114.247445] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Accepted: 10/09/2014] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a unique reactive nitrogen molecule with an array of signaling functions that modulates plant developmental processes and stress responses. To explore the mechanisms by which NO modulates root development, we used a pharmacological approach and NO-deficient mutants to unravel the role of NO in establishing auxin distribution patterns necessary for stem cell niche homeostasis. Using the NO synthase inhibitor and Arabidopsis (Arabidopsis thaliana) NO biosynthesis mutants (nitric oxide-associated1 [noa1], nitrate reductase1 [nia1] and nia2, and nia1 nia2 noa1), we show that depletion of NO in noa1 reduces primary root elongation and increases flavonol accumulation consistent with elevated reactive oxygen species levels. The elevated flavonols are required for the growth effect, because the transparent testa4 mutation reverses the noa1 mutant root elongation phenotype. In addition, noa1 and nia1 nia2 noa1 NO-deficient mutant roots display small root meristems with abnormal divisions. Concomitantly, auxin biosynthesis, transport, and signaling are perturbed. We further show that NO accumulates in cortex/endodermis stem cells and their precursor cells. In endodermal and cortical cells, the noa1 mutant acts synergistically to the effect of the wuschel-related homeobox5 mutation on the proximal meristem, suggesting that NO could play an important role in regulating stem cell decisions, which has been reported in animals.
Collapse
Affiliation(s)
- Luis Sanz
- Departamento de Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, 37185 Salamanca, Spain (L.S., M.F.-M., A.M., O.L.);Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106 (D.R.L., G.K.M.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain (S.P.); andGrupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Universidad de Salamanca, 37007 Salamanca, Spain (M.D., C.S.-B.)
| | - María Fernández-Marcos
- Departamento de Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, 37185 Salamanca, Spain (L.S., M.F.-M., A.M., O.L.);Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106 (D.R.L., G.K.M.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain (S.P.); andGrupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Universidad de Salamanca, 37007 Salamanca, Spain (M.D., C.S.-B.)
| | - Abelardo Modrego
- Departamento de Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, 37185 Salamanca, Spain (L.S., M.F.-M., A.M., O.L.);Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106 (D.R.L., G.K.M.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain (S.P.); andGrupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Universidad de Salamanca, 37007 Salamanca, Spain (M.D., C.S.-B.)
| | - Daniel R Lewis
- Departamento de Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, 37185 Salamanca, Spain (L.S., M.F.-M., A.M., O.L.);Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106 (D.R.L., G.K.M.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain (S.P.); andGrupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Universidad de Salamanca, 37007 Salamanca, Spain (M.D., C.S.-B.)
| | - Gloria K Muday
- Departamento de Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, 37185 Salamanca, Spain (L.S., M.F.-M., A.M., O.L.);Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106 (D.R.L., G.K.M.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain (S.P.); andGrupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Universidad de Salamanca, 37007 Salamanca, Spain (M.D., C.S.-B.)
| | - Stephan Pollmann
- Departamento de Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, 37185 Salamanca, Spain (L.S., M.F.-M., A.M., O.L.);Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106 (D.R.L., G.K.M.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain (S.P.); andGrupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Universidad de Salamanca, 37007 Salamanca, Spain (M.D., C.S.-B.)
| | - Montserrat Dueñas
- Departamento de Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, 37185 Salamanca, Spain (L.S., M.F.-M., A.M., O.L.);Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106 (D.R.L., G.K.M.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain (S.P.); andGrupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Universidad de Salamanca, 37007 Salamanca, Spain (M.D., C.S.-B.)
| | - Celestino Santos-Buelga
- Departamento de Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, 37185 Salamanca, Spain (L.S., M.F.-M., A.M., O.L.);Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106 (D.R.L., G.K.M.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain (S.P.); andGrupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Universidad de Salamanca, 37007 Salamanca, Spain (M.D., C.S.-B.)
| | - Oscar Lorenzo
- Departamento de Fisiología Vegetal, Instituto Hispano-Luso de Investigaciones Agrarias, Facultad de Biología, Universidad de Salamanca, 37185 Salamanca, Spain (L.S., M.F.-M., A.M., O.L.);Department of Biology and Center for Molecular Communication and Signaling, Wake Forest University, Winston-Salem, North Carolina 27106 (D.R.L., G.K.M.);Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid-Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain (S.P.); andGrupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Universidad de Salamanca, 37007 Salamanca, Spain (M.D., C.S.-B.)
| |
Collapse
|
166
|
Mostofa MG, Seraj ZI, Fujita M. Exogenous sodium nitroprusside and glutathione alleviate copper toxicity by reducing copper uptake and oxidative damage in rice (Oryza sativa L.) seedlings. PROTOPLASMA 2014; 251:1373-86. [PMID: 24752795 DOI: 10.1007/s00709-014-0639-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Accepted: 03/22/2014] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) and glutathione (GSH) regulate a variety of physiological processes and stress responses; however, their involvement in mitigating Cu toxicity in plants has not been extensively studied. This study investigated the interactive effect of exogenous sodium nitroprusside (SNP) and GSH on Cu homeostasis and Cu-induced oxidative damage in rice seedlings. Hydroponically grown 12-day-old seedlings were subjected to 100 μM CuSO4 alone and in combination with 200 μM SNP (an NO donor) and 200 μM GSH. Cu exposure for 48 h resulted in toxicity symptoms such as stunted growth, chlorosis, and rolling in leaves. Cu toxicity was also manifested by a sharp increase in lipoxygenase (LOX) activity, lipid peroxidation (MDA), hydrogen peroxide (H2O2), proline (Pro) content, and rapid reductions in biomass, chlorophyll (Chl), and relative water content (RWC). Cu-caused oxidative stress was evident by overaccumulation of reactive oxygen species (ROS; superoxide (O2 (•-)) and H2O2). Ascorbate (AsA) content decreased while GSH and phytochelatin (PC) content increased significantly in Cu-stressed seedlings. Exogenous SNP, GSH, or SNP + GSH decreased toxicity symptoms and diminished a Cu-induced increase in LOX activity, O2 (•-), H2O2, MDA, and Pro content. They also counteracted a Cu-induced increase in superoxide dismutase (SOD), ascorbate peroxidase (APX), glutathione reductase (GR), monodehydroascorbate reductase (MDHAR), and glyoxalase I and glyoxalase II activities, which paralleled changes in ROS and MDA levels. These seedlings also showed a significant increase in catalase (CAT), glutathione peroxidase (GPX), dehydroascorbate reductase (DHAR), glutathione S-transferase (GST) activities, and AsA and PC content compared with the seedlings stressed with Cu alone. Cu analysis revealed that SNP and GSH restricted the accumulation of Cu in the roots and leaves of Cu-stressed seedlings. Our results suggest that Cu exposure provoked an oxidative burden while reduced Cu uptake and modulating the antioxidant defense and glyoxalase systems by adding SNP and GSH play an important role in alleviating Cu toxicity. Furthermore, the protective action of GSH and SNP + GSH was more efficient than SNP alone.
Collapse
Affiliation(s)
- Mohammad Golam Mostofa
- Laboratory of Plant Stress Responses, Department of Applied Biological Science, Faculty of Agriculture, Kagawa University, Miki, Kagawa, 761-0795, Japan,
| | | | | |
Collapse
|
167
|
Gong B, Miao L, Kong W, Bai JG, Wang X, Wei M, Shi Q. Nitric oxide, as a downstream signal, plays vital role in auxin induced cucumber tolerance to sodic alkaline stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:258-266. [PMID: 25194776 DOI: 10.1016/j.plaphy.2014.08.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Nitric oxide (NO) and auxin (indole-3-acetic acid; IAA) play vital roles in regulating plants tolerance to abiotic stresses. This study showed that both NO and IAA could induce cucumber plants tolerance to sodic alkaline stress, which depended on their roles in regulating reactive oxygen species (ROS) scavenging, antioxidative enzymes activities, Na(+) accumulation and protecting photosystems II (PSII) from damage. In addition, IAA has significant effect on NO accumulation in cucumber root, which could be responsible for IAA-induced sodic alkaline stress tolerance. Further investigation indicated that the function of IAA could be abolished by NO scavenger (cPTIO). On the contrary, IAA transport inhibitor (NPA) showed no significant effects on abolishing the function of NO. Based on these results, it could be concluded that NO is an essential downstream signal for IAA-induced cucumber tolerance to sodic alkaline stress.
Collapse
Affiliation(s)
- Biao Gong
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Li Miao
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Wenjie Kong
- Resources and Environment Department, Heze Univeristy, Heze 274015, PR China
| | - Ji-Gang Bai
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, PR China
| | - Xiufeng Wang
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Min Wei
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China
| | - Qinghua Shi
- State Key Laboratory of Crop Biology, Scientific Observing and Experimental Station of Environment Controlled Agricultural Engineering in Huang-Huai-Hai Region, Ministry of Agriculture, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, PR China.
| |
Collapse
|
168
|
Mamidi S, Lee RK, Goos JR, McClean PE. Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). PLoS One 2014; 9:e107469. [PMID: 25225893 PMCID: PMC4166409 DOI: 10.1371/journal.pone.0107469] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/14/2014] [Indexed: 01/08/2023] Open
Abstract
Iron deficiency chlorosis (IDC) is a yield limiting problem in soybean (Glycine max (L.) Merr) production regions with calcareous soils. Genome-wide association study (GWAS) was performed using a high density SNP map to discover significant markers, QTL and candidate genes associated with IDC trait variation. A stepwise regression model included eight markers after considering LD between markers, and identified seven major effect QTL on seven chromosomes. Twelve candidate genes known to be associated with iron metabolism mapped near these QTL supporting the polygenic nature of IDC. A non-synonymous substitution with the highest significance in a major QTL region suggests soybean orthologs of FRE1 on Gm03 is a major gene responsible for trait variation. NAS3, a gene that encodes the enzyme nicotianamine synthase which synthesizes the iron chelator nicotianamine also maps to the same QTL region. Disease resistant genes also map to the major QTL, supporting the hypothesis that pathogens compete with the plant for Fe and increase iron deficiency. The markers and the allelic combinations identified here can be further used for marker assisted selection.
Collapse
Affiliation(s)
- Sujan Mamidi
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota, United States of America
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Rian K. Lee
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota, United States of America
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jay R. Goos
- Department of Soil Science, North Dakota State University, Fargo, North Dakota, United States of America
| | - Phillip E. McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota, United States of America
- Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| |
Collapse
|
169
|
Adamakis IDS, Panteris E, Eleftheriou EP. Tungsten disrupts root growth in Arabidopsis thaliana by PIN targeting. JOURNAL OF PLANT PHYSIOLOGY 2014; 171:1174-87. [PMID: 24973590 DOI: 10.1016/j.jplph.2014.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/23/2014] [Accepted: 04/25/2014] [Indexed: 05/19/2023]
Abstract
Tungsten is a heavy metal with increasing concern over its environmental impact. In plants it is extensively used to deplete nitric oxide by inhibiting nitrate reductase, but its presumed toxicity as a heavy metal has been less explored. Accordingly, its effects on Arabidopsis thaliana primary root were assessed. The effects on root growth, mitotic cell percentage, nitric oxide and hydrogen peroxide levels, the cytoskeleton, cell ultrastructure, auxin and cytokinin activity, and auxin carrier distribution were investigated. It was found that tungsten reduced root growth, particularly by inhibiting cell expansion in the elongation zone, so that root hairs emerged closer to the root tip than in the control. Although extensive vacuolation was observed, even in meristematic cells, cell organelles were almost unaffected and microtubules were not depolymerized but reoriented. Tungsten affected auxin and cytokinin activity, as visualized by the DR5-GFP and TCS-GFP expressing lines, respectively. Cytokinin fluctuations were similar to those of the mitotic cell percentage. DR5-GFP signal appeared ectopically expressed, while the signals of PIN2-GFP and PIN3-GFP were diminished even after relatively short exposures. The observed effects were not reminiscent of those of any nitric oxide scavengers. Taken together, inhibition of root growth by tungsten might rather be related to a presumed interference with the basipetal flow of auxin, specifically affecting cell expansion in the elongation zone.
Collapse
Affiliation(s)
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| | - Eleftherios P Eleftheriou
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 541 24 Thessaloniki, Greece
| |
Collapse
|
170
|
Li J, Liu B, Cheng F, Wang X, Aarts MGM, Wu J. Expression profiling reveals functionally redundant multiple-copy genes related to zinc, iron and cadmium responses in Brassica rapa. THE NEW PHYTOLOGIST 2014; 203:182-94. [PMID: 24738937 DOI: 10.1111/nph.12803] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 02/28/2014] [Indexed: 05/20/2023]
Abstract
Genes underlying environmental adaptability tend to be over-retained in polyploid plant species. Zinc deficiency (ZnD) and iron deficiency (FeD), excess Zn (ZnE) and cadmium exposure (CdE) are major environmental problems for crop cultivation, but little is known about the differential expression of duplicated genes upon these stress conditions. Applying Tag-Seq technology to leaves of Brassica rapa grown under FeD, ZnD, ZnE or CdE conditions, with normal conditions as a control, we examined global gene expression changes and compared the expression patterns of multiple paralogs. We identified 812, 543, 331 and 447 differentially expressed genes under FeD, ZnD, ZnE and CdE conditions, respectively, in B. rapa leaves. Genes involved in regulatory networks centered on the transcription factors bHLH038 or bHLH100 were differentially expressed under (ZnE-induced) FeD. Further analysis revealed that genes associated with Zn, Fe and Cd responses tended to be over-retained in the B. rapa genome. Most of these multiple-copy genes showed the same direction of expression change under stress conditions. We conclude that the duplicated genes involved in trace element responses in B. rapa are functionally redundant, making the regulatory network more complex in B. rapa than in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jimeng Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Zhongguancun Southern Street 12, 100081, Beijing, China; Laboratory of Genetics, Wageningen University, Droevendaalsesteeg 1, 6708PB, Wageningen, the Netherlands
| | | | | | | | | | | |
Collapse
|
171
|
Xu Y, Zhang S, Guo H, Wang S, Xu L, Li C, Qian Q, Chen F, Geisler M, Qi Y, Jiang DA. OsABCB14 functions in auxin transport and iron homeostasis in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 79:106-17. [PMID: 24798203 DOI: 10.1111/tpj.12544] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Revised: 03/15/2014] [Accepted: 04/24/2014] [Indexed: 05/04/2023]
Abstract
Members of the ATP Binding Cassette B/Multidrug-Resistance/P-glyco-protein (ABCB/MDR/PGP) subfamily were shown to function primarily in Oryza sativa (rice) auxin transport; however, none of the rice ABCB transporters have been functionally characterized. Here, we describe that a knock-down of OsABCB14 confers decreased auxin concentrations and polar auxin transport rates, conferring insensitivity to 2,4-dichlorophenoxyacetic acid (2,4-D) and indole-3-acetic acid (IAA). OsABCB14 displays enhanced specific auxin influx activity in yeast and protoplasts prepared from rice knock-down alleles. OsABCB14 is localized at the plasma membrane, pointing to an important directionality under physiological conditions. osabcb14 mutants were surprisingly found to be insensitive to iron deficiency treatment (-Fe). Their Fe concentration is higher and upregulation of Fe deficiency-responsive genes is lower in osabcb14 mutants than in wild-type rice (Nipponbare, NIP). Taken together, our results strongly support the role of OsABCB14 as an auxin influx transporter involved in Fe homeostasis. The functional characterization of OsABCB14 provides insights in monocot auxin transport and its relationship to Fe nutrition.
Collapse
Affiliation(s)
- Yanxia Xu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
172
|
Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W. Reactive Oxygen Species-Dependent Nitric Oxide Production Contributes to Hydrogen-Promoted Stomatal Closure in Arabidopsis. PLANT PHYSIOLOGY 2014; 165:759-773. [PMID: 24733882 PMCID: PMC4044830 DOI: 10.1104/pp.114.237925] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 04/12/2014] [Indexed: 05/20/2023]
Abstract
The signaling role of hydrogen gas (H2) has attracted increasing attention from animals to plants. However, the physiological significance and molecular mechanism of H2 in drought tolerance are still largely unexplored. In this article, we report that abscisic acid (ABA) induced stomatal closure in Arabidopsis (Arabidopsis thaliana) by triggering intracellular signaling events involving H2, reactive oxygen species (ROS), nitric oxide (NO), and the guard cell outward-rectifying K+ channel (GORK). ABA elicited a rapid and sustained H2 release and production in Arabidopsis. Exogenous hydrogen-rich water (HRW) effectively led to an increase of intracellular H2 production, a reduction in the stomatal aperture, and enhanced drought tolerance. Subsequent results revealed that HRW stimulated significant inductions of NO and ROS synthesis associated with stomatal closure in the wild type, which were individually abolished in the nitric reductase mutant nitrate reductase1/2 (nia1/2) or the NADPH oxidase-deficient mutant rbohF (for respiratory burst oxidase homolog). Furthermore, we demonstrate that the HRW-promoted NO generation is dependent on ROS production. The rbohF mutant had impaired NO synthesis and stomatal closure in response to HRW, while these changes were rescued by exogenous application of NO. In addition, both HRW and hydrogen peroxide failed to induce NO production or stomatal closure in the nia1/2 mutant, while HRW-promoted ROS accumulation was not impaired. In the GORK-null mutant, stomatal closure induced by ABA, HRW, NO, or hydrogen peroxide was partially suppressed. Together, these results define a main branch of H2-regulated stomatal movement involved in the ABA signaling cascade in which RbohF-dependent ROS and nitric reductase-associated NO production, and subsequent GORK activation, were causally involved.
Collapse
Affiliation(s)
- Yanjie Xie
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Yu Mao
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Diwen Lai
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Qingya Wang
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| | - Wenbiao Shen
- College of Life Sciences (Y.X., Y.M., W.Z., D.L., W.S.) and Laboratory Center of Life Sciences (Q.W.), Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
173
|
Blum A, Brumbarova T, Bauer P, Ivanov R. Hormone influence on the spatial regulation of IRT1 expression in iron-deficient Arabidopsis thaliana roots. PLANT SIGNALING & BEHAVIOR 2014; 9:e28787. [PMID: 24721759 PMCID: PMC4091473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 02/28/2024]
Abstract
The IRON-REGULATED TRANSPORTER1 (IRT1) is the principal importer of soil iron in Arabidopsis thaliana. It has a complex intracellular trafficking behavior, including continuous cycling between plasma membrane and endosomes. SORTING NEXIN1 is required for the recycling of endosome-localized IRT1. In its absence, IRT1 is mistargeted for degradation, resulting in reduced plant iron-uptake efficiency. Consequently, IRT1 promoter activity gets limited to a specific portion of the root. We tested the influence of two hormones known to positively affect iron uptake on IRT1 spatial regulation. We found that ethylene treatment in wild-type background mimics the effects of the SNX-loss-of-function situation. Conversely, auxin splits the IRT1 expression zone and forces it toward the two extremities of the root. This shows that IRT1 expression along the root is modulated by ethylene-auxin interplay.
Collapse
Affiliation(s)
- Ailisa Blum
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
| | - Tzvetina Brumbarova
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
| | - Petra Bauer
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
| | - Rumen Ivanov
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
| |
Collapse
|
174
|
Blum A, Brumbarova T, Bauer P, Ivanov R. Hormone influence on the spatial regulation of IRT1 expression in iron-deficient Arabidopsis thaliana roots. PLANT SIGNALING & BEHAVIOR 2014; 9:28787. [PMID: 24721759 PMCID: PMC4091473 DOI: 10.4161/psb.28787] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2014] [Revised: 04/03/2014] [Accepted: 04/04/2014] [Indexed: 05/21/2023]
Abstract
The IRON-REGULATED TRANSPORTER1 (IRT1) is the principal importer of soil iron in Arabidopsis thaliana. It has a complex intracellular trafficking behavior, including continuous cycling between plasma membrane and endosomes. SORTING NEXIN1 is required for the recycling of endosome-localized IRT1. In its absence, IRT1 is mistargeted for degradation, resulting in reduced plant iron-uptake efficiency. Consequently, IRT1 promoter activity gets limited to a specific portion of the root. We tested the influence of two hormones known to positively affect iron uptake on IRT1 spatial regulation. We found that ethylene treatment in wild-type background mimics the effects of the SNX-loss-of-function situation. Conversely, auxin splits the IRT1 expression zone and forces it toward the two extremities of the root. This shows that IRT1 expression along the root is modulated by ethylene-auxin interplay.
Collapse
Affiliation(s)
- Ailisa Blum
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
| | - Tzvetina Brumbarova
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
| | - Petra Bauer
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
| | - Rumen Ivanov
- Department of Biosciences-Plant Biology; Saarland University; Saarbrücken, Germany
- Institute of Botany; Heinrich-Heine University; Düsseldorf, Germany
- Correspondence to: Rumen Ivanov,
| |
Collapse
|
175
|
Lei GJ, Zhu XF, Wang ZW, Dong F, Dong NY, Zheng SJ. Abscisic acid alleviates iron deficiency by promoting root iron reutilization and transport from root to shoot in Arabidopsis. PLANT, CELL & ENVIRONMENT 2014; 37:852-63. [PMID: 24111973 DOI: 10.1111/pce.12203] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 08/27/2013] [Accepted: 09/01/2013] [Indexed: 05/20/2023]
Abstract
Abscisic acid (ABA) has been demonstrated to be involved in iron (Fe) homeostasis, but the underlying mechanism is largely unknown. Here, we found that Fe deficiency induced ABA accumulation rapidly (within 6 h) in the roots of Arabidopsis. Exogenous ABA at 0.5 μM decreased the amount of root apoplastic Fe bound to pectin and hemicellulose, and increased the shoot Fe content significantly, thus alleviating Fe deficiency-induced chlorosis. Exogenous ABA promoted the secretion of phenolics to release apoplastic Fe and up-regulated the expression of AtNRAMP3 to enhance reutilization of Fe stored in the vacuoles, leading to a higher level of soluble Fe and lower ferric-chelate reductase (FCR) activity in roots. Treatment with ABA also led to increased Fe concentrations in the xylem sap, partially because of the up-regulation of AtFRD3, AtYSL2 and AtNAS1, genes related to long-distance transport of Fe. Exogenous ABA could not alleviate the chlorosis of abi5 mutant resulting from the significantly low expression of AtYSL2 and low transport of Fe from root to shoot. Taken together, our data support the conclusion that ABA is involved in the reutilization and transport of Fe from root to shoot under Fe deficiency conditions in Arabidopsis.
Collapse
Affiliation(s)
- Gui Jie Lei
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | | | | | | | | | | |
Collapse
|
176
|
Sun C, Lu L, Liu L, Liu W, Yu Y, Liu X, Hu Y, Jin C, Lin X. Nitrate reductase-mediated early nitric oxide burst alleviates oxidative damage induced by aluminum through enhancement of antioxidant defenses in roots of wheat (Triticum aestivum). THE NEW PHYTOLOGIST 2014; 201:1240-1250. [PMID: 24237306 DOI: 10.1111/nph.12597] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Accepted: 10/09/2013] [Indexed: 05/03/2023]
Abstract
• Nitric oxide (NO) is an important signaling molecule involved in the physiological processes of plants. The role of NO release in the tolerance strategies of roots of wheat (Triticum aestivum) under aluminum (Al) stress was investigated using two genotypes with different Al resistances. • An early NO burst at 3 h was observed in the root tips of the Al-tolerant genotype Jian-864, whereas the Al-sensitive genotype Yang-5 showed no NO accumulation at 3 h but an extremely high NO concentration after 12 h. Stimulating NO production at 3 h in the root tips of Yang-5 with the NO donor relieved Al-induced root inhibition and callose production, as well as oxidative damage and ROS accumulation, while elimination of the early NO burst by NO scavenger aggravated root inhibition in Jian-864. • Synthesis of early NO in roots of Jian-864 was mediated through nitrate reductase (NR) but not through NO synthase. Elevated antioxidant enzyme activities were induced by Al stress in both wheat genotypes and significantly enhanced by NO donor, but suppressed by NO scavenger or NR inhibitor. • These results suggest that an NR-mediated early NO burst plays an important role in Al resistance of wheat through modulating enhanced antioxidant defense to adapt to Al stress.
Collapse
Affiliation(s)
- Chengliang Sun
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lingli Lu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Lijuan Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wenjing Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Yu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xiaoxia Liu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yan Hu
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chongwei Jin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Xianyong Lin
- MOE Key Laboratory of Environment Remediation and Ecological Health, College of Natural Resource & Environmental Sciences, Zhejiang University, Hangzhou, 310058, China
- Key Laboratory of Subtropical Soil Science and Plant Nutrition of Zhejiang Province, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
177
|
Giehl RFH, Gruber BD, von Wirén N. It's time to make changes: modulation of root system architecture by nutrient signals. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:769-78. [PMID: 24353245 DOI: 10.1093/jxb/ert421] [Citation(s) in RCA: 135] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Root growth and development are of outstanding importance for the plant's ability to acquire water and nutrients from different soil horizons. To cope with fluctuating nutrient availabilities, plants integrate systemic signals pertaining to their nutritional status into developmental pathways that regulate the spatial arrangement of roots. Changes in the plant nutritional status and external nutrient supply modulate root system architecture (RSA) over time and determine the degree of root plasticity which is based on variations in the number, extension, placement, and growth direction of individual components of the root system. Roots also sense the local availability of some nutrients, thereby leading to nutrient-specific modifications in RSA, that result from the integration of systemic and local signals into the root developmental programme at specific steps. An in silico analysis of nutrient-responsive genes involved in root development showed that the majority of these specifically responded to the deficiency of individual nutrients while a minority responded to more than one nutrient deficiency. Such an analysis provides an interesting starting point for the identification of the molecular players underlying the sensing and transduction of the nutrient signals that mediate changes in the development and architecture of root systems.
Collapse
Affiliation(s)
- Ricardo F H Giehl
- Molecular Plant Nutrition, Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, D-06466, Gatersleben, Germany
| | | | | |
Collapse
|
178
|
Han B, Yang Z, Xie Y, Nie L, Cui J, Shen W. Arabidopsis HY1 confers cadmium tolerance by decreasing nitric oxide production and improving iron homeostasis. MOLECULAR PLANT 2014; 7:388-403. [PMID: 23974911 DOI: 10.1093/mp/sst122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Up-regulation of the gene that encodes intracellular heme oxygenase 1 (HO1) benefits plants under cadmium (Cd(2+)) stress; however, the molecular mechanisms remain unclear. Here, we elucidate the role of Arabidopsis HY1 (AtHO1) in Cd(2+) tolerance by using genetic and molecular approaches. Analysis of two HY1 null mutants, three HY1 overexpression lines, HO double or triple mutants, as well as phyA and phyB mutants revealed the specific hypersensitivity of hy1 to Cd(2+) stress. Supplementation with two enzymatic by-products of HY1, carbon monoxide (CO) and iron (Fe, especially), rescued the Cd(2+)-induced inhibition of primary root (PR) elongation in hy1-100. The mutation of HY1, which exhibited lower glutathione content than Col-0 in root tissues, was able to induce nitric oxide (NO) overproduction, Cd(2+) accumulation, and severe Fe deficiency in root tissues. However, the contrasting responses appeared in 35S:HY1-4. Additionally, reduced levels of Ferric Reduction Oxidase 2 (FRO2) and Iron-Regulated Transporter 1 (IRT1) transcripts, and increased levels of Heavy Metal ATPase 2/4 (HMA2/4) transcripts bolster the notion that HY1 up-regulation ameliorates Fe deficiency, and might increase Cd(2+) exclusion. Taken together, these results showed that HY1 plays a common link in Cd(2+) tolerance by decreasing NO production and improving Fe homeostasis in Arabidopsis root tissues.
Collapse
Affiliation(s)
- Bin Han
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
179
|
Yin L, Wang Y, Yuan M, Zhang X, Xu X, Han Z. Characterization of MxFIT, an iron deficiency induced transcriptional factor in Malus xiaojinensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 75:89-95. [PMID: 24389022 DOI: 10.1016/j.plaphy.2013.12.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2013] [Accepted: 12/16/2013] [Indexed: 05/26/2023]
Abstract
Iron deficiency often results in nutritional disorder in fruit trees. Transcription factors play an important role in the regulation of iron uptake. In this study, we isolated an iron deficiency response transcription factor gene, MxFIT, from an iron-efficient apple genotype of Malus xiaojinensis. MxFIT encoded a basic helix-loop-helix protein and contained a 966 bp open reading frame. MxFIT protein was targeted to the nucleus in onion epidermal cells and showed strong transcriptional activation in yeast cells. Spatiotemporal expression analysis revealed that MxFIT was up-regulated in roots under iron deficiency at both mRNA and protein levels, while almost no expression was detected in leaves irrespective of iron supply. Ectopic expression of MxFIT resulted in enhanced iron deficiency responses in Arabidopsis under iron deficiency and stronger resistance to iron deficiency. Thus, MxFIT might be involved in iron uptake and plays an important role in iron deficiency response.
Collapse
|
180
|
Ogo Y, Kakei Y, Itai RN, Kobayashi T, Nakanishi H, Takahashi H, Nakazono M, Nishizawa NK. Spatial transcriptomes of iron-deficient and cadmium-stressed rice. THE NEW PHYTOLOGIST 2014; 201:781-794. [PMID: 24188410 DOI: 10.1111/nph.12577] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Accepted: 09/26/2013] [Indexed: 05/04/2023]
Abstract
Although the genes involved in metal homeostasis have been investigated over the past few decades, many genes related to metal homeostasis remain uncharacterized, and a comprehensive analysis of the expression of these genes is required. In the present study, we investigated the spatial gene expression profile of iron (Fe)-deficient and cadmium (Cd)-stressed Oryza sativa (rice) using laser microdissection and microarray analysis. Roots of Fe-deficient and Cd-stressed rice were separated into the vascular bundle, cortex, and epidermis plus exodermis. In addition, vascular bundles from new and old leaves at the lowest node, which are important for metal distribution, were analyzed separately. The spatial expression patterns were distinct in each tissue type. Fe deficiency and Cd stress also had significant effects on the transcriptomes, although these were less pronounced than the spatial effects. Genes encoding transporters involved in metal homeostasis, proteins associated with heavy metal detoxification, and phytohormone-related proteins were comprehensively investigated. Additionally, cis motifs involved in the regulation of these diverse expression changes in various tissue types were predicted. The spatial transcriptomes presented here provide novel insight into the molecular mechanisms of metal homeostasis.
Collapse
Affiliation(s)
- Yuko Ogo
- Departments of Global Agricultural Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Yusuke Kakei
- Departments of Global Agricultural Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Reiko Nakanishi Itai
- Departments of Global Agricultural Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Takanori Kobayashi
- Departments of Global Agricultural Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-machi, Ishikawa, 921-8836, Japan
| | - Hiromi Nakanishi
- Departments of Global Agricultural Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Hirokazu Takahashi
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Mikio Nakazono
- Laboratory of Plant Genetics and Breeding, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa, Nagoya, 464-8601, Japan
| | - Naoko K Nishizawa
- Departments of Global Agricultural Sciences and Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
- Research Institute for Bioresources and Biotechnology, Ishikawa Prefectural University, 1-308 Suematsu, Nonoichi-machi, Ishikawa, 921-8836, Japan
| |
Collapse
|
181
|
García MJ, García-Mateo MJ, Lucena C, Romera FJ, Rojas CL, Alcántara E, Pérez-Vicente R. Hypoxia and bicarbonate could limit the expression of iron acquisition genes in Strategy I plants by affecting ethylene synthesis and signaling in different ways. PHYSIOLOGIA PLANTARUM 2014; 150:95-106. [PMID: 23742320 DOI: 10.1111/ppl.12076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 05/16/2013] [Indexed: 05/20/2023]
Abstract
In a previous work, it was shown that bicarbonate (one of the most important factors causing Fe chlorosis in Strategy I plants) can limit the expression of several genes involved in Fe acquisition. Hypoxia is considered another important factor causing Fe chlorosis, mainly on calcareous soils. However, to date it is not known whether hypoxia aggravates Fe chlorosis by affecting bicarbonate concentration or by specific negative effects on Fe acquisition. Results found in this work show that hypoxia, generated by eliminating the aeration of the nutrient solution, can limit the expression of several Fe acquisition genes in Fe-deficient Arabidopsis, cucumber and pea plants, like the genes for ferric reductases AtFRO2, PsFRO1 and CsFRO1; iron transporters AtIRT1, PsRIT1 and CsIRT1; H(+) -ATPase CsHA1; and transcription factors AtFIT, AtbHLH38, and AtbHLH39. Interestingly, the limitation of the expression of Fe-acquisition genes by hypoxia did not occur in the Arabidopsis ethylene constitutive mutant ctr1, which suggests that the negative effect of hypoxia is related to ethylene, an hormone involved in the upregulation of Fe acquisition genes. As for hypoxia, results obtained by applying bicarbonate to the nutrient solution suggests that ethylene is also involved in its negative effect, since ACC (1-aminocyclopropane-1-carboxylic acid; ethylene precursor) partially reversed the negative effect of bicarbonate on the expression of Fe acquisition genes. Taken together, the results obtained show that hypoxia and bicarbonate could induce Fe chlorosis by limiting the expression of Fe acquisition genes, probably because each factor negatively affects different steps of ethylene synthesis and/or signaling.
Collapse
Affiliation(s)
- María J García
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis (C-4), Campus de Rabanales, University of Córdoba, 14071, Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
182
|
Jin CW, Ye YQ, Zheng SJ. An underground tale: contribution of microbial activity to plant iron acquisition via ecological processes. ANNALS OF BOTANY 2014; 113:7-18. [PMID: 24265348 PMCID: PMC3864720 DOI: 10.1093/aob/mct249] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Accepted: 09/06/2013] [Indexed: 05/19/2023]
Abstract
BACKGROUND Iron (Fe) deficiency in crops is a worldwide agricultural problem. Plants have evolved several strategies to enhance Fe acquisition, but increasing evidence has shown that the intrinsic plant-based strategies alone are insufficient to avoid Fe deficiency in Fe-limited soils. Soil micro-organisms also play a critical role in plant Fe acquisition; however, the mechanisms behind their promotion of Fe acquisition remain largely unknown. SCOPE This review focuses on the possible mechanisms underlying the promotion of plant Fe acquisition by soil micro-organisms. CONCLUSIONS Fe-deficiency-induced root exudates alter the microbial community in the rhizosphere by modifying the physicochemical properties of soil, and/or by their antimicrobial and/or growth-promoting effects. The altered microbial community may in turn benefit plant Fe acquisition via production of siderophores and protons, both of which improve Fe bioavailability in soil, and via hormone generation that triggers the enhancement of Fe uptake capacity in plants. In addition, symbiotic interactions between micro-organisms and host plants could also enhance plant Fe acquisition, possibly including: rhizobium nodulation enhancing plant Fe uptake capacity and mycorrhizal fungal infection enhancing root length and the nutrient acquisition area of the root system, as well as increasing the production of Fe(3+) chelators and protons.
Collapse
Affiliation(s)
- Chong Wei Jin
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Yi Quan Ye
- College of Natural Resources and Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Biochemistry and Physiology, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
183
|
Mamidi S, Lee RK, Goos JR, McClean PE. Genome-wide association studies identifies seven major regions responsible for iron deficiency chlorosis in soybean (Glycine max). PLoS One 2014; 9:e107469. [PMID: 25225893 DOI: 10.1371journal.pone.0107469/journal.pone.0107469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 08/14/2014] [Indexed: 05/20/2023] Open
Abstract
Iron deficiency chlorosis (IDC) is a yield limiting problem in soybean (Glycine max (L.) Merr) production regions with calcareous soils. Genome-wide association study (GWAS) was performed using a high density SNP map to discover significant markers, QTL and candidate genes associated with IDC trait variation. A stepwise regression model included eight markers after considering LD between markers, and identified seven major effect QTL on seven chromosomes. Twelve candidate genes known to be associated with iron metabolism mapped near these QTL supporting the polygenic nature of IDC. A non-synonymous substitution with the highest significance in a major QTL region suggests soybean orthologs of FRE1 on Gm03 is a major gene responsible for trait variation. NAS3, a gene that encodes the enzyme nicotianamine synthase which synthesizes the iron chelator nicotianamine also maps to the same QTL region. Disease resistant genes also map to the major QTL, supporting the hypothesis that pathogens compete with the plant for Fe and increase iron deficiency. The markers and the allelic combinations identified here can be further used for marker assisted selection.
Collapse
Affiliation(s)
- Sujan Mamidi
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota, United States of America; Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Rian K Lee
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota, United States of America; Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| | - Jay R Goos
- Department of Soil Science, North Dakota State University, Fargo, North Dakota, United States of America
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, North Dakota, United States of America; Department of Plant Sciences, North Dakota State University, Fargo, North Dakota, United States of America
| |
Collapse
|
184
|
Matsuoka K, Furukawa J, Bidadi H, Asahina M, Yamaguchi S, Satoh S. Gibberellin-Induced Expression of Fe Uptake-Related Genes in Arabidopsis. ACTA ACUST UNITED AC 2013; 55:87-98. [DOI: 10.1093/pcp/pct160] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
185
|
Zhu XF, Wang ZW, Dong F, Lei GJ, Shi YZ, Li GX, Zheng SJ. Exogenous auxin alleviates cadmium toxicity in Arabidopsis thaliana by stimulating synthesis of hemicellulose 1 and increasing the cadmium fixation capacity of root cell walls. JOURNAL OF HAZARDOUS MATERIALS 2013; 263 Pt 2:398-403. [PMID: 24225590 DOI: 10.1016/j.jhazmat.2013.09.018] [Citation(s) in RCA: 140] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 09/07/2013] [Accepted: 09/10/2013] [Indexed: 05/21/2023]
Abstract
Auxin is involved in not only plant physiological and developmental processes but also plant responses to abiotic stresses. In this study, cadmium (Cd(2+)) stress decreased the endogenous auxin level, whereas exogenous auxin (α-naphthaleneacetic acid, NAA, a permeable auxin analog) reduced shoot Cd(2+) concentration and rescued Cd(2+)-induced chlorosis in Arabidopsis thaliana. Under Cd(2+) stress conditions, NAA increased Cd(2+) retention in the roots and most Cd(2+) in the roots was fixed in hemicellulose 1 of the cell wall. NAA treatment did not affect pectin content and its binding capacity for Cd(2+), whereas it significantly increased the content of hemicellulose 1 and the amount of Cd(2+) retained in it. There were highly significant correlations between Cd(2+) concentrations in the root, cell wall and hemicellulose 1 when the plants were subjected to Cd(2+) or NAA+Cd(2+) treatment for 1 to 7d, suggesting that the increase in hemicellulose 1 contributes greatly to the fixation of Cd(2+) in the cell wall. Taken together, these results demonstrate that auxin-induced alleviation of Cd(2+) toxicity in Arabidopsis is mediated through increasing hemicellulose 1 content and Cd(2+) fixation in the root, thus reducing the translocation of Cd(2+) from roots to shoots.
Collapse
Affiliation(s)
- Xiao Fang Zhu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, College of Life Sciences, Zhejiang University, Hangzhou 310058, China; State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | | | | | | | | | | | | |
Collapse
|
186
|
Groß F, Durner J, Gaupels F. Nitric oxide, antioxidants and prooxidants in plant defence responses. FRONTIERS IN PLANT SCIENCE 2013; 4:419. [PMID: 24198820 PMCID: PMC3812536 DOI: 10.3389/fpls.2013.00419] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/01/2013] [Indexed: 05/18/2023]
Abstract
In plant cells the free radical nitric oxide (NO) interacts both with anti- as well as prooxidants. This review provides a short survey of the central roles of ascorbate and glutathione-the latter alone or in conjunction with S-nitrosoglutathione reductase-in controlling NO bioavailability. Other major topics include the regulation of antioxidant enzymes by NO and the interplay between NO and reactive oxygen species (ROS). Under stress conditions NO regulates antioxidant enzymes at the level of activity and gene expression, which can cause either enhancement or reduction of the cellular redox status. For instance chronic NO production during salt stress induced the antioxidant system thereby increasing salt tolerance in various plants. In contrast, rapid NO accumulation in response to strong stress stimuli was occasionally linked to inhibition of antioxidant enzymes and a subsequent rise in hydrogen peroxide levels. Moreover, during incompatible Arabidopsis thaliana-Pseudomonas syringae interactions ROS burst and cell death progression were shown to be terminated by S-nitrosylation-triggered inhibition of NADPH oxidases, further highlighting the multiple roles of NO during redox-signaling. In chemical reactions between NO and ROS reactive nitrogen species (RNS) arise with characteristics different from their precursors. Recently, peroxynitrite formed by the reaction of NO with superoxide has attracted much attention. We will describe putative functions of this molecule and other NO derivatives in plant cells. Non-symbiotic hemoglobins (nsHb) were proposed to act in NO degradation. Additionally, like other oxidases nsHb is also capable of catalyzing protein nitration through a nitrite- and hydrogen peroxide-dependent process. The physiological significance of the described findings under abiotic and biotic stress conditions will be discussed with a special emphasis on pathogen-induced programmed cell death (PCD).
Collapse
Affiliation(s)
| | | | - Frank Gaupels
- German Research Center for Environmental Health, Institute of Biochemical Plant Pathology, Helmholtz-Zentrum MünchenMunich, Germany
| |
Collapse
|
187
|
Freschi L. Nitric oxide and phytohormone interactions: current status and perspectives. FRONTIERS IN PLANT SCIENCE 2013; 4:398. [PMID: 24130567 PMCID: PMC3793198 DOI: 10.3389/fpls.2013.00398] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 09/19/2013] [Indexed: 05/16/2023]
Abstract
Nitric oxide (NO) is currently considered a ubiquitous signal in plant systems, playing significant roles in a wide range of responses to environmental and endogenous cues. During the signaling events leading to these plant responses, NO frequently interacts with plant hormones and other endogenous molecules, at times originating remarkably complex signaling cascades. Accumulating evidence indicates that virtually all major classes of plant hormones may influence, at least to some degree, the endogenous levels of NO. In addition, studies conducted during the induction of diverse plant responses have demonstrated that NO may also affect biosynthesis, catabolism/conjugation, transport, perception, and/or transduction of different phytohormones, such as auxins, gibberellins, cytokinins, abscisic acid, ethylene, salicylic acid, jasmonates, and brassinosteroids. Although still not completely elucidated, the mechanisms underlying the interaction between NO and plant hormones have recently been investigated in a number of species and plant responses. This review specifically focuses on the current knowledge of the mechanisms implicated in NO-phytohormone interactions during the regulation of developmental and metabolic plant events. The modifications triggered by NO on the transcription of genes encoding biosynthetic/degradative enzymes as well as proteins involved in the transport and signal transduction of distinct plant hormones will be contextualized during the control of developmental, metabolic, and defense responses in plants. Moreover, the direct post-translational modification of phytohormone biosynthetic enzymes and receptors through S-nitrosylation will also be discussed as a key mechanism for regulating plant physiological responses. Finally, some future perspectives toward a more complete understanding of NO-phytohormone interactions will also be presented and discussed.
Collapse
Affiliation(s)
- Luciano Freschi
- Laboratory of Plant Physiology and Biochemistry, Department of Botany, University of Sao PauloSao Paulo, Brazil
| |
Collapse
|
188
|
Xie Y, Mao Y, Lai D, Zhang W, Zheng T, Shen W. Roles of NIA/NR/NOA1-dependent nitric oxide production and HY1 expression in the modulation of Arabidopsis salt tolerance. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3045-60. [PMID: 23744476 PMCID: PMC3741688 DOI: 10.1093/jxb/ert149] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Despite substantial evidence on the separate roles of Arabidopsis nitric oxide-associated 1 (NOA1)-associated nitric oxide (NO) production and haem oxygenase 1 (HY1) expression in salt tolerance, their integrative signalling pathway remains largely unknown. To fill this knowledge gap, the interaction network among nitrate reductase (NIA/NR)- and NOA1-dependent NO production and HY1 expression was studied at the genetic and molecular levels. Upon salinity stress, the majority of NO production was attributed to NIA/NR/NOA1. Further evidence confirmed that HY1 mutant hy1-100, nia1/2/noa1, and nia1/2/noa1/hy1-100 mutants exhibited progressive salt hypersensitivity, all of which were significantly rescued by three NO-releasing compounds. The salinity-tolerant phenotype and the stronger NO production in gain-of-function mutant of HY1 were also blocked by the NO synthetic inhibitor and scavenger. Although NO- or HY1-deficient mutants showed a compensatory mode of upregulation of HY1 or slightly increased NO production, respectively, during 2 d of salt treatment, downregulation of ZAT10/12-mediated antioxidant gene expression (cAPX1/2 and FSD1) was observed after 7 d of treatment. The hypersensitive phenotypes and stress-related genes expression profiles were differentially rescued or blocked by the application of NO- (in particular) or carbon monoxide (CO)-releasing compounds, showing a synergistic mode. Similar reciprocal responses were observed in the nia1/2/noa1/hy1-100 quadruple mutant, with the NO-releasing compounds exhibit the maximal rescuing responses. Overall, the findings present the combination of compensatory and synergistic modes, linking NIA/NR/NOA1-dependent NO production and HY1 expression in the modulation of plant salt tolerance.
Collapse
Affiliation(s)
- Yanjie Xie
- College of Life Sciences, Co. Laboratory of Nanjing Agricultural University and Carl Zeiss Far East, Nanjing Agricultural University, Nanjing 210095, China
- * These authors contributed equally to this work
| | - Yu Mao
- College of Life Sciences, Co. Laboratory of Nanjing Agricultural University and Carl Zeiss Far East, Nanjing Agricultural University, Nanjing 210095, China
- * These authors contributed equally to this work
| | - Diwen Lai
- College of Life Sciences, Co. Laboratory of Nanjing Agricultural University and Carl Zeiss Far East, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Life Sciences, Co. Laboratory of Nanjing Agricultural University and Carl Zeiss Far East, Nanjing Agricultural University, Nanjing 210095, China
| | - Tianqing Zheng
- Institute of Crop Sciences/National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Wenbiao Shen
- College of Life Sciences, Co. Laboratory of Nanjing Agricultural University and Carl Zeiss Far East, Nanjing Agricultural University, Nanjing 210095, China
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
189
|
Simontacchi M, García-Mata C, Bartoli CG, Santa-María GE, Lamattina L. Nitric oxide as a key component in hormone-regulated processes. PLANT CELL REPORTS 2013; 32:853-66. [PMID: 23584547 DOI: 10.1007/s00299-013-1434-1] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2012] [Revised: 03/21/2013] [Accepted: 03/21/2013] [Indexed: 05/18/2023]
Abstract
Nitric oxide (NO) is a small gaseous molecule, with a free radical nature that allows it to participate in a wide spectrum of biologically important reactions. NO is an endogenous product in plants, where different biosynthetic pathways have been proposed. First known in animals as a signaling molecule in cardiovascular and nervous systems, it has turned up to be an essential component for a wide variety of hormone-regulated processes in plants. Adaptation of plants to a changing environment involves a panoply of processes, which include the control of CO2 fixation and water loss through stomatal closure, rearrangements of root architecture as well as growth restriction. The regulation of these processes requires the concerted action of several phytohormones, as well as the participation of the ubiquitous molecule NO. This review analyzes the role of NO in relation to the signaling pathways involved in stomatal movement, plant growth and senescence, in the frame of its interaction with abscisic acid, auxins, gibberellins, and ethylene.
Collapse
Affiliation(s)
- Marcela Simontacchi
- Instituto de Fisiología Vegetal (INFIVE) CC327, Universidad Nacional de La Plata-CONICET, Diagonal 113 y calle 61 N°495, CP 1900 La Plata, Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
190
|
Vigani G, Zocchi G, Bashir K, Philippar K, Briat JF. Signals from chloroplasts and mitochondria for iron homeostasis regulation. TRENDS IN PLANT SCIENCE 2013; 18:305-11. [PMID: 23462548 DOI: 10.1016/j.tplants.2013.01.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2012] [Revised: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 05/04/2023]
Abstract
Iron (Fe) is an essential element for human nutrition. Given that plants represent a major dietary source of Fe worldwide, it is crucial to understand plant Fe homeostasis fully. A major breakthrough in the understanding of Fe sensing and signaling was the identification of several transcription factor cascades regulating Fe homeostasis. However, the mechanisms of activation of these cascades still remain to be elucidated. In this opinion, we focus on the possible roles of mitochondria and chloroplasts as cellular Fe sensing and signaling sites, offering a new perspective on the integrated regulation of Fe homeostasis and its interplay with cellular metabolism.
Collapse
Affiliation(s)
- Gianpiero Vigani
- Dipartimento di Scienze Agrarie e Ambientali-Produzione, Territorio e Agroenergia, Università degli Studi di Milano, Milan, Italy.
| | | | | | | | | |
Collapse
|
191
|
Li H, Song JB, Zhao WT, Yang ZM. AtHO1 is Involved in Iron Homeostasis in an NO-Dependent Manner. ACTA ACUST UNITED AC 2013; 54:1105-17. [DOI: 10.1093/pcp/pct063] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
192
|
Dissecting plant iron homeostasis under short and long-term iron fluctuations. Biotechnol Adv 2013; 31:1292-307. [PMID: 23680191 DOI: 10.1016/j.biotechadv.2013.05.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Revised: 04/18/2013] [Accepted: 05/05/2013] [Indexed: 12/30/2022]
Abstract
A wealth of information on the different aspects of iron homeostasis in plants has been obtained during the last decade. However, there is no clear road-map integrating the relationships between the various components. The principal aim of the current review is to fill this gap. In this context we discuss the lack of low affinity iron uptake mechanisms in plants, the utilization of a different uptake mechanism by graminaceous plants compared to the others, as well as the roles of riboflavin, ferritin isoforms, nitric oxide, nitrosylation, heme, aconitase, and vacuolar pH. Cross-homeostasis between elements is also considered, with a specific emphasis on the relationship between iron homeostasis and phosphorus and copper deficiencies. As the environment is a crucial parameter for modulating plant responses, we also highlight how diurnal fluctuations govern iron metabolism. Evolutionary aspects of iron homeostasis have so far attracted little attention. Looking into the past can inform us on how long-term oxygen and iron-availability fluctuations have influenced the evolution of iron uptake mechanisms. Finally, we evaluate to what extent this homeostastic road map can be used for the development of novel biofortification strategies in order to alleviate iron deficiency in human.
Collapse
|
193
|
Systematic validation of candidate reference genes for qRT-PCR normalization under iron deficiency in Arabidopsis. Biometals 2013; 26:403-13. [DOI: 10.1007/s10534-013-9623-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Accepted: 03/26/2013] [Indexed: 11/26/2022]
|
194
|
Chen YY, Wang Y, Shin LJ, Wu JF, Shanmugam V, Tsednee M, Lo JC, Chen CC, Wu SH, Yeh KC. Iron is involved in the maintenance of circadian period length in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:1409-20. [PMID: 23307650 PMCID: PMC3585605 DOI: 10.1104/pp.112.212068] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2012] [Accepted: 01/08/2013] [Indexed: 05/18/2023]
Abstract
The homeostasis of iron (Fe) in plants is strictly regulated to maintain an optimal level for plant growth and development but not cause oxidative stress. About 30% of arable land is considered Fe deficient because of calcareous soil that renders Fe unavailable to plants. Under Fe-deficient conditions, Arabidopsis (Arabidopsis thaliana) shows retarded growth, disordered chloroplast development, and delayed flowering time. In this study, we explored the possible connection between Fe availability and the circadian clock in growth and development. Circadian period length in Arabidopsis was longer under Fe-deficient conditions, but the lengthened period was not regulated by the canonical Fe-deficiency signaling pathway involving nitric oxide. However, plants with impaired chloroplast function showed long circadian periods. Fe deficiency and impaired chloroplast function combined did not show additive effects on the circadian period, which suggests that plastid-to-nucleus retrograde signaling is involved in the lengthening of circadian period under Fe deficiency. Expression pattern analyses of the central oscillator genes in mutants defective in CIRCADIAN CLOCK ASSOCIATED1/LATE ELONGATED HYPOCOTYL or GIGANTEA demonstrated their requirement for Fe deficiency-induced long circadian period. In conclusion, Fe is involved in maintaining the period length of circadian rhythm, possibly by acting on specific central oscillators through a retrograde signaling pathway.
Collapse
|
195
|
Kabir AH, Paltridge NG, Roessner U, Stangoulis JCR. Mechanisms associated with Fe-deficiency tolerance and signaling in shoots of Pisum sativum. PHYSIOLOGIA PLANTARUM 2013; 147:381-95. [PMID: 22913816 DOI: 10.1111/j.1399-3054.2012.01682.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 06/13/2012] [Indexed: 05/23/2023]
Abstract
Mechanisms of Fe-deficiency tolerance and signaling were investigated in shoots of Santi (deficiency tolerant) and Parafield (deficiency intolerant) pea genotypes using metabolomic and physiological approaches. From metabolomic studies, Fe deficiency induced significant increases in N-, S- and tricarboxylic acid cycle metabolites in Santi but not in Parafield. Elevated N metabolites reflect an increase in N-recycling processes. Increased glutathione and S-metabolites suggest better protection of pea plants from Fe-deficiency-induced oxidative stress. Furthermore, Fe-deficiency induced increases in citrate and malate in leaves of Santi suggests long-distance transport of Fe is promoted by better xylem unloading. Supporting a role of citrate in the deficiency tolerance mechanism, physiological experiments showed higher Fe and citrate in the xylem of Santi. Reciprocal-grafting experiments confirm that the Fe-deficiency signal driving root Fe reductase and proton extrusion activity is generated in the shoot. Finally, our studies show that auxin can induce increased Fe-reductase activity and proton extrusion in roots. This article identifies several mechanisms in shoots associated with the differential Fe-deficiency tolerance of genotypes within a species, and provides essential background for future efforts to improve the Fe content and deficiency tolerance in peas.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Biological Sciences, Flinders University, Bedford Park, 5042, SA, Australia.
| | | | | | | |
Collapse
|
196
|
Yang JL, Chen WW, Chen LQ, Qin C, Jin CW, Shi YZ, Zheng SJ. The 14-3-3 protein GENERAL REGULATORY FACTOR11 (GRF11) acts downstream of nitric oxide to regulate iron acquisition in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2013; 197:815-824. [PMID: 23252371 DOI: 10.1111/nph.12057] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2012] [Accepted: 10/17/2012] [Indexed: 05/20/2023]
Abstract
Here we report the function of a general regulatory factor, GENERAL REGULATORY FACTOR11 (GRF11), in terms of the iron (Fe) deficiency response. Physiological and molecular responses of the loss-of-function Arabidopsis thaliana grf11 mutant to Fe supply were investigated. Genes involved in posttranscriptional regulation of FER-LIKE FE DEFICIENCY-INDUCED TRANSCRIPTION FACTOR (FIT) were also analyzed. In addition, the molecular link between the signaling molecule nitric oxide (NO) and Fe deficiency responses was further dissected. Our results suggest that GRF11 is necessary for induction of Fe-deficiency-tolerance mechanisms. The FIT protein can bind to the promoter of GRF11, which contains an E-box motif. GRF11 also positively affects FIT transcription but has no influence on the genes involved in posttranscriptional regulation of FIT. Furthermore, NO positively regulates GRF11 induction upon the onset of Fe deficiency. We propose that, upon the onset of Fe deficiency, induction of FIT expression is dependent on GRF11, which acts downstream of NO to mediate Fe deficiency responses.
Collapse
Affiliation(s)
- Jian Li Yang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Wei Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Li Qian Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Cheng Qin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | - Chong Wei Jin
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Yuan Zhi Shi
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Tea Chemical Engineering, Ministry of Agriculture, Hangzhou, 310008, China
| | - Shao Jian Zheng
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
197
|
Abstract
Maintaining nitric oxide (NO) homeostasis is essential for normal plant physiological processes. However, very little is known about the mechanisms of NO modulation in plants. Here, we report a unique mechanism for the catabolism of NO based on the reaction with the plant hormone cytokinin. We screened for NO-insensitive mutants in Arabidopsis and isolated two allelic lines, cnu1-1 and 1-2 (continuous NO-unstressed 1), that were identified as the previously reported altered meristem program 1 (amp1) and as having elevated levels of cytokinins. A double mutant of cnu1-2 and nitric oxide overexpression 1 (nox1) reduced the severity of the phenotypes ascribed to excess NO levels as did treating the nox1 line with trans-zeatin, the predominant form of cytokinin in Arabidopsis. We further showed that peroxinitrite, an active NO derivative, can react with zeatin in vitro, which together with the results in vivo suggests that cytokinins suppress the action of NO most likely through direct interaction between them, leading to the reduction of endogenous NO levels. These results provide insights into NO signaling and regulation of its bioactivity in plants.
Collapse
|
198
|
García MJ, Romera FJ, Stacey MG, Stacey G, Villar E, Alcántara E, Pérez-Vicente R. Shoot to root communication is necessary to control the expression of iron-acquisition genes in Strategy I plants. PLANTA 2013; 237:65-75. [PMID: 22983673 DOI: 10.1007/s00425-012-1757-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/28/2012] [Indexed: 05/19/2023]
Abstract
Previous research showed that auxin, ethylene, and nitric oxide (NO) can activate the expression of iron (Fe)-acquisition genes in the roots of Strategy I plants grown with low levels of Fe, but not in plants grown with high levels of Fe. However, it is still an open question as to how Fe acts as an inhibitor and which pool of Fe (e.g., root, phloem, etc.) in the plant acts as the key regulator for gene expression control. To further clarify this, we studied the effect of the foliar application of Fe on the expression of Fe-acquisition genes in several Strategy I plants, including wild-type cultivars of Arabidopsis [Arabidopsis thaliana (L.) Heynh], pea [Pisum sativum L.], tomato [Solanum lycopersicon Mill.], and cucumber [Cucumis sativus L.], as well as mutants showing constitutive expression of Fe-acquisition genes when grown under Fe-sufficient conditions [Arabidopsis opt3-2 and frd3-3, pea dgl and brz, and tomato chln (chloronerva)]. The results showed that the foliar application of Fe blocked the expression of Fe-acquisition genes in the wild-type cultivars and in the frd3-3, brz, and chln mutants, but not in the opt3-2 and dgl mutants, probably affected in the transport of a Fe-related repressive signal in the phloem. Moreover, the addition of either ACC (ethylene precursor) or GSNO (NO donor) to Fe-deficient plants up-regulated the expression of Fe-acquisition genes, but this effect did not occur in Fe-deficient plants sprayed with foliar Fe, again suggesting the existence of a Fe-related repressive signal moving from leaves to roots.
Collapse
Affiliation(s)
- María J García
- Department of Botany, Ecology and Plant Physiology, Edificio Celestino Mutis C-4, Campus de Rabanales, University of Córdoba, 14014 Córdoba, Spain
| | | | | | | | | | | | | |
Collapse
|
199
|
García-Mina JM, Bacaicoa E, Fuentes M, Casanova E. Fine regulation of leaf iron use efficiency and iron root uptake under limited iron bioavailability. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013. [PMID: 23199685 DOI: 10.1016/j.plantsci.2012.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Numerous studies have investigated the molecular and physiological-morphological mechanisms induced in plant roots in response to specific nutrient deficiencies. Both transcriptional and post-transcriptional mechanisms are involved that increase root uptake under nutrient deficiency. Root nutrient deficiency-stress root responses are mainly regulated by the nutrient status in the shoot. The signals involved in shoot to root cross-talk regulation processes for the activation of nutrient-deficiency induced root responses are not clearly elucidated. The physiological-molecular events in the leaf linked to the nutrient availability for metabolic use, are also poorly known. In this context, we focus our attention on iron plant nutrition. Some experimental evidence suggests the existence of a regulatory system concerned with the optimization of the metabolic use of iron, mainly under conditions of iron starvation. This system seems to be activated by the deficiency in iron-availability for metabolic processes in the leaf and regulates the activation of some iron-stress root responses. This regulation seems to be probably expressed by affecting the production and/or translocation of the activating signal sent from the shoot to the root under conditions of iron deficiency in the shoot.
Collapse
Affiliation(s)
- José M García-Mina
- R&D Department (CIPAV-Roullier Group) Timac Agro, Polígono Arazuri-Orcoyen c/C, 31160 Orcoyen (Navarra), Spain.
| | | | | | | |
Collapse
|
200
|
Enomoto Y, Goto F. Long-Distance Signaling of Iron Deficiency in Plants. LONG-DISTANCE SYSTEMIC SIGNALING AND COMMUNICATION IN PLANTS 2013. [DOI: 10.1007/978-3-642-36470-9_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|