151
|
Rautengarten C, Heazlewood JL, Ebert B. Profiling Cell Wall Monosaccharides and Nucleotide-Sugars from Plants. ACTA ACUST UNITED AC 2019; 4:e20092. [PMID: 31187943 DOI: 10.1002/cppb.20092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The cell wall is an intricate mesh largely composed of polysaccharides that vary in structure and abundance. Apart from cellulose biosynthesis, the assembly of matrix polysaccharides such as pectin and hemicellulose occur in the Golgi apparatus before being transported via vesicles to the cell wall. Matrix polysaccharides are biosynthesized from activated precursors or nucleotide sugars. The composition and assembly of the cell wall is an important aspect in plant development and plant biomass utilization. The application of anion-exchange chromatography to determine the monosaccharide composition of the insoluble matrix polysaccharides enables a complete profile of all major sugars in the cell wall from a single run. While porous carbon graphite chromatography and tandem mass spectrometry delivers a sensitive and robust nucleotide sugar profile from plant extracts. Here we describe detailed methodology to quantify nucleotide sugars within the cell and profile the non-cellulosic monosaccharide composition of the cell wall. © 2019 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Carsten Rautengarten
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Joshua L Heazlewood
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| | - Berit Ebert
- School of BioSciences, The University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
152
|
Kim J, Chun JP, Tucker ML. Transcriptional Regulation of Abscission Zones. PLANTS 2019; 8:plants8060154. [PMID: 31174352 PMCID: PMC6631628 DOI: 10.3390/plants8060154] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 05/29/2019] [Accepted: 06/04/2019] [Indexed: 12/17/2022]
Abstract
Precise and timely regulation of organ separation from the parent plant (abscission) is consequential to improvement of crop productivity as it influences both the timing of harvest and fruit quality. Abscission is tightly associated with plant fitness as unwanted organs (petals, sepals, filaments) are shed after fertilization while seeds, fruits, and leaves are cast off as means of reproductive success or in response to abiotic/biotic stresses. Floral organ abscission in Arabidopsis has been a useful model to elucidate the molecular mechanisms that underlie the separation processes, and multiple abscission signals associated with the activation and downstream pathways have been uncovered. Concomitantly, large-scale analyses of omics studies in diverse abscission systems of various plants have added valuable insights into the abscission process. The results suggest that there are common molecular events linked to the biosynthesis of a new extracellular matrix as well as cell wall disassembly. Comparative analysis between Arabidopsis and soybean abscission systems has revealed shared and yet disparate regulatory modules that affect the separation processes. In this review, we discuss our current understanding of the transcriptional regulation of abscission in several different plants that has improved on the previously proposed four-phased model of organ separation.
Collapse
Affiliation(s)
- Joonyup Kim
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Jong-Pil Chun
- Department of Horticultural Science, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon 34134, Korea.
| | - Mark L Tucker
- Soybean Genomics and Improvement Laboratory, Agricultural Research Service, USDA Bldg. 006, 10300 Baltimore Ave., Beltsville, MD 20705, USA.
| |
Collapse
|
153
|
Rolim PM, Seabra LMJ, de Macedo GR. Melon By-Products: Biopotential in Human Health and Food Processing. FOOD REVIEWS INTERNATIONAL 2019. [DOI: 10.1080/87559129.2019.1613662] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
154
|
Rao TB, Chopperla R, Methre R, Punniakotti E, Venkatesh V, Sailaja B, Reddy MR, Yugander A, Laha GS, Madhav MS, Sundaram RM, Ladhalakshmi D, Balachandran SM, Mangrauthia SK. Pectin induced transcriptome of a Rhizoctonia solani strain causing sheath blight disease in rice reveals insights on key genes and RNAi machinery for development of pathogen derived resistance. PLANT MOLECULAR BIOLOGY 2019; 100:59-71. [PMID: 30796712 DOI: 10.1007/s11103-019-00843-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/14/2019] [Indexed: 05/05/2023]
Abstract
RNAi mediated silencing of pectin degrading enzyme of R. solani gives a high level of resistance against sheath blight disease of rice. Rice sheath blight disease caused by Rhizoctonia solani Kuhn (telemorph; Thanatephorus cucumeris) is one of the most devastating fungal diseases which cause severe loss to rice grain production. In the absence of resistant cultivars, the disease is currently managed through fungicides which add to environmental pollution. To explore the potential of utilizing RNA interference (RNAi)-mediated resistance against sheath blight disease, we identified genes encoding proteins and enzymes involved in the RNAi pathway in this fungal pathogen. The RNAi target genes were deciphered by RNAseq analysis of a highly virulent strain of the R. solani grown in pectin medium. Additionally, pectin metabolism associated genes of R. solani were analyzed through transcriptome sequencing of infected rice tissues obtained from six diverse rice cultivars. One of the key candidate gene AG1IA_04727 encoding polygalacturonase (PG), which was observed to be significantly upregulated during infection, was targeted through RNAi to develop disease resistance. Stable expression of PG-RNAi construct in rice showed efficient silencing of AG1IA_04727 and suppression of sheath blight disease. This study highlights important information about the existence of RNAi machinery and key genes of R. solani which can be targeted through RNAi to develop pathogen-derived resistance, thus opening an alternative strategy for developing sheath blight-resistant rice cultivars.
Collapse
Affiliation(s)
| | | | - Ramesh Methre
- ICAR-Indian Institute of Rice Research, 500030, Hyderabad, India
- College of Agriculture, University of Agricultural Sciences, Bheemarayan gudi, Raichur, India
| | - E Punniakotti
- ICAR-Indian Institute of Rice Research, 500030, Hyderabad, India
| | - V Venkatesh
- ICAR-Indian Institute of Rice Research, 500030, Hyderabad, India
| | - B Sailaja
- ICAR-Indian Institute of Rice Research, 500030, Hyderabad, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| | | | - Arra Yugander
- ICAR-Indian Institute of Rice Research, 500030, Hyderabad, India
| | - G S Laha
- ICAR-Indian Institute of Rice Research, 500030, Hyderabad, India
| | - M Sheshu Madhav
- ICAR-Indian Institute of Rice Research, 500030, Hyderabad, India
| | - R M Sundaram
- ICAR-Indian Institute of Rice Research, 500030, Hyderabad, India
| | - D Ladhalakshmi
- ICAR-Indian Institute of Rice Research, 500030, Hyderabad, India
| | - S M Balachandran
- ICAR-Indian Institute of Rice Research, 500030, Hyderabad, India
| | | |
Collapse
|
155
|
Abstract
Production of fuels and chemicals from renewable lignocellulosic feedstocks is a promising alternative to petroleum-derived compounds. Due to the complexity of lignocellulosic feedstocks, microbial conversion of all potential substrates will require substantial metabolic engineering. Non-model microbes offer desirable physiological traits, but also increase the difficulty of heterologous pathway engineering and optimization. The development of modular design principles that allow metabolic pathways to be used in a variety of novel microbes with minimal strain-specific optimization will enable the rapid construction of microbes for commercial production of biofuels and bioproducts. In this review, we discuss variability of lignocellulosic feedstocks, pathways for catabolism of lignocellulose-derived compounds, challenges to heterologous engineering of catabolic pathways, and opportunities to apply modular pathway design. Implementation of these approaches will simplify the process of modifying non-model microbes to convert diverse lignocellulosic feedstocks.
Collapse
|
156
|
Wu Y, Mirzaei M, Pascovici D, Haynes PA, Atwell BJ. Proteomes of Leaf-Growing Zones in Rice Genotypes with Contrasting Drought Tolerance. Proteomics 2019; 19:e1800310. [PMID: 30891909 DOI: 10.1002/pmic.201800310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 02/25/2019] [Indexed: 11/10/2022]
Abstract
Plants require a distinctive cohort of enzymes to coordinate cell division and expansion. Proteomic analysis now enables interrogation of immature leaf bases where these processes occur. Hence, proteins in tissues sampled from leaves of a drought-tolerant rice (IAC1131) are investigated to provide insights into the effect of soil drying on gene expression relative to the drought-sensitive genotype Nipponbare. Shoot growth zones are dissected to estimate the proportion of dividing cells and extract protein for subsequent tandem mass tags quantitative proteomic analysis. Gene ontology annotations of differentially expressed proteins provide insights into responses of Nipponbare and IAC1131 to drought. Soil drying does not affect the percentage of mitotic cells in IAC1131. More than 800 proteins across most functional categories increase in drought (and decrease on rewatering) in IAC1131, including proteins involved in "organizing the meristem" and "new cell formation". On the other hand, the percentage of dividing cells in Nipponbare is severely impaired during drought and fewer than 200 proteins respond in abundance when growing zones undergo a drying cycle. Remarkably, the proteomes of the growing zones of each genotype respond in a highly distinctive manner, reflecting their contrasting drought tolerance even at the earliest stages of leaf development.
Collapse
Affiliation(s)
- Yunqi Wu
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Mehdi Mirzaei
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Dana Pascovici
- Australian Proteome Analysis Facility, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Paul A Haynes
- Department of Molecular Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| | - Brian J Atwell
- Department of Biological Sciences, Macquarie University, North Ryde, NSW, 2109, Australia
| |
Collapse
|
157
|
On the Origin and Fate of Reactive Oxygen Species in Plant Cell Compartments. Antioxidants (Basel) 2019; 8:antiox8040105. [PMID: 30999668 PMCID: PMC6523537 DOI: 10.3390/antiox8040105] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/31/2019] [Accepted: 04/13/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) have been recognized as important signaling compounds of major importance in a number of developmental and physiological processes in plants. The existence of cellular compartments enables efficient redox compartmentalization and ensures proper functioning of ROS-dependent signaling pathways. Similar to other organisms, the production of individual ROS in plant cells is highly localized and regulated by compartment-specific enzyme pathways on transcriptional and post-translational level. ROS metabolism and signaling in specific compartments are greatly affected by their chemical interactions with other reactive radical species, ROS scavengers and antioxidant enzymes. A dysregulation of the redox status, as a consequence of induced ROS generation or decreased capacity of their removal, occurs in plants exposed to diverse stress conditions. During stress condition, strong induction of ROS-generating systems or attenuated ROS scavenging can lead to oxidative or nitrosative stress conditions, associated with potential damaging modifications of cell biomolecules. Here, we present an overview of compartment-specific pathways of ROS production and degradation and mechanisms of ROS homeostasis control within plant cell compartments.
Collapse
|
158
|
Podolsky IA, Seppälä S, Lankiewicz TS, Brown JL, Swift CL, O'Malley MA. Harnessing Nature's Anaerobes for Biotechnology and Bioprocessing. Annu Rev Chem Biomol Eng 2019; 10:105-128. [PMID: 30883214 DOI: 10.1146/annurev-chembioeng-060718-030340] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Industrial biotechnology has the potential to decrease our reliance on petroleum for fuel and bio-based chemical production and also enable valorization of waste streams. Anaerobic microorganisms thrive in resource-limited environments and offer an array of novel bioactivities in this regard that could revolutionize biomanufacturing. However, they have not been adopted for widespread industrial use owing to their strict growth requirements, limited number of available strains, difficulty in scale-up, and genetic intractability. This review provides an overview of current and future uses for anaerobes in biotechnology and bioprocessing in the postgenomic era. We focus on the recently characterized anaerobic fungi (Neocallimastigomycota) native to the digestive tract of large herbivores, which possess a trove of enzymes, pathways, transporters, and other biomolecules that can be harnessed for numerous biotechnological applications. Resolving current genetic intractability, scale-up, and cultivation challenges will unlock the potential of these lignocellulolytic fungi and other nonmodel micro-organisms to accelerate bio-based production.
Collapse
Affiliation(s)
- Igor A Podolsky
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Susanna Seppälä
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Thomas S Lankiewicz
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Jennifer L Brown
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Candice L Swift
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| | - Michelle A O'Malley
- Department of Chemical Engineering, University of California, Santa Barbara, California 93106, USA; , , , , ,
| |
Collapse
|
159
|
Benedetti M, Vecchi V, Betterle N, Natali A, Bassi R, Dall'Osto L. Design of a highly thermostable hemicellulose-degrading blend from Thermotoga neapolitana for the treatment of lignocellulosic biomass. J Biotechnol 2019; 296:42-52. [PMID: 30885654 DOI: 10.1016/j.jbiotec.2019.03.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 03/07/2019] [Accepted: 03/12/2019] [Indexed: 01/06/2023]
Abstract
The biological conversion of lignocellulose into fermentable sugars is a key process for the sustainable production of biofuels from plant biomass. Polysaccharides in plant feedstock can be valorized using thermostable mixtures of enzymes that degrade the cell walls, thus avoiding harmful and expensive pre-treatments. (Hyper)thermophilic bacteria of the phylum Thermotogae provide a rich source of enzymes for such industrial applications. Here we selected T. neapolitana as a source of hyperthermophilic hemicellulases for the degradation of lignocellulosic biomass. Two genes encoding putative hemicellulases were cloned from T. neapolitana genomic DNA and expressed in Escherichia coli. Further characterization revealed that the genes encoded an endo-1,4-β-galactanase and an α-l-arabinofuranosidase with optimal temperatures of ˜90 °C and high turnover numbers during catalysis (kcat values of ˜177 and ˜133 s-1, respectively, on soluble substrates). These enzymes were combined with three additional T. neapolitana hyperthermophilic hemicellulases - endo-1,4-β-xylanase (XynA), endo-1,4-β-mannanase (ManB/Man5A) and β-glucosidase (GghA) - to form a highly thermostable hemicellulolytic blend. The treatment of barley straw and corn bran with this enzymatic cocktail resulted in the solubilization of multiple hemicelluloses and boosted the yield of fermentable sugars by up to 65% when the complex substrates were further degraded by cellulases.
Collapse
Affiliation(s)
- Manuel Benedetti
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Valeria Vecchi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Nico Betterle
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Alberto Natali
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| | - Roberto Bassi
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Luca Dall'Osto
- Dipartimento di Biotecnologie, Università di Verona, Strada Le Grazie 15, 37134, Verona, Italy.
| |
Collapse
|
160
|
Killer toxin-like chitinases in filamentous fungi: Structure, regulation and potential roles in fungal biology. FUNGAL BIOL REV 2019. [DOI: 10.1016/j.fbr.2018.11.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
161
|
Vicente CSL, Nemchinov LG, Mota M, Eisenback JD, Kamo K, Vieira P. Identification and characterization of the first pectin methylesterase gene discovered in the root lesion nematode Pratylenchus penetrans. PLoS One 2019; 14:e0212540. [PMID: 30794636 PMCID: PMC6386239 DOI: 10.1371/journal.pone.0212540] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 02/05/2019] [Indexed: 02/04/2023] Open
Abstract
Similar to other plant-parasitic nematodes, root lesion nematodes possess an array of enzymes that are involved in the degradation of the plant cell wall. Here we report the identification of a gene encoding a cell wall-degrading enzyme, pectin methylesterase PME (EC 3.1.1.11), in the root lesion nematode Pratylenchus penetrans. Both genomic and coding sequences of the gene were cloned for this species, that included the presence of four introns which eliminated a possible contamination from bacteria. Expression of the Pp-pme gene was localized in the esophageal glands of P. penetrans as determined by in situ hybridization. Temporal expression of Pp-pme in planta was validated at early time points of infection. The possible function and activity of the gene were assessed by transient expression of Pp-pme in plants of Nicotiana benthamiana plants via a Potato virus X-based vector. To our knowledge, this is the first report on identification and characterization of a PME gene within the phylum Nematoda.
Collapse
Affiliation(s)
- Cláudia S. L. Vicente
- ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Instituto de Investigação e Formação Avançada, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Lev G. Nemchinov
- Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Manuel Mota
- Departamento de Biologia & ICAAM - Instituto de Ciências Agrárias e Ambientais Mediterrânicas, Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Jonathan D. Eisenback
- School of Plant Environmental Science, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Kathryn Kamo
- Floral and Nursery Plants Research Unit, United States of National Arboretum, United States Department of Agriculture, Beltsville, Maryland, United States of America
| | - Paulo Vieira
- Molecular Plant Pathology Laboratory, Agricultural Research Service, United States Department of Agriculture, Beltsville, Maryland, United States of America
- School of Plant Environmental Science, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
162
|
Zimmer J. Structural features underlying recognition and translocation of extracellular polysaccharides. Interface Focus 2019; 9:20180060. [PMID: 30842868 DOI: 10.1098/rsfs.2018.0060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2019] [Indexed: 12/31/2022] Open
Abstract
Essentially all living systems produce complex carbohydrates as an energy source, structural component, protective coat or adhesive for cell attachment. Many polysaccharides are displayed on the cell surface or are threaded through proteinaceous tunnels for degradation. Dictated by their chemical composition and mode of polymerization, the physical properties of complex carbohydrates differ substantially, from amphipathic water-insoluble polymers to highly hydrated hydrogel-forming macromolecules. Accordingly, diverse recognition and translocation mechanisms evolved to transport polysaccharides to their final destinations. This review will summarize and compare diverse polysaccharide transport mechanisms implicated in the biosynthesis and degradation of cell surface polymers in pro- and eukaryotes.
Collapse
Affiliation(s)
- Jochen Zimmer
- University of Virginia, 480 Ray C. Hunt Dr., Charlottesville, VA 22903, USA
| |
Collapse
|
163
|
Salas-Ruiz A, Del Mar Barbero-Barrera M, Ruiz-Téllez T. Microstructural and Thermo-Physical Characterization of a Water Hyacinth Petiole for Thermal Insulation Particle Board Manufacture. MATERIALS 2019; 12:ma12040560. [PMID: 30781831 PMCID: PMC6416643 DOI: 10.3390/ma12040560] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 02/05/2019] [Accepted: 02/11/2019] [Indexed: 11/16/2022]
Abstract
Water Hyacinth (Eichhornia crassipes) is a dangerous and invasive aquatic species, of which global concern has sharply risen due to its rapid growth. Despite ample research on its possible applications in the construction field, there are no clear references on the optimal use of the plant in finding the most efficient-use building material. In this paper, a microstructural and chemical characterization of the Water Hyacinth petiole was performed, in order to find the most efficient use as a construction material. Subsequently, two types of binder-less insulation panels were developed, with two types of particle size (pulp and staple). A physical, mechanical, and thermal characterization of the boards was performed. These results demonstrated that it is possible to manufacture self-supporting Water Hyacinth petiole panels without an artificial polymer matrix for thermal insulation. The boards showed good thermal conductivity values, ranging from 0.047–0.065 W/mK. In addition, clear differences were found in the properties of the boards, depending on the type of Water Hyacinth petiole particle size, due to the differences in the microstructure.
Collapse
Affiliation(s)
- Adela Salas-Ruiz
- Department of Construction and Technologies in Architecture, Universidad Politécnica de Madrid, Avd: Juan Herrera 4, 28040 Madrid, Spain.
| | - María Del Mar Barbero-Barrera
- Department of Construction and Technologies in Architecture, Universidad Politécnica de Madrid, Avd: Juan Herrera 4, 28040 Madrid, Spain.
| | - Trinidad Ruiz-Téllez
- Botany Area, Faculty of Science, Extremadura University, Avd Portugal 0, 06006 Badajoz, Spain.
| |
Collapse
|
164
|
Wang D, Samsulrizal NH, Yan C, Allcock NS, Craigon J, Blanco-Ulate B, Ortega-Salazar I, Marcus SE, Bagheri HM, Perez Fons L, Fraser PD, Foster T, Fray R, Knox JP, Seymour GB. Characterization of CRISPR Mutants Targeting Genes Modulating Pectin Degradation in Ripening Tomato. PLANT PHYSIOLOGY 2019; 179:544-557. [PMID: 30459263 PMCID: PMC6426429 DOI: 10.1104/pp.18.01187] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/13/2018] [Indexed: 05/05/2023]
Abstract
Tomato (Solanum lycopersicum) is a globally important crop with an economic value in the tens of billions of dollars, and a significant supplier of essential vitamins, minerals, and phytochemicals in the human diet. Shelf life is a key quality trait related to alterations in cuticle properties and remodeling of the fruit cell walls. Studies with transgenic tomato plants undertaken over the last 20 years have indicated that a range of pectin-degrading enzymes are involved in cell wall remodeling. These studies usually involved silencing of only a single gene and it has proved difficult to compare the effects of silencing these genes across the different experimental systems. Here we report the generation of CRISPR-based mutants in the ripening-related genes encoding the pectin-degrading enzymes pectate lyase (PL), polygalacturonase 2a (PG2a), and β-galactanase (TBG4). Comparison of the physiochemical properties of the fruits from a range of PL, PG2a, and TBG4 CRISPR lines demonstrated that only mutations in PL resulted in firmer fruits, although mutations in PG2a and TBG4 influenced fruit color and weight. Pectin localization, distribution, and solubility in the pericarp cells of the CRISPR mutant fruits were investigated using the monoclonal antibody probes LM19 to deesterified homogalacturonan, INRA-RU1 to rhamnogalacturonan I, LM5 to β-1,4-galactan, and LM6 to arabinan epitopes, respectively. The data indicate that PL, PG2a, and TBG4 act on separate cell wall domains and the importance of cellulose microfibril-associated pectin is reflected in its increased occurrence in the different mutant lines.
Collapse
Affiliation(s)
- Duoduo Wang
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Nurul H Samsulrizal
- Department of Plant Science, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Cheng Yan
- Institution of Vegetable Research, Shanxi Academy of Agricultural Sciences, Taiyuan City, China 030031
| | - Natalie S Allcock
- Electron Microscopy Facility, Centre for Core Biotechnology Services, University of Leicester, Leicester LE1 7RH, UK
| | - Jim Craigon
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | | | | | - Susan E Marcus
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | | | - Laura Perez Fons
- School of Biological Sciences, Plant Molecular Sciences, University of London, Surrey TW20 0EX, UK
| | - Paul D Fraser
- School of Biological Sciences, Plant Molecular Sciences, University of London, Surrey TW20 0EX, UK
| | - Timothy Foster
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - Rupert Fray
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Graham B Seymour
- School of Biosciences, University of Nottingham, Sutton Bonington, Loughborough LE12 5RD, UK
| |
Collapse
|
165
|
Bartetzko MP, Pfrengle F. Automated Glycan Assembly of Plant Oligosaccharides and Their Application in Cell-Wall Biology. Chembiochem 2019; 20:877-885. [PMID: 30427113 DOI: 10.1002/cbic.201800641] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Indexed: 12/12/2022]
Abstract
The plant cell wall provides the richest available resource of fermentable carbohydrates and biobased materials. The main component of plant cell walls is cellulose, which is the most abundant biomolecule on earth. Apart from cellulose, which is constructed from relatively simple β-1,4-glucan chains, plant cell walls also contain structurally more complex heteropolysaccharides (hemicellulose and pectin), as well as lignin and cell-wall proteins. A detailed understanding of the molecular structures, functions, and biosyntheses of cell-wall components is required to further promote their industrial use. Plant cell-wall research is, to a large degree, hampered by a lsack of available well-defined oligosaccharide samples that represent the structural features of cell-wall glycans. One technique to access these oligosaccharides is automated glycan assembly; a technique in which monosaccharide building blocks are, similarly to automated peptide and oligonucleotide chemistry, successively added to a linker-functionalized resin in a fully automated manner. Herein, recent research into the automated glycan assembly of different classes of cell-wall glycans used as molecular tools for cell-wall biology is discussed. More than 60 synthetic oligosaccharides were prepared and printed as microarrays for screening monoclonal antibodies that recognize plant cell-wall polysaccharides. The synthesized oligosaccharides have also been used to investigate glycosyltransferases and glycoside hydrolases, which are involved in synthesis and degradation of plant cell walls, as well as for the analysis of cell-wall-remodeling enzymes.
Collapse
Affiliation(s)
- Max P Bartetzko
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| | - Fabian Pfrengle
- Department of Biomolecular Systems, Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476, Potsdam, Germany.,Institute of Chemistry and Biochemistry, Freie Universität Berlin, Arnimallee 22, 14195, Berlin, Germany
| |
Collapse
|
166
|
|
167
|
Assis R. Lineage-Specific Expression Divergence in Grasses Is Associated with Male Reproduction, Host-Pathogen Defense, and Domestication. Genome Biol Evol 2019; 11:207-219. [PMID: 30398650 PMCID: PMC6331041 DOI: 10.1093/gbe/evy245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2018] [Indexed: 02/02/2023] Open
Abstract
Poaceae (grasses) is an agriculturally important and widely distributed family of plants with extraordinary phenotypic diversity, much of which was generated under recent lineage-specific evolution. Yet, little is known about the genes and functional modules involved in the lineage-specific divergence of grasses. Here, I address this question on a genome-wide scale by applying a novel branch-based statistic of lineage-specific expression divergence, LED, to RNA-seq data from nine tissues of the wild grass Brachypodium distachyon and its domesticated relatives Oryza sativa japonica (rice) and Sorghum bicolor (sorghum). I find that LED is generally smallest in B. distachyon and largest in O. sativa japonica, which underwent domestication earlier than S. bicolor, supporting the hypothesis that domestication may increase the rate of lineage-specific expression divergence in grasses. Moreover, in all three species, LED is positively correlated with protein-coding sequence divergence and tissue specificity, and negatively correlated with network connectivity. Further analysis reveals that genes with large LED are often primarily expressed in anther, implicating lineage-specific expression divergence in the evolution of male reproductive phenotypes. Gene ontology enrichment analysis also identifies an overrepresentation of terms related to male reproduction in the two domesticated grasses, as well as to those involved in host-pathogen defense in all three species. Last, examinations of genes with the largest LED reveal that their lineage-specific expression divergence may have contributed to antimicrobial functions in B. distachyon, to enhanced adaptation and yield during domestication in O. sativa japonica, and to defense against a widespread and devastating fungal pathogen in S. bicolor. Together, these findings suggest that lineage-specific expression divergence in grasses may increase under domestication and preferentially target rapidly evolving genes involved in male reproduction, host-pathogen defense, and the origin of domesticated phenotypes.
Collapse
Affiliation(s)
- Raquel Assis
- Department of Biology, Pennsylvania State University, University Park
| |
Collapse
|
168
|
de Araújo EA, de Oliveira Neto M, Polikarpov I. Biochemical characterization and low-resolution SAXS structure of two-domain endoglucanase BlCel9 from Bacillus licheniformis. Appl Microbiol Biotechnol 2018; 103:1275-1287. [PMID: 30547217 DOI: 10.1007/s00253-018-9508-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 10/03/2018] [Accepted: 11/07/2018] [Indexed: 12/16/2022]
Abstract
Lignocellulose feedstock constitutes the most abundant carbon source in the biosphere; however, its recalcitrance remains a challenge for microbial conversion into biofuel and bioproducts. Bacillus licheniformis is a microbial mesophilic bacterium capable of secreting a large number of glycoside hydrolase (GH) enzymes, including a glycoside hydrolase from GH family 9 (BlCel9). Here, we conducted biochemical and biophysical studies of recombinant BlCel9, and its low-resolution molecular shape was retrieved from small angle X-ray scattering (SAXS) data. BlCel9 is an endoglucanase exhibiting maximum catalytic efficiency at pH 7.0 and 60 °C. Furthermore, it retains 80% of catalytic activity within a broad range of pH values (5.5-8.5) and temperatures (up to 50 °C) for extended periods of time (over 48 h). It exhibits the highest hydrolytic activity against phosphoric acid swollen cellulose (PASC), followed by bacterial cellulose (BC), filter paper (FP), and to a lesser extent carboxymethylcellulose (CMC). The HPAEC-PAD analysis of the hydrolytic products demonstrated that the end product of the enzymatic hydrolysis is primarily cellobiose, and also small amounts of glucose, cellotriose, and cellotetraose are produced. SAXS data analysis revealed that the enzyme adopts a monomeric state in solution and has a molecular mass of 65.8 kDa as estimated from SAXS data. The BlCel9 has an elongated shape composed of an N-terminal family 3 carbohydrate-binding module (CBM3c) and a C-terminal GH9 catalytic domain joined together by 20 amino acid residue long linker peptides. The domains are closely juxtaposed in an extended conformation and form a relatively rigid structure in solution, indicating that the interactions between the CBM3c and GH9 catalytic domains might play a key role in cooperative cellulose biomass recognition and hydrolysis.
Collapse
Affiliation(s)
- Evandro Ares de Araújo
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil
| | - Mário de Oliveira Neto
- Departmento de Física e Biofísica, Universidade Estadual Paulista "Júlio de Mesquita Filho", R. Prof. Dr. Antonio Celso Wagner Zanin 689, Jardim Sao Jose, Botucatu, SP, 18618-970, Brazil
| | - Igor Polikarpov
- Instituto de Física de São Carlos, Universidade de São Paulo, Av. Trabalhador Saocarlense 400, São Carlos, SP, 13560-970, Brazil.
| |
Collapse
|
169
|
Hansen NW, Sams A. The Microbiotic Highway to Health-New Perspective on Food Structure, Gut Microbiota, and Host Inflammation. Nutrients 2018; 10:E1590. [PMID: 30380701 PMCID: PMC6267475 DOI: 10.3390/nu10111590] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 10/13/2018] [Accepted: 10/23/2018] [Indexed: 12/14/2022] Open
Abstract
This review provides evidence that not only the content of nutrients but indeed the structural organization of nutrients is a major determinant of human health. The gut microbiota provides nutrients for the host by digesting food structures otherwise indigestible by human enzymes, thereby simultaneously harvesting energy and delivering nutrients and metabolites for the nutritional and biological benefit of the host. Microbiota-derived nutrients, metabolites, and antigens promote the development and function of the host immune system both directly by activating cells of the adaptive and innate immune system and indirectly by sustaining release of monosaccharides, stimulating intestinal receptors and secreting gut hormones. Multiple indirect microbiota-dependent biological responses contribute to glucose homeostasis, which prevents hyperglycemia-induced inflammatory conditions. The composition and function of the gut microbiota vary between individuals and whereas dietary habits influence the gut microbiota, the gut microbiota influences both the nutritional and biological homeostasis of the host. A healthy gut microbiota requires the presence of beneficial microbiotic species as well as vital food structures to ensure appropriate feeding of the microbiota. This review focuses on the impact of plant-based food structures, the "fiber-encapsulated nutrient formulation", and on the direct and indirect mechanisms by which the gut microbiota participate in host immune function.
Collapse
Affiliation(s)
- Nina Wærling Hansen
- Molecular Endocrinology Unit (KMEB), Department of Endocrinology, Institute of Clinical Research, University of Southern Denmark, DK-5000 Odense, Denmark.
| | - Anette Sams
- Department of Clinical Experimental Research, Glostrup Research Institute, Copenhagen University Hospital, Nordstjernevej 42, DK-2600 Glostrup, Denmark.
| |
Collapse
|
170
|
Giacomello S, Lundeberg J. Preparation of plant tissue to enable Spatial Transcriptomics profiling using barcoded microarrays. Nat Protoc 2018; 13:2425-2446. [DOI: 10.1038/s41596-018-0046-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
171
|
Busch A, Kunert G, Wielsch N, Pauchet Y. Cellulose degradation in Gastrophysa viridula (Coleoptera: Chrysomelidae): functional characterization of two CAZymes belonging to glycoside hydrolase family 45 reveals a novel enzymatic activity. INSECT MOLECULAR BIOLOGY 2018; 27:633-650. [PMID: 29774620 DOI: 10.1111/imb.12500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Cellulose is a major component of the primary and secondary cell walls in plants. Cellulose is considered to be the most abundant biopolymer on Earth and represents a large potential source of metabolic energy. Yet, cellulose degradation is rare and mostly restricted to cellulolytic microorganisms. Recently, various metazoans, including leaf beetles, have been found to encode their own cellulases, giving them the ability to degrade cellulose independently of cellulolytic symbionts. Here, we analyzed the cellulosic capacity of the leaf beetle Gastrophysa viridula, which typically feeds on Rumex plants. We identified three putative cellulases member of two glycoside hydrolase (GH) families, namely GH45 and GH9. Using heterologous expression and functional assays, we demonstrated that both GH45 proteins are active enzymes, in contrast to the GH9 protein. One GH45 protein acted on amorphous cellulose as an endo-β-1,4-glucanase, whereas the other evolved to become an endo-β-1,4-xyloglucanase. We successfully knocked down the expression of both GH45 genes using RNAi, but no changes in weight gain or mortality were observed compared to control insects. Our data indicated that the breakdown of these polysaccharides in G. viridula may facilitate access to plant cell content, which is rich in nitrogen and simple sugars.
Collapse
Affiliation(s)
- A Busch
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - G Kunert
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - N Wielsch
- Research Group Mass Spectrometry, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Y Pauchet
- Department of Entomology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
172
|
de la Canal L, Pinedo M. Extracellular vesicles: a missing component in plant cell wall remodeling. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4655-4658. [PMID: 30007361 PMCID: PMC6137967 DOI: 10.1093/jxb/ery255] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- Laura de la Canal
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata – CONICET, Funes, Mar del Plata, Argentina
| | - Marcela Pinedo
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata – CONICET, Funes, Mar del Plata, Argentina
| |
Collapse
|
173
|
Cell wall polysaccharides from Ponkan mandarin (Citrus reticulata Blanco cv. Ponkan) peel. Carbohydr Polym 2018; 195:120-127. [DOI: 10.1016/j.carbpol.2018.04.066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 04/12/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022]
|
174
|
Rui Y, Chen Y, Kandemir B, Yi H, Wang JZ, Puri VM, Anderson CT. Balancing Strength and Flexibility: How the Synthesis, Organization, and Modification of Guard Cell Walls Govern Stomatal Development and Dynamics. FRONTIERS IN PLANT SCIENCE 2018; 9:1202. [PMID: 30177940 PMCID: PMC6110162 DOI: 10.3389/fpls.2018.01202] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 07/26/2018] [Indexed: 05/02/2023]
Abstract
Guard cells are pairs of epidermal cells that control gas diffusion by regulating the opening and closure of stomatal pores. Guard cells, like other types of plant cells, are surrounded by a three-dimensional, extracellular network of polysaccharide-based wall polymers. In contrast to the walls of diffusely growing cells, guard cell walls have been hypothesized to be uniquely strong and elastic to meet the functional requirements of withstanding high turgor and allowing for reversible stomatal movements. Although the walls of guard cells were long underexplored as compared to extensive studies of stomatal development and guard cell signaling, recent research has provided new genetic, cytological, and physiological data demonstrating that guard cell walls function centrally in stomatal development and dynamics. In this review, we highlight and discuss the latest evidence for how wall polysaccharides are synthesized, deposited, reorganized, modified, and degraded in guard cells, and how these processes influence stomatal form and function. We also raise open questions and provide a perspective on experimental approaches that could be used in the future to shed light on the composition and architecture of guard cell walls.
Collapse
Affiliation(s)
- Yue Rui
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
| | - Yintong Chen
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, PA, United States
| | - Baris Kandemir
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, United States
| | - Hojae Yi
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, United States
| | - James Z. Wang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, United States
| | - Virendra M. Puri
- Department of Agricultural and Biological Engineering, The Pennsylvania State University, University Park, PA, United States
| | - Charles T. Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, United States
- Intercollege Graduate Degree Program in Molecular Cellular and Integrative Biosciences, The Pennsylvania State University, University Park, PA, United States
| |
Collapse
|
175
|
Wang X, Brockman JD, Guthrie JM, Lever SZ. Analysis and imaging of boron distribution in maize by quantitative neutron capture radiography. Appl Radiat Isot 2018; 140:252-261. [PMID: 30075457 DOI: 10.1016/j.apradiso.2018.07.028] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Revised: 05/28/2018] [Accepted: 07/23/2018] [Indexed: 01/27/2023]
Abstract
Quantitative neutron capture radiography (QNCR) of 10B found in pre-dried maize samples has been conducted. Calibration standards constructed from filter paper mimicked plant tissues to reduce confounding matrix effects. A mathematical track elimination method improves the LOD as well as the visual contrast image at low boron concentration levels. The LOD for total boron is 1.7 µg/g in a 4 mm2 region of interest (ROI). The w(B) in five individual maize tassel meristems has been determined to be 14.9 µg/g - 21.2 µg/g.
Collapse
Affiliation(s)
- Xingyao Wang
- Department of Chemistry, University of Missouri, 601S College Ave, 65211 Columbia, MO, USA.
| | - John D Brockman
- University of Missouri Research Reactor Center (MURR®), 1513 Research Park Drive, 65211 Columbia, MO, USA.
| | - James M Guthrie
- University of Missouri Research Reactor Center (MURR®), 1513 Research Park Drive, 65211 Columbia, MO, USA.
| | - Susan Z Lever
- Department of Chemistry, University of Missouri, 601S College Ave, 65211 Columbia, MO, USA; University of Missouri Research Reactor Center (MURR®), 1513 Research Park Drive, 65211 Columbia, MO, USA.
| |
Collapse
|
176
|
Prats-Mateu B, Felhofer M, de Juan A, Gierlinger N. Multivariate unmixing approaches on Raman images of plant cell walls: new insights or overinterpretation of results? PLANT METHODS 2018; 14:52. [PMID: 29997681 PMCID: PMC6031114 DOI: 10.1186/s13007-018-0320-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/25/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Plant cell walls are nanocomposites based on cellulose microfibrils embedded in a matrix of polysaccharides and aromatic polymers. They are optimized for different functions (e.g. mechanical stability) by changing cell form, cell wall thickness and composition. To reveal the composition of plant tissues in a non-destructive way on the microscale, Raman imaging has become an important tool. Thousands of Raman spectra are acquired, each one being a spatially resolved molecular fingerprint of the plant cell wall. Nevertheless, due to the multicomponent nature of plant cell walls, many bands are overlapping and classical band integration approaches often not suitable for imaging. Multivariate data analysing approaches have a high potential as the whole wavenumber region of all thousands of spectra is analysed at once. RESULTS Three multivariate unmixing algorithms, vertex component analysis, non-negative matrix factorization and multivariate curve resolution-alternating least squares were applied to find the purest components within datasets acquired from micro-sections of spruce wood and Arabidopsis. With all three approaches different cell wall layers (including tiny S1 and S3 with 0.09-0.14 µm thickness) and cell contents were distinguished and endmember spectra with a good signal to noise ratio extracted. Baseline correction influences the results obtained in all methods as well as the way in which algorithm extracts components, i.e. prioritizing the extraction of positive endmembers by sequential orthogonal projections in VCA or performing a simultaneous extraction of non-negative components aiming at explaining the maximum variance in NMF and MCR-ALS. Other constraints applied (e.g. closure in VCA) or a previous principal component analysis filtering step in MCR-ALS also contribute to the differences obtained. CONCLUSIONS VCA is recommended as a good preliminary approach, since it is fast, does not require setting many input parameters and the endmember spectra result in good approximations of the raw data. Yet the endmember spectra are more correlated and mixed than those retrieved by NMF and MCR-ALS methods. The latter two give the best model statistics (with lower lack of fit in the models), but care has to be taken about overestimating the rank as it can lead to artificial shapes due to peak splitting or inverted bands.
Collapse
Affiliation(s)
- Batirtze Prats-Mateu
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna, Austria
| | - Martin Felhofer
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna, Austria
| | - Anna de Juan
- Chemometrics Group, University of Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Notburga Gierlinger
- Department of Nanobiotechnology, BOKU-University of Natural Resources and Life Sciences, Muthgasse 11/II, 1190 Vienna, Austria
- Institute for Building Materials, Eidgenössische Technische Hochschule Zurich Hönggerberg, 8093 Zurich, Switzerland
- Applied Wood Research Laboratory, Empa-Swiss Federal Laboratories for Material Testing and Research, Überlandstrasse 129, 8600 Dübendorf, Switzerland
| |
Collapse
|
177
|
Speicher TL, Li PZ, Wallace IS. Phosphoregulation of the Plant Cellulose Synthase Complex and Cellulose Synthase-Like Proteins. PLANTS (BASEL, SWITZERLAND) 2018; 7:E52. [PMID: 29966291 PMCID: PMC6161211 DOI: 10.3390/plants7030052] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 06/26/2018] [Accepted: 06/26/2018] [Indexed: 02/04/2023]
Abstract
Cellulose, the most abundant biopolymer on the planet, is synthesized at the plasma membrane of plant cells by the cellulose synthase complex (CSC). Cellulose is the primary load-bearing polysaccharide of plant cell walls and enables cell walls to maintain cellular shape and rigidity. The CSC is comprised of functionally distinct cellulose synthase A (CESA) proteins, which are responsible for synthesizing cellulose, and additional accessory proteins. Moreover, CESA-like (CSL) proteins are proposed to synthesize other essential non-cellulosic polysaccharides that comprise plant cell walls. The deposition of cell-wall polysaccharides is dynamically regulated in response to a variety of developmental and environmental stimuli, and post-translational phosphorylation has been proposed as one mechanism to mediate this dynamic regulation. In this review, we discuss CSC composition, the dynamics of CSCs in vivo, critical studies that highlight the post-translational control of CESAs and CSLs, and the receptor kinases implicated in plant cell-wall biosynthesis. Furthermore, we highlight the emerging importance of post-translational phosphorylation-based regulation of CSCs on the basis of current knowledge in the field.
Collapse
Affiliation(s)
- Tori L Speicher
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Patrick Ziqiang Li
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| | - Ian S Wallace
- Department of Biochemistry and Molecular Biology, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
178
|
Lin D, Lopez-Sanchez P, Selway N, Gidley MJ. Viscoelastic properties of pectin/cellulose composites studied by QCM-D and oscillatory shear rheology. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2017.12.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
179
|
Huang C, Zhang R, Gui J, Zhong Y, Li L. The Receptor-Like Kinase AtVRLK1 Regulates Secondary Cell Wall Thickening. PLANT PHYSIOLOGY 2018; 177:671-683. [PMID: 29678858 PMCID: PMC6001334 DOI: 10.1104/pp.17.01279] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 04/02/2018] [Indexed: 05/20/2023]
Abstract
During the growth and development of land plants, some specialized cells, such as tracheary elements, undergo secondary cell wall thickening. Secondary cell walls contain additional lignin, compared with primary cell walls, thus providing mechanical strength and potentially improving defenses against pathogens. However, the molecular mechanisms that initiate wall thickening are unknown. In this study, we identified an Arabidopsis (Arabidopsis thaliana) leucine-rich repeat receptor-like kinase, encoded by AtVRLK1 (Vascular-Related Receptor-Like Kinase1), that is expressed specifically in cells undergoing secondary cell wall thickening. Suppression of AtVRLK1 expression resulted in a range of phenotypes that included retarded early elongation of the inflorescence stem, shorter fibers, slower root growth, and shorter flower filaments. In contrast, up-regulation of AtVRLK1 led to longer fiber cells, reduced secondary cell wall thickening in fiber and vessel cells, and defects in anther dehiscence. Molecular and cellular analyses showed that down-regulation of AtVRLK1 promoted secondary cell wall thickening and up-regulation of AtVRLK1 enhanced cell elongation and inhibited secondary cell wall thickening. We propose that AtVRLK1 functions as a signaling component in coordinating cell elongation and cell wall thickening during growth and development.
Collapse
Affiliation(s)
- Cheng Huang
- National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China, and University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhang
- National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China, and University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinshan Gui
- National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China, and University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Zhong
- National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China, and University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Laigeng Li
- National Key Laboratory of Plant Molecular Genetics and Chinese Academy of Sciences Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China, and University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
180
|
Ye Y, Wu K, Chen J, Liu Q, Wu Y, Liu B, Fu X. OsSND2, a NAC family transcription factor, is involved in secondary cell wall biosynthesis through regulating MYBs expression in rice. RICE (NEW YORK, N.Y.) 2018; 11:36. [PMID: 29855737 PMCID: PMC5981155 DOI: 10.1186/s12284-018-0228-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 05/23/2018] [Indexed: 05/03/2023]
Abstract
BACKGROUND As one of the most important staple food crops, rice produces huge agronomic biomass residues that contain lots of secondary cell walls (SCWs) comprising cellulose, hemicelluloses and lignin. The transcriptional regulation mechanism underlying SCWs biosynthesis remains elusive. RESULTS In this study, we isolated a NAC family transcription factor (TF), OsSND2 through yeast one-hybrid screening using the secondary wall NAC-binding element (SNBE) on the promoter region of OsMYB61 which is known transcription factor for regulation of SCWs biosynthesis as bait. We used an electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation analysis (ChIP) to further confirm that OsSND2 can directly bind to the promoter of OsMYB61 both in vitro and in vivo. OsSND2, a close homolog of AtSND2, is localized in the nucleus and has transcriptional activation activity. Expression pattern analysis indicated that OsSND2 was mainly expressed in internodes and panicles. Overexpression of OsSND2 resulted in rolled leaf, increased cellulose content and up-regulated expression of SCWs related genes. The knockout of OsSND2 using CRISPR/Cas9 system decreased cellulose content and down-regulated the expression of SCWs related genes. Furthermore, OsSND2 can also directly bind to the promoters of other MYB family TFs by transactivation analysis in yeast cells and rice protoplasts. Altogether, our findings suggest that OsSND2 may function as a master regulator to mediate SCWs biosynthesis. CONCLUSION OsSND2 was identified as a positive regulator of cellulose biosynthesis in rice. An increase in the expression level of this gene can improve the SCWs cellulose content. Therefore, the study of the function of OsSND2 can provide a strategy for manipulating plant biomass production.
Collapse
Affiliation(s)
- Yafeng Ye
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kun Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jianfeng Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qian Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuejin Wu
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China
| | - Binmei Liu
- Institute of Technical Biology and Agricultural Engineering, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China.
- Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, 230031, People's Republic of China.
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
181
|
Brand P, Lin W, Johnson BR. The Draft Genome of the Invasive Walking Stick, Medauroidea extradendata, Reveals Extensive Lineage-Specific Gene Family Expansions of Cell Wall Degrading Enzymes in Phasmatodea. G3 (BETHESDA, MD.) 2018; 8:1403-1408. [PMID: 29588379 PMCID: PMC5940134 DOI: 10.1534/g3.118.200204] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 03/21/2018] [Indexed: 12/12/2022]
Abstract
Plant cell wall components are the most abundant macromolecules on Earth. The study of the breakdown of these molecules is thus a central question in biology. Surprisingly, plant cell wall breakdown by herbivores is relatively poorly understood, as nearly all early work focused on the mechanisms used by symbiotic microbes to breakdown plant cell walls in insects such as termites. Recently, however, it has been shown that many organisms make endogenous cellulases. Insects, and other arthropods, in particular have been shown to express a variety of plant cell wall degrading enzymes in many gene families with the ability to break down all the major components of the plant cell wall. Here we report the genome of a walking stick, Medauroidea extradentata, an obligate herbivore that makes uses of endogenously produced plant cell wall degrading enzymes. We present a draft of the 3.3Gbp genome along with an official gene set that contains a diversity of plant cell wall degrading enzymes. We show that at least one of the major families of plant cell wall degrading enzymes, the pectinases, have undergone a striking lineage-specific gene family expansion in the Phasmatodea. This genome will be a useful resource for comparative evolutionary studies with herbivores in many other clades and will help elucidate the mechanisms by which metazoans breakdown plant cell wall components.
Collapse
Affiliation(s)
- Philipp Brand
- Department of Evolution and Ecology, Center for Population Biology, University of California, Davis, California 95619
| | - Wei Lin
- Department of Entomology and Nematology, University of California, Davis, California 95616
| | - Brian R Johnson
- Department of Entomology and Nematology, University of California, Davis, California 95616
| |
Collapse
|
182
|
Biochemical characterization, low-resolution SAXS structure and an enzymatic cleavage pattern of BlCel48 from Bacillus licheniformis. Int J Biol Macromol 2018; 111:302-310. [DOI: 10.1016/j.ijbiomac.2017.12.138] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 12/17/2017] [Accepted: 12/25/2017] [Indexed: 12/12/2022]
|
183
|
Hu H, Zhang R, Feng S, Wang Y, Wang Y, Fan C, Li Y, Liu Z, Schneider R, Xia T, Ding S, Persson S, Peng L. Three AtCesA6-like members enhance biomass production by distinctively promoting cell growth in Arabidopsis. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:976-988. [PMID: 28944540 PMCID: PMC5902768 DOI: 10.1111/pbi.12842] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 09/18/2017] [Accepted: 09/20/2017] [Indexed: 05/11/2023]
Abstract
Cellulose is an abundant biopolymer and a prominent constituent of plant cell walls. Cellulose is also a central component to plant morphogenesis and contributes the bulk of a plant's biomass. While cellulose synthase (CesA) genes were identified over two decades ago, genetic manipulation of this family to enhance cellulose production has remained difficult. In this study, we show that increasing the expression levels of the three primary cell wall AtCesA6-like genes (AtCesA2, AtCesA5, AtCesA6), but not AtCesA3, AtCesA9 or secondary cell wall AtCesA7, can promote the expression of major primary wall CesA genes to accelerate primary wall CesA complex (cellulose synthase complexes, CSCs) particle movement for acquiring long microfibrils and consequently increasing cellulose production in Arabidopsis transgenic lines, as compared with wild-type. The overexpression transgenic lines displayed changes in expression of genes related to cell growth and proliferation, perhaps explaining the enhanced growth of the transgenic seedlings. Notably, overexpression of the three AtCesA6-like genes also enhanced secondary cell wall deposition that led to improved mechanical strength and higher biomass production in transgenic mature plants. Hence, we propose that overexpression of certain AtCesA genes can provide a biotechnological approach to increase cellulose synthesis and biomass accumulation in transgenic plants.
Collapse
Affiliation(s)
- Huizhen Hu
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ran Zhang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shengqiu Feng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Youmei Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Yanting Wang
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chunfen Fan
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Ying Li
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Zengyu Liu
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
| | - René Schneider
- School of BiosciencesUniversity of MelbourneParkvilleVICAustralia
| | - Tao Xia
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Life Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Shi‐You Ding
- Department of Plant BiologyMichigan State UniversityEast LansingMIUSA
| | - Staffan Persson
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- Max‐Planck‐Institute of Molecular Plant PhysiologyPotsdam‐GolmGermany
- School of BiosciencesUniversity of MelbourneParkvilleVICAustralia
| | - Liangcai Peng
- Biomass and Bioenergy Research CentreHuazhong Agricultural UniversityWuhanChina
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
- College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
184
|
Cervantes-Pérez SA, Espinal-Centeno A, Oropeza-Aburto A, Caballero-Pérez J, Falcon F, Aragón-Raygoza A, Sánchez-Segura L, Herrera-Estrella L, Cruz-Hernández A, Cruz-Ramírez A. Transcriptional profiling of the CAM plant Agave salmiana reveals conservation of a genetic program for regeneration. Dev Biol 2018; 442:28-39. [PMID: 29705332 DOI: 10.1016/j.ydbio.2018.04.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/06/2018] [Accepted: 04/24/2018] [Indexed: 10/17/2022]
Abstract
In plants, the best characterized plant regeneration process is de novo organogenesis. This type of regeneration is characterized by the formation of a multicellular structure called callus. Calli are induced via phytohormone treatment of plant sections. The callus formation in plants like Agave species with Crassulacean Acid Metabolism (CAM) is poorly studied. In this study, we induced callus formation from Agave salmiana leaves and describe cell arrangement in this tissue. Moreover, we determined and analyzed the transcriptional program of calli, as well as those of differentiated root and leaf tissues, by using RNA-seq. We were able to reconstruct 170,844 transcripts of which 40,644 have a full Open Reading Frame (ORF). The global profile obtained by Next Generation Sequencing (NGS) reveals that several callus-enriched protein coding transcripts are orthologs of previously reported factors highly expressed in Arabidopsis calli. At least 62 genes were differentially expressed in Agave calli, 50 of which were up-regulated. Several of these are actively involved in the perception of, and response to, auxin and cytokinin. Not only are these the first results for the A. salmiana callus, but they provide novel data from roots and leaves of this Agave species, one of the largest non-tree plants in nature.
Collapse
Affiliation(s)
| | - Annie Espinal-Centeno
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada-LANGEBIO, CINVESTAV-Irapuato, Gto, Mexico.
| | - Araceli Oropeza-Aburto
- Metabolic Engineering Group, Unidad de Genómica Avanzada-LANGEBIO, CINVESTAV-Irapuato, Gto, Mexico.
| | - Juan Caballero-Pérez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada-LANGEBIO, CINVESTAV-Irapuato, Gto, Mexico.
| | - Francisco Falcon
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada-LANGEBIO, CINVESTAV-Irapuato, Gto, Mexico.
| | - Alejandro Aragón-Raygoza
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada-LANGEBIO, CINVESTAV-Irapuato, Gto, Mexico.
| | - Lino Sánchez-Segura
- Departamento de Ingeniería Genética, Unidad Irapuato, CINVESTAV-Irapuato, Gto, Mexico.
| | - Luis Herrera-Estrella
- Metabolic Engineering Group, Unidad de Genómica Avanzada-LANGEBIO, CINVESTAV-Irapuato, Gto, Mexico.
| | | | - Alfredo Cruz-Ramírez
- Molecular and Developmental Complexity Group, Unidad de Genómica Avanzada-LANGEBIO, CINVESTAV-Irapuato, Gto, Mexico; Escuela de Agronomía, Universidad de La Salle Bajío, León, Gto, Mexico.
| |
Collapse
|
185
|
Martínez-Ruiz EB, Martínez-Jerónimo F. Exposure to the herbicide 2,4-D produces different toxic effects in two different phytoplankters: A green microalga (Ankistrodesmus falcatus) and a toxigenic cyanobacterium (Microcystis aeruginosa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:1566-1578. [PMID: 29070448 DOI: 10.1016/j.scitotenv.2017.10.145] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2017] [Revised: 10/13/2017] [Accepted: 10/14/2017] [Indexed: 06/07/2023]
Abstract
The extensive use of 2,4-dichlorophenoxiacetic acid (2,4-D) in agriculture is an important source of pollution to water and soil. Toxicity of commonly used herbicides to non-target, planktonic photosynthetic organisms has not been described completely yet. Therefore, we determined the effect of subinhibitory 2,4-D concentrations on the Chlorophycean alga Ankistrodesmus falcatus and on a toxigenic strain of the cyanobacterium Microcystis aeruginosa. Population growth, photosynthetic pigments, macromolecular biomarkers (carbohydrates, lipids, and protein), and antioxidant enzymes (catalase [CAT], glutathione peroxidase [GPx], and superoxide dismutase [SOD]) were quantified, and the integrated biomarker response (IBR) was calculated. Scanning electron microscope (SEM) and transmission electron microscope (TEM) observations were also performed. The 96-h median inhibitory concentration (IC50) for 2,4-D was 1353.80 and 71.20mgL-1 for the alga and the cyanobacterium, respectively. Under 2,4-D stress, both organisms increased pigments and macromolecules concentration, modified the activity of all the evaluated enzymes, and exhibited ultrastructural alterations. M. aeruginosa also increased microcystins production, and A. falcatus showed external morphological alterations. The green alga was tolerant to high concentrations of the herbicide, whereas the cyanobacterium exhibited sensitivity comparable to other phytoplankters. Both organisms were tolerant to comparatively high concentrations of the herbicide; however, negative effects on the assessed biomarkers and cell morphology were significant. Moreover, stimulation of the production of cyanotoxins under chemical stress could increase the risk for the biota in aquatic environments, related to herbicides pollution in eutrophic freshwater ecosystems.
Collapse
Affiliation(s)
- Erika Berenice Martínez-Ruiz
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico
| | - Fernando Martínez-Jerónimo
- Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Hidrobiología Experimental, Carpio y Plan de Ayala S/N, Col. Santo Tomás, Mexico City 11340, Mexico.
| |
Collapse
|
186
|
Biochemical and biophysical characterization of novel GH10 xylanase prospected from a sugar cane bagasse compost-derived microbial consortia. Int J Biol Macromol 2018; 109:560-568. [DOI: 10.1016/j.ijbiomac.2017.12.099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Revised: 12/17/2017] [Accepted: 12/19/2017] [Indexed: 11/17/2022]
|
187
|
Davì V, Tanimoto H, Ershov D, Haupt A, De Belly H, Le Borgne R, Couturier E, Boudaoud A, Minc N. Mechanosensation Dynamically Coordinates Polar Growth and Cell Wall Assembly to Promote Cell Survival. Dev Cell 2018; 45:170-182.e7. [DOI: 10.1016/j.devcel.2018.03.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/05/2018] [Accepted: 03/26/2018] [Indexed: 02/03/2023]
|
188
|
Laursen T, Stonebloom SH, Pidatala VR, Birdseye DS, Clausen MH, Mortimer JC, Scheller HV. Bifunctional glycosyltransferases catalyze both extension and termination of pectic galactan oligosaccharides. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 94:340-351. [PMID: 29418030 DOI: 10.1111/tpj.13860] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 05/18/2023]
Abstract
Pectins are the most complex polysaccharides of the plant cell wall. Based on the number of methylations, acetylations and glycosidic linkages present in their structures, it is estimated that up to 67 transferase activities are involved in pectin biosynthesis. Pectic galactans constitute a major part of pectin in the form of side-chains of rhamnogalacturonan-I. In Arabidopsis, galactan synthase 1 (GALS1) catalyzes the addition of galactose units from UDP-Gal to growing β-1,4-galactan chains. However, the mechanisms for obtaining varying degrees of polymerization remain poorly understood. In this study, we show that AtGALS1 is bifunctional, catalyzing both the transfer of galactose from UDP-α-d-Gal and the transfer of an arabinopyranose from UDP-β-l-Arap to galactan chains. The two substrates share a similar structure, but UDP-α-d-Gal is the preferred substrate, with a 10-fold higher affinity. Transfer of Arap to galactan prevents further addition of galactose residues, resulting in a lower degree of polymerization. We show that this dual activity occurs both in vitro and in vivo. The herein described bifunctionality of AtGALS1 may suggest that plants can produce the incredible structural diversity of polysaccharides without a dedicated glycosyltransferase for each glycosidic linkage.
Collapse
Affiliation(s)
- Tomas Laursen
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Solomon H Stonebloom
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Venkataramana R Pidatala
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Devon S Birdseye
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Mads H Clausen
- Department of Chemistry, Center for Nanomedicine and Theranostics, Technical University of Denmark, DK-2800, Kongens Lyngby, Denmark
| | - Jenny C Mortimer
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
| | - Henrik Vibe Scheller
- Joint BioEnergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, 94702, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, 94720, USA
| |
Collapse
|
189
|
Meier KK, Jones SM, Kaper T, Hansson H, Koetsier MJ, Karkehabadi S, Solomon EI, Sandgren M, Kelemen B. Oxygen Activation by Cu LPMOs in Recalcitrant Carbohydrate Polysaccharide Conversion to Monomer Sugars. Chem Rev 2018; 118:2593-2635. [PMID: 29155571 PMCID: PMC5982588 DOI: 10.1021/acs.chemrev.7b00421] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural carbohydrate polymers such as starch, cellulose, and chitin provide renewable alternatives to fossil fuels as a source for fuels and materials. As such, there is considerable interest in their conversion for industrial purposes, which is evidenced by the established and emerging markets for products derived from these natural polymers. In many cases, this is achieved via industrial processes that use enzymes to break down carbohydrates to monomer sugars. One of the major challenges facing large-scale industrial applications utilizing natural carbohydrate polymers is rooted in the fact that naturally occurring forms of starch, cellulose, and chitin can have tightly packed organizations of polymer chains with low hydration levels, giving rise to crystalline structures that are highly recalcitrant to enzymatic degradation. The topic of this review is oxidative cleavage of carbohydrate polymers by lytic polysaccharide mono-oxygenases (LPMOs). LPMOs are copper-dependent enzymes (EC 1.14.99.53-56) that, with glycoside hydrolases, participate in the degradation of recalcitrant carbohydrate polymers. Their activity and structural underpinnings provide insights into biological mechanisms of polysaccharide degradation.
Collapse
Affiliation(s)
- Katlyn K. Meier
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Stephen M. Jones
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Thijs Kaper
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, California 94304, United States
| | - Henrik Hansson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Martijn J. Koetsier
- DuPont Industrial Biosciences, Netherlands, Nieuwe Kanaal 7-S, 6709 PA Wageningen, The Netherlands
| | - Saeid Karkehabadi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mats Sandgren
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, P.O. Box 7015, SE-750 07 Uppsala, Sweden
| | - Bradley Kelemen
- DuPont Industrial Biosciences, 925 Page Mill Road, Palo Alto, California 94304, United States
| |
Collapse
|
190
|
Li Y, Zhuo J, Liu P, Chen P, Hu H, Wang Y, Zhou S, Tu Y, Peng L, Wang Y. Distinct wall polymer deconstruction for high biomass digestibility under chemical pretreatment in Miscanthus and rice. Carbohydr Polym 2018; 192:273-281. [PMID: 29691021 DOI: 10.1016/j.carbpol.2018.03.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/02/2018] [Accepted: 03/08/2018] [Indexed: 11/18/2022]
Abstract
Miscanthus is a leading bioenergy crop and rice provides enormous biomass for biofuels. Using Calcofluor White staining, this work in situ observed an initial lignocellulose hydrolysis in two distinct Miscanthus accessions, rice cultivar (NPB), and Osfc16 mutant after mild chemical pretreatments. In comparison, the M. sin and Osfc16 respectively exhibited weak Calcofluor fluorescence compared to the M. sac and NPB during enzymatic hydrolysis, consistent with the high biomass saccharification detected in vitro. Using xyloglucan-directed monoclonal antibodies (mAbs), xyloglucan deconstruction was observed from initial cellulose hydrolysis, whereas the M. sin and Osfc16 exhibited relatively strong immunolabeling using xylan-directed mAb, confirming previous findings of xylan positive impacts on biomass saccharification. Furthermore, the M. sin showed quick disappearance of RG-I immunolabeling with varied HG labelings between acid and alkali pretreatments. Hence, this study demonstrated a quick approach to explore wall polymer distinct deconstruction for enhanced biomass saccharification under chemical pretreatment in bioenergy crops.
Collapse
Affiliation(s)
- Yuyang Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Jingdi Zhuo
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Peng Liu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Peng Chen
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Youmei Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Shiguang Zhou
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan 430070, China; College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
191
|
He H, Bai M, Tong P, Hu Y, Yang M, Wu H. CELLULASE6 and MANNANASE7 Affect Cell Differentiation and Silique Dehiscence. PLANT PHYSIOLOGY 2018; 176:2186-2201. [PMID: 29348141 PMCID: PMC5841693 DOI: 10.1104/pp.17.01494] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 01/09/2018] [Indexed: 05/22/2023]
Abstract
Cellulases, hemicellulases, and pectinases play important roles in fruit development and maturation. Although mutants with defects in these processes have not been reported for cellulase or hemicellulase genes, the pectinases ARABIDOPSIS DEHISCENCE ZONE POLYGALACTURONASE1 (ADPG1) and ADPG2 were previously shown to be essential for silique dehiscence in Arabidopsis (Arabidopsis thaliana). Here, we demonstrate that the cellulase gene CELLULASE6 (CEL6) and the hemicellulase gene MANNANASE7 (MAN7) function in the development and dehiscence of Arabidopsis siliques. We found that these genes were expressed in both vegetative and reproductive organs and that their expression in the silique partially depended on the INDEHISCENT and ALCATRAZ transcription factors. Cell differentiation was delayed in the dehiscence zone of cel6 and man7 mutant siliques at early flower development stage 17, and a comparison of the spatio-temporal patterns of CEL6 and MAN7 expression with the locations of delayed cell differentiation in the cel6 and man7 mutants revealed that CEL6 and MAN7 likely indirectly affect the timing of cell differentiation in the silique valve at this stage. CEL6 and MAN7 were also found to promote cell degeneration in the separation layer in nearly mature siliques, as cells in this layer remained intact in the cel6 and man7 mutants and the cel6-1 man7-3 double mutant, whereas they degenerated in the wild-type control. Phenotypic studies of single, double, triple, and quadruple mutants revealed that higher-order mutant combinations of cel6-1, man7-3, and adpg1-1 and adpg2-1 produced more severe silique indehiscent phenotypes than the corresponding lower-order mutant combinations, except for some combinations involving cel6-1, man7-3, and adpg2-1 Our results demonstrate that the ability of the silique to dehisce can be manipulated to different degrees by altering the activities of various cell wall-modifying enzymes.
Collapse
Affiliation(s)
- Hanjun He
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Mei Bai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Panpan Tong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Yanting Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| | - Ming Yang
- Department of Plant Biology, Ecology, and Evolution, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Hong Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
192
|
Komatsu S, Hashiguchi A. Subcellular Proteomics: Application to Elucidation of Flooding-Response Mechanisms in Soybean. Proteomes 2018; 6:E13. [PMID: 29495455 PMCID: PMC5874772 DOI: 10.3390/proteomes6010013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/13/2018] [Accepted: 02/23/2018] [Indexed: 02/06/2023] Open
Abstract
Soybean, which is rich in protein and oil, is cultivated in several climatic zones; however, its growth is markedly decreased by flooding. Proteomics is a useful tool for understanding the flooding-response mechanism in soybean. Subcellular proteomics has the potential to elucidate localized cellular responses and investigate communications among subcellular components during plant growth and during stress. Under flooding, proteins related to signaling, stress and the antioxidative system are increased in the plasma membrane; scavenging enzymes for reactive-oxygen species are suppressed in the cell wall; protein translation is suppressed through inhibition of proteins related to preribosome biogenesis and mRNA processing in the nucleus; levels of proteins involved in the electron transport chain are reduced in the mitochondrion; and levels of proteins related to protein folding are decreased in the endoplasmic reticulum. This review discusses the advantages of a gel-free/label-free proteomic technique and methods of plant subcellular purification. It also summarizes cellular events in soybean under flooding and discusses future prospects for generation of flooding-tolerant soybean.
Collapse
Affiliation(s)
- Setsuko Komatsu
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | - Akiko Hashiguchi
- Faculty of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
193
|
Hu H, Zhang R, Dong S, Li Y, Fan C, Wang Y, Xia T, Chen P, Wang L, Feng S, Persson S, Peng L. AtCSLD3 and GhCSLD3 mediate root growth and cell elongation downstream of the ethylene response pathway in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1065-1080. [PMID: 29253184 PMCID: PMC6018909 DOI: 10.1093/jxb/erx470] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 12/04/2017] [Indexed: 05/12/2023]
Abstract
CSLD3, a gene of the cellulose synthase-like D family, affects root hair elongation, but its interactions with ethylene signaling and phosphate-starvation are poorly understood. Here, we aim to understand the role of CSLD3 in the context of the ethylene signaling and phosphate starvation pathways in Arabidopsis plant growth. Therefore, we performed a comparative analysis of the csld3-1 mutant, CSLD3-overexpressing lines, and ethylene-response mutants, such as the constitutive ethylene-response mutant i-ctr1. We found that CSLD3 overexpression enhanced root and hypocotyl growth by increasing cell elongation, and that the root growth was highly sensitive to ethylene treatment (1 µM ACC), in particular under phosphate starvation. However, the CSLD3-mediated hypocotyl elongation occurred independently of the ethylene signaling pathway. Notably, the typical induction of root hair and root elongation by ethylene and phosphate-starvation was completely abolished in the csld3-1 mutant. Furthermore, i-ctr1 csld3-1 double-mutants were hairless like the csld3-1 parent, confirming that CSLD3 acts downstream of the ethylene signaling pathway during root growth. Moreover, the CSLD3 levels positively correlated with cellulose levels, indicating a role of CSLD3 in cellulose synthesis, which may explain the observed growth effects. Our results establish how CSLD3 works in the context of the ethylene signaling and phosphate-starvation pathways during root hair growth, cell elongation, and cell wall biosynthesis.
Collapse
Affiliation(s)
- Huizhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Ran Zhang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Shuchao Dong
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Chunfen Fan
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Tao Xia
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Life Science and Technology, Huazhong Agricultural University, China
| | - Peng Chen
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Shengqiu Feng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
| | - Staffan Persson
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
- School of Biosciences, University of Melbourne, Australia
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, China
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, China
- College of Plant Science and Technology, Huazhong Agricultural University, China
- Correspondence:
| |
Collapse
|
194
|
Oh S, Strand DD, Kramer DM, Chen J, Montgomery BL. Transcriptome and phenotyping analyses support a role for chloroplast sigma factor 2 in red-light-dependent regulation of growth, stress, and photosynthesis. PLANT DIRECT 2018; 2:e00043. [PMID: 31245709 PMCID: PMC6508532 DOI: 10.1002/pld3.43] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 01/23/2018] [Accepted: 01/25/2018] [Indexed: 05/04/2023]
Abstract
Sigma factor (SIG) proteins contribute to promoter specificity of the plastid-encoded RNA polymerase during chloroplast genome transcription. All six members of the SIG family, that is, SIG1-SIG6, are nuclear-encoded proteins targeted to chloroplasts. Sigma factor 2 (SIG2) is a phytochrome-regulated protein important for stoichiometric control of the expression of plastid- and nuclear-encoded genes that impact plastid development and plant growth and development. Among SIG factors, SIG2 is required not only for transcription of chloroplast genes (i.e., anterograde signaling), but also impacts nuclear-encoded, photosynthesis-related, and light signaling-related genes (i.e., retrograde signaling) in response to plastid functional status. Although SIG2 is involved in photomorphogenesis in Arabidopsis, the molecular bases for its role in light signaling that impacts photomorphogenesis and aspects of photosynthesis have only recently begun to be investigated. Previously, we reported that SIG2 is necessary for phytochrome-mediated photomorphogenesis specifically under red (R) and far-red light, thereby suggesting a link between phytochromes and nuclear-encoded SIG2 in light signaling. To explore transcriptional roles of SIG2 in R-dependent growth and development, we performed RNA sequencing analysis to compare gene expression in sig2-2 mutant and Col-0 wild-type seedlings at two developmental stages (1- and 7-day). We identified a subset of misregulated genes involved in growth, hormonal cross talk, stress responses, and photosynthesis. To investigate the functional relevance of these gene expression analyses, we performed several comparative phenotyping tests. In these analyses, strong sig2 mutants showed insensitivity to bioactive GA 3, high intracellular levels of hydrogen peroxide (H2O2) indicative of a stress response, and specific defects in photosynthesis, including elevated levels of cyclic electron flow (CEF) and nonphotochemical quenching (NPQ). We demonstrated that SIG2 regulates a broader range of physiological responses at the molecular level than previously reported, with specific roles in red-light-mediated photomorphogenesis.
Collapse
Affiliation(s)
- Sookyung Oh
- Department of Energy – Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
| | - Deserah D. Strand
- Department of Energy – Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Present address:
Max‐Planck‐Institut für Molekulare PflanzenphysiologiePotsdam‐GolmGermany
| | - David M. Kramer
- Department of Energy – Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
| | - Jin Chen
- UK Medical Center MN 150University of Kentucky College of MedicineLexingtonKYUSA
| | - Beronda L. Montgomery
- Department of Energy – Plant Research LaboratoryMichigan State UniversityEast LansingMIUSA
- Department of Biochemistry and Molecular BiologyMichigan State UniversityEast LansingMIUSA
- Department of Microbiology & Molecular GeneticsMichigan State UniversityEast LansingMIUSA
| |
Collapse
|
195
|
Sinclair R, Rosquete MR, Drakakaki G. Post-Golgi Trafficking and Transport of Cell Wall Components. FRONTIERS IN PLANT SCIENCE 2018; 9:1784. [PMID: 30581448 PMCID: PMC6292943 DOI: 10.3389/fpls.2018.01784] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 11/16/2018] [Indexed: 05/13/2023]
Abstract
The cell wall, a complex macromolecular composite structure surrounding and protecting plant cells, is essential for development, signal transduction, and disease resistance. This structure is also integral to cell expansion, as its tensile resistance is the primary balancing mechanism against internal turgor pressure. Throughout these processes, the biosynthesis, transport, deposition, and assembly of cell wall polymers are tightly regulated. The plant endomembrane system facilitates transport of polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins through vesicle trafficking pathways. Although a number of enzymes involved in cell wall biosynthesis have been identified, comparatively little is known about the transport of cell wall polysaccharides and glycoproteins by the endomembrane system. This review summarizes our current understanding of trafficking of cell wall components during cell growth and cell division. Emerging technologies, such as vesicle glycomics, are also discussed as promising avenues to gain insights into the trafficking of structural polysaccharides to the apoplast.
Collapse
|
196
|
Ziv C, Zhao Z, Gao YG, Xia Y. Multifunctional Roles of Plant Cuticle During Plant-Pathogen Interactions. FRONTIERS IN PLANT SCIENCE 2018; 9:1088. [PMID: 30090108 PMCID: PMC6068277 DOI: 10.3389/fpls.2018.01088] [Citation(s) in RCA: 128] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 07/05/2018] [Indexed: 05/18/2023]
Abstract
In land plants the cuticle is the outermost layer interacting with the environment. This lipophilic layer comprises the polyester cutin embedded in cuticular wax; and it forms a physical barrier to protect plants from desiccation as well as from diverse biotic and abiotic stresses. However, the cuticle is not merely a passive, mechanical shield. The increasing research on plant leaves has addressed the active roles of the plant cuticle in both local and systemic resistance against a variety of plant pathogens. Moreover, the fruit cuticle also serves as an important determinant of fruit defense and quality. It shares features with those of vegetative organs, but also exhibits specific characteristics, the functions of which gain increasing attention in recent years. This review describes multiple roles of plant cuticle during plant-pathogen interactions and its responses to both leaf and fruit pathogens. These include the dynamic changes of plant cuticle during pathogen infection; the crosstalk of cuticle with plant cell wall and diverse hormone signaling pathways for plant disease resistance; and the major biochemical, molecular, and cellular mechanisms that underlie the roles of cuticle during plant-pathogen interactions. Although research developments in the field have greatly advanced our understanding of the roles of plant cuticle in plant defense, there still remain large gaps in our knowledge. Therefore, the challenges thus presented, and future directions of research also are discussed in this review.
Collapse
Affiliation(s)
- Carmit Ziv
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization – the Volcani Center, Rishon LeZion, Israel
| | - Zhenzhen Zhao
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
| | - Yu G. Gao
- The Ohio State University South Centers, Piketon, OH, United States
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, United States
| | - Ye Xia
- Department of Plant Pathology, The Ohio State University, Columbus, OH, United States
- *Correspondence: Ye Xia,
| |
Collapse
|
197
|
Arora K, Panda KK, Mittal S, Mallikarjuna MG, Thirunavukkarasu N. In Silico Characterization and Functional Validation of Cell Wall Modification Genes Imparting Waterlogging Tolerance in Maize. Bioinform Biol Insights 2017; 11:1177932217747277. [PMID: 29317803 PMCID: PMC5753887 DOI: 10.1177/1177932217747277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Accepted: 11/11/2017] [Indexed: 01/10/2023] Open
Abstract
Cell wall modification (CWM) promotes the formation of aerenchyma in roots under waterlogging conditions as an adaptive mechanism. Lysigenous aerenchyma formation in roots improves oxygen transfer in plants, which highlights the importance of CWM as a focal point in waterlogging stress tolerance. We investigated the structural and functional compositions of CWM genes and their expression patterns under waterlogging conditions in maize. Cell wall modification genes were identified for 3 known waterlogging-responsive cis-acting regulatory elements, namely, GC motif, anaerobic response elements, and G-box, and 2 unnamed elements. Structural motifs mapped in CWM genes were represented in genes regulating waterlogging stress-tolerant pathways, including fermentation, glycolysis, programmed cell death, and reactive oxygen species signaling. The highly aligned regions of characterized and uncharacterized CWM proteins revealed common structural domains amongst them. Membrane spanning regions present in the protein structures revealed transmembrane activity of CWM proteins in the plant cell wall. Cell wall modification proteins had interacted with ethylene-responsive pathway regulating genes (E3 ubiquitin ligases RNG finger and F-box) in a maize protein-protein interaction network. Cell wall modification genes had also coexpressed with energy metabolism, programmed cell death, and reactive oxygen species signaling, regulating genes in a single coexpression cluster. These configurations of CWM genes can be used to modify the protein expression in maize under waterlogging stress condition. Our study established the importance of CWM genes in waterlogging tolerance, and these genes can be used as candidates in introgression breeding and genome editing experiments to impart tolerance in maize hybrids.
Collapse
Affiliation(s)
- Kanika Arora
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.,Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Kusuma Kumari Panda
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Shikha Mittal
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | | | - Nepolean Thirunavukkarasu
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India.,Maize Research Lab, Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
198
|
Chávez-Guerrero L, Sepúlveda-Guzmán S, Silva-Mendoza J, Aguilar-Flores C, Pérez-Camacho O. Eco-friendly isolation of cellulose nanoplatelets through oxidation under mild conditions. Carbohydr Polym 2017; 181:642-649. [PMID: 29254018 DOI: 10.1016/j.carbpol.2017.11.100] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 11/22/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022]
Abstract
Agave is recognized as a low recalcitrant material, which makes it a potential source to obtain nanocellulose. Aqueous dispersions (in water, H2O2, H2O2/H2SO4) of agave powder were heated at 120°C under vapor pressure (1kg/cm2). The resultant materials were observed with an optical microscope (OM), a laser scanning microscope (LSM) to obtain the thickness measurement and a scanning electron microscope (SEM) to observe morphology. Raman spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to obtain the chemical structure. Cellulose nanoplatelets (CNPs) from Agave salmiana were successfully isolated under mild conditions. Physicochemical analysis indicates that lignin was removed in a single step oxidation with hydrogen peroxide in presence of sulfuric acid at low concentration (0.17M). The CNPs images revealed the presence of entangled cellulose nanofibrils (Ø≈14nm) along the nanoplatelets (thickness ≈80nm).
Collapse
Affiliation(s)
- L Chávez-Guerrero
- Autonomous University of Nuevo León, Mechanical and Electrical Engineering School, Pedro de Alba s/n, San Nicolás de los Garza, Nuevo León, 66455, México.
| | - S Sepúlveda-Guzmán
- Autonomous University of Nuevo León, Mechanical and Electrical Engineering School, Pedro de Alba s/n, San Nicolás de los Garza, Nuevo León, 66455, México.
| | - J Silva-Mendoza
- Autonomous University of Nuevo León, Chemistry School, Pedro de Alba s/n, San Nicolás de los Garza, Nuevo León, 66455, México.
| | - C Aguilar-Flores
- Papaloapan University, Chemistry School, Circuito Central #200, Parque Industrial, Tuxtepec, Oaxaca, 68400, México.
| | - O Pérez-Camacho
- Research Center for Applied Chemistry, Blvd. Enrique Reyna Hermosillo No. 140, Saltillo, Coahuila, 25294, México.
| |
Collapse
|
199
|
Amanda D, Doblin MS, MacMillan CP, Galletti R, Golz JF, Bacic A, Ingram GC, Johnson KL. Arabidopsis DEFECTIVE KERNEL1 regulates cell wall composition and axial growth in the inflorescence stem. PLANT DIRECT 2017; 1:e00027. [PMID: 31245676 PMCID: PMC6508578 DOI: 10.1002/pld3.27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/15/2017] [Accepted: 10/16/2017] [Indexed: 05/10/2023]
Abstract
Axial growth in plant stems requires a fine balance between elongation and stem mechanical reinforcement to ensure mechanical stability. Strength is provided by the plant cell wall, the deposition of which must be coordinated with cell expansion and elongation to ensure that integrity is maintained during growth. Coordination of these processes is critical and yet poorly understood. The plant-specific calpain, DEFECTIVE KERNEL1 (DEK1), plays a key role in growth coordination in leaves, yet its role in regulating stem growth has not been addressed. Using plants overexpressing the active CALPAIN domain of DEK1 (CALPAIN OE) and a DEK1 knockdown line (amiRNA-DEK1), we undertook morphological, biochemical, biophysical, and microscopic analyses of mature inflorescence stems. We identify a novel role for DEK1 in the maintenance of cell wall integrity and coordination of growth during inflorescence stem development. CALPAIN OE plants are significantly reduced in stature and have short, thickened stems, while amiRNA-DEK1 lines have weakened stems that are unable to stand upright. Microscopic analyses of the stems identify changes in cell size, shape and number, and differences in both primary and secondary cell wall thickness and composition. Taken together, our results suggest that DEK1 influences primary wall growth by indirectly regulating cellulose and pectin deposition. In addition, we observe changes in secondary cell walls that may compensate for altered primary cell wall composition. We propose that DEK1 activity is required for the coordination of stem strengthening with elongation during axial growth.
Collapse
Affiliation(s)
- Dhika Amanda
- Max Planck Institute for Plant Breeding ResearchKölnGermany
| | - Monika S. Doblin
- ARC Centre of Excellence in Plant Cell WallsSchool of BioSciencesThe University of MelbourneParkvilleVICAustralia
| | | | - Roberta Galletti
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon CNRS INRA UCB Lyon 1LyonFrance
| | - John F. Golz
- School of BioSciencesThe University of MelbourneParkvilleVICAustralia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell WallsSchool of BioSciencesThe University of MelbourneParkvilleVICAustralia
| | - Gwyneth C. Ingram
- Laboratoire Reproduction et Développement des PlantesUniversité de Lyon CNRS INRA UCB Lyon 1LyonFrance
| | - Kim L. Johnson
- ARC Centre of Excellence in Plant Cell WallsSchool of BioSciencesThe University of MelbourneParkvilleVICAustralia
| |
Collapse
|
200
|
Sun D, Li Y, Wang J, Tu Y, Wang Y, Hu Z, Zhou S, Wang L, Xie G, Huang J, Alam A, Peng L. Biomass saccharification is largely enhanced by altering wall polymer features and reducing silicon accumulation in rice cultivars harvested from nitrogen fertilizer supply. BIORESOURCE TECHNOLOGY 2017; 243:957-965. [PMID: 28738551 DOI: 10.1016/j.biortech.2017.07.057] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/09/2017] [Accepted: 07/10/2017] [Indexed: 05/11/2023]
Abstract
In this study, two rice cultivars were collected from experimental fields with seven nitrogen fertilizer treatments. All biomass samples contained significantly increased cellulose contents and reduced silica levels, with variable amounts of hemicellulose and lignin from different nitrogen treatments. Under chemical (NaOH, CaO, H2SO4) and physical (hot water) pretreatments, biomass samples exhibited much enhanced hexoses yields from enzymatic hydrolysis, with high bioethanol production from yeast fermentation. Notably, both degree of polymerization (DP) of cellulose and xylose/arabinose (Xyl/Ara) ratio of hemicellulose were reduced in biomass residues, whereas other wall polymer features (cellulose crystallinity and monolignol proportion) were variable. Integrative analysis indicated that cellulose DP, hemicellulosic Xyl/Ara and silica are the major factors that significantly affect cellulose crystallinity and biomass saccharification. Hence, this study has demonstrated that nitrogen fertilizer supply could largely enhance biomass saccharification in rice cultivars, mainly by reducing cellulose DP, hemicellulosic Xyl/Ara and silica in cell walls.
Collapse
Affiliation(s)
- Dan Sun
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China; School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan, Hubei, China
| | - Ying Li
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China; MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Wuhan, China
| | - Yuanyuan Tu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Yanting Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Zhen Hu
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Shiguang Zhou
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Lingqiang Wang
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Guosheng Xie
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianliang Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aftab Alam
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China
| | - Liangcai Peng
- Biomass and Bioenergy Research Centre, Huazhong Agricultural University, Wuhan, China; National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China; College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, China. http://bbrc.hzau.edu.cn
| |
Collapse
|