151
|
Ganie SA, Ahammed GJ. Dynamics of cell wall structure and related genomic resources for drought tolerance in rice. PLANT CELL REPORTS 2021; 40:437-459. [PMID: 33389046 DOI: 10.1007/s00299-020-02649-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 12/04/2020] [Indexed: 05/03/2023]
Abstract
Cell wall plasticity plays a very crucial role in vegetative and reproductive development of rice under drought and is a highly potential trait for improving rice yield under drought. Drought is a major constraint in rice (Oryza sativa L.) cultivation severely affecting all developmental stages, with the reproductive stage being the most sensitive. Rice plants employ multiple strategies to cope with drought, in which modification in cell wall dynamics plays a crucial role. Over the years, significant progress has been made in discovering the cell wall-specific genomic resources related to drought tolerance at vegetative and reproductive stages of rice. However, questions remain about how the drought-induced changes in cell wall made by these genomic resources potentially influence the vegetative and reproductive development of rice. The possibly major candidate genes underlying the function of quantitative trait loci directly or indirectly associated with the cell wall plasticization-mediated drought tolerance of rice might have a huge promise in dissecting the putative genomic regions associated with cell wall plasticity under drought. Furthermore, engineering the drought tolerance of rice using cell wall-related genes from resurrection plants may have huge prospects for rice yield improvement. Here, we review the comprehensive multidisciplinary analyses to unravel different components and mechanisms involved in drought-induced cell wall plasticity at vegetative and reproductive stages that could be targeted for improving rice yield under drought.
Collapse
Affiliation(s)
- Showkat Ahmad Ganie
- Department of Biotechnology, Visva-Bharati, Santiniketan, West Bengal, 731235, India.
| | - Golam Jalal Ahammed
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China.
| |
Collapse
|
152
|
Wang B, Zhao X, Zhao Y, Shanklin J, Zhao Q, Liu CJ. Arabidopsis SnRK1 negatively regulates phenylpropanoid metabolism via Kelch domain-containing F-box proteins. THE NEW PHYTOLOGIST 2021; 229:3345-3359. [PMID: 33253431 DOI: 10.1111/nph.17121] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/19/2020] [Indexed: 05/04/2023]
Abstract
Phenylpropanoid metabolism represents a substantial metabolic sink for photosynthetically fixed carbon. The evolutionarily conserved Sucrose Non-Fermenting Related Kinase 1 (SnRK1) is a major metabolic sensor that reprograms metabolism upon carbon deprivation. However, it is not clear if and how the SnRK1-mediated sugar signaling pathway controls phenylpropanoid metabolism. Here, we show that Arabidopsis SnRK1 negatively regulates phenylpropanoid biosynthesis via a group of Kelch domain-containing F-box (KFB) proteins that are responsible for the ubiquitination and degradation of phenylalanine ammonia lyase (PAL). Downregulation of AtSnRK1 significantly promoted the accumulation of soluble phenolics and lignin polymers and drastically increased PAL cellular accumulation but only slightly altered its transcription level. Co-expression of SnRK1α with PAL in Nicotiana benthamiana leaves resulted in the severe attenuation of the latter's protein level, but protein interaction assays suggested PAL is not a direct substrate of SnRK1. Furthermore, up or downregulation of AtSnRK1 positively affected KFBPALs gene expression, and energy starvation upregulated KFBPAL expression, which partially depends on AtSnRK1. Collectively, our study reveals that SnRK1 negatively regulates phenylpropanoid biosynthesis, and KFBPALs act as regulatory components of the SnRK1 signaling network, transcriptionally regulated by SnRK1 and subsequently mediate proteasomal degradation of PAL in response to the cellular carbon availability.
Collapse
Affiliation(s)
- Bin Wang
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xianhai Zhao
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Yunjun Zhao
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - John Shanklin
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| | - Qiao Zhao
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Chang-Jun Liu
- Biology Department, Brookhaven National Laboratory, Upton, NY, 11973, USA
| |
Collapse
|
153
|
Florez-Sarasa I, Welchen E, Racca S, Gonzalez DH, Vallarino JG, Fernie AR, Ribas-Carbo M, Del-Saz NF. Cytochrome c Deficiency Differentially Affects the In Vivo Mitochondrial Electron Partitioning and Primary Metabolism Depending on the Photoperiod. PLANTS 2021; 10:plants10030444. [PMID: 33652808 PMCID: PMC7996904 DOI: 10.3390/plants10030444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023]
Abstract
Plant respiration provides metabolic flexibility under changing environmental conditions by modulating the activity of the nonphosphorylating alternative pathways from the mitochondrial electron transport chain, which bypass the main energy-producing components of the cytochrome oxidase pathway (COP). While adjustments in leaf primary metabolism induced by changes in day length are well studied, possible differences in the in vivo contribution of the COP and the alternative oxidase pathway (AOP) between different photoperiods remain unknown. In our study, in vivo electron partitioning between AOP and COP and expression analysis of respiratory components, photosynthesis, and the levels of primary metabolites were studied in leaves of wild-type (WT) plants and cytochrome c (CYTc) mutants, with reduced levels of COP components, under short- and long-day photoperiods. Our results clearly show that differences in AOP and COP in vivo activities between WT and cytc mutants depend on the photoperiod likely due to energy and stress signaling constraints. Parallel responses observed between in vivo respiratory activities, TCA cycle intermediates, amino acids, and stress signaling metabolites indicate the coordination of different pathways of primary metabolism to support growth adaptation under different photoperiods.
Collapse
Affiliation(s)
- Igor Florez-Sarasa
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain
- Correspondence: (I.F.-S.); (N.F.D.-S.); Tel.: +34-935-636-600 (I.F.-S.); Fax: +56-41-2221569 (N.F.D.-S.)
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina; (E.W.); (S.R.); (D.H.G.)
| | - Sofia Racca
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina; (E.W.); (S.R.); (D.H.G.)
| | - Daniel H. Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe 3000, Argentina; (E.W.); (S.R.); (D.H.G.)
| | - José G. Vallarino
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (J.G.V.); (A.R.F.)
| | - Alisdair R. Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany; (J.G.V.); (A.R.F.)
| | - Miquel Ribas-Carbo
- Research Group on Plant Biology, Balearic Islands University, Ctra Valldemossa km 7.5, 07122 Palma de Mallorca, Spain;
| | - Nestor Fernandez Del-Saz
- Laboratorio de Fisiología Vegetal, Departamento de Botánica, Facultad de Ciencias Naturales y Oceanográficas, Universidad de Concepción, 4030000 Concepción, Chile
- Correspondence: (I.F.-S.); (N.F.D.-S.); Tel.: +34-935-636-600 (I.F.-S.); Fax: +56-41-2221569 (N.F.D.-S.)
| |
Collapse
|
154
|
Opitz MW, Daneshkhah R, Lorenz C, Ludwig R, Steinkellner S, Wieczorek K. Serendipita indica changes host sugar and defense status in Arabidopsis thaliana: cooperation or exploitation? PLANTA 2021; 253:74. [PMID: 33620564 PMCID: PMC7902589 DOI: 10.1007/s00425-021-03587-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/04/2021] [Indexed: 05/10/2023]
Abstract
Manipulation of sugar metabolism upon S. indica root colonization triggers changes in sugar pools and defense responses in A. thaliana. Serendipita indica is an endophytic fungus that establishes mutualistic relationships with many different plants including important crops as well as the model plant A. thaliana. Successful root colonization typically results in growth promotion and enhanced tolerance against various biotic and abiotic stresses. The fungus delivers phosphorus to the host and receives in exchange carbohydrates. There are hints that S. indica prefers hexoses, glucose, and fructose, products of saccharose cleavage driven by invertases (INVs) and sucrose synthases (SUSs). Carbohydrate metabolism in this interaction, however, remains still widely unexplored. Therefore, in this work, the sugar pools as well as the expression of SUSs and cytosolic INVs in plants colonized by S. indica were analyzed. Using sus1/2/3/4 and cinv1/2 mutants the importance of these genes for the induction of growth promotion and proper root colonization was demonstrated. Furthermore, the expression of several defense-related marker genes in both multiple mutants in comparison to the wild-type plants was determined. Our results show that in colonized A. thaliana plants S. indica manipulates the sugar metabolism by altering the expression of host's INV and SUS and modulates both the sugar pools and plant defense in its favor. We conclude that the interaction A. thaliana-S. indica is a balancing act between cooperation and exploitation, in which sugar metabolism plays a crucial role. Small changes in this mechanism can lead to severe disruption resulting in the lack of growth promotion or altered colonization rate.
Collapse
Affiliation(s)
- Michael W Opitz
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Roshanak Daneshkhah
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Cindy Lorenz
- Department of Food Sciences and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Roland Ludwig
- Department of Food Sciences and Technology, Institute of Food Technology, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Siegrid Steinkellner
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria
| | - Krzysztof Wieczorek
- Department of Crop Sciences, Institute of Plant Protection, University of Natural Resources and Life Sciences, Tulln an der Donau, Austria.
| |
Collapse
|
155
|
Transcriptome Analysis for Fraxinus mandshurica Rupr. Seedlings from Different Carbon Sequestration Provenances in Response to Nitrogen Deficiency. FORESTS 2021. [DOI: 10.3390/f12020257] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
To explore the molecular regulatory mechanism of high-carbon (C) sequestration Fraxinus mandshurica Rupr. (F. mandshurica) provenance and the expression profile of F. mandshurica during nitrogen (N) starvation, the foliage and roots of the annual Wuchang (WC) seedlings with greater C amount and Hailin (HL) seedlings with smaller C amount, which were grown in N-deficient nutrition and complete N, were used for RNA-seq and physiological determination, respectively. One thousand and fifty-seven differentially expressed genes (DEGs) between WC and HL and 8173 DEGs related to N deficiency were identified, respectively. The root of F. mandshurica responded to N deficiency more strongly than foliar. The target genes that responded to N deficiency in roots were mainly regulatory genes (transcription factors, hormones and protein kinases), and their response patterns were upregulated. The growth and N concentration in both WC and HL were reduced by the N deficiency, which might result from the decrease of the leaf Nitrate reductase (NR) and glutamine synthetase (GS) enzyme activity and ABA content, although the root-to-shoot ratio; lateral root number; lignin content; endogenous hormones content (GA, IAA and ZR); root GS and glutamate synthetase activity and transcriptional level of most of the regulatory genes were increased. The C sequestration capacity in WC was greater than that in HL, which related to the higher GS enzymes activity and transcriptional levels of regulatory genes and metabolic genes (terpenes, carbohydrates, and lipid energy). However, the C sequestration advantage of WC was significantly reduced by the N deficiency, which was due to the smaller response to N deficiency compared to HL.
Collapse
|
156
|
van Hoogdalem M, Shapulatov U, Sergeeva L, Busscher-Lange J, Schreuder M, Jamar D, van der Krol AR. A temperature regime that disrupts clock-controlled starch mobilization induces transient carbohydrate starvation, resulting in compact growth. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab075. [PMID: 33617638 DOI: 10.1093/jxb/erab075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Indexed: 06/12/2023]
Abstract
In nature plants are usually subjected to a light/temperature regime of warm day and cold night (referred to as +DIF). Compared to growth under +DIF, Arabidopsis plants show compact growth under the same photoperiod, but with an inverse temperature regime (cold day and warm night: -DIF). Here we show that -DIF differentially affects the phase and amplitude of core clock gene expression. Under -DIF the phase of the morning clock gene CIRCADIAN CLOCK ASSOCIATED 1 (CCA1) is delayed, similar to that of plants grown on low sucrose. Indeed, under -DIF carbohydrate (CHO) starvation marker genes are specifically upregulated at the End of the Night (EN) in Arabidopsis rosettes. However, only in inner-rosette tissue (small sink leaves and petioles of older leaves) sucrose levels are lower under -DIF compared to under +DIF, suggesting that sucrose in source leaf blades is not sensed for CHO status and that sucrose transport from source to sink may be impaired at EN. CHO-starvation under -DIF correlated with increased starch breakdown during the night and decreased starch accumulation during the day. Moreover, we demonstrate that different ways of inducing CHO-starvation all link to reduced growth of sink leaves. Practical implications for control of plant growth in horticulture are discussed.
Collapse
Affiliation(s)
- Mark van Hoogdalem
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Current Business Unit Greenhouse Horticulture, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Umidjon Shapulatov
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Current Department of Botany and Plant Physiology, National University of Uzbekistan, Tashkent, Uzbekistan
| | - Lidiya Sergeeva
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Jacqueline Busscher-Lange
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen Plant Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Mariëlle Schreuder
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Diaan Jamar
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| | - Alexander R van der Krol
- Laboratory of Plant Physiology, Wageningen University & Research, Droevendaalsesteeg, Wageningen, The Netherlands
| |
Collapse
|
157
|
Meitzel T, Radchuk R, McAdam EL, Thormählen I, Feil R, Munz E, Hilo A, Geigenberger P, Ross JJ, Lunn JE, Borisjuk L. Trehalose 6-phosphate promotes seed filling by activating auxin biosynthesis. THE NEW PHYTOLOGIST 2021; 229:1553-1565. [PMID: 32984971 DOI: 10.1111/nph.16956] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/13/2020] [Indexed: 05/21/2023]
Abstract
Plants undergo several developmental transitions during their life cycle. One of these, the differentiation of the young embryo from a meristem-like structure into a highly specialized storage organ, is believed to be controlled by local connections between sugars and hormonal response systems. However, we know little about the regulatory networks underpinning the sugar-hormone interactions in developing seeds. By modulating the trehalose 6-phosphate (T6P) content in growing embryos of garden pea (Pisum sativum), we investigate here the role of this signaling sugar during the seed-filling process. Seeds deficient in T6P are compromised in size and starch production, resembling the wrinkled seeds studied by Gregor Mendel. We show also that T6P exerts these effects by stimulating the biosynthesis of the pivotal plant hormone, auxin. We found that T6P promotes the expression of the auxin biosynthesis gene TRYPTOPHAN AMINOTRANSFERASE RELATED2 (TAR2), and the resulting effect on auxin concentrations is required to mediate the T6P-induced activation of storage processes. Our results suggest that auxin acts downstream of T6P to facilitate seed filling, thereby providing a salient example of how a metabolic signal governs the hormonal control of an integral phase transition in a crop plant.
Collapse
Affiliation(s)
- Tobias Meitzel
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| | - Ruslana Radchuk
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
- DeepTrait S.A., Dobrzańskiego 3, Lublin, 20-262, Poland
| | - Erin L McAdam
- School of Natural Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - Ina Thormählen
- Faculty of Biology, Ludwig Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Eberhard Munz
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| | - Alexander Hilo
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| | - Peter Geigenberger
- Faculty of Biology, Ludwig Maximilians University of Munich, Großhaderner Str. 2, Planegg-Martinsried, 82152, Germany
| | - John J Ross
- School of Natural Sciences, University of Tasmania, Sandy Bay, 7001, Australia
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Ljudmilla Borisjuk
- Leibniz Institute of Plant Genetics and Crop Plant Research, Corrensstr. 3, Stadt Seeland OT Gatersleben, 06466, Germany
| |
Collapse
|
158
|
Fichtner F, Barbier FF, Annunziata MG, Feil R, Olas JJ, Mueller-Roeber B, Stitt M, Beveridge CA, Lunn JE. Regulation of shoot branching in arabidopsis by trehalose 6-phosphate. THE NEW PHYTOLOGIST 2021; 229:2135-2151. [PMID: 33068448 DOI: 10.1111/nph.17006] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 10/05/2020] [Indexed: 05/03/2023]
Abstract
Trehalose 6-phosphate (Tre6P) is a sucrose signalling metabolite that has been implicated in regulation of shoot branching, but its precise role is not understood. We expressed tagged forms of TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) to determine where Tre6P is synthesized in arabidopsis (Arabidopsis thaliana), and investigated the impact of localized changes in Tre6P levels, in axillary buds or vascular tissues, on shoot branching in wild-type and branching mutant backgrounds. TPS1 is expressed in axillary buds and the subtending vasculature, as well as in the leaf and stem vasculature. Expression of a heterologous Tre6P phosphatase (TPP) to lower Tre6P in axillary buds strongly delayed bud outgrowth in long days and inhibited branching in short days. TPP expression in the vasculature also delayed lateral bud outgrowth and decreased branching. Increased Tre6P in the vasculature enhanced branching and was accompanied by higher expression of FLOWERING LOCUS T (FT) and upregulation of sucrose transporters. Increased vascular Tre6P levels enhanced branching in branched1 but not in ft mutant backgrounds. These results provide direct genetic evidence of a local role for Tre6P in regulation of axillary bud outgrowth within the buds themselves, and also connect Tre6P with systemic regulation of shoot branching via FT.
Collapse
Affiliation(s)
- Franziska Fichtner
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Francois F Barbier
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Maria G Annunziata
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Justyna J Olas
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, Potsdam, 14476, Germany
| | - Bernd Mueller-Roeber
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Straße 24-25, Haus 20, Potsdam, 14476, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Christine A Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| |
Collapse
|
159
|
Convergence and Divergence of Sugar and Cytokinin Signaling in Plant Development. Int J Mol Sci 2021; 22:ijms22031282. [PMID: 33525430 PMCID: PMC7865218 DOI: 10.3390/ijms22031282] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 02/06/2023] Open
Abstract
Plants adjust their growth and development through a sophisticated regulatory system integrating endogenous and exogenous cues. Many of them rely on intricate crosstalk between nutrients and hormones, an effective way of coupling nutritional and developmental information and ensuring plant survival. Sugars in their different forms such as sucrose, glucose, fructose and trehalose-6-P and the hormone family of cytokinins (CKs) are major regulators of the shoot and root functioning throughout the plant life cycle. While their individual roles have been extensively investigated, their combined effects have unexpectedly received little attention, resulting in many gaps in current knowledge. The present review provides an overview of the relationship between sugars and CKs signaling in the main developmental transition during the plant lifecycle, including seed development, germination, seedling establishment, root and shoot branching, leaf senescence, and flowering. These new insights highlight the diversity and the complexity of the crosstalk between sugars and CKs and raise several questions that will open onto further investigations of these regulation networks orchestrating plant growth and development.
Collapse
|
160
|
Zhao Y, Wang XQ. The hot issue: TOR signalling network in plants. FUNCTIONAL PLANT BIOLOGY : FPB 2020; 48:1-7. [PMID: 32905758 DOI: 10.1071/fp20071] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
The target of rapamycin (TOR) signalling network plays a pivotal role in regulating sugar metabolism and life-span in yeast, plants and mammals, in which TOR functions as a crucial protein. In plants, the TOR complex comprises TOR, RAPTOR (regulatory-associated protein of TOR) and LST8 (lethal with SEC13 protein 8). Factors like light, auxin, glucose, sucrose and amino acid can activate TOR protein as upstream signals to further phosphorylate downstream factors of TOR which promote cell proliferation and growth in plants. In this review, we analyse the TOR signalling network in plants and discuss the relationship between glucose and TOR, as well as the dynamic balance between TOR and sucrose-non-fermenting-related protein kinases (SnRKs). Given that 63 novel TOR-regulated proteins have been identified in previous studies, we also believe there are many unknown functions of TOR that need to be further investigated.
Collapse
Affiliation(s)
- Ying Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiu-Qin Wang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China; and Corresponding author.
| |
Collapse
|
161
|
Zhang H, Zhao Y, Zhu JK. Thriving under Stress: How Plants Balance Growth and the Stress Response. Dev Cell 2020; 55:529-543. [DOI: 10.1016/j.devcel.2020.10.012] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 08/21/2020] [Accepted: 10/17/2020] [Indexed: 12/24/2022]
|
162
|
Diniz AL, da Silva DIR, Lembke CG, Costa MDBL, ten-Caten F, Li F, Vilela RD, Menossi M, Ware D, Endres L, Souza GM. Amino Acid and Carbohydrate Metabolism Are Coordinated to Maintain Energetic Balance during Drought in Sugarcane. Int J Mol Sci 2020; 21:ijms21239124. [PMID: 33266228 PMCID: PMC7729667 DOI: 10.3390/ijms21239124] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 01/10/2023] Open
Abstract
The ability to expand crop plantations without irrigation is a major goal to increase agriculture sustainability. To achieve this end, we need to understand the mechanisms that govern plant growth responses under drought conditions. In this study, we combined physiological, transcriptomic, and genomic data to provide a comprehensive picture of drought and recovery responses in the leaves and roots of sugarcane. Transcriptomic profiling using oligoarrays and RNA-seq identified 2898 (out of 21,902) and 46,062 (out of 373,869) transcripts as differentially expressed, respectively. Co-expression analysis revealed modules enriched in photosynthesis, small molecule metabolism, alpha-amino acid metabolism, trehalose biosynthesis, serine family amino acid metabolism, and carbohydrate transport. Together, our findings reveal that carbohydrate metabolism is coordinated with the degradation of amino acids to provide carbon skeletons to the tricarboxylic acid cycle. This coordination may help to maintain energetic balance during drought stress adaptation, facilitating recovery after the stress is alleviated. Our results shed light on candidate regulatory elements and pave the way to biotechnology strategies towards the development of drought-tolerant sugarcane plants.
Collapse
Affiliation(s)
- Augusto Lima Diniz
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
| | - Danielle Izilda Rodrigues da Silva
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
- Center for Applied Plant Sciences (CAPS), The Ohio State University, Columbus, OH 43210, USA
- Escola Superior de Agricultura “Luiz de Queiroz”, Universidade de São Paulo, Piracicaba, SP 13418-900, Brazil
| | - Carolina Gimiliani Lembke
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
| | - Maximiller Dal-Bianco Lamas Costa
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, Viçosa, MG 36570-900, Brazil
| | - Felipe ten-Caten
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
| | - Forrest Li
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (F.L.); (D.W.)
| | - Romel Duarte Vilela
- Centro de Ciências Agrárias, Universidade Federal de Alagoas, Rio Largo, AL 57100-000, Brazil; (R.D.V.); (L.E.)
| | - Marcelo Menossi
- Instituto de Biologia, Universidade Estadual de Campinas, Campinas, SP 13083-862, Brazil;
| | - Doreen Ware
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; (F.L.); (D.W.)
- USDA ARS NAA Robert W. Holley Center for Agriculture and Health, Ithaca, NY 14853, USA
| | - Lauricio Endres
- Centro de Ciências Agrárias, Universidade Federal de Alagoas, Rio Largo, AL 57100-000, Brazil; (R.D.V.); (L.E.)
| | - Glaucia Mendes Souza
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP 05508-000, Brazil; (A.L.D.); (D.I.R.d.S.); (C.G.L.); (M.D.-B.L.C.); (F.t.-C.)
- Correspondence:
| |
Collapse
|
163
|
Zhu T, Li Z, An X, Long Y, Xue X, Xie K, Ma B, Zhang D, Guan Y, Niu C, Dong Z, Hou Q, Zhao L, Wu S, Li J, Jin W, Wan X. Normal Structure and Function of Endothecium Chloroplasts Maintained by ZmMs33-Mediated Lipid Biosynthesis in Tapetal Cells Are Critical for Anther Development in Maize. MOLECULAR PLANT 2020; 13:1624-1643. [PMID: 32956899 DOI: 10.1016/j.molp.2020.09.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/19/2020] [Accepted: 09/15/2020] [Indexed: 05/06/2023]
Abstract
Genic male sterility (GMS) is critical for heterosis utilization and hybrid seed production. Although GMS mutants and genes have been studied extensively in plants, it has remained unclear whether chloroplast-associated photosynthetic and metabolic activities are involved in the regulation of anther development. In this study, we characterized the function of ZmMs33/ZmGPAT6, which encodes a member of the glycerol-3-phosphate acyltransferase (GPAT) family that catalyzes the first step of the glycerolipid synthetic pathway. We found that normal structure and function of endothecium (En) chloroplasts maintained by ZmMs33-mediated lipid biosynthesis in tapetal cells are crucial for maize anther development. ZmMs33 is expressed mainly in the tapetum at early anther developmental stages and critical for cell proliferation and expansion at late stages. Chloroplasts in En cells of wild-type anthers function as starch storage sites before stage 10 but as photosynthetic factories since stage 10 to enable starch metabolism and carbohydrate supply. Loss of ZmMs33 function inhibits the biosynthesis of glycolipids and phospholipids, which are major components of En chloroplast membranes, and disrupts the development and function of En chloroplasts, resulting in the formation of abnormal En chloroplasts containing numerous starch granules. Further analyses reveal that starch synthesis during the day and starch degradation at night are greatly suppressed in the mutant anthers, leading to carbon starvation and low energy status, as evidenced by low trehalose-6-phosphate content and a reduced ATP/AMP ratio. The energy sensor and inducer of autophagy, SnRK1, was activated to induce early and excessive autophagy, premature PCD, and metabolic reprogramming in tapetal cells, finally arresting the elongation and development of mutant anthers. Taken together, our results not only show that ZmMs33 is required for normal structure and function of En chloroplasts but also reveal that starch metabolism and photosynthetic activities of En chloroplasts at different developmental stages are essential for normal anther development. These findings provide novel insights for understanding how lipid biosynthesis in the tapetum, the structure and function of En chloroplasts, and energy and substance metabolism are coordinated to maintain maize anther development.
Collapse
Affiliation(s)
- Taotao Zhu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Ziwen Li
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xueli An
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yan Long
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Xiaofeng Xue
- Risk Assessment Laboratory for Bee Products Quality and Safety of Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Ke Xie
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Biao Ma
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Danfeng Zhang
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Yijian Guan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Canfang Niu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Zhenying Dong
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Quancan Hou
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Lina Zhao
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Suowei Wu
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Jinping Li
- Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Biology and Agriculture Research Center of USTB, University of Science and Technology Beijing (USTB), Beijing 100024, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Beijing International Science and Technology Cooperation Base of Bio-Tech Breeding, Beijing Solidwill Sci-Tech Co. Ltd., Beijing 100192, China.
| |
Collapse
|
164
|
Urquidi-Camacho RA, Lokdarshi A, von Arnim AG. Translational gene regulation in plants: A green new deal. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1597. [PMID: 32367681 PMCID: PMC9258721 DOI: 10.1002/wrna.1597] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 03/31/2020] [Accepted: 04/01/2020] [Indexed: 01/09/2023]
Abstract
The molecular machinery for protein synthesis is profoundly similar between plants and other eukaryotes. Mechanisms of translational gene regulation are embedded into the broader network of RNA-level processes including RNA quality control and RNA turnover. However, over eons of their separate history, plants acquired new components, dropped others, and generally evolved an alternate way of making the parts list of protein synthesis work. Research over the past 5 years has unveiled how plants utilize translational control to defend themselves against viruses, regulate translation in response to metabolites, and reversibly adjust translation to a wide variety of environmental parameters. Moreover, during seed and pollen development plants make use of RNA granules and other translational controls to underpin developmental transitions between quiescent and metabolically active stages. The economics of resource allocation over the daily light-dark cycle also include controls over cellular protein synthesis. Important new insights into translational control on cytosolic ribosomes continue to emerge from studies of translational control mechanisms in viruses. Finally, sketches of coherent signaling pathways that connect external stimuli with a translational response are emerging, anchored in part around TOR and GCN2 kinase signaling networks. These again reveal some mechanisms that are familiar and others that are different from other eukaryotes, motivating deeper studies on translational control in plants. This article is categorized under: Translation > Translation Regulation RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
- Ricardo A. Urquidi-Camacho
- UT-ORNL Graduate School of Genome Science and Technology, The University of Tennessee, Knoxville, TN 37996
| | - Ansul Lokdarshi
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996
| | - Albrecht G von Arnim
- Department of Biochemistry & Cellular and Molecular Biology and UT-ORNL Graduate School of Genome Science and Technology, University of Tennessee, Knoxville, TN 37996
| |
Collapse
|
165
|
Ponnu J, Schlereth A, Zacharaki V, Działo MA, Abel C, Feil R, Schmid M, Wahl V. The trehalose 6-phosphate pathway impacts vegetative phase change in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:768-780. [PMID: 32799402 DOI: 10.1111/tpj.14965] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 06/12/2020] [Accepted: 07/13/2020] [Indexed: 05/16/2023]
Abstract
The vegetative phase change marks the beginning of the adult phase in the life cycle of plants and is associated with a gradual decline in the microRNA miR156, in response to sucrose status. Trehalose 6-phosphate (T6P) is a sugar molecule with signaling function reporting the current sucrose state. To elucidate the role of T6P signaling in vegetative phase change, molecular, genetic, and metabolic analyses were performed using Arabidopsis thaliana loss-of-function lines in TREHALOSE PHOSPHATE SYNTHASE1 (TPS1), a gene coding for an enzyme that catalyzes the production of T6P. These lines show a significant delay in vegetative phase change, under both short and long day conditions. Induced expression of TPS1 complements this delay in the TPS1 knockout mutant (tps1-2 GVG::TPS1). Further analyses indicate that the T6P pathway promotes vegetative phase transition by suppressing miR156 expression and thereby modulating the levels of its target transcripts, the SQUAMOSA PROMOTER BINDING PROTEIN-LIKE genes. TPS1 knockdown plants, with a delayed vegetative phase change phenotype, accumulate significantly more sucrose than wild-type plants as a result of a feedback mechanism. In summary, we conclude that the T6P pathway forms an integral part of an endogenous mechanism that influences phase transitions dependent on the metabolic state.
Collapse
Affiliation(s)
- Jathish Ponnu
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstraße 35, Tübingen, 72076, Germany
| | - Armin Schlereth
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | | | - Magdalena A Działo
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Christin Abel
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Regina Feil
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Markus Schmid
- Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstraße 35, Tübingen, 72076, Germany
| | - Vanessa Wahl
- Department of Metabolic Networks, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
166
|
Ingargiola C, Turqueto Duarte G, Robaglia C, Leprince AS, Meyer C. The Plant Target of Rapamycin: A Conduc TOR of Nutrition and Metabolism in Photosynthetic Organisms. Genes (Basel) 2020; 11:genes11111285. [PMID: 33138108 PMCID: PMC7694126 DOI: 10.3390/genes11111285] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 12/15/2022] Open
Abstract
Living organisms possess many mechanisms to sense nutrients and favorable conditions, which allow them to grow and develop. Photosynthetic organisms are very diverse, from green unicellular algae to multicellular flowering plants, but most of them are sessile and thus unable to escape from the biotic and abiotic stresses they experience. The Target of Rapamycin (TOR) signaling pathway is conserved in all eukaryotes and acts as a central regulatory hub between growth and extrinsic factors, such as nutrients or stress. However, relatively little is known about the regulations and roles of this pathway in plants and algae. Although some features of the TOR pathway seem to have been highly conserved throughout evolution, others clearly differ in plants, perhaps reflecting adaptations to different lifestyles and the rewiring of this primordial signaling module to adapt to specific requirements. Indeed, TOR is involved in plant responses to a vast array of signals including nutrients, hormones, light, stresses or pathogens. In this review, we will summarize recent studies that address the regulations of TOR by nutrients in photosynthetic organisms, and the roles of TOR in controlling important metabolic pathways, highlighting similarities and differences with the other eukaryotes.
Collapse
Affiliation(s)
- Camille Ingargiola
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
| | - Gustavo Turqueto Duarte
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
| | - Christophe Robaglia
- Laboratoire de Génétique et Biophysique des Plantes, Faculté des Sciences de Luminy, UMR 7265, CEA, CNRS, BIAM, Aix Marseille Université, 13009 Marseille, France;
| | - Anne-Sophie Leprince
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Faculté des Sciences et d’Ingénierie, Sorbonne Université, UFR 927, 4 Place Jussieu, 75252 Paris, France
| | - Christian Meyer
- Institut Jean-Pierre Bourgin (IJPB), INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (C.I.); (G.T.D.); (A.-S.L.)
- Correspondence:
| |
Collapse
|
167
|
The Molecular Regulatory Pathways and Metabolic Adaptation in the Seed Germination and Early Seedling Growth of Rice in Response to Low O 2 Stress. PLANTS 2020; 9:plants9101363. [PMID: 33066550 PMCID: PMC7602250 DOI: 10.3390/plants9101363] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 09/29/2020] [Accepted: 10/12/2020] [Indexed: 11/17/2022]
Abstract
As sessile organisms, flooding/submergence is one of the major abiotic stresses for higher plants, with deleterious effects on their growth and survival. Therefore, flooding/submergence is a large challenge for agriculture in lowland areas worldwide. Long-term flooding/submergence can cause severe hypoxia stress to crop plants and can result in substantial yield loss. Rice has evolved distinct adaptive strategies in response to low oxygen (O2) stress caused by flooding/submergence circumstances. Recently, direct seeding practice has been increasing in popularity due to its advantages of reducing cultivation cost and labor. However, establishment and growth of the seedlings from seed germination under the submergence condition are large obstacles for rice in direct seeding practice. The physiological and molecular regulatory mechanisms underlying tolerant and sensitive phenotypes in rice have been extensively investigated. Here, this review focuses on the progress of recent advances in the studies of the molecular mechanisms and metabolic adaptions underlying anaerobic germination (AG) and coleoptile elongation. Further, we highlight the prospect of introducing quantitative trait loci (QTL) for AG into rice mega varieties to ensure the compatibility of flooding/submergence tolerance traits and yield stability, thereby advancing the direct seeding practice and facilitating future breeding improvement.
Collapse
|
168
|
Wang W, Chen Q, Xu S, Liu W, Zhu X, Song C. Trehalose-6-phosphate phosphatase E modulates ABA-controlled root growth and stomatal movement in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1518-1534. [PMID: 32167237 PMCID: PMC7586804 DOI: 10.1111/jipb.12925] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/08/2020] [Indexed: 05/21/2023]
Abstract
Trehalose plays important roles in plant growth and stress responses and is synthesized from trehalose-6-phosphate by trehalose-6-phosphate phosphatase (TPP). Here, we show that trehalose and abscisic acid (ABA) have synergistic effects on root growth and stomatal closure. The Arabidopsis thaliana genome contains ten genes encoding TPPs and the expression level of one, TPPE, and trehalose contents increased in response to ABA. In the presence of ABA, the ABA-responsive transcription factor ABA RESPONSE ELEMENT BINDING FACTOR2 (ABF2) directly binds to the TPPE promoter to activate its expression. Genetic analysis revealed that TPPE acts downstream of ABF2, which is supported by the findings that TPPE expression and trehalose content are reduced in the abf2 mutant and that a mutation in TPPE abolished the ABA-sensitive root elongation phenotype of 35S:ABF2 plants. Reactive oxygen species (ROS) accumulation in response to ABA failed to occur in tppe mutant plants, suggesting that TPPE is involved in ABA-controlled root elongation and stomatal movement by inducing ROS accumulation. This study uncovers a new branch of the ABA signaling pathway and provides a molecular basis for the role of trehalose in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475001China
- Department of Biology and Food ScienceShangqiu Normal UniversityShangqiu476000China
| | - Qingbin Chen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475001China
| | - Shouming Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475001China
| | - Wen‐Cheng Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475001China
| | - Xiaohong Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475001China
| | - Chun‐Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475001China
| |
Collapse
|
169
|
Zhang Y, Zhang B, Yang T, Zhang J, Liu B, Zhan X, Liang Y. The GAMYB-like gene SlMYB33 mediates flowering and pollen development in tomato. HORTICULTURE RESEARCH 2020; 7:133. [PMID: 32922805 PMCID: PMC7459326 DOI: 10.1038/s41438-020-00366-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 05/21/2020] [Accepted: 06/23/2020] [Indexed: 05/08/2023]
Abstract
GAMYBs are positive GA signaling factors that exhibit essential functions in reproductive development, particularly in anther and pollen development. However, there is no direct evidence of the regulation of any GAMYB in these biological processes in tomato (Solanum lycopersicum). Here, we identified a tomato GAMYB-like gene, SlMYB33, and characterized its specific roles. SlMYB33 is predominately expressed in the stamens and pistils. During flower development, high mRNA abundance of SlMYB33 is detected in both male and female organs, such as microspore mother cells, anthers, pollen grains, and ovules. Silencing of SlMYB33 leads to delayed flowering, aberrant pollen viability, and poor fertility in tomato. Histological analyses indicate that SlMYB33 exerts its function in pollen development in the mature stage. Further transcriptomic analyses imply that the knockdown of SlMYB33 significantly inhibits the expression of genes related to flowering in shoot apices, and alters the transcription of genes controlling sugar metabolism in anthers. Taken together, our study suggests that SlMYB33 regulates tomato flowering and pollen maturity, probably by modulating the expression of genes responsible for flowering and sugar metabolism, respectively.
Collapse
Affiliation(s)
- Yan Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi P. R. China
| | - Bo Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi P. R. China
| | - Tongwen Yang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi P. R. China
| | - Jie Zhang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi P. R. China
| | - Bin Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi P. R. China
| | - Yan Liang
- College of Horticulture, Northwest A&F University, Yangling, 712100 Shaanxi P. R. China
| |
Collapse
|
170
|
Durán-Soria S, Pott DM, Osorio S, Vallarino JG. Sugar Signaling During Fruit Ripening. FRONTIERS IN PLANT SCIENCE 2020; 11:564917. [PMID: 32983216 PMCID: PMC7485278 DOI: 10.3389/fpls.2020.564917] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Accepted: 08/13/2020] [Indexed: 05/14/2023]
Abstract
Sugars play a key role in fruit quality, as they directly influence taste, and thus consumer acceptance. Carbohydrates are the main resources needed by the plant for carbon and energy supply and have been suggested to be involved in all the important developmental processes, including embryogenesis, seed germination, stress responses, and vegetative and reproductive growth. Recently, considerable progresses have been made in understanding regulation of fruit ripening mechanisms, based on the role of ethylene, auxins, abscisic acid, gibberellins, or jasmonic acid, in both climacteric and non-climacteric fruits. However, the role of sugar and its associated molecular network with hormones in the control of fruit development and ripening is still poorly understood. In this review, we focus on sugar signaling mechanisms described up to date in fruits, describing their involvement in ripening-associated processes, such as pigments accumulation, and their association with hormone transduction pathways, as well as their role in stress-related responses.
Collapse
Affiliation(s)
| | | | - Sonia Osorio
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| | - José G. Vallarino
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Universidad de Málaga – Consejo Superior de Investigaciones Científicas (IHSM-UMA-CSIC), Málaga, Spain
| |
Collapse
|
171
|
Yang H, Hu C. Regulation and remodeling of intermediate metabolite and membrane lipid during NaCl-induced stress in freshwater microalga Micractinium sp. XJ-2 for biofuel production. Biotechnol Bioeng 2020; 117:3727-3738. [PMID: 32749671 DOI: 10.1002/bit.27528] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/25/2020] [Accepted: 08/03/2020] [Indexed: 01/23/2023]
Abstract
Microalgae can accumulate a large fraction of reduced carbon as lipids under NaCl stress. This study investigated the mechanism of carbon allocation and reduction and triacylglycerol (TAG) accumulation in microalgae under NaCl-induced stress. Micractinium sp. XJ-2 was exposed to NaCl stress and cells were subjected to physiological, biochemical, and metabolic analyses to elucidate the stress-responsive mechanism. Lipid increased with NaCl concentration after 0-12 hr, then stabilized after 12-48 hr, and finally decreased after 48-72 hr, whereas TAG increased (0-48 hr) and then decreased (48-72 hr). Under NaCl-induced stress at lower concentrations, TAG accumulation, at first, mainly shown to rely on the carbon fixation through photosynthetic fixation, carbohydrate degradation, and membrane lipids remodeling. Moreover, carbon compounds generated by the degradation of some amino acids were reallocated and enhanced fatty acid synthesis. The remodeling of the membrane lipids of NaCl-induced microalgae relied on the following processes: (a) Increase in the amount of phospholipids and reduction in the amount of glycolipids and (b) extension of long-chain fatty acids. This study enhances our understanding of TAG production under NaCl stress and thus will provide a theoretical basis for the industrial application of NaCl-induced in the microalgal biodiesel industry.
Collapse
Affiliation(s)
- Haijian Yang
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Chunxiang Hu
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| |
Collapse
|
172
|
Lecourieux D, Kappel C, Claverol S, Pieri P, Feil R, Lunn JE, Bonneu M, Wang L, Gomès E, Delrot S, Lecourieux F. Proteomic and metabolomic profiling underlines the stage- and time-dependent effects of high temperature on grape berry metabolism. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1132-1158. [PMID: 31829525 DOI: 10.1111/jipb.12894] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 12/05/2019] [Indexed: 05/19/2023]
Abstract
Climate change scenarios predict an increase in mean air temperatures and in the frequency, intensity, and length of extreme temperature events in many wine-growing regions worldwide. Because elevated temperature has detrimental effects on berry growth and composition, it threatens the economic and environmental sustainability of wine production. Using Cabernet Sauvignon fruit-bearing cuttings, we investigated the effects of high temperature (HT) on grapevine berries through a label-free shotgun proteomic analysis coupled to a complementary metabolomic study. Among the 2,279 proteins identified, 592 differentially abundant proteins were found in berries exposed to HT. The gene ontology categories "stress," "protein," "secondary metabolism," and "cell wall" were predominantly altered under HT. High temperatures strongly impaired carbohydrate and energy metabolism, and the effects depended on the stage of development and duration of treatment. Transcript amounts correlated poorly with protein expression levels in HT berries, highlighting the value of proteomic studies in the context of heat stress. Furthermore, this work reveals that HT alters key proteins driving berry development and ripening. Finally, we provide a list of differentially abundant proteins that can be considered as potential markers for developing or selecting grape varieties that are better adapted to warmer climates or extreme heat waves.
Collapse
Affiliation(s)
- David Lecourieux
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Christian Kappel
- Institut of Biochemistry and Biology, Potsdam University, D-14476, Potsdam, Germany
| | - Stéphane Claverol
- Proteome Platform, Bordeaux Functional Genomic Center, Bordeaux University, 33076, Bordeaux, France
| | - Philippe Pieri
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476, Potsdam-Golm, Germany
| | - Marc Bonneu
- Proteome Platform, Bordeaux Functional Genomic Center, Bordeaux University, 33076, Bordeaux, France
| | - Lijun Wang
- Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Eric Gomès
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Serge Delrot
- UMR1287 EGFV, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| | - Fatma Lecourieux
- UMR1287 EGFV, CNRS, INRAE, Bordeaux Sciences Agro, Bordeaux University, ISVV, 33140, Villenave d'Ornon, France
| |
Collapse
|
173
|
Benny J, Marra FP, Giovino A, Balan B, Caruso T, Martinelli F, Marchese A. Transcriptome Analysis of Pistacia vera Inflorescence Buds in Bearing and Non-Bearing Shoots Reveals the Molecular Mechanism Causing Premature Flower Bud Abscission. Genes (Basel) 2020; 11:E851. [PMID: 32722492 PMCID: PMC7465039 DOI: 10.3390/genes11080851] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 02/06/2023] Open
Abstract
The alteration of heavy ("ON/bearing") and light ("OFF/non-bearing") yield in pistachio (Pistacia vera L.) has been reported to result from the abscission of inflorescence buds on high yielding trees during the summer, but the regulatory mechanisms involved in this bud abscission remain unclear. The analysis provides insights into the transcript changes between inflorescence buds on bearing and non-bearing shoots, that we indicated as "ON" and "OFF", and shed light on the molecular mechanisms causing premature inflorescence bud abscission in the pistachio cultivar "Bianca" which can be related to the alternate bearing behavior. In this study, a transcriptome analysis was performed in inflorescence buds of "ON" and "OFF" shoots. A total of 14,330 differentially expressed genes (DEGs), most of which are involved in sugar metabolism, plant hormone pathways, secondary metabolism and oxidative stress pathway, were identified. Our results shed light on the molecular mechanisms underlying inflorescence bud abscission in pistachio and we proposed a hypothetical model behind the molecular mechanism causing this abscission in "ON" shoots. Results highlighted how changes in genes expressed in nutrient pathways (carbohydrates and mineral elements) in pistachio "ON" vs. "OFF" inflorescence buds triggers a cascade of events involving trehalose-6-phosphate and target of rapamycin (TOR) signaling, SnRK1 complex, hormones, polyamines and ROS which end, through programmed cell death and autophagy phenomena, with the abscission of inflorescence buds. This is the first study reporting gene expression profiling of the fate of "ON" and "OFF" inflorescence buds associated with the alternate bearing in the pistachio.
Collapse
Affiliation(s)
- Jubina Benny
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze—Ed. 4, 90128 Palermo, Italy; (J.B.); (B.B.); (T.C.)
| | - Francesco Paolo Marra
- Department of Architecture (DARCH), University of Palermo, Viale delle Scienze—Ed. 8, 90128 Palermo, Italy
| | - Antonio Giovino
- Council for Agricultural Research and Economics (CREA), Research Centre for Plant Protection and Certification (CREA-DC), 90011 Bagheria, Italy;
| | - Bipin Balan
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze—Ed. 4, 90128 Palermo, Italy; (J.B.); (B.B.); (T.C.)
- Department of Plant Sciences, University of California, Davis, CA 95616, USA
| | - Tiziano Caruso
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze—Ed. 4, 90128 Palermo, Italy; (J.B.); (B.B.); (T.C.)
| | - Federico Martinelli
- Department of Biology, University of Florence, Sesto Fiorentino, 50019 Florence, Italy;
| | - Annalisa Marchese
- Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze—Ed. 4, 90128 Palermo, Italy; (J.B.); (B.B.); (T.C.)
| |
Collapse
|
174
|
Liu X, Chen L, Shi W, Xu X, Li Z, Liu T, He Q, Xie C, Nie B, Song B. Comparative transcriptome reveals distinct starch-sugar interconversion patterns in potato genotypes contrasting for cold-induced sweetening capacity. Food Chem 2020; 334:127550. [PMID: 32693335 DOI: 10.1016/j.foodchem.2020.127550] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 07/06/2020] [Accepted: 07/08/2020] [Indexed: 12/18/2022]
Abstract
Potato accumulates large amounts of soluble sugar during cold storage periods. However, a system based understanding of this process is still largely unknown. Here, we compared the dynamic cold-responded transcriptome of genotypes between cold-induced sweetening resistant (CIS-R) and cold-induced sweetening sensitive (CIS-S) in tubers. Comparative transcriptome revealed that activating the pathways of starch degradation, sucrose synthesis and hydrolysis could be common strategies in response to cold in both genotypes. Moreover, the variation in sugar accumulation between genotypes may be due to genetic differences in cold response, which could be mainly explained: CIS-R genotype was active in starch synthesis and attenuated in sucrose hydrolysis by promoting the coordinate expression of aseries ofgenes involved in starch-sugar interconversion. Additionally, transcription factors, the candidate master regulators of starch-sugar interconversion, were discussed. Taken together, this work has provided an avenue for studying the mechanism involved in the regulation of the CIS resistance.
Collapse
Affiliation(s)
- Xun Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; College of Agronomy and Biotechnology, Southwest University, Key Laboratory of Biology and Genetic Improvement for Tuber and Root Crops in Chongqing, Chongqing 400715, PR China.
| | - Lin Chen
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (South China), Ministry of Agriculture and Rural Affairs, College of Horticulture, South China Agricultural University, Guangzhou 510642, PR China
| | - Weiling Shi
- College of Agronomy and Biotechnology, Southwest University, Key Laboratory of Biology and Genetic Improvement for Tuber and Root Crops in Chongqing, Chongqing 400715, PR China
| | - Xuan Xu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Zhijing Li
- College of Agronomy and Biotechnology, Southwest University, Key Laboratory of Biology and Genetic Improvement for Tuber and Root Crops in Chongqing, Chongqing 400715, PR China
| | - Tengfei Liu
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Qin He
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Conghua Xie
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Bihua Nie
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| | - Botao Song
- Key Laboratory of Horticultural Plant Biology (HZAU), Ministry of Education, Key Laboratory of Potato Biology and Biotechnology, Ministry of Agriculture and Rural Affairs, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
175
|
Lin Q, Wang S, Dao Y, Wang J, Wang K. Arabidopsis thaliana trehalose-6-phosphate phosphatase gene TPPI enhances drought tolerance by regulating stomatal apertures. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4285-4297. [PMID: 32242234 DOI: 10.1093/jxb/eraa173] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 04/01/2020] [Indexed: 05/03/2023]
Abstract
Transpiration occurs through stomata. The alteration of stomatal apertures in response to drought stress is an important process associated with water use efficiency (WUE). Trehalose-6-phosphate phosphatase (TPP) family genes have been reported to participate in adjustment of stomatal aperture. However, there have been no reports of the trehalose metabolism pathway genes improving WUE, and the upstream signalling pathway modulating these genes is not clear. Here, we demonstrate that a member of the TPP gene family, AtTPPI, confers drought resistance and improves WUE by decreasing stomatal apertures and improving root architecture. The reduced expression of AtTPPI caused a drought-sensitive phenotype, while its overexpression significantly increased drought tolerance. Abscisic acid (ABA)-induced stomatal closure experiments confirmed that AtTPPI mutation increased the stomatal aperture compared with that of wild-type plants; in contrast, overexpression plants had smaller stomatal apertures than those of wild-type plants. Moreover, AtTPPI mutation also caused stunted primary root length and compromised auxin transport, while overexpression plants had longer primary root lengths. Yeast one-hybrid assays showed that ABA-responsive element-binding factor1 (ABF1), ABF2, and ABF4 directly regulated AtTPPI expression. In summary, the way in which AtTPPI responds to drought stress suggests that AtTPPI-mediated stomatal regulation is an important mechanism to cope with drought stress and improve WUE.
Collapse
Affiliation(s)
- Qingfang Lin
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Song Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yihang Dao
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jianyong Wang
- College of Forestry, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Kai Wang
- Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Center for Genomics and Biotechnology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
- National Engineering Research Center of Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
176
|
Hubloher JJ, Zeidler S, Lamosa P, Santos H, Averhoff B, Müller V. Trehalose-6-phosphate-mediated phenotypic change in Acinetobacter baumannii. Environ Microbiol 2020; 22:5156-5166. [PMID: 32618111 DOI: 10.1111/1462-2920.15148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/22/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022]
Abstract
The stress protectant trehalose is synthesized in Acinetobacter baumannii from UPD-glucose and glucose-6-phosphase via the OtsA/OtsB pathway. Previous studies proved that deletion of otsB led to a decreased virulence, the inability to grow at 45°C and a slight reduction of growth at high salinities indicating that trehalose is the cause of these phenotypes. We have questioned this conclusion by producing ∆otsA and ∆otsBA mutants and studying their phenotypes. Only deletion of otsB, but not deletion of otsA or otsBA, led to growth impairments at high salt and high temperature. The intracellular concentrations of trehalose and trehalose-6-phosphate were measured by NMR or enzymatic assay. Interestingly, none of the mutants accumulated trehalose any more but the ∆otsB mutant with its defect in trehalose-6-phosphate phosphatase activity accumulated trehalose-6-phosphate. Moreover, expression of otsA in a ∆otsB background under conditions where trehalose synthesis is not induced led to growth inhibition and the accumulation of trehalose-6-phosphate. Our results demonstrate that trehalose-6-phosphate affects multiple physiological activities in A. baumannii ATCC 19606.
Collapse
Affiliation(s)
- Josephine Joy Hubloher
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Sabine Zeidler
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Pedro Lamosa
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Beate Averhoff
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| | - Volker Müller
- Department of Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe-University Frankfurt am Main, Germany
| |
Collapse
|
177
|
Alam R, Hummel M, Yeung E, Locke AM, Ignacio JCI, Baltazar MD, Jia Z, Ismail AM, Septiningsih EM, Bailey‐Serres J. Flood resilience loci SUBMERGENCE 1 and ANAEROBIC GERMINATION 1 interact in seedlings established underwater. PLANT DIRECT 2020; 4:e00240. [PMID: 32775950 PMCID: PMC7403837 DOI: 10.1002/pld3.240] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/25/2020] [Accepted: 06/17/2020] [Indexed: 05/11/2023]
Abstract
Crops with resilience to multiple climatic stresses are essential for increased yield stability. Here, we evaluate the interaction between two loci associated with flooding survival in rice (Oryza sativa L.). ANAEROBIC GERMINATION 1 (AG1), encoding trehalose 6-phosphate phosphatase 7 (TPP7), promotes mobilization of endosperm reserves to enhance the elongation of a hollow coleoptile in seeds that are seeded directly into shallow paddies. SUBMERGENCE 1 (SUB1), encoding the ethylene-responsive transcription factor SUB1A-1, confers tolerance to complete submergence by dampening carbohydrate catabolism, to enhance recovery upon desubmergence. Interactions between AG1/TPP7 and SUB1/SUB1A-1 were investigated under three flooding scenarios using four near-isogenic lines by surveying growth and survival. Pyramiding of the two loci does not negatively affect anaerobic germination or vegetative-stage submergence tolerance. However, the pyramided AG1 SUB1 genotype displays reduced survival when seeds are planted underwater and maintained under submergence for 16 d. To better understand the roles of TPP7 and SUB1A-1 and their interaction, temporal changes in carbohydrates and shoot transcriptomes were monitored in the four genotypes varying at the two loci at four developmental timeponts, from day 2 after seeding through day 14 of complete submergence. TPP7 enhances early coleoptile elongation, whereas SUB1A-1 promotes precocious photoautotrophy and then restricts underwater elongation. By contrast, pyramiding of the AG1 and SUB1 slows elongation growth, the transition to photoautotrophy, and survival. mRNA-sequencing highlights time-dependent and genotype-specific regulation of mRNAs associated with DNA repair, cell cycle, chromatin modification, plastid biogenesis, carbohydrate catabolism and transport, elongation growth, and other processes. These results suggest that interactions between AG1/TPP7 and SUB1/SUB1A-1 could impact seedling establishment if paddy depth is not effectively managed after direct seeding.
Collapse
Affiliation(s)
- Rejbana Alam
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | - Maureen Hummel
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | - Elaine Yeung
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | - Anna M. Locke
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
- Present address:
Soybean and Nitrogen Fixation Research UnitUSDA‐ARSRaleighNCUSA
| | | | - Miriam D. Baltazar
- Department of Biological SciencesCavite State UniversityIndangPhilippines
| | - Zhenyu Jia
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| | | | - Endang M. Septiningsih
- International Rice Research InstituteMetro ManilaPhilippines
- Present address:
Department of Soil and Crop SciencesTexas A&M UniversityCollege StationTXUSA
| | - Julia Bailey‐Serres
- Department of Botany and Plant SciencesCenter for Plant Cell BiologyUniversity of California RiversideRiversideCAUSA
| |
Collapse
|
178
|
Baena-González E, Lunn JE. SnRK1 and trehalose 6-phosphate - two ancient pathways converge to regulate plant metabolism and growth. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:52-59. [PMID: 32259743 DOI: 10.1016/j.pbi.2020.01.010] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/27/2020] [Accepted: 01/31/2020] [Indexed: 05/02/2023]
Abstract
SUCROSE-NON-FERMENTING1-RELATED KINASE1 (SnRK1) belongs to a family of protein kinases that originated in the earliest eukaryotes and plays a central role in energy and metabolic homeostasis. Trehalose 6-phosphate (Tre6P) is the intermediate of trehalose biosynthesis, and has even more ancient roots, being found in all three domains of life - Archaea, Bacteria and Eukarya. In plants, the function of SnRK1 has diverged from its orthologues in fungi and animals, evolving new roles in signalling of nutrient status and abiotic stress. Tre6P has also acquired a novel function in plants as a signal and homeostatic regulator of sucrose, the dominant sugar in plant metabolism. These two ancient pathways have converged in a unique way in plants, enabling them to coordinate their metabolism, growth, and development with their environment, which is essential for their autotrophic and sessile lifestyle.
Collapse
Affiliation(s)
- Elena Baena-González
- Plant Stress Signaling, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - John Edward Lunn
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany.
| |
Collapse
|
179
|
Obata T, Klemens PAW, Rosado-Souza L, Schlereth A, Gisel A, Stavolone L, Zierer W, Morales N, Mueller LA, Zeeman SC, Ludewig F, Stitt M, Sonnewald U, Neuhaus HE, Fernie AR. Metabolic profiles of six African cultivars of cassava (Manihot esculenta Crantz) highlight bottlenecks of root yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1202-1219. [PMID: 31950549 DOI: 10.1111/tpj.14693] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 05/25/2023]
Abstract
Cassava is an important staple crop in sub-Saharan Africa, due to its high productivity even on nutrient poor soils. The metabolic characteristics underlying this high productivity are poorly understood including the mode of photosynthesis, reasons for the high rate of photosynthesis, the extent of source/sink limitation, the impact of environment, and the extent of variation between cultivars. Six commercial African cassava cultivars were grown in a greenhouse in Erlangen, Germany, and in the field in Ibadan, Nigeria. Source leaves, sink leaves, stems and storage roots were harvested during storage root bulking and analyzed for sugars, organic acids, amino acids, phosphorylated intermediates, minerals, starch, protein, activities of enzymes in central metabolism and yield traits. High ratios of RuBisCO:phosphoenolpyruvate carboxylase activity support a C3 mode of photosynthesis. The high rate of photosynthesis is likely to be attributed to high activities of enzymes in the Calvin-Benson cycle and pathways for sucrose and starch synthesis. Nevertheless, source limitation is indicated because root yield traits correlated with metabolic traits in leaves rather than in the stem or storage roots. This situation was especially so in greenhouse-grown plants, where irradiance will have been low. In the field, plants produced more storage roots. This was associated with higher AGPase activity and lower sucrose in the roots, indicating that feedforward loops enhanced sink capacity in the high light and low nitrogen environment in the field. Overall, these results indicated that carbon assimilation rate, the K battery, root starch synthesis, trehalose, and chlorogenic acid accumulation are potential target traits for genetic improvement.
Collapse
Affiliation(s)
- Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, 68588, NE, USA
| | - Patrick A W Klemens
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str, D-67653, Kaiserslautern, Germany
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Armin Schlereth
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andreas Gisel
- International Institute of Tropical Agriculture, Oyo Road, 200001, Ibadan, Nigeria
- Institute for Biomedical Technologies, CNR, Via Amendola 122D, 70125, Bari, Italy
| | - Livia Stavolone
- International Institute of Tropical Agriculture, Oyo Road, 200001, Ibadan, Nigeria
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122D, 70125, Bari, Italy
| | - Wolfgang Zierer
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Nicolas Morales
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14850, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14850, USA
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Frank Ludewig
- Institute for Biomedical Technologies, CNR, Via Amendola 122D, 70125, Bari, Italy
| | - Mark Stitt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str, D-67653, Kaiserslautern, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
180
|
Fichtner F, Olas JJ, Feil R, Watanabe M, Krause U, Hoefgen R, Stitt M, Lunn JE. Functional Features of TREHALOSE-6-PHOSPHATE SYNTHASE1, an Essential Enzyme in Arabidopsis. THE PLANT CELL 2020; 32:1949-1972. [PMID: 32276986 PMCID: PMC7268806 DOI: 10.1105/tpc.19.00837] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 03/17/2020] [Accepted: 04/08/2020] [Indexed: 05/19/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), TREHALOSE-6-PHOSPHATE SYNTHASE1 (TPS1) catalyzes the synthesis of the sucrose-signaling metabolite trehalose 6-phosphate (Tre6P) and is essential for embryogenesis and normal postembryonic growth and development. To understand its molecular functions, we transformed the embryo-lethal tps1-1 null mutant with various forms of TPS1 and with a heterologous TPS (OtsA) from Escherichia coli, under the control of the TPS1 promoter, and tested for complementation. TPS1 protein localized predominantly in the phloem-loading zone and guard cells in leaves, root vasculature, and shoot apical meristem, implicating it in both local and systemic signaling of Suc status. The protein is targeted mainly to the nucleus. Restoring Tre6P synthesis was both necessary and sufficient to rescue the tps1-1 mutant through embryogenesis. However, postembryonic growth and the sucrose-Tre6P relationship were disrupted in some complementation lines. A point mutation (A119W) in the catalytic domain or truncating the C-terminal domain of TPS1 severely compromised growth. Despite having high Tre6P levels, these plants never flowered, possibly because Tre6P signaling was disrupted by two unidentified disaccharide-monophosphates that appeared in these plants. The noncatalytic domains of TPS1 ensure its targeting to the correct subcellular compartment and its catalytic fidelity and are required for appropriate signaling of Suc status by Tre6P.
Collapse
Affiliation(s)
- Franziska Fichtner
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Justyna J Olas
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mutsumi Watanabe
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Ursula Krause
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - John E Lunn
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| |
Collapse
|
181
|
Sanmartín N, Pastor V, Pastor-Fernández J, Flors V, Pozo MJ, Sánchez-Bel P. Role and mechanisms of callose priming in mycorrhiza-induced resistance. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2769-2781. [PMID: 31985797 PMCID: PMC7210776 DOI: 10.1093/jxb/eraa030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/11/2020] [Indexed: 05/12/2023]
Abstract
Mycorrhizal plants display enhanced resistance to several pathogens. However, the molecular mechanisms regulating mycorrhiza-induced resistance (MIR) are still elusive. We aim to study the mechanisms underlying MIR against Botrytis cinerea and the role of callose accumulation during this process. Mycorrhizal tomato plants inoculated with Rhizoglomus irregularis displayed callose priming upon B. cinerea infection. The callose inhibitor 2-deoxy-d-glucose abolished MIR, confirming the relevance of callose in the bioprotection phenomena. While studying the mechanisms underlying mycorrhiza-induced callose priming, we found that mycorrhizal plants display an enhanced starch degradation rate that is correlated with increased levels of β-amylase1 transcripts following pathogen infection. Starch mobilization in mycorrhizal plants seems coordinated with the increased transcription of sugar transporter and invertase genes. Moreover, the expression levels of genes encoding the vesicular trafficking proteins ATL31 and SYP121 and callose synthase PMR4 were higher in the mycorrhizal plants and further boosted by subsequent pathogen infection. All these proteins play a key role in the priming of callose accumulation in Arabidopsis, suggesting that callose priming is an induced resistance mechanism conserved in different plant species. This evidence highlights the importance of sugar mobilization and vesicular trafficking in the priming of callose as a defence mechanism in mycorrhiza-induced resistance.
Collapse
Affiliation(s)
- Neus Sanmartín
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Victoria Pastor
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Julia Pastor-Fernández
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| | - Maria Jose Pozo
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín (CSIC), Granada, Spain
| | - Paloma Sánchez-Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Section, Unidad Asociada al Consejo Superior de Investigaciones Científicas (EEZ-CSIC)-Department of Ciencias Agrarias y del Medio Natural, Universitat Jaume I, Castellón, Spain
| |
Collapse
|
182
|
Ogden AJ, Wietsma TW, Winkler T, Farris Y, Myers GL, Ahkami AH. Dynamics of Global Gene Expression and Regulatory Elements in Growing Brachypodium Root System. Sci Rep 2020; 10:7071. [PMID: 32341392 PMCID: PMC7184759 DOI: 10.1038/s41598-020-63224-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 02/28/2020] [Indexed: 11/09/2022] Open
Abstract
Root systems are dynamic and adaptable organs that play critical roles in plant development. However, how roots grow and accumulate biomass during plant life cycle and in relation to shoot growth phenology remains understudied. A comprehensive time-dependent root morphological analysis integrated with molecular signatures is then required to advance our understanding of root growth and development. Here we studied Brachypodium distachyon rooting process by monitoring root morphology, biomass production, and C/N ratios during developmental stages. To provide insight into gene regulation that accompanies root growth, we generated comprehensive transcript profiles of Brachypodium whole-root system at four developmental stages. Our data analysis revealed that multiple biological processes including trehalose metabolism and various families of transcription factors (TFs) were differentially expressed in root system during plant development. In particular, the AUX/IAA, ERFs, WRKY, NAC, and MADS TF family members were upregulated as plant entered the booting/heading stage, while ARFs and GRFs were downregulated suggesting these TF families as important factors involved in specific phases of rooting, and possibly in regulation of transition to plant reproductive stages. We identified several Brachypodium candidate root biomass-promoting genes and cis-regulatory elements for further functional validations and root growth improvements in grasses.
Collapse
Affiliation(s)
- Aaron J Ogden
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Thomas W Wietsma
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Tanya Winkler
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Yuliya Farris
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Gabriel L Myers
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, Washington, USA.
| |
Collapse
|
183
|
Lillo-Carmona V, Espinoza A, Rothkegel K, Rubilar M, Nilo-Poyanco R, Pedreschi R, Campos-Vargas R, Meneses C. Identification of Metabolite and Lipid Profiles in a Segregating Peach Population Associated with Mealiness in Prunus persica (L.) Batsch. Metabolites 2020; 10:metabo10040154. [PMID: 32316167 PMCID: PMC7240955 DOI: 10.3390/metabo10040154] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/02/2020] [Accepted: 04/14/2020] [Indexed: 12/13/2022] Open
Abstract
The peach is the third most important temperate fruit crop considering fruit production and harvested area in the world. Exporting peaches represents a challenge due to the long-distance nature of export markets. This requires fruit to be placed in cold storage for a long time, which can induce a physiological disorder known as chilling injury (CI). The main symptom of CI is mealiness, which is perceived as non-juicy fruit by consumers. The purpose of this work was to identify and compare the metabolite and lipid profiles between two siblings from contrasting populations for juice content, at harvest and after 30 days at 0 °C. A total of 119 metabolites and 189 lipids were identified, which showed significant differences in abundance, mainly in amino acids, sugars and lipids. Metabolites displaying significant changes from the E1 to E3 stages corresponded to lipids such as phosphatidylglycerol (PG), monogalactosyldiacylglycerol (MGDG) and lysophosphatidylcholines (LPC), and sugars such as fructose 1 and 1-fructose-6 phosphate. These metabolites might be used as early stage biomarkers associated with mealiness at harvest and after cold storage.
Collapse
Affiliation(s)
- Victoria Lillo-Carmona
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Alonso Espinoza
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Karin Rothkegel
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Miguel Rubilar
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Ricardo Nilo-Poyanco
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Camino La Pirámide 5750, Huechuraba, Santiago 8580745, Chile;
| | - Romina Pedreschi
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Calle San Francisco s/n, La Palma, Quillota 2260000, Chile;
| | - Reinaldo Campos-Vargas
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
| | - Claudio Meneses
- Centro de Biotecnología Vegetal, Facultad de Ciencias de la Vida, Universidad Andrés Bello, Avenida República 330, Santiago 8370186, Chile; (V.L.-C.); (A.E.); (K.R.); (M.R.); (R.C.-V.)
- FONDAP Center for Genome Regulation, Universidad Andrés Bello, Blanco Encalada 2085, Santiago 87370415, Chile
- Correspondence:
| |
Collapse
|
184
|
Vanlerberghe GC, Dahal K, Alber NA, Chadee A. Photosynthesis, respiration and growth: A carbon and energy balancing act for alternative oxidase. Mitochondrion 2020; 52:197-211. [PMID: 32278748 DOI: 10.1016/j.mito.2020.04.001] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/28/2020] [Accepted: 04/06/2020] [Indexed: 12/26/2022]
Abstract
This review summarizes knowledge of alternative oxidase, a mitochondrial electron transport chain component that lowers the ATP yield of plant respiration. Analysis of mutant and transgenic plants has established that alternative oxidase activity supports leaf photosynthesis. The interaction of alternative oxidase respiration with chloroplast metabolism is important under conditions that challenge energy and/or carbon balance in the photosynthetic cell. Under such conditions, alternative oxidase provides an extra-chloroplastic means to optimize the status of chloroplast energy pools (ATP, NADPH) and to manage cellular carbohydrate pools in response to changing rates of carbon fixation and carbon demand for growth and maintenance. Transcriptional and post-translational mechanisms ensure that alternative oxidase can respond effectively when carbon and energy balance are being challenged. This function appears particularly significant under abiotic stress conditions such as water deficit, high salinity, or temperature extremes. Under such conditions, alternative oxidase respiration positively affects growth and stress tolerance, despite it lowering the energy yield and carbon use efficiency of respiration. In part, this beneficial effect relates to the ability of alternative oxidase respiration to prevent excessive reactive oxygen species generation in both mitochondria and chloroplasts. Recent evidence suggests that alternative oxidase respiration is an interesting target for crop improvement.
Collapse
Affiliation(s)
- Greg C Vanlerberghe
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada.
| | - Keshav Dahal
- Fredericton Research and Development Centre, Agriculture and Agri-Food Canada, 850 Lincoln Road, P.O. Box 20280, Fredericton, New Brunswick E3B4Z7, Canada
| | - Nicole A Alber
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada
| | - Avesh Chadee
- Department of Biological Sciences, and Department of Cell and Systems Biology, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C1A4, Canada
| |
Collapse
|
185
|
Paul MJ, Watson A, Griffiths CA. Linking fundamental science to crop improvement through understanding source and sink traits and their integration for yield enhancement. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2270-2280. [PMID: 31665486 PMCID: PMC7134924 DOI: 10.1093/jxb/erz480] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/11/2019] [Indexed: 05/19/2023]
Abstract
Understanding processes in sources and sinks that contribute to crop yields has taken years of painstaking research. For crop yield improvement, processes need to be understood as standalone mechanisms in addition to how these mechanisms perform at the crop level; currently there is often a chasm between the two. Fundamental mechanisms need to be considered in the context of crop ideotypes and the agricultural environment which is often more water limited than carbon limited. Different approaches for improvement should be considered, namely is there genetic variation? Or if not, could genetic modification, genome editing, or alternative approaches be utilized? Currently, there are few examples where genetic modification has improved intrinsic yield in the field for commercial application in a major crop. Genome editing, particularly of negative yield regulators as a first step, is providing new opportunities. Here we highlight key mechanisms in source and sink, arguing that for large yield increases integration of key processes is likely to produce the biggest successes within the framework of crop ideotypes with optimized phenology. We highlight a plethora of recent papers that show breakthroughs in fundamental science and the promise of the trehalose 6-phosphate signalling pathway, which regulates carbohydrate allocation which is key for many crop traits.
Collapse
Affiliation(s)
- Matthew J Paul
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
- Correspondence:
| | - Amy Watson
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Cara A Griffiths
- Plant Science, Rothamsted Research, Harpenden, Hertfordshire, UK
| |
Collapse
|
186
|
Nardozza S, Boldingh HL, Kashuba MP, Feil R, Jones D, Thrimawithana AH, Ireland HS, Philippe M, Wohlers MW, McGhie TK, Montefiori M, Lunn JE, Allan AC, Richardson AC. Carbon starvation reduces carbohydrate and anthocyanin accumulation in red-fleshed fruit via trehalose 6-phosphate and MYB27. PLANT, CELL & ENVIRONMENT 2020; 43:819-835. [PMID: 31834629 DOI: 10.1111/pce.13699] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 12/08/2019] [Indexed: 05/14/2023]
Abstract
Kiwifruit (Actinidia spp.) is a recently domesticated fruit crop with several novel-coloured cultivars being developed. Achieving uniform fruit flesh pigmentation in red genotypes is challenging. To investigate the cause of colour variation between fruits, we focused on a red-fleshed Actinidia chinensis var. chinensis genotype. It was hypothesized that carbohydrate supply could be responsible for this variation. Early in fruit development, we imposed high or low (carbon starvation) carbohydrate supplies treatments; carbohydrate import or redistribution was controlled by applying a girdle at the shoot base. Carbon starvation affected fruit development as well as anthocyanin and carbohydrate metabolite concentrations, including the signalling molecule trehalose 6-phosphate. RNA-Seq analysis showed down-regulation of both gene-encoding enzymes in the anthocyanin and carbohydrate biosynthetic pathways. The catalytic trehalose 6-phosphate synthase gene TPS1.1a was down-regulated, whereas putative regulatory TPS7 and TPS11 were strongly up-regulated. Unexpectedly, under carbon starvation MYB10, the anthocyanin pathway regulatory activator was slightly up-regulated, whereas MYB27 was also up-regulated and acts as a repressor. To link these two metabolic pathways, we propose a model where trehalose 6-phosphate and the active repressor MYB27 are involved in sensing the carbon starvation status. This signals the plant to save resources and reduce the production of anthocyanin in fruits.
Collapse
Affiliation(s)
- Simona Nardozza
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Helen L Boldingh
- Sustainable Production, The New Zealand Institute for Plant and Food Research Limited (PFR), Hamilton, New Zealand
| | - M Peggy Kashuba
- Sustainable Production, The New Zealand Institute for Plant and Food Research Limited (PFR), Kerikeri, New Zealand
| | - Regina Feil
- System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Dan Jones
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Amali H Thrimawithana
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Hilary S Ireland
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Marine Philippe
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Mark W Wohlers
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - Tony K McGhie
- Food Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Palmerston North, New Zealand
| | - Mirco Montefiori
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
| | - John E Lunn
- System Regulation, Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Andrew C Allan
- New Cultivar Innovation, The New Zealand Institute for Plant and Food Research Limited (PFR), Auckland, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| | - Annette C Richardson
- Sustainable Production, The New Zealand Institute for Plant and Food Research Limited (PFR), Kerikeri, New Zealand
| |
Collapse
|
187
|
Shen S, Liang XG, Zhang L, Zhao X, Liu YP, Lin S, Gao Z, Wang P, Wang ZM, Zhou SL. Intervening in sibling competition for assimilates by controlled pollination prevents seed abortion under postpollination drought in maize. PLANT, CELL & ENVIRONMENT 2020; 43:903-919. [PMID: 31851373 DOI: 10.1111/pce.13704] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 12/07/2019] [Indexed: 06/10/2023]
Abstract
During maize production, drought throughout the flowering stage usually induces seed abortion and yield losses. The influence of postpollination drought stress on seed abortion and its underlying mechanisms are not well characterized. By intervening in the competition for assimilates between kernel siblings under different degrees of postpollination drought stresses accompanied by synchronous pollination (SP) and incomplete pollination (ICP) approaches, the mechanisms of postpollination abortion were investigated at physiological and molecular levels. Upon SP treatment, up to 15% of the fertilized apical kernels were aborted in the drought-exacerbated competition for assimilates. The aborted kernels exhibited weak sucrose hydrolysis and starch synthesis but promoted the synthesis of trehalose-6-phosphate and ethylene. In ICP where basal pollination was prevented, apical kernel growth was restored with reinstated sucrose metabolism and starch synthesis and promoted sucrose and hexose levels under drought stress. In addition, the equilibrium between ethylene and polyamine in response to the drought and pollination treatments was associated with the abortion process. We conclude that competition for assimilates drives postpollination kernel abortion, whereas differences in sugar metabolism and the equilibrium between ethylene and polyamines may be relevant to the "live or die" choice of kernel siblings during this competition.
Collapse
Affiliation(s)
- Si Shen
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Xiao-Gui Liang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Li Zhang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Xue Zhao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Yun-Peng Liu
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- School of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Shan Lin
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Zhen Gao
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Zhi-Min Wang
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| | - Shun-Li Zhou
- College of Agronomy & Biotechnology, China Agricultural University, Beijing, China
- Scientific Observing and Experimental Station of Wuqiao for Crop Water Use Efficiency, Ministry of Agriculture and Rural Affairs, Wuqiao, China
- Innovation Center of Agricultural Technology for Lowland Plain of Hebei, Wuqiao, China
| |
Collapse
|
188
|
Schemberger MO, Stroka MA, Reis L, de Souza Los KK, de Araujo GAT, Sfeir MZT, Galvão CW, Etto RM, Baptistão ARG, Ayub RA. Transcriptome profiling of non-climacteric 'yellow' melon during ripening: insights on sugar metabolism. BMC Genomics 2020; 21:262. [PMID: 32228445 PMCID: PMC7106763 DOI: 10.1186/s12864-020-6667-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The non-climacteric 'Yellow' melon (Cucumis melo, inodorus group) is an economically important crop and its quality is mainly determined by the sugar content. Thus, knowledge of sugar metabolism and its related pathways can contribute to the development of new field management and post-harvest practices, making it possible to deliver better quality fruits to consumers. RESULTS The RNA-seq associated with RT-qPCR analyses of four maturation stages were performed to identify important enzymes and pathways that are involved in the ripening profile of non-climacteric 'Yellow' melon fruit focusing on sugar metabolism. We identified 895 genes 10 days after pollination (DAP)-biased and 909 genes 40 DAP-biased. The KEGG pathway enrichment analysis of these differentially expressed (DE) genes revealed that 'hormone signal transduction', 'carbon metabolism', 'sucrose metabolism', 'protein processing in endoplasmic reticulum' and 'spliceosome' were the most differentially regulated processes occurring during melon development. In the sucrose metabolism, five DE genes are up-regulated and 12 are down-regulated during fruit ripening. CONCLUSIONS The results demonstrated important enzymes in the sugar pathway that are responsible for the sucrose content and maturation profile in non-climacteric 'Yellow' melon. New DE genes were first detected for melon in this study such as invertase inhibitor LIKE 3 (CmINH3), trehalose phosphate phosphatase (CmTPP1) and trehalose phosphate synthases (CmTPS5, CmTPS7, CmTPS9). Furthermore, the results of the protein-protein network interaction demonstrated general characteristics of the transcriptome of young and full-ripe melon and provide new perspectives for the understanding of ripening.
Collapse
Affiliation(s)
- Michelle Orane Schemberger
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Marília Aparecida Stroka
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Letícia Reis
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Kamila Karoline de Souza Los
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Gillize Aparecida Telles de Araujo
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Michelle Zibetti Tadra Sfeir
- Departamento de Bioquímica, Centro Politécnico, Universidade Federal do Paraná, Jd. Das Américas, Caixa-Postal 19071, Curitiba, Paraná, 81531-990, Brazil
| | - Carolina Weigert Galvão
- Laboratório de Biologia Molecular Microbiana, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Rafael Mazer Etto
- Laboratório de Biologia Molecular Microbiana, Departamento de Biologia Estrutural, Molecular e Genética, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Amanda Regina Godoy Baptistão
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil
| | - Ricardo Antonio Ayub
- Laboratório de Biotecnologia Aplicada a Fruticultura, Departamento de Fitotecnia e Fitossanidade, Universidade Estadual de Ponta Grossa, Av. Carlos Cavalcanti, 4748, Ponta Grossa, Paraná, 84030-900, Brazil.
| |
Collapse
|
189
|
Wu ZG, Jiang W, Tao ZM, Pan XJ, Yu WH, Huang HL. Morphological and stage-specific transcriptome analyses reveal distinct regulatory programs underlying yam (Dioscorea alata L.) bulbil growth. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1899-1914. [PMID: 31832647 PMCID: PMC7242083 DOI: 10.1093/jxb/erz552] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Accepted: 12/12/2019] [Indexed: 06/09/2023]
Abstract
In yam (Dioscorea spp) species, bulbils at leaf axils are the most striking species-specific axillary structure and exhibit important ecological niches. Genetic regulation underlying bulbil growth remains largely unclear so far. Here, we characterize yam (Dioscorea alata L.) bulbil development using histological analysis, and perform full transcriptional profiling on key developmental stages together with phytohormone analyses. Using the stage-specific scoring algorithm, we have identified 3451 stage-specifically expressed genes that exhibit a tight link between major transcriptional changes and stages. Co-expressed gene clusters revealed an obvious over-representation of genes associated with cell division and expansion at the initiation stage of bulbils (T1). Transcriptional changes of hormone-related genes highly coincided with hormone levels, indicating that bulbil initiation and growth are coordinately controlled by multiple phytohormones. In particular, localized auxin is transiently required to trigger bulbil initiation, and be further depleted or exported from bulbils to promote growth by up-regulation of genes involved in auxinconjugation and efflux. The sharp increase in supply of sucrose and an enhanced trehalose-6-phophate pathway at T1 were observed, suggesting that sucrose probably functions as a key signal and promotes bulbil initiation. Analysis of the expression of transcription factors (TFs) predicated 149 TFs as stage-specifically expressed; several T1-specific TFs (from Aux/IAA, E2F, MYB, and bHLH families) have been shown to play key roles in triggering bulbil formation. Together, our work provides a crucial angle for in-depth understanding of the molecular programs underlying yam's unique bulbil development processes. Stage-specific gene sets can be queried to obtain key candidates regulating bulbil growth, serving as valuable resources for further functional research.
Collapse
Affiliation(s)
- Zhi-Gang Wu
- Key Laboratory for Plant Genetic Improvement, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Wu Jiang
- Key Laboratory for Plant Genetic Improvement, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Zheng-Ming Tao
- Key Laboratory for Plant Genetic Improvement, Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, China
| | - Xiao-Jun Pan
- School of Pharmacy, Wenzhou Medical University, Wenzhou, China
| | - Wen-Hui Yu
- Quzhou Academy of Agricultural Sciences, Quzhou, China
| | - Hui-Lian Huang
- Key Laboratory of Modern Preparation of Traditional Chinese Medicine, Jiangxi University of Traditional Chinese Medicine, Nanchang, China
| |
Collapse
|
190
|
Ryu AJ, Kang NK, Jeon S, Hur DH, Lee EM, Lee DY, Jeong BR, Chang YK, Jeong KJ. Development and characterization of a Nannochloropsis mutant with simultaneously enhanced growth and lipid production. BIOTECHNOLOGY FOR BIOFUELS 2020; 13:38. [PMID: 32158502 PMCID: PMC7057510 DOI: 10.1186/s13068-020-01681-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 02/13/2020] [Indexed: 05/24/2023]
Abstract
BACKGROUND The necessity to develop high lipid-producing microalgae is emphasized for the commercialization of microalgal biomass, which is environmentally friendly and sustainable. Nannochloropsis are one of the best industrial microalgae and have been widely studied for their lipids, including high-value polyunsaturated fatty acids (PUFAs). Many reports on the genetic and biological engineering of Nannochloropsis to improve their growth and lipid contents have been published. RESULTS We performed insertional mutagenesis in Nannochloropsis salina, and screened mutants with high lipid contents using fluorescence-activated cell sorting (FACS). We isolated a mutant, Mut68, which showed improved growth and a concomitant increase in lipid contents. Mut68 exhibited 53% faster growth rate and 34% higher fatty acid methyl ester (FAME) contents after incubation for 8 days, resulting in a 75% increase in FAME productivity compared to that in the wild type (WT). By sequencing the whole genome, we identified the disrupted gene in Mut68 that encoded trehalose-6-phosphate (T6P) synthase (TPS). TPS is composed of two domains: TPS domain and T6P phosphatase (TPP) domain, which catalyze the initial formation of T6P and dephosphorylation to trehalose, respectively. Mut68 was disrupted at the TPP domain in the C-terminal half, which was confirmed by metabolic analyses revealing a great reduction in the trehalose content in Mut68. Consistent with the unaffected N-terminal TPS domain, Mut68 showed moderate increase in T6P that is known for regulation of sugar metabolism, growth, and lipid biosynthesis. Interestingly, the metabolic analyses also revealed a significant increase in stress-related amino acids, including proline and glutamine, which may further contribute to the Mut68 phenotypes. CONCLUSION We have successfully isolated an insertional mutant showing improved growth and lipid production. Moreover, we identified the disrupted gene encoding TPS. Consistent with the disrupted TPP domain, metabolic analyses revealed a moderate increase in T6P and greatly reduced trehalose. Herein, we provide an excellent proof of concept that the selection of insertional mutations via FACS can be employed for the isolation of mutants with improved growth and lipid production. In addition, trehalose and genes encoding TPS will provide novel targets for chemical and genetic engineering, in other microalgae and organisms as well as Nannochloropsis.
Collapse
Affiliation(s)
- Ae Jin Ryu
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Nam Kyu Kang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: Carl. R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL USA
| | - Seungjib Jeon
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Dong Hoon Hur
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Eun Mi Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Do Yup Lee
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 08826 Republic of Korea
| | - Byeong-ryool Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Present Address: School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919 Korea
- Present Address: Single-Cell Center, Qingdao Institute of BioEnergy and Bioprocess Technology (QIBEBT), Qingdao, 266101 Shandong China
| | - Yong Keun Chang
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Advanced Biomass R&D Center (ABC), KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| | - Ki Jun Jeong
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
- Institute for the BioCentury, KAIST, 291 Daehak-ro, Yuseong-gu, Daejeon, 34141 Republic of Korea
| |
Collapse
|
191
|
O'Leary BM, Oh GGK, Lee CP, Millar AH. Metabolite Regulatory Interactions Control Plant Respiratory Metabolism via Target of Rapamycin (TOR) Kinase Activation. THE PLANT CELL 2020; 32:666-682. [PMID: 31888967 PMCID: PMC7054028 DOI: 10.1105/tpc.19.00157] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Accepted: 12/23/2019] [Indexed: 05/03/2023]
Abstract
Respiration rate measurements provide an important readout of energy expenditure and mitochondrial activity in plant cells during the night. As plants inhabit a changing environment, regulatory mechanisms must ensure that respiratory metabolism rapidly and effectively adjusts to the metabolic and environmental conditions of the cell. Using a high-throughput approach, we have directly identified specific metabolites that exert transcriptional, translational, and posttranslational control over the nighttime O2 consumption rate (RN) in mature leaves of Arabidopsis (Arabidopsis thaliana). Multi-hour RN measurements following leaf disc exposure to a wide array of primary carbon metabolites (carbohydrates, amino acids, and organic acids) identified phosphoenolpyruvate (PEP), Pro, and Ala as the most potent stimulators of plant leaf RN Using metabolite combinations, we discovered metabolite-metabolite regulatory interactions controlling RN Many amino acids, as well as Glc analogs, were found to potently inhibit the RN stimulation by Pro and Ala but not PEP. The inhibitory effects of amino acids on Pro- and Ala-stimulated RN were mitigated by inhibition of the Target of Rapamycin (TOR) kinase signaling pathway. Supporting the involvement of TOR, these inhibitory amino acids were also shown to be activators of TOR kinase. This work provides direct evidence that the TOR signaling pathway in plants responds to amino acid levels by eliciting regulatory effects on respiratory energy metabolism at night, uniting a hallmark mechanism of TOR regulation across eukaryotes.
Collapse
Affiliation(s)
- Brendan M O'Leary
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - Glenda Guek Khim Oh
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - Chun Pong Lee
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| | - A Harvey Millar
- Australian Research Council Centre of Excellence in Plant Energy Biology, School of Molecular Sciences, University of Western Australia, Perth, Western Australia, Australia 6009
| |
Collapse
|
192
|
Tcherkez G, Carroll A, Abadie C, Mainguet S, Davanture M, Zivy M. Protein synthesis increases with photosynthesis via the stimulation of translation initiation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110352. [PMID: 31928674 DOI: 10.1016/j.plantsci.2019.110352] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/13/2019] [Accepted: 11/21/2019] [Indexed: 05/09/2023]
Abstract
Leaf protein synthesis is an essential process at the heart of plant nitrogen (N) homeostasis and turnover that preferentially takes place in the light, that is, when N and CO2 fixation occur. The carbon allocation to protein synthesis in illuminated leaves generally accounts for ca. 1 % of net photosynthesis. It is likely that protein synthesis activity varies with photosynthetic conditions (CO2/O2 atmosphere composition) since changes in photorespiration and carbon provision should in principle impact on amino acid supply as well as metabolic regulation via leaf sugar content. However, possible changes in protein synthesis and translation activity when gaseous conditions vary are virtually unknown. Here, we address this question using metabolomics, isotopic techniques, phosphoproteomics and polysome quantitation, under different photosynthetic conditions that were varied with atmospheric CO2 and O2 mole fraction, using illuminated Arabidopsis rosettes under controlled gas exchange conditions. We show that carbon allocation to proteins is within 1-2.5 % of net photosynthesis, increases with photosynthesis rate and is unrelated to total amino acid content. In addition, photosynthesis correlates to polysome abundance and phosphorylation of ribosomal proteins and translation initiation factors. Our results demonstrate that translation activity follows photosynthetic activity, showing the considerable impact of metabolism (carboxylation-oxygenation balance) on protein synthesis.
Collapse
Affiliation(s)
- Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601, Canberra, ACT, Australia(1); Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2).
| | - Adam Carroll
- Joint Mass Spectrometry Facility, Research School of Chemistry, Australian National University, 2601, Canberra, ACT, Australia
| | - Cyril Abadie
- Institut de Recherche en Horticulture et Semences, INRA, Université d'Angers, 42 rue Georges Morel, 49070, Beaucouzé, France(2)
| | - Samuel Mainguet
- Institute of Plant Sciences of Saclay, INRA, University Paris-Sud, CNRS, Université Paris-Saclay, 91190, Gif-sur-Yvette, France
| | - Marlène Davanture
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| | - Michel Zivy
- Plateforme d'Analyse de Protéomique Paris Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, 91190, Gif-sur-Yvette, France
| |
Collapse
|
193
|
Fernie AR, Bachem CWB, Helariutta Y, Neuhaus HE, Prat S, Ruan YL, Stitt M, Sweetlove LJ, Tegeder M, Wahl V, Sonnewald S, Sonnewald U. Synchronization of developmental, molecular and metabolic aspects of source-sink interactions. NATURE PLANTS 2020; 6:55-66. [PMID: 32042154 DOI: 10.1038/s41477-020-0590-x] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 12/28/2019] [Indexed: 05/02/2023]
Abstract
Plants have evolved a multitude of strategies to adjust their growth according to external and internal signals. Interconnected metabolic and phytohormonal signalling networks allow adaption to changing environmental and developmental conditions and ensure the survival of species in fluctuating environments. In agricultural ecosystems, many of these adaptive responses are not required or may even limit crop yield, as they prevent plants from realizing their fullest potential. By lifting source and sink activities to their maximum, massive yield increases can be foreseen, potentially closing the future yield gap resulting from an increasing world population and the transition to a carbon-neutral economy. To do so, a better understanding of the interplay between metabolic and developmental processes is required. In the past, these processes have been tackled independently from each other, but coordinated efforts are required to understand the fine mechanics of source-sink relations and thus optimize crop yield. Here, we describe approaches to design high-yielding crop plants utilizing strategies derived from current metabolic concepts and our understanding of the molecular processes determining sink development.
Collapse
Affiliation(s)
- Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany.
| | | | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - H Ekkehard Neuhaus
- University of Kaiserslautern Pflanzenphysiologie, Kaiserslautern, Germany
| | - Salomé Prat
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Yong-Ling Ruan
- School of Environmental & Life Sciences, University of Newcastle, Callaghan, New South Wales, Australia
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Lee J Sweetlove
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, USA
| | - Vanessa Wahl
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sophia Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| | - Uwe Sonnewald
- Division of Biochemistry, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany.
| |
Collapse
|
194
|
Abdelrahman M, Burritt DJ, Gupta A, Tsujimoto H, Tran LSP. Heat stress effects on source-sink relationships and metabolome dynamics in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:543-554. [PMID: 31232445 DOI: 10.1093/jxb/erz296] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 06/11/2019] [Indexed: 05/21/2023]
Abstract
Crops such as wheat (Triticum spp.) are predicted to face more frequent exposures to heat stress as a result of climate change. Increasing the yield and sustainability of yield under such stressful conditions has long been a major target of wheat breeding, and this goal is becoming increasingly urgent as the global population increases. Exposure of wheat plants in their reproductive or grain-filling stage to high temperature affects the duration and rate of grain filling, and hence has a negative impact on wheat productivity. Therefore, understanding the plasticity of the response to heat stress that exists between wheat genotypes, especially in source-sink relationships at the reproductive and grain-filling stages, is critical for the selection of germplasm that can maintain high yields under heat stress. A broad understanding of metabolic dynamics and the relationships between metabolism and heat tolerance is required in order to achieve this goal. Here, we review the current literature concerning the effects of heat stress on sink-source relationships in a wide range of wheat genotypes, and highlight the current metabolomic approaches that are used to investigate high temperature responses in wheat.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Arid Land Research Center, Tottori University, Tottori, Japan
- Botany Department, Faculty of Science, Aswan University, Aswan, Egypt
| | - David J Burritt
- Department of Botany, University of Otago, Dunedin, New Zealand
| | - Aarti Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | | | - Lam-Son Phan Tran
- Institute of Research and Development, Duy Tan University, Quang Trung, Da Nang, Vietnam
- Stress Adaptation Research Unit, RIKEN Center for Sustainable Resource Science, Tsurumi Yokohama, Japan
| |
Collapse
|
195
|
Tai HH, Lagüe M, Thomson S, Aurousseau F, Neilson J, Murphy A, Bizimungu B, Davidson C, Deveaux V, Bègue Y, Wang HY, Xiong X, Jacobs JME. Tuber transcriptome profiling of eight potato cultivars with different cold-induced sweetening responses to cold storage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:163-176. [PMID: 31756603 DOI: 10.1016/j.plaphy.2019.11.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/01/2019] [Accepted: 11/02/2019] [Indexed: 05/19/2023]
Abstract
Tubers are vegetative reproduction organs formed from underground extensions of the plant stem. Potato tubers are harvested and stored for months. Storage under cold temperatures of 2-4 °C is advantageous for supressing sprouting and diseases. However, development of reducing sugars can occur with cold storage through a process called cold-induced sweetening (CIS). CIS is undesirable as it leads to darkened color with fry processing. The purpose of the current study was to find differences in biological responses in eight cultivars with variation in CIS resistance. Transcriptome sequencing was done on tubers before and after cold storage and three approaches were taken for gene expression analysis: 1. Gene expression correlated with end-point glucose after cold storage, 2. Gene expression correlated with increased glucose after cold storage (after-before), and 3. Differential gene expression before and after cold storage. Cultivars with high CIS resistance (low glucose after cold) were found to increase expression of an invertase inhibitor gene and genes involved in DNA replication and repair after cold storage. The cultivars with low CIS resistance (high glucose after cold) showed increased expression of genes involved in abiotic stress response, gene expression, protein turnover and the mitochondria. There was a small number of genes with similar expression patterns for all cultivars including genes involved in cell wall strengthening and phospholipases. It is proposed that the pattern of gene expression is related to chilling-induced DNA damage repair and cold acclimation and that genetic variation in these processes are related to CIS.
Collapse
Affiliation(s)
- Helen H Tai
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada.
| | - Martin Lagüe
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Susan Thomson
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| | - Frédérique Aurousseau
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Jonathan Neilson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Agnes Murphy
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Benoit Bizimungu
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Charlotte Davidson
- Agriculture and Agri-Food Canada Fredericton Research and Development Centre, P. O. Box 20280, 850 Lincoln Rd, Fredericton, N. B, E3B 4Z7, Canada
| | - Virginie Deveaux
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Yves Bègue
- Sipre-Responsable Scientifique Création Variétale, Station de Recherche du Comité Nord, 76110, Bretteville du Grand Caux, France
| | - Hui Ying Wang
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Xingyao Xiong
- College of Horticulture and Landscape, Hunan Agriculture Univ, Hunan, Changsha, 410128, China
| | - Jeanne M E Jacobs
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 4704, Christchurch, New Zealand
| |
Collapse
|
196
|
Lu MZ, Snyder R, Grant J, Tegeder M. Manipulation of sucrose phloem and embryo loading affects pea leaf metabolism, carbon and nitrogen partitioning to sinks as well as seed storage pools. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:217-236. [PMID: 31520495 DOI: 10.1111/tpj.14533] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/11/2019] [Accepted: 09/09/2019] [Indexed: 05/03/2023]
Abstract
Seed development largely depends on the long-distance transport of sucrose from photosynthetically active source leaves to seed sinks. This source-to-sink carbon allocation occurs in the phloem and requires the loading of sucrose into the leaf phloem and, at the sink end, its import into the growing embryo. Both tasks are achieved through the function of SUT sucrose transporters. In this study, we used vegetable peas (Pisum sativum L.), harvested for human consumption as immature seeds, as our model crop and simultaneously overexpressed the endogenous SUT1 transporter in the leaf phloem and in cotyledon epidermal cells where import into the embryo occurs. Using this 'Push-and-Pull' approach, the transgenic SUT1 plants displayed increased sucrose phloem loading and carbon movement from source to sink causing higher sucrose levels in developing pea seeds. The enhanced sucrose partitioning further led to improved photosynthesis rates, increased leaf nitrogen assimilation, and enhanced source-to-sink transport of amino acids. Embryo loading with amino acids was also increased in SUT1-overexpressors resulting in higher protein levels in immature seeds. Further, transgenic plants grown until desiccation produced more seed protein and starch, as well as higher seed yields than the wild-type plants. Together, the results demonstrate that the SUT1-overexpressing plants with enhanced sucrose allocation to sinks adjust leaf carbon and nitrogen metabolism, and amino acid partitioning in order to accommodate the increased assimilate demand of growing seeds. We further provide evidence that the combined Push-and-Pull approach for enhancing carbon transport is a successful strategy for improving seed yields and nutritional quality in legumes.
Collapse
Affiliation(s)
- Ming-Zhu Lu
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Rachel Snyder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| | - Jan Grant
- New Zealand Institute for Plant and Food Research Ltd, Christchurch, 8140, New Zealand
| | - Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
197
|
Kroll CK, Brenner WG. Cytokinin Signaling Downstream of the His-Asp Phosphorelay Network: Cytokinin-Regulated Genes and Their Functions. FRONTIERS IN PLANT SCIENCE 2020; 11:604489. [PMID: 33329676 PMCID: PMC7718014 DOI: 10.3389/fpls.2020.604489] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/26/2020] [Indexed: 05/17/2023]
Abstract
The plant hormone cytokinin, existing in several molecular forms, is perceived by membrane-localized histidine kinases. The signal is transduced to transcription factors of the type-B response regulator family localized in the nucleus by a multi-step histidine-aspartate phosphorelay network employing histidine phosphotransmitters as shuttle proteins across the nuclear envelope. The type-B response regulators activate a number of primary response genes, some of which trigger in turn further signaling events and the expression of secondary response genes. Most genes activated in both rounds of transcription were identified with high confidence using different transcriptomic toolkits and meta analyses of multiple individual published datasets. In this review, we attempt to summarize the existing knowledge about the primary and secondary cytokinin response genes in order to try connecting gene expression with the multitude of effects that cytokinin exerts within the plant body and throughout the lifespan of a plant.
Collapse
|
198
|
Bertheloot J, Barbier F, Boudon F, Perez-Garcia MD, Péron T, Citerne S, Dun E, Beveridge C, Godin C, Sakr S. Sugar availability suppresses the auxin-induced strigolactone pathway to promote bud outgrowth. THE NEW PHYTOLOGIST 2020; 225:866-879. [PMID: 31529696 DOI: 10.1111/nph.16201] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/09/2019] [Indexed: 05/21/2023]
Abstract
Apical dominance occurs when the growing shoot tip inhibits the outgrowth of axillary buds. Apically-derived auxin in the nodal stem indirectly inhibits bud outgrowth via cytokinins and strigolactones. Recently, sugar deprivation was found to contribute to this phenomenon. Using rose and pea, we investigated whether sugar availability interacts with auxin in bud outgrowth control, and the role of cytokinins and strigolactones, in vitro and in planta. We show that sucrose antagonises auxin's effect on bud outgrowth, in a dose-dependent and coupled manner. Sucrose also suppresses strigolactone inhibition of outgrowth and the rms3 strigolactone-perception mutant is less affected by reducing sucrose supply. However, sucrose does not interfere with the regulation of cytokinin levels by auxin and stimulates outgrowth even with optimal cytokinin supply. These observations were assembled into a computational model in which sucrose represses bud response to strigolactones, largely independently of cytokinin levels. It quantitatively captures our observed dose-dependent sucrose-hormones effects on bud outgrowth and allows us to express outgrowth response to various combinations of auxin and sucrose levels as a simple quantitative law. This study places sugars in the bud outgrowth regulatory network and paves the way for a better understanding of branching plasticity in response to environmental and genotypic factors.
Collapse
Affiliation(s)
- Jessica Bertheloot
- IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - François Barbier
- IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Frédéric Boudon
- CIRAD, UMR AGAP & Univ. Montpellier, Avenue Agropolis, TA A-108/01, F-34398, Montpellier, France
| | | | - Thomas Péron
- IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin Centre de Versailles-Grignon (IJPB), INRA, Agro-ParisTech, CNRS, Versailles, France
| | - Elizabeth Dun
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christine Beveridge
- School of Biological Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Christophe Godin
- Laboratoire Reproduction et Développement des Plantes, University of Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, Inria, F-69342, Lyon, France
| | - Soulaiman Sakr
- IRHS, INRA, Agrocampus-Ouest, Université d'Angers, SFR 4207 QuaSaV, 49071, Beaucouzé, France
| |
Collapse
|
199
|
Zhao L, Xie L, Huang J, Su Y, Zhang C. Proper Glyphosate Application at Post-anthesis Lowers Grain Moisture Content at Harvest and Reallocates Non-structural Carbohydrates in Maize. FRONTIERS IN PLANT SCIENCE 2020; 11:580883. [PMID: 33362811 PMCID: PMC7758537 DOI: 10.3389/fpls.2020.580883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 11/23/2020] [Indexed: 05/03/2023]
Abstract
Glyphosate (GP)-based herbicides have been widely applied to crops for weed control and pre-harvest desiccation. The objective of this research was to evaluate the effects of pre-harvest GP application on maize or how it physiologically alters this crop. Here, we applied four GP treatment (Control, GP150, GP200, and GP250) on maize lines of Z58 and PH6WC belonging to different maturity groups at grain-filling stages form DAP30 to DAP45. GP application significantly decreased the grain moisture content at harvest by 22-35% for Z58 and by 15-41% for PH6WC. However, the responses of grain weight to glyphosate vary with inbred lines and application time. A high concentration of glyphosate (GP250) reduced the grain weight of Z58 and low concentrations (GP150 and GP200) did not affect, while the grain weight of PH6WC significantly decreased under glyphosate treatment. In summary, our results revealed that timely and appropriate GP application lowers grain moisture content without causing seed yield and quality loss. GP application adversely affected photosynthesis by promoting maturation and leaf senescence. Meanwhile, it also enhanced non-structural carbohydrate (soluble sugars and starch) remobilization from the vegetative organs to the grains. Hence, GP treatment coordinates plant senescence and assimilate remobilization. RNA sequencing revealed that glyphosate regulated the transcript levels of sugar signaling-related genes and induced assimilate repartitioning in grains. This work indicates the practical significance of GP application for maize seed production and harvest, which highlights the contributions of source-sink communication to maize yield in response to external stress or pre-harvest desiccant application.
Collapse
|
200
|
Li X, Sanagi M, Lu Y, Nomura Y, Stolze SC, Yasuda S, Saijo Y, Schulze WX, Feil R, Stitt M, Lunn JE, Nakagami H, Sato T, Yamaguchi J. Protein Phosphorylation Dynamics Under Carbon/Nitrogen-Nutrient Stress and Identification of a Cell Death-Related Receptor-Like Kinase in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 11:377. [PMID: 32308664 PMCID: PMC7145971 DOI: 10.3389/fpls.2020.00377] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/16/2020] [Indexed: 05/03/2023]
Abstract
Nutrient availability, in particular the availability of sugar [carbon (C)] and nitrogen (N), is important for the regulation of plant metabolism and development. In addition to independent utilization of C and N nutrients, plants sense and respond to the balance of C and N nutrients (C/N-nutrient) available to them. High C/low N-nutrient stress has been shown to arrest early post-germinative growth while promoting progression to senescence in Arabidopsis. Although several signaling components of the C/N-nutrient response have been identified, the inclusive molecular basis of plant C/N-nutrient response remains unclear. This proteome analysis evaluated phosphorylation dynamics in response to high C/low N-nutrient stress. Phosphoproteomics under conditions of C/N-nutrient stress showed a global change in the phosphorylation status of proteins, including plasma membrane H+-ATPase, carbon and nitrogen metabolic enzymes and signaling proteins such as protein kinases and transcription factors. Further analyses suggested that SNF1-related protein kinase 1 (SnRK1) is involved in primary C/N-nutrient signal mediation via the transcriptional regulation of C/N-regulatory kinases. We also identified a leucine-rich repeat receptor-like kinase with extracellular malectin-like domain, named as LMK1, which was shown to possess cell death induction activity in plant leaves. These results provide important insight into the C/N-nutrient signaling pathways connecting nutrition stress to various cellular and physiological processes in plants.
Collapse
Affiliation(s)
- Xingwen Li
- Faculty of Science and Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | - Miho Sanagi
- Faculty of Science and Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | - Yu Lu
- Faculty of Science and Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| | - Yuko Nomura
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | | | - Shigetaka Yasuda
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Yusuke Saijo
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Japan
| | - Waltraud X. Schulze
- Department of Plant Systems Biology, University of Hohenheim, Stuttgart, Germany
| | - Regina Feil
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - John E. Lunn
- Max Planck Institute of Molecular Plant Physiology, Golm, Germany
| | - Hirofumi Nakagami
- Plant Proteomics Research Unit, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Max Planck Institute for Plant Breeding Research, Cologne, Germany
- *Correspondence: Hirofumi Nakagami,
| | - Takeo Sato
- Faculty of Science and Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
- Takeo Sato,
| | - Junji Yamaguchi
- Faculty of Science and Graduate School of Life Sciences, Hokkaido University, Sapporo, Japan
| |
Collapse
|