151
|
Pathak RK, Baunthiyal M, Shukla R, Pandey D, Taj G, Kumar A. In Silico Identification of Mimicking Molecules as Defense Inducers Triggering Jasmonic Acid Mediated Immunity against Alternaria Blight Disease in Brassica Species. FRONTIERS IN PLANT SCIENCE 2017; 8:609. [PMID: 28487711 PMCID: PMC5403927 DOI: 10.3389/fpls.2017.00609] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Accepted: 04/04/2017] [Indexed: 05/19/2023]
Abstract
Alternaria brassicae and Alternaria brassicicola are two major phytopathogenic fungi which cause Alternaria blight, a recalcitrant disease on Brassica crops throughout the world, which is highly destructive and responsible for significant yield losses. Since no resistant source is available against Alternaria blight, therefore, efforts have been made in the present study to identify defense inducer molecules which can induce jasmonic acid (JA) mediated defense against the disease. It is believed that JA triggered defense response will prevent necrotrophic mode of colonization of Alternaria brassicae fungus. The JA receptor, COI1 is one of the potential targets for triggering JA mediated immunity through interaction with JA signal. In the present study, few mimicking compounds more efficient than naturally occurring JA in terms of interaction with COI1 were identified through virtual screening and molecular dynamics simulation studies. A high quality structural model of COI1 was developed using the protein sequence of Brassica rapa. This was followed by virtual screening of 767 analogs of JA from ZINC database for interaction with COI1. Two analogs viz. ZINC27640214 and ZINC43772052 showed more binding affinity with COI1 as compared to naturally occurring JA. Molecular dynamics simulation of COI1 and COI1-JA complex, as well as best screened interacting structural analogs of JA with COI1 was done for 50 ns to validate the stability of system. It was found that ZINC27640214 possesses efficient, stable, and good cell permeability properties. Based on the obtained results and its physicochemical properties, it is capable of mimicking JA signaling and may be used as defense inducers for triggering JA mediated resistance against Alternaria blight, only after further validation through field trials.
Collapse
Affiliation(s)
- Rajesh K. Pathak
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
- Department of Biotechnology, G. B. Pant Engineering CollegePauri Garhwal, India
| | - Mamta Baunthiyal
- Department of Biotechnology, G. B. Pant Engineering CollegePauri Garhwal, India
| | - Rohit Shukla
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North Eastern Hill UniversityShillong, India
| | - Dinesh Pandey
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
- *Correspondence: Dinesh Pandey, Gohar Taj, Anil Kumar,
| | - Gohar Taj
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
- *Correspondence: Dinesh Pandey, Gohar Taj, Anil Kumar,
| | - Anil Kumar
- Department of Molecular Biology and Genetic Engineering, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and TechnologyPantnagar, India
- *Correspondence: Dinesh Pandey, Gohar Taj, Anil Kumar,
| |
Collapse
|
152
|
Yu T, Li G, Dong S, Liu P, Zhang J, Zhao B. Proteomic analysis of maize grain development using iTRAQ reveals temporal programs of diverse metabolic processes. BMC PLANT BIOLOGY 2016; 16:241. [PMID: 27809771 PMCID: PMC5095984 DOI: 10.1186/s12870-016-0878-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Accepted: 08/18/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND Grain development in maize is an essential process in the plant's life cycle and is vital for use of the plant as a crop for animals and humans. However, little is known regarding the protein regulatory networks that control grain development. Here, isobaric tag for relative and absolute quantification (iTRAQ) technology was used to analyze temporal changes in protein expression during maize grain development. RESULTS Maize grain proteins and changes in protein expression at eight developmental stages from 3 to 50 d after pollination (DAP) were performed using iTRAQ-based proteomics. Overall, 4751 proteins were identified; 2639 of these were quantified and 1235 showed at least 1.5-fold changes in expression levels at different developmental stages and were identified as differentially expressed proteins (DEPs). The DEPs were involved in different cellular and metabolic processes with a preferential distribution to protein synthesis/destination and metabolism categories. A K-means clustering analysis revealed coordinated protein expression associated with different functional categories/subcategories at different development stages. CONCLUSIONS Our results revealed developing maize grain display different proteomic characteristics at distinct stages, such as numerous DEPs for cell growth/division were highly expressed during early stages, whereas those for starch biosynthesis and defense/stress accumulated in middle and late stages, respectively. We also observed coordinated expression of multiple proteins of the antioxidant system, which are essential for the maintenance of reactive oxygen species (ROS) homeostasis during grain development. Particularly, some DEPs, such as zinc metallothionein class II, pyruvate orthophosphate dikinase (PPDK) and 14-3-3 proteins, undergo major changes in expression at specific developmental stages, suggesting their roles in maize grain development. These results provide a valuable resource for analyzing protein function on a global scale and also provide new insights into the potential protein regulatory networks that control grain yield and quality.
Collapse
Affiliation(s)
- Tao Yu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Geng Li
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Shuting Dong
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Peng Liu
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Jiwang Zhang
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| | - Bin Zhao
- State Key Laboratory of Crop Biology and College of Agronomy, Shandong Agricultural University, Taian, 271018 Shandong People’s Republic of China
| |
Collapse
|
153
|
Zhou SM, Wang SH, Lin C, Song YZ, Zheng XX, Song FM, Zhu CX. Molecular cloning and functional characterisation of the tomato E3 ubiquitin ligase SlBAH1 gene. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:1091-1101. [PMID: 32480529 DOI: 10.1071/fp16003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 07/01/2016] [Indexed: 06/11/2023]
Abstract
Emerging evidence suggests that E3 ligases play critical roles in diverse biological processes, including pathogen resistance in plants. In the present study, an ubiquitin ligase gene (SlBAH1) was cloned from a tomato plant, and the functions of the gene were studied. The SlBAH1 gene contained 1002 nucleotides and encodes a protein with 333 amino acids. The SlBAH1 protein contains a SPX domain and a RING domain. SlBAH1 displayed E3 ubiquitin ligase activity in vitro. SlBAH1 was shown to localise in the nucleus, cytoplasm and plasma membrane by a subcellular localisation assay. The expression of SlBAH1 was induced by various hormones and Botrytis cinerea Pers. treatment. SlBAH1-silencing in plants obtained by virus-induced gene silencing (VIGS) technology enhanced resistance to B. cinerea, and the expression of pathogenesis-related (PR) genes, including PR1, PR2, PR4, PR5, and PR7, was significantly increased. These results indicate that the SlBAH1-dependent activation of defence-related genes played a key role in the enhanced fungal resistance observed in the SlBAH1-silenced plants and may be related to the SA-dependent and JA-dependent signalling pathways.
Collapse
Affiliation(s)
- Shu-Mei Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Sai-Han Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chao Lin
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Yun-Zhi Song
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Xin-Xin Zheng
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Feng-Ming Song
- Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310029, PR China
| | - Chang-Xiang Zhu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Taian, Shandong 271018, PR China
| |
Collapse
|
154
|
Markova DN, Petersen JJ, Qin X, Short DR, Valle MJ, Tovar-Méndez A, McClure BA, Chetelat RT. Mutations in two pollen self-incompatibility factors in geographically marginal populations of Solanum habrochaites impact mating system transitions and reproductive isolation. AMERICAN JOURNAL OF BOTANY 2016; 103:1847-1861. [PMID: 27793860 DOI: 10.3732/ajb.1600208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/29/2016] [Indexed: 05/23/2023]
Abstract
PREMISE OF THE STUDY Self-incompatibility (SI) is a mechanism that prevents inbreeding in many plant species. The mutational breakdown of SI occurs frequently, yet relatively little is known about the evolutionary steps involved in the progressive loss of pistil and pollen SI function. METHODS In Solanaceae, SI is the S-RNase-based gametophytic type. We used SI and SC populations of the wild tomato species Solanum habrochaites to study natural variation for two pollen SI factors: a Cullin1 (CUL1) protein and an S-locus F-box protein (SLF-23). Pollen compatibility was assessed on an allotriploid tester line encoding an S-RNase recognized by SLF-23. Both pollen factors are required for compatibility on this tester line. Complementation tests and gene sequencing were used to identify mutations in CUL1 or SLF-23. KEY RESULTS We detected loss-of-function mutations in CUL1 and/or SLF-23 in SC populations collected near the northern and southern geographic margins of this taxon's natural range. Nonmarginal SC and all SI accessions expressed mostly functional alleles of these pollen factors. Comparison of the CUL1 sequences identified several shared deletion mutations present in both northern and southern margin SC accessions. CONCLUSIONS Loss-of-function mutations in CUL1 and SLF-23 likely became fixed relatively late during SI to SC transitions, after loss of pistil SI function. Mutations in CUL1 establish unilateral incompatibility with SI populations and strengthen reproductive isolation. Point mutations common to northern and southern SC biotypes likely derive from shared ancestral variants found in more central SI populations.
Collapse
Affiliation(s)
- Dragomira N Markova
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Jennifer J Petersen
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Xiaoqiong Qin
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Daniel R Short
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Matthew J Valle
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| | - Alejandro Tovar-Méndez
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211 USA
| | - Bruce A McClure
- Department of Biochemistry, 117 Schweitzer Hall, University of Missouri, Columbia, Missouri 65211 USA
| | - Roger T Chetelat
- C.M. Rick Tomato Genetics Resource Center, Department of Plant Sciences (ms 3), University of California, One Shields Avenue, Davis, California 95616 USA
| |
Collapse
|
155
|
Luo C, Cai XT, Du J, Zhao TL, Wang PF, Zhao PX, Liu R, Xie Q, Cao XF, Xiang CB. PARAQUAT TOLERANCE3 Is an E3 Ligase That Switches off Activated Oxidative Response by Targeting Histone-Modifying PROTEIN METHYLTRANSFERASE4b. PLoS Genet 2016; 12:e1006332. [PMID: 27676073 PMCID: PMC5038976 DOI: 10.1371/journal.pgen.1006332] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Accepted: 08/30/2016] [Indexed: 11/28/2022] Open
Abstract
Oxidative stress is unavoidable for aerobic organisms. When abiotic and biotic stresses are encountered, oxidative damage could occur in cells. To avoid this damage, defense mechanisms must be timely and efficiently modulated. While the response to oxidative stress has been extensively studied in plants, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3) as a major negative regulator of oxidative stress tolerance. PQT3, encoding an E3 ubiquitin ligase, is rapidly down-regulated by oxidative stress. PQT3 has E3 ubiquitin ligase activity in ubiquitination assay. Subsequently, we identified PRMT4b as a PQT3-interacting protein. By histone methylation, PRMT4b upregulates the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. On the other hand, PRMT4b is recognized by PQT3 for targeted degradation via 26S proteasome. Therefore, we have identified PQT3 as an E3 ligase that acts as a negative regulator of activated response to oxidative stress and found that histone modification by PRMT4b at APX1 and GPX1 loci plays an important role in oxidative stress tolerance. Oxidative stress is a major stress in plant cells when biotic and abiotic stresses are imposed. While the response to oxidative stress has been extensively studied, little is known about how the activated response is switched off when oxidative stress is diminished. By studying Arabidopsis mutant paraquat tolerance3, we identified the genetic locus PARAQUAT TOLERANCE3 (PQT3) as a major negative regulator of oxidative tolerance. PQT3 encodes an E3 ubiquitin ligase and is rapidly down-regulated by oxidative stress. Subsequently, we identified PRMT4b as a PQT3-interacting protein. PQT3 was demonstrated to recognize PRMT4b for targeted degradation via 26S proteasome. By histone methylation, PRMT4b may regulate the expression of APX1 and GPX1, encoding two key enzymes against oxidative stress. Therefore, we have identified PQT3 as an E3 ubiquitin ligase that turns off the activated response to oxidative stress. Our study provides new insights into the post-translational regulation of plant oxidative stress response and ROS signaling.
Collapse
Affiliation(s)
- Chao Luo
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Xiao-Teng Cai
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Jin Du
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Tao-Lan Zhao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Peng-Fei Wang
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Ping-Xia Zhao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Rui Liu
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Xiao-Feng Cao
- State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Science, Beijing, China
| | - Cheng-Bin Xiang
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, China
| |
Collapse
|
156
|
Zhao G, Song Y, Wang C, Butt HI, Wang Q, Zhang C, Yang Z, Liu Z, Chen E, Zhang X, Li F. Genome-wide identification and functional analysis of the TIFY gene family in response to drought in cotton. Mol Genet Genomics 2016; 291:2173-2187. [PMID: 27640194 PMCID: PMC5080297 DOI: 10.1007/s00438-016-1248-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Accepted: 09/02/2016] [Indexed: 11/26/2022]
Abstract
Jasmonates control many aspects of plant biological processes. They are important for regulating plant responses to various biotic and abiotic stresses, including drought, which is one of the most serious threats to sustainable agricultural production. However, little is known regarding how jasmonate ZIM-domain (JAZ) proteins mediate jasmonic acid signals to improve stress tolerance in cotton. This represents the first comprehensive comparative study of TIFY transcription factors in both diploid A, D and tetraploid AD cotton species. In this study, we identified 21 TIFY family members in the genome of Gossypium arboretum, 28 members from Gossypium raimondii and 50 TIFY genes in Gossypium hirsutum. The phylogenetic analyses indicated the TIFY gene family could be divided into the following four subfamilies: TIFY, PPD, ZML, and JAZ subfamilies. The cotton TIFY genes have expanded through tandem duplications and segmental duplications compared with other plant species. Gene expression profile revealed temporal and tissue specificities for TIFY genes under simulated drought conditions in Gossypium arboretum. The JAZ subfamily members were the most highly expressed genes, suggesting that they have a vital role in responses to drought stress. Over-expression of GaJAZ5 gene decreased water loss, stomatal openings, and the accumulation of H2O2 in Arabidopsis thaliana. Additionally, the results of drought tolerance assays suggested that this subfamily might be involved in increasing drought tolerance. Our study provides new data regarding the genome-wide analysis of TIFY gene families and their important roles in drought tolerance in cotton species. These data may form the basis of future studies regarding the relationship between drought and jasmonic acid.
Collapse
Affiliation(s)
- Ge Zhao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Yun Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Caixiang Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Hamama Islam Butt
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Qianhua Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Chaojun Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zuoren Yang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Zhao Liu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Eryong Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China
| | - Xueyan Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| | - Fuguang Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, China.
| |
Collapse
|
157
|
The Arabidopsis MIEL1 E3 ligase negatively regulates ABA signalling by promoting protein turnover of MYB96. Nat Commun 2016; 7:12525. [PMID: 27615387 PMCID: PMC5027273 DOI: 10.1038/ncomms12525] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 07/07/2016] [Indexed: 01/31/2023] Open
Abstract
The phytohormone abscisic acid (ABA) regulates plant responses to various environmental challenges. Controlled protein turnover is an important component of ABA signalling. Here we show that the RING-type E3 ligase MYB30-INTERACTING E3 LIGASE 1 (MIEL1) regulates ABA sensitivity by promoting MYB96 turnover in Arabidopsis. Germination of MIEL1-deficient mutant seeds is hypersensitive to ABA, whereas MIEL1-overexpressing transgenic seeds are less sensitive. MIEL1 can interact with MYB96, a regulator of ABA signalling, and stimulate its ubiquitination and degradation. Genetic analysis shows that MYB96 is epistatic to MIEL1 in the control of ABA sensitivity in seeds. While MIEL1 acts primarily via MYB96 in seed germination, MIEL1 regulates protein turnover of both MYB96 and MYB30 in vegetative tissues. We find that ABA regulates the expression of MYB30-responsive genes during pathogen infection and this regulation is partly dependent on MIEL1. These results suggest that MIEL1 may facilitate crosstalk between ABA and biotic stress signalling. The phytohormone abscisic acid controls plant responses to environmental stress, partly by regulating protein turnover. Here the authors propose that abscisic acid regulates seed germination by promoting degradation of the MYB96 transcription factor via the MIEL1 E3 ubiquitin (Ub) ligase.
Collapse
|
158
|
Ghahremani M, Stigter KA, Plaxton W. Extraction and Characterization of Extracellular Proteins and Their Post-Translational Modifications from Arabidopsis thaliana Suspension Cell Cultures and Seedlings: A Critical Review. Proteomes 2016; 4:E25. [PMID: 28248235 PMCID: PMC5217358 DOI: 10.3390/proteomes4030025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 08/25/2016] [Accepted: 08/26/2016] [Indexed: 01/10/2023] Open
Abstract
Proteins secreted by plant cells into the extracellular space, consisting of the cell wall, apoplastic fluid, and rhizosphere, play crucial roles during development, nutrient acquisition, and stress acclimation. However, isolating the full range of secreted proteins has proven difficult, and new strategies are constantly evolving to increase the number of proteins that can be detected and identified. In addition, the dynamic nature of the extracellular proteome presents the further challenge of identifying and characterizing the post-translational modifications (PTMs) of secreted proteins, particularly glycosylation and phosphorylation. Such PTMs are common and important regulatory modifications of proteins, playing a key role in many biological processes. This review explores the most recent methods in isolating and characterizing the plant extracellular proteome with a focus on the model plant Arabidopsis thaliana, highlighting the current challenges yet to be overcome. Moreover, the crucial role of protein PTMs in cell wall signalling, development, and plant responses to biotic and abiotic stress is discussed.
Collapse
Affiliation(s)
- Mina Ghahremani
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - Kyla A Stigter
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
| | - William Plaxton
- Department of Biology, Queen's University, Kingston, ON K7L 3N6, Canada.
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
159
|
Tang N, Ma S, Zong W, Yang N, Lv Y, Yan C, Guo Z, Li J, Li X, Xiang Y, Song H, Xiao J, Li X, Xiong L. MODD Mediates Deactivation and Degradation of OsbZIP46 to Negatively Regulate ABA Signaling and Drought Resistance in Rice. THE PLANT CELL 2016; 28:2161-2177. [PMID: 27468891 PMCID: PMC5059794 DOI: 10.1105/tpc.16.00171] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 07/06/2016] [Accepted: 07/22/2016] [Indexed: 05/18/2023]
Abstract
Plants have evolved complicated protective mechanisms to survive adverse conditions. Previously, we reported that the transcription factor OsbZIP46 regulates abscisic acid (ABA) signaling-mediated drought tolerance in rice (Oryza sativa) by modulating stress-related genes. An intrinsic D domain represses OsbZIP46 activity, but the detailed mechanism for the repression of OsbZIP46 activation remains unknown. Here, we report an OsbZIP46-interacting protein, MODD (Mediator of OsbZIP46 deactivation and degradation), which is homologous to the Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE5 binding protein AFP. MODD was induced by ABA and drought stress, but the induction was much slower than that of OsbZIP46 In contrast to OsbZIP46, MODD negatively regulates ABA signaling and drought tolerance, and inhibits the expression of OsbZIP46 target genes. We found that MODD negatively regulates OsbZIP46 activity and stability. MODD represses OsbZIP46 activity via interaction with the OsTPR3-HDA702 corepressor complex and downregulation of the histone acetylation level at OsbZIP46 target genes. MODD promotes OsbZIP46 degradation via interaction with the U-box type ubiquitin E3 ligase OsPUB70. Interestingly, the D domain is required for both deactivation and degradation of OsbZIP46 via its interaction with MODD. These findings show that plants fine-tune their drought responses by elaborate regulatory mechanisms, including the coordination of activity and stability of key transcription factors.
Collapse
Affiliation(s)
- Ning Tang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Siqi Ma
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Zong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Ning Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yan Lv
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Chun Yan
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Zilong Guo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xu Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Yong Xiang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Huazhi Song
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Jinghua Xiao
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Xianghua Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| | - Lizhong Xiong
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
160
|
He Y, Wang C, Higgins JD, Yu J, Zong J, Lu P, Zhang D, Liang W. MEIOTIC F-BOX Is Essential for Male Meiotic DNA Double-Strand Break Repair in Rice. THE PLANT CELL 2016; 28:1879-93. [PMID: 27436711 PMCID: PMC5006700 DOI: 10.1105/tpc.16.00108] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/31/2016] [Accepted: 07/18/2016] [Indexed: 05/21/2023]
Abstract
F-box proteins constitute a large superfamily in plants and play important roles in controlling many biological processes, but the roles of F-box proteins in male meiosis in plants remain unclear. Here, we identify the rice (Oryza sativa) F-box gene MEIOTIC F-BOX (MOF), which is essential for male meiotic progression. MOF belongs to the FBX subfamily and is predominantly active during leptotene to pachytene of prophase I. mof meiocytes display disrupted telomere bouquet formation, impaired pairing and synapsis of homologous chromosomes, and arrested meiocytes at late prophase I, followed by apoptosis. Although normal, programmed double-stranded DNA breaks (DSBs) form in mof mutants, foci of the phosphorylated histone variant γH2AX, a marker for DSBs, persist in the mutant, indicating that many of the DSBs remained unrepaired. The recruitment of Completion of meiosis I (COM1) and Radiation sensitive51C (RAD51C) to DSBs is severely compromised in mutant meiocytes, indicating that MOF is crucial for DSB end-processing and repair. Further analyses showed that MOF could physically interact with the rice SKP1-like Protein1 (OSK1), indicating that MOF functions as a component of the SCF E3 ligase to regulate meiotic progression in rice. Thus, this study reveals the essential role of an F-box protein in plant meiosis and provides helpful information for elucidating the roles of the ubiquitin proteasome system in plant meiotic progression.
Collapse
Affiliation(s)
- Yi He
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Chong Wang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - James D Higgins
- Department of Genetics, University of Leicester, Leicester LE1 7RH, United Kingdom
| | - Junping Yu
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Jie Zong
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200433, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China School of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 20040, China
| |
Collapse
|
161
|
Liu L, Venkatesh J, Jo YD, Koeda S, Hosokawa M, Kang JH, Goritschnig S, Kang BC. Fine mapping and identification of candidate genes for the sy-2 locus in a temperature-sensitive chili pepper (Capsicum chinense). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1541-56. [PMID: 27147070 DOI: 10.1007/s00122-016-2723-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Accepted: 04/22/2016] [Indexed: 05/24/2023]
Abstract
The sy - 2 temperature-sensitive gene from Capsicum chinense was fine mapped to a 138.8-kb region at the distal portion of pepper chromosome 1. Based on expression analyses, two putative F-box genes were identified as sy - 2 candidate genes. Seychelles-2 ('sy-2') is a temperature-sensitive natural mutant of Capsicum chinense, which exhibits an abnormal leaf phenotype when grown at temperatures below 24 °C. We previously showed that the sy-2 phenotype is controlled by a single recessive gene, sy-2, located on pepper chromosome 1. In this study, a high-resolution genetic and physical map for the sy-2 locus was constructed using two individual F2 mapping populations derived from a cross between C. chinense mutant 'sy-2' and wild-type 'No. 3341'. The sy-2 gene was fine mapped to a 138.8-kb region between markers SNP 5-5 and SNP 3-8 at the distal portion of chromosome 1, based on comparative genomic analysis and genomic information from pepper. The sy-2 target region was predicted to contain 27 genes. Expression analysis of these predicted genes showed a differential expression pattern for ORF10 and ORF20 between mutant and wild-type plants; with both having significantly lower expression in 'sy-2' than in wild-type plants. In addition, the coding sequences of both ORF10 and ORF20 contained single nucleotide polymorphisms (SNPs) causing amino acid changes, which may have important functional consequences. ORF10 and ORF20 are predicted to encode F-box proteins, which are components of the SCF complex. Based on the differential expression pattern and the presence of nonsynonymous SNPs, we suggest that these two putative F-box genes are most likely responsible for the temperature-sensitive phenotypes in pepper. Further investigation of these genes may enable a better understanding of the molecular mechanisms of low temperature sensitivity in plants.
Collapse
Affiliation(s)
- Li Liu
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | - Jelli Venkatesh
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | - Yeong Deuk Jo
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea
| | - Sota Koeda
- Department of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Munetaka Hosokawa
- Department of Agronomy and Horticultural Science, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Jin-Ho Kang
- Crop Biotechnology Institute/GreenBio Science and Technology, Seoul National University, Pyeongchang, 232-916, Korea
| | | | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, Seoul National University, Seoul, 151-921, Korea.
| |
Collapse
|
162
|
Joo H, Lim CW, Lee SC. Identification and functional expression of the pepper RING type E3 ligase, CaDTR1, involved in drought stress tolerance via ABA-mediated signalling. Sci Rep 2016; 6:30097. [PMID: 27439598 PMCID: PMC4954983 DOI: 10.1038/srep30097] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 06/27/2016] [Indexed: 12/22/2022] Open
Abstract
Drought negatively affects plant growth and development, thereby leading to loss of crop productivity. Several plant E3 ubiquitin ligases act as positive or negative regulators of abscisic acid (ABA) and thus play important roles in the drought stress response. Here, we show that the C3HC4-type RING finger E3 ligase, CaDTR1, regulates the drought stress response via ABA-mediated signalling. CaDTR1 contains an amino-terminal RING finger motif and two carboxyl-terminal hydrophobic regions; the RING finger motif functions during attachment of ubiquitins to the target proteins, and the carboxyl-terminal hydrophobic regions function during subcellular localisation. The expression of CaDTR1 was induced by ABA, drought, and NaCl treatments. CaDTR1 localised in the nucleus and displayed in vitro E3 ubiquitin ligase activity. CaDTR1-silenced pepper plants exhibited a drought-sensitive phenotype characterised by high levels of transpirational water loss. On the other hand, CaDTR1-overexpressing (OX) Arabidopsis plants exhibited an ABA-hypersensitive phenotype during the germinative and post-germinative growth stages. Moreover, in contrast to CaDTR1-silenced pepper plants, CaDTR1-OX plants exhibited a drought-tolerant phenotype characterised by low levels of transpirational water loss via increased stomatal closure and high leaf temperatures. Our data indicate that CaDTR1 functions as a positive regulator of the drought stress response via ABA-mediated signalling.
Collapse
Affiliation(s)
- Hyunhee Joo
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, 84 Heukseok-Ro, Dongjak-Gu, Seoul 156-756, Republic of Korea
| |
Collapse
|
163
|
Kang H, Zhang M, Zhou S, Guo Q, Chen F, Wu J, Wang W. Overexpression of wheat ubiquitin gene, Ta-Ub2, improves abiotic stress tolerance of Brachypodium distachyon. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 248:102-15. [PMID: 27181952 DOI: 10.1016/j.plantsci.2016.04.015] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/16/2016] [Accepted: 04/26/2016] [Indexed: 05/11/2023]
Abstract
Ubiquitination plays an important role in regulating plant's development and adaptability to abiotic stress. To investigate the possible functions of a wheat monoubiquitin gene Ta-Ub2 in abiotic stress in monocot and compare it with that in dicot, we generated transgenic Brachypodium plants overexpressing Ta-Ub2 under the control of CaMV35s and stress-inducible RD29A promoters. The constitutive expression of Ta-Ub2 displayed slight growth inhibition in the growth of transgenic Brachypodium distachyon under the control conditions. However, this inhibition was minimized by expression of Ta-Ub2 under the control of stress-inducible RD29A promoter. Compared with WT, the transgenic plants preserved more water and showed higher enzymatic antioxidants under drought stress, which might be related to the change in the expression of some antioxidant genes. The expression of C-repeat binding factors transcription factor genes in the transgenic B. distachyon lines were upregulated under water stress. Salt and cold tolerances of transgenic B. distachyon were also improved. Although the phenotypic changes in the transgenic plants were different, overexpression of Ta-Ub2 improved the abiotic stress tolerance in both dicot and monocot plants. The improvement in Ta-Ub2 transgenic plants in abiotic stress tolerance might be, at least partly, through regulating the gene expression and increasing the enzymatic antioxidants.
Collapse
Affiliation(s)
- Hanhan Kang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Meng Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China; Collaborative Innovation Center, Jining Medical University, Jining, Shandong, 272067, PR China
| | - Shumei Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Qifang Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Fengjuan Chen
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agriculture, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong, 271018, PR China.
| |
Collapse
|
164
|
Fercha A, Capriotti AL, Caruso G, Cavaliere C, Stampachiacchiere S, Zenezini Chiozzi R, Laganà A. Shotgun proteomic analysis of soybean embryonic axes during germination under salt stress. Proteomics 2016; 16:1537-46. [PMID: 26969838 DOI: 10.1002/pmic.201500283] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 01/19/2016] [Accepted: 03/08/2016] [Indexed: 12/21/2022]
Abstract
Seed imbibition and radicle emergence are generally less affected by salinity in soybean than in other crop plants. In order to unveil the mechanisms underlying this remarkable salt tolerance of soybean at seed germination, a comparative label-free shotgun proteomic analysis of embryonic axes exposed to salinity during germination sensu stricto (GSS) was conducted. The results revealed that the application of 100 and 200 mmol/L NaCl stress was accompanied by significant changes (>2-fold, P<0.05) of 97 and 75 proteins, respectively. Most of these salt-responsive proteins (70%) were classified into three major functional categories: disease/defense response, protein destination and storage and primary metabolism. The involvement of these proteins in salt tolerance of soybean was discussed, and some of them were suggested to be potential salt-tolerant proteins. Furthermore, our results suggest that the cross-protection against aldehydes, oxidative as well as osmotic stress, is the major adaptive response to salinity in soybean.
Collapse
Affiliation(s)
- Azzedine Fercha
- Department of Biology, University of Abbès Laghrour Khenchela, Khenchela, Algeria
| | | | - Giuseppe Caruso
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | - Chiara Cavaliere
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| | | | | | - Aldo Laganà
- Department of Chemistry, Sapienza Università di Roma, Rome, Italy
| |
Collapse
|
165
|
Vojta P, Kokáš F, Husičková A, Grúz J, Bergougnoux V, Marchetti CF, Jiskrová E, Ježilová E, Mik V, Ikeda Y, Galuszka P. Whole transcriptome analysis of transgenic barley with altered cytokinin homeostasis and increased tolerance to drought stress. N Biotechnol 2016; 33:676-691. [PMID: 26877151 DOI: 10.1016/j.nbt.2016.01.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 01/26/2016] [Accepted: 01/29/2016] [Indexed: 01/11/2023]
Abstract
Cytokinin plant hormones have been shown to play an important role in plant response to abiotic stresses. Herein, we expand upon the findings of Pospíšilová et al. [30] regarding preparation of novel transgenic barley lines overexpressing cytokinin dehydrogenase 1 gene from Arabidopsis under the control of mild root-specific promotor of maize β-glycosidase. These lines showed drought-tolerant phenotype mainly due to alteration of root architecture and stronger lignification of root tissue. A detailed transcriptomic analysis of roots of transgenic plants subjected to revitalization after drought stress revealed attenuated response through the HvHK3 cytokinin receptor and up-regulation of two transcription factors implicated in stress responses and abscisic acid sensitivity. Increased expression of several genes involved in the phenylpropanoid pathway as well as of genes encoding arogenate dehydratase/lyase participating in phenylalanine synthesis was found in roots during revitalization. Although more precursors of lignin synthesis were present in roots after drought stress, final lignin accumulation did not change compared to that in plants grown under optimal conditions. Changes in transcriptome indicated a higher auxin turnover in transgenic roots. The same analysis in leaves revealed that genes encoding putative enzymes responsible for production of jasmonates and other volatile compounds were up-regulated. Although transgenic barley leaves showed lower chlorophyll content and down-regulation of genes encoding proteins involved in photosynthesis than did wild-type plants when cultivated under optimal conditions, they did show a tendency to return to initial photochemical activities faster than did wild-type leaves when re-watered after severe drought stress. In contrast to optimal conditions, comparative transcriptomic analysis of revitalized leaves displayed up-regulation of genes encoding enzymes and proteins involved in photosynthesis, and especially those encoded by the chloroplast genome. Taken together, our results indicate that the partial cytokinin insensitivity induced in barley overexpressing cytokinin dehydrogenase contributes to tolerance to drought stress.
Collapse
Affiliation(s)
- Petr Vojta
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University in Olomouc, Hněvotínská 1333/5, 779 00 Olomouc, Czech Republic
| | - Filip Kokáš
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Alexandra Husičková
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Jiří Grúz
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Veronique Bergougnoux
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Cintia F Marchetti
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Eva Jiskrová
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Eliška Ježilová
- Department of Biophysics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Václav Mik
- Department of Chemical Biology and Genetics, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Yoshihisa Ikeda
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Petr Galuszka
- Department of Molecular Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University in Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
166
|
Srivastava R, Singh M, Bajaj D, Parida SK. A High-Resolution InDel (Insertion-Deletion) Markers-Anchored Consensus Genetic Map Identifies Major QTLs Governing Pod Number and Seed Yield in Chickpea. FRONTIERS IN PLANT SCIENCE 2016; 7:1362. [PMID: 27695461 PMCID: PMC5025440 DOI: 10.3389/fpls.2016.01362] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Accepted: 08/29/2016] [Indexed: 05/12/2023]
Abstract
Development and large-scale genotyping of user-friendly informative genome/gene-derived InDel markers in natural and mapping populations is vital for accelerating genomics-assisted breeding applications of chickpea with minimal resource expenses. The present investigation employed a high-throughput whole genome next-generation resequencing strategy in low and high pod number parental accessions and homozygous individuals constituting the bulks from each of two inter-specific mapping populations [(Pusa 1103 × ILWC 46) and (Pusa 256 × ILWC 46)] to develop non-erroneous InDel markers at a genome-wide scale. Comparing these high-quality genomic sequences, 82,360 InDel markers with reference to kabuli genome and 13,891 InDel markers exhibiting differentiation between low and high pod number parental accessions and bulks of aforementioned mapping populations were developed. These informative markers were structurally and functionally annotated in diverse coding and non-coding sequence components of genome/genes of kabuli chickpea. The functional significance of regulatory and coding (frameshift and large-effect mutations) InDel markers for establishing marker-trait linkages through association/genetic mapping was apparent. The markers detected a greater amplification (97%) and intra-specific polymorphic potential (58-87%) among a diverse panel of cultivated desi, kabuli, and wild accessions even by using a simpler cost-efficient agarose gel-based assay implicating their utility in large-scale genetic analysis especially in domesticated chickpea with narrow genetic base. Two high-density inter-specific genetic linkage maps generated using aforesaid mapping populations were integrated to construct a consensus 1479 InDel markers-anchored high-resolution (inter-marker distance: 0.66 cM) genetic map for efficient molecular mapping of major QTLs governing pod number and seed yield per plant in chickpea. Utilizing these high-density genetic maps as anchors, three major genomic regions harboring each of pod number and seed yield robust QTLs (15-28% phenotypic variation explained) were identified on chromosomes 2, 4, and 6. The integration of genetic and physical maps at these QTLs mapped on chromosomes scaled-down the long major QTL intervals into high-resolution short pod number and seed yield robust QTL physical intervals (0.89-2.94 Mb) which were essentially got validated in multiple genetic backgrounds of two chickpea mapping populations. The genome-wide InDel markers including natural allelic variants and genomic loci/genes delineated at major six especially in one colocalized novel congruent robust pod number and seed yield robust QTLs mapped on a high-density consensus genetic map were found most promising in chickpea. These functionally relevant molecular tags can drive marker-assisted genetic enhancement to develop high-yielding cultivars with increased seed/pod number and yield in chickpea.
Collapse
Affiliation(s)
| | - Mohar Singh
- National Bureau of Plant Genetic Resources Regional StationShimla, India
| | - Deepak Bajaj
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Swarup K. Parida
- National Institute of Plant Genome ResearchNew Delhi, India
- *Correspondence: Swarup K. Parida ;
| |
Collapse
|
167
|
Ramadan A, Nemoto K, Seki M, Shinozaki K, Takeda H, Takahashi H, Sawasaki T. Wheat germ-based protein libraries for the functional characterisation of the Arabidopsis E2 ubiquitin conjugating enzymes and the RING-type E3 ubiquitin ligase enzymes. BMC PLANT BIOLOGY 2015; 15:275. [PMID: 26556605 PMCID: PMC4641371 DOI: 10.1186/s12870-015-0660-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/03/2015] [Indexed: 05/21/2023]
Abstract
BACKGROUND Protein ubiquitination is a ubiquitous mechanism in eukaryotes. In Arabidopsis, ubiquitin modification is mainly mediated by two ubiquitin activating enzymes (E1s), 37 ubiquitin conjugating enzymes (E2s), and more than 1300 predicted ubiquitin ligase enzymes (E3s), of which ~470 are RING-type E3s. A large proportion of the RING E3's gene products have yet to be characterised in vitro, likely because of the laborious work involved in large-scale cDNA cloning and protein expression, purification, and characterisation. In addition, several E2s, which might be necessary for the activity of certain E3 ligases, cannot be expressed by Escherichia coli or cultured insect cells and, therefore, remain uncharacterised. RESULTS Using the RIKEN Arabidopsis full-length cDNA library (RAFL) with the 'split-primer' PCR method and a wheat germ cell-free system, we established protein libraries of Arabidopsis E2 and RING E3 enzymes. We expressed 35 Arabidopsis E2s including six enzymes that have not been previously expressed, and 204 RING proteins, most of which had not been functionally characterised. Thioester assays using dithiothreitol (DTT) showed DTT-sensitive ubiquitin thioester formation for all E2s expressed. In expression assays of RING proteins, 31 proteins showed high molecular smears, which are probably the result of their functional activity. The activities of another 27 RING proteins were evaluated with AtUBC10 and/or a group of different E2s. All the 27 RING E3s tested showed ubiquitin ligase activity, including 17 RING E3s. Their activities are reported for the first time. CONCLUSION The wheat germ cell-free system used in our study, which is a eukaryotic expression system and more closely resembles the endogenous expression of plant proteins, is very suitable for expressing Arabidopsis E2s and RING E3s in their functional form. In addition, the protein libraries described here can be used for further understanding E2-E3 specificities and as platforms for protein-protein interaction screening.
Collapse
Affiliation(s)
- Abdelaziz Ramadan
- Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan.
- Botany Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - Keiichirou Nemoto
- Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan.
| | - Motoaki Seki
- Plant Genomic Network Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama, 332-0012, Japan.
| | - Kazuo Shinozaki
- Gene Discovery Research Group, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan.
| | - Hiroyuki Takeda
- Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan.
| | | | - Tatsuya Sawasaki
- Proteo-Science Center, Ehime University, Matsuyama, 790-8577, Japan.
| |
Collapse
|
168
|
Ding S, Zhang B, Qin F. Arabidopsis RZFP34/CHYR1, a Ubiquitin E3 Ligase, Regulates Stomatal Movement and Drought Tolerance via SnRK2.6-Mediated Phosphorylation. THE PLANT CELL 2015; 27:3228-44. [PMID: 26508764 PMCID: PMC4682294 DOI: 10.1105/tpc.15.00321] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Revised: 09/22/2015] [Accepted: 10/04/2015] [Indexed: 05/18/2023]
Abstract
Abscisic acid (ABA) is a phytohormone that plays a fundamental role in plant development and stress response, especially in the regulation of stomatal closure in response to water deficit stress. The signal transduction that occurs in response to ABA and drought stress is mediated by protein phosphorylation and ubiquitination. This research identified Arabidopsis thaliana RING ZINC-FINGER PROTEIN34 (RZP34; renamed here as CHY ZINC-FINGER AND RING PROTEIN1 [CHYR1]) as an ubiquitin E3 ligase. CHYR1 expression was significantly induced by ABA and drought, and along with its corresponding protein, was expressed mainly in vascular tissues and stomata. Analysis of CHYR1 gain-of-function and loss-of-function plants revealed that CHYR1 promotes ABA-induced stomatal closure, reactive oxygen species production, and plant drought tolerance. Furthermore, CHYR1 interacted with SNF1-RELATED PROTEIN KINASE2 (SnRK2) kinases and could be phosphorylated by SnRK2.6 on the Thr-178 residue. Overexpression of CHYR1(T178A), a phosphorylation-deficient mutant, interfered with the proper function of CHYR1, whereas CHYR1(T178D) phenocopied the gain of function of CHYR1. Thus, this study identified a RING-type ubiquitin E3 ligase that functions positively in ABA and drought responses and detailed how its ubiquitin E3 ligase activity is regulated by SnRK2.6-mediated protein phosphorylation.
Collapse
Affiliation(s)
- Shuangcheng Ding
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China Graduate University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Bin Zhang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Feng Qin
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| |
Collapse
|
169
|
Zhang Y, Li D, Zhang H, Hong Y, Huang L, Liu S, Li X, Ouyang Z, Song F. Tomato histone H2B monoubiquitination enzymes SlHUB1 and SlHUB2 contribute to disease resistance against Botrytis cinerea through modulating the balance between SA- and JA/ET-mediated signaling pathways. BMC PLANT BIOLOGY 2015; 15:252. [PMID: 26490733 PMCID: PMC4618151 DOI: 10.1186/s12870-015-0614-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Accepted: 09/13/2015] [Indexed: 05/17/2023]
Abstract
BACKGROUND Histone H2B monoubiquitination pathway has been shown to play critical roles in regulating growth/development and stress response in Arabidopsis. In the present study, we explored the involvement of the tomato histone H2B monoubiquitination pathway in defense response against Botrytis cinerea by functional analysis of SlHUB1 and SlHUB2, orthologues of the Arabidopsis AtHUB1/AtHUB2. METHODS We used the TRV-based gene silencing system to knockdown the expression levels of SlHUB1 or SlHUB2 in tomato plants and compared the phenotype between the silenced and the control plants after infection with B. cinerea and Pseudomonas syringae pv. tomato (Pst) DC3000. Biochemical and interaction properties of proteins were examined using in vitro histone monoubiquitination and yeast two-hybrid assays, respectively. The transcript levels of genes were analyzed by quantitative real time PCR (qRT-PCR). RESULTS The tomato SlHUB1 and SlHUB2 had H2B monoubiquitination E3 ligases activity in vitro and expression of SlHUB1 and SlHUB2 was induced by infection of B. cinerea and Pst DC3000 and by treatment with salicylic acid (SA) and 1-amino cyclopropane-1-carboxylic acid (ACC). Silencing of either SlHUB1 or SlHUB2 in tomato plants showed increased susceptibility to B. cinerea, whereas silencing of SlHUB1 resulted in increased resistance against Pst DC3000. SlMED21, a Mediator complex subunit, interacted with SlHUB1 but silencing of SlMED21 did not affect the disease resistance to B. cinerea and Pst DC3000. The SlHUB1- and SlHUB2-silenced plants had thinner cell wall but increased accumulation of reactive oxygen species (ROS), increased callose deposition and exhibited altered expression of the genes involved in phenylpropanoid pathway and in ROS generation and scavenging system. Expression of genes in the SA-mediated signaling pathway was significantly upregulated, whereas expression of genes in the jasmonic acid (JA)/ethylene (ET)-mediated signaling pathway were markedly decreased in SlHUB1- and SlHUB2-silenced plants after infection of B. cinerea. CONCLUSION VIGS-based functional analyses demonstrate that both SlHUB1 and SlHUB2 contribute to resistance against B. cinerea most likely through modulating the balance between the SA- and JA/ET-mediated signaling pathways.
Collapse
Affiliation(s)
- Yafen Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Dayong Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Huijuan Zhang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Yongbo Hong
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Lei Huang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Shixia Liu
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Xiaohui Li
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Zhigang Ouyang
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Fengming Song
- National Key Laboratory for Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
170
|
Li P, Miao H, Ma Y, Wang L, Hu G, Ye Z, Zhao J, Qin Y. CrWSKP1, an SKP1-like Gene, Is Involved in the Self-Incompatibility Reaction of "Wuzishatangju" (Citrus reticulata Blanco). Int J Mol Sci 2015; 16:21695-710. [PMID: 26370985 PMCID: PMC4613275 DOI: 10.3390/ijms160921695] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Revised: 08/23/2015] [Accepted: 08/25/2015] [Indexed: 11/17/2022] Open
Abstract
Plant S-phase kinase-associated protein 1 (SKP1) genes play crucial roles in plant development and differentiation. However, the role of SKP1 in citrus is unclear. Herein, we described a novel SKP1-like gene, designated as CrWSKP1, from "Wuzishatangju" (Citrus reticulata Blanco). The cDNA sequence of CrWSKP1 is 779 base pairs (bp) and contains an open reading frame (ORF) of 477 bp. The genomic sequence of the CrWSKP1 gene is 1296 bp with two exons and one intron. CrWSKP1 has high identity with SKP1-like genes from other plant species within two conserved regions. Approximately 85% of pollen tubes of self-pollinated CrWSKP1 transgenic tobaccos became twisted at four days after self-pollination. Pollen tube numbers of self-pollinated CrWSKP1 transformants entering into ovules were significantly fewer than that of the control. Seed number of self-pollinated CrWSKP1 transformants was significantly reduced. These results suggested that the CrWSKP1 is involved in the self-incompatibility (SI) reaction of "Wuzishatangju".
Collapse
Affiliation(s)
- Peng Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Hongxia Miao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Tropical Crop Bioscience and Biotechnology, Ministry of Agriculture, Haikou 571101, China.
| | - Yuewen Ma
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Lu Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Guibing Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Zixing Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Jietang Zhao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| | - Yonghua Qin
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/ Key Laboratory of Biology and Genetic Improvement of Horticultural Crops-South China, Ministry of Agriculture, College of Horticulture, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
171
|
Park C, Lim CW, Baek W, Lee SC. RING Type E3 Ligase CaAIR1 in Pepper Acts in the Regulation of ABA Signaling and Drought Stress Response. PLANT & CELL PHYSIOLOGY 2015; 56:1808-19. [PMID: 26169196 DOI: 10.1093/pcp/pcv103] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 07/03/2015] [Indexed: 05/08/2023]
Abstract
Several E3 ubiquitin ligases have been associated with the response to abiotic and biotic stresses in higher plants. Here, we report that the hot pepper (Capsicum annuum) ABA-Insensitive RING protein 1 gene (CaAIR1) is essential for a hypersensitive response to drought stress. CaAIR1 contains a C3HC4-type RING finger motif, which plays a role for attachment of ubiquitins to the target protein, and a putative transmembrane domain. The expression levels of CaAIR1 are up-regulated in pepper leaves by ABA treatments, drought and NaCl, suggesting its role in the response to abiotic stress. Our analysis showed that CaAIR1 displays self-ubiquitination and is localized in the nucleus. We generated CaAIR1-silenced peppers via virus-induced gene silencing (VIGS) and CaAIR1-overexpressing (OX) transgenic Arabidopsis plants to evaluate their responses to ABA and drought. VIGS of CaAIR1 in pepper plants conferred an enhanced tolerance to drought stress, which was accompanied by low levels of transpirational water loss in the drought-treated leaves. CaAIR1-OX plants displayed an impaired sensitivity to ABA during seed germination, seedling and adult stages. Moreover, these plants showed enhanced sensitivity to drought stress because of reduced stomatal closure and decreased expression of stress-responsive genes. Thus, our data indicate that CaAIR1 is a negative regulator of the ABA-mediated drought stress tolerance mechanism.
Collapse
Affiliation(s)
- Chanmi Park
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea These authors contributed equally to this work
| | - Chae Woo Lim
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea These authors contributed equally to this work
| | - Woonhee Baek
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea
| | - Sung Chul Lee
- Department of Life Science (BK21 program), Chung-Ang University, Seoul 156-756 Republic of Korea
| |
Collapse
|
172
|
Koltai H. Cellular events of strigolactone signalling and their crosstalk with auxin in roots. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4855-61. [PMID: 25900617 DOI: 10.1093/jxb/erv178] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strigolactones are a new group of plant hormones that suppress shoot branching. In roots, they regulate primary-root growth and lateral-root formation and increase root-hair elongation. Reception of strigolactones occurs via a specific cellular system which includes a D14-like/MAX2-like/SCF complex that, upon perception of strigolactone signalling, leads to certain degradation of receptors and to the release of downstream targets. This signalling pathway may eventually result in changes in actin-filament bundling, cellular trafficking, and PIN localization in the plasma membrane. As a result, auxin flux may be regulated in the shoot or root. Strigolactones are also involved with the response to phosphate conditions in roots, acting by both dampening auxin transport via depletion of PIN2 from the plasma membrane and inducing TIR1 transcription to increase auxin perception. In these instances and, possibly, others, strigolactones manipulate the auxin pathway, affecting its transport, perception or both. However, other mechanisms for strigolactone-regulated plant development and the involvement of other plant hormones are evident.
Collapse
Affiliation(s)
- Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Israel
| |
Collapse
|
173
|
Jia F, Wang C, Huang J, Yang G, Wu C, Zheng C. SCF E3 ligase PP2-B11 plays a positive role in response to salt stress in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4683-97. [PMID: 26041321 PMCID: PMC4507775 DOI: 10.1093/jxb/erv245] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Skp1-Cullin-F-box (SCF) E3 ligases are essential to the post-translational regulation of many important factors involved in cellular signal transduction. In this study, we identified an F-box protein from Arabidopsis thaliana, AtPP2-B11, which was remarkably induced with increased duration of salt treatment in terms of both transcript and protein levels. Transgenic Arabidopsis plants overexpressing AtPP2-B11 exhibited obvious tolerance to high salinity, whereas the RNA interference line was more sensitive to salt stress than wild-type plants. Isobaric tag for relative and absolute quantification analysis revealed that 4311 differentially expressed proteins were regulated by AtPP2-B11 under salt stress. AtPP2-B11 could upregulate the expression of annexin1 (AnnAt1) and function as a molecular link between salt stress and reactive oxygen species accumulation in Arabidopsis. Moreover, AtPP2-B11 influenced the expression of Na(+) homeostasis genes under salt stress, and the AtPP2-B11 overexpressing lines exhibited lower Na(+) accumulation. These results suggest that AtPP2-B11 functions as a positive regulator in response to salt stress in Arabidopsis.
Collapse
Affiliation(s)
- Fengjuan Jia
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chunyan Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Jinguang Huang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Guodong Yang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Changai Wu
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| | - Chengchao Zheng
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong 271018, PR China
| |
Collapse
|
174
|
The E3 Ubiquitin Ligase COP1 Regulates Thermosensory Flowering by Triggering GI Degradation in Arabidopsis. Sci Rep 2015; 5:12071. [PMID: 26159740 PMCID: PMC4498190 DOI: 10.1038/srep12071] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 06/10/2015] [Indexed: 12/22/2022] Open
Abstract
Floral transition is influenced by environmental factors such as light and temperature. Plants are capable of integrating photoperiod and ambient temperature signaling into their developmental program. Despite extensive investigations on individual genetic pathways, little is known about the molecular components that integrate both pathways. Here, we demonstrate that the RING finger–containing E3 ubiquitin ligase CONSTITUTIVE PHOTOMORPHOGENIC1 (COP1) acts as an integrator of photoperiod and ambient temperature signaling. In addition to the role in photoperiodic destabilization of CONSTANS (CO), COP1 also regulates temperature sensitivity by controlling the degradation of GIGANTEA (GI). COP1-impaired mutants showed reduced sensitivity to low ambient temperature. Notably, COP1 is more stabilized at low temperature and accelerates GI turnover in a 26S proteasome-dependent manner. The direct association of GI with the promoter of FLOWERING LOCUS T (FT) was reduced because of its ambient temperature-dependent protein stability control, and thus COP1-triggered GI turnover delays flowering at low temperatures via a CO-independent pathway. Taken together, our findings indicate that environmental conditions regulate the stability of COP1, and conditional specificity of its target selection stimulates proper developmental responses and ensures reproductive success.
Collapse
|
175
|
Song JB, Shu XX, Shen Q, Li BW, Song J, Yang ZM. Altered Fruit and Seed Development of Transgenic Rapeseed (Brassica napus) Over-Expressing MicroRNA394. PLoS One 2015; 10:e0125427. [PMID: 25978066 PMCID: PMC4433277 DOI: 10.1371/journal.pone.0125427] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Accepted: 03/23/2015] [Indexed: 02/02/2023] Open
Abstract
Fruit and seed development in plants is a complex biological process mainly involved in input and biosynthesis of many storage compounds such as proteins and oils. Although the basic biochemical pathways for production of the storage metabolites in plants are well characterized, their regulatory mechanisms are not fully understood. In this study, we functionally identified rapeseed (Brassica napus) miR394 with its target gene Brassica napus LEAF CURLING RESPONSIVENESS (BnLCR) to dissect a role of miR394 during the fruit and seed development. Transgenic rapeseed plants over-expressing miR394 under the control of the cauliflower mosaic virus 35S promoter were generated. miR394 over-expression plants exhibited a delayed flowering time and enlarged size of plants, leaf blade, pods and seed body, but developed seeds with higher contents of protein and glucosinolates (GLS) and lower levels of oil accumulation as compared to wild-type. Over-expression of miR394 altered the fatty acid (FA) composition by increasing several FA species such as C16:0 and C18:0 and unsaturated species of C20:1 and C22:1 but lowering C18:3. This change was accompanied by induction of genes coding for transcription factors of FA synthesis including LEAFY COTYLEDON1 (BnLEC1), BnLEC2, and FUSCA3 (FUS3). Because the phytohormone auxin plays a crucial role in fruit development and seed patterning, the DR5-GUS reporter was used for monitoring the auxin response in Arabidopsis siliques and demonstrated that the DR5 gene was strongly expressed. These results suggest that BnmiR394 is involved in rapeseed fruit and seed development.
Collapse
Affiliation(s)
- Jian Bo Song
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
- Department of Biochemistry and Molecular Biology, College of Life Science, Jiangxi Agricultural University, Nanchang, China
| | - Xia Xia Shu
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Qi Shen
- The Rapeseed Institute of Guizhou Province, Gui Yang, China
| | - Bo Wen Li
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Jun Song
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing, China
- * E-mail:
| |
Collapse
|
176
|
Zhou SM, Kong XZ, Kang HH, Sun XD, Wang W. The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants. PLoS One 2015; 10:e0122117. [PMID: 25906259 PMCID: PMC4408080 DOI: 10.1371/journal.pone.0122117] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2014] [Accepted: 02/17/2015] [Indexed: 11/21/2022] Open
Abstract
As one of the largest gene families, F-box domain proteins have been found to play important roles in abiotic stress responses via the ubiquitin pathway. TaFBA1 encodes a homologous F-box protein contained in E3 ubiquitin ligases. In our previous study, we found that the overexpression of TaFBA1 enhanced drought tolerance in transgenic plants. To investigate the mechanisms involved, in this study, we investigated the tolerance of the transgenic plants to oxidative stress. Methyl viologen was used to induce oxidative stress conditions. Real-time PCR and western blot analysis revealed that TaFBA1 expression was up-regulated by oxidative stress treatments. Under oxidative stress conditions, the transgenic tobacco plants showed a higher germination rate, higher root length and less growth inhibition than wild type (WT). The enhanced oxidative stress tolerance of the transgenic plants was also indicated by lower reactive oxygen species (ROS) accumulation, malondialdehyde (MDA) content and cell membrane damage under oxidative stress compared with WT. Higher activities of antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX) and peroxidase (POD), were observed in the transgenic plants than those in WT, which may be related to the upregulated expression of some antioxidant genes via the overexpression of TaFBA1. In others, some stress responsive elements were found in the promoter region of TaFBA1, and TaFBA1 was located in the nucleus, cytoplasm and plasma membrane. These results suggest that TaFBA1 plays an important role in the oxidative stress tolerance of plants. This is important for understanding the functions of F-box proteins in plants' tolerance to multiple stress conditions.
Collapse
Affiliation(s)
- Shu-Mei Zhou
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, People's Republic of China
| | - Xiang-Zhu Kong
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, People's Republic of China
| | - Han-Han Kang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, People's Republic of China
| | - Xiu-Dong Sun
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an, Shandong, People's Republic of China
| | - Wei Wang
- State Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai’an, Shandong, People's Republic of China
| |
Collapse
|
177
|
Meng X, Wang C, Rahman SU, Wang Y, Wang A, Tao S. Genome-wide identification and evolution of HECT genes in soybean. Int J Mol Sci 2015; 16:8517-35. [PMID: 25894222 PMCID: PMC4425094 DOI: 10.3390/ijms16048517] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/13/2015] [Accepted: 04/13/2015] [Indexed: 01/10/2023] Open
Abstract
Proteins containing domains homologous to the E6-associated protein (E6-AP) carboxyl terminus (HECT) are an important class of E3 ubiquitin ligases involved in the ubiquitin proteasome pathway. HECT-type E3s play crucial roles in plant growth and development. However, current understanding of plant HECT genes and their evolution is very limited. In this study, we performed a genome-wide analysis of the HECT domain-containing genes in soybean. Using high-quality genome sequences, we identified 19 soybean HECT genes. The predicted HECT genes were distributed unevenly across 15 of 20 chromosomes. Nineteen of these genes were inferred to be segmentally duplicated gene pairs, suggesting that in soybean, segmental duplications have made a significant contribution to the expansion of the HECT gene family. Phylogenetic analysis showed that these HECT genes can be divided into seven groups, among which gene structure and domain architecture was relatively well-conserved. The Ka/Ks ratios show that after the duplication events, duplicated HECT genes underwent purifying selection. Moreover, expression analysis reveals that 15 of the HECT genes in soybean are differentially expressed in 14 tissues, and are often highly expressed in the flowers and roots. In summary, this work provides useful information on which further functional studies of soybean HECT genes can be based.
Collapse
Affiliation(s)
- Xianwen Meng
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China.
- Bioinformatics Center, Northwest A&F University, Yangling 712100, China.
| | - Chen Wang
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China.
- Bioinformatics Center, Northwest A&F University, Yangling 712100, China.
| | - Siddiq Ur Rahman
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China.
- Bioinformatics Center, Northwest A&F University, Yangling 712100, China.
| | - Yaxu Wang
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China.
- Bioinformatics Center, Northwest A&F University, Yangling 712100, China.
| | - Ailan Wang
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China.
- Bioinformatics Center, Northwest A&F University, Yangling 712100, China.
| | - Shiheng Tao
- College of Life Sciences and State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, China.
- Bioinformatics Center, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
178
|
The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula. Funct Integr Genomics 2015; 15:495-507. [PMID: 25877816 DOI: 10.1007/s10142-015-0438-z] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 03/10/2015] [Accepted: 03/17/2015] [Indexed: 12/12/2022]
Abstract
F-box protein is a subunit of Skp1-Rbx1-Cul1-F-box protein (SCF) complex with typically conserved F-box motifs of approximately 40 amino acids and is one of the largest protein families in eukaryotes. F-box proteins play critical roles in selective and specific protein degradation through the 26S proteasome. In this study, we bioinformatically identified 972 putative F-box proteins from Medicago truncatula genome. Our analysis showed that in addition to the conserved motif, the F-box proteins have several other functional domains in their C-terminal regions (e.g., LRRs, Kelch, FBA, and PP2), some of which were found to be M. truncatula species-specific. By phylogenetic analysis of the F-box motifs, these proteins can be classified into three major families, and each family can be further grouped into more subgroups. Analysis of the genomic distribution of F-box genes on M. truncatula chromosomes revealed that the evolutional expansion of F-box genes in M. truncatula was probably due to localized gene duplications. To investigate the possible response of the F-box genes to abiotic stresses, both publicly available and customer-prepared microarrays were analyzed. Most of the F-box protein genes can be responding to salt and heavy metal stresses. Real-time PCR analysis confirmed that some of the F-box protein genes containing heat, drought, salicylic acid, and abscisic acid responsive cis-elements were able to respond to the abiotic stresses.
Collapse
|
179
|
Gupta S, Garg V, Bhatia S. A new set of ESTs from chickpea (Cicer arietinum L.) embryo reveals two novel F-box genes, CarF-box_PP2 and CarF-box_LysM, with potential roles in seed development. PLoS One 2015; 10:e0121100. [PMID: 25803812 PMCID: PMC4372429 DOI: 10.1371/journal.pone.0121100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022] Open
Abstract
Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development.
Collapse
Affiliation(s)
- Shefali Gupta
- National Institute of Plant Genome Research, New Delhi, India
| | - Vanika Garg
- National Institute of Plant Genome Research, New Delhi, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
180
|
Unilateral incompatibility gene ui1.1 encodes an S-locus F-box protein expressed in pollen of Solanum species. Proc Natl Acad Sci U S A 2015; 112:4417-22. [PMID: 25831517 DOI: 10.1073/pnas.1423301112] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Unilateral interspecific incompatibility (UI) is a postpollination, prezygotic reproductive barrier that prevents hybridization between related species when the female parent is self-incompatible (SI) and the male parent is self-compatible (SC). In tomato and related Solanum species, two genes, ui1.1 and ui6.1, are required for pollen compatibility on pistils of SI species or hybrids. We previously showed that ui6.1 encodes a Cullin1 (CUL1) protein. Here we report that ui1.1 encodes an S-locus F-box (SLF) protein. The ui1.1 gene was mapped to a 0.43-cM, 43.2-Mbp interval at the S-locus on chromosome 1, but positional cloning was hampered by low recombination frequency. We hypothesized that ui1.1 encodes an SLF protein(s) that interacts with CUL1 and Skp1 proteins to form an SCF-type (Skp1, Cullin1, F-box) ubiquitin E3 ligase complex. We identified 23 SLF genes in the S. pennellii genome, of which 19 were also represented in cultivated tomato (S. lycopersicum). Data from recombination events, expression analysis, and sequence annotation highlighted 11 S. pennellii genes as candidates. Genetic transformations demonstrated that one of these, SpSLF-23, is sufficient for ui1.1 function. A survey of cultivated and wild tomato species identified SLF-23 orthologs in each of the SI species, but not in the SC species S. lycopersicum, S. cheesmaniae, and S. galapagense, pollen of which lacks ui1.1 function. These results demonstrate that pollen compatibility in UI is mediated by protein degradation through the ubiquitin-proteasome pathway, a mechanism related to that which controls pollen recognition in SI.
Collapse
|
181
|
Parry G. The plant nuclear envelope and regulation of gene expression. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1673-85. [PMID: 25680795 DOI: 10.1093/jxb/erv023] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The nuclear envelope (NE) separates the key mechanisms of transcription and translation, and as such is a critical control point in all eukaryotic cells. In plants, the proteins of the NE influence a number of processes including the control of nucleo-cytoplasmic transport of RNA and protein, chromatin localization to the nuclear periphery, and direct chromatin binding by members of the nuclear pore complex (NPC). In this review I attempt to bring these roles under the umbrella of their effect on gene expression, even though the complex nature of this cellular environment means there is considerable overlap of effects. Although the volume of research in plant cells has greatly improved over recent years, it is clear that our understanding of how the components of the NE either directly or indirectly influence gene expression is still in its infancy.
Collapse
Affiliation(s)
- Geraint Parry
- University of Liverpool, Institute of Integrative Biology, Crown Street, University of Liverpool, Liverpool L69 7ZB, UK
| |
Collapse
|
182
|
Wang J, Qu B, Dou S, Li L, Yin D, Pang Z, Zhou Z, Tian M, Liu G, Xie Q, Tang D, Chen X, Zhu L. The E3 ligase OsPUB15 interacts with the receptor-like kinase PID2 and regulates plant cell death and innate immunity. BMC PLANT BIOLOGY 2015; 15:49. [PMID: 25849162 PMCID: PMC4330927 DOI: 10.1186/s12870-015-0442-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 01/28/2015] [Indexed: 05/20/2023]
Abstract
BACKGROUND Rice blast disease is one of the most destructive diseases of rice worldwide. We previously cloned the rice blast resistance gene Pid2, which encodes a transmembrane receptor-like kinase containing an extracellular B-lectin domain and an intracellular serine/threonine kinase domain. However, little is known about Pid2-mediated signaling. RESULTS Here we report the functional characterization of the U-box/ARM repeat protein OsPUB15 as one of the PID2-binding proteins. We found that OsPUB15 physically interacted with the kinase domain of PID2 (PID2K) in vitro and in vivo and the ARM repeat domain of OsPUB15 was essential for the interaction. In vitro biochemical assays indicated that PID2K possessed kinase activity and was able to phosphorylate OsPUB15. We also found that the phosphorylated form of OsPUB15 possessed E3 ligase activity. Expression pattern analyses revealed that OsPUB15 was constitutively expressed and its encoded protein OsPUB15 was localized in cytosol. Transgenic rice plants over-expressing OsPUB15 at early stage displayed cell death lesions spontaneously in association with a constitutive activation of plant basal defense responses, including excessive accumulation of hydrogen peroxide, up-regulated expression of pathogenesis-related genes and enhanced resistance to blast strains. We also observed that, along with plant growth, the cell death lesions kept spreading over the whole seedlings quickly resulting in a seedling lethal phenotype. CONCLUSIONS These results reveal that the E3 ligase OsPUB15 interacts directly with the receptor-like kinase PID2 and regulates plant cell death and blast disease resistance.
Collapse
Affiliation(s)
- Jing Wang
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- />Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Baoyuan Qu
- />State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Shijuan Dou
- />College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001 China
| | - Liyun Li
- />College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001 China
| | - Dedong Yin
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Zhiqian Pang
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
- />CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100029 China
| | - Zhuangzhi Zhou
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Miaomiao Tian
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Guozhen Liu
- />College of Life Sciences, Hebei Agricultural University, Baoding, Hebei 071001 China
| | - Qi Xie
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Dingzhong Tang
- />State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| | - Xuewei Chen
- />Rice Research Institute, Sichuan Agricultural University, Chengdu, Sichuan 611130 China
| | - Lihuang Zhu
- />State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
183
|
Abstract
Seed size is a key determinant of evolutionary fitness, and is also one of the most important components of seed yield. In angiosperms, seed development begins with double fertilization, which leads to the formation of a diploid embryo and a triploid endosperm. The outermost layer of the seed is the seed coat, which differentiates from maternal integuments. Therefore, the size of a seed is determined by the co-ordinated growth of the embryo, endosperm, and maternal tissue. Recent studies have identified several factors that act maternally or zygotically to regulate seed size, and revealed possible mechanisms that underlie seed size control in Arabidopsis and rice. In this review, we summarize current research progress in maternal control of seed size and discuss the roles of several newly identified regulators in maternal regulation of seed growth.
Collapse
Affiliation(s)
- Na Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yunhai Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
184
|
Dogra V, Bagler G, Sreenivasulu Y. Re-analysis of protein data reveals the germination pathway and up accumulation mechanism of cell wall hydrolases during the radicle protrusion step of seed germination in Podophyllum hexandrum- a high altitude plant. FRONTIERS IN PLANT SCIENCE 2015; 6:874. [PMID: 26579141 PMCID: PMC4620410 DOI: 10.3389/fpls.2015.00874] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 10/02/2015] [Indexed: 05/06/2023]
Abstract
Podophyllum hexandrum Royle is an important high-altitude plant of Himalayas with immense medicinal value. Earlier, it was reported that the cell wall hydrolases were up accumulated during radicle protrusion step of Podophyllum seed germination. In the present study, Podophyllum seed Germination protein interaction Network (PGN) was constructed by using the differentially accumulated protein (DAP) data set of Podophyllum during the radicle protrusion step of seed germination, with reference to Arabidopsis protein-protein interaction network (AtPIN). The developed PGN is comprised of a giant cluster with 1028 proteins having 10,519 interactions and a few small clusters with relevant gene ontological signatures. In this analysis, a germination pathway related cluster which is also central to the topology and information dynamics of PGN was obtained with a set of 60 key proteins. Among these, eight proteins which are known to be involved in signaling, metabolism, protein modification, cell wall modification, and cell cycle regulation processes were found commonly highlighted in both the proteomic and interactome analysis. The systems-level analysis of PGN identified the key proteins involved in radicle protrusion step of seed germination in Podophyllum.
Collapse
Affiliation(s)
- Vivek Dogra
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource TechnologyPalampur, India
| | - Ganesh Bagler
- Centre for Biologically Inspired System Science, Indian Institute of Technology JodhpurJodhpur, India
- Ganesh Bagler
| | - Yelam Sreenivasulu
- Biotechnology Division, Council of Scientific and Industrial Research-Institute of Himalayan Bioresource TechnologyPalampur, India
- *Correspondence: Yelam Sreenivasulu ;
| |
Collapse
|
185
|
Zhang H, Cui F, Wu Y, Lou L, Liu L, Tian M, Ning Y, Shu K, Tang S, Xie Q. The RING finger ubiquitin E3 ligase SDIR1 targets SDIR1-INTERACTING PROTEIN1 for degradation to modulate the salt stress response and ABA signaling in Arabidopsis. THE PLANT CELL 2015; 27:214-27. [PMID: 25616872 PMCID: PMC4330582 DOI: 10.1105/tpc.114.134163] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 12/17/2014] [Accepted: 01/06/2015] [Indexed: 05/18/2023]
Abstract
The plant hormone abscisic acid (ABA) regulates many aspects of plant development and the stress response. The intracellular E3 ligase SDIR1 (SALT- AND DROUGHT-INDUCED REALLY INTERESTING NEW GENE FINGER1) plays a key role in ABA signaling, regulating ABA-related seed germination and the stress response. In this study, we found that SDIR1 is localized on the endoplasmic reticulum membrane in Arabidopsis thaliana. Using cell biology, molecular biology, and biochemistry approaches, we demonstrated that SDIR1 interacts with and ubiquitinates its substrate, SDIRIP1 (SDIR1-INTERACTING PROTEIN1), to modulate SDIRIP1 stability through the 26S proteasome pathway. SDIRIP1 acts genetically downstream of SDIR1 in ABA and salt stress signaling. In detail, SDIRIP1 selectively regulates the expression of the downstream basic region/leucine zipper motif transcription factor gene ABA-INSENSITIVE5, rather than ABA-RESPONSIVE ELEMENTS BINDING FACTOR3 (ABF3) or ABF4, to regulate ABA-mediated seed germination and the plant salt response. Overall, the SDIR1/SDIRIP1 complex plays a vital role in ABA signaling through the ubiquitination pathway.
Collapse
Affiliation(s)
- Huawei Zhang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Feng Cui
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaorong Wu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijuan Lou
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Lijing Liu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Miaomiao Tian
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yuese Ning
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Kai Shu
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sanyuan Tang
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
186
|
Kumar M, Pandya-Kumar N, Kapulnik Y, Koltai H. Strigolactone signaling in root development and phosphate starvation. PLANT SIGNALING & BEHAVIOR 2015; 10:e1045174. [PMID: 26251884 PMCID: PMC4622057 DOI: 10.1080/15592324.2015.1045174] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 04/22/2015] [Indexed: 05/22/2023]
Abstract
Strigolactones (SLs), have recently been recognized as phytohormone involve in orchestrating shoot and root architecture. In, roots SLs positively regulate root hair length and density, suppress lateral root formation and promote primary root meristem cell number. The biosynthesis and exudation of SLs increases under low phosphate level to regulate root responses. This hormonal response suggests an adaptation strategy of plant to optimize growth and development under nutrient limitations. However, little is known on signal-transduction pathways associated with SL activities. In this review, we outline the current knowledge on SL biology by describing their role in the regulation of root development. Also, we discuss the recent findings on the non-cell autonomous signaling of SLs, that involve PIN polarization, vesicle trafficking, changes in actin architecture and dynamic in response to phosphate starvation.
Collapse
Affiliation(s)
- Manoj Kumar
- Institute of Plant Sciences; Agricultural Research Organization (ARO); the Volcani Center; Bet Dagan, Israel
- Current address: Plant Functional Biology and Climate Change Cluster (C3); University of Technology Sydney (UTS); Sydney, Australia
- Correspondence to: Manoj Kumar;
| | - Nirali Pandya-Kumar
- Institute of Plant Sciences; Agricultural Research Organization (ARO); the Volcani Center; Bet Dagan, Israel
| | - Yoram Kapulnik
- Institute of Plant Sciences; Agricultural Research Organization (ARO); the Volcani Center; Bet Dagan, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences; Agricultural Research Organization (ARO); the Volcani Center; Bet Dagan, Israel
| |
Collapse
|
187
|
Pirrello J, Leclercq J, Dessailly F, Rio M, Piyatrakul P, Kuswanhadi K, Tang C, Montoro P. Transcriptional and post-transcriptional regulation of the jasmonate signalling pathway in response to abiotic and harvesting stress in Hevea brasiliensis. BMC PLANT BIOLOGY 2014; 14:341. [PMID: 25443311 PMCID: PMC4274682 DOI: 10.1186/s12870-014-0341-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 11/19/2014] [Indexed: 05/12/2023]
Abstract
BACKGROUND Latex harvesting in Hevea brasiliensis amounts to strong abiotic stress that can cause a halt in production in the most susceptible clones. Although the role of jasmonic acid has been suggested in laticifer differentiation, its role in latex production and in the response to harvesting stress has received very little attention. Only a few key genes acting in the COI-JAZ-MYC module have been isolated and studied at transcriptional level. RESULTS Use of a reference transcriptome obtained on rubber clone PB 260 covering a large number of tissues under different environmental conditions enabled us to identify 24 contigs implicated in the jasmonate signalling pathway in the rubber tree. An analysis of their expression profile by qPCR, combined with hierarchical clustering, suggested that the jasmonate signalling pathway is highly activated in laticifer cells and, more particularly, in the response to harvesting stress. By comparison with their genomic sequences, the existence of regulation by alternative splicing was discovered for JAZ transcripts in response to harvesting stress. Lastly, positive transcriptional regulation of the HbJAZ_1405 gene by MYC was demonstrated. CONCLUSION This study led to the identification of all actors of jasmonate signalling pathway and revealed a specific gene expression pattern in latex cells. In-depth analysis of this regulation showed alternative splicing that has been previously shown in Arabidopsis. Interestingly, genotypic variation was observed in Hevea clones with contrasting latex metabolism. This result suggests an involvement of jasmonate signalling pathway in latex production. The data suggest that specific variability of the JA pathway may have some major consequences for resistance to stress. The data support the hypothesis that a better understanding of transcriptional regulations of jasmonate pathway during harvesting stress, along with the use of genotypic diversity in response to such stress, can be used to improve resistance to stress and rubber production in Hevea.
Collapse
Affiliation(s)
| | | | | | | | - Piyanuch Piyatrakul
- />CIRAD, UMR AGAP, F-34398 Montpellier, France
- />Rubber Research Institute, Chatuchak, Bangkok 10900 Thailand
| | - Kuswanhadi Kuswanhadi
- />Sembawa Research Centre, Indonesian Rubber Research Institute, P.O 1127, Palembang, 30001 Indonesia
| | - Chaorong Tang
- />Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Danzhou, 571737 Hainan China
| | | |
Collapse
|
188
|
Meng Q, Rao L, Pan Y. Enrichment and analysis of rice seedling ubiquitin-related proteins using four UBA domains (GST-qUBAs). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:172-180. [PMID: 25443844 DOI: 10.1016/j.plantsci.2014.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/17/2014] [Accepted: 09/03/2014] [Indexed: 06/04/2023]
Abstract
Protein ubiquitination is a common posttranslational modification that often occurs on lysine residues. It controls the half-life, interaction and trafficking of intracellular proteins and is involved in different plant development stages and responses to environment stresses. Four Ubiquitin-Associated (UBA) domains were sequentially fused with Glutathione S-transferase (GST) tag (GST-qUBA) as bait protein in this study. A two-step affinity protocol was successfully developed and the identification of ubiquitinated proteins and their interaction proteins increased almost threefold compared to methods that directly identify ubiquitinated proteins from crude samples. A total of 170 ubiquitin-related proteins were identified in GST-qUBAs enriched samples taken from rice seedlings. There were 134 ubiquitinated proteins, 5 ubiquitin-activating enzymes (E1s), 5 ubiquitin-conjugating enzymes (E2s), 19 ubiquitin ligases (E3s) and 7 deubiquitinating enzymes (DUBs), which all contained various key factors that regulated a wide range of biological processes. Moreover, a series of novel ubiquitinated proteins and E3s were identified that had not been previously reported. This study investigated a high-efficiency method for identifying novel ubiquitinated proteins involved in biological processes and a primary mapping of the ubiquitylome during rice seedling development, which could extend our understanding of how ubiquitin modification regulates plant proteins, pathways and cellular processes.
Collapse
Affiliation(s)
- Qingshi Meng
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China; The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing 100081, China; Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Liqun Rao
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha 410128, China.
| | - Yinghong Pan
- The National Key Facility for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Science, Beijing 100081, China; Institute of Crop Science, Chinese Academy of Agricultural Science, Beijing 100081, China.
| |
Collapse
|
189
|
Zhang X, Wang N, Chen P, Gao M, Liu J, Wang Y, Zhao T, Li Y, Gai J. Overexpression of a soybean ariadne-like ubiquitin ligase gene GmARI1 enhances aluminum tolerance in Arabidopsis. PLoS One 2014; 9:e111120. [PMID: 25364908 PMCID: PMC4218711 DOI: 10.1371/journal.pone.0111120] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 09/26/2014] [Indexed: 01/05/2023] Open
Abstract
Ariadne (ARI) subfamily of RBR (Ring Between Ring fingers) proteins have been found as a group of putative E3 ubiquitin ligases containing RING (Really Interesting New Gene) finger domains in fruitfly, mouse, human and Arabidopsis. Recent studies showed several RING-type E3 ubiquitin ligases play important roles in plant response to abiotic stresses, but the function of ARI in plants is largely unknown. In this study, an ariadne-like E3 ubiquitin ligase gene was isolated from soybean, Glycine max (L.) Merr., and designated as GmARI1. It encodes a predicted protein of 586 amino acids with a RBR supra-domain. Subcellular localization studies using Arabidopsis protoplast cells indicated GmARI protein was located in nucleus. The expression of GmARI1 in soybean roots was induced as early as 2-4 h after simulated stress treatments such as aluminum, which coincided with the fact of aluminum toxicity firstly and mainly acting on plant roots. In vitro ubiquitination assay showed GmARI1 protein has E3 ligase activity. Overexpression of GmARI1 significantly enhanced the aluminum tolerance of transgenic Arabidopsis. These findings suggest that GmARI1 encodes a RBR type E3 ligase, which may play important roles in plant tolerance to aluminum stress.
Collapse
Affiliation(s)
- Xiaolian Zhang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Ning Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Pei Chen
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Mengmeng Gao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Juge Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yufeng Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Tuanjie Zhao
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Yan Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| | - Junyi Gai
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, National Center for Soybean Improvement, Key Laboratory for Biology and Genetic Improvement of Soybean (General, Ministry of Agriculture), Nanjing Agricultural University, Nanjing, Jiangsu, China
| |
Collapse
|
190
|
Zhou S, Sun X, Yin S, Kong X, Zhou S, Xu Y, Luo Y, Wang W. The role of the F-box gene TaFBA1 from wheat (Triticum aestivum L.) in drought tolerance. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 84:213-223. [PMID: 25299612 DOI: 10.1016/j.plaphy.2014.09.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 09/29/2014] [Indexed: 05/20/2023]
Abstract
Drought is one of the most important factors limiting plant growth and development. We identified a gene in wheat (Triticum aestivum L.) under drought stress named TaFBA1. TaFBA1 encodes a putative 325-amino-acid F-box protein with a conserved N-terminal F-box domain and a C-terminal AMN1 domain. Real-time RT-PCR analysis revealed that TaFBA1 transcript accumulation was upregulated by high-salinity, water stress, and abscisic acid (ABA) treatment. To evaluate the functions of TaFBA1 in the regulation of drought stress responses, we produced transgenic tobacco lines overexpressing TaFBA1. Under water stress conditions, the transgenic tobacco plants had a higher germination rate, higher relative water content, net photosynthesis rate (Pn), less chlorophyll loss, and less growth inhibition than WT. These results demonstrate the high tolerance of the transgenic plants to drought stress compared to the WT. The enhanced oxidative stress tolerance of these plants, which may be involved in their drought tolerance, was indicated by their lower levels of reactive oxygen species (ROS) accumulation, MDA content, and cell membrane damage under drought stress compared to WT. The antioxidant enzyme activities were higher in the transgenic plants than in WT, which may be related to the upregulated expression of some antioxidant genes via overexpression of TaFBA1.
Collapse
Affiliation(s)
- Shumei Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiudong Sun
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Suhong Yin
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Xiangzhu Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Shan Zhou
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Ying Xu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China
| | - Yin Luo
- School of Life Sciences, East China Normal University, Shanghai 200241, PR China
| | - Wei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Science, Shandong Agricultural University, Tai'an, Shandong 271018, PR China.
| |
Collapse
|
191
|
Koltai H. Receptors, repressors, PINs: a playground for strigolactone signaling. TRENDS IN PLANT SCIENCE 2014; 19:727-33. [PMID: 25037847 DOI: 10.1016/j.tplants.2014.06.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2014] [Revised: 06/13/2014] [Accepted: 06/20/2014] [Indexed: 05/20/2023]
Abstract
Strigolactones, previously identified as active stimuli of seed germination in parasitic plants, are now recognized as a new group of plant hormones that are active in both shoots and roots. Here, we review recent insights into the concepts of strigolactones-signal transduction and their mode of action. Although strigolactones are sensed via a cell-specific reception system, at least some aspects of their activity are conducted in a non-cell-autonomous fashion. Strigolactones also affect trafficking and plasma-membrane localization of the auxin transporter PIN, thereby regulating auxin flux. We present a model for strigolactone-signal transduction that might also explain the integration of strigolactones into other hormone-signaling pathways via the regulation of PIN auxin transporters.
Collapse
Affiliation(s)
- Hinanit Koltai
- Institute of Plant Sciences, ARO, Volcani Center, Bet-Dagan 50250, Israel.
| |
Collapse
|
192
|
Bao Y, Song WM, Jin YL, Jiang CM, Yang Y, Li B, Huang WJ, Liu H, Zhang HX. Characterization of Arabidopsis Tubby-like proteins and redundant function of AtTLP3 and AtTLP9 in plant response to ABA and osmotic stress. PLANT MOLECULAR BIOLOGY 2014; 86:471-83. [PMID: 25168737 DOI: 10.1007/s11103-014-0241-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 08/15/2014] [Indexed: 05/08/2023]
Abstract
Tubby and Tubby-like proteins (TLPs) play essential roles in the development and function of mammal neuronal cells. In addition to the conserved carboxyl (C)-terminal Tubby domain, which is required for their plasma membrane (PM) tethering, plant TLPs also possess an amino (N)-terminal F-box domain to interact with specific Arabidopsis Skp1-like (ASK) proteins as functional SCF-type E3 ligases. Here, we report the molecular characterization of Arabidopsis TLPs (AtTLPs). β-Glucuronidase staining showed overlapped but distinct expression patterns of AtTLPs in Arabidopsis. Yeast two-hybrid assays further revealed that AtTLP1, AtTLP3, AtTLP6, AtTLP7, AtTLP9, AtTLP10 and AtTLP11 all interacted with specific ASKs, but AtTLP2, AtTLP5 and AtTLP8 did not. Subcellular localization observations in both Arabidopsis protoplasts and tobacco pollen tubes indicated that all GFP-AtTLP fusion proteins, except GFP-AtTLP8 which lacks the conserved phosphatidylinositol 4,5-bisphosphate binding sites, were targeted to the PM. Detailed studies on AtTLP3 demonstrated that AtTLP3 is a PM-tethered PIP2 binding protein which functions redundantly with AtTLP9 in abscisic acid (ABA)- and osmotic stress-mediated seed germination. Our results suggest that AtTLPs possibly work in multiple physiological and developmental processes in Arabidopsis, and AtTLP3 is also involved in ABA signaling pathway like AtTLP9 during seed germination and early seedling growth.
Collapse
Affiliation(s)
- Yan Bao
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai, 200032, China
| | | | | | | | | | | | | | | | | |
Collapse
|
193
|
Sadhukhan A, Panda SK, Sahoo L. The cowpea RING ubiquitin ligase VuDRIP interacts with transcription factor VuDREB2A for regulating abiotic stress responses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 83:51-6. [PMID: 25090086 DOI: 10.1016/j.plaphy.2014.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Accepted: 07/07/2014] [Indexed: 05/22/2023]
Abstract
Cowpea (Vigna unguiculata L. Walp) is an important grain legume cultivated in drought-prone parts of the world, having higher tolerance to heat and drought than many other crops. The transcription factor, Dehydration-Responsive Element-Binding protein 2A (DREB2A), controls expression of many genes involved in osmotic and heat stress responses of plants. In Arabidopsis, DREB2A-interacting proteins (DRIPs), which function as E3 ubiquitin ligases (EC 6.3.2.19), regulate the stability of DREB2A by targeting it for proteasome-mediated degradation. In this study, we cloned the cowpea ortholog of DRIP (VuDRIP) using PCR based methods. The 1614 bp long VuDRIP mRNA encoded a protein of 433 amino acids having a C3HC4-type Really Interesting New Gene (RING) domain in the N-terminus and a C-terminal conserved region, similar to Arabidopsis DRIP1 and DRIP2. We found VuDRIP up-regulation in response to various abiotic stresses and phytohormones. Using yeast (Saccharomyces cerevisae) two-hybrid analysis, VuDRIP was identified as a VuDREB2A-interacting protein. The results indicate negative regulation of VuDREB2A by ubiquitin ligases in cowpea similar to Arabidopsis along with their other unknown roles in stress and hormone signaling pathways.
Collapse
Affiliation(s)
- Ayan Sadhukhan
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| | - Sanjib Kumar Panda
- Department of Life Science and Bioinformatics, Assam University, Silchar 788011, India.
| | - Lingaraj Sahoo
- Department of Biotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
194
|
Kapulnik Y, Koltai H. Strigolactone involvement in root development, response to abiotic stress, and interactions with the biotic soil environment. PLANT PHYSIOLOGY 2014; 166:560-9. [PMID: 25037210 PMCID: PMC4213088 DOI: 10.1104/pp.114.244939] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Accepted: 07/14/2014] [Indexed: 05/02/2023]
Abstract
Strigolactones, recently discovered as plant hormones, regulate the development of different plant parts. In the root, they regulate root architecture and affect root hair length and density. Their biosynthesis and exudation increase under low phosphate levels, and they are associated with root responses to these conditions. Their signaling pathway in the plant includes protein interactions and ubiquitin-dependent repressor degradation. In the root, they lead to changes in actin architecture and dynamics as well as localization of the PIN-FORMED auxin transporter in the plasma membrane. Strigolactones are also involved with communication in the rhizosphere. They are necessary for germination of parasitic plant seeds, they enhance hyphal branching of arbuscular mycorrhizal fungi of the Glomus and Gigaspora spp., and they promote rhizobial symbiosis. This review focuses on the role played by strigolactones in root development, their response to nutrient deficiency, and their involvement with plant interactions in the rhizosphere.
Collapse
Affiliation(s)
- Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
195
|
Vannini C, Bracale M, Crinelli R, Marconi V, Campomenosi P, Marsoni M, Scoccianti V. Proteomic analysis of MG132-treated germinating pollen reveals expression signatures associated with proteasome inhibition. PLoS One 2014; 9:e108811. [PMID: 25265451 PMCID: PMC4181863 DOI: 10.1371/journal.pone.0108811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 09/04/2014] [Indexed: 11/19/2022] Open
Abstract
Chemical inhibition of the proteasome has been previously found to effectively impair pollen germination and tube growth in vitro. However, the mediators of these effects at the molecular level are unknown. By performing 2DE proteomic analysis, 24 differentially expressed protein spots, representing 14 unique candidate proteins, were identified in the pollen of kiwifruit (Actinidia deliciosa) germinated in the presence of the MG132 proteasome inhibitor. qPCR analysis revealed that 11 of these proteins are not up-regulated at the mRNA level, but are most likely stabilized by proteasome inhibition. These differentially expressed proteins are predicted to function in various pathways including energy and lipid metabolism, cell wall synthesis, protein synthesis/degradation and stress responses. In line with this evidence, the MG132-induced changes in the proteome were accompanied by an increase in ATP and ROS content and by an alteration in fatty acid composition.
Collapse
Affiliation(s)
- Candida Vannini
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Marcella Bracale
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Rita Crinelli
- Dipartimento di Scienze Biomolecolari, Università di Urbino “Carlo Bo”, Urbino, Italy
| | - Valerio Marconi
- Dipartimento di Scienze Biomolecolari, Università di Urbino “Carlo Bo”, Urbino, Italy
| | - Paola Campomenosi
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Milena Marsoni
- Dipartimento di Biotecnologie e Scienze della Vita, Università degli Studi dell'Insubria, Varese, Italy
| | - Valeria Scoccianti
- Dipartimento di Scienze della Terra, della Vita e dell'Ambiente, Sezione di Biologia Vegetale, Università di Urbino “Carlo Bo”, Urbino, Italy
| |
Collapse
|
196
|
Yuan H, Meng D, Gu Z, Li W, Wang A, Yang Q, Zhu Y, Li T. A novel gene, MdSSK1, as a component of the SCF complex rather than MdSBP1 can mediate the ubiquitination of S-RNase in apple. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:3121-31. [PMID: 24759884 PMCID: PMC4071834 DOI: 10.1093/jxb/eru164] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
As a core factor in S-RNase-based gametophytic self-incompatibility (GSI), the SCF (SKP1-Cullin1-F-box-Rbx1) complex (including pollen determinant SLF, S-locus-F-box) functions as an E3 ubiquitin ligase on non-self S-RNase. The SCF complex is formed by SKP1 bridging between SLF, CUL1, and Rbx1; however, it is not known whether an SCF complex lacking SKP1 can mediate the ubiquitination of S-RNase. Three SKP1-like genes from pollen were cloned based on the structural features of the SLF-interacting-SKP1-like (SSK) gene and the 'Golden Delicious' apple genome. These genes have a motif of five amino acids following the standard 'WAFE' at the C terminal and, in addition, contain eight sheets and two helices. All three genes were expressed exclusively in pollen. In the yeast two-hybrid and pull-down assays only one was found to interact with MdSFBB and MdCUL1, suggesting it is the SLF-interacting SKP1-like gene in apple which was named MdSSK1. In vitro experiments using MdSSK1, S2-MdSFBB1 (S2-Malus domestica S-locus-F-box brother) and MdCUL1 proteins incubated with S 2-RNase and ubiquitin revealed that the SCF complex ubiquitinylates S-RNase in vitro, while MdSBP1 (Malus domestica S-RNase binding protein 1) could not functionally replace MdSSK1 in the SCF complex in ubiquitinylating S-RNase. According to the above experiments, MdSBP1 is probably the only factor responsible for recognition with S-RNase, while not a component of the SCF complex, and an SCF complex containing MdSSK1 is required for mediating the ubiquitination of S-RNase.
Collapse
Affiliation(s)
- Hui Yuan
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Dong Meng
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Zhaoyu Gu
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Wei Li
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Aide Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qing Yang
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Yuandi Zhu
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| | - Tianzhong Li
- Laboratory of Fruit Cell and Molecular Breeding, College of Agronomy and Bio-tech, China Agricultural University, Beijing 100193, China
| |
Collapse
|
197
|
Dukowic-Schulze S, Sundararajan A, Mudge J, Ramaraj T, Farmer AD, Wang M, Sun Q, Pillardy J, Kianian S, Retzel EF, Pawlowski WP, Chen C. The transcriptome landscape of early maize meiosis. BMC PLANT BIOLOGY 2014; 14:118. [PMID: 24885405 PMCID: PMC4032173 DOI: 10.1186/1471-2229-14-118] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 04/28/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND A major step in the higher plant life cycle is the decision to leave the mitotic cell cycle and begin the progression through the meiotic cell cycle that leads to the formation of gametes. The molecular mechanisms that regulate this transition and early meiosis remain largely unknown. To gain insight into gene expression features during the initiation of meiotic recombination, we profiled early prophase I meiocytes from maize (Zea mays) using capillary collection to isolate meiocytes, followed by RNA-seq. RESULTS We detected ~2,000 genes as preferentially expressed during early meiotic prophase, most of them uncharacterized. Functional analysis uncovered the importance of several cellular processes in early meiosis. Processes significantly enriched in isolated meiocytes included proteolysis, protein targeting, chromatin modification and the regulation of redox homeostasis. The most significantly up-regulated processes in meiocytes were processes involved in carbohydrate metabolism. Consistent with this, many mitochondrial genes were up-regulated in meiocytes, including nuclear- and mitochondrial-encoded genes. The data were validated with real-time PCR and in situ hybridization and also used to generate a candidate maize homologue list of known meiotic genes from Arabidopsis. CONCLUSIONS Taken together, we present a high-resolution analysis of the transcriptome landscape in early meiosis of an important crop plant, providing support for choosing genes for detailed characterization of recombination initiation and regulation of early meiosis. Our data also reveal an important connection between meiotic processes and altered/increased energy production.
Collapse
Affiliation(s)
| | | | - Joann Mudge
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | | | - Andrew D Farmer
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Minghui Wang
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14850, USA
| | - Qi Sun
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14850, USA
| | - Jaroslaw Pillardy
- Computational Biology Service Unit, Cornell University, Ithaca, NY 14850, USA
| | - Shahryar Kianian
- USDA-ARS Cereal Disease Laboratory, University of Minnesota, St. Paul, MN 55108, USA
| | - Ernest F Retzel
- National Center for Genome Resources, Santa Fe, NM 87505, USA
| | - Wojciech P Pawlowski
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY 14850, USA
| | - Changbin Chen
- Department of Horticultural Science, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
198
|
Gao DY, Xu ZS, He Y, Sun YW, Ma YZ, Xia LQ. Functional analyses of an E3 ligase gene AIP2 from wheat in Arabidopsis revealed its roles in seed germination and pre-harvest sprouting. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:480-91. [PMID: 24279988 DOI: 10.1111/jipb.12135] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 11/16/2013] [Indexed: 05/10/2023]
Abstract
Pre-harvest sprouting (PHS) seriously affects wheat yield and quality of the grain. ABI3 is a key factor in the activation of seed development and repression of germination in Arabidopsis. An ABI3-interacting protein (AIP2) could polyubiquitinate ABI3, impair seed dormancy and promote seed germination in Arabidopsis. In this study, two wheat AIP2 genes, TaAIP2A and TaAIP2B, were isolated. Subcellular localization assay and yeast two-hybrid analysis revealed that TaAIP2A and TaAIP2B may function through interaction with wheat Viviporous-1 (TaVp1). The transcripts TaAIP2A and TaAIP2B were more abundant in wheat PHS susceptible cultivars than that of resistant ones, and decreased gradually following seed development. Expression of TaAIP2A and TaAIP2B in Arabidopsis aip2-1 mutant lines resulted in earlier flowering, promotion of seed germination, and reduced ABA sensitivity, respectively, somehow mimicking the phenotype of the wild type, with TaAIP2B having a stronger role in these aspects. Furthermore, the expression of upstream genes ABI1 and ABI2 were upregulated, whereas that of downstream genes ABI3 and ABI5 were downregulated in both TaAIP2A and TaAIP2B complemented lines upon ABA treatment. These results suggested that wheat AIP2s could negatively regulate the ABA signaling pathway and play important roles in seed germination, and thus wheat PHS resistance finally.
Collapse
Affiliation(s)
- Dong-Yao Gao
- Institute of Crop Sciences/The National Key Facility for Crop Gene Resources and Genetic Improvement, the Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081, China; Agricultural and Sideline Base, Unit 65426 of the People's Liberation Army, Hegang, 154107, China
| | | | | | | | | | | |
Collapse
|
199
|
Lv Q, Zhong Y, Wang Y, Wang Z, Zhang L, Shi J, Wu Z, Liu Y, Mao C, Yi K, Wu P. SPX4 Negatively Regulates Phosphate Signaling and Homeostasis through Its Interaction with PHR2 in Rice. THE PLANT CELL 2014; 26:1586-1597. [PMID: 24692424 PMCID: PMC4036573 DOI: 10.1105/tpc.114.123208] [Citation(s) in RCA: 228] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Revised: 03/02/2014] [Accepted: 03/18/2014] [Indexed: 05/18/2023]
Abstract
PHR2, a central regulator of phosphate signaling in rice, enhanced the expression of phosphate starvation-induced (PSI) genes and resulted in the enhancement of Pi acquisition under Pi deficiency stress. This occurred via PHR2 binding to a cis-element named the PHR1 binding sequences. However, the transcription level of PHR2 was not responsive to Pi starvation. So how is activity of transcription factor PHR2 adjusted to adapt diverse Pi status? Here, we identify an SPX family protein, Os-SPX4 (SPX4 hereafter), involving in Pi starvation signaling and acting as a negative regulator of PHR2. SPX4 is shown to be a fast turnover protein. When Pi is sufficient, through its interaction with PHR2, SPX4 inhibits the binding of PHR2 to its cis-element and reduces the targeting of PHR2 to the nucleus. However, when plants grow under Pi deficiency, the degradation of SPX4 is accelerated through the 26S proteasome pathway, thereby releasing PHR2 into the nucleus and activating the expression of PSI genes. Because the level of SPX4 is responsive to Pi concentration and SPX4 interacts with PHR2 and regulates its activity, this suggests that SPX4 senses the internal Pi concentration under diverse Pi conditions and regulates appropriate responses to maintain Pi homeostasis in plants.
Collapse
Affiliation(s)
- Qundan Lv
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yongjia Zhong
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yuguang Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhiye Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Li Zhang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Jing Shi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Zhongchang Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Yu Liu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Chuanzao Mao
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Keke Yi
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| | - Ping Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Science, Zhejiang University, Hangzhou 310058, People's Republic of China
| |
Collapse
|
200
|
Walsh CK, Sadanandom A. Ubiquitin chain topology in plant cell signaling: a new facet to an evergreen story. FRONTIERS IN PLANT SCIENCE 2014; 5:122. [PMID: 24744767 PMCID: PMC3978257 DOI: 10.3389/fpls.2014.00122] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Accepted: 03/13/2014] [Indexed: 05/24/2023]
Abstract
Ubiquitin is a peptide modifier able to form polymers of varying length and linkage as part of a powerful signaling system. Perhaps the best-known aspect of this protein's function is as the driver of targeted protein degradation through the Ubiquitin Proteasome System (UPS). Through the formation of lysine 48-linked polyubiquitin chains, it is able to direct the degradation of tagged proteins by the 26S proteasome, indirectly controlling many processes within the cell. However, recent research has indicated that ubiquitin performs a multitude of other roles within the cell beyond protein degradation. It is able to form 6 other "atypical" linkages though lysine residues at positions 6, 11, 27, 29, 33, and 63. These atypical chains perform a range of diverse functions, including the regulation of iron uptake in response to perceived deficiency, repair of double stranded breaks in the DNA, and regulation of the auxin response through the non-proteasomal degradation of auxin efflux carrier protein PIN1. This review explores the role ubiquitin chain topology plays in plant cellular function. We aim to highlight the importance of these varying functions and the future challenges to be encountered within this field.
Collapse
Affiliation(s)
| | - Ari Sadanandom
- *Correspondence: Ari Sadanandom, School of Biological and Biomedical Sciences, University of Durham, South Road, Durham, DH1 3LE, UK e-mail:
| |
Collapse
|