151
|
Chang Z, Chen Z, Yan W, Xie G, Lu J, Wang N, Lu Q, Yao N, Yang G, Xia J, Tang X. An ABC transporter, OsABCG26, is required for anther cuticle and pollen exine formation and pollen-pistil interactions in rice. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 253:21-30. [PMID: 27968990 DOI: 10.1016/j.plantsci.2016.09.006] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 09/15/2016] [Accepted: 09/16/2016] [Indexed: 05/21/2023]
Abstract
Wax, cutin and sporopollenin are essential components for the formation of the anther cuticle and the pollen exine, respectively. Their lipid precursors are synthesized by secretory tapetal cells and transported to the anther and microspore surface for deposition. However, the molecular mechanisms involved in the formation of the anther cuticle and pollen exine are poorly understood in rice. Here, we characterized a rice male sterile mutant osabcg26. Molecular cloning and sequence analysis revealed a point mutation in the gene encoding an ATP binding cassette transporter G26 (OsABCG26). OsABCG26 was specifically expressed in the anther and pistil. Cytological analysis revealed defects in tapetal cells, lipidic Ubisch bodies, pollen exine, and anther cuticle in the osabcg26 mutant. Expression of some key genes involved in lipid metabolism and transport, such as UDT1, WDA1, CYP704B2, OsABCG15, OsC4 and OsC6, was significantly altered in osabcg26 anther, possibly due to a disturbance in the homeostasis of anther lipid metabolism and transport. Additionally, wild-type pollen tubes showed a growth defect in osabcg26 pistils, leading to low seed setting in osabcg26 cross-pollinated with the wild-type pollen. These results indicated that OsABCG26 plays an important role in anther cuticle and pollen exine formation and pollen-pistil interactions in rice.
Collapse
Affiliation(s)
- Zhenyi Chang
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China; Guangdong Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Zhufeng Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Wei Yan
- School of Life Sciences, Capital Normal University, Beijing 100048, China
| | - Gang Xie
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Jiawei Lu
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Na Wang
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Qiqing Lu
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China
| | - Nan Yao
- School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Guangzhe Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China
| | - Jixing Xia
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning 530005, China.
| | - Xiaoyan Tang
- Shenzhen Institute of Molecular Crop Design, Shenzhen 518107, China; Guangdong Key Lab of Biotechnology for Plant Development, College of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
152
|
Fei Q, Yang L, Liang W, Zhang D, Meyers BC. Dynamic changes of small RNAs in rice spikelet development reveal specialized reproductive phasiRNA pathways. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6037-6049. [PMID: 27702997 PMCID: PMC5100018 DOI: 10.1093/jxb/erw361] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Dissection of the genetic pathways and mechanisms by which anther development occurs in grasses is crucial for both a basic understanding of plant development and for examining traits of agronomic importance such as male sterility. In rice, MULTIPLE SPOROCYTES1 (MSP1), a leucine-rich-repeat receptor kinase, plays an important role in anther development by limiting the number of sporocytes. OsTDL1a (a TPD1-like gene in rice) encodes a small protein that acts as a cofactor of MSP1 in the same regulatory pathway. In this study, we analyzed small RNA and mRNA changes in different stages of spikelets from wild-type rice, and from msp1 and ostdl1a mutants. Analysis of the small RNA data identified miRNAs demonstrating differential abundances. miR2275 was depleted in the two rice mutants; this miRNA is specifically enriched in anthers and functions to trigger the production of 24-nt phased secondary siRNAs (phasiRNAs) from PHAS loci. We observed that the 24-nt phasiRNAs as well as their precursor PHAS mRNAs were also depleted in the two mutants. An analysis of co-expression identified three Argonaute-encoding genes (OsAGO1d, OsAGO2b, and OsAGO18) that accumulate transcripts coordinately with phasiRNAs, suggesting a functional relationship. By mRNA in situ analysis, we demonstrated a strong correlation between the spatiotemporal pattern of these OsAGO transcripts and phasiRNA accumulations.
Collapse
Affiliation(s)
- Qili Fei
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
| | - Li Yang
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- School of Agriculture, Food and Wine, University of Adelaide, South Australia 5064, Australia
| | - Blake C Meyers
- Department of Plant & Soil Sciences and Delaware Biotechnology Institute, University of Delaware, Newark, DE 19711, USA
- Donald Danforth Plant Science Center, 975 North Warson Road, St. Louis, MO 63132, USA
- University of Missouri - Columbia, Division of Plant Sciences, 52 Agriculture Lab, Columbia, MO 65211, USA
| |
Collapse
|
153
|
Yu J, Meng Z, Liang W, Behera S, Kudla J, Tucker MR, Luo Z, Chen M, Xu D, Zhao G, Wang J, Zhang S, Kim YJ, Zhang D. A Rice Ca2+ Binding Protein Is Required for Tapetum Function and Pollen Formation. PLANT PHYSIOLOGY 2016; 172:1772-1786. [PMID: 27663411 PMCID: PMC5100779 DOI: 10.1104/pp.16.01261] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/19/2016] [Indexed: 05/21/2023]
Abstract
In flowering plants, successful male reproduction requires the sophisticated interaction between somatic anther wall layers and reproductive cells. Timely degradation of the innermost tissue of the anther wall layer, the tapetal layer, is critical for pollen development. Ca2+ is a well-known stimulus for plant development, but whether it plays a role in affecting male reproduction remains elusive. Here we report a role of Defective in Exine Formation 1 (OsDEX1) in rice (Oryza sativa), a Ca2+ binding protein, in regulating rice tapetal cell degradation and pollen formation. In osdex1 anthers, tapetal cell degeneration is delayed and degradation of the callose wall surrounding the microspores is compromised, leading to aborted pollen formation and complete male sterility. OsDEX1 is expressed in tapetal cells and microspores during early anther development. Recombinant OsDEX1 is able to bind Ca2+ and regulate Ca2+ homeostasis in vitro, and osdex1 exhibited disturbed Ca2+ homeostasis in tapetal cells. Phylogenetic analysis suggested that OsDEX1 may have a conserved function in binding Ca2+ in flowering plants, and genetic complementation of pollen wall defects of an Arabidopsis (Arabidopsis thaliana) dex1 mutant confirmed its evolutionary conservation in pollen development. Collectively, these findings suggest that OsDEX1 plays a fundamental role in the development of tapetal cells and pollen formation, possibly via modulating the Ca2+ homeostasis during pollen development.
Collapse
Affiliation(s)
- Jing Yu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Zhaolu Meng
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Smrutisanjita Behera
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Jörg Kudla
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Matthew R Tucker
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Zhijing Luo
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Mingjiao Chen
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Dawei Xu
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Guochao Zhao
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Jie Wang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Siyi Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Yu-Jin Kim
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.)
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K)
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (J.Y., Z.M., W.L., Z.L., M.C., D.X., G.Z., J.W., S.Z., Y.-J.K., D.Z.);
- Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Schlossplatz 7, 48149 Münster, Germany (J.K.); Department of Oriental Medicinal Biotechnology, College of Life Science, Kyung Hee University, Yongin 446-701, Republic of Korea (Y.-J.K);
- Indian Institute of Chemical Biology, Council of Scientific and Industrial Research, 700 032 West Bengal, India (S.B.); and
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia (M.R.T., D.Z.)
| |
Collapse
|
154
|
Nguyen TD, Moon S, Nguyen VNT, Gho Y, Chandran AKN, Soh MS, Song JT, An G, Oh SA, Park SK, Jung KH. Genome-wide identification and analysis of rice genes preferentially expressed in pollen at an early developmental stage. PLANT MOLECULAR BIOLOGY 2016; 92:71-88. [PMID: 27356912 DOI: 10.1007/s11103-016-0496-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/23/2016] [Indexed: 06/06/2023]
Abstract
Microspore production using endogenous developmental programs has not been well studied. The main limitation is the difficulty in identifying genes preferentially expressed in pollen grains at early stages. To overcome this limitation, we collected transcriptome data from anthers and microspore/pollen and performed meta-expression analysis. Subsequently, we identified 410 genes showing preferential expression patterns in early developing pollen samples of both japonica and indica cultivars. The expression patterns of these genes are distinguishable from genes showing pollen mother cell or tapetum-preferred expression patterns. Gene Ontology enrichment and MapMan analyses indicated that microspores in rice are closely linked with protein degradation, nucleotide metabolism, and DNA biosynthesis and regulation, while the pollen mother cell or tapetum are strongly associated with cell wall metabolism, lipid metabolism, secondary metabolism, and RNA biosynthesis and regulation. We also generated transgenic lines under the control of the promoters of eight microspore-preferred genes and confirmed the preferred expression patterns in plants using the GUS reporting system. Furthermore, cis-regulatory element analysis revealed that pollen specific elements such as POLLEN1LELAT52, and 5659BOXLELAT5659 were commonly identified in the promoter regions of eight rice genes with more frequency than estimation. Our study will provide new sights on early pollen development in rice, a model crop plant.
Collapse
Affiliation(s)
- Tien Dung Nguyen
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Sunok Moon
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Van Ngoc Tuyet Nguyen
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Yunsil Gho
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Anil Kumar Nalini Chandran
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Moon-Soo Soh
- Department of Molecular Biology, Sejong University, Seoul, 143-747, Republic of Korea
| | - Jong Tae Song
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Gynheung An
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea
| | - Sung Aeong Oh
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea
| | - Soon Ki Park
- School of Applied Biosciences, Kyungpook National University, Daegu, 702-701, Republic of Korea.
| | - Ki-Hong Jung
- Graduate School of Biotechnology and Crop Biotech Institute, Kyung Hee University, Yongin, 446-701, Republic of Korea.
| |
Collapse
|
155
|
Chawla M, Verma V, Kapoor M, Kapoor S. A novel application of periodic acid-Schiff (PAS) staining and fluorescence imaging for analysing tapetum and microspore development. Histochem Cell Biol 2016; 147:103-110. [PMID: 27565968 DOI: 10.1007/s00418-016-1481-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/18/2016] [Indexed: 10/21/2022]
Abstract
The precisely timed process of tapetum development and its degradation involving programmed cell death is an important molecular event during anther development. Through its degeneration, the tapetum not only provides nutritive substances to the developing microspores but also contributes to the pollen wall by way of sporopollenin, which is a complex mixture of biopolymers, containing long-chain fatty acids, phenylpropanoids, phenolics and traces of carotenoids. A number of dyes and staining methods have been used to visualize tapetal structure and its components by using light microscopy techniques, but none of these methods could differentially stain and thus distinguish tapetal cells from other cell types of anther wall. While analysing progression of tapetum development in different cell types in rice anthers, we discovered a unique property of periodic acid-Schiff (PAS) stain, which upon interaction with some specific component(s) in tapetal cells and developing microspores emits fluorescence at ~620 nm. In rice anthers, the PAS-associated fluorescence could be observed initially in tapetum and developing microspores, and subsequent to degeneration of tapetum, the fluorescence was found to emanate mainly from the pollen wall. We also show that PAS-dependent fluorescence in tapetal cells is distinct from the autofluorescence resulting from pollen wall components and is also not caused by interaction of PAS with pollen starch. Henceforth, this novel fluorescence property of PAS stain could prove to be a new tool in the toolkit of developmental biologists to analyse different aspects of tapetum development and its degeneration with little more ease and specificity.
Collapse
Affiliation(s)
- Mrinalini Chawla
- Department of Plant Molecular Biology and Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
| | - Vibha Verma
- Department of Plant Molecular Biology and Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India
| | - Meenu Kapoor
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, 110078, India
| | - Sanjay Kapoor
- Department of Plant Molecular Biology and Interdisciplinary Centre for Plant Genomics, University of Delhi South Campus, New Delhi, 110021, India.
| |
Collapse
|
156
|
Yang L, Qian X, Chen M, Fei Q, Meyers BC, Liang W, Zhang D. Regulatory Role of a Receptor-Like Kinase in Specifying Anther Cell Identity. PLANT PHYSIOLOGY 2016; 171:2085-100. [PMID: 27208278 PMCID: PMC4936546 DOI: 10.1104/pp.16.00016] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 05/18/2016] [Indexed: 05/09/2023]
Abstract
In flowering plants, sequential formation of anther cell types is a highly ordered process that is essential for successful meiosis and sexual reproduction. Differentiation of meristematic cells and cell-cell communication are proposed to coordinate anther development. Among the proposed mechanisms of cell fate specification are cell surface-localized Leu-rich repeat receptor-like kinases (LRR-RLKs) and their putative ligands. Here, we present the genetic and biochemical evidence that a rice (Oryza sativa) LRR-RLK, MSP1 (MULTIPLE SPOROCYTE1), interacts with its ligand OsTDL1A (TPD1-like 1A), specifying the cell identity of anther wall layers and microsporocytes. An in vitro assay indicates that the 21-amino acid peptide of OsTDL1A has a physical interaction with the LRR domain of MSP1. The ostdl1a msp1 double mutant showed the defect in lacking middle layers and tapetal cells and having an increased number of microsporocytes similar to the ostdl1a or msp1 single mutant, indicating the same pathway of OsTDL1A-MSP1 in regulating anther development. Genome-wide expression profiles showed the altered expression of genes encoding transcription factors, particularly basic helix-loop-helix and basic leucine zipper domain transcription factors in ostdl1a and msp1 Among these reduced expressed genes, one putatively encodes a TGA (TGACGTCA cis-element-binding protein) factor OsTGA10, and another one encodes a plant-specific CC-type glutaredoxin OsGrx_I1. OsTGA10 was shown to interact with OsGrx_I1, suggesting that OsTDL1A-MSP1 signaling specifies anther cell fate directly or indirectly affecting redox status. Collectively, these data point to a central role of the OsTDL1A-MSP1 signaling pathway in specifying somatic cell identity and suppressing overproliferation of archesporial cells in rice.
Collapse
Affiliation(s)
- Li Yang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Xiaoling Qian
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Qili Fei
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Blake C Meyers
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Y., X.Q., M.C., W.L., D.Z.); Department of Plant and Soil Sciences, Delaware Biotechnology Institute, University of Delaware, Newark, Delaware 19711 (Q.F., B.C.M.); Donald Danforth Plant Science Center, St. Louis, Missouri 63132 (B.C.M.); Key Laboratory of Crop Marker-Assisted Breeding of Huaian Municipality, Jiangsu Collaborative Innovation Center of Regional Modern Agriculture and Environmental Protection, Huaian 223300, China (W.L., D.Z.); and School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia (D.Z.)
| |
Collapse
|
157
|
Daneva A, Gao Z, Van Durme M, Nowack MK. Functions and Regulation of Programmed Cell Death in Plant Development. Annu Rev Cell Dev Biol 2016; 32:441-468. [PMID: 27298090 DOI: 10.1146/annurev-cellbio-111315-124915] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Programmed cell death (PCD) is a collective term for diverse processes causing an actively induced, tightly controlled cellular suicide. PCD has a multitude of functions in the development and health of multicellular organisms. In comparison to intensively studied forms of animal PCD such as apoptosis, our knowledge of the regulation of PCD in plants remains limited. Despite the importance of PCD in plant development and as a response to biotic and abiotic stresses, the complex molecular networks controlling different forms of plant PCD are only just beginning to emerge. With this review, we provide an update on the considerable progress that has been made over the last decade in our understanding of PCD as an inherent part of plant development. We highlight both functions of developmental PCD and central aspects of its molecular regulation.
Collapse
Affiliation(s)
- Anna Daneva
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zhen Gao
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Matthias Van Durme
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Moritz K Nowack
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium; .,Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
158
|
Cui J, You C, Zhu E, Huang Q, Ma H, Chang F. Feedback Regulation of DYT1 by Interactions with Downstream bHLH Factors Promotes DYT1 Nuclear Localization and Anther Development. THE PLANT CELL 2016; 28:1078-93. [PMID: 27113773 PMCID: PMC4904671 DOI: 10.1105/tpc.15.00986] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 04/23/2016] [Indexed: 05/03/2023]
Abstract
Transcriptional regulation is one of the most important mechanisms controlling development and cellular functions in plants and animals. The Arabidopsis thaliana bHLH transcription factor (TF) DYSFUNCTIONL TAPETUM1 (DYT1) is required for normal male fertility and anther development and activates the expression of the bHLH010/bHLH089/bHLH091 genes. Here, we showed that DYT1 is localized to both the cytoplasm and nucleus at anther stage 5 but specifically to the nucleus at anther stage 6 and onward. The bHLH010/bHLH089/bHLH091 proteins have strong nuclear localization signals, interact with DYT1, and facilitate the nuclear localization of DYT1. We further found that the conserved C-terminal BIF domain of DYT1 is required for its dimerization, nuclear localization, transcriptional activation activity, and function in anther development. Interestingly, when the BIF domain of DYT1 was replaced with that of bHLH010, the DYT1(N)-bHLH010(BIF) chimeric protein shows nuclear-preferential localization at anther stage 5 but could not fully rescue the dyt1-3 phenotype, suggesting that the normal spatio-temporal subcellular localization of DYT1 is important for DYT1 function and/or that the BIF domains from different bHLH members might be functionally distinct. Our results support an important positive feedback regulatory mechanism whereby downstream TFs increase the function of an upstream TF by enhancing its nucleus localization through the BIF domain.
Collapse
Affiliation(s)
- Jie Cui
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Engao Zhu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Qiang Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China Center for Evolutionary Biology, Institutes of Biomedical Sciences, Fudan University, Shanghai 200438, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China Ministry of Education Key Laboratory of Biodiversity Sciences and Ecological Engineering and Institute of Biodiversity Sciences, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai 200438, China
| |
Collapse
|
159
|
Walbot V, Egger RL. Pre-Meiotic Anther Development: Cell Fate Specification and Differentiation. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:365-95. [PMID: 26735065 DOI: 10.1146/annurev-arplant-043015-111804] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Research into anther ontogeny has been an active and developing field, transitioning from a strictly lineage-based view of cellular differentiation events to a more complex understanding of cell fate specification. Here we describe the modern interpretation of pre-meiotic anther development, from the earliest cell specifications within the anther lobes through SPL/NZZ-, MSP1-, and MEL1-dependent pathways as well as the initial setup of the abaxial and adaxial axes and outgrowth of the anther lobes. We then continue with a look at the known information regarding further differentiation of the somatic layers of the anther (the epidermis, endothecium, middle layer, and tapetum), with an emphasis on male-sterile mutants identified as defective in somatic cell specification. We also describe the differences in developmental stages among species and use this information to discuss molecular studies that have analyzed transcriptome, proteome, and small-RNA information in the anther.
Collapse
Affiliation(s)
- Virginia Walbot
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| | - Rachel L Egger
- Department of Biology, Stanford University, Stanford, California 94305-5020; ,
| |
Collapse
|
160
|
Huang CK, Sie YS, Chen YF, Huang TS, Lu CA. Two highly similar DEAD box proteins, OsRH2 and OsRH34, homologous to eukaryotic initiation factor 4AIII, play roles of the exon junction complex in regulating growth and development in rice. BMC PLANT BIOLOGY 2016; 16:84. [PMID: 27071313 PMCID: PMC4830029 DOI: 10.1186/s12870-016-0769-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Accepted: 04/06/2016] [Indexed: 05/10/2023]
Abstract
BACKGROUND The exon junction complex (EJC), which contains four core components, eukaryotic initiation factor 4AIII (eIF4AIII), MAGO/NASHI (MAGO), Y14/Tsunagi/RNA-binding protein 8A, and Barentsz/Metastatic lymph node 51, is formed in both nucleus and cytoplasm, and plays important roles in gene expression. Genes encoding core EJC components have been found in plants, including rice. Currently, the functional characterizations of MAGO and Y14 homologs have been demonstrated in rice. However, it is still unknown whether eIF4AIII is essential for the functional EJC in rice. RESULTS This study investigated two DEAD box RNA helicases, OsRH2 and OsRH34, which are homologous to eIF4AIII, in rice. Amino acid sequence analysis indicated that OsRH2 and OsRH34 had 99 % identity and 100 % similarity, and their gene expression patterns were similar in various rice tissues, but the level of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings. From bimolecular fluorescence complementation results, OsRH2 and OsRH34 interacted physically with OsMAGO1 and OsY14b, respectively, which indicated that both of OsRH2 and OsRH34 were core components of the EJC in rice. To study the biological roles of OsRH2 and OsRH34 in rice, transgenic rice plants were generated by RNA interference. The phenotypes of three independent OsRH2 and OsRH34 double-knockdown transgenic lines included dwarfism, a short internode distance, reproductive delay, defective embryonic development, and a low seed setting rate. These phenotypes resembled those of mutants with gibberellin-related developmental defects. In addition, the OsRH2 and OsRH34 double-knockdown transgenic lines exhibited the accumulation of unspliced rice UNDEVELOPED TAPETUM 1 mRNA. CONCLUSIONS Rice contains two eIF4AIII paralogous genes, OsRH2 and OsRH34. The abundance of OsRH2 mRNA was about 58-fold higher than that of OsRH34 mRNA in seedlings, suggesting that the OsRH2 is major eIF4AIII in rice. Both OsRH2 and OsRH34 are core components of the EJC, and participate in regulating of plant height, pollen, and seed development in rice.
Collapse
Affiliation(s)
- Chun-Kai Huang
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Yi-Syuan Sie
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Yu-Fu Chen
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Tian-Sheng Huang
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| | - Chung-An Lu
- Department of Life Sciences, National Central University, Jhongli District, Taoyuan City 32001 Taiwan (ROC)
| |
Collapse
|
161
|
Involvement of a universal amino acid synthesis impediment in cytoplasmic male sterility in pepper. Sci Rep 2016; 6:23357. [PMID: 26987793 PMCID: PMC4796900 DOI: 10.1038/srep23357] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 03/04/2016] [Indexed: 01/17/2023] Open
Abstract
To explore the mechanisms of pepper (Capsicum annuum L.) cytoplasmic male sterility (CMS), we studied the different maturation processes of sterile and fertile pepper anthers. A paraffin section analysis of the sterile anthers indicated an abnormality of the tapetal layer and an over-vacuolization of the cells. The quantitative proteomics results showed that the expression of histidinol dehydrogenase (HDH), dihydroxy-acid dehydratase (DAD), aspartate aminotransferase (ATAAT), cysteine synthase (CS), delta-1-pyrroline-5-carboxylate synthase (P5CS), and glutamate synthetase (GS) in the amino acid synthesis pathway decreased by more than 1.5-fold. Furthermore, the mRNA and protein expression levels of DAD, ATAAT, CS and P5CS showed a 2- to 16-fold increase in the maintainer line anthers. We also found that most of the amino acid content levels decreased to varying degrees during the anther tapetum period of the sterile line, whereas these levels increased in the maintainer line. The results of our study indicate that during pepper anther development, changes in amino acid synthesis are significant and accompany abnormal tapetum maturity, which is most likely an important cause of male sterility in pepper.
Collapse
|
162
|
Egger RL, Walbot V. A framework for evaluating developmental defects at the cellular level: An example from ten maize anther mutants using morphological and molecular data. Dev Biol 2016; 419:26-40. [PMID: 26992364 DOI: 10.1016/j.ydbio.2016.03.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 03/07/2016] [Accepted: 03/14/2016] [Indexed: 12/31/2022]
Abstract
In seed plants, anthers are critical for sexual reproduction, because they foster both meiosis and subsequent pollen development of male germinal cells. Male-sterile mutants are analyzed to define steps in anther development. Historically the major topics in these studies are meiotic arrest and post-meiotic gametophyte failure, while relatively few studies focus on pre-meiotic defects of anther somatic cells. Utilizing morphometric analysis we demonstrate that pre-meiotic mutants can be impaired in anticlinal or periclinal cell division patterns and that final cell number in the pre-meiotic anther lobe is independent of cell number changes of individual differentiated somatic cell types. Data derived from microarrays and from cell wall NMR analyses allow us to further refine our understanding of the onset of phenotypes. Collectively the data highlight that even minor deviations from the correct spatiotemporal pattern of somatic cell proliferation can result in male sterility in Zea mays.
Collapse
Affiliation(s)
- Rachel L Egger
- Department of Biology, Stanford University, 365 Serra Mall, Stanford, CA 94305, United States.
| | - Virginia Walbot
- Department of Biology, Stanford University, 365 Serra Mall, Stanford, CA 94305, United States
| |
Collapse
|
163
|
Yi J, Moon S, Lee YS, Zhu L, Liang W, Zhang D, Jung KH, An G. Defective Tapetum Cell Death 1 (DTC1) Regulates ROS Levels by Binding to Metallothionein during Tapetum Degeneration. PLANT PHYSIOLOGY 2016; 170:1611-23. [PMID: 26697896 PMCID: PMC4775127 DOI: 10.1104/pp.15.01561] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Accepted: 12/18/2015] [Indexed: 05/18/2023]
Abstract
After meiosis, tapetal cells in the innermost anther wall layer undergo program cell death (PCD)-triggered degradation. This step is essential for microspore development and pollen wall maturation. We identified a key gene, Defective Tapetum Cell Death 1 (DTC1), that controls this degeneration by modulating the dynamics of reactive oxygen species (ROS) during rice male reproduction. Mutants defective in DTC1 exhibit phenotypes of an enlarged tapetum and middle layer with delayed degeneration, causing male sterility. The gene is preferentially expressed in the tapetal cells during early anther development. In dtc1 anthers, expression of genes encoding secretory proteases or lipid transporters is significantly reduced, while transcripts of PCD regulatory genes, e.g. UDT1, TDR1, and EAT1/DTD, are not altered. Moreover, levels of DTC1 transcripts are diminished in udt1, tdr, and eat1 anthers. These results suggest that DTC1 functions downstream of those transcription factor genes and upstream of the genes encoding secretory proteins. DTC1 protein interacts with OsMT2b, a ROS scavenger. Whereas wild-type plants accumulate large amounts of ROS in their anthers at Stage 9 of development, those levels remain low during all stages of development in dtc1 anthers. These findings indicate that DTC1 is a key regulator for tapetum PCD by inhibiting ROS-scavenging activity.
Collapse
Affiliation(s)
- Jakyung Yi
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Sunok Moon
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Yang-Seok Lee
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Lu Zhu
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Wanqi Liang
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Dabing Zhang
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Ki-Hong Jung
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| | - Gynheung An
- Department of Genetic Engineering and Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea (J.Y., S.M., Y.-S.L., K.-H.J., G.A.); andState Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (L.Z, W.L., D.Z.)
| |
Collapse
|
164
|
Mei S, Liu T, Wang Z. Comparative Transcriptome Profile of the Cytoplasmic Male Sterile and Fertile Floral Buds of Radish (Raphanus sativus L.). Int J Mol Sci 2016; 17:E42. [PMID: 26751440 PMCID: PMC4730287 DOI: 10.3390/ijms17010042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/16/2022] Open
Abstract
Radish cytoplasmic male sterility (CMS) has been widely used for breeding in Raphanus and Brassica genera. However, the detailed regulation network of the male sterility remains to be determined. Our previous work has shown that the abnormalities in a CMS radish appeared shortly after the tetrad stage when microspores were malformed and the tapetal cells grew abnormally large. In this work, histological analysis shows that anthers are at the tetrad stage when the radish buds are about 1.5 mm in length. Furthermore, a high throughput RNA sequencing technology was employed to characterize the transcriptome of radish buds with length about 1.5 mm from two CMS lines possessing the CMS-inducing orf138 gene and corresponding near-isogenic maintainer lines. A total of 67,140 unigenes were functionally annotated. Functional terms for these genes are significantly enriched in 55 Gene Ontology (GO) groups and 323 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways. The transcriptome detected transcripts for 72 out of a total of 79 protein genes encoded in the chloroplast genome from radish. In contrast, the radish mitochondrial genome contains 34 protein genes, but only 16 protein transcripts were detected from the transcriptome. The transcriptome comparison between CMS and near-isogenic maintainer lines revealed 539 differentially expressed genes (DEGs), indicating that the false positive rate for comparative transcriptome profiling was clearly decreased using two groups of CMS/maintainer lines with different nuclear background. The level of 127 transcripts was increased and 412 transcripts were decreased in the CMS lines. No change in levels of transcripts except CMS-inducing orf138 was identified from the mitochondrial and chloroplast genomes. Some DEGs which would be associated with the CMS, encoding MYB and bHLH transcription factors, pentatricopeptide repeat (PPR) proteins, heat shock transcription factors (HSFs) and heat shock proteins (HSPs), are discussed. The transcriptome dataset and comparative analysis will provide an important resource for further understanding anther development, the CMS mechanism and to improve molecular breeding in radish.
Collapse
Affiliation(s)
- Shiyong Mei
- College of Life Sciences, Wuhan University, Wuhan 430072, China.
| | - Touming Liu
- Institute of Bast Fiber Crops and Center of Southern Economic Crops, Chinese Academy of Agricultural Sciences, Changsha 410205, China.
| | - Zhiwei Wang
- CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
165
|
Abstract
Pollen plays important roles in the life cycle of angiosperms plants. It acts as not only a biological protector of male sperms but also a communicator between the male and the female reproductive organs, facilitating pollination and fertilization. Pollen is produced within the anther, and covered by the specialized outer envelope, pollen wall. Although the morphology of pollen varies among different plant species, the pollen wall is mainly comprised of three layers: the pollen coat, the outer exine layer, and the inner intine layer. Except the intine layer, the other two layers are basically of lipidic nature. Particularly, the outer pollen wall layer, the exine, is a highly resistant biopolymer of phenylpropanoid and lipidic monomers covalently coupled by ether and ester linkages. The precise molecular mechanisms underlying pollen coat formation and exine patterning remain largely elusive. Herein, we summarize the current genetic, phenotypic and biochemical studies regarding to the pollen exine development and underlying molecular regulatory mechanisms mainly obtained from monocot rice (Oryza sativa) and dicot Arabidopsis thaliana, aiming to extend our understandings of plant male reproductive biology. Genes, enzymes/proteins and regulatory factors that appear to play conserved and diversified roles in lipid biosynthesis, transportation and modification during pollen exine formation, were highlighted.
Collapse
Affiliation(s)
- Dabing Zhang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China.
| | - Jianxin Shi
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| | - Xijia Yang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai, 200240, China
| |
Collapse
|
166
|
Liu X, Liu Y, Liu C, Guan M, Yang C. Identification of genes associated with male sterility in a mutant of white birch (Betula platyphylla Suk.). Gene 2015; 574:247-54. [PMID: 26260014 DOI: 10.1016/j.gene.2015.08.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/18/2015] [Accepted: 08/06/2015] [Indexed: 11/15/2022]
Abstract
White birch (Betula platyphylla Suk.) is a monoecious tree species with unisexual flowers. In this study, we used a spontaneous mutant genotype that produced normal-like male (NLM) inflorescences and mutant male (MM) inflorescences at different locations within the tree to investigate the genes necessary for pollen development. A cDNA-amplified fragment length polymorphism (cDNA-AFLP) analysis was used to identify genes differentially expressed between the two types of inflorescences. Of approximately 5000 transcript-derived fragments (TDFs) obtained, 323 were significantly differentially expressed, of which 141 were successfully sequenced. BLAST analyses revealed 51.8% of the sequenced TDFs showed significant homology with proteins of known or predicted functions, 10.6% showed significant homology with putative proteins without any known or predicted function, and the remaining 37.6% had no hits in the NCBI database. Further, in a functional categorization based on the BLAST analyses, the protein fate, metabolism, energy categories had in order the highest percentages of the proteins. A Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis showed that the known TDFs were mainly involved in metabolic (28.4%), signal transduction (23.5%) and folding, sorting and degradation (13.6%) pathways. Ten genes from the NLM and MM development stages in the mutant were analyzed by quantitative real-time reverse transcriptase-polymerase chain reaction (qRT-PCR). The information generated in this study can provide some useful clues to help understand male sterility in B. platyphylla.
Collapse
Affiliation(s)
- Xuemei Liu
- Northeast Forestry University, Harbin 150040, PR China
| | - Ying Liu
- Forestry Investigation and Planning Institute of Liaoning Province, Shenyang 110122, PR China
| | - Chuang Liu
- Northeast Forestry University, Harbin 150040, PR China
| | - Minxiao Guan
- Northeast Forestry University, Harbin 150040, PR China
| | - Chuanping Yang
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin 150040, PR China.
| |
Collapse
|
167
|
Transcriptome profiling of differentially expressed genes in floral buds and flowers of male sterile and fertile lines in watermelon. BMC Genomics 2015; 16:914. [PMID: 26552448 PMCID: PMC4640349 DOI: 10.1186/s12864-015-2186-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 11/02/2015] [Indexed: 12/03/2022] Open
Abstract
Background Male sterility is an important mechanism for the production of hybrid seeds in watermelon. Although fruit development has been studied extensively in watermelon, there are no reports on gene expression in floral organs. In this study, RNA-sequencing (RNA-seq) was performed in two near-isogenic watermelon lines (genic male sterile [GMS] line, DAH3615-MS and male fertile line, DAH3615) to identify the differentially expressed genes (DEGs) related to male sterility. Results DEG analysis showed that 1259 genes were significantly associated with male sterility at a FDR P-value of < 0.01. Most of these genes were only expressed in the male fertile line. In addition, 11 functional clusters were identified using DAVID functional classification analysis. Of detected genes in RNA-seq analysis, 19 were successfully validated by qRT-PCR. Conclusions In this study, we carried out a comprehensive floral transcriptome sequence comparison of a male fertile line and its near-isogenic male sterile line in watermelon. This analysis revealed essential genes responsible for stamen development, including pollen development and pollen tube elongation, and allowed their functional classification. These results provided new information on global mechanisms related to male sterility in watermelon. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2186-9) contains supplementary material, which is available to authorized users.
Collapse
|
168
|
Gómez JF, Talle B, Wilson ZA. Anther and pollen development: A conserved developmental pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2015; 57:876-91. [PMID: 26310290 PMCID: PMC4794635 DOI: 10.1111/jipb.12425] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2015] [Accepted: 08/23/2015] [Indexed: 05/19/2023]
Abstract
Pollen development is a critical step in plant development that is needed for successful breeding and seed formation. Manipulation of male fertility has proved a useful trait for hybrid breeding and increased crop yield. However, although there is a good understanding developing of the molecular mechanisms of anther and pollen anther development in model species, such as Arabidopsis and rice, little is known about the equivalent processes in important crops. Nevertheless the onset of increased genomic information and genetic tools is facilitating translation of information from the models to crops, such as barley and wheat; this will enable increased understanding and manipulation of these pathways for agricultural improvement.
Collapse
Affiliation(s)
- José Fernández Gómez
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Behzad Talle
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| | - Zoe A Wilson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, LE12 5RD, UK
| |
Collapse
|
169
|
Ye J, Zhang Z, Long H, Zhang Z, Hong Y, Zhang X, You C, Liang W, Ma H, Lu P. Proteomic and phosphoproteomic analyses reveal extensive phosphorylation of regulatory proteins in developing rice anthers. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:527-44. [PMID: 26360816 DOI: 10.1111/tpj.13019] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Revised: 08/25/2015] [Accepted: 08/26/2015] [Indexed: 05/18/2023]
Abstract
Anther development, particularly around the time of meiosis, is extremely crucial for plant sexual reproduction. Meanwhile, cell-to-cell communication between somatic (especial tapetum) cells and meiocytes are important for both somatic anther development and meiosis. To investigate possible molecular mechanisms modulating protein activities during anther development, we applied high-resolution mass spectrometry-based proteomic and phosphoproteomic analyses for developing rice (Oryza sativa) anthers around the time of meiosis (RAM). In total, we identified 4984 proteins and 3203 phosphoproteins with 8973 unique phosphorylation sites (p-sites). Among those detected here, 1544 phosphoproteins are currently absent in the Plant Protein Phosphorylation DataBase (P3 DB), substantially enriching plant phosphorylation information. Mapman enrichment analysis showed that 'DNA repair','transcription regulation' and 'signaling' related proteins were overrepresented in the phosphorylated proteins. Ten genetically identified rice meiotic proteins were detected to be phosphorylated at a total of 25 p-sites; moreover more than 400 meiotically expressed proteins were revealed to be phosphorylated and their phosphorylation sites were precisely assigned. 163 putative secretory proteins, possibly functioning in cell-to-cell communication, are also phosphorylated. Furthermore, we showed that DNA synthesis, RNA splicing and RNA-directed DNA methylation pathways are extensively affected by phosphorylation. In addition, our data support 46 kinase-substrate pairs predicted by the rice Kinase-Protein Interaction Map, with SnRK1 substrates highly enriched. Taken together, our data revealed extensive protein phosphorylation during anther development, suggesting an important post-translational modification affecting protein activity.
Collapse
Affiliation(s)
- Juanying Ye
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zaibao Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Haifei Long
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Zhimin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yue Hong
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Xumin Zhang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Pingli Lu
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
170
|
Zhao G, Shi J, Liang W, Xue F, Luo Q, Zhu L, Qu G, Chen M, Schreiber L, Zhang D. Two ATP Binding Cassette G Transporters, Rice ATP Binding Cassette G26 and ATP Binding Cassette G15, Collaboratively Regulate Rice Male Reproduction. PLANT PHYSIOLOGY 2015; 169:2064-79. [PMID: 26392263 PMCID: PMC4634043 DOI: 10.1104/pp.15.00262] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 09/17/2015] [Indexed: 05/17/2023]
Abstract
Male reproduction in higher plants requires the support of various metabolites, including lipid molecules produced in the innermost anther wall layer (the tapetum), but how the molecules are allocated among different anther tissues remains largely unknown. Previously, rice (Oryza sativa) ATP binding cassette G15 (ABCG15) and its Arabidopsis (Arabidopsis thaliana) ortholog were shown to be required for pollen exine formation. Here, we report the significant role of OsABCG26 in regulating the development of anther cuticle and pollen exine together with OsABCG15 in rice. Cytological and chemical analyses indicate that osabcg26 shows reduced transport of lipidic molecules from tapetal cells for anther cuticle development. Supportively, the localization of OsABCG26 is on the plasma membrane of the anther wall layers. By contrast, OsABCG15 is polarly localized in tapetal plasma membrane facing anther locules. osabcg26 osabcg15 double mutant displays an almost complete absence of anther cuticle and pollen exine, similar to that of osabcg15 single mutant. Taken together, we propose that OsABCG26 and OsABCG15 collaboratively regulate rice male reproduction: OsABCG26 is mainly responsible for the transport of lipidic molecules from tapetal cells to anther wall layers, whereas OsABCG15 mainly is responsible for the export of lipidic molecules from the tapetal cells to anther locules for pollen exine development.
Collapse
Affiliation(s)
- Guochao Zhao
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Jianxin Shi
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Feiyang Xue
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Qian Luo
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Lu Zhu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Guorun Qu
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Lukas Schreiber
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, Shanghai Jiao Tong University and University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China (G.Z., J.S., W.L., F.X., Q.L., L.Z., G.Q., M.C., D.Z.);Institute of Cellular and Molecular Botany, University of Bonn, D-53115 Bonn, Germany (L.S.); andSchool of Agriculture, Food and Wine, University of Adelaide, Urrbrae, South Australia 5064, Australia (D.Z.)
| |
Collapse
|
171
|
Babitha KC, Vemanna RS, Nataraja KN, Udayakumar M. Overexpression of EcbHLH57 Transcription Factor from Eleusine coracana L. in Tobacco Confers Tolerance to Salt, Oxidative and Drought Stress. PLoS One 2015; 10:e0137098. [PMID: 26366726 PMCID: PMC4569372 DOI: 10.1371/journal.pone.0137098] [Citation(s) in RCA: 75] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/12/2015] [Indexed: 02/01/2023] Open
Abstract
Basic helix-loop-helix (bHLH) transcription factors constitute one of the largest families in plants and are known to be involved in various developmental processes and stress tolerance. We report the characterization of a stress responsive bHLH transcription factor from stress adapted species finger millet which is homologous to OsbHLH57 and designated as EcbHLH57. The full length sequence of EcbHLH57 consisted of 256 amino acids with a conserved bHLH domain followed by leucine repeats. In finger millet, EcbHLH57 transcripts were induced by ABA, NaCl, PEG, methyl viologen (MV) treatments and drought stress. Overexpression of EcbHLH57 in tobacco significantly increased the tolerance to salinity and drought stress with improved root growth. Transgenic plants showed higher photosynthetic rate and stomatal conductance under drought stress that resulted in higher biomass. Under long-term salinity stress, the transgenic plants accumulated higher seed weight/pod and pod number. The transgenic plants were also tolerant to oxidative stress and showed less accumulation of H202 and MDA levels. The overexpression of EcbHLH57 enhanced the expression of stress responsive genes such as LEA14, rd29A, rd29B, SOD, APX, ADH1, HSP70 and also PP2C and hence improved tolerance to diverse stresses.
Collapse
Affiliation(s)
- K. C. Babitha
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Ramu S. Vemanna
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Karaba N. Nataraja
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - M. Udayakumar
- Department of Crop Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| |
Collapse
|
172
|
Zhu E, You C, Wang S, Cui J, Niu B, Wang Y, Qi J, Ma H, Chang F. The DYT1-interacting proteins bHLH010, bHLH089 and bHLH091 are redundantly required for Arabidopsis anther development and transcriptome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 83:976-990. [PMID: 26216374 DOI: 10.1111/tpj.12942] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 07/09/2015] [Accepted: 05/12/2015] [Indexed: 05/23/2023]
Abstract
The anther is the male reproductive organ of flowering plants, and the Arabidopsis bHLH transcription factors encoded by DYSFUNCTIONAL TAPETUM1 (DYT1) and ABORTED MICROSPORE (AMS) are required for control of the complex transcriptional networks regulating anther development. Knowledge of the mechanisms by which the bHLH proteins affect this diverse gene expression is quite limited. We examine here three recently duplicated Arabidopsis bHLH genes, bHLH010, bHLH089 and bHLH091, using evolutionary, genetic, morphological and transcriptomic approaches, and uncover their redundant functions in anther development. These three genes are relatively highly expressed in the tapetum of the Arabidopsis anther; single mutants at each of the bHLH010, bHLH089 and bHLH091 loci are developmentally normal, but the various double and triple combinations progressively exhibit increasingly defective anther phenotypes (abnormal tapetum morphology, delayed callose degeneration, and aborted pollen development), indicating their redundant functions in male fertility. Further transcriptomic and molecular analyses suggest that these three proteins act slightly later than DYT1, and also form protein complexes with DYT1, subsequently affecting the correct expression of many DYT1 target genes in the anther development transcriptional network. This study demonstrated that bHLH010, bHLH089 and bHLH091 together are important for the normal transcriptome of the developing Arabidopsis anther, possibly by forming a feed-forward loop with DYT1.
Collapse
Affiliation(s)
- Engao Zhu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Chenjiang You
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Key Laboratory of Biodiversity Sciences and Ecological Engineering, Ministry of Education, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Shuangshuang Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Jie Cui
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Baixiao Niu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Yingxiang Wang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Ji Qi
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
- Key Laboratory of Biodiversity Sciences and Ecological Engineering, Ministry of Education, Institute of Biodiversity Sciences, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| | - Fang Chang
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Institute of Plant Biology, School of Life Sciences, Fudan University, Shanghai, 200433, China
| |
Collapse
|
173
|
Cao H, Li X, Wang Z, Ding M, Sun Y, Dong F, Chen F, Liu L, Doughty J, Li Y, Liu YX. Histone H2B Monoubiquitination Mediated by HISTONE MONOUBIQUITINATION1 and HISTONE MONOUBIQUITINATION2 Is Involved in Anther Development by Regulating Tapetum Degradation-Related Genes in Rice. PLANT PHYSIOLOGY 2015; 168:1389-405. [PMID: 26143250 PMCID: PMC4528728 DOI: 10.1104/pp.114.256578] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 07/02/2015] [Indexed: 05/06/2023]
Abstract
Histone H2B monoubiquitination (H2Bub1) is an important regulatory mechanism in eukaryotic gene transcription and is essential for normal plant development. However, the function of H2Bub1 in reproductive development remains elusive. Here, we report rice (Oryza sativa) HISTONE MONOUBIQUITINATION1 (OsHUB1) and OsHUB2, the homologs of Arabidopsis (Arabidopsis thaliana) HUB1 and HUB2 proteins, which function as E3 ligases in H2Bub1, are involved in late anther development in rice. oshub mutants exhibit abnormal tapetum development and aborted pollen in postmeiotic anthers. Knockout of OsHUB1 or OsHUB2 results in the loss of H2Bub1 and a reduction in the levels of dimethylated lysine-4 on histone 3 (H3K4me2). Anther transcriptome analysis revealed that several key tapetum degradation-related genes including OsC4, rice Cysteine Protease1 (OsCP1), and Undeveloped Tapetum1 (UDT1) were down-regulated in the mutants. Further, chromatin immunoprecipitation assays demonstrate that H2Bub1 directly targets OsC4, OsCP1, and UDT1 genes, and enrichment of H2Bub1 and H3K4me2 in the targets is consistent to some degree. Our studies suggest that histone H2B monoubiquitination, mediated by OsHUB1 and OsHUB2, is an important epigenetic modification that in concert with H3K4me2, modulates transcriptional regulation of anther development in rice.
Collapse
Affiliation(s)
- Hong Cao
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Xiaoying Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Zhi Wang
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Meng Ding
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yongzhen Sun
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengqin Dong
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Fengying Chen
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Li'an Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - James Doughty
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong Li
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| | - Yong-Xiu Liu
- Key Laboratory of Plant Molecular Physiology (H.C., X.L., Z.W., M.D., Y.S., F.D., F.C., Y.-X.L.) and Beijing Botanical Garden (L.L.), Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;University of Chinese Academy of Sciences, Beijing 100049, China (X.L., M.D.);Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, United Kingdom (J.D.); andDepartment of Internal Medicine IV, University of Hospital Freiburg, 79106 Freiburg, Germany (Y.L.)
| |
Collapse
|
174
|
Wu J, Zhang Z, Zhang Q, Han X, Gu X, Lu T. The molecular cloning and clarification of a photorespiratory mutant, oscdm1, using enhancer trapping. Front Genet 2015; 6:226. [PMID: 26191072 PMCID: PMC4490251 DOI: 10.3389/fgene.2015.00226] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 06/15/2015] [Indexed: 01/08/2023] Open
Abstract
Enhancer trap systems have been demonstrated to increase the effectiveness of gene identification in rice. In this study, a chlorophyll-deficient mutant, named oscdm1, was screened and characterized in detail from a T-DNA enhancer-tagged population. The oscdm1 plants were different from other chlorophyll-deficient mutants; they produced chlorotic leaves at the third leaf stage, which gradually died with further growth of the plants. However, the oscdm1 plants were able to survive exposure to elevated CO2 levels, similar to photorespiratory mutants. An analysis of the T-DNA flanking sequence in the oscdm1 plants showed that the T-DNA was inserted into the promoter region of a serine hydroxymethyltransferase (SHMT) gene. OsSHMT1 is a key enzyme that is ubiquitous in nature and structurally conserved across kingdoms. The enzyme is responsible for the interconversion of serine and glycine and is essential for cellular one-carbon metabolism. Full-length OsSHMT1 complemented the oscdm1 phenotype, and the downregulation of OsSHMT1 in wild-type plants by RNA interference (RNAi) produced plants that mimicked the oscdm1 phenotype. GUS assays and quantitative PCR revealed the preferential expression of OsSHMT1 in young leaves. TEM revealed serious damage to the thylakoid membrane in oscdm1 chloroplasts. The oscdm1 plants showed more extensive damage than wild type using an IMAGING-PAM fluorometer, especially under high light intensities. OsSHMT1-GFP localized exclusively to mitochondria. Further analysis revealed that the H2O2 content in the oscdm1 plants was twice that in wild type at the fourth leaf stage. This suggests that the thylakoid membrane damage observed in the oscdm1 plants was caused by excessive H2O2. Interestingly, OsSHMT1-overexpressing plants exhibited increased photosynthetic efficiency and improved plant productivity. These results lay the foundation for further study of the OsSHMT1 gene and will help illuminate the functional role of OsSHMT1 in photorespiration in rice.
Collapse
Affiliation(s)
- Jinxia Wu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Zhiguo Zhang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Qian Zhang
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiao Han
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Xiaofeng Gu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| | - Tiegang Lu
- Biotechnology Research Institute/National Key Facility for Genetic Resources and Gene Improvement, The Chinese Academy of Agricultural Sciences Beijing, China
| |
Collapse
|
175
|
Chen R, Shen LP, Wang DH, Wang FG, Zeng HY, Chen ZS, Peng YB, Lin YN, Tang X, Deng MH, Yao N, Luo JC, Xu ZH, Bai SN. A Gene Expression Profiling of Early Rice Stamen Development that Reveals Inhibition of Photosynthetic Genes by OsMADS58. MOLECULAR PLANT 2015; 8:1069-89. [PMID: 25684654 DOI: 10.1016/j.molp.2015.02.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 05/19/2023]
Abstract
Stamen is a unique plant organ wherein germ cells or microsporocytes that commit to meiosis are initiated from somatic cells during its early developmental process. While genes determining stamen identity are known according to the ABC model of floral development, little information is available on how these genes affect germ cell initiation. By using the Affymetrix GeneChip Rice Genome Array to assess 51 279 transcripts, we established a dynamic gene expression profile (GEP) of the early developmental process of rice (Oryza sativa) stamen. Systematic analysis of the GEP data revealed novel expression patterns of some developmentally important genes including meiosis-, tapetum-, and phytohormone-related genes. Following the finding that a substantial amount of nuclear genes encoding photosynthetic proteins are expressed at the low levels in early rice stamen, through the ChIP-seq analysis we found that a C-class MADS box protein, OsMADS58, binds many nuclear-encoded genes participated in photosystem and light reactions and the expression levels of most of them are increased when expression of OsMADS58 is downregulated in the osmads58 mutant. Furthermore, more pro-chloroplasts are observed and increased signals of reactive oxygen species are detected in the osmads58 mutant anthers. These findings implicate a novel link between stamen identity determination and hypoxia status establishment.
Collapse
Affiliation(s)
- Rui Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Li-Ping Shen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Dong-Hui Wang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Fu-Gui Wang
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Hong-Yun Zeng
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhi-Shan Chen
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Yi-Ben Peng
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Ya-Nan Lin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Xing Tang
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Ming-Hua Deng
- Center for Quantitative Biology, Peking University, Beijing 100871, China; School of Mathematical Sciences, Peking University, Beijing 100871, China
| | - Nan Yao
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing-Chu Luo
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China; Center for Bioinformatics, Peking University, Beijing 100871, China
| | - Zhi-Hong Xu
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shu-Nong Bai
- Center for Quantitative Biology, Peking University, Beijing 100871, China; The National Center of Plant Gene Research, Beijing 100871, China; State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, 624 Jin-Guang Life Science Building, 5 Yiheyuan Road, Beijing 100871, China.
| |
Collapse
|
176
|
Lyu M, Liang Y, Yu Y, Ma Z, Song L, Yue X, Cao J. Identification and expression analysis of BoMF25, a novel polygalacturonase gene involved in pollen development of Brassica oleracea. PLANT REPRODUCTION 2015; 28:121-132. [PMID: 25967087 DOI: 10.1007/s00497-015-0263-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 04/21/2015] [Indexed: 06/04/2023]
Abstract
BoMF25 acts on pollen wall. Polygalacturonase (PG) is a pectin-digesting enzyme involved in numerous plant developmental processes and is described to be of critical importance for pollen wall development. In the present study, a PG gene, BoMF25, was isolated from Brassica oleracea. BoMF25 is the homologous gene of At4g35670, a PG gene in Arabidopsis thaliana with a high expression level at the tricellular pollen stage. Collinear analysis revealed that the orthologous gene of BoMF25 in Brassica campestris (syn. B. rapa) genome was probably lost because of genome deletion and reshuffling. Sequence analysis indicated that BoMF25 contained four classical conserved domains (I, II, III, and IV) of PG protein. Homology and phylogenetic analyses showed that BoMF25 was clustered in Clade F. The putative promoter sequence, containing classical cis-acting elements and pollen-specific motifs, could drive green fluorescence protein expression in onion epidermal cells. Quantitative RT-PCR analysis suggested that BoMF25 was mainly expressed in the anther at the late stage of pollen development. In situ hybridization analysis also indicated that the strong and specific expression signal of BoMF25 existed in pollen grains at the mature pollen stage. Subcellular localization showed that the fluorescence signal was observed in the cell wall of onion epidermal cells, which suggested that BoMF25 may be a secreted protein localized in the pollen wall.
Collapse
Affiliation(s)
- Meiling Lyu
- Laboratory of Cell and Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China,
| | | | | | | | | | | | | |
Collapse
|
177
|
The functional analysis of OsTDF1 reveals a conserved genetic pathway for tapetal development between rice and Arabidopsis. Sci Bull (Beijing) 2015. [DOI: 10.1007/s11434-015-0810-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
178
|
Wang S, Zhang G, Song Q, Zhang Y, Li Z, Guo J, Niu N, Ma S, Wang J. Abnormal development of tapetum and microspores induced by chemical hybridization agent SQ-1 in wheat. PLoS One 2015; 10:e0119557. [PMID: 25803723 PMCID: PMC4372346 DOI: 10.1371/journal.pone.0119557] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Accepted: 01/14/2015] [Indexed: 11/19/2022] Open
Abstract
Chemical hybridization agent (CHA)-induced male sterility is an important tool in crop heterosis. To demonstrate that CHA-SQ-1-induced male sterility is associated with abnormal tapetal and microspore development, the cytology of CHA-SQ-1-treated plant anthers at various developmental stages was studied by light microscopy, scanning and transmission electron microscopy, in situ terminal deoxynucleotidyl transferasemediated dUTP nick end-labelling (TUNEL) assay and DAPI staining. The results indicated that the SQ-1-treated plants underwent premature tapetal programmed cell death (PCD), which was initiated at the early-uninucleate stage of microspore development and continued until the tapetal cells were completely degraded; the process of microspore development was then blocked. Microspores with low-viability (fluorescein diacetate staining) were aborted. The study suggests that premature tapetal PCD is the main cause of pollen abortion. Furthermore, it determines the starting period and a key factor in CHA-SQ-1-induced male sterility at the cell level, and provides cytological evidence to further study the mechanism between PCD and male sterility.
Collapse
Affiliation(s)
- Shuping Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Gaisheng Zhang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Qilu Song
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Yingxin Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Zheng Li
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Jialin Guo
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Na Niu
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Shoucai Ma
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| | - Junwei Wang
- College of Agronomy, Northwest A&F University, National Yangling Agricultural Biotechnology & Breeding Center, Yangling Branch of State Wheat Improvement Centre, Wheat Breeding Engineering Research Center, Ministry of Education, Key Laboratory of Crop Heterosis of Shaanxi Province, Yangling, China
| |
Collapse
|
179
|
Jung KH, Kim SR, Giong HK, Nguyen MX, Koh HJ, An G. Genome-wide identification and functional analysis of genes expressed ubiquitously in rice. MOLECULAR PLANT 2015; 8:276-89. [PMID: 25624149 DOI: 10.1016/j.molp.2014.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 10/07/2014] [Accepted: 10/07/2014] [Indexed: 05/10/2023]
Abstract
Genes that are expressed ubiquitously throughout all developmental stages are thought to be necessary for basic biological or cellular functions. Therefore, determining their biological roles is a great challenge. We identified 4034 of these genes in rice after studying the results of Agilent 44K and Affymetrix meta-anatomical expression profiles. Among 105 genes that were characterized by loss-of-function analysis, 79 were classified as members of gene families, the majority of which were predominantly expressed. Using T-DNA insertional mutants, we examined 43 genes and found that loss of expression of six genes caused developing seed- or seedling-defective phenotypes. Of these, three are singletons without similar family members and defective phenotypes are expected from mutations. Phylogenomic analyses integrating genome-wide transcriptome data revealed the functional dominance of three ubiquitously expressed family genes. Among them, we investigated the function of Os03g19890, which is involved in ATP generation within the mitochondria during endosperm development. We also created and evaluated functional networks associated with this gene to understand the molecular mechanism. Our study provides a useful strategy for pheonome analysis of ubiquitously expressed genes in rice.
Collapse
Affiliation(s)
- Ki-Hong Jung
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea; Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea.
| | - Sung-Ruyl Kim
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Hoi-Khoanh Giong
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Minh Xuan Nguyen
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Hyun-Jung Koh
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
| | - Gynheung An
- Department of Plant Molecular Systems Biotechnology & Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea; Graduate School of Biotechnology, Kyung Hee University, Yongin 446-701, Korea.
| |
Collapse
|
180
|
Li L, Li Y, Song S, Deng H, Li N, Fu X, Chen G, Yuan L. An anther development F-box (ADF) protein regulated by tapetum degeneration retardation (TDR) controls rice anther development. PLANTA 2015; 241:157-166. [PMID: 25236969 DOI: 10.1007/s00425-014-2160-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Accepted: 08/20/2014] [Indexed: 06/03/2023]
Abstract
In this study, we reported that a F-box protein, OsADF, as one of the direct targets of TDR , plays a critical role in rice tapetum cell development and pollen formation. The tapetum, the innermost sporophytic tissue of anther, plays an important supportive role in male reproduction in flowering plants. After meiosis, tapetal cells undergo programmed cell death (PCD) and provide nutrients for pollen development. Previously we showed that tapetum degeneration retardation (TDR), a basic helix-loop-helix transcription factor, can trigger tapetal PCD and control pollen wall development during anther development. However, the comprehensive regulatory network of TDR remains to be investigated. In this study, we cloned and characterized a panicle-specific expression F-box protein, anther development F-box (OsADF). By qRT-PCR and RNA in situ hybridization, we further confirmed that OsADF expressed specially in tapetal cells from stage 9 to stage 12 during anther development. In consistent with this specific expression pattern, the RNAi transgenic lines of OsADF exhibited abnormal tapetal degeneration and aborted microspores development, which eventually grew pollens with reduced fertility. Furthermore, we demonstrated that the TDR, a key regulator in controlling rice anther development, could regulate directly the expression of OsADF by binding to E-box motifs of its promoter. Therefore, this work highlighted the possible regulatory role of TDR, which regulates tapetal cell development and pollen formation via triggering the possible ADF-mediated proteolysis pathway.
Collapse
Affiliation(s)
- Li Li
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Centre, Changsha, 410125, China,
| | | | | | | | | | | | | | | |
Collapse
|
181
|
Jeong HJ, Kang JH, Zhao M, Kwon JK, Choi HS, Bae JH, Lee HA, Joung YH, Choi D, Kang BC. Tomato Male sterile 1035 is essential for pollen development and meiosis in anthers. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:6693-709. [PMID: 25262227 PMCID: PMC4246194 DOI: 10.1093/jxb/eru389] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Male fertility in flowering plants depends on proper cellular differentiation in anthers. Meiosis and tapetum development are particularly important processes in pollen production. In this study, we showed that the tomato male sterile (ms10(35)) mutant of cultivated tomato (Solanum lycopersicum) exhibited dysfunctional meiosis and an abnormal tapetum during anther development, resulting in no pollen production. We demonstrated that Ms10(35) encodes a basic helix-loop-helix transcription factor that is specifically expressed in meiocyte and tapetal tissue from pre-meiotic to tetrad stages. Transgenic expression of the Ms10(35) gene from its native promoter complemented the male sterility of the ms10(35) mutant. In addition, RNA-sequencing-based transcriptome analysis revealed that Ms10(35) regulates 246 genes involved in anther development processes such as meiosis, tapetum development, cell-wall degradation, pollen wall formation, transport, and lipid metabolism. Our results indicate that Ms10(35) plays key roles in regulating both meiosis and programmed cell death of the tapetum during microsporogenesis.
Collapse
Affiliation(s)
- Hee-Jin Jeong
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Jin-Ho Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Meiai Zhao
- College of Life Science, Qingdao Agricultural University, Qingdao 266-109, PR China
| | - Jin-Kyung Kwon
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Hak-Soon Choi
- National Institute of Horticultural and Herbal Science, Suwon 440-310, Republic of Korea
| | - Jung Hwan Bae
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Hyun-Ah Lee
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Young-Hee Joung
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 500-757, Republic of Korea
| | - Doil Choi
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| | - Byoung-Cheorl Kang
- Department of Plant Science and Plant Genomics and Breeding Institute, College of Agriculture and Life Science, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea Plant Genomics and Breeding Institute, College of Agricultural Sciences, Seoul National University, 599 Gwanak-ro Gwank-gu, Seoul 151-921, Republic of Korea
| |
Collapse
|
182
|
Gong P, Quan H, He C. Targeting MAGO proteins with a peptide aptamer reinforces their essential roles in multiple rice developmental pathways. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:905-14. [PMID: 25230811 DOI: 10.1111/tpj.12672] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/08/2014] [Accepted: 09/14/2014] [Indexed: 05/16/2023]
Abstract
Peptide aptamers are artificial short peptides that potentially interfere with the biological roles of their target proteins; however, this technology has not yet been applied to plant functional genomics. MAGO and Y14, the two core subunits of the exon junction complex (EJC), form obligate heterodimers in eukaryotes. In Oryza sativa L. (rice), each of the two genes has two homologs, designated OsMAGO1 and OsMAGO2, and OsY14a and OsY14b, respectively. Here, we characterized a 16-amino acida peptide aptamer (PAP) for the rice MAGO proteins. PAP and rice Y14 bound competitively to rice MAGO proteins. Specifically targeting the MAGO proteins by expressing the aptamer in transgenic rice plants did not affect the endogenous synthesis and accumulation of MAGO proteins; however, the phenotypic variations observed in multiple organs phenocopied those of transgenic rice plants harboring RNA interference (RNAi) constructs in which the accumulation of MAGO and/or OsY14a transcripts and MAGO proteins was downregulated severely. Morphologically, the aptamer transgenic plants were short with abnormally developed flowers, and the stamens exhibited reduced degradation and absorption of both the endothecium and tapetum, thus confirming that EJC core heterodimers play essential roles in rice development, growth and reproduction. This study reveals that as a complementary approach of RNAi, peptide aptamers are powerful tools for interfering with the function of proteins in higher plants.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Nanxincun 20, Xiangshan, 100093, Beijing, China
| | | | | |
Collapse
|
183
|
Fernández Gómez J, Wilson ZA. A barley PHD finger transcription factor that confers male sterility by affecting tapetal development. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:765-77. [PMID: 24684666 DOI: 10.1111/pbi.12181] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2013] [Revised: 01/18/2014] [Accepted: 02/10/2014] [Indexed: 05/22/2023]
Abstract
Controlling pollen development is of major commercial importance in generating hybrid crops and selective breeding, but characterized genes for male sterility in crops are rare, with no current examples in barley. However, translation of knowledge from model species is now providing opportunities to understand and manipulate such processes in economically important crops. We have used information from regulatory networks in Arabidopsis to identify and functionally characterize a barley PHD transcription factor MALE STERTILITY1 (MS1), which expresses in the anther tapetum and plays a critical role during pollen development. Comparative analysis of Arabidopsis, rice and Brachypodium genomes was used to identify conserved regions in MS1 for primer design to amplify the barley MS1 gene; RACE-PCR was subsequently used to generate the full-length sequence. This gene shows anther-specific tapetal expression, between late tetrad stage and early microspore release. HvMS1 silencing and overexpression in barley resulted in male sterility. Additionally, HvMS1 cDNA, controlled by the native Arabidopsis MS1 promoter, successfully complemented the homozygous ms1 Arabidopsis mutant. These results confirm the conservation of MS1 function in higher plants and in particular in temperate cereals. This has provided the first example of a characterized male sterility gene in barley, which presents a valuable tool for the future control of male fertility in barley for hybrid development.
Collapse
Affiliation(s)
- José Fernández Gómez
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire, UK
| | | |
Collapse
|
184
|
Gong P, He C. Uncovering Divergence of Rice Exon Junction Complex Core Heterodimer Gene Duplication Reveals Their Essential Role in Growth, Development, and Reproduction. PLANT PHYSIOLOGY 2014; 165:1047-1061. [PMID: 24820023 PMCID: PMC4081321 DOI: 10.1104/pp.114.237958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The exon junction complex (EJC) plays important developmental roles in animals; however, its role in plants is not well known. Here, we show various aspects of the divergence of each duplicated MAGO NASHI (MAGO) and Y14 gene pair in rice (Oryza sativa) encoding the putative EJC core subunits that form the obligate MAGO-Y14 heterodimers. OsMAGO1, OsMAGO2, and OsY14a were constitutively expressed in all tissues, while OsY14b was predominantly expressed in embryonic tissues. OsMAGO2 and OsY14b were more sensitive to different stresses than OsMAGO1 and OsY14a, and their encoded protein pair shared 93.8% and 46.9% sequence identity, respectively. Single MAGO down-regulation in rice did not lead to any phenotypic variation; however, double gene knockdowns generated short rice plants with abnormal flowers, and the stamens of these flowers showed inhibited degradation and absorption of both endothecium and tapetum, suggesting that OsMAGO1 and OsMAGO2 were functionally redundant. OsY14a knockdowns phenocopied OsMAGO1OsMAGO2 mutants, while down-regulation of OsY14b failed to induce plantlets, suggesting the functional specialization of OsY14b in embryogenesis. OsMAGO1OsMAGO2OsY14a triple down-regulation enhanced the phenotypes of OsMAGO1OsMAGO2 and OsY14a down-regulated mutants, indicating that they exert developmental roles in the MAGO-Y14 heterodimerization mode. Modified gene expression was noted in the altered developmental pathways in these knockdowns, and the transcript splicing of UNDEVELOPED TAPETUM1 (OsUDT1), a key regulator in stamen development, was uniquely abnormal. Concomitantly, MAGO and Y14 selectively bound to the OsUDT1 premessenger RNA, suggesting that rice EJC subunits regulate splicing. Our work provides novel insights into the function of the EJC locus in growth, development, and reproduction in angiosperms and suggests a role for these genes in the adaptive evolution of cereals.
Collapse
Affiliation(s)
- Pichang Gong
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China (P.G., C.H.); andUniversity of the Chinese Academy of Sciences, 100049 Beijing, China (P.G.)
| | - Chaoying He
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, 100093 Beijing, China (P.G., C.H.); andUniversity of the Chinese Academy of Sciences, 100049 Beijing, China (P.G.)
| |
Collapse
|
185
|
|
186
|
Ko SS, Li MJ, Sun-Ben Ku M, Ho YC, Lin YJ, Chuang MH, Hsing HX, Lien YC, Yang HT, Chang HC, Chan MT. The bHLH142 Transcription Factor Coordinates with TDR1 to Modulate the Expression of EAT1 and Regulate Pollen Development in Rice. THE PLANT CELL 2014; 26:2486-2504. [PMID: 24894043 PMCID: PMC4114947 DOI: 10.1105/tpc.114.126292] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 05/07/2014] [Accepted: 05/13/2014] [Indexed: 05/18/2023]
Abstract
Male sterility plays an important role in F1 hybrid seed production. We identified a male-sterile rice (Oryza sativa) mutant with impaired pollen development and a single T-DNA insertion in the transcription factor gene bHLH142. Knockout mutants of bHLH142 exhibited retarded meiosis and defects in tapetal programmed cell death. RT-PCR and in situ hybridization analyses showed that bHLH142 is specifically expressed in the anther, in the tapetum, and in meiocytes during early meiosis. Three basic helix-loop-helix transcription factors, UDT1 (bHLH164), TDR1 (bHLH5), and EAT1/DTD1 (bHLH141) are known to function in rice pollen development. bHLH142 acts downstream of UDT1 and GAMYB but upstream of TDR1 and EAT1 in pollen development. In vivo and in vitro assays demonstrated that bHLH142 and TDR1 proteins interact. Transient promoter assays demonstrated that regulation of the EAT1 promoter requires bHLH142 and TDR1. Consistent with these results, 3D protein structure modeling predicted that bHLH142 and TDR1 form a heterodimer to bind to the EAT1 promoter. EAT1 positively regulates the expression of AP37 and AP25, which induce tapetal programmed cell death. Thus, in this study, we identified bHLH142 as having a pivotal role in tapetal programmed cell death and pollen development.
Collapse
Affiliation(s)
- Swee-Suak Ko
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| | - Min-Jeng Li
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Maurice Sun-Ben Ku
- Institute of Bioagricultural Science, National Chiayi University, Chiayi 600, Taiwan
| | - Yi-Cheng Ho
- Institute of Bioagricultural Science, National Chiayi University, Chiayi 600, Taiwan
| | - Yi-Jyun Lin
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Ming-Hsing Chuang
- Department of Life Sciences, National Cheng Kung University, Tainan 701, Taiwan
| | - Hong-Xian Hsing
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Yi-Chen Lien
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Hui-Ting Yang
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Hung-Chia Chang
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan
| | - Ming-Tsair Chan
- Academia Sinica Biotechnology Center in Southern Taiwan, Tainan 741, Taiwan Agricultural Biotechnology Research Center, Academia Sinica, Taipei 115, Taiwan
| |
Collapse
|
187
|
Fu Z, Yu J, Cheng X, Zong X, Xu J, Chen M, Li Z, Zhang D, Liang W. The Rice Basic Helix-Loop-Helix Transcription Factor TDR INTERACTING PROTEIN2 Is a Central Switch in Early Anther Development. THE PLANT CELL 2014; 26:1512-1524. [PMID: 24755456 PMCID: PMC4036568 DOI: 10.1105/tpc.114.123745] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/27/2014] [Accepted: 04/04/2014] [Indexed: 05/18/2023]
Abstract
In male reproductive development in plants, meristemoid precursor cells possessing transient, stem cell-like features undergo cell divisions and differentiation to produce the anther, the male reproductive organ. The anther contains centrally positioned microsporocytes surrounded by four distinct layers of wall: the epidermis, endothecium, middle layer, and tapetum. Here, we report that the rice (Oryza sativa) basic helix-loop-helix (bHLH) protein TDR INTERACTING PROTEIN2 (TIP2) functions as a crucial switch in the meristemoid transition and differentiation during early anther development. The tip2 mutants display undifferentiated inner three anther wall layers and abort tapetal programmed cell death, causing complete male sterility. TIP2 has two paralogs in rice, TDR and EAT1, which are key regulators of tapetal programmed cell death. We revealed that TIP2 acts upstream of TDR and EAT1 and directly regulates the expression of TDR and EAT1. In addition, TIP2 can interact with TDR, indicating a role of TIP2 in later anther development. Our findings suggest that the bHLH proteins TIP2, TDR, and EAT1 play a central role in regulating differentiation, morphogenesis, and degradation of anther somatic cell layers, highlighting the role of paralogous bHLH proteins in regulating distinct steps of plant cell-type determination.
Collapse
Affiliation(s)
- Zhenzhen Fu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jing Yu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaowei Cheng
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Xu Zong
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Jie Xu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Mingjiao Chen
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zongyun Li
- School of Life Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, China
| | - Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wanqi Liang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
188
|
Zhang D, Yang L. Specification of tapetum and microsporocyte cells within the anther. CURRENT OPINION IN PLANT BIOLOGY 2014; 17:49-55. [PMID: 24507494 DOI: 10.1016/j.pbi.2013.11.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 10/19/2013] [Accepted: 11/02/2013] [Indexed: 05/18/2023]
Abstract
Flowering plants form male reproductive cells (microsporocytes) during sporophytic generation, which subsequently differentiate into multicellular male gametes in the gametophytic generation. The tapetum is a somatic helper tissue neighboring microsporocytes and supporting gametogenesis. The mechanism controlling the specification of the tapetum and microsporocyte cell fate within the anther has long been a mystery in biology. Recent investigations have revealed molecular switches and signaling pathways underlying the establishment of somatic and reproductive cells in plants. In this review we discuss common and diversified signaling molecules and regulatory pathways including receptor-like protein kinases, redox status, glycoprotein, transcription factors, hormones and microRNA implicated in the specification of tapetum and microsporocytes in plants.
Collapse
Affiliation(s)
- Dabing Zhang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Li Yang
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
189
|
Wang D, Skibbe DS, Walbot V. Maize Male sterile 8 (Ms8), a putative β-1,3-galactosyltransferase, modulates cell division, expansion, and differentiation during early maize anther development. PLANT REPRODUCTION 2013; 26:329-38. [PMID: 23887707 DOI: 10.1007/s00497-013-0230-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2012] [Accepted: 07/11/2013] [Indexed: 05/07/2023]
Abstract
Precise somatic and reproductive cell proliferation and differentiation in anthers are crucial for male fertility. Loss of function of the Male sterile 8 (Ms8) gene causes male sterility with multiple phenotypic defects first visible in the epidermal and tapetal cells. Here, we document the cloning of Ms8, which is a putative β-1,3-galactosyltransferase. Ms8 transcript is abundant in immature anthers with a peak at the meiotic stage; RNA expression is highly correlated with protein accumulation. Co-immunoprecipitation coupled with mass spectrometry sequencing identified several MS8-associated proteins, including arabinogalactan proteins, prohibitins, and porin. We discuss the hypotheses that arabinogalactan protein might be an MS8 substrate and that MS8 might be involved in maintenance of mitochondrial integrity.
Collapse
Affiliation(s)
- Dongxue Wang
- Department of Biology, Stanford University, Stanford, CA, 94305-5020, USA,
| | | | | |
Collapse
|
190
|
Kim SL, Choi M, Jung KH, An G. Analysis of the early-flowering mechanisms and generation of T-DNA tagging lines in Kitaake, a model rice cultivar. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:4169-82. [PMID: 23966593 PMCID: PMC3808308 DOI: 10.1093/jxb/ert226] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
As an extremely early flowering cultivar, rice cultivar Kitaake is a suitable model system for molecular studies. Expression analyses revealed that transcript levels of the flowering repressor Ghd7 were decreased while those of its downstream genes, Ehd1, Hd3a, and RFT1, were increased. Sequencing the known flowering-regulator genes revealed mutations in Ghd7 and OsPRR37 that cause early translation termination and amino acid substitutions, respectively. Genetic analysis of F2 progeny from a cross between cv. Kitaake and cv. Dongjin indicated that those mutations additively contribute to the early-flowering phenotype in cv. Kitaake. Because the short life cycle facilitates genetics research, this study generated 10 000 T-DNA tagging lines and deduced 6758 flanking sequence tags (FSTs), in which 3122 were genic and 3636 were intergenic. Among the genic lines, 367 (11.8%) were inserted into new genes that were not previously tagged. Because the lines were generated by T-DNA that contained the promoterless GUS reporter gene, which had an intron with triple splicing donors/acceptors in the right border region, a high efficiency of GUS expression was shown in various organs. Sequencing of the GUS-positive lines demonstrated that the third splicing donor and the first splicing acceptor of the vector were extensively used. The FST data have now been released into the public domain for seed distribution and facilitation of rice research.
Collapse
Affiliation(s)
- Song Lim Kim
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Life Sciences, Pohang University of Science and Technology, Pohang 790-784, Korea
| | - Minkyung Choi
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Ki-Hong Jung
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| | - Gynheung An
- Crop Biotech Institute, Kyung Hee University, Yongin 446-701, Korea
- Department of Plant Molecular Systems Biotechnology, Kyung Hee University, Yongin 446-701, Korea
| |
Collapse
|
191
|
Liu X, Shangguan Y, Zhu J, Lu Y, Han B. The rice OsLTP6 gene promoter directs anther-specific expression by a combination of positive and negative regulatory elements. PLANTA 2013; 238:845-57. [PMID: 23907515 DOI: 10.1007/s00425-013-1934-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/19/2013] [Indexed: 05/22/2023]
Abstract
Characterization of tissue-specific plant gene promoters will benefit genetic improvement in crops. Here, we isolated a novel rice anther-specific plant lipid transfer protein (OsLTP6) gene through high through-put expressional profiling. The promoter of OsLTP6 was introduced to the upstream of the uidA gene, which encodes β-glucuronidase (GUS), and transformed into rice plants for functional analysis. Histochemical and fluorometric GUS assay showed that GUS was specifically expressed in the anthers and pollens in OsLTP6 promoter::uidA transgenic plants. Transverse section of the rice anther further indicated that the OsLTP6 promoter directed the reporter gene specifically expressed in anther tapetum. To identify regulatory elements within OsLTP6 promoter region, four progressive deletions of the OsLTP6 promoter were constructed. The results indicated that the OsLTP6 promoter achieved anther-specific expression through a combination of positive and negative regulatory elements. A 26-bp motif upstream of TATA box was a key transcriptional activator for OsLTP6 gene. CAAT box and GTGA box were the putative motifs to increase the transcription level to full expression. Two negative regulatory elements were also found in two distinct regions within this promoter. They repressed the expression in leaf and stem, respectively. These results revealed the regulating complexity of anther-specific expression.
Collapse
Affiliation(s)
- Xiaohui Liu
- National Center for Gene Research and Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 500 Caobao Road, Shanghai, 200233, People's Republic of China,
| | | | | | | | | |
Collapse
|
192
|
Moon J, Skibbe D, Timofejeva L, Rachel Wang CJ, Kelliher T, Kremling K, Walbot V, Zacheus Cande W. Regulation of cell divisions and differentiation by MALE STERILITY32 is required for anther development in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:592-602. [PMID: 24033746 PMCID: PMC4239027 DOI: 10.1111/tpj.12318] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 08/13/2013] [Accepted: 08/22/2013] [Indexed: 05/19/2023]
Abstract
Male fertility in flowering plants relies on proper division and differentiation of cells in the anther, a process that gives rise to four somatic layers surrounding central germinal cells. The maize gene male sterility32 (ms32) encodes a basic helix-loop-helix (bHLH) transcription factor, which functions as an important regulator of both division and differentiation during anther development. After the four somatic cell layers are generated properly through successive periclinal divisions, in the ms32 mutant, tapetal precursor cells fail to differentiate, and, instead, undergo additional periclinal divisions to form extra layers of cells. These cells become vacuolated and expand, and lead to failure in pollen mother cell development. ms32 expression is specific to the pre-meiotic anthers and is distributed initially broadly in the four lobes, but as the anther develops, its expression becomes restricted to the innermost somatic layer, the tapetum. The ms32-ref mac1-1 double mutant is unable to form tapetal precursors and also exhibits excessive somatic proliferation leading to numerous, disorganized cell layers, suggesting a synergistic interaction between ms32 and mac1. Altogether, our results show that MS32 is a major regulator in maize anther development that promotes tapetum differentiation and inhibits periclinal division once a tapetal cell is specified.
Collapse
Affiliation(s)
- Jihyun Moon
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - David Skibbe
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Ljudmilla Timofejeva
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- Department of Gene Technology, Tallinn University of Technology, Tallinn 12618, Estonia
| | | | - Timothy Kelliher
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Karl Kremling
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
| | - Virginia Walbot
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - William Zacheus Cande
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, CA 94720, USA
- For correspondence ()
| |
Collapse
|
193
|
Dong X, Feng H, Xu M, Lee J, Kim YK, Lim YP, Piao Z, Park YD, Ma H, Hur Y. Comprehensive analysis of genic male sterility-related genes in Brassica rapa using a newly developed Br300K oligomeric chip. PLoS One 2013; 8:e72178. [PMID: 24039743 PMCID: PMC3770635 DOI: 10.1371/journal.pone.0072178] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/05/2013] [Indexed: 11/18/2022] Open
Abstract
To identify genes associated with genic male sterility (GMS) that could be useful for hybrid breeding in Chinese cabbage (Brassicarapa ssp. pekinensis), floral bud transcriptome analysis was carried out using a B. rapa microarray with 300,000 probes (Br300K). Among 47,548 clones deposited on a Br300K microarray with seven probes of 60 nt length within the 3' 150 bp region, a total of 10,622 genes were differentially expressed between fertile and sterile floral buds; 4,774 and 5,848 genes were up-regulated over 2-fold in fertile and sterile buds, respectively. However, the expression of 1,413 and 199 genes showed fertile and sterile bud-specific features, respectively. Genes expressed specifically in fertile buds, possibly GMS-related genes, included homologs of several Arabidopsis male sterility-related genes, genes associated with the cell wall and synthesis of its surface proteins, pollen wall and coat components, signaling components, and nutrient supplies. However, most early genes for pollen development, genes for primexine and callose formation, and genes for pollen maturation and anther dehiscence showed no difference in expression between fertile and sterile buds. Some of the known genes associated with Arabidopsis pollen development showed similar expression patterns to those seen in this study, while others did not. BrbHLH89 and BrMYP99 are putative GMS genes. Additionally, 17 novel genes identified only in B. rapa were specifically and highly expressed only in fertile buds, implying the possible involvement in male fertility. All data suggest that Chinese cabbage GMS might be controlled by genes acting in post-meiotic tapetal development that are different from those known to be associated with Arabidopsis male sterility.
Collapse
Affiliation(s)
- Xiangshu Dong
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Ming Xu
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Jeongyeo Lee
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
| | - Yeon Ki Kim
- GreenGene Biotech Inc, Genomics and Genetics Institute, Yongin, Korea
| | - Yong Pyo Lim
- Department of Horticulture, Chungnam National University, Daejeon, Korea
| | - Zhongyun Piao
- Department of Horticulture, Shenyang Agricultural University, Shenyang, China
| | - Young Doo Park
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, Korea
| | - Hong Ma
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, Center for Evolutionary Biology, School of Life Sciences, Fudan University, Shanghai, China
| | - Yoonkang Hur
- Department of Biological Sciences, Chungnam National University, Daejeon, Korea
- * E-mail:
| |
Collapse
|
194
|
Jin Y, Yang H, Wei Z, Ma H, Ge X. Rice male development under drought stress: phenotypic changes and stage-dependent transcriptomic reprogramming. MOLECULAR PLANT 2013; 6:1630-45. [PMID: 23604203 DOI: 10.1093/mp/sst067] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Drought affects rice reproduction and results in severe yield loss. The developmental defects and changes of gene regulation network in reproductive tissues under drought stress are largely unknown. In this study, rice plants subjected to reproductive stage drought stress were examined for floral development and transcriptomic changes. The results showed that male fertility was dramatically affected, with differing pollen viability in flowers of the same panicle due to aberrant anther development under water stress. Examination of local starch distribution revealed that starch accumulated abnormally in terms of position and abundance in anthers of water-stressed plants. Microarray analysis using florets of different sizes identified >1000 drought-responsive genes, most of which were specifically regulated in only one or two particular sizes of florets, suggesting developmental stage-dependent responses to drought. Genes known to be involved in tapetum and/or microspore development, cell wall formation or expansion, and starch synthesis were found more frequently among the genes affected by drought than genome average, while meiosis and MADS-box genes were less frequently affected. In addition, pathways related to gibberellin acid signaling and abscisic acid catabolism were reprogrammed by drought. Our results strongly suggest interactions between reproductive development, phytohormone signaling, and carbohydrate metabolism in water-stressed plants.
Collapse
Affiliation(s)
- Yue Jin
- State Key Laboratory of Genetic Engineering, Institute of Plant Biology, School of Life Sciences, Fudan University, 220 Handan Road, Shanghai 200433, China
| | | | | | | | | |
Collapse
|
195
|
Tan C, Han Z, Yu H, Zhan W, Xie W, Chen X, Zhao H, Zhou F, Xing Y. QTL scanning for rice yield using a whole genome SNP array. J Genet Genomics 2013; 40:629-38. [PMID: 24377869 DOI: 10.1016/j.jgg.2013.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/29/2013] [Accepted: 06/20/2013] [Indexed: 01/04/2023]
Abstract
High-throughput SNP genotyping is widely used for plant genetic studies. Recently, a RICE6K SNP array has been developed based on the Illumina Bead Array platform and Infinium SNP assay technology for genome-wide evaluation of allelic variations and breeding applications. In this study, the RICE6K SNP array was used to genotype a recombinant inbred line (RIL) population derived from the cross between the indica variety, Zhenshan 97, and the japonica variety, Xizang 2. A total of 3324 SNP markers of high quality were identified and were grouped into 1495 recombination bins in the RIL population. A high-density linkage map, consisting of the 1495 bins, was developed, covering 1591.2 cM and with average length of 1.1 cM per bin. Segregation distortions were observed in 24 regions of the 11 chromosomes in the RILs. One half of the distorted regions contained fertility genes that had been previously reported. A total of 23 QTLs were identified for yield. Seven QTLs were firstly detected in this study. The positive alleles from about half of the identified QTLs came from Zhenshan 97 and they had lower phenotypic values than Xizang 2. This indicated that favorable alleles for breeding were dispersed in both parents and pyramiding favorable alleles could develop elite lines. The size of the mapping population for QTL analysis using high throughput SNP genotyping platform is also discussed.
Collapse
Affiliation(s)
- Cong Tan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongmin Han
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Huihui Yu
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan 430075, China
| | - Wei Zhan
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Weibo Xie
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Chen
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Hu Zhao
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China
| | - Fasong Zhou
- Life Science and Technology Center, China National Seed Group Co., Ltd., Wuhan 430075, China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement, National Center of Plant Gene Research, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
196
|
Niu N, Liang W, Yang X, Jin W, Wilson ZA, Hu J, Zhang D. EAT1 promotes tapetal cell death by regulating aspartic proteases during male reproductive development in rice. Nat Commun 2013; 4:1445. [PMID: 23385589 DOI: 10.1038/ncomms2396] [Citation(s) in RCA: 226] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 12/18/2012] [Indexed: 11/09/2022] Open
Abstract
Programmed cell death is essential for the development of multicellular organisms, yet pathways of plant programmed cell death and its regulation remain elusive. Here we report that ETERNAL TAPETUM 1, a basic helix-loop-helix transcription factor conserved in land plants, positively regulates programmed cell death in tapetal cells in rice anthers. eat1 exhibits delayed tapetal cell death and aborted pollen formation. ETERNAL TAPETUM 1 directly regulates the expression of OsAP25 and OsAP37, which encode aspartic proteases that induce programmed cell death in both yeast and plants. Expression and genetic analyses revealed that ETERNAL TAPETUM 1 acts downstream of TAPETUM DEGENERATION RETARDATION, another positive regulator of tapetal programmed cell death, and that ETERNAL TAPETUM 1 can also interact with the TAPETUM DEGENERATION RETARDATION protein. This study demonstrates that ETERNAL TAPETUM 1 promotes aspartic proteases triggering plant programmed cell death, and reveals a dynamic regulatory cascade in male reproductive development in rice.
Collapse
Affiliation(s)
- Ningning Niu
- State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | | | | | | | | | | | | |
Collapse
|
197
|
Ueda K, Yoshimura F, Miyao A, Hirochika H, Nonomura KI, Wabiko H. Collapsed abnormal pollen1 gene encoding the Arabinokinase-like protein is involved in pollen development in rice. PLANT PHYSIOLOGY 2013; 162:858-71. [PMID: 23629836 PMCID: PMC3668075 DOI: 10.1104/pp.113.216523] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
We isolated a pollen-defective mutant, collapsed abnormal pollen1 (cap1), from Tos17 insertional mutant lines of rice (Oryza sativa). The cap1 heterozygous plant produced equal numbers of normal and collapsed abnormal grains. The abnormal pollen grains lacked almost all cytoplasmic materials, nuclei, and intine cell walls and did not germinate. Genetic analysis of crosses revealed that the cap1 mutation did not affect female reproduction or vegetative growth. CAP1 encodes a protein consisting of 996 amino acids that showed high similarity to Arabidopsis (Arabidopsis thaliana) l-arabinokinase, which catalyzes the conversion of l-arabinose to l-arabinose 1-phosphate. A wild-type genomic DNA segment containing CAP1 restored mutants to normal pollen grains. During rice pollen development, CAP1 was preferentially expressed in anthers at the bicellular pollen stage, and the effects of the cap1 mutation were mainly detected at this stage. Based on the metabolic pathway of l-arabinose, cap1 pollen phenotype may have been caused by toxic accumulation of l-arabinose or by inhibition of cell wall metabolism due to the lack of UDP-l-arabinose derived from l-arabinose 1-phosphate. The expression pattern of CAP1 was very similar to that of another Arabidopsis homolog that showed 71% amino acid identity with CAP1. Our results suggested that CAP1 and related genes are critical for pollen development in both monocotyledonous and dicotyledonous plants.
Collapse
Affiliation(s)
- Kenji Ueda
- Department of Biological Production, Faculty of Bioresource Sciences, Akita Prefectural University, Akita 010-0195, Japan.
| | | | | | | | | | | |
Collapse
|
198
|
Tran F, Penniket C, Patel RV, Provart NJ, Laroche A, Rowland O, Robert LS. Developmental transcriptional profiling reveals key insights into Triticeae reproductive development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:971-88. [PMID: 23581995 DOI: 10.1111/tpj.12206] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 05/25/2023]
Abstract
Despite their importance, there remains a paucity of large-scale gene expression-based studies of reproductive development in species belonging to the Triticeae. As a first step to address this deficiency, a gene expression atlas of triticale reproductive development was generated using the 55K Affymetrix GeneChip(®) wheat genome array. The global transcriptional profiles of the anther/pollen, ovary and stigma were analyzed at concurrent developmental stages, and co-expressed as well as preferentially expressed genes were identified. Data analysis revealed both novel and conserved regulatory factors underlying Triticeae floral development and function. This comprehensive resource rests upon detailed gene annotations, and the expression profiles are readily accessible via a web browser.
Collapse
Affiliation(s)
- Frances Tran
- Agriculture and Agri-Food Canada, Eastern Cereal and Oilseed Research Centre, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada
| | | | | | | | | | | | | |
Collapse
|
199
|
Wang K, Peng X, Ji Y, Yang P, Zhu Y, Li S. Gene, protein, and network of male sterility in rice. FRONTIERS IN PLANT SCIENCE 2013; 4:92. [PMID: 23596452 PMCID: PMC3622893 DOI: 10.3389/fpls.2013.00092] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Accepted: 03/26/2013] [Indexed: 05/18/2023]
Abstract
Rice is one of the most important model crop plants whose heterosis has been well-exploited in commercial hybrid seed production via a variety of types of male-sterile lines. Hybrid rice cultivation area is steadily expanding around the world, especially in Southern Asia. Characterization of genes and proteins related to male sterility aims to understand how and why the male sterility occurs, and which proteins are the key players for microspores abortion. Recently, a series of genes and proteins related to cytoplasmic male sterility (CMS), photoperiod-sensitive male sterility, self-incompatibility, and other types of microspores deterioration have been characterized through genetics or proteomics. Especially the latter, offers us a powerful and high throughput approach to discern the novel proteins involving in male-sterile pathways which may help us to breed artificial male-sterile system. This represents an alternative tool to meet the critical challenge of further development of hybrid rice. In this paper, we reviewed the recent developments in our understanding of male sterility in rice hybrid production across gene, protein, and integrated network levels, and also, present a perspective on the engineering of male-sterile lines for hybrid rice production.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, People's Republic of China
| | - Xiaojue Peng
- Key Laboratory of Molecular Biology and Gene Engineering, College of Life Science, Nanchang UniversityNanchang, People's Republic of China
| | - Yanxiao Ji
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| | - Pingfang Yang
- Key Laboratory of Plant Germplasm Enhancement and Speciality Agriculture, Wuhan Botanical Garden, Chinese Academy of SciencesWuhan, People's Republic of China
| | - Yingguo Zhu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| | - Shaoqing Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan UniversityWuhan, People's Republic of China
| |
Collapse
|
200
|
Yi J, An G. Utilization of T-DNA tagging lines in rice. JOURNAL OF PLANT BIOLOGY 2013; 56:85-90. [PMID: 0 DOI: 10.1007/s12374-013-0905-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
|