151
|
Golan G, Betzer R, Wolf S. Phloem-specific expression of a melon Aux/IAA in tomato plants alters auxin sensitivity and plant development. FRONTIERS IN PLANT SCIENCE 2013; 4:329. [PMID: 23986770 PMCID: PMC3750518 DOI: 10.3389/fpls.2013.00329] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/04/2013] [Indexed: 05/05/2023]
Abstract
Phloem sap contains a large repertoire of macromolecules in addition to sugars, amino acids, growth substances and ions. The transcription profile of melon phloem sap contains over 1000 mRNA molecules, most of them associated with signal transduction, transcriptional control, and stress and defense responses. Heterografting experiments have established the long-distance trafficking of numerous mRNA molecules. Interestingly, several trafficking transcripts are involved in the auxin response, including two molecules coding for auxin/indole acetic acid (Aux/IAA). To further explore the biological role of the melon Aux/IAA transcript CmF-308 in the vascular tissue, a cassette containing the coding sequence of this gene under a phloem-specific promoter was introduced into tomato plants. The number of lateral roots was significantly higher in transgenic plants expressing CmF-308 under the AtSUC2 promoter than in controls. A similar effect on root development was obtained after transient expression of CmF-308 in source leaves of N. benthamiana plants. An auxin-response assay showed that CmF-308-transgenic roots are more sensitive to auxin than control roots. In addition to the altered root development, phloem-specific expression of CmF-308 resulted in shorter plants, a higher number of lateral shoots and delayed flowering, a phenotype resembling reduced apical dominance. In contrast to the root response, cotyledons of the transgenic plants were less sensitive to auxin than control cotyledons. The reduced auxin sensitivity in the shoot tissue was confirmed by lower relative expression of several Aux/IAA genes in leaves and an increase in the relative expression of a cytokinin-response regulator, TRR8/9b. The accumulated data suggest that expression of Aux/IAA in the phloem modifies auxin sensitivity in a tissue-specific manner, thereby altering plant development.
Collapse
Affiliation(s)
| | | | - Shmuel Wolf
- *Correspondence: Shmuel Wolf, The Robert H. Smith Faculty of Agriculture, Food and Environment, Otto Warburg Minerva Center for Agricultural Biotechnology, The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, P.O. Box 12, Rehovot 761001, Israel e-mail:
| |
Collapse
|
152
|
Farmer EE, Mueller MJ. ROS-mediated lipid peroxidation and RES-activated signaling. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:429-50. [PMID: 23451784 DOI: 10.1146/annurev-arplant-050312-120132] [Citation(s) in RCA: 434] [Impact Index Per Article: 36.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nonenzymatic lipid oxidation is usually viewed as deleterious. But if this is the case, then why does it occur so frequently in cells? Here we review the mechanisms of membrane peroxidation and examine the genesis of reactive electrophile species (RES). Recent evidence suggests that during stress, both lipid peroxidation and RES generation can benefit cells. New results from genetic approaches support a model in which entire membranes can act as supramolecular sinks for singlet oxygen, the predominant reactive oxygen species (ROS) in plastids. RES reprogram gene expression through a class II TGA transcription factor module as well as other, unknown signaling pathways. We propose a framework to explain how RES signaling promotes cell "REScue" by stimulating the expression of genes encoding detoxification functions, cell cycle regulators, and chaperones. The majority of the known biological activities of oxygenated lipids (oxylipins) in plants are mediated either by jasmonate perception or through RES signaling networks.
Collapse
Affiliation(s)
- Edward E Farmer
- Department of Plant Molecular Biology, University of Lausanne, CH-1015 Lausanne, Switzerland.
| | | |
Collapse
|
153
|
Lee HW, Kim MJ, Kim NY, Lee SH, Kim J. LBD18 acts as a transcriptional activator that directly binds to the EXPANSIN14 promoter in promoting lateral root emergence of Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:212-24. [PMID: 22974309 DOI: 10.1111/tpj.12013] [Citation(s) in RCA: 119] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 09/03/2012] [Accepted: 09/05/2012] [Indexed: 05/18/2023]
Abstract
Lateral root formation, a developmental process under the control of the plant hormone auxin, is a major determinant of root architecture, and defines the ability of a plant to acquire nutrients and water. The LATERAL ORGAN BOUNDARIES DOMAIN/ASYMMETRIC LEAVES2-LIKE (LBD/ASL) proteins play an important role in the lateral organ development of plants, including lateral root formation. However, their downstream components and signalling mechanisms are largely unknown. Here, we show that auxin-responsive LBD18/ASL20 acts as a specific DNA-binding transcriptional activator that directly regulates EXPANSIN14 (EXP14), a gene encoding a cell wall-loosening factor that promotes lateral root emergence in Arabidopsis thaliana. We showed that LBD18 possesses transcription-activating function in both yeast and Arabidopsis protoplasts. We isolated putative LBD18 target genes by microarray analysis, and identified EXP14 as a direct target of LBD18. Dexamethasone-induced expression of LBD18 under the CaMV 35S promoter in transgenic Arabidopsis resulted in enhanced expression of GUS fused to the EXP14 promoter in primordium and overlaying tissues. In contrast, GUS expression under the EXP14 promoter in the lbd18 mutant background was significantly reduced in the same tissues. Experiments using a variety of molecular techniques demonstrated that LBD18 activates EXP14 by directly binding to a specific promoter element in vitro and in vivo. Overexpression of EXP14 in Arabidopsis resulted in the stimulation of emerged lateral roots, but not primordia, whereas EXP14 loss-of-function plants had reduced auxin-stimulated lateral root formation. This study revealed the molecular function of LBD18 as a specific DNA-binding transcription factor that activates EXP14 expression by directly binding to its promoter.
Collapse
Affiliation(s)
- Han Woo Lee
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| | - Min-Jung Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| | - Nan Young Kim
- Department of Plant Biotechnology, Chonnam National University, Gwangju, 500-757, Korea
| | - Sung Haeng Lee
- Department of Cellular and Molecular Medicine, Chosun University School of Medicine, Gwangju, 501-759, Korea
| | - Jungmook Kim
- Department of Bioenergy Science and Technology, (World Class University), Chonnam National University, Gwangju, 500-757, Korea
| |
Collapse
|
154
|
Muraro D, Voβ U, Wilson M, Bennett M, Byrne H, De Smet I, Hodgman C, King J. Inference of the genetic network regulating lateral root initiation in Arabidopsis thaliana. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2013; 10:50-60. [PMID: 23702543 DOI: 10.1109/tcbb.2013.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Regulation of gene expression is crucial for organism growth, and it is one of the challenges in systems biology to reconstruct the underlying regulatory biological networks from transcriptomic data. The formation of lateral roots in Arabidopsis thaliana is stimulated by a cascade of regulators of which only the interactions of its initial elements have been identified. Using simulated gene expression data with known network topology, we compare the performance of inference algorithms, based on different approaches, for which ready-to-use software is available. We show that their performance improves with the network size and the inclusion of mutants. We then analyze two sets of genes, whose activity is likely to be relevant to lateral root initiation in Arabidopsis, and assess causality of their regulatory interactions by integrating sequence analysis with the intersection of the results of the best performing methods on time series and mutants. The methods applied capture known interactions between genes that are candidate regulators at early stages of development. The network inferred from genes significantly expressed during lateral root formation exhibits distinct scale free, small world and hierarchical properties and the nodes with a high out-degree may warrant further investigation.
Collapse
Affiliation(s)
- Daniele Muraro
- Centre for Plant Integrative Biology, School of Biosciences, University of Nottingham, Loughborough, United Kingdom.
| | | | | | | | | | | | | | | |
Collapse
|
155
|
Bargmann BOR, Vanneste S, Krouk G, Nawy T, Efroni I, Shani E, Choe G, Friml J, Bergmann DC, Estelle M, Birnbaum KD. A map of cell type-specific auxin responses. Mol Syst Biol 2013; 9:688. [PMID: 24022006 PMCID: PMC3792342 DOI: 10.1038/msb.2013.40] [Citation(s) in RCA: 113] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2013] [Accepted: 07/23/2013] [Indexed: 12/31/2022] Open
Abstract
In plants, changes in local auxin concentrations can trigger a range of developmental processes as distinct tissues respond differently to the same auxin stimulus. However, little is known about how auxin is interpreted by individual cell types. We performed a transcriptomic analysis of responses to auxin within four distinct tissues of the Arabidopsis thaliana root and demonstrate that different cell types show competence for discrete responses. The majority of auxin-responsive genes displayed a spatial bias in their induction or repression. The novel data set was used to examine how auxin influences tissue-specific transcriptional regulation of cell-identity markers. Additionally, the data were used in combination with spatial expression maps of the root to plot a transcriptomic auxin-response gradient across the apical and basal meristem. The readout revealed a strong correlation for thousands of genes between the relative response to auxin and expression along the longitudinal axis of the root. This data set and comparative analysis provide a transcriptome-level spatial breakdown of the response to auxin within an organ where this hormone mediates many aspects of development.
Collapse
Affiliation(s)
- Bastiaan O R Bargmann
- Biology Department, Center for Genomics and Systems Biology, New York University, New York, NY, USA
- Department of Cell and Developmental Biology, UCSD, La Jolla, CA, USA
| | - Steffen Vanneste
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Gabriel Krouk
- Laboratoire de Biochimie et Physiologie Moléculaire des Plantes, Institut de Biologie Intégrative des Plantes—Claude Grignon, Montpellier, France
| | - Tal Nawy
- Biology Department, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Idan Efroni
- Biology Department, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| | - Eilon Shani
- Department of Cell and Developmental Biology, UCSD, La Jolla, CA, USA
| | - Goh Choe
- Department of Cell and Developmental Biology, UCSD, La Jolla, CA, USA
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | | | - Mark Estelle
- Department of Cell and Developmental Biology, UCSD, La Jolla, CA, USA
| | - Kenneth D Birnbaum
- Biology Department, Center for Genomics and Systems Biology, New York University, New York, NY, USA
| |
Collapse
|
156
|
Kamimoto Y, Terasaka K, Hamamoto M, Takanashi K, Fukuda S, Shitan N, Sugiyama A, Suzuki H, Shibata D, Wang B, Pollmann S, Geisler M, Yazaki K. Arabidopsis ABCB21 is a facultative auxin importer/exporter regulated by cytoplasmic auxin concentration. PLANT & CELL PHYSIOLOGY 2012; 53:2090-100. [PMID: 23147222 DOI: 10.1093/pcp/pcs149] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The phytohormone auxin is critical for plant growth and many developmental processes. Members of the P-glycoprotein (PGP/ABCB) subfamily of ATP-binding cassette (ABC) transporters have been shown to function in the polar movement of auxin by transporting auxin over the plasma membrane in both monocots and dicots. Here, we characterize a new Arabidopsis member of the ABCB subfamily, ABCB21/PGP21, a close homolog of ABCB4, for which conflicting transport directionalities have been reported. ABCB21 is strongly expressed in the abaxial side of cotyledons and in junctions of lateral organs in the aerial part, whereas in roots it is specifically expressed in pericycle cells. Membrane fractionation by sucrose density gradient centrifugation followed by Western blot showed that ABCB21 is a plasma membrane-localized ABC transporter. A transport assay with Arabidopsis protoplasts suggested that ABCB21 was involved in IAA transport in an outward direction, while naphthalene acetic acid (NAA) was a less preferable substrate for ABCB21. Further functional analysis of ABCB21 using yeast import and export assays showed that ABCB21 mediates the 1-N-naphthylphthalamic acid (NPA)-sensitive translocation of auxin in an inward direction when the cytoplasmic IAA concentration is low, whereas this transporter mediates outward transport under high internal IAA. An increase in the cytoplasmic IAA concentration by pre-loading of IAA into yeast cells abolished the IAA uptake activity by ABCB21 as well as ABCB4. These findings suggest that ABCB21 functions as a facultative importer/exporter controlling auxin concentrations in plant cells.
Collapse
Affiliation(s)
- Yoshihisa Kamimoto
- Laboratory of Plant Gene Expression, Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho Uji, 611-0011 Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
157
|
Abstract
Lateral root (LR) formation is initiated when pericycle cells accumulate auxin, thereby acquiring founder cell (FC) status and triggering asymmetric cell divisions, giving rise to a new primordium. How this auxin maximum in pericycle cells builds up and remains focused is not understood. We report that the endodermis plays an active role in the regulation of auxin accumulation and is instructive for FCs to progress during the LR initiation (LRI) phase. We describe the functional importance of a PIN3 (PIN-formed) auxin efflux carrier-dependent hormone reflux pathway between overlaying endodermal and pericycle FCs. Disrupting this reflux pathway causes dramatic defects in the progress of FCs towards the next initiation phase. Our data identify an unexpected regulatory function for the endodermis in LRI as part of the fine-tuning mechanism that appears to act as a check point in LR organogenesis after FCs are specified.
Collapse
|
158
|
Pérez-Henríquez P, Raikhel NV, Norambuena L. Endocytic trafficking towards the vacuole plays a key role in the auxin receptor SCF(TIR)-independent mechanism of lateral root formation in A. thaliana. MOLECULAR PLANT 2012; 5:1195-1209. [PMID: 22848095 DOI: 10.1093/mp/sss066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plants' developmental plasticity plays a pivotal role in responding to environmental conditions. One of the most plastic plant organs is the root system. Different environmental stimuli such as nutrients and water deficiency may induce lateral root formation to compensate for a low level of water and/or nutrients. It has been shown that the hormone auxin tunes lateral root development and components for its signaling pathway have been identified. Using chemical biology, we discovered an Arabidopsis thaliana lateral root formation mechanism that is independent of the auxin receptor SCF(TIR). The bioactive compound Sortin2 increased lateral root occurrence by acting upstream from the morphological marker of lateral root primordium formation, the mitotic activity. The compound did not display auxin activity. At the cellular level, Sortin2 accelerated endosomal trafficking, resulting in increased trafficking of plasma membrane recycling proteins to the vacuole. Sortin2 affected Late endosome/PVC/MVB trafficking and morphology. Combining Sortin2 with well-known drugs showed that endocytic trafficking of Late E/PVC/MVB towards the vacuole is pivotal for Sortin2-induced SCF(TIR)-independent lateral root initiation. Our results revealed a distinctive role for endosomal trafficking in the promotion of lateral root formation via a process that does not rely on the auxin receptor complex SCF(TIR).
Collapse
|
159
|
Manzano C, Ramirez-Parra E, Casimiro I, Otero S, Desvoyes B, De Rybel B, Beeckman T, Casero P, Gutierrez C, C. del Pozo J. Auxin and epigenetic regulation of SKP2B, an F-box that represses lateral root formation. PLANT PHYSIOLOGY 2012; 160:749-62. [PMID: 22837358 PMCID: PMC3461553 DOI: 10.1104/pp.112.198341] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
In plants, lateral roots originate from pericycle founder cells that are specified at regular intervals along the main root. Here, we show that Arabidopsis (Arabidopsis thaliana) SKP2B (for S-Phase Kinase-Associated Protein2B), an F-box protein, negatively regulates cell cycle and lateral root formation as it represses meristematic and founder cell divisions. According to its function, SKP2B is expressed in founder cells, lateral root primordia and the root apical meristem. We identified a novel motif in the SKP2B promoter that is required for its specific root expression and auxin-dependent induction in the pericycle cells. Next to a transcriptional control by auxin, SKP2B expression is regulated by histone H3.1/H3.3 deposition in a CAF-dependent manner. The SKP2B promoter and the 5' end of the transcribed region are enriched in H3.3, which is associated with active chromatin states, over H3.1. Furthermore, the SKP2B promoter is also regulated by H3 acetylation in an auxin- and IAA14-dependent manner, reinforcing the idea that epigenetics represents an important regulatory mechanism during lateral root formation.
Collapse
|
160
|
Feng Z, Zhu J, Du X, Cui X. Effects of three auxin-inducible LBD members on lateral root formation in Arabidopsis thaliana. PLANTA 2012; 236:1227-37. [PMID: 22699776 DOI: 10.1007/s00425-012-1673-3] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2012] [Accepted: 05/21/2012] [Indexed: 05/08/2023]
Abstract
In Arabidopsis, two Auxin Response Factors (ARF7 and ARF19) and several Aux/IAAs regulate auxin-induced lateral root (LR) formation. As direct targets of ARF7 and ARF19, Lateral Organ Boundaries Domain 16 (LBD16), LBD29, and LBD18 have a biological function in the formation of lateral roots (LRs). However, the details of the functions of these three LBDs have remained unclear. Each single T-DNA insert mutant has been shown to have slightly fewer LRs than the wild type. We then created a triple mutant, which exhibited a dramatic defect in the LR formation. Our results show that the lbd mutations can lead to impairment in auxin-induced pericycle cell division and in the expression levels of some D-type cyclins (CYCDs). Simultaneously, Plethora (PLT) and PIN-formed (PIN), which have been well documented to promote cell mitotic activity and are required for auxin response effects, were down-regulated by these lbd mutations. Our results so far indicate that CYCDs, PLT, and PINs are the main targets of the LBDs. We believe that these three LBDs are involved in cell cycle progression of the pericycle in response to auxin. Overexpression of any of these three LBD genes in the triple mutant was found incapable of completely replacing the other two LBDs. The phenotypes of lbd29 mutants were not completely consistent with lbd16 or lbd18 mutants. This indicates that LBD29 may play a distinctive role compared with LBD16 or LBD18 and LBDs might play partially independent roles during the formation of LRs.
Collapse
Affiliation(s)
- Zhenhua Feng
- Department of Molecular and Cell Biology, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | | | | | | |
Collapse
|
161
|
Bassa C, Mila I, Bouzayen M, Audran-Delalande C. Phenotypes associated with down-regulation of Sl-IAA27 support functional diversity among Aux/IAA family members in tomato. PLANT & CELL PHYSIOLOGY 2012; 53:1583-95. [PMID: 22764281 DOI: 10.1093/pcp/pcs101] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The phytohormone auxin is known to regulate several aspects of plant development, and Aux/IAA transcription factors play a pivotal role in auxin signaling. To extend our understanding of the multiple functions of Aux/IAAs further, the present study describes the functional characterization of Sl-IAA27, a member of the tomato Aux/IAA gene family. Sl-IAA27 displays a distinct behavior compared with most Aux/IAA genes regarding the regulation of its expression by auxin, and the Sl-IAA27-encoded protein harbors a unique motif of unknown function also present in Sl-IAA9 and remarkably conserved in monocot and dicot species. Tomato transgenic plants underexpressing the Sl-IAA27 gene revealed multiple phenotypes related to vegetative and reproductive growth. Silencing of Sl-IAA27 results in higher auxin sensitivity, altered root development and reduced Chl content in leaves. Both ovule and pollen display a dramatic loss of fertility in Sl-IAA27 down-regulated lines, and the internal anatomy of the flower and the fruit are modified, with an enlarged placenta in smaller fruits. In line with the reduced Chl content in Sl-IAA27 RNA interference (RNAi) leaves, genes involved in Chl synthesis display lower expression at the level of transcript accumulation. Even though Sl-IAA27 is closely related to Sl-IAA9 in terms of sequence homology and the encoded proteins share common structural features, the data indicate that the two genes regulate tomato fruit initiation and development in a distinct manner.
Collapse
Affiliation(s)
- Carole Bassa
- Université de Toulouse, INP-ENSA Toulouse, Génomique et Biotechnologie des Fruits, Avenue de l'Agrobiopole BP 32607, Castanet-Tolosan F-31326, France
| | | | | | | |
Collapse
|
162
|
Trupiano D, Di Iorio A, Montagnoli A, Lasserre B, Rocco M, Grosso A, Scaloni A, Marra M, Chiatante D, Scippa GS. Involvement of lignin and hormones in the response of woody poplar taproots to mechanical stress. PHYSIOLOGIA PLANTARUM 2012; 146:39-52. [PMID: 22339039 DOI: 10.1111/j.1399-3054.2012.01601.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Mechanical stress is a widespread condition caused by numerous environmental factors that severely affect plant stability. In response to mechanical stress, plants have evolved complex response pathways able to detect mechanical perturbations and inducing a suite of modifications in order to improve anchorage. The response of woody roots to mechanical stresses has been studied mainly at the morphological and biomechanical level, whereas investigations on the factors triggering these important alterations are still at the initial stage. Populus has been widely used to study the response of stem to different mechanical stresses and, since it has the first forest tree genome to be decoded, represents a model woody plant for addressing questions on the mechanisms controlling adaptation of woody roots to changing environments. In this study, a morphological and physiological analysis was used to investigate factors controlling modifications in Populus nigra woody taproots subjected to mechanical stress. An experimental model analyzing spatial and temporal mechanical force distribution along the woody taproot axis enabled us to compare the events occurring in its above-, central- and below-bending sectors. Different morphogenetic responses and local variations of lignin and plant hormones content have been observed, and a relation with the distribution of the mechanical forces along the stressed woody taproots is hypothesized. We investigated the differences of the response to mechanical stress induction during the time; in this regard, we present data referring to the effect of mechanical stress on plant transition from its condition of winter dormancy to that of full vegetative activity.
Collapse
Affiliation(s)
- Dalila Trupiano
- Dipartimento di Scienze e Tecnologie per l'Ambiente e il Territorio, University of Molise, 86090 Pesche (IS), Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
De Rybel B, Audenaert D, Xuan W, Overvoorde P, Strader LC, Kepinski S, Hoye R, Brisbois R, Parizot B, Vanneste S, Liu X, Gilday A, Graham IA, Nguyen L, Jansen L, Njo MF, Inzé D, Bartel B, Beeckman T. A role for the root cap in root branching revealed by the non-auxin probe naxillin. Nat Chem Biol 2012; 8:798-805. [PMID: 22885787 DOI: 10.1038/nchembio.1044] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 06/26/2012] [Indexed: 01/06/2023]
Abstract
The acquisition of water and nutrients by plant roots is a fundamental aspect of agriculture and strongly depends on root architecture. Root branching and expansion of the root system is achieved through the development of lateral roots and is to a large extent controlled by the plant hormone auxin. However, the pleiotropic effects of auxin or auxin-like molecules on root systems complicate the study of lateral root development. Here we describe a small-molecule screen in Arabidopsis thaliana that identified naxillin as what is to our knowledge the first non-auxin-like molecule that promotes root branching. By using naxillin as a chemical tool, we identified a new function for root cap-specific conversion of the auxin precursor indole-3-butyric acid into the active auxin indole-3-acetic acid and uncovered the involvement of the root cap in root branching. Delivery of an auxin precursor in peripheral tissues such as the root cap might represent an important mechanism shaping root architecture.
Collapse
Affiliation(s)
- Bert De Rybel
- Department of Plant Systems Biology, VIB, Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Smith S, De Smet I. Root system architecture: insights from Arabidopsis and cereal crops. Philos Trans R Soc Lond B Biol Sci 2012; 367:1441-52. [PMID: 22527386 DOI: 10.1098/rstb.2011.0234] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Roots are important to plants for a wide variety of processes, including nutrient and water uptake, anchoring and mechanical support, storage functions, and as the major interface between the plant and various biotic and abiotic factors in the soil environment. Understanding the development and architecture of roots holds potential for the exploitation and manipulation of root characteristics to both increase food plant yield and optimize agricultural land use. This theme issue highlights the importance of investigating specific aspects of root architecture in both the model plant Arabidopsis thaliana and (cereal) crops, presents novel insights into elements that are currently hardly addressed and provides new tools and technologies to study various aspects of root system architecture. This introduction gives a broad overview of the importance of the root system and provides a snapshot of the molecular control mechanisms associated with root branching and responses to the environment in A. thaliana and cereal crops.
Collapse
Affiliation(s)
- Stephanie Smith
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| | | |
Collapse
|
165
|
Bielach A, Duclercq J, Marhavý P, Benková E. Genetic approach towards the identification of auxin-cytokinin crosstalk components involved in root development. Philos Trans R Soc Lond B Biol Sci 2012; 367:1469-78. [PMID: 22527389 DOI: 10.1098/rstb.2011.0233] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Phytohormones are important plant growth regulators that control many developmental processes, such as cell division, cell differentiation, organogenesis and morphogenesis. They regulate a multitude of apparently unrelated physiological processes, often with overlapping roles, and they mutually modulate their effects. These features imply important synergistic and antagonistic interactions between the various plant hormones. Auxin and cytokinin are central hormones involved in the regulation of plant growth and development, including processes determining root architecture, such as root pole establishment during early embryogenesis, root meristem maintenance and lateral root organogenesis. Thus, to control root development both pathways put special demands on the mechanisms that balance their activities and mediate their interactions. Here, we summarize recent knowledge on the role of auxin and cytokinin in the regulation of root architecture with special focus on lateral root organogenesis, discuss the latest findings on the molecular mechanisms of their interactions, and present forward genetic screen as a tool to identify novel molecular components of the auxin and cytokinin crosstalk.
Collapse
Affiliation(s)
- Agnieszka Bielach
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
| | | | | | | |
Collapse
|
166
|
Goh T, Kasahara H, Mimura T, Kamiya Y, Fukaki H. Multiple AUX/IAA-ARF modules regulate lateral root formation: the role of Arabidopsis SHY2/IAA3-mediated auxin signalling. Philos Trans R Soc Lond B Biol Sci 2012; 367:1461-8. [PMID: 22527388 PMCID: PMC3321683 DOI: 10.1098/rstb.2011.0232] [Citation(s) in RCA: 150] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In Arabidopsis thaliana, lateral root (LR) formation is regulated by multiple auxin/indole-3-acetic acid (Aux/IAA)-AUXIN RESPONSE FACTOR (ARF) modules: (i) the IAA28-ARFs module regulates LR founder cell specification; (ii) the SOLITARY-ROOT (SLR)/IAA14-ARF7-ARF19 module regulates nuclear migration and asymmetric cell divisions of the LR founder cells for LR initiation; and (iii) the BODENLOS/IAA12-MONOPTEROS/ARF5 module also regulates LR initiation and organogenesis. The number of Aux/IAA-ARF modules involved in LR formation remains unknown. In this study, we isolated the shy2-101 mutant, a gain-of-function allele of short hypocotyl2/suppressor of hy2 (shy2)/iaa3 in the Columbia accession. We demonstrated that the shy2-101 mutation not only strongly inhibits LR primordium development and emergence but also significantly increases the number of LR initiation sites with the activation of LATERAL ORGAN BOUNDARIES-DOMAIN16/ASYMMETRIC LEAVES2-LIKE18, a target gene of the SLR/IAA14-ARF7-ARF19 module. Genetic analysis revealed that enhanced LR initiation in shy2-101 depended on the SLR/IAA14-ARF7-ARF19 module. We also showed that the shy2 roots contain higher levels of endogenous IAA. These observations indicate that the SHY2/IAA3-ARF-signalling module regulates not only LR primordium development and emergence after SLR/IAA14-ARF7-ARF19 module-dependent LR initiation but also inhibits LR initiation by affecting auxin homeostasis, suggesting that multiple Aux/IAA-ARF modules cooperatively regulate the developmental steps during LR formation.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe 657-8501, Japan
| | | | | | | | | |
Collapse
|
167
|
Feng Z, Sun X, Wang G, Liu H, Zhu J. LBD29 regulates the cell cycle progression in response to auxin during lateral root formation in Arabidopsis thaliana. ANNALS OF BOTANY 2012; 110:1-10. [PMID: 22334497 PMCID: PMC3380585 DOI: 10.1093/aob/mcs019] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Accepted: 01/10/2012] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS LATERAL ORGAN BOUNDARIES DOMAIN 29 (LBD29), an important molecule downstream of auxin response factors ARF7 and ARF19, has a critical role in lateral root formation in Arabidopsis thaliana. The cell cycle activation of pericycle cells and their specification triggered by auxin are crucial for the initiation of lateral roots. In this study, we attempted to determine whether LBD29 is involved in auxin signalling and/or cell cycle regulation and to characterize the roles of LBD29 in these processes. METHODS The impact of LBD29 on cell cycling progression in pericycle cells was investigated in lbd29 loss-of-function mutant or LBD29-over-expressing plants. The cell cycle was determined by measuring the expression of some cell cycle-related genes using in situ hybridization and quantitative real-time reverse transcription-PCR (qRT-PCR). Furthermore, the cell division in the root explants from either the lbd29 mutant, LBD29-over-expressing plants or the wild type grown in auxin-rich media was also analysed and compared by the distribution of DR5:β-glucuronidase (GUS) in the primordia or by the expression of PIN-FORMED (PIN) members and PLETHROA 1 (PLT1) which represented the auxin response by the pericycle cells. KEY RESULTS lbd29 mutation resulted in reduced numbers of lateral roots and primordia, whereas LBD29 over-expression resulted in more lateral root and primordia formation than in the wild type. More importantly, the level of LBD29 expression was found to be positively correlated with the level of expression of cell cycle-related genes and correlated with the numbers of subcellular organelles found in pericycle cells in the maturation zone. In addition, an in vitro experiment using root explants demonstrated that the presence of LBD29 was required for the maintenance of the cell division capacity of the pericycle. Furthermore, LBD29 appeared to modify PIN-dependent auxin signalling in the primordia since there was a correlated association between the expression of PINs, PLT1 and DR5:GUS and the expression of LBD29. CONCLUSIONS The ability of LBD29 to regulate lateral root initiation is associated with its maintenance of the cell division capacity of the pericycle in response to auxin and its involvement in the auxin signalling pathway.
Collapse
|
168
|
Parizot B, Roberts I, Raes J, Beeckman T, De Smet I. In silico analyses of pericycle cell populations reinforce their relation with associated vasculature in Arabidopsis. Philos Trans R Soc Lond B Biol Sci 2012; 367:1479-88. [PMID: 22527390 PMCID: PMC3321678 DOI: 10.1098/rstb.2011.0227] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
In Arabidopsis, lateral root initiation occurs in a subset of pericycle cells at the xylem pole that will divide asymmetrically to give rise to a new lateral root organ. While lateral roots never develop at the phloem pole, it is unclear how the interaction with xylem and phloem poles determines the distinct pericycle identities with different competences. Nevertheless, pericycle cells at these poles are marked by differences in size, by ultrastructural features and by specific proteins and gene expression. Here, we provide transcriptional evidence that pericycle cells are intimately associated with their vascular tissue instead of being a separate concentric layer. This has implications for the identification of cell- and tissue-specific promoters that are necessary to drive and/or alter gene expression locally, avoiding pleiotropic effects. We were able to identify a small set of genes that display specific expression in the phloem or xylem pole pericycle cells, and we were able to identify motifs that are likely to drive expression in either one of those tissues.
Collapse
Affiliation(s)
- Boris Parizot
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Ianto Roberts
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Jeroen Raes
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Technologiepark 927, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, Technologiepark 927, 9052 Ghent, Belgium
| | - Ive De Smet
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK
| |
Collapse
|
169
|
Stes E, Prinsen E, Holsters M, Vereecke D. Plant-derived auxin plays an accessory role in symptom development upon Rhodococcus fascians infection. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:513-527. [PMID: 22181713 DOI: 10.1111/j.1365-313x.2011.04890.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The biotrophic phytopathogen Rhodococcus fascians has a profound impact on plant development, mainly through its principal virulence factors, a mix of synergistically acting cytokinins that induce shoot formation. Expression profiling of marker genes for several auxin biosynthesis routes and mutant analysis demonstrated that the bacterial cytokinins stimulate the auxin biosynthesis of plants via specific targeting of the indole-3-pyruvic acid (IPA) pathway, resulting in enhanced auxin signaling in infected tissues. The double mutant tryptophan aminotransferase 1-1 tryptophan aminotransferase related 2-1 (taa1-1 tar2-1) of Arabidopsis (Arabidopsis thaliana), in which the IPA pathway is defective, displayed a decreased responsiveness towards R. fascians infection, although bacterial colonization and virulence gene expression were not impaired. These observations implied that plant-derived auxin was employed to reinforce symptom formation. Furthermore, the increased auxin production and, possibly, the accumulating bacterial cytokinins in infected plants modified the polar auxin transport so that new auxin maxima were repetitively established and distributed, a process that is imperative for symptom onset and maintenance. Based on these findings, we extend our model of the mode of action of bacterial and plant signals during the interaction between R. fascians and Arabidopsis.
Collapse
Affiliation(s)
- Elisabeth Stes
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | | | | | | |
Collapse
|
170
|
Rasmussen A, Mason MG, De Cuyper C, Brewer PB, Herold S, Agusti J, Geelen D, Greb T, Goormachtig S, Beeckman T, Beveridge CA. Strigolactones suppress adventitious rooting in Arabidopsis and pea. PLANT PHYSIOLOGY 2012; 158:1976-87. [PMID: 22323776 PMCID: PMC3320200 DOI: 10.1104/pp.111.187104] [Citation(s) in RCA: 217] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2011] [Accepted: 01/26/2012] [Indexed: 05/18/2023]
Abstract
Adventitious root formation is essential for the propagation of many commercially important plant species and involves the formation of roots from nonroot tissues such as stems or leaves. Here, we demonstrate that the plant hormone strigolactone suppresses adventitious root formation in Arabidopsis (Arabidopsis thaliana) and pea (Pisum sativum). Strigolactone-deficient and response mutants of both species have enhanced adventitious rooting. CYCLIN B1 expression, an early marker for the initiation of adventitious root primordia in Arabidopsis, is enhanced in more axillary growth2 (max2), a strigolactone response mutant, suggesting that strigolactones restrain the number of adventitious roots by inhibiting the very first formative divisions of the founder cells. Strigolactones and cytokinins appear to act independently to suppress adventitious rooting, as cytokinin mutants are strigolactone responsive and strigolactone mutants are cytokinin responsive. In contrast, the interaction between the strigolactone and auxin signaling pathways in regulating adventitious rooting appears to be more complex. Strigolactone can at least partially revert the stimulatory effect of auxin on adventitious rooting, and auxin can further increase the number of adventitious roots in max mutants. We present a model depicting the interaction of strigolactones, cytokinins, and auxin in regulating adventitious root formation.
Collapse
Affiliation(s)
- Amanda Rasmussen
- University of Queensland, School of Biological Sciences, St Lucia, Queensland, Australia 4072.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
171
|
Abstract
Plant growth relies heavily on a root system that is hidden belowground, which develops post-embryonically through the formation of lateral roots. The de novo formation of lateral root organs requires tightly coordinated asymmetric cell division of a limited number of pericycle cells located at the xylem pole. This typically involves the formation of founder cells, followed by a number of cellular changes until the cells divide and give rise to two unequally sized daughter cells. Over the past few years, our knowledge of the regulatory mechanisms behind lateral root initiation has increased dramatically. Here, I will summarize these recent advances, focusing on the prominent role of auxin and cell cycle activity, and elaborating on the three key steps of pericycle cell priming, founder cell establishment and asymmetric cell division. Taken together, recent findings suggest a tentative model in which successive auxin response modules are crucial for lateral root initiation, and additional factors provide more layers of control.
Collapse
Affiliation(s)
- Ive De Smet
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
| |
Collapse
|
172
|
Kobayashi K, Baba S, Obayashi T, Sato M, Toyooka K, Keränen M, Aro EM, Fukaki H, Ohta H, Sugimoto K, Masuda T. Regulation of root greening by light and auxin/cytokinin signaling in Arabidopsis. THE PLANT CELL 2012; 24:1081-95. [PMID: 22415275 PMCID: PMC3336121 DOI: 10.1105/tpc.111.092254] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 02/10/2012] [Accepted: 02/25/2012] [Indexed: 05/18/2023]
Abstract
Tight coordination between plastid differentiation and plant development is best evidenced by the synchronized development of photosynthetic tissues and the biogenesis of chloroplasts. Here, we show that Arabidopsis thaliana roots demonstrate accelerated chlorophyll accumulation and chloroplast development when they are detached from shoots. However, this phenomenon is repressed by auxin treatment. Mutant analyses suggest that auxin transported from the shoot represses root greening via the function of indole-3-acetic acid14, auxin response factor7 (ARF7), and ARF19. Cytokinin signaling, on the contrary, is required for chlorophyll biosynthesis in roots. The regulation by auxin/cytokinin is dependent on the transcription factor long hypocotyl5 (HY5), which is required for the expression of key chlorophyll biosynthesis genes in roots. The expression of yet another root greening transcription factor, golden2-like2 (GLK2), was found to be regulated in opposing directions by auxin and cytokinin. Furthermore, both the hormone signaling and the GLK transcription factors modified the accumulation of HY5 in roots. Overexpression of GLKs in the hy5 mutant provided evidence that GLKs require HY5 to maximize their activities in root greening. We conclude that the combination of HY5 and GLKs, functioning downstream of light and auxin/cytokinin signaling pathways, is responsible for coordinated expression of the key genes in chloroplast biogenesis.
Collapse
Affiliation(s)
- Koichi Kobayashi
- Graduate School of Arts and Sciences, University of Tokyo, Meguro-ku, Tokyo 153-8902, Japan.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
173
|
Goh T, Joi S, Mimura T, Fukaki H. The establishment of asymmetry in Arabidopsis lateral root founder cells is regulated by LBD16/ASL18 and related LBD/ASL proteins. Development 2012; 139:883-93. [PMID: 22278921 DOI: 10.1242/dev.071928] [Citation(s) in RCA: 209] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In most dicot plants, lateral root (LR) formation, which is important for the construction of the plant root system, is initiated from coordinated asymmetric cell divisions (ACD) of the primed LR founder cells in the xylem pole pericycle (XPP) of the existing roots. In Arabidopsis thaliana, two AUXIN RESPONSE FACTORs (ARFs), ARF7 and ARF19, positively regulate LR formation through activation of the plant-specific transcriptional regulators LATERAL ORGAN BOUNDARIES-DOMAIN 16/ASYMMETRIC LEAVES2-LIKE 18 (LBD16/ASL18) and the other related LBD/ASL genes. The exact biological role of these LBD/ASLs in LR formation is still unknown. Here, we demonstrate that LBD16/ASL18 is specifically expressed in the LR founder cells adjacent to the XPP before the first ACD and that it functions redundantly with the other auxin-inducible LBD/ASLs in LR initiation. The spatiotemporal expression of LBD16/ASL18 during LR initiation is dependent on the SOLITARY-ROOT (SLR)/IAA14-ARF7-ARF19 auxin signaling module. In addition, XPP-specific expression of LBD16/ASL18 in arf7 arf19 induced cell divisions at XPP, thereby restoring the LR phenotype. We also demonstrate that expression of LBD16-SRDX, a dominant repressor of LBD16/ASL18 and its related LBD/ASLs, does not interfere in the specification of LR founder cells with local activation of the auxin response, but it blocks the polar nuclear migration in LR founder cells before ACD, thereby blocking the subsequent LR initiation. Taken together, these results indicate that the localized activity of LBD16/ASL18 and its related LBD/ASLs is involved in the symmetry breaking of LR founder cells for LR initiation, a key step for constructing the plant root system.
Collapse
Affiliation(s)
- Tatsuaki Goh
- Department of Biology, Graduate School of Science, Kobe University, 1-1 Rokkodai, Kobe, Japan
| | | | | | | |
Collapse
|
174
|
Transcription factor WRKY23 assists auxin distribution patterns during Arabidopsis root development through local control on flavonol biosynthesis. Proc Natl Acad Sci U S A 2012; 109:1554-9. [PMID: 22307611 DOI: 10.1073/pnas.1121134109] [Citation(s) in RCA: 165] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Gradients of the plant hormone auxin, which depend on its active intercellular transport, are crucial for the maintenance of root meristematic activity. This directional transport is largely orchestrated by a complex interaction of specific influx and efflux carriers that mediate the auxin flow into and out of cells, respectively. Besides these transport proteins, plant-specific polyphenolic compounds known as flavonols have been shown to act as endogenous regulators of auxin transport. However, only limited information is available on how flavonol synthesis is developmentally regulated. Using reduction-of-function and overexpression approaches in parallel, we demonstrate that the WRKY23 transcription factor is needed for proper root growth and development by stimulating the local biosynthesis of flavonols. The expression of WRKY23 itself is controlled by auxin through the Auxin Response Factor 7 (ARF7) and ARF19 transcriptional response pathway. Our results suggest a model in which WRKY23 is part of a transcriptional feedback loop of auxin on its own transport through local regulation of flavonol biosynthesis.
Collapse
|
175
|
Abstract
The Arabidopsis root has been the subject of intense research over the past decades. This research has led to significantly improved understanding of the molecular mechanisms underlying root development. Key insights into the specification of individual cell types, cell patterning, growth and differentiation, branching of the primary root, and responses of the root to the environment have been achieved. Transcription factors and plant hormones play key regulatory roles. Recently, mechanisms involving protein movement and the oscillation of gene expression have also been uncovered. Root gene regulatory networks controlling root development have been reconstructed from genome-wide profiling experiments, revealing novel molecular connections and models. Future refinement of these models will lead to a more complete description of the complex molecular interactions that give rise to a simple growing root.
Collapse
|
176
|
Saidi Y, Hearn TJ, Coates JC. Function and evolution of 'green' GSK3/Shaggy-like kinases. TRENDS IN PLANT SCIENCE 2012; 17:39-46. [PMID: 22051150 DOI: 10.1016/j.tplants.2011.10.002] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 09/22/2011] [Accepted: 10/05/2011] [Indexed: 05/20/2023]
Abstract
Glycogen synthase kinase 3 (GSK3) proteins, also known as SHAGGY-like kinases, have many important cell signalling roles in animals, fungi and amoebae. In particular, GSK3s participate in key developmental signalling pathways and also regulate the cytoskeleton. GSK3-encoding genes are also present in all land plants and in algae and protists, raising questions about possible ancestral functions in eukaryotes. Recent studies have revealed that plant GSK3 proteins are actively implicated in hormonal signalling networks during development as well as in biotic and abiotic stress responses. In this review, we outline the mechanisms of Arabidopsis GSK3 action, summarize GSK3 functions in dicot and monocot flowering plants, and speculate on the possible functions of GSK3s in the earliest-evolving land plants.
Collapse
Affiliation(s)
- Younousse Saidi
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom
| | | | | |
Collapse
|
177
|
Root branching: mechanisms, robustness, and plasticity. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2011; 1:329-43. [DOI: 10.1002/wdev.17] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
178
|
Duclercq J, Sangwan-Norreel B, Catterou M, Sangwan RS. De novo shoot organogenesis: from art to science. TRENDS IN PLANT SCIENCE 2011; 16:597-606. [PMID: 21907610 DOI: 10.1016/j.tplants.2011.08.004] [Citation(s) in RCA: 108] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 06/26/2011] [Accepted: 08/16/2011] [Indexed: 05/18/2023]
Abstract
In vitro shoot organogenesis and plant regeneration are crucial for both plant biotechnology and the fundamental study of plant biology. Although the importance of auxin and cytokinin has been known for more than six decades, the underlying molecular mechanisms of their function have only been revealed recently. Advances in identifying new Arabidopsis genes, implementing live-imaging tools and understanding cellular and molecular networks regulating de novo shoot organogenesis have helped to redefine the empirical models of shoot organogenesis and plant regeneration. Here, we review the functions and interactions of genes that control key steps in two distinct developmental processes: de novo shoot organogenesis and lateral root formation.
Collapse
Affiliation(s)
- Jérôme Duclercq
- Université de Picardie Jules Verne, Unité de Recherche EA3900-Laboratoire Androgenèse et Biotechnologie, Faculté des Sciences, 33 Rue Saint-Leu, 80039 Amiens, France
| | | | | | | |
Collapse
|
179
|
Berckmans B, Vassileva V, Schmid SP, Maes S, Parizot B, Naramoto S, Magyar Z, Kamei CLA, Koncz C, Bögre L, Persiau G, De Jaeger G, Friml J, Simon R, Beeckman T, De Veylder L. Auxin-dependent cell cycle reactivation through transcriptional regulation of Arabidopsis E2Fa by lateral organ boundary proteins. THE PLANT CELL 2011; 23:3671-83. [PMID: 22003076 PMCID: PMC3229142 DOI: 10.1105/tpc.111.088377] [Citation(s) in RCA: 159] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2011] [Revised: 09/12/2011] [Accepted: 10/02/2011] [Indexed: 05/18/2023]
Abstract
Multicellular organisms depend on cell production, cell fate specification, and correct patterning to shape their adult body. In plants, auxin plays a prominent role in the timely coordination of these different cellular processes. A well-studied example is lateral root initiation, in which auxin triggers founder cell specification and cell cycle activation of xylem pole-positioned pericycle cells. Here, we report that the E2Fa transcription factor of Arabidopsis thaliana is an essential component that regulates the asymmetric cell division marking lateral root initiation. Moreover, we demonstrate that E2Fa expression is regulated by the LATERAL ORGAN BOUNDARY DOMAIN18/LATERAL ORGAN BOUNDARY DOMAIN33 (LBD18/LBD33) dimer that is, in turn, regulated by the auxin signaling pathway. LBD18/LBD33 mediates lateral root organogenesis through E2Fa transcriptional activation, whereas E2Fa expression under control of the LBD18 promoter eliminates the need for LBD18. Besides lateral root initiation, vascular patterning is disrupted in E2Fa knockout plants, similarly as it is affected in auxin signaling and lbd mutants, indicating that the transcriptional induction of E2Fa through LBDs represents a general mechanism for auxin-dependent cell cycle activation. Our data illustrate how a conserved mechanism driving cell cycle entry has been adapted evolutionarily to connect auxin signaling with control of processes determining plant architecture.
Collapse
Affiliation(s)
- Barbara Berckmans
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Valya Vassileva
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Stephan P.C. Schmid
- Institut für Entwicklungsgenetik, Heinrich-Heine Universität Düsseldorf, D-40225 Duesseldorf, Germany
| | - Sara Maes
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Boris Parizot
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Satoshi Naramoto
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Zoltan Magyar
- Institute of Plant Biology, Biological Research Centre, H-6701 Szeged, Hungary
| | - Claire Lessa Alvim Kamei
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Csaba Koncz
- Max-Planck-Institut für Züchtungsforschung, D-50829 Cologne, Germany
| | - Laszlo Bögre
- Royal Holloway, University of London, Centre for Systems and Synthetic Biology, TW20 0EX Egham, United Kingdom
| | - Geert Persiau
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Geert De Jaeger
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Rüdiger Simon
- Institut für Entwicklungsgenetik, Heinrich-Heine Universität Düsseldorf, D-40225 Duesseldorf, Germany
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| | - Lieven De Veylder
- Department of Plant Systems Biology, VIB, B-9052 Ghent, Belgium
- Department of Plant Biotechnology and Bioinformatics, Ghent University, B-9052 Ghent, Belgium
| |
Collapse
|
180
|
Marhavý P, Bielach A, Abas L, Abuzeineh A, Duclercq J, Tanaka H, Pařezová M, Petrášek J, Friml J, Kleine-Vehn J, Benková E. Cytokinin modulates endocytic trafficking of PIN1 auxin efflux carrier to control plant organogenesis. Dev Cell 2011; 21:796-804. [PMID: 21962902 DOI: 10.1016/j.devcel.2011.08.014] [Citation(s) in RCA: 199] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 06/09/2011] [Accepted: 08/15/2011] [Indexed: 01/11/2023]
Abstract
Cytokinin is an important regulator of plant growth and development. In Arabidopsis thaliana, the two-component phosphorelay mediated through a family of histidine kinases and response regulators is recognized as the principal cytokinin signal transduction mechanism activating the complex transcriptional response to control various developmental processes. Here, we identified an alternative mode of cytokinin action that uses endocytic trafficking as a means to direct plant organogenesis. This activity occurs downstream of known cytokinin receptors but through a branch of the cytokinin signaling pathway that does not involve transcriptional regulation. We show that cytokinin regulates endocytic recycling of the auxin efflux carrier PINFORMED1 (PIN1) by redirecting it for lytic degradation in vacuoles. Stimulation of the lytic PIN1 degradation is not a default effect for general downregulation of proteins from plasma membranes, but a specific mechanism to rapidly modulate the auxin distribution in cytokinin-mediated developmental processes.
Collapse
Affiliation(s)
- Peter Marhavý
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
181
|
Dubrovsky JG, Napsucialy-Mendivil S, Duclercq J, Cheng Y, Shishkova S, Ivanchenko MG, Friml J, Murphy AS, Benková E. Auxin minimum defines a developmental window for lateral root initiation. THE NEW PHYTOLOGIST 2011; 191:970-983. [PMID: 21569034 DOI: 10.1111/j.1469-8137.2011.03757.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Root system architecture depends on lateral root (LR) initiation that takes place in a relatively narrow developmental window (DW). Here, we analyzed the role of auxin gradients established along the parent root in defining this DW for LR initiation. Correlations between auxin distribution and response, and spatiotemporal control of LR initiation were analyzed in Arabidopsis thaliana and tomato (Solanum lycopersicum). In both Arabidopsis and tomato roots, a well defined zone, where auxin content and response are minimal, demarcates the position of a DW for founder cell specification and LR initiation. We show that in the zone of auxin minimum pericycle cells have highest probability to become founder cells and that auxin perception via the TIR1/AFB pathway, and polar auxin transport, are essential for the establishment of this zone. Altogether, this study reveals that the same morphogen-like molecule, auxin, can act simultaneously as a morphogenetic trigger of LR founder cell identity and as a gradient-dependent signal defining positioning of the founder cell specification. This auxin minimum zone might represent an important control mechanism ensuring the LR initiation steadiness and the acropetal LR initiation pattern.
Collapse
Affiliation(s)
- Joseph G Dubrovsky
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, Mexico
| | - Selene Napsucialy-Mendivil
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, Mexico
| | - Jérme Duclercq
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Gent University, 9052 Gent, Belgium
| | - Yan Cheng
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Svetlana Shishkova
- Instituto de Biotecnología, Universidad Nacional Autónoma de México, Apartado Postal 510-3, 62250 Cuernavaca, Morelos, Mexico
| | - Maria G Ivanchenko
- Department of Botany and Plant Pathology, 2082 Cordley Hall, Oregon State University, Corvallis, OR 97331, USA
| | - Jiří Friml
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Gent University, 9052 Gent, Belgium
| | - Angus S Murphy
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN 47907, USA
| | - Eva Benková
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium
- Department of Plant Biotechnology and Genetics, Gent University, 9052 Gent, Belgium
| |
Collapse
|
182
|
Vanneste S, Coppens F, Lee E, Donner TJ, Xie Z, Van Isterdael G, Dhondt S, De Winter F, De Rybel B, Vuylsteke M, De Veylder L, Friml J, Inzé D, Grotewold E, Scarpella E, Sack F, Beemster GTS, Beeckman T. Developmental regulation of CYCA2s contributes to tissue-specific proliferation in Arabidopsis. EMBO J 2011; 30:3430-41. [PMID: 21772250 DOI: 10.1038/emboj.2011.240] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 06/24/2011] [Indexed: 11/09/2022] Open
Abstract
In multicellular organisms, morphogenesis relies on a strict coordination in time and space of cell proliferation and differentiation. In contrast to animals, plant development displays continuous organ formation and adaptive growth responses during their lifespan relying on a tight coordination of cell proliferation. How developmental signals interact with the plant cell-cycle machinery is largely unknown. Here, we characterize plant A2-type cyclins, a small gene family of mitotic cyclins, and show how they contribute to the fine-tuning of local proliferation during plant development. Moreover, the timely repression of CYCA2;3 expression in newly formed guard cells is shown to require the stomatal transcription factors FOUR LIPS/MYB124 and MYB88, providing a direct link between developmental programming and cell-cycle exit in plants. Thus, transcriptional downregulation of CYCA2s represents a critical mechanism to coordinate proliferation during plant development.
Collapse
|
183
|
About the role of CK2 in plant signal transduction. Mol Cell Biochem 2011; 356:233-40. [DOI: 10.1007/s11010-011-0970-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Accepted: 06/24/2011] [Indexed: 12/24/2022]
|
184
|
Sauer M, Kleine-Vehn J. AUXIN BINDING PROTEIN1: the outsider. THE PLANT CELL 2011; 23:2033-43. [PMID: 21719690 PMCID: PMC3160040 DOI: 10.1105/tpc.111.087064] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2011] [Revised: 06/15/2011] [Accepted: 06/15/2011] [Indexed: 05/18/2023]
Abstract
AUXIN BINDING PROTEIN1 (ABP1) is one of the first characterized proteins that bind auxin and has been implied as a receptor for a number of auxin responses. Early studies characterized its auxin binding properties and focused on rapid electrophysiological and cell expansion responses, while subsequent work indicated a role in cell cycle and cell division control. Very recently, ABP1 has been ascribed a role in modulating endocytic events at the plasma membrane and RHO OF PLANTS-mediated cytoskeletal rearrangements during asymmetric cell expansion. The exact molecular function of ABP1 is still unresolved, but its main activity apparently lies in influencing events at the plasma membrane. This review aims to connect the novel findings with the more classical literature on ABP1 and to point out the many open questions that still separate us from a comprehensive model of ABP1 action, almost 40 years after the first reports of its existence.
Collapse
Affiliation(s)
- Michael Sauer
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, 28049 Madrid, Spain
| | - Jürgen Kleine-Vehn
- Department of Applied Genetics and Cell Biology, University of Applied Life Sciences and Natural Resources, 1190 Vienna, Austria
- Department of Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Plant Biotechnology and Genetics, Ghent University, 9052 Ghent, Belgium
| |
Collapse
|
185
|
Lewis DR, Ramirez MV, Miller ND, Vallabhaneni P, Ray WK, Helm RF, Winkel BS, Muday GK. Auxin and ethylene induce flavonol accumulation through distinct transcriptional networks. PLANT PHYSIOLOGY 2011; 156:144-64. [PMID: 21427279 PMCID: PMC3091047 DOI: 10.1104/pp.111.172502] [Citation(s) in RCA: 213] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/19/2011] [Indexed: 05/18/2023]
Abstract
Auxin and ethylene are key regulators of plant growth and development, and thus the transcriptional networks that mediate responses to these hormones have been the subject of intense research. This study dissected the hormonal cross talk regulating the synthesis of flavonols and examined their impact on root growth and development. We analyzed the effects of auxin and an ethylene precursor on roots of wild-type and hormone-insensitive Arabidopsis (Arabidopsis thaliana) mutants at the transcript, protein, and metabolite levels at high spatial and temporal resolution. Indole-3-acetic acid (IAA) and 1-aminocyclopropane-1-carboxylic acid (ACC) differentially increased flavonol pathway transcripts and flavonol accumulation, altering the relative abundance of quercetin and kaempferol. The IAA, but not ACC, response is lost in the transport inhibitor response1 (tir1) auxin receptor mutant, while ACC responses, but not IAA responses, are lost in ethylene insensitive2 (ein2) and ethylene resistant1 (etr1) ethylene signaling mutants. A kinetic analysis identified increases in transcripts encoding the transcriptional regulators MYB12, Transparent Testa Glabra1, and Production of Anthocyanin Pigment after hormone treatments, which preceded increases in transcripts encoding flavonoid biosynthetic enzymes. In addition, myb12 mutants were insensitive to the effects of auxin and ethylene on flavonol metabolism. The equivalent phenotypes for transparent testa4 (tt4), which makes no flavonols, and tt7, which makes kaempferol but not quercetin, showed that quercetin derivatives are the inhibitors of basipetal root auxin transport, gravitropism, and elongation growth. Collectively, these experiments demonstrate that auxin and ethylene regulate flavonol biosynthesis through distinct signaling networks involving TIR1 and EIN2/ETR1, respectively, both of which converge on MYB12. This study also provides new evidence that quercetin is the flavonol that modulates basipetal auxin transport.
Collapse
|
186
|
Dudits D, Abrahám E, Miskolczi P, Ayaydin F, Bilgin M, Horváth GV. Cell-cycle control as a target for calcium, hormonal and developmental signals: the role of phosphorylation in the retinoblastoma-centred pathway. ANNALS OF BOTANY 2011; 107:1193-202. [PMID: 21441245 PMCID: PMC3091804 DOI: 10.1093/aob/mcr038] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2010] [Revised: 10/06/2010] [Accepted: 01/07/2011] [Indexed: 05/22/2023]
Abstract
BACKGROUND During the life cycle of plants, both embryogenic and post-embryogenic growth are essentially based on cell division and cell expansion that are under the control of inherited developmental programmes modified by hormonal and environmental stimuli. Considering either stimulation or inhibition of plant growth, the key role of plant hormones in the modification of cell division activities or in the initiation of differentiation is well supported by experimental data. At the same time there is only limited insight into the molecular events that provide linkage between the regulation of cell-cycle progression and hormonal and developmental control. Studies indicate that there are several alternative ways by which hormonal signalling networks can influence cell division parameters and establish functional links between regulatory pathways of cell-cycle progression and genes and protein complexes involved in organ development. SCOPE An overview is given here of key components in plant cell division control as acceptors of hormonal and developmental signals during organ formation and growth. Selected examples are presented to highlight the potential role of Ca(2+)-signalling, the complex actions of auxin and cytokinins, regulation by transcription factors and alteration of retinoblastoma-related proteins by phosphorylation. CONCLUSIONS Auxins and abscisic acid can directly influence expression of cyclin, cyclin-dependent kinase (CDK) genes and activities of CDK complexes. D-type cyclins are primary targets for cytokinins and over-expression of CyclinD3;1 can enhance auxin responses in roots. A set of auxin-activated genes (AXR1-ARGOS-ANT) controls cell number and organ size through modification of CyclinD3;1 gene expression. The SHORT ROOT (SHR) and SCARECROW (SCR) transcriptional factors determine root patterning by activation of the CYCD6;1 gene. Over-expression of the EBP1 gene (plant homologue of the ErbB-3 epidermal growth factor receptor-binding protein) increased biomass by auxin-dependent activation of both D- and B-type cyclins. The direct involvement of auxin-binding protein (ABP1) in the entry into the cell cycle and the regulation of leaf size and morphology is based on the transcriptional control of D-cyclins and retinoblastoma-related protein (RBR) interacting with inhibitory E2FC transcriptional factor. The central role of RBRs in cell-cycle progression is well documented by a variety of experimental approaches. Their function is phosphorylation-dependent and both RBR and phospho-RBR proteins are present in interphase and mitotic phase cells. Immunolocalization studies showed the presence of phospho-RBR protein in spots of interphase nuclei or granules in mitotic prophase cells. The Ca(2+)-dependent phosphorylation events can be accomplished by the calcium-dependent, calmodulin-independent or calmodulin-like domain protein kinases (CDPKs/CPKs) phosphorylating the CDK inhibitor protein (KRP). Dephosphorylation of the phospho-RBR protein by PP2A phosphatase is regulated by a Ca(2+)-binding subunit.
Collapse
Affiliation(s)
- Dénes Dudits
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary.
| | | | | | | | | | | |
Collapse
|
187
|
Cheng NH, Liu JZ, Liu X, Wu Q, Thompson SM, Lin J, Chang J, Whitham SA, Park S, Cohen JD, Hirschi KD. Arabidopsis monothiol glutaredoxin, AtGRXS17, is critical for temperature-dependent postembryonic growth and development via modulating auxin response. J Biol Chem 2011; 286:20398-406. [PMID: 21515673 DOI: 10.1074/jbc.m110.201707] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Global environmental temperature changes threaten innumerable plant species. Although various signaling networks regulate plant responses to temperature fluctuations, the mechanisms unifying these diverse processes are largely unknown. Here, we demonstrate that an Arabidopsis monothiol glutaredoxin, AtGRXS17 (At4g04950), plays a critical role in redox homeostasis and hormone perception to mediate temperature-dependent postembryonic growth. AtGRXS17 expression was induced by elevated temperatures. Lines altered in AtGRXS17 expression were hypersensitive to elevated temperatures and phenocopied mutants altered in the perception of the phytohormone auxin. We show that auxin sensitivity and polar auxin transport were perturbed in these mutants, whereas auxin biosynthesis was not altered. In addition, atgrxs17 plants displayed phenotypes consistent with defects in proliferation and/or cell cycle control while accumulating higher levels of reactive oxygen species and cellular membrane damage under high temperature. Together, our findings provide a nexus between reactive oxygen species homeostasis, auxin signaling, and temperature responses.
Collapse
Affiliation(s)
- Ning-Hui Cheng
- United States Department of Agriculture/Agricultural Research Service, Children's Nutrition Research Center, Baylor College of Medicine, Houston, Texas 77030, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
188
|
De Smet I, Beeckman T. Asymmetric cell division in land plants and algae: the driving force for differentiation. Nat Rev Mol Cell Biol 2011; 12:177-88. [PMID: 21346731 DOI: 10.1038/nrm3064] [Citation(s) in RCA: 116] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Asymmetric cell division generates two cells with different fates and has an important role in plant development. It produces distinct cell types and new organs, and maintains stem cell niches. To handle the constraints of having immobile cells, plants possess numerous unique features to obtain asymmetry, such as specific regulators of intrinsic polarity. Although several components have not yet been identified, new findings, together with knowledge from different developmental systems, now allow us to take an important step towards a mechanistic overview of asymmetric cell division in plants and algae. Strikingly, several key regulators are used for different developmental processes, and common mechanisms can be recognized.
Collapse
Affiliation(s)
- Ive De Smet
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, UK.
| | | |
Collapse
|
189
|
Kiba T, Kudo T, Kojima M, Sakakibara H. Hormonal control of nitrogen acquisition: roles of auxin, abscisic acid, and cytokinin. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1399-409. [PMID: 21196475 DOI: 10.1093/jxb/erq410] [Citation(s) in RCA: 239] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Nitrogen is the mineral nutrient that often limits plant growth and development. In response to changes in nitrogen supply, plants display elaborate responses at both physiological and morphological levels to adjust their growth and development. Because higher plants consist of multiple organs with different functions and nutritional requirements, they rely on local and long-distance signalling pathways to coordinate the responses at the whole-plant level. Phytohormones have been considered as signalling substances of such pathways. Amongst phytohormones, abscisic acid, auxin, and cytokinins have been closely linked to nitrogen signalling. Recent evidence has provided some insights into how nitrogen and the phytohormone signals are integrated to bring about changes in physiology and morphology. In this review, the evidence is summarized, mostly focusing on examples related to nitrogen acquisition.
Collapse
Affiliation(s)
- Takatoshi Kiba
- RIKEN Plant Science Center, 1-7-22 Suehiro, Tsurumi, Yokohama 230-0045, Japan
| | | | | | | |
Collapse
|
190
|
Miura K, Lee J, Gong Q, Ma S, Jin JB, Yoo CY, Miura T, Sato A, Bohnert HJ, Hasegawa PM. SIZ1 regulation of phosphate starvation-induced root architecture remodeling involves the control of auxin accumulation. PLANT PHYSIOLOGY 2011; 155:1000-12. [PMID: 21156857 PMCID: PMC3032448 DOI: 10.1104/pp.110.165191] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2010] [Accepted: 11/26/2010] [Indexed: 05/20/2023]
Abstract
Phosphate (Pi) limitation causes plants to modulate the architecture of their root systems to facilitate the acquisition of Pi. Previously, we reported that the Arabidopsis (Arabidopsis thaliana) SUMO E3 ligase SIZ1 regulates root architecture remodeling in response to Pi limitation; namely, the siz1 mutations cause the inhibition of primary root (PR) elongation and the promotion of lateral root (LR) formation. Here, we present evidence that SIZ1 is involved in the negative regulation of auxin patterning to modulate root system architecture in response to Pi starvation. The siz1 mutations caused greater PR growth inhibition and LR development of seedlings in response to Pi limitation. Similar root phenotypes occurred if Pi-deficient wild-type seedlings were supplemented with auxin. N-1-Naphthylphthalamic acid, an inhibitor of auxin efflux activity, reduced the Pi starvation-induced LR root formation of siz1 seedlings to a level equivalent to that seen in the wild type. Monitoring of the auxin-responsive reporter DR5::uidA indicated that auxin accumulates in PR tips at early stages of the Pi starvation response. Subsequently, DR5::uidA expression was observed in the LR primordia, which was associated with LR elongation. The time-sequential patterning of DR5::uidA expression occurred earlier in the roots of siz1 as compared with the wild type. In addition, microarray analysis revealed that several other auxin-responsive genes, including genes involved in cell wall loosening and biosynthesis, were up-regulated in siz1 relative to wild-type seedlings in response to Pi starvation. Together, these results suggest that SIZ1 negatively regulates Pi starvation-induced root architecture remodeling through the control of auxin patterning.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tsukuba 305-8572, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
191
|
Sanz L, Dewitte W, Forzani C, Patell F, Nieuwland J, Wen B, Quelhas P, De Jager S, Titmus C, Campilho A, Ren H, Estelle M, Wang H, Murray JA. The Arabidopsis D-type cyclin CYCD2;1 and the inhibitor ICK2/KRP2 modulate auxin-induced lateral root formation. THE PLANT CELL 2011; 23:641-60. [PMID: 21357490 PMCID: PMC3077792 DOI: 10.1105/tpc.110.080002] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2010] [Revised: 01/14/2011] [Accepted: 02/07/2011] [Indexed: 05/19/2023]
Abstract
The integration of cell division in root growth and development requires mediation of developmental and physiological signals through regulation of cyclin-dependent kinase activity. Cells within the pericycle form de novo lateral root meristems, and D-type cyclins (CYCD), as regulators of the G₁-to-S phase cell cycle transition, are anticipated to play a role. Here, we show that the D-type cyclin protein CYCD2;1 is nuclear in Arabidopsis thaliana root cells, with the highest concentration in apical and lateral meristems. Loss of CYCD2;1 has a marginal effect on unstimulated lateral root density, but CYCD2;1 is rate-limiting for the response to low levels of exogenous auxin. However, while CYCD2;1 expression requires sucrose, it does not respond to auxin. The protein Inhibitor-Interactor of CDK/Kip Related Protein2 (ICK2/KRP2), which interacts with CYCD2;1, inhibits lateral root formation, and ick2/krp2 mutants show increased lateral root density. ICK2/KRP2 can modulate the nuclear levels of CYCD2;1, and since auxin reduces ICK2/KRP2 protein levels, it affects both activity and cellular distribution of CYCD2;1. Hence, as ICK2/KRP2 levels decrease, the increase in lateral root density depends on CYCD2;1, irrespective of ICK2/CYCD2;1 nuclear localization. We propose that ICK2/KRP2 restrains root ramification by maintaining CYCD2;1 inactive and that this modulates pericycle responses to auxin fluctuations.
Collapse
Affiliation(s)
- Luis Sanz
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
- Centro Hispano Luso de Investigaciones Agrarias, Universidad de Salamanca, 37185 Salamanca, Spain
| | - Walter Dewitte
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Celine Forzani
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Farah Patell
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Jeroen Nieuwland
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Bo Wen
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Pedro Quelhas
- Instituto de Engenharia Biomédica, Divisão de Sinal e Imagem, 4200-465 Porto, Portugal
| | - Sarah De Jager
- Department of Physiology, Development, and Neuroscience, University of Cambridge, CB2 3DY Cambridge, United Kingdom
| | - Craig Titmus
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
| | - Aurélio Campilho
- Instituto de Engenharia Biomédica, Divisão de Sinal e Imagem, 4200-465 Porto, Portugal
- Universidade do Porto, Faculdade de Engenharia, 4200-465 Porto, Portugal
| | - Hong Ren
- Division of Biological Sciences, University of California–San Diego, La Jolla, California 92093-0116
| | - Mark Estelle
- Division of Biological Sciences, University of California–San Diego, La Jolla, California 92093-0116
| | - Hong Wang
- Department of Biochemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5E5, Canada
| | - James A.H. Murray
- Cardiff School of Biosciences, Cardiff University, CF10 3AX Cardiff, United Kingdom
- Address correspondence to
| |
Collapse
|
192
|
Del Bianco M, Kepinski S. Context, specificity, and self-organization in auxin response. Cold Spring Harb Perspect Biol 2011; 3:a001578. [PMID: 21047914 DOI: 10.1101/cshperspect.a001578] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Auxin is a simple molecule with a remarkable ability to control plant growth, differentiation, and morphogenesis. The mechanistic basis for this versatility appears to stem from the highly complex nature of the networks regulating auxin metabolism, transport and response. These heavily feedback-regulated and inter-dependent mechanisms are complicated in structure and complex in operation giving rise to a system with self-organizing properties capable of generating highly context-specific responses to auxin as a single, generic signal.
Collapse
Affiliation(s)
- Marta Del Bianco
- University of Leeds, Faculty of Biological Sciences, Leeds, LS2 9JT, United Kingdom
| | | |
Collapse
|
193
|
Skylar A, Sung F, Hong F, Chory J, Wu X. Metabolic sugar signal promotes Arabidopsis meristematic proliferation via G2. Dev Biol 2010; 351:82-9. [PMID: 21185286 DOI: 10.1016/j.ydbio.2010.12.019] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2010] [Revised: 12/06/2010] [Accepted: 12/15/2010] [Indexed: 11/17/2022]
Abstract
Most organs in higher plants are generated postembryonically from the meristems, which harbor continuously dividing stem cells throughout a plant's life cycle. In addition to developmental regulations, mitotic activities in the meristematic tissues are modulated by nutritional cues, including carbon source availability. Here we further analyze the relationship between the sugar signal and seedling meristem establishment, taking advantage of our previous observation that exogenously supplied metabolic sugars can rescue the meristem growth arrest phenotype of the Arabidopsis stip mutant seedlings. Our results show that metabolic sugars reactivate the stip meristems by activating the expression of key cell cycle regulators, and therefore, promoting G2 to M transition in Arabidopsis meristematic tissues. One of the early events in this process is the transcriptional repression of TSS, a genetic suppressor of the stip mutations, by sugar signals, suggesting that TSS may act as an integrator of developmental and nutritional signals in regulating meristematic proliferation. We also present evidence that metabolic sugar signals are required for the activation of mitotic entry during de novo meristem formation from G2 arrested cells. Our observations, together with the recent findings that nutrient deprivation leads to G2 arrest of animal germline stem cells, suggest that carbohydrate availability-regulated G2 to M transition may represent a common mechanism in stem cell division regulation in multicellular organisms.
Collapse
Affiliation(s)
- Anna Skylar
- Molecular and Computational Biology, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | |
Collapse
|
194
|
Benková E, Bielach A. Lateral root organogenesis - from cell to organ. CURRENT OPINION IN PLANT BIOLOGY 2010; 13:677-83. [PMID: 20934368 DOI: 10.1016/j.pbi.2010.09.006] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2010] [Revised: 09/09/2010] [Accepted: 09/10/2010] [Indexed: 05/18/2023]
Abstract
Unlike locomotive organisms capable of actively approaching essential resources, sessile plants must efficiently exploit their habitat for water and nutrients. This involves root-mediated underground interactions allowing plants to adapt to soils of diverse qualities. The root system of plants is a dynamic structure that modulates primary root growth and root branching by continuous integration of environmental inputs, such as nutrition availability, soil aeration, humidity, or salinity. Root branching is an extremely flexible means to rapidly adjust the overall surface of the root system and plants have evolved efficient control mechanisms, including, firstly initiation, when and where to start lateral root formation; secondly lateral root primordia organogenesis, during which the development of primordia can be arrested for a certain time; and thirdly lateral root emergence. Our review will focus on the most recent advances in understanding the molecular mechanisms involved in the regulation of lateral root initiation and organogenesis with the main focus on root system of the model plant Arabidopsis thaliana.
Collapse
Affiliation(s)
- Eva Benková
- Department of Plant Systems Biology, VIB, Technologiepark 927, B-9052 Gent, Belgium.
| | | |
Collapse
|
195
|
Den Herder G, Van Isterdael G, Beeckman T, De Smet I. The roots of a new green revolution. TRENDS IN PLANT SCIENCE 2010; 15:600-7. [PMID: 20851036 DOI: 10.1016/j.tplants.2010.08.009] [Citation(s) in RCA: 201] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2010] [Revised: 08/20/2010] [Accepted: 08/23/2010] [Indexed: 05/18/2023]
Abstract
A significant increase in shoot biomass and seed yield has always been the dream of plant biologists who wish to dedicate their fundamental research to the benefit of mankind; the first green revolution about half a century ago represented a crucial step towards contemporary agriculture and the development of high-yield varieties of cereal grains. Although there has been a steady rise in our food production from then onwards, the currently applied technology and the available crop plants will not be sufficient to feed the rapidly growing world population. In this opinion article, we highlight several below-ground characteristics of plants such as root architecture, nutrient uptake and nitrogen fixation as promising features enabling a very much needed new green revolution.
Collapse
Affiliation(s)
- Griet Den Herder
- Genetics, Faculty of Biology, University of Munich (LMU), D-82152 Martinsried-München, Germany
| | | | | | | |
Collapse
|
196
|
A Novel Aux/IAA28 Signaling Cascade Activates GATA23-Dependent Specification of Lateral Root Founder Cell Identity. Curr Biol 2010; 20:1697-706. [DOI: 10.1016/j.cub.2010.09.007] [Citation(s) in RCA: 354] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/03/2010] [Accepted: 08/27/2010] [Indexed: 11/22/2022]
|
197
|
Moreno-Risueno MA, Van Norman JM, Moreno A, Zhang J, Ahnert SE, Benfey PN. Oscillating gene expression determines competence for periodic Arabidopsis root branching. Science 2010; 329:1306-11. [PMID: 20829477 PMCID: PMC2976612 DOI: 10.1126/science.1191937] [Citation(s) in RCA: 432] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Plants and animals produce modular developmental units in a periodic fashion. In plants, lateral roots form as repeating units along the root primary axis; however, the developmental mechanism regulating this process is unknown. We found that cyclic expression pulses of a reporter gene mark the position of future lateral roots by establishing prebranch sites and that prebranch site production and root bending are periodic. Microarray and promoter-luciferase studies revealed two sets of genes oscillating in opposite phases at the root tip. Genetic studies show that some oscillating transcriptional regulators are required for periodicity in one or both developmental processes. This molecular mechanism has characteristics that resemble molecular clock-driven activities in animal species.
Collapse
Affiliation(s)
- Miguel A. Moreno-Risueno
- Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Jaimie M. Van Norman
- Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Antonio Moreno
- Departamento de Acustica Ambiental, Instituto de Acustica, Consejo Superior de Investigaciones Cientificas, Serrano 144, Madrid 28006, Spain
| | - Jingyuan Zhang
- Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA
| | - Sebastian E. Ahnert
- Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, UK
| | - Philip N. Benfey
- Department of Biology and Institute for Genome Sciences and Policy Center for Systems Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
198
|
Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, Hoyerova K, Tillard P, Leon S, Ljung K, Zazimalova E, Benkova E, Nacry P, Gojon A. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 2010; 18:927-37. [PMID: 20627075 DOI: 10.1016/j.devcel.2010.05.008] [Citation(s) in RCA: 606] [Impact Index Per Article: 40.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2009] [Revised: 11/20/2009] [Accepted: 03/29/2010] [Indexed: 01/09/2023]
Abstract
Nitrate is both a nitrogen source for higher plants and a signal molecule regulating their development. In Arabidopsis, the NRT1.1 nitrate transporter is crucial for nitrate signaling governing root growth, and has been proposed to act as a nitrate sensor. However, the sensing mechanism is unknown. Herein we show that NRT1.1 not only transports nitrate but also facilitates uptake of the phytohormone auxin. Moreover, nitrate inhibits NRT1.1-dependent auxin uptake, suggesting that transduction of nitrate signal by NRT1.1 is associated with a modification of auxin transport. Among other effects, auxin stimulates lateral root development. Mutation of NRT1.1 enhances both auxin accumulation in lateral roots and growth of these roots at low, but not high, nitrate concentration. Thus, we propose that NRT1.1 represses lateral root growth at low nitrate availability by promoting basipetal auxin transport out of these roots. This defines a mechanism connecting nutrient and hormone signaling during organ development.
Collapse
Affiliation(s)
- Gabriel Krouk
- Biochimie et Physiologie Moléculaire des Plantes, UMR 5004 CNRS/INRA/SupAgro-M/UM2, Institut de Biologie Intégrative des Plantes, Place Viala, 34060 Montpellier Cedex 1, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Orlando DA, Brady SM, Fink TMA, Benfey PN, Ahnert SE. Detecting separate time scales in genetic expression data. BMC Genomics 2010; 11:381. [PMID: 20565716 PMCID: PMC3017766 DOI: 10.1186/1471-2164-11-381] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Accepted: 06/16/2010] [Indexed: 01/11/2023] Open
Abstract
Background Biological processes occur on a vast range of time scales, and many of them occur concurrently. As a result, system-wide measurements of gene expression have the potential to capture many of these processes simultaneously. The challenge however, is to separate these processes and time scales in the data. In many cases the number of processes and their time scales is unknown. This issue is particularly relevant to developmental biologists, who are interested in processes such as growth, segmentation and differentiation, which can all take place simultaneously, but on different time scales. Results We introduce a flexible and statistically rigorous method for detecting different time scales in time-series gene expression data, by identifying expression patterns that are temporally shifted between replicate datasets. We apply our approach to a Saccharomyces cerevisiae cell-cycle dataset and an Arabidopsis thaliana root developmental dataset. In both datasets our method successfully detects processes operating on several different time scales. Furthermore we show that many of these time scales can be associated with particular biological functions. Conclusions The spatiotemporal modules identified by our method suggest the presence of multiple biological processes, acting at distinct time scales in both the Arabidopsis root and yeast. Using similar large-scale expression datasets, the identification of biological processes acting at multiple time scales in many organisms is now possible.
Collapse
Affiliation(s)
- David A Orlando
- Department of Biology and IGSP Center for Systems Biology, Duke University, Durham, NC, USA
| | | | | | | | | |
Collapse
|
200
|
Abstract
A plant's roots system determines both the capacity of a sessile organism to acquire nutrients and water, as well as providing a means to monitor the soil for a range of environmental conditions. Since auxins were first described, there has been a tight connection between this class of hormones and root development. Here we review some of the latest genetic, molecular, and cellular experiments that demonstrate the importance of generating and maintaining auxin gradients during root development. Refinements in the ability to monitor and measure auxin levels in root cells coupled with advances in our understanding of the sources of auxin that contribute to these pools represent important contributions to our understanding of how this class of hormones participates in the control of root development. In addition, we review the role of identified molecular components that convert auxin gradients into local differentiation events, which ultimately defines the root architecture.
Collapse
Affiliation(s)
- Paul Overvoorde
- Department of Biology, Macalester College, St. Paul, MN 55105, USA
| | | | | |
Collapse
|