151
|
Kaschani F, Gu C, van der Hoorn RAL. Activity-based protein profiling of infected plants. Methods Mol Biol 2012; 835:47-59. [PMID: 22183646 DOI: 10.1007/978-1-61779-501-5_3] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Activity-based protein profiling (ABPP) is a powerful analytical method to detect and compare the activity of proteins in proteomes. This is achieved using specific activity-based probes that are often derived from inhibitors and are linked to reporter groups like rhodamine or biotin for fluorescence detection and/or affinity purification, respectively. The probes react with the active site residue of proteins and become covalently and irreversibly attached, facilitating the separation, detection and identification of the labelled proteins. In this protocol we describe all the steps required for labelling, purification and identification of labelled proteins from gels and show how activities in two proteomes can be compared. The identification of serine hydrolases from Arabidopsis plants infected with Botrytis cinerea using the trifunctional probe TriFP is used as an example.
Collapse
Affiliation(s)
- Farnusch Kaschani
- The Plant Chemetics Laboratory, Chemical Genomics Centre, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | | | |
Collapse
|
152
|
Bozkurt TO, Schornack S, Win J, Shindo T, Ilyas M, Oliva R, Cano LM, Jones AME, Huitema E, van der Hoorn RAL, Kamoun S. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. Proc Natl Acad Sci U S A 2011; 108:20832-7. [PMID: 22143776 PMCID: PMC3251060 DOI: 10.1073/pnas.1112708109] [Citation(s) in RCA: 216] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
In response to pathogen attack, plant cells secrete antimicrobial molecules at the site of infection. However, how plant pathogens interfere with defense-related focal secretion remains poorly known. Here we show that the host-translocated RXLR-type effector protein AVRblb2 of the Irish potato famine pathogen Phytophthora infestans focally accumulates around haustoria, specialized infection structures that form inside plant cells, and promotes virulence by interfering with the execution of host defenses. AVRblb2 significantly enhances susceptibility of host plants to P. infestans by targeting the host papain-like cysteine protease C14 and specifically preventing its secretion into the apoplast. Plants altered in C14 expression were significantly affected in susceptibility to P. infestans in a manner consistent with a positive role of C14 in plant immunity. Our findings point to a unique counterdefense strategy that plant pathogens use to neutralize secreted host defense proteases. Effectors, such as AVRblb2, can be used as molecular probes to dissect focal immune responses at pathogen penetration sites.
Collapse
Affiliation(s)
- Tolga O. Bozkurt
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Sebastian Schornack
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Joe Win
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Takayuki Shindo
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Muhammad Ilyas
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Ricardo Oliva
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Liliana M. Cano
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Alexandra M. E. Jones
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | - Edgar Huitema
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| | | | - Sophien Kamoun
- The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, United Kingdom; and
| |
Collapse
|
153
|
Yu Y, Xu W, Wang S, Xu Y, Li H, Wang Y, Li S. VpRFP1, a novel C4C4-type RING finger protein gene from Chinese wild Vitis pseudoreticulata, functions as a transcriptional activator in defence response of grapevine. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:5671-82. [PMID: 21862480 PMCID: PMC3223060 DOI: 10.1093/jxb/err253] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2011] [Revised: 07/21/2011] [Accepted: 07/24/2011] [Indexed: 05/18/2023]
Abstract
RING finger proteins comprise a large family and play important roles in regulation of growth and development, hormone signalling, and responses to biotic and abiotic stresses in plants. In this study, the identification and functional characterization of a C4C4-type RING finger protein gene from the Chinese wild grapevine Vitis pseudoreticulata (designated VpRFP1) are reported. VpRFP1 was initially identified as an expressed sequence tag (EST) from a cDNA library constructed from leaves of V. pseudoreticulata inoculated with the grapevine powdery mildew Uncinula necator. Sequence analysis of the deduced VpRFP1 protein based on the full-length cDNA revealed an N-terminal nuclear localization signal (NLS) and a C-terminal C4C4-type RING finger motif with the consensus sequence Cys-X(2)-Cys-X(13)-Cys-X(1)-Cys-X(4)-Cys-X(2)-Cys-X(10)-Cys-X(2)-Cys. Upon inoculation with U. necator, expression of VpRFP1 was rapidly induced to higher levels in mildew-resistant V. pseudoreticulata plants. In contrast, expression of VpRFP1 was down-regulated in mildew-susceptible V. vinifera plants. Western blotting using an antibody raised against VpRFP1 showed that VpRFP1 was also induced to higher levels in V. pseudoreticulata plants at 12-48 hours post-inoculation (hpi). However, there was only slight increase in VpRFP in V. vinifera plants in the same time frame, even though a more significant increase was observed at 96-144 hpi in these plants. Results from transactivation assays in yeast showed that the RING finger motif of VpRFP1 exhibited some activity of transcriptional activation; however, no activity was seen with the full-length VpRFP1. Overexpression of VpRFP1 in Arabidopsis plants was found to enhance resistance to Arabidopsis powdery mildew Golovinomyces cichoracearum, which seemed to be correlated with increased transcript levels of AtPR1 and AtPR2 in the pathogen-infected tissues. In addition, the Arabidopsis transgenic lines showed enhanced resistance to a virulent bacterial pathogen Pseudomonas syringae pv. tomato DC3000. Taken together, the results suggested that VpRFP1 may be a transcriptional activator of defence-related genes in grapevines.
Collapse
Affiliation(s)
- Yihe Yu
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, PR China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Weirong Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, PR China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Shengyi Wang
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, PR China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yan Xu
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, PR China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hui'e Li
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, PR China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Yuejin Wang
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, PR China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China
- To whom correspondence should be addressed. E-mail:
| | - Shuxiu Li
- College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, PR China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Yangling, Shaanxi 712100, PR China
- State Key Laboratory of Crop Stress Biology in Arid Areas, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
154
|
de Jonge R, Bolton MD, Thomma BPHJ. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. CURRENT OPINION IN PLANT BIOLOGY 2011; 14:400-6. [PMID: 21454120 DOI: 10.1016/j.pbi.2011.03.005] [Citation(s) in RCA: 167] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Revised: 03/01/2011] [Accepted: 03/07/2011] [Indexed: 05/23/2023]
Abstract
Research on effectors secreted by pathogens during host attack has dominated the field of molecular plant-microbe interactions over recent years. Functional analysis of type III secreted effectors injected by pathogenic bacteria into host cells has significantly advanced the field and demonstrated that many function to suppress host defense. Fungal and oomycete effectors are delivered outside the host plasma membrane, and although research has lagged behind on bacterial effectors, we are gradually learning more and more about the functions of these effectors. While some function outside the host cell to disarm defense, others exploit host cellular uptake mechanisms to suppress defense or liberate nutrients intracellularly. Comparative genomics suggests that the organization of effector genes drives effector evolution in many pathogen genomes.
Collapse
Affiliation(s)
- Ronnie de Jonge
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | | | | |
Collapse
|
155
|
Doehlemann G, Reissmann S, Assmann D, Fleckenstein M, Kahmann R. Two linked genes encoding a secreted effector and a membrane protein are essential for Ustilago maydis-induced tumour formation. Mol Microbiol 2011; 81:751-66. [PMID: 21692877 DOI: 10.1111/j.1365-2958.2011.07728.x] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ustilago maydis is a biotrophic fungal pathogen that colonizes living tissue of its host plant maize. Based on transcriptional upregulation during biotrophic development we identified the pit (proteins important for tumours) cluster, a novel gene cluster comprising four genes of which two are predicted to encode secreted effectors. Disruption of the gene cluster abolishes U. maydis-induced tumour formation and this phenotype can be caused by deleting either pit1 encoding a transmembrane protein or pit2 encoding a secreted protein. Pit1 localizes to the fungal plasma membrane at hyphal tips, endosomes and vacuoles while Pit2 is secreted to the biotrophic interface. Both Δpit1 and Δpit2 mutants are able to penetrate maize epidermis and grow intracellularly at sites of infection but fail to spread in the infected leaf. Microarray analysis shows an indistinguishable response of the plant to infection by Δpit1 and Δpit2 mutant strains. Transcriptional activation of maize defence genes in infections with Δpit1/2 mutant strains indicates that the mutants have a defect in suppressing plant immune responses. Our results suggest that the activity of Pit1 and Pit2 during tumour formation might be functionally linked and we discuss possibilities for a putative functional connection of the two proteins.
Collapse
Affiliation(s)
- Gunther Doehlemann
- Deparment of Organismic Interactions, Max-Planck-Institute for terrestrial Microbiology, D-35043 Marburg, Germany
| | | | | | | | | |
Collapse
|
156
|
van der Hoorn RAL, Colby T, Nickel S, Richau KH, Schmidt J, Kaiser M. Mining the Active Proteome of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2011; 2:89. [PMID: 22639616 PMCID: PMC3355598 DOI: 10.3389/fpls.2011.00089] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 11/08/2011] [Indexed: 05/20/2023]
Abstract
Assigning functions to the >30,000 proteins encoded by the Arabidopsis genome is a challenging task of the Arabidopsis Functional Genomics Network. Although genome-wide technologies like proteomics and transcriptomics have generated a wealth of information that significantly accelerated gene annotation, protein activities are poorly predicted by transcript or protein levels as protein activities are post-translationally regulated. To directly display protein activities in Arabidopsis proteomes, we developed and applied activity-based protein profiling (ABPP). ABPP is based on the use of small molecule probes that react with the catalytic residues of distinct protein classes in an activity-dependent manner. Labeled proteins are separated and detected from proteins gels and purified and identified by mass spectrometry. Using probes of six different chemotypes we have displayed activities of 76 Arabidopsis proteins. These proteins represent over 10 different protein classes that contain over 250 Arabidopsis proteins, including cysteine, serine, and metalloproteases, lipases, acyltransferases, and the proteasome. We have developed methods for identification of in vivo labeled proteins using click chemistry and for in vivo imaging with fluorescent probes. In vivo labeling has revealed additional protein activities and unexpected subcellular activities of the proteasome. Labeling of extracts displayed several differential activities, e.g., of the proteasome during immune response and methylesterases during infection. These studies illustrate the power of ABPP to display the functional proteome and testify to a successful interdisciplinary collaboration involving chemical biology, organic chemistry, and proteomics.
Collapse
Affiliation(s)
- Renier A. L. van der Hoorn
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding ResearchCologne, Germany
- *Correspondence: Renier A. L. van der Hoorn, Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany. e-mail:
| | - Tom Colby
- Proteomics Service Unit, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Sabrina Nickel
- Fakultät für Biologie, Chemische Biologie, Zentrum für Medizinische Biotechnologie, University of Duisburg-EssenEssen, Germany
| | - Kerstin H. Richau
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Jürgen Schmidt
- Proteomics Service Unit, Max Planck Institute for Plant Breeding ResearchCologne, Germany
| | - Markus Kaiser
- Fakultät für Biologie, Chemische Biologie, Zentrum für Medizinische Biotechnologie, University of Duisburg-EssenEssen, Germany
| |
Collapse
|
157
|
Thomma BPHJ, Nürnberger T, Joosten MHAJ. Of PAMPs and effectors: the blurred PTI-ETI dichotomy. THE PLANT CELL 2011; 23:4-15. [PMID: 21278123 PMCID: PMC3051239 DOI: 10.1105/tpc.110.082602] [Citation(s) in RCA: 667] [Impact Index Per Article: 47.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 12/21/2010] [Accepted: 01/11/2011] [Indexed: 05/18/2023]
Abstract
Typically, pathogen-associated molecular patterns (PAMPs) are considered to be conserved throughout classes of microbes and to contribute to general microbial fitness, whereas effectors are species, race, or strain specific and contribute to pathogen virulence. Both types of molecule can trigger plant immunity, designated PAMP-triggered and effector-triggered immunity (PTI and ETI, respectively). However, not all microbial defense activators conform to the common distinction between PAMPs and effectors. For example, some effectors display wide distribution, while some PAMPs are rather narrowly conserved or contribute to pathogen virulence. As effectors may elicit defense responses and PAMPs may be required for virulence, single components cannot exclusively be referred to by one of the two terms. Therefore, we put forward that the distinction between PAMPs and effectors, between PAMP receptors and resistance proteins, and, therefore, also between PTI and ETI, cannot strictly be maintained. Rather, as illustrated by examples provided here, there is a continuum between PTI and ETI. We argue that plant resistance is determined by immune receptors that recognize appropriate ligands to activate defense, the amplitude of which is likely determined by the level required for effective immunity.
Collapse
Affiliation(s)
- Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, 6708 PB Wageningen, The Netherlands.
| | | | | |
Collapse
|
158
|
Kaschani F, Van der Hoorn RAL. A model of the C14-EPIC complex indicates hotspots for a protease-inhibitor arms race in the oomycete-potato interaction. PLANT SIGNALING & BEHAVIOR 2011; 6:109-12. [PMID: 21301220 PMCID: PMC3122019 DOI: 10.4161/psb.6.1.14190] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The oomycete pathogen Phytophthora infestans secretes cystatin-like effector proteins (EPICs) that inhibit secreted host proteases during infection. We recently found that the C14 protease is a relevant target of EPICs and that this protease is under diversifying selection in wild potato species with which P. infestans has coevolved. Here we generated a model of the EPIC-C14 complex based on cystatin-papain crystal structures and discovered three regions where variant residues in C14 might be the result of an arms race between enzyme and inhibitor at the plant-pathogen interface.
Collapse
Affiliation(s)
- Farnusch Kaschani
- Plant Chemetics Laboratory, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Cologne, Germany
| | | |
Collapse
|
159
|
Van't Klooster JW, Van der Kamp MW, Vervoort J, Beekwilder J, Boeren S, Joosten MHAJ, Thomma BPHJ, De Wit PJGM. Affinity of Avr2 for tomato cysteine protease Rcr3 correlates with the Avr2-triggered Cf-2-mediated hypersensitive response. MOLECULAR PLANT PATHOLOGY 2011; 12:21-30. [PMID: 21118346 PMCID: PMC6640376 DOI: 10.1111/j.1364-3703.2010.00647.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The Cladosporium fulvum Avr2 effector is a novel type of cysteine protease inhibitor with eight cysteine residues that are all involved in disulphide bonds. We have produced wild-type Avr2 protein in Pichia pastoris and determined its disulphide bond pattern. By site-directed mutagenesis of all eight cysteine residues, we show that three of the four disulphide bonds are required for Avr2 stability. The six C-terminal amino acid residues of Avr2 contain one disulphide bond that is not embedded in its overall structure. Avr2 is not processed by the tomato cysteine protease Rcr3 and is an uncompetitive inhibitor of Rcr3. We also produced mutant Avr2 proteins in which selected amino acid residues were individually replaced by alanine, and, in one mutant, all six C-terminal amino acid residues were deleted. We determined the inhibitory constant (K(i) ) of these mutants for Rcr3 and their ability to trigger a Cf-2-mediated hypersensitive response (HR) in tomato. We found that the two C-terminal cysteine residues and the six amino acid C-terminal tail of Avr2 are required for both Rcr3 inhibitory activity and the ability to trigger a Cf-2-mediated HR. Individual replacement of the lysine-17, lysine-20 or tyrosine-21 residue by alanine did not affect significantly the biological activity of Avr2. Overall, our data suggest that the affinity of the Avr2 mutants for Rcr3 correlates with their ability to trigger a Cf-2-mediated HR.
Collapse
Affiliation(s)
- John W Van't Klooster
- Wageningen University, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
160
|
Kaschani F, Shabab M, Bozkurt T, Shindo T, Schornack S, Gu C, Ilyas M, Win J, Kamoun S, van der Hoorn RA. An effector-targeted protease contributes to defense against Phytophthora infestans and is under diversifying selection in natural hosts. PLANT PHYSIOLOGY 2010; 154:1794-804. [PMID: 20940351 PMCID: PMC2996022 DOI: 10.1104/pp.110.158030] [Citation(s) in RCA: 127] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2010] [Accepted: 10/11/2010] [Indexed: 05/18/2023]
Abstract
Since the leaf apoplast is a primary habitat for many plant pathogens, apoplastic proteins are potent, ancient targets for apoplastic effectors secreted by plant pathogens. So far, however, only a few apoplastic effector targets have been identified and characterized. Here, we discovered that the papain-like cysteine protease C14 is a new common target of EPIC1 and EPIC2B, two apoplastic, cystatin-like proteins secreted by the potato (Solanum tuberosum) late blight pathogen Phytophthora infestans. C14 is a secreted protease of tomato (Solanum lycopersicum) and potato typified by a carboxyl-terminal granulin domain. The EPIC-C14 interaction occurs at a wide pH range and is stronger than the previously described interactions of EPICs with tomato defense proteases PIP1 and RCR3. The selectivity of the EPICs is also different when compared with the AVR2 effector of the fungal tomato pathogen Cladosporium fulvum, which targets PIP1 and RCR3, and only at apoplastic pH. Importantly, silencing of C14 increased susceptibility to P. infestans, demonstrating that this protease plays a role in pathogen defense. Although C14 is under conservative selection in tomato, it is under diversifying selection in wild potato species (Solanum demissum, Solanum verrucosum, and Solanum stoliniferum) that are the natural hosts of P. infestans. These data reveal a novel effector target in the apoplast that contributes to immunity and is under diversifying selection, but only in the natural host of the pathogen.
Collapse
|
161
|
Tasset C, Bernoux M, Jauneau A, Pouzet C, Brière C, Kieffer-Jacquinod S, Rivas S, Marco Y, Deslandes L. Autoacetylation of the Ralstonia solanacearum effector PopP2 targets a lysine residue essential for RRS1-R-mediated immunity in Arabidopsis. PLoS Pathog 2010; 6:e1001202. [PMID: 21124938 PMCID: PMC2987829 DOI: 10.1371/journal.ppat.1001202] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2010] [Accepted: 10/21/2010] [Indexed: 12/23/2022] Open
Abstract
Type III effector proteins from bacterial pathogens manipulate components of host immunity to suppress defence responses and promote pathogen development. In plants, host proteins targeted by some effectors called avirulence proteins are surveyed by plant disease resistance proteins referred to as “guards”. The Ralstonia solanacearum effector protein PopP2 triggers immunity in Arabidopsis following its perception by the RRS1-R resistance protein. Here, we show that PopP2 interacts with RRS1-R in the nucleus of living plant cells. PopP2 belongs to the YopJ-like family of cysteine proteases, which share a conserved catalytic triad that includes a highly conserved cysteine residue. The catalytic cysteine mutant PopP2-C321A is impaired in its avirulence activity although it is still able to interact with RRS1-R. In addition, PopP2 prevents proteasomal degradation of RRS1-R, independent of the presence of an integral PopP2 catalytic core. A liquid chromatography/tandem mass spectrometry analysis showed that PopP2 displays acetyl-transferase activity leading to its autoacetylation on a particular lysine residue, which is well conserved among all members of the YopJ family. These data suggest that this lysine residue may correspond to a key binding site for acetyl-coenzyme A required for protein activity. Indeed, mutation of this lysine in PopP2 abolishes RRS1-R-mediated immunity. In agreement with the guard hypothesis, our results favour the idea that activation of the plant immune response by RRS1-R depends not only on the physical interaction between the two proteins but also on its perception of PopP2 enzymatic activity. Plant and animal bacterial pathogens have evolved to produce virulence factors, called type III effectors, which are injected into host cells to suppress host defences and provide an environment beneficial for pathogen growth. Type III effectors from pathogenic bacteria display enzymatic activities, often mimicking an endogenous eukaryotic activity, to target host signalling pathways. Elucidation of strategies used by pathogens to manipulate host protein activities is a subject of fundamental interest in pathology. PopP2 is a YopJ-like effector from the soil borne root pathogen Ralstonia solanacearum. Here, in addition to demonstrating PopP2 ability to stabilize the expression of its cognate Arabidopsis RRS1-R resistance protein and physically interact with it, we investigated the enzymatic activity of PopP2. Bacterial YopJ-like effectors are predicted to act as acetyl-transferases on host components. However, only two YopJ-like proteins from animal pathogens have been shown to be active acetyl-transferases. We show that PopP2 displays autoacetyl-transferase activity targeting a lysine residue well-conserved among YopJ-like family members. This lysine is a critical residue since its mutation prevents autoacetylation of PopP2 and abolishes its recognition by the host. This study provides new clues on the multiple properties displayed by bacterial type III effectors that may be used to target defense-related host components.
Collapse
Affiliation(s)
- Céline Tasset
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Maud Bernoux
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Alain Jauneau
- Institut Fédératif de Recherche 40, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Cécile Pouzet
- Institut Fédératif de Recherche 40, Plateforme Imagerie, Pôle de Biotechnologie Végétale, Castanet-Tolosan, France
| | - Christian Brière
- Surfaces Cellulaires et Signalisation chez les Végétaux, Université de Toulouse, UMR CNRS-Université Paul Sabatier 5546, Castanet-Tolosan, France
| | | | - Susana Rivas
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Yves Marco
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
| | - Laurent Deslandes
- Laboratoire des Interactions Plantes Microorganismes (LIPM), UMR CNRS-INRA 2594/441, Castanet-Tolosan, France
- * E-mail:
| |
Collapse
|
162
|
Gupta S, Chakraborti D, Basu D, Das S. In search of decoy/guardee to R genes: deciphering the role of sugars in defense against Fusarium wilt in chickpea. PLANT SIGNALING & BEHAVIOR 2010; 5:1081-7. [PMID: 20855953 PMCID: PMC3115073 DOI: 10.4161/psb.5.9.12234] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Plant responses are coordinately controlled by both external and internal signals. Apt perception of pathogen attack and its appropriate conversion to internal signals ultimately determine the outcome of innate immunity. The present review predicts the involvement of unconventional 'Guard/Decoy Model' in chickpea-Fusarium encounter. Rapid alkalinization factor is predicted to act as initial 'Gatekeeper decoy' counteracting fungal entry. Phospholipases and cystatins probably function as 'Guardees' being shielded by R gene(s). Serine Threonine Kinases decodes external pathogenic signals to in planta defense alarms. 14.3.3 provides clues to the wilt mechanism. The versatile sugars serve as signal generators and transmitters maintaining intra and inter cellular connectivity during stress.
Collapse
Affiliation(s)
- Sumanti Gupta
- Division of Plant Biology; Bose Institute; Centenary Campus; Kankurgachi, Kolkata India
| | - Dipankar Chakraborti
- Division of Plant Biology; Bose Institute; Centenary Campus; Kankurgachi, Kolkata India
- P.G. Department of Biotechnology; St. Xavier's College; Kolkata, India
| | - Debabrata Basu
- Division of Plant Biology; Bose Institute; Centenary Campus; Kankurgachi, Kolkata India
| | - Sampa Das
- Division of Plant Biology; Bose Institute; Centenary Campus; Kankurgachi, Kolkata India
| |
Collapse
|
163
|
de Jonge R, Peter van Esse H, Kombrink A, Shinya T, Desaki Y, Bours R, van der Krol S, Shibuya N, Joosten MHAJ, Thomma BPHJ. Conserved Fungal LysM Effector Ecp6 Prevents Chitin-Triggered Immunity in Plants. Science 2010; 329:953-5. [DOI: 10.1126/science.1190859] [Citation(s) in RCA: 539] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
164
|
Selote D, Kachroo A. RPG1-B-derived resistance to AvrB-expressing Pseudomonas syringae requires RIN4-like proteins in soybean. PLANT PHYSIOLOGY 2010; 153:1199-211. [PMID: 20484023 PMCID: PMC2899914 DOI: 10.1104/pp.110.158147] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2010] [Accepted: 05/17/2010] [Indexed: 05/20/2023]
Abstract
Soybean (Glycine max) RPG1-B (for resistance to Pseudomonas syringae pv glycinea) mediates species-specific resistance to P. syringae expressing the avirulence protein AvrB, similar to the nonorthologous RPM1 in Arabidopsis (Arabidopsis thaliana). RPM1-derived signaling is presumably induced upon AvrB-derived modification of the RPM1-interacting protein, RIN4 (for RPM1-interacting 4). We show that, similar to RPM1, RPG1-B does not directly interact with AvrB but associates with RIN4-like proteins from soybean. Unlike Arabidopsis, soybean contains at least four RIN4-like proteins (GmRIN4a to GmRIN4d). GmRIN4b, but not GmRIN4a, complements the Arabidopsis rin4 mutation. Both GmRIN4a and GmRIN4b bind AvrB, but only GmRIN4b binds RPG1-B. Silencing either GmRIN4a or GmRIN4b abrogates RPG1-B-derived resistance to P. syringae expressing AvrB. Binding studies show that GmRIN4b interacts with GmRIN4a as well as with two other AvrB/RPG1-B-interacting isoforms, GmRIN4c and GmRIN4d. The lack of functional redundancy among GmRIN4a and GmRIN4b and their abilities to interact with each other suggest that the two proteins might function as a heteromeric complex in mediating RPG1-B-derived resistance. Silencing GmRIN4a or GmRIN4b in rpg1-b plants enhances basal resistance to virulent strains of P. syringae and the oomycete Phytophthora sojae. Interestingly, GmRIN4a- or GmRIN4b-silenced rpg1-b plants respond differently to AvrB-expressing bacteria. Although both GmRIN4a and GmRIN4b function to monitor AvrB in the presence of RPG1-B, GmRIN4a, but not GmRIN4b, negatively regulates AvrB virulence activity in the absence of RPG1-B.
Collapse
Affiliation(s)
| | - Aardra Kachroo
- Department of Plant Pathology, University of Kentucky, Lexington, Kentucky 40546
| |
Collapse
|
165
|
Gu C, Kolodziejek I, Misas-Villamil J, Shindo T, Colby T, Verdoes M, Richau KH, Schmidt J, Overkleeft HS, van der Hoorn RAL. Proteasome activity profiling: a simple, robust and versatile method revealing subunit-selective inhibitors and cytoplasmic, defense-induced proteasome activities. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:160-70. [PMID: 20042019 DOI: 10.1111/j.1365-313x.2009.04122.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The proteasome plays essential roles in nearly all biological processes in plant defense and development, yet simple methods for displaying proteasome activities in extracts and living tissues are not available to plant science. Here, we introduce an easy and robust method to simultaneously display the activities of all three catalytic proteasome subunits in plant extracts or living plant tissues. The method is based on a membrane-permeable, small-molecule fluorescent probe that irreversibly reacts with the catalytic site of the proteasome catalytic subunits in an activity-dependent manner. Activities can be quantified from fluorescent protein gels and used to study proteasome activities in vitro and in vivo. We demonstrate that proteasome catalytic subunits can be selectively inhibited by aldehyde-based inhibitors, including the notorious caspase-3 inhibitor DEVD. Furthermore, we show that the proteasome activity, but not its abundance, is significantly increased in Arabidopsis upon treatment with benzothiadiazole (BTH). This upregulation of proteasome activity depends on NPR1, and occurs mostly in the cytoplasm. The simplicity, robustness and versatility of this method will make this method widely applicable in plant science.
Collapse
Affiliation(s)
- Christian Gu
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Kołodziejek I, van der Hoorn RAL. Mining the active proteome in plant science and biotechnology. Curr Opin Biotechnol 2010; 21:225-33. [DOI: 10.1016/j.copbio.2010.02.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2009] [Revised: 02/02/2010] [Accepted: 02/02/2010] [Indexed: 12/29/2022]
|
167
|
Oliva R, Win J, Raffaele S, Boutemy L, Bozkurt TO, Chaparro-Garcia A, Segretin ME, Stam R, Schornack S, Cano LM, van Damme M, Huitema E, Thines M, Banfield MJ, Kamoun S. Recent developments in effector biology of filamentous plant pathogens. Cell Microbiol 2010; 12:705-15. [PMID: 20374248 DOI: 10.1111/j.1462-5822.2010.01471.x] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Filamentous pathogens, such as plant pathogenic fungi and oomycetes, secrete an arsenal of effector molecules that modulate host innate immunity and enable parasitic infection. It is now well accepted that these effectors are key pathogenicity determinants that enable parasitic infection. In this review, we report on the most interesting features of a representative set of filamentous pathogen effectors and highlight recent findings. We also list and describe all the linear motifs reported to date in filamentous pathogen effector proteins. Some of these motifs appear to define domains that mediate translocation inside host cells.
Collapse
|
168
|
Loutre C, Wicker T, Travella S, Galli P, Scofield S, Fahima T, Feuillet C, Keller B. Two different CC-NBS-LRR genes are required for Lr10-mediated leaf rust resistance in tetraploid and hexaploid wheat. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 60:1043-54. [PMID: 19769576 DOI: 10.1111/j.1365-313x.2009.04024.x] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Comparative study of disease resistance genes in crop plants and their relatives provides insight on resistance gene function, evolution and diversity. Here, we studied the allelic diversity of the Lr10 leaf rust resistance gene, a CC-NBS-LRR coding gene originally isolated from hexaploid wheat, in 20 diploid and tetraploid wheat lines. Besides a gene in the tetraploid wheat variety 'Altar' that is identical to the hexaploid wheat Lr10, two additional, functional resistance alleles showing sequence diversity were identified by virus-induced gene silencing in tetraploid wheat lines. In contrast to most described NBS-LRR proteins, the N-terminal CC domain of LR10 was found to be under strong diversifying selection. A second NBS-LRR gene at the Lr10 locus, RGA2, was shown through silencing to be essential for Lr10 function. Interestingly, RGA2 showed much less sequence diversity than Lr10. These data demonstrate allelic diversity of functional genes at the Lr10 locus in tetraploid wheat, and these new genes can now be analyzed for agronomic relevance. Lr10-based resistance is highly unusual both in its dependence on two, only distantly, related CC-NBS-LRR proteins, as well as in the pattern of diversifying selection in the N-terminal domain. This indicates a new and complex molecular mechanism of pathogen detection and signal transduction.
Collapse
Affiliation(s)
- Caroline Loutre
- Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zürich, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
169
|
De Wit PJGM, Mehrabi R, Van den Burg HA, Stergiopoulos I. Fungal effector proteins: past, present and future. MOLECULAR PLANT PATHOLOGY 2009; 10:735-47. [PMID: 19849781 PMCID: PMC6640362 DOI: 10.1111/j.1364-3703.2009.00591.x] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The pioneering research of Harold Flor on flax and the flax rust fungus culminated in his gene-for-gene hypothesis. It took nearly 50 years before the first fungal avirulence (Avr) gene in support of his hypothesis was cloned. Initially, fungal Avr genes were identified by reverse genetics and map-based cloning from model organisms, but, currently, the availability of many sequenced fungal genomes allows their cloning from additional fungi by a combination of comparative and functional genomics. It is believed that most Avr genes encode effectors that facilitate virulence by suppressing pathogen-associated molecular pattern-triggered immunity and induce effector-triggered immunity in plants containing cognate resistance proteins. In resistant plants, effectors are directly or indirectly recognized by cognate resistance proteins that reside either on the plasma membrane or inside the plant cell. Indirect recognition of an effector (also known as the guard model) implies that the virulence target of an effector in the host (the guardee) is guarded by the resistance protein (the guard) that senses manipulation of the guardee, leading to activation of effector-triggered immunity. In this article, we review the literature on fungal effectors and some pathogen-associated molecular patterns, including those of some fungi for which no gene-for-gene relationship has been established.
Collapse
Affiliation(s)
- Pierre J G M De Wit
- Wageningen University and Research Centre, Laboratory of Phytopathology, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands.
| | | | | | | |
Collapse
|
170
|
Sim SC, Robbins MD, Chilcott C, Zhu T, Francis DM. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding. BMC Genomics 2009. [PMID: 19818135 DOI: 10.1186/1471‐2164‐10‐466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cultivated tomato (Solanum lycopersicum L.) has narrow genetic diversity that makes it difficult to identify polymorphisms between elite germplasm. We explored array-based single feature polymorphism (SFP) discovery as a high-throughput approach for marker development in cultivated tomato. RESULTS Three varieties, FL7600 (fresh-market), OH9242 (processing), and PI114490 (cherry) were used as a source of genomic DNA for hybridization to oligonucleotide arrays. Identification of SFPs was based on outlier detection using regression analysis of normalized hybridization data within a probe set for each gene. A subset of 189 putative SFPs was sequenced for validation. The rate of validation depended on the desired level of significance (alpha) used to define the confidence interval (CI), and ranged from 76% for polymorphisms identified at alpha <or= 10-6 to 60% for those identified at alpha <or= 10-2. Validation percentage reached a plateau between alpha <or= 10-4 and alpha <or= 10-7, but failure to identify known SFPs (Type II error) increased dramatically at alpha <or= 10-6. Trough sequence validation, we identified 279 SNPs and 27 InDels in 111 loci. Sixty loci contained >or= 2 SNPs per locus. We used a subset of validated SNPs for genetic diversity analysis of 92 tomato varieties and accessions. Pairwise estimation of theta (Fst) suggested significant differentiation between collections of fresh-market, processing, vintage, Latin American (landrace), and S. pimpinellifolium accessions. The fresh-market and processing groups displayed high genetic diversity relative to vintage and landrace groups. Furthermore, the patterns of SNP variation indicated that domestication and early breeding practices have led to progressive genetic bottlenecks while modern breeding practices have reintroduced genetic variation into the crop from wild species. Finally, we examined the ratio of non-synonymous (Ka) to synonymous substitutions (Ks) for 20 loci with multiple SNPs (>or= 4 per locus). Six of 20 loci showed ratios of Ka/Ks >or= 0.9. CONCLUSION Array-based SFP discovery was an efficient method to identify a large number of molecular markers for genetics and breeding in elite tomato germplasm. Patterns of sequence variation across five major tomato groups provided insight into to the effect of human selection on genetic variation.
Collapse
Affiliation(s)
- Sung-Chur Sim
- Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | | | | | | | | |
Collapse
|
171
|
Sim SC, Robbins MD, Chilcott C, Zhu T, Francis DM. Oligonucleotide array discovery of polymorphisms in cultivated tomato (Solanum lycopersicum L.) reveals patterns of SNP variation associated with breeding. BMC Genomics 2009; 10:466. [PMID: 19818135 PMCID: PMC2763011 DOI: 10.1186/1471-2164-10-466] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2009] [Accepted: 10/09/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cultivated tomato (Solanum lycopersicum L.) has narrow genetic diversity that makes it difficult to identify polymorphisms between elite germplasm. We explored array-based single feature polymorphism (SFP) discovery as a high-throughput approach for marker development in cultivated tomato. RESULTS Three varieties, FL7600 (fresh-market), OH9242 (processing), and PI114490 (cherry) were used as a source of genomic DNA for hybridization to oligonucleotide arrays. Identification of SFPs was based on outlier detection using regression analysis of normalized hybridization data within a probe set for each gene. A subset of 189 putative SFPs was sequenced for validation. The rate of validation depended on the desired level of significance (alpha) used to define the confidence interval (CI), and ranged from 76% for polymorphisms identified at alpha <or= 10-6 to 60% for those identified at alpha <or= 10-2. Validation percentage reached a plateau between alpha <or= 10-4 and alpha <or= 10-7, but failure to identify known SFPs (Type II error) increased dramatically at alpha <or= 10-6. Trough sequence validation, we identified 279 SNPs and 27 InDels in 111 loci. Sixty loci contained >or= 2 SNPs per locus. We used a subset of validated SNPs for genetic diversity analysis of 92 tomato varieties and accessions. Pairwise estimation of theta (Fst) suggested significant differentiation between collections of fresh-market, processing, vintage, Latin American (landrace), and S. pimpinellifolium accessions. The fresh-market and processing groups displayed high genetic diversity relative to vintage and landrace groups. Furthermore, the patterns of SNP variation indicated that domestication and early breeding practices have led to progressive genetic bottlenecks while modern breeding practices have reintroduced genetic variation into the crop from wild species. Finally, we examined the ratio of non-synonymous (Ka) to synonymous substitutions (Ks) for 20 loci with multiple SNPs (>or= 4 per locus). Six of 20 loci showed ratios of Ka/Ks >or= 0.9. CONCLUSION Array-based SFP discovery was an efficient method to identify a large number of molecular markers for genetics and breeding in elite tomato germplasm. Patterns of sequence variation across five major tomato groups provided insight into to the effect of human selection on genetic variation.
Collapse
Affiliation(s)
- Sung-Chur Sim
- Department of Horticulture and Crop Science, The Ohio State University, Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA.
| | | | | | | | | |
Collapse
|
172
|
Wulff BBH, Chakrabarti A, Jones DA. Recognitional specificity and evolution in the tomato-Cladosporium fulvum pathosystem. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:1191-202. [PMID: 19737093 DOI: 10.1094/mpmi-22-10-1191] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
The interactions between plants and many biotrophic or hemibiotrophic pathogens are controlled by receptor proteins in the host and effector proteins delivered by the pathogen. Pathogen effectors facilitate pathogen growth through the suppression of host defenses and the manipulation of host metabolism, but recognition of a pathogen-effector protein by a host receptor enables the host to activate a suite of defense mechanisms that limit pathogen growth. In the tomato (Lycopersicon esculentum syn. Solanum lycopersicum)-Cladosporium fulvum (leaf mold fungus syn. Passalora fulva) pathosystem, the host receptors are plasma membrane-anchored, leucine-rich repeat, receptor-like proteins encoded by an array of Cf genes conferring resistance to C. fulvum. The pathogen effectors are mostly small, secreted, cysteine-rich, but otherwise largely dissimilar, extracellular proteins encoded by an array of avirulence (Avr) genes, so called because of their ability to trigger resistance and limit pathogen growth when the corresponding Cf gene is present in tomato. A number of Cf and Avr genes have been isolated, and details of the complex molecular interplay between tomato Cf proteins and C. fulvum effector proteins are beginning to emerge. Each effector appears to have a different role; probably most bind or modify different host proteins, but at least one has a passive role masking the pathogen. It is, therefore, not surprising that each effector is probably detected in a distinct and specific manner, some by direct binding, others as complexes with host proteins, and others via their modification of host proteins. The two papers accompanying this review contribute further to our understanding of the molecular specificity underlying effector perception by Cf proteins. This review, therefore, focuses on our current understanding of recognitional specificity in the tomato-C. fulvum pathosystem and highlights some of the critical questions that remain to be addressed. It also addresses the evolutionary causes and consequences of this specificity.
Collapse
Affiliation(s)
- B B H Wulff
- Institut de Biologie Moléculaire des Plantes (IBMP-CNRS), 12 rue du Général Zimmer, 67084 Strasbourg, France.
| | | | | |
Collapse
|
173
|
Mitri C, Jacques JC, Thiery I, Riehle MM, Xu J, Bischoff E, Morlais I, Nsango SE, Vernick KD, Bourgouin C. Fine pathogen discrimination within the APL1 gene family protects Anopheles gambiae against human and rodent malaria species. PLoS Pathog 2009; 5:e1000576. [PMID: 19750215 PMCID: PMC2734057 DOI: 10.1371/journal.ppat.1000576] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/12/2009] [Indexed: 01/13/2023] Open
Abstract
Genetically controlled resistance of Anopheles gambiae mosquitoes to Plasmodium falciparum is a common trait in the natural population, and a cluster of natural resistance loci were mapped to the Plasmodium-Resistance Island (PRI) of the A. gambiae genome. The APL1 family of leucine-rich repeat (LRR) proteins was highlighted by candidate gene studies in the PRI, and is comprised of paralogs APL1A, APL1B and APL1C that share ≥50% amino acid identity. Here, we present a functional analysis of the joint response of APL1 family members during mosquito infection with human and rodent Plasmodium species. Only paralog APL1A protected A. gambiae against infection with the human malaria parasite P. falciparum from both the field population and in vitro culture. In contrast, only paralog APL1C protected against the rodent malaria parasites P. berghei and P. yoelii. We show that anti-P. falciparum protection is mediated by the Imd/Rel2 pathway, while protection against P. berghei infection was shown to require Toll/Rel1 signaling. Further, only the short Rel2-S isoform and not the long Rel2-F isoform of Rel2 confers protection against P. falciparum. Protection correlates with the transcriptional regulation of APL1A by Rel2-S but not Rel2-F, suggesting that the Rel2-S anti-parasite phenotype results at least in part from its transcriptional control over APL1A. These results indicate that distinct members of the APL1 gene family display a mutually exclusive protective effect against different classes of Plasmodium parasites. It appears that a gene-for-pathogen-class system orients the appropriate host defenses against distinct categories of similar pathogens. It is known that insect innate immune pathways can distinguish between grossly different microbes such as Gram-positive bacteria, Gram-negative bacteria, or fungi, but the function of the APL1 paralogs reveals that mosquito innate immunity possesses a more fine-grained capacity to distinguish between classes of closely related eukaryotic pathogens than has been previously recognized. The African malaria vector mosquito Anopheles gambiae possesses immune mechanisms that can protect it against infection with malaria parasites, which kill more than one million people per year. Much work studying mosquito response to malaria has used model rodent malaria parasites that do not infect people, but are in the same genus and overall share most major features with the human parasites. Here, we show that the immune response used by A. gambiae to protect itself against infection by human and rodent malaria parasites utilizes different immune signaling pathways. A family of proteins called APL1 appears to be responsible for the ability of the mosquito to distinguish between the human or rodent malaria parasites. An individual APL1 relative is required for protection against the human malaria parasite but has no effect against the rodent parasite, and another APL1 relative is required for protection against rodent but not human malaria. This represents the finest ability yet demonstrated of mosquito immunity to distinguish between relatively similar pathogens, and highlights the distinct nature of mosquito response against human as compared to rodent malaria parasites.
Collapse
Affiliation(s)
- Christian Mitri
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | - Jean-Claude Jacques
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | - Isabelle Thiery
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| | - Michelle M. Riehle
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Jiannong Xu
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
| | - Emmanuel Bischoff
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
| | - Isabelle Morlais
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement IRD-OCEAC, Yaoundé, Cameroun
| | - Sandrine E. Nsango
- Laboratoire de Recherche sur le Paludisme, Institut de Recherche pour le Développement IRD-OCEAC, Yaoundé, Cameroun
| | - Kenneth D. Vernick
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- Department of Microbiology, University of Minnesota, Saint Paul, Minnesota, United States of America
- * E-mail:
| | - Catherine Bourgouin
- Unit of Insect Vector Genetics and Genomics, Department of Parasitology and Mycology, CNRS Unit URA3012: Hosts, Vectors and Infectious Agents, Institut Pasteur, Paris, France
- Center for the Production and Infection of Anopheles, Institut Pasteur, Paris, France
| |
Collapse
|
174
|
Hein I, Gilroy EM, Armstrong MR, Birch PRJ. The zig-zag-zig in oomycete-plant interactions. MOLECULAR PLANT PATHOLOGY 2009; 10:547-62. [PMID: 19523107 PMCID: PMC6640229 DOI: 10.1111/j.1364-3703.2009.00547.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
In addition to a range of preformed barriers, plants defend themselves against microbial invasion by detecting conserved, secreted molecules, called pathogen-associated molecular patterns (PAMPs). PAMP-triggered immunity (PTI) is the first inducible layer of plant defence that microbial pathogens must navigate by the delivery of effector proteins that act to suppress or otherwise manipulate key components of resistance. Effectors may themselves be targeted by a further layer of defence, effector-triggered immunity (ETI), as their presence inside or outside host cells may be detected by resistance proteins. This 'zig-zag-zig' of tightly co-evolving molecular interactions determines the outcome of attempted infection. In this article, we consider the complex molecular interplay between plants and plant pathogenic oomycetes, drawing on recent literature to illustrate what is known about oomycete PAMPs and elicitors of defence responses, the effectors they utilize to suppress PTI, and the phenomenal molecular 'battle' between effector and resistance (R) genes that dictates the establishment or evasion of ETI.
Collapse
Affiliation(s)
- Ingo Hein
- Scottish Crop Research Institute, Invergowrie, Dundee, UK
| | | | | | | |
Collapse
|
175
|
Takeda N, Sato S, Asamizu E, Tabata S, Parniske M. Apoplastic plant subtilases support arbuscular mycorrhiza development in Lotus japonicus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 58:766-77. [PMID: 19220794 DOI: 10.1111/j.1365-313x.2009.03824.x] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
In the arbuscular mycorrhiza (AM) symbiosis, plant roots accommodate Glomeromycota fungi within an intracellular compartment, the arbuscule. At this symbiotic interface, fungal hyphae are surrounded by a plant membrane, which creates an apoplastic compartment, the periarbuscular space (PAS) between fungal and plant cell. Despite the importance of the PAS for symbiotic signal and metabolite exchange, only few of its components have been identified. Here we show that two apoplastic plant proteases of the subtilase family are required for AM development. SbtM1 is the founder member of a family of arbuscular mycorrhiza-induced subtilase genes that occur in at least two clusters in the genome of the legume Lotus japonicus. A detailed expression analysis by RT-PCR revealed that SbtM1, SbtM3, SbtM4 and the more distantly related SbtS are all rapidly induced during development of arbuscular mycorrhiza, but only SbtS and SbtM4 are also up-regulated during root nodule symbiosis. Promoter-reporter fusions indicated specific activation in cells that are adjacent to intra-radical fungal hyphae or in cells that harbour them. Venus fluorescent protein was observed in the apoplast and the PAS when expressed from a fusion construct with the SbtM1 signal peptide or the full-length subtilase. Suppression of SbtM1 or SbtM3 by RNAi caused a decrease in intra-radical hyphae and arbuscule colonization, but had no effect on nodule formation. Our data indicate a role for these subtilases during the fungal infection process in particular arbuscule development.
Collapse
Affiliation(s)
- Naoya Takeda
- Faculty of Biology, Genetics, University of Munich, Grosshaderner Strasse 2, Martinsried, Germany
| | | | | | | | | |
Collapse
|
176
|
Abstract
Nonhost resistance to plant pathogens can be constitutive or induced by microbes. Successful pathogens suppress microbe-induced plant defences by delivering appropriate effectors, which are apparently not sufficiently effective on nonhost plant species, as can be concluded from the strong host specificity of many biotroph plant pathogens. Such effectors act on particular plant targets, such as promoters or motifs in expressed sequences. Despite much progress in the elucidation of the molecular aspects of nonhost resistance to plant pathogens, very little is known about the genes that determine whether effectors can or cannot suppress the basal defence. In hosts they can, in nonhosts they cannot. The targets determining the host status of plants can be identified in inheritance studies. Recent reports have indicated that nonhost resistance is inherited polygenically, and exhibits strong similarity and association with the basal resistance of plants to adapted pathogens.
Collapse
Affiliation(s)
- Rients E Niks
- Laboratory of Plant Breeding, Wageningen University, PO Box 386, 6700 AJ Wageningen, The Netherlands
| | - Thierry C Marcel
- Laboratory of Plant Breeding, Wageningen University, PO Box 386, 6700 AJ Wageningen, The Netherlands
| |
Collapse
|
177
|
Kaschani F, Gu C, Niessen S, Hoover H, Cravatt BF, van der Hoorn RAL. Diversity of serine hydrolase activities of unchallenged and botrytis-infected Arabidopsis thaliana. Mol Cell Proteomics 2009; 8:1082-93. [PMID: 19136719 PMCID: PMC2689769 DOI: 10.1074/mcp.m800494-mcp200] [Citation(s) in RCA: 80] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/08/2009] [Indexed: 11/06/2022] Open
Abstract
Activity-based protein profiling is a powerful method to display enzyme activities in proteomes and provides crucial information on enzyme activity rather than protein or transcript abundance. We applied activity-based protein profiling using fluorophosphonate-based probes to display the activities of Ser hydrolases in the model plant Arabidopsis thaliana. Multidimensional protein identification technology and in-gel analysis of fluorophosphonate-labeled leaf extracts revealed over 50 Ser hydrolases, including dozens of proteases, esterases, and lipases, representing over 10 different enzyme families. Except for some well characterized Ser hydrolases like subtilases TPP2 and ARA12, prolyl oligopeptidase acylamino acid-releasing enzyme, serine carboxypeptidase-like SNG1 and BRS1, carboxylesterase-like CXE12, methylesterases MES2 and MES3, and S-formylglutathione hydrolase, the majority of these serine hydrolases have not been described before. We studied transiently expressed SNG1 and investigated plants infected with the fungal pathogen Botrytis cinerea. Besides the down-regulation of several Arabidopsis Ser hydrolase activities during Botrytis infection, we detected the activities of Botrytis-derived cutinases and lipases, which are thought to contribute to pathogenicity.
Collapse
Affiliation(s)
- Farnusch Kaschani
- Plant Chemetics laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | |
Collapse
|
178
|
Stukenbrock EH, McDonald BA. Population genetics of fungal and oomycete effectors involved in gene-for-gene interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:371-80. [PMID: 19271952 DOI: 10.1094/mpmi-22-4-0371] [Citation(s) in RCA: 95] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Antagonistic coevolution between plants and pathogens has generated a broad array of attack and defense mechanisms. In the classical avirulence (Avr) gene-for-gene model, the pathogen gene evolves to escape host recognition while the host resistance (R) gene evolves to track the evolving pathogen elicitor. In the case of host-specific toxins (HST), the evolutionary arms race may be inverted, with the gene encoding the pathogen toxin evolving to maintain recognition of the host sensitivity target while the host sensitivity gene evolves to escape binding with the toxin. Pathogen effector genes, including those encoding Avr elicitors and HST, often show elevated levels of polymorphism reflecting the coevolutionary arms race between host and pathogen. However, selection can also eliminate variation in the coevolved gene and its neighboring regions when advantageous alleles are swept to fixation. The distribution and diversity of corresponding host genes will have a major impact on the distribution and diversity of effectors in the pathogen population. Population genetic analyses including both hosts and their pathogens provide an essential tool to understand the diversity and dynamics of effector genes. Here, we summarize current knowledge about the population genetics of fungal and oomycete effector genes, focusing on recent studies that have used both spatial and temporal collections to assess the diversity and distribution of alleles and to monitor changes in allele frequencies over time. These studies illustrate that effector genes exhibit a significant degree of diversity at both small and large sampling scales, suggesting that local selection plays an important role in their evolution. They also illustrate that Avr elicitors and HST may be recognizing the same R genes in plants, leading to evolutionary outcomes that differ for necrotrophs and biotrophs while affecting the evolution of the corresponding R genes. Under this scenario, the optimal number of R genes in a plant genome may be determined by the relative abundance of necrotrophic and biotrophic pathogens in the plant's environment.
Collapse
|
179
|
Doehlemann G, van der Linde K, Aßmann D, Schwammbach D, Hof A, Mohanty A, Jackson D, Kahmann R. Pep1, a secreted effector protein of Ustilago maydis, is required for successful invasion of plant cells. PLoS Pathog 2009; 5:e1000290. [PMID: 19197359 PMCID: PMC2631132 DOI: 10.1371/journal.ppat.1000290] [Citation(s) in RCA: 238] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2008] [Accepted: 01/08/2009] [Indexed: 01/04/2023] Open
Abstract
The basidiomycete Ustilago maydis causes smut disease in maize. Colonization of the host plant is initiated by direct penetration of cuticle and cell wall of maize epidermis cells. The invading hyphae are surrounded by the plant plasma membrane and proliferate within the plant tissue. We identified a novel secreted protein, termed Pep1, that is essential for penetration. Disruption mutants of pep1 are not affected in saprophytic growth and develop normal infection structures. However, Deltapep1 mutants arrest during penetration of the epidermal cell and elicit a strong plant defense response. Using Affymetrix maize arrays, we identified 116 plant genes which are differentially regulated in Deltapep1 compared to wild type infections. Most of these genes are related to plant defense. By in vivo immunolocalization, live-cell imaging and plasmolysis approaches, we detected Pep1 in the apoplastic space as well as its accumulation at sites of cell-to-cell passages. Site-directed mutagenesis identified two of the four cysteine residues in Pep1 as essential for function, suggesting that the formation of disulfide bridges is crucial for proper protein folding. The barley covered smut fungus Ustilago hordei contains an ortholog of pep1 which is needed for penetration of barley and which is able to complement the U. maydis Deltapep1 mutant. Based on these results, we conclude that Pep1 has a conserved function essential for establishing compatibility that is not restricted to the U. maydis / maize interaction.
Collapse
Affiliation(s)
| | | | - Daniela Aßmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | | | - Alexander Hof
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
| | - Amitabh Mohanty
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - David Jackson
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York, United States of America
| | - Regine Kahmann
- Max Planck Institute for Terrestrial Microbiology, Marburg, Germany
- * E-mail:
| |
Collapse
|
180
|
Hogenhout SA, Van der Hoorn RAL, Terauchi R, Kamoun S. Emerging concepts in effector biology of plant-associated organisms. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2009; 22:115-22. [PMID: 19132864 DOI: 10.1094/mpmi-22-2-0115] [Citation(s) in RCA: 455] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Plant-associated organisms secrete proteins and other molecules to modulate plant defense circuitry and enable colonization of plant tissue. Understanding the molecular function of these secreted molecules, collectively known as effectors, became widely accepted as essential for a mechanistic understanding of the processes underlying plant colonization. This review summarizes recent findings in the field of effector biology and highlights the common concepts that have emerged from the study of cellular plant pathogen effectors.
Collapse
Affiliation(s)
- Saskia A Hogenhout
- Department of Disease and Stress Biology, The John Innes Centre, Norwich Research Park, Norwich, UK
| | | | | | | |
Collapse
|
181
|
Apoplastic effectors secreted by two unrelated eukaryotic plant pathogens target the tomato defense protease Rcr3. Proc Natl Acad Sci U S A 2009; 106:1654-9. [PMID: 19171904 DOI: 10.1073/pnas.0809201106] [Citation(s) in RCA: 198] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Current models of plant-pathogen interactions stipulate that pathogens secrete effector proteins that disable plant defense components known as virulence targets. Occasionally, the perturbations caused by these effectors trigger innate immunity via plant disease resistance proteins as described by the "guard hypothesis." This model is nicely illustrated by the interaction between the fungal plant pathogen Cladosporium fulvum and tomato. C. fulvum secretes a protease inhibitor Avr2 that targets the tomato cysteine protease Rcr3(pim). In plants that carry the resistance protein Cf2, Rcr3(pim) is required for resistance to C. fulvum strains expressing Avr2, thus fulfilling one of the predictions of the guard hypothesis. Another prediction of the guard hypothesis has not yet been tested. Considering that virulence targets are important components of defense, different effectors from unrelated pathogens are expected to evolve to disable the same host target. In this study we confirm this prediction using a different pathogen of tomato, the oomycete Phytophthora infestans that is distantly related to fungi such as C. fulvum. This pathogen secretes an array of protease inhibitors including EPIC1 and EPIC2B that inhibit tomato cysteine proteases. Here we show that, similar to Avr2, EPIC1 and EPIC2B bind and inhibit Rcr3(pim). However, unlike Avr2, EPIC1 and EPIC2B do not trigger hypersensitive cell death or defenses on Cf-2/Rcr3(pim) tomato. We also found that the rcr3-3 mutant of tomato that carries a premature stop codon in the Rcr3 gene exhibits enhanced susceptibility to P. infestans, suggesting a role for Rcr3(pim) in defense. In conclusion, our findings fulfill a key prediction of the guard hypothesis and suggest that the effectors Avr2, EPIC1, and EPIC2B secreted by two unrelated pathogens of tomato target the same defense protease Rcr3(pim). In contrast to C. fulvum, P. infestans appears to have evolved stealthy effectors that carry inhibitory activity without triggering plant innate immunity.
Collapse
|
182
|
Abstract
It is accepted that most fungal avirulence genes encode virulence factors that are called effectors. Most fungal effectors are secreted, cysteine-rich proteins, and a role in virulence has been shown for a few of them, including Avr2 and Avr4 of Cladosporium fulvum, which inhibit plant cysteine proteases and protect chitin in fungal cell walls against plant chitinases, respectively. In resistant plants, effectors are directly or indirectly recognized by cognate resistance proteins that reside either inside the plant cell or on plasma membranes. Several secreted effectors function inside the host cell, but the uptake mechanism is not yet known. Variation observed among fungal effectors shows two types of selection that appear to relate to whether they interact directly or indirectly with their cognate resistance proteins. Direct interactions seem to favor point mutations in effector genes, leading to amino acid substitutions, whereas indirect interactions seem to favor jettison of effector genes.
Collapse
Affiliation(s)
- Ioannis Stergiopoulos
- Wageningen University and Research Center ( http://www.php.wur.nl/uk ), Laboratory of Phytopathology, 6709 PD Wageningen, The Netherlands.
| | | |
Collapse
|
183
|
Tör M, Lotze MT, Holton N. Receptor-mediated signalling in plants: molecular patterns and programmes. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:3645-54. [PMID: 19628572 PMCID: PMC2766824 DOI: 10.1093/jxb/erp233] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2009] [Accepted: 07/01/2009] [Indexed: 05/18/2023]
Abstract
A highly evolved surveillance system in plants is able to detect a broad range of signals originating from pathogens, damaged tissues, or altered developmental processes, initiating sophisticated molecular mechanisms that result in defence, wound healing, and development. Microbe-associated molecular pattern molecules (MAMPs), damage-associated molecular pattern molecules (DAMPs), virulence factors, secreted proteins, and processed peptides can be recognized directly or indirectly by this surveillance system. Nucleotide binding-leucine rich repeat proteins (NB-LRR) are intracellular receptors and have been targeted by breeders for decades to elicit resistance to crop pathogens in the field. Receptor-like kinases (RLKs) or receptor like proteins (RLPs) are membrane bound signalling molecules with an extracellular receptor domain. They provide an early warning system for the presence of potential pathogens and activate protective immune signalling in plants. In addition, they act as a signal amplifier in the case of tissue damage, establishing symbiotic relationships and effecting developmental processes. The identification of several important ligands for the RLK-type receptors provided an opportunity to understand how plants differentiate, how they distinguish beneficial and detrimental stimuli, and how they co-ordinate the role of various types of receptors under varying environmental conditions. The diverse roles of extra-and intracellular plant receptors are examined here and the recent findings on how they promote defence and development is reviewed.
Collapse
Affiliation(s)
- Mahmut Tör
- Warwick HRI, University of Warwick, Wellesbourne Campus, UK.
| | | | | |
Collapse
|
184
|
Birch PRJ, Armstrong M, Bos J, Boevink P, Gilroy EM, Taylor RM, Wawra S, Pritchard L, Conti L, Ewan R, Whisson SC, van West P, Sadanandom A, Kamoun S. Towards understanding the virulence functions of RXLR effectors of the oomycete plant pathogen Phytophthora infestans. JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:1133-40. [PMID: 19204033 DOI: 10.1093/jxb/ern353] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Plant pathogens establish infection by secretion of effector proteins that may be delivered inside host cells to manipulate innate immunity. It is increasingly apparent that the ubiquitin proteasome system (UPS) contributes significantly to the regulation of plant defences and, as such, is a target for pathogen effectors. Bacterial effectors delivered by the type III and IV secretion systems have been shown to interact with components of the host UPS. Some of these effectors possess functional domains that are conserved in UPS enzymes, whilst others contain novel domains with ubiquitination activities. Relatively little is known about effector activities in eukaryotic microbial plant pathogens. Nevertheless, effectors from oomycetes that contain an RXLR motif for translocation to the inside of plant cells have been shown to suppress host defences. Annotation of the genome of one such oomycete, the potato late blight pathogen Phytophthora infestans, and protein-protein interaction assays to discover host proteins targeted by the RXLR effector AVR3a, have revealed that this eukaryotic plant pathogen also has the potential to manipulate host plant UPS functions.
Collapse
Affiliation(s)
- Paul R J Birch
- Division of Plant Sciences, College of Life Sciences, University of Dundee at SCRI, Invergowrie, Dundee DD2 5DA, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
185
|
Kaschani F, Verhelst SHL, van Swieten PF, Verdoes M, Wong CS, Wang Z, Kaiser M, Overkleeft HS, Bogyo M, van der Hoorn RAL. Minitags for small molecules: detecting targets of reactive small molecules in living plant tissues using 'click chemistry'. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2009; 57:373-85. [PMID: 18786180 DOI: 10.1111/j.1365-313x.2008.03683.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Small molecules offer unprecedented opportunities for plant research since plants respond to, metabolize, and react with a diverse range of endogenous and exogenous small molecules. Many of these small molecules become covalently attached to proteins. To display these small molecule targets in plants, we introduce a two-step labelling method for minitagged small molecules. Minitags are small chemical moieties (azide or alkyne) that are inert under biological conditions and have little influence on the membrane permeability and specificity of the small molecule. After labelling, proteomes are extracted under denaturing conditions and minitagged proteins are coupled to reporter tags through a 'click chemistry' reaction. We introduce this two-step labelling procedure in plants by studying the well-characterized targets of E-64, a small molecule cysteine protease inhibitor. In contrast to biotinylated E-64, minitagged E-64 efficiently labels vacuolar proteases in vivo. We displayed, purified and identified targets of a minitagged inhibitor that targets the proteasome and cysteine proteases in living plant cells. Chemical interference assays with inhibitors showed that MG132, a frequently used proteasome inhibitor, preferentially inhibits cysteine proteases in vivo. The two-step labelling procedure can be applied on detached leaves, cell cultures, seedlings and other living plant tissues and, when combined with photoreactive groups, can be used to identify targets of herbicides, phytohormones and reactive small molecules selected from chemical genetic screens.
Collapse
Affiliation(s)
- Farnusch Kaschani
- Plant Chemetics Lab, Chemical Genomics Centre of the Max Planck Society, Max Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Abstract
The plant apoplast constitutes a space for early recognition of potentially harmful non-self. Basal pathogen recognition operates via dynamic sensing of conserved microbial patterns by pattern recognition receptors or of elicitor-active molecules released from plant cell walls during infection. Recognition elicits defence reactions depending on cellular export via SNARE (soluble N-ethylmaleimide-sensitive factor attachment protein receptor) complex-mediated vesicle fusion or plasma membrane transporter activity. Lipid rafts appear also involved in focusing immunity-associated proteins to the site of pathogen contact. Simultaneously, pathogen effectors target recognition, apoplastic host proteins and transport for cell wall-associated defence. This microreview highlights most recent reports on the arms race for plant disease and immunity at the cell surface.
Collapse
Affiliation(s)
- Caroline Hoefle
- Lehrstuhl für Phytopathologie, Technische Universität München, Am Hochanger 2, 85350 Freising, Germany
| | | |
Collapse
|
187
|
Bernoux M, Timmers T, Jauneau A, Brière C, de Wit PJGM, Marco Y, Deslandes L. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. THE PLANT CELL 2008; 20:2252-64. [PMID: 18708476 PMCID: PMC2553607 DOI: 10.1105/tpc.108.058685] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 07/18/2008] [Accepted: 07/31/2008] [Indexed: 05/18/2023]
Abstract
Bacterial wilt, a disease impacting cultivated crops worldwide, is caused by the pathogenic bacterium Ralstonia solanacearum. PopP2 (for Pseudomonas outer protein P2) is an R. solanacearum type III effector that belongs to the YopJ/AvrRxv protein family and interacts with the Arabidopsis thaliana RESISTANT TO RALSTONIA SOLANACEARUM 1-R (RRS1-R) resistance protein. RRS1-R contains the Toll/Interleukin1 receptor-nucleotide binding site-Leu-rich repeat domains found in several cytoplasmic R proteins and a C-terminal WRKY DNA binding domain. In this study, we identified the Arabidopsis Cys protease RESPONSIVE TO DEHYDRATION19 (RD19) as being a PopP2-interacting protein whose expression is induced during infection by R. solanacearum. An Arabidopsis rd19 mutant in an RRS1-R genetic background is compromised in resistance to the bacterium, indicating that RD19 is required for RRS1-R-mediated resistance. RD19 normally localizes in mobile vacuole-associated compartments and, upon coexpression with PopP2, is specifically relocalized to the plant nucleus, where the two proteins physically interact. No direct physical interaction between RRS1-R and RD19 in the presence of PopP2 was detected in the nucleus as determined by Förster resonance energy transfer. We propose that RD19 associates with PopP2 to form a nuclear complex that is required for activation of the RRS1-R-mediated resistance response.
Collapse
Affiliation(s)
- Maud Bernoux
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, F-31320 Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
188
|
van der Hoorn RAL, Kamoun S. From Guard to Decoy: a new model for perception of plant pathogen effectors. THE PLANT CELL 2008; 20:2009-17. [PMID: 18723576 PMCID: PMC2553620 DOI: 10.1105/tpc.108.060194] [Citation(s) in RCA: 485] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The Guard Model for disease resistance postulates that plant resistance proteins act by monitoring (guarding) the target of their corresponding pathogen effector. We posit, however, that guarded effector targets are evolutionarily unstable in plant populations polymorphic for resistance (R) genes. Depending on the absence or presence of the R gene, guarded effector targets are subject to opposing selection forces (1) to evade manipulation by effectors (weaker interaction) and (2) to improve perception of effectors (stronger interaction). Duplication of the effector target gene or independent evolution of a target mimic could relax evolutionary constraints and result in a decoy that would be solely involved in effector perception. There is growing support for this Decoy Model from four diverse cases of effector perception involving Pto, Bs3, RCR3, and RIN4. We discuss the differences between the Guard and Decoy Models and their variants, hypothesize how decoys might have evolved, and suggest ways to challenge the Decoy Model.
Collapse
|
189
|
Misas-Villamil JC, van der Hoorn RAL. Enzyme-inhibitor interactions at the plant-pathogen interface. CURRENT OPINION IN PLANT BIOLOGY 2008; 11:380-8. [PMID: 18550418 DOI: 10.1016/j.pbi.2008.04.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2008] [Revised: 04/21/2008] [Accepted: 04/28/2008] [Indexed: 05/18/2023]
Abstract
The plant apoplast during plant-pathogen interactions is an ancient battleground that holds an intriguing range of attacking enzymes and counteracting inhibitors. Examples are pathogen xylanases and polygalacturonases that are inhibited by plant proteins like TAXI, XIP, and PGIP; and plant glucanases and proteases, which are targeted by pathogen proteins such as GIP1, EPI1, EPIC2B, and AVR2. These seven well-characterized inhibitors have different modes of action and many probably evolved from inactive enzymes themselves. Detailed studies of the structures, sequence variation, and mutated proteins uncovered molecular struggles between these enzymes and their inhibitors, resulting in positive selection for variant residues at the contact surface, where single residues determine the outcome of the interaction.
Collapse
Affiliation(s)
- Johana C Misas-Villamil
- Plant Chemetics Laboratory, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829 Cologne, Germany
| | | |
Collapse
|
190
|
Bernoux M, Timmers T, Jauneau A, Brière C, de Wit PJGM, Marco Y, Deslandes L. RD19, an Arabidopsis cysteine protease required for RRS1-R-mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. THE PLANT CELL 2008; 20:2252-2264. [PMID: 18708476 DOI: 10.2307/25224327] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Bacterial wilt, a disease impacting cultivated crops worldwide, is caused by the pathogenic bacterium Ralstonia solanacearum. PopP2 (for Pseudomonas outer protein P2) is an R. solanacearum type III effector that belongs to the YopJ/AvrRxv protein family and interacts with the Arabidopsis thaliana RESISTANT TO RALSTONIA SOLANACEARUM 1-R (RRS1-R) resistance protein. RRS1-R contains the Toll/Interleukin1 receptor-nucleotide binding site-Leu-rich repeat domains found in several cytoplasmic R proteins and a C-terminal WRKY DNA binding domain. In this study, we identified the Arabidopsis Cys protease RESPONSIVE TO DEHYDRATION19 (RD19) as being a PopP2-interacting protein whose expression is induced during infection by R. solanacearum. An Arabidopsis rd19 mutant in an RRS1-R genetic background is compromised in resistance to the bacterium, indicating that RD19 is required for RRS1-R-mediated resistance. RD19 normally localizes in mobile vacuole-associated compartments and, upon coexpression with PopP2, is specifically relocalized to the plant nucleus, where the two proteins physically interact. No direct physical interaction between RRS1-R and RD19 in the presence of PopP2 was detected in the nucleus as determined by Förster resonance energy transfer. We propose that RD19 associates with PopP2 to form a nuclear complex that is required for activation of the RRS1-R-mediated resistance response.
Collapse
Affiliation(s)
- Maud Bernoux
- Laboratoire des Interactions Plantes Microorganismes, Unité Mixte de Recherche, Centre National de la Recherche Scientifique-Institut National de la Recherche Agronomique 2594/441, F-31320 Castanet-Tolosan, France
| | | | | | | | | | | | | |
Collapse
|
191
|
Beta-lactone probes identify a papain-like peptide ligase in Arabidopsis thaliana. Nat Chem Biol 2008; 4:557-63. [PMID: 18660805 DOI: 10.1038/nchembio.104] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/03/2008] [Indexed: 11/08/2022]
Abstract
New activity-based probes are essential for expanding studies on the hundreds of serine and cysteine proteases encoded by the genome of Arabidopsis thaliana. To monitor protease activities in plant extracts, we generated biotinylated peptides containing a beta-lactone reactive group. These probes cause strong labeling in leaf proteomes. Unexpectedly, labeling was detected at the N terminus of PsbP, nonproteolytic protein of photosystem II. Inhibitor studies and reverse genetics led to the discovery that this unusual modification is mediated by a single plant-specific, papain-like protease called RD21. In cellular extracts, RD21 accepts both beta-lactone probes and peptides as donor molecules and ligates them, probably through a thioester intermediate, to unmodified N termini of acceptor proteins.
Collapse
|
192
|
van Esse HP, Van't Klooster JW, Bolton MD, Yadeta KA, van Baarlen P, Boeren S, Vervoort J, de Wit PJGM, Thomma BPHJ. The Cladosporium fulvum virulence protein Avr2 inhibits host proteases required for basal defense. THE PLANT CELL 2008; 20:1948-63. [PMID: 18660430 PMCID: PMC2518240 DOI: 10.1105/tpc.108.059394] [Citation(s) in RCA: 180] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Revised: 06/30/2008] [Accepted: 07/08/2008] [Indexed: 05/18/2023]
Abstract
Cladosporium fulvum (syn. Passalora fulva) is a biotrophic fungal pathogen that causes leaf mold of tomato (Solanum lycopersicum). During growth in the apoplast, the fungus establishes disease by secreting effector proteins, 10 of which have been characterized. We have previously shown that the Avr2 effector interacts with the apoplastic tomato Cys protease Rcr3, which is required for Cf-2-mediated immunity. We now show that Avr2 is a genuine virulence factor of C. fulvum. Heterologous expression of Avr2 in Arabidopsis thaliana causes enhanced susceptibility toward extracellular fungal pathogens, including Botrytis cinerea and Verticillium dahliae, and microarray analysis showed that Avr2 expression triggers a global transcriptome reflecting pathogen challenge. Cys protease activity profiling showed that Avr2 inhibits multiple extracellular Arabidopsis Cys proteases. In tomato, Avr2 expression caused enhanced susceptibility toward Avr2-defective C. fulvum strains and also toward B. cinerea and V. dahliae. Cys protease activity profiling in tomato revealed that, in this plant also, Avr2 inhibits multiple extracellular Cys proteases, including Rcr3 and its close relative Pip1. Finally, silencing of Avr2 significantly compromised C. fulvum virulence on tomato. We conclude that Avr2 is a genuine virulence factor of C. fulvum that inhibits several Cys proteases required for plant basal defense.
Collapse
Affiliation(s)
- H Peter van Esse
- Laboratory of Phytopathology, Wageningen University, 6709 PD Wageningen, The Netherlands
| | | | | | | | | | | | | | | | | |
Collapse
|