151
|
Raya-González J, López-Bucio JS, Prado-Rodríguez JC, Ruiz-Herrera LF, Guevara-García ÁA, López-Bucio J. The MEDIATOR genes MED12 and MED13 control Arabidopsis root system configuration influencing sugar and auxin responses. PLANT MOLECULAR BIOLOGY 2017; 95:141-156. [PMID: 28780645 DOI: 10.1007/s11103-017-0647-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 07/27/2017] [Indexed: 05/23/2023]
Abstract
Arabidopsis med12 and med13 mutants exhibit shoot and root phenotypes related to an altered auxin homeostasis. Sucrose supplementation reactivates both cell division and elongation in primary roots as well as auxin-responsive and stem cell niche gene expression in these mutants. An analysis of primary root growth of WT, med12, aux1-7 and med12 aux1 single and double mutants in response to sucrose and/or N-1-naphthylphthalamic acid (NPA) placed MED12 upstream of auxin transport for the sugar modulation of root growth. The MEDIATOR (MED) complex plays diverse functions in plant development, hormone signaling and biotic and abiotic stress tolerance through coordination of transcription. Here, we performed genetic, developmental, molecular and pharmacological analyses to characterize the role of MED12 and MED13 on the configuration of root architecture and its relationship with auxin and sugar responses. Arabidopsis med12 and med13 single mutants exhibit shoot and root phenotypes consistent with altered auxin homeostasis including altered primary root growth, lateral root development, and root hair elongation. MED12 and MED13 were required for activation of cell division and elongation in primary roots, as well as auxin-responsive and stem cell niche gene expression. Remarkably, most of these mutant phenotypes were rescued by supplying sucrose to the growth medium. The growth response of primary roots of WT, med12, aux1-7 and med12 aux1 single and double mutants to sucrose and application of auxin transport inhibitor N-1-naphthylphthalamic acid (NPA) revealed the correlation of med12 phenotype with the activity of the auxin intake permease and suggests that MED12 acts upstream of AUX1 in the root growth response to sugar. These data provide compelling evidence that MEDIATOR links sugar sensing to auxin transport and distribution during root morphogenesis.
Collapse
Affiliation(s)
- Javier Raya-González
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | - José Carlos Prado-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | - León Francisco Ruiz-Herrera
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico
| | | | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, C. P. 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
152
|
Saeed W, Naseem S, Ali Z. Strigolactones Biosynthesis and Their Role in Abiotic Stress Resilience in Plants: A Critical Review. FRONTIERS IN PLANT SCIENCE 2017; 8:1487. [PMID: 28894457 PMCID: PMC5581504 DOI: 10.3389/fpls.2017.01487] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/10/2017] [Indexed: 05/03/2023]
Abstract
Strigolactones (SLs), being a new class of plant hormones, play regulatory roles against abiotic stresses in plants. There are multiple hormonal response pathways, which are adapted by the plants to overcome these stressful environmental constraints to reduce the negative impact on overall crop plant productivity. Genetic modulation of the SLs could also be applied as a potential approach in this regard. However, endogenous plant hormones play central roles in adaptation to changing environmental conditions, by mediating growth, development, nutrient allocation, and source/sink transitions. In addition, the hormonal interactions can fine-tune the plant response and determine plant architecture in response to environmental stimuli such as nutrient deprivation and canopy shade. Considerable advancements and new insights into SLs biosynthesis, signaling and transport has been unleashed since the initial discovery. In this review we present basic overview of SL biosynthesis and perception with a detailed discussion on our present understanding of SLs and their critical role to tolerate environmental constraints. The SLs and abscisic acid interplay during the abiotic stresses is particularly highlighted. Main Conclusion: More than shoot branching Strigolactones have uttermost capacity to harmonize stress resilience.
Collapse
Affiliation(s)
| | | | - Zahid Ali
- Department of Biosciences, COMSATS Institute of Information TechnologyIslamabad, Pakistan
| |
Collapse
|
153
|
Ham BK, Chen J, Yan Y, Lucas WJ. Insights into plant phosphate sensing and signaling. Curr Opin Biotechnol 2017; 49:1-9. [PMID: 28732264 DOI: 10.1016/j.copbio.2017.07.005] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 06/20/2017] [Accepted: 07/03/2017] [Indexed: 12/22/2022]
Abstract
Phosphorus (P) is a macronutrient essential for plant growth, therefore, soil P level is critical to crop yield potential in agriculture. As Pi levels limit crop yield under many soil conditions, it is crucial to understand the mechanisms by which plants adapt to low-phosphate (Pi) soil conditions and interact with their soil microbiome to improve crop P use efficiency, in order to ensure global food security. Recent advances have been made towards achieving this goal through advancing our understanding of the plant's response to limiting Pi conditions to maintain P homeostasis. In this review, we assess advances made in local and systemic Pi sensing and signaling, and in the molecular events for Pi absorption, redistribution and plant-symbiont interactions. These findings offer important avenues for bio-engineering of agricultural crops with traits for enhanced Pi acquisition and utilization.
Collapse
Affiliation(s)
- Byung-Kook Ham
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| | - Jieyu Chen
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - Yan Yan
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA
| | - William J Lucas
- Department of Plant Biology, College of Biological Sciences, University of California, Davis, CA 95616, USA.
| |
Collapse
|
154
|
Takato S, Kakei Y, Mitsui M, Ishida Y, Suzuki M, Yamazaki C, Hayashi KI, Ishii T, Nakamura A, Soeno K, Shimada Y. Auxin signaling through SCFTIR1/AFBs mediates feedback regulation of IAA biosynthesis. Biosci Biotechnol Biochem 2017; 81:1320-1326. [DOI: 10.1080/09168451.2017.1313694] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Abstract
We previously reported that exogenous application of auxin to Arabidopsis seedlings resulted in downregulation of indole-3-acetic acid (IAA) biosynthesis genes in a feedback manner. In this study, we investigated the involvement of the SCFTIR1/AFB-mediated signaling pathway in feedback regulation of the indole-3-pyruvic acid-mediated auxin biosynthesis pathway in Arabidopsis. Application of PEO-IAA, an inhibitor of the IAA signal transduction pathway, to wild-type seedlings resulted in increased endogenous IAA levels in roots. Endogenous IAA levels in the auxin-signaling mutants axr2-1, axr3-3, and tir1-1afb1-1afb2-1afb3-1 also increased. Furthermore, YUCCA (YUC) gene expression was repressed in response to auxin treatment, and expression of YUC7 and YUC8 increased in response to PEO-IAA treatment. YUC genes were also induced in auxin-signaling mutants but repressed in TIR1-overexpression lines. These observations suggest that the endogenous IAA levels are regulated by auxin biosynthesis in a feedback manner, and the Aux/IAA and SCFTIR1/AFB-mediated auxin-signaling pathway regulates the expression of YUC genes.
Collapse
Affiliation(s)
- Shin Takato
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Yusuke Kakei
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Marie Mitsui
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- RIKEN CSRS, Yokohama, Japan
| | - Yosuke Ishida
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Masashi Suzuki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Chiaki Yamazaki
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Ken-ichiro Hayashi
- Department of Biochemistry, Okayama University of Science, Okayama, Japan
| | | | - Ayako Nakamura
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | | | - Yukihisa Shimada
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- RIKEN CSRS, Yokohama, Japan
| |
Collapse
|
155
|
Gu M, Zhang J, Li H, Meng D, Li R, Dai X, Wang S, Liu W, Qu H, xu G. Maintenance of phosphate homeostasis and root development are coordinately regulated by MYB1, an R2R3-type MYB transcription factor in rice. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:3603-3615. [PMID: 28549191 PMCID: PMC5853628 DOI: 10.1093/jxb/erx174] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/02/2017] [Indexed: 05/19/2023]
Abstract
The adaptive responses of plants to phosphate (Pi) starvation stress are fine-tuned by an elaborate regulatory network. In this study, we identified and characterized a novel Pi starvation-responsive gene, MYB1, encoding an R2R3-type transcription factor in rice. MYB1 was transcriptionally induced in leaf sheaths and old leaf blades. It was localized to the nucleus and expressed mainly in vascular tissues. Mutation of MYB1 led to an increase in Pi uptake and accumulation, accompanied by altered expression of a subset of Pi transporters and several genes involved in Pi starvation signaling. Furthermore, MYB1 affected the elongation of the primary root in a Pi-dependent manner and lateral roots in a Pi-independent manner. Moreover, gibberellic acid (GA)-triggered lateral root elongation was largely suppressed in wild-type plants under Pi starvation conditions, whereas this suppression was partially rescued in myb1 mutant lines, correlating with the up-regulation of a GA biosynthetic gene upon MYB1 mutation. Taken together, the findings of this study highlight the role of MYB1 as a regulator involved in both Pi starvation signaling and GA biosynthesis. Such a co-regulator might have broad implications for the study of cross-talk between nutrient stress and other signaling pathways.
Collapse
Affiliation(s)
- Mian Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Jun Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Huanhuan Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Daqian Meng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Ran Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Xiaoli Dai
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Shichao Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Wei Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
| | - Hongye Qu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
| | - Guohua xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, China
- MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing, China
- Correspondence:
| |
Collapse
|
156
|
Xie Z, He Y, Tu S, Xu C, Liu G, Wang H, Cao W, Liu H. Chinese Milk Vetch Improves Plant Growth, Development and 15N Recovery in the Rice-Based Rotation System of South China. Sci Rep 2017; 7:3577. [PMID: 28620216 PMCID: PMC5472609 DOI: 10.1038/s41598-017-03919-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 05/17/2017] [Indexed: 11/16/2022] Open
Abstract
Chinese milk vetch (CMV) is vital for agriculture and environment in China. A pot experiment combined with 15N labeling (including three treatments: control, no fertilizer N and CMV; 15N-labeled urea alone, 15NU; substituting partial 15NU with CMV, 15NU-M) was conducted to evaluate the impact of CMV on plant growth, development and 15NU recovery in rice-based rotation system. The 15NU-M mitigated oxidative damage by increasing antioxidant enzymes activities and chlorophyll content while decreased malondialdehyde content in rice root and shoot, increased the biomass, total N and 15N uptake of plant shoots by 8%, 12% and 39% respectively, thus inducing a noticeable increase of annual 15N recovery by 77% versus 15NU alone. Remarkable increases in soil NH4+ and populations of bacteria, actinomycetes and azotobacter were obtained in legume-rice rotation system while an adverse result was observed in soil NO3− content versus fallow-rice. CMV as green manure significantly increased the fungal population which was decreased with cultivating CMV as cover crop. Therefore, including legume cover crop in rice-based rotation system improves plant growth and development, annual N conservation and recovery probably by altering soil nitrogen forms plus ameliorating soil microbial communities and antioxidant system which alleviates oxidative damages in plants.
Collapse
Affiliation(s)
- Zhijian Xie
- Institute of Soil & Fertilizer and Resources & Environment, National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, P.R. China. .,College of Resource and Environment, Microelements Research Center, Huazhong Agricultural University, Wuhan, 430070, P.R. China. .,School of Economics and Management, Key Laboratory of Agricultural Resources and Ecology in Poyang Lake Basin of Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, P.R. China.
| | - Yaqin He
- College of Resource and Environment, Microelements Research Center, Huazhong Agricultural University, Wuhan, 430070, P.R. China. .,School of Economics and Management, Key Laboratory of Agricultural Resources and Ecology in Poyang Lake Basin of Jiangxi Province, Jiangxi Agricultural University, Nanchang, 330045, P.R. China.
| | - Shuxin Tu
- College of Resource and Environment, Microelements Research Center, Huazhong Agricultural University, Wuhan, 430070, P.R. China
| | - Changxu Xu
- Institute of Soil & Fertilizer and Resources & Environment, National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, P.R. China.
| | - Guangrong Liu
- Institute of Soil & Fertilizer and Resources & Environment, National Engineering and Technology Research Center for Red Soil Improvement, Jiangxi Academy of Agricultural Sciences, Nanchang, 330200, P.R. China
| | - Huimin Wang
- Jiangxi Monitoring Station of Agricultural Environment, Nanchang, 330001, P.R. China
| | - Weidong Cao
- Institute of Agricultural Resources and Regional Planning, CAAS, Beijing, 100081, P.R. China
| | - Hui Liu
- Jiangxi Monitoring Station of Agricultural Environment, Nanchang, 330001, P.R. China
| |
Collapse
|
157
|
Abstract
Strigolactones are a structurally diverse class of plant hormones that control many aspects of shoot and root growth. Strigolactones are also exuded by plants into the rhizosphere, where they promote symbiotic interactions with arbuscular mycorrhizal fungi and germination of root parasitic plants in the Orobanchaceae family. Therefore, understanding how strigolactones are made, transported, and perceived may lead to agricultural innovations as well as a deeper knowledge of how plants function. Substantial progress has been made in these areas over the past decade. In this review, we focus on the molecular mechanisms, core developmental roles, and evolutionary history of strigolactone signaling. We also propose potential translational applications of strigolactone research to agriculture.
Collapse
Affiliation(s)
- Mark T Waters
- School of Molecular Sciences and Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, Perth 6009, Australia;
| | - Caroline Gutjahr
- Genetics, Faculty of Biology, LMU Munich, 82152 Martinsried, Germany;
| | - Tom Bennett
- School of Biology, University of Leeds, Leeds LS2 9JT, United Kingdom;
| | - David C Nelson
- Department of Botany and Plant Sciences, University of California, Riverside, California 92521;
| |
Collapse
|
158
|
Wang J, Pei L, Jin Z, Zhang K, Zhang J. Overexpression of the protein phosphatase 2A regulatory subunit a gene ZmPP2AA1 improves low phosphate tolerance by remodeling the root system architecture of maize. PLoS One 2017; 12:e0176538. [PMID: 28448624 PMCID: PMC5407761 DOI: 10.1371/journal.pone.0176538] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 04/12/2017] [Indexed: 11/21/2022] Open
Abstract
Phosphate (Pi) limitation is a constraint for plant growth and development in many natural and agricultural ecosystems. In this study, a gene encoding Zea mays L. protein phosphatase 2A regulatory subunit A, designated ZmPP2AA1, was induced in roots by low Pi availability. The function of the ZmPP2AA1 gene in maize was analyzed using overexpression and RNA interference. ZmPP2AA1 modulated root gravitropism, negatively regulated primary root (PR) growth, and stimulated the development of lateral roots (LRs). A detailed characterization of the root system architecture (RSA) in response to different Pi concentrations with or without indole-3-acetic acid and 1-N-naphthylphthalamic acid revealed that auxin was involved in the RSA response to low Pi availability. Overexpression of ZmPP2AA1 enhanced tolerance to Pi starvation in transgenic maize in hydroponic and soil pot experiments. An increased dry weight (DW), root-to-shoot ratio, and total P content and concentration, along with a delayed and reduced accumulation of anthocyanin in overexpressing transgenic maize plants coincided with their highly branched root system and increased Pi uptake capability under low Pi conditions. Inflorescence development of the ZmPP2AA1 overexpressing line was less affected by low Pi stress, resulting in higher grain yield per plant under Pi deprivation. These data reveal the biological function of ZmPP2AA1, provide insights into a linkage between auxin and low Pi responses, and drive new strategies for the efficient utilization of Pi by maize.
Collapse
Affiliation(s)
- Jiemin Wang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Laming Pei
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
- Department of Biotechnology, School of Biological Science and Technology, University of Jinan, Jinan, China
| | - Zhe Jin
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Kewei Zhang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| | - Juren Zhang
- School of Life Sciences, Shandong University, Ministry of Education Key Laboratory of Plant Cell Engineering and Germplasm Enhancement, Jinan, China
| |
Collapse
|
159
|
Scheres B, van der Putten WH. The plant perceptron connects environment to development. Nature 2017; 543:337-345. [DOI: 10.1038/nature22010] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 01/10/2017] [Indexed: 12/23/2022]
|
160
|
Roychoudhry S, Kieffer M, Del Bianco M, Liao CY, Weijers D, Kepinski S. The developmental and environmental regulation of gravitropic setpoint angle in Arabidopsis and bean. Sci Rep 2017; 7:42664. [PMID: 28256503 PMCID: PMC5335621 DOI: 10.1038/srep42664] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Accepted: 01/13/2017] [Indexed: 11/30/2022] Open
Abstract
Root and shoot branches are major determinants of plant form and critical for the effective capture of resources below and above ground. These branches are often maintained at specific angles with respect to gravity, known as gravitropic set point angles (GSAs). We have previously shown that the mechanism permitting the maintenance of non-vertical GSAs is highly auxin-dependent and here we investigate the developmental and environmental regulation of root and shoot branch GSA. We show that nitrogen and phosphorous deficiency have opposing, auxin signalling-dependent effects on lateral root GSA in Arabidopsis: while low nitrate induces less vertical lateral root GSA, phosphate deficiency results in a more vertical lateral root growth angle, a finding that contrasts with the previously reported growth angle response of bean adventitious roots. We find that this root-class-specific discrepancy in GSA response to low phosphorus is mirrored by similar differences in growth angle response to auxin treatment between these root types. Finally we show that both shaded, low red/far-red light conditions and high temperature induce more vertical growth in Arabidopsis shoot branches. We discuss the significance of these findings in the context of efforts to improve crop performance via the manipulation of root and shoot branch growth angle.
Collapse
Affiliation(s)
| | - Martin Kieffer
- Centre for Plant Sciences, University of Leeds, Leeds, UK
| | | | - Che-Yang Liao
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, Wageningen, The Netherlands
| | | |
Collapse
|
161
|
Tang LP, Zhou C, Wang SS, Yuan J, Zhang XS, Su YH. FUSCA3 interacting with LEAFY COTYLEDON2 controls lateral root formation through regulating YUCCA4 gene expression in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2017; 213:1740-1754. [PMID: 27878992 DOI: 10.1111/nph.14313] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 09/27/2016] [Indexed: 06/06/2023]
Abstract
Lateral root (LR) development is a post-embryonic organogenesis event that gives rise to most of the underground parts of higher plants. Auxin promotes LR formation, but the molecular mechanisms involved in this process are still not well understood. We analyzed LR formation induced by FUSCA3 (FUS3), a B3 domain transcription factor, which may function by promoting auxin biosynthesis during this process. We identified FUS3-interacting proteins that function in LR formation. In addition, we searched for the common targets of both FUS3 and its interacting protein. The role of their interactions in regulating auxin accumulation and LR initiation was examined. We identified LEAFY COTYLEDON2 (LEC2) as an interacting factor of FUS3, and demonstrated that these two homologous B3 transcription factors interact to bind to the auxin biosynthesis gene YUCCA4 (YUC4) and synergistically activate its transcription during LR formation. Furthermore, FUS3 expression is activated by LEC2 in LR initiation. The observations indicate that the FUS3-LEC2 complex functions as a key regulator in auxin-regulated LR formation. The results of this study provide new information for understanding the mechanisms of LR regulation.
Collapse
Affiliation(s)
- Li Ping Tang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Chao Zhou
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Shan Shan Wang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Jia Yuan
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Xian Sheng Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| | - Ying Hua Su
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Taian, Shandong, 271018, China
| |
Collapse
|
162
|
Laskowski M, Ten Tusscher KH. Periodic Lateral Root Priming: What Makes It Tick? THE PLANT CELL 2017; 29:432-444. [PMID: 28223442 PMCID: PMC5385950 DOI: 10.1105/tpc.16.00638] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 02/17/2017] [Accepted: 02/18/2017] [Indexed: 05/02/2023]
Abstract
Conditioning small groups of root pericycle cells for future lateral root formation has a major impact on overall plant root architecture. This priming of lateral roots occurs rhythmically, involving temporal oscillations in auxin response in the root tip. During growth, this process generates a spatial pattern of prebranch sites, an early stage in lateral root formation characterized by a stably maintained high auxin response. To date, the molecular mechanism behind this rhythmicity has remained elusive. Some data implicate a cell-autonomous oscillation in gene expression, while others strongly support the importance of tissue-level modulations in auxin fluxes. Here, we summarize the experimental data on periodic lateral root priming. We present a theoretical framework that distinguishes between a priming signal and its subsequent memorization and show how major roles for auxin fluxes and gene expression naturally emerge from this framework. We then discuss three mechanisms that could potentially induce oscillations of auxin response: cell-autonomous oscillations, Turing-type patterning, and tissue-level oscillations in auxin fluxes, along with specific properties of lateral root priming that may be used to discern which type of mechanism is most likely to drive lateral root patterning. We conclude with suggestions for future experiments and modeling studies.
Collapse
Affiliation(s)
| | - Kirsten H Ten Tusscher
- Theoretical Biology Group, Faculty of Science, Utrecht University, 3584CH Utrecht, The Netherlands
| |
Collapse
|
163
|
Root branching plasticity: collective decision-making results from local and global signalling. Curr Opin Cell Biol 2017; 44:51-58. [DOI: 10.1016/j.ceb.2017.03.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 03/01/2017] [Accepted: 03/02/2017] [Indexed: 11/30/2022]
|
164
|
Regulation of Plant Cellular and Organismal Development by SUMO. SUMO REGULATION OF CELLULAR PROCESSES 2017; 963:227-247. [DOI: 10.1007/978-3-319-50044-7_14] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
165
|
Liu J, Ming Y, Cheng Y, Zhang Y, Xing J, Sun Y. Comparative Transcriptome Analysis Reveal Candidate Genes Potentially Involved in Regulation of Primocane Apex Rooting in Raspberry ( Rubus spp.). FRONTIERS IN PLANT SCIENCE 2017; 8:1036. [PMID: 28659963 PMCID: PMC5469044 DOI: 10.3389/fpls.2017.01036] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/30/2017] [Indexed: 05/11/2023]
Abstract
Raspberries (Rubus spp.) exhibit a unique rooting process that is initiated from the stem apex of primocane, conferring an unusual asexual mode of reproduction to this plant. However, the full complement of genes involved in this process has not been identified. To this end, the present study analyzed the transcriptomes of the Rubus primocane and floricane stem apex at three developmental stages by Digital Gene Expression profiling to identify genes that regulate rooting. Sequencing and de novo assembly yielded 26.82 Gb of nucleotides and 59,173 unigenes; 498, 7,346, 4,110, 7,900, 9,397, and 4,776 differently expressed genes were identified in paired comparisons of SAF1 (floricane at developmental stage 1) vs. SAP1 (primocane at developmental stage 1), SAF2 vs. SAP2, SAF3 vs. SAP3, SAP1 vs. SAP2, SAP1 vs. SAP3, and SAP2 vs. SAP3, respectively. SAP1 maintains an extension growth pattern; SAP2 then exhibits growth arrest and vertical (downward) gravitropic deflection; and finally, short roots begin to form on the apex of SAP3. The Kyoto Encyclopedia of Genes and Genomes enrichment analysis of SAP1 vs. SAP2 revealed 12 pathways that were activated in response to shoot growth arrest and root differentiation, including circadian rhythm-plant (ko04712) and plant hormone signal transduction (ko04075). Our results indicate that genes related to circadian rhythm, ethylene and auxin signaling, shoot growth, and root development are potentially involved in the regulation of primocane apex rooting in Rubus. These findings provide a basis for elucidating the molecular mechanisms of primocane apex rooting in this economically valuable crop.
Collapse
|
166
|
Root transcriptome of two contrasting indica rice cultivars uncovers regulators of root development and physiological responses. Sci Rep 2016; 6:39266. [PMID: 28000793 PMCID: PMC5175279 DOI: 10.1038/srep39266] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 11/21/2016] [Indexed: 12/12/2022] Open
Abstract
The huge variation in root system architecture (RSA) among different rice (Oryza sativa) cultivars is conferred by their genetic makeup and different growth or climatic conditions. Unlike model plant Arabidopsis, the molecular basis of such variation in RSA is very poorly understood in rice. Cultivars with stable variation are valuable resources for identification of genes involved in RSA and related physiological traits. We have screened for RSA and identified two such indica rice cultivars, IR-64 (OsAS83) and IET-16348 (OsAS84), with stable contrasting RSA. OsAS84 produces robust RSA with more crown roots, lateral roots and root hairs than OsAS83. Using comparative root transcriptome analysis of these cultivars, we identified genes related to root development and different physiological responses like abiotic stress responses, hormone signaling, and nutrient acquisition or transport. The two cultivars differ in their response to salinity/dehydration stresses, phosphate/nitrogen deficiency, and different phytohormones. Differential expression of genes involved in salinity or dehydration response, nitrogen (N) transport, phosphate (Pi) starvation signaling, hormone signaling and root development underlies more resistance of OsAS84 towards abiotic stresses, Pi or N deficiency and its robust RSA. Thus our study uncovers gene-network involved in root development and abiotic stress responses in rice.
Collapse
|
167
|
Roldan M, Islam A, Dinh PTY, Leung S, McManus MT. Phosphate availability regulates ethylene biosynthesis gene expression and protein accumulation in white clover (Trifolium repens L.) roots. Biosci Rep 2016; 36:e00411. [PMID: 27737923 PMCID: PMC5293567 DOI: 10.1042/bsr20160148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 10/11/2016] [Accepted: 10/13/2016] [Indexed: 01/23/2023] Open
Abstract
The expression and accumulation of members of the 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS) and ACC oxidase (ACO) gene families was examined in white clover roots grown in either Pi (phosphate) sufficient or Pi-deprived defined media. The accumulation of one ACO isoform, TR-ACO1, was positively influenced after only 1 h of exposure to low Pi, and this was maintained over a 7-day time-course. Up-regulation of TR-ACS1, TR-ACS2 and TR-ACS3 transcript abundance was also observed within 1 h of exposure to low Pi in different tissue regions of the roots, followed by a second increase in abundance of TR-ACS2 after 5-7 days of exposure. An increase in transcript abundance of TR-ACO1 and TR-ACO3, but not TR-ACO2, was observed after 1 h of exposure to low Pi, with a second increase in TR-ACO1 transcripts occurring after 2-5 days. These initial increases of the TR-ACS and TR-ACO transcript abundance occurred before the induction of Trifolium repens PHOSPHATE TRANSPORTER 1 (TR-PT1), and the addition of sodium phosphite did not up-regulate TR-ACS1 expression over 24 h. In situ hybridization revealed some overlap of TR-ACO mRNA accumulation, with TR-ACO1 and TR-ACO2 in the root tip regions, and TR-ACO1 and TR-ACO3 mRNA predominantly in the lateral root primordia. TR-ACO1p-driven GFP expression showed that activation of the TR-ACO1 promoter was initiated within 24 h of exposure to low Pi (as determined by GFP protein accumulation). These results suggest that the regulation of ethylene biosynthesis in white clover roots is biphasic in response to low Pi supply.
Collapse
Affiliation(s)
- Marissa Roldan
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Afsana Islam
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Phuong T Y Dinh
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Susanna Leung
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| | - Michael T McManus
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North 4474, New Zealand
| |
Collapse
|
168
|
Nambo M, Kurihara D, Yamada T, Nishiwaki-Ohkawa T, Kadofusa N, Kimata Y, Kuwata K, Umeda M, Ueda M. Combination of Synthetic Chemistry and Live-Cell Imaging Identified a Rapid Cell Division Inhibitor in Tobacco and Arabidopsis thaliana. PLANT & CELL PHYSIOLOGY 2016; 57:2255-2268. [PMID: 27519314 DOI: 10.1093/pcp/pcw140] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 08/02/2016] [Indexed: 05/06/2023]
Abstract
Cell proliferation is crucial to the growth of multicellular organisms, and thus the proper control of cell division is important to prevent developmental arrest or overgrowth. Nevertheless, tools for controlling cell proliferation are still poor in plant. To develop novel tools, we focused on a specific compound family, triarylmethanes, whose members show various antiproliferative activities in animals. By combining organic chemistry to create novel and diverse compounds containing the triarylmethyl moiety and biological screens based on live-cell imaging of a fluorescently labeled tobacco Bright Yellow-2 (BY-2) culture cell line (Nicotiana tabacum), we isolated (3-furyl)diphenylmethane as a strong but partially reversible inhibitor of plant cell division. We also found that this agent had efficient antiproliferative activity in developing organs of Arabidopsis thaliana without causing secondary defects in cell morphology, and induced rapid cell division arrest independent of the cell cycle stage. Given that (3-furyl)diphenylmethane did not affect the growth of a human cell line (HeLa) and a budding yeast (Saccharomyces cerevisiae), it should act specifically on plants. Taking our results together, we propose that the combination of desired chemical synthesis and detailed biological analysis is an effective tool to create novel drugs, and that (3-furyl)diphenylmethane is a specific antiproliferative agent for plants.
Collapse
Affiliation(s)
- Masakazu Nambo
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
- These authors contributed equally to this work
| | - Daisuke Kurihara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
- JST, ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Tomomi Yamada
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Taeko Nishiwaki-Ohkawa
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
- Laboratory of Animal Physiology, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Naoya Kadofusa
- Laboratory of Animal Physiology, Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Yusuke Kimata
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
| | - Masaaki Umeda
- Laboratory of Plant Growth Regulation, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Takayama-cho 8916-5, Ikoma, Nara, 630-0192 Japan
- JST, CREST, Takayama-cho 8916-5, Ikoma, Nara, 630-0192 Japan
| | - Minako Ueda
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601 Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8602 Japan
- These authors contributed equally to this work
| |
Collapse
|
169
|
Kameoka H, Dun EA, Lopez-Obando M, Brewer PB, de Saint Germain A, Rameau C, Beveridge CA, Kyozuka J. Phloem Transport of the Receptor DWARF14 Protein Is Required for Full Function of Strigolactones. PLANT PHYSIOLOGY 2016; 172:1844-1852. [PMID: 27670819 PMCID: PMC5100793 DOI: 10.1104/pp.16.01212] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Accepted: 09/24/2016] [Indexed: 05/06/2023]
Abstract
The cell-to-cell transport of signaling molecules is essential for multicellular organisms to coordinate the action of their cells. Recent studies identified DWARF14 (D14) as a receptor of strigolactones (SLs), molecules that act as plant hormones and inhibit shoot branching. Here, we demonstrate that RAMOSUS3, a pea ortholog of D14, works as a graft-transmissible signal to suppress shoot branching. In addition, we show that D14 protein is contained in phloem sap and transported through the phloem to axillary buds in rice. SLs are not required for the transport of D14 protein. Disruption of D14 transport weakens the suppression of axillary bud outgrowth of rice. Taken together, we conclude that the D14 protein works as an intercellular signaling molecule to fine-tune SL function. Our findings provide evidence that the intercellular transport of a receptor can regulate the action of plant hormones.
Collapse
Affiliation(s)
- Hiromu Kameoka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Elizabeth A Dun
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Mauricio Lopez-Obando
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Philip B Brewer
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Alexandre de Saint Germain
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Catherine Rameau
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Christine A Beveridge
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| | - Junko Kyozuka
- Department of Agricultural and Environmental Biology, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan (H.K., J.K.)
- School of Biological Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia (E.A.D., P.B.B., C.A.B.)
- Institut Jean-Pierre Bourgin, INRA, AgroParisTech, CNRS, Université Paris-Saclay, RD10, 78026 Versailles Cedex, France (M.L.-O., A.d.S.G., C.R.)
| |
Collapse
|
170
|
Kawa D, Julkowska MM, Sommerfeld HM, Ter Horst A, Haring MA, Testerink C. Phosphate-Dependent Root System Architecture Responses to Salt Stress. PLANT PHYSIOLOGY 2016; 172:690-706. [PMID: 27208277 PMCID: PMC5047085 DOI: 10.1104/pp.16.00712] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 05/17/2016] [Indexed: 05/19/2023]
Abstract
Nutrient availability and salinity of the soil affect the growth and development of plant roots. Here, we describe how inorganic phosphate (Pi) availability affects the root system architecture (RSA) of Arabidopsis (Arabidopsis thaliana) and how Pi levels modulate responses of the root to salt stress. Pi starvation reduced main root length and increased the number of lateral roots of Arabidopsis Columbia-0 seedlings. In combination with salt, low Pi dampened the inhibiting effect of mild salt stress (75 mm) on all measured RSA components. At higher salt concentrations, the Pi deprivation response prevailed over the salt stress only for lateral root elongation. The Pi deprivation response of lateral roots appeared to be oppositely affected by abscisic acid signaling compared with the salt stress response. Natural variation in the response to the combination treatment of salt and Pi starvation within 330 Arabidopsis accessions could be grouped into four response patterns. When exposed to double stress, in general, lateral roots prioritized responses to salt, while the effect on main root traits was additive. Interestingly, these patterns were not identical for all accessions studied, and multiple strategies to integrate the signals from Pi deprivation and salinity were identified. By genome-wide association mapping, 12 genomic loci were identified as putative factors integrating responses to salt stress and Pi starvation. From our experiments, we conclude that Pi starvation interferes with salt responses mainly at the level of lateral roots and that large natural variation exists in the available genetic repertoire of accessions to handle the combination of stresses.
Collapse
Affiliation(s)
- Dorota Kawa
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| | - Magdalena M Julkowska
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| | - Hector Montero Sommerfeld
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| | - Anneliek Ter Horst
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| | - Michel A Haring
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| | - Christa Testerink
- University of Amsterdam, Swammerdam Institute for Life Sciences, Plant Cell Biology (D.K., M.M.J., H.M.S., A.t.H., C.T.) and Plant Physiology (M.A.H.), 1098GE Amsterdam, The Netherlands
| |
Collapse
|
171
|
Koevoets IT, Venema JH, Elzenga JTM, Testerink C. Roots Withstanding their Environment: Exploiting Root System Architecture Responses to Abiotic Stress to Improve Crop Tolerance. FRONTIERS IN PLANT SCIENCE 2016; 7:1335. [PMID: 27630659 PMCID: PMC5005332 DOI: 10.3389/fpls.2016.01335] [Citation(s) in RCA: 227] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 08/18/2016] [Indexed: 05/18/2023]
Abstract
To face future challenges in crop production dictated by global climate changes, breeders and plant researchers collaborate to develop productive crops that are able to withstand a wide range of biotic and abiotic stresses. However, crop selection is often focused on shoot performance alone, as observation of root properties is more complex and asks for artificial and extensive phenotyping platforms. In addition, most root research focuses on development, while a direct link to the functionality of plasticity in root development for tolerance is often lacking. In this paper we review the currently known root system architecture (RSA) responses in Arabidopsis and a number of crop species to a range of abiotic stresses, including nutrient limitation, drought, salinity, flooding, and extreme temperatures. For each of these stresses, the key molecular and cellular mechanisms underlying the RSA response are highlighted. To explore the relevance for crop selection, we especially review and discuss studies linking root architectural responses to stress tolerance. This will provide a first step toward understanding the relevance of adaptive root development for a plant's response to its environment. We suggest that functional evidence on the role of root plasticity will support breeders in their efforts to include root properties in their current selection pipeline for abiotic stress tolerance, aimed to improve the robustness of crops.
Collapse
Affiliation(s)
- Iko T. Koevoets
- Swammerdam Institute for Life Sciences, Plant Cell Biology, University of AmsterdamAmsterdam, Netherlands
| | - Jan Henk Venema
- Genomics Research in Ecology and Evolution in Nature – Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - J. Theo. M. Elzenga
- Genomics Research in Ecology and Evolution in Nature – Plant Physiology, Groningen Institute for Evolutionary Life Sciences, University of GroningenGroningen, Netherlands
| | - Christa Testerink
- Swammerdam Institute for Life Sciences, Plant Cell Biology, University of AmsterdamAmsterdam, Netherlands
| |
Collapse
|
172
|
Bouain N, Doumas P, Rouached H. Recent Advances in Understanding the Molecular Mechanisms Regulating the Root System Response to Phosphate Deficiency in Arabidopsis. Curr Genomics 2016; 17:308-4. [PMID: 27499680 PMCID: PMC4955032 DOI: 10.2174/1389202917666160331201812] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 06/21/2015] [Accepted: 06/26/2015] [Indexed: 11/22/2022] Open
Abstract
Phosphorus (P) is an essential macronutrient for plant growth and development. Inorganic phosphate (Pi) is the major form of P taken up from the soil by plant roots. It is well established that under Pi deficiency condition, plant roots undergo striking morphological changes; mainly a reduction in primary root length while increase in lateral root length as well as root hair length and density. This typical phenotypic change reflects complex interactions with other nutrients such as iron, and involves the activity of a large spectrum of plant hormones. Although, several key proteins involved in the regulation of root growth under Pi-deficiency have been identified in Arabidopsis, how plants adapt roots system architecture in response to Pi availability remains an open question. In the current post-genomic era, state of the art technologies like high-throughput phenotyping and sequencing platforms,"omics" methods, together with the widespread use of system biology and genome-wide association studies will help to elucidate the genetic architectures of root growth on different Pi regimes. It is clear that the large-scale characterization of molecular systems will improve our understanding of nutrient stress phenotype and biology. Herein, we summarize the recent advances and future directions towards a better understanding of Arabidopsis root developmental programs functional under Pi deficiency. Such a progress is necessary to devise strategies to improve the Pi use efficiency in plants that is an important issue for agriculture.
Collapse
Affiliation(s)
- Nadia Bouain
- INRA, UMR Biochimie et Physiologie Moléculaire des Plantes, Campus INRA/SupAgro, 2 place Viala, 34060 Montpellier cedex 2,France
| | - Patrick Doumas
- INRA, UMR Biochimie et Physiologie Moléculaire des Plantes, Campus INRA/SupAgro, 2 place Viala, 34060 Montpellier cedex 2,France
| | - Hatem Rouached
- INRA, UMR Biochimie et Physiologie Moléculaire des Plantes, Campus INRA/SupAgro, 2 place Viala, 34060 Montpellier cedex 2,France
| |
Collapse
|
173
|
Hasan MM, Hasan MM, Teixeira da Silva JA, Li X. Regulation of phosphorus uptake and utilization: transitioning from current knowledge to practical strategies. Cell Mol Biol Lett 2016; 21:7. [PMID: 28536610 PMCID: PMC5415736 DOI: 10.1186/s11658-016-0008-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 11/04/2015] [Indexed: 11/18/2022] Open
Abstract
Phosphorus is a poorly bioavailable macronutrient that is essential for crop growth and yield. Overuse of phosphorus fertilizers results in low phosphorus use efficiency (PUE), has serious environmental consequences and accelerates the depletion of phosphorus mineral reserves. It has become extremely challenging to improve PUE while preserving global food supplies and maintaining environmental sustainability. Molecular and genetic analyses have revealed the primary mechanisms of phosphorus uptake and utilization and their relationships to phosphorus transporters, regulators, root architecture, metabolic adaptations, quantitative trait loci, hormonal signaling and microRNA. The ability to improve PUE requires a transition from this knowledge of molecular mechanisms and plant architecture to practical strategies. These could include: i) the use of arbuscular mycorrhizal fungal symbioses for efficient phosphorus mining and uptake; ii) intercropping with suitable crop species to achieve phosphorus activation and mobilization in the soil; and iii) tissue-specific overexpression of homologous genes with advantageous agronomic properties for higher PUE along with breeding for phosphorus-efficient varieties and introgression of key quantitative trait loci. More effort is required to further dissect the mechanisms controlling phosphorus uptake and utilization within plants and provide new insight into the means to efficiently improve PUE.
Collapse
Affiliation(s)
- Md. Mahmudul Hasan
- The Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193 China
| | - Md. Mainul Hasan
- Faculty of Agriculture, Patuakhali Science and Technology University, Dumki, Patuakhali Bangladesh
| | | | - Xuexian Li
- The Key Laboratory of Plant-Soil Interactions, MOE, Center for Resources, Environment and Food Security, Department of Plant Nutrition, China Agricultural University, Beijing, 100193 China
| |
Collapse
|
174
|
Wu F, Liu Z, Xu J, Gao S, Lin H, Liu L, Liu Y, Lu Y. Molecular Evolution and Association of Natural Variation in ZmARF31 with Low Phosphorus Tolerance in Maize. FRONTIERS IN PLANT SCIENCE 2016; 7:1076. [PMID: 27493655 PMCID: PMC4955381 DOI: 10.3389/fpls.2016.01076] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 07/08/2016] [Indexed: 05/30/2023]
Abstract
Low-phosphorus (P) stress is one of the major factors constraining plant growth and yield. Improving plant tolerance to P starvation through molecular breeding is an efficient alternative to increase grain production. In the study, 331 diverse maize inbreds were used to detect nucleotide diversity and favorable alleles of ZmARF31, which plays a key role in low P responses and root architecture regulation. Significant phenotypic variation was found in each of 11 tested traits under both P and no-P treatments, and 30 single nucleotide polymorphisms (SNPs) and 14 insertion-deletions (InDels) were detected in ZmARF31 among the 331 maize inbreds. The 5'-untranslated region (UTR) of ZmARF31 showed a small linkage disequilibrium (LD) block under significant purifying selection, whereas the 3'-UTR showed the most abundant diversity and a larger LD block. Thirty, fourteen, and nine natural variations were identified in ZmARF31 that were associated with P-deficiency-tolerance traits (P ≤ 0.01) by using the general linear model (GLM), GLM incorporated with population structure, and mixed linear model, respectively. Four SNPs were significantly associated with the total dry weight (TDW) in the three models, of which SNPs S410 and S462 were located in a complete LD block. A further verification conducted in a recombinant inbred line population revealed that favorable allele G/G of non-synonymous mutation S410 and favorable allele with a 38 bp insertion of InDel S1442 exhibited positive genetic effects on the TDW and total root tips, respectively. Expression analysis further confirmed that ZmARF31 was highly expressed in the roots of low-P-tolerant inbred 178. The protein encoded by ZmARF31 was located both in the nucleus and cytoplasm. Haplotypes carrying more favorable alleles showed a greater effect on phenotypic variation than single loci. Such haplotypes should be helpful to develop valuable genetic markers and perform maize molecular breeding.
Collapse
Affiliation(s)
- Fengkai Wu
- Maize Research Institute, Sichuan Agricultural University, WenjiangChina
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, WenjiangChina
| | - Zuoming Liu
- Maize Research Institute, Sichuan Agricultural University, WenjiangChina
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, WenjiangChina
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, WenjiangChina
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, WenjiangChina
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, WenjiangChina
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, WenjiangChina
| | - Haijian Lin
- Maize Research Institute, Sichuan Agricultural University, WenjiangChina
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, WenjiangChina
| | - Ling Liu
- Maize Research Institute, Sichuan Agricultural University, WenjiangChina
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, WenjiangChina
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, WenjiangChina
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, WenjiangChina
- Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, WenjiangChina
| |
Collapse
|
175
|
Sun H, Bi Y, Tao J, Huang S, Hou M, Xue R, Liang Z, Gu P, Yoneyama K, Xie X, Shen Q, Xu G, Zhang Y. Strigolactones are required for nitric oxide to induce root elongation in response to nitrogen and phosphate deficiencies in rice. PLANT, CELL & ENVIRONMENT 2016; 39:1473-84. [PMID: 27194103 DOI: 10.1111/pce.12709] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 12/26/2015] [Indexed: 05/21/2023]
Abstract
The response of the root system architecture to nutrient deficiencies is critical for sustainable agriculture. Nitric oxide (NO) is considered a key regulator of root growth, although the mechanisms remain unknown. Phenotypic, cellular and genetic analyses were undertaken in rice to explore the role of NO in regulating root growth and strigolactone (SL) signalling under nitrogen-deficient and phosphate-deficient conditions (LN and LP). LN-induced and LP-induced seminal root elongation paralleled NO production in root tips. NO played an important role in a shared pathway of LN-induced and LP-induced root elongation via increased meristem activity. Interestingly, no responses of root elongation were observed in SL d mutants compared with wild-type plants, although similar NO accumulation was induced by sodium nitroprusside (SNP) application. Application of abamine (the SL inhibitor) reduced seminal root length and pCYCB1;1::GUS expression induced by SNP application in wild type; furthermore, comparison with wild type showed lower SL-signalling genes in nia2 mutants under control and LN treatments and similar under SNP application. Western blot analysis revealed that NO, similar to SL, triggered proteasome-mediated degradation of D53 protein levels. Therefore, we presented a novel signalling pathway in which NO-activated seminal root elongation under LN and LP conditions, with the involvement of SLs.
Collapse
Affiliation(s)
- Huwei Sun
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
- College of Agronomy, National Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yang Bi
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyuan Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuangjie Huang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mengmeng Hou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ren Xue
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhihao Liang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Pengyuan Gu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Koichi Yoneyama
- Center for Bioscience Research & Education, Utsunomiya University, Utsunomiya, 321-8505, Japan
| | - Xiaonan Xie
- Center for Bioscience Research & Education, Utsunomiya University, Utsunomiya, 321-8505, Japan
| | - Qirong Shen
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yali Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, and Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
176
|
Sun L, Tian J, Zhang H, Liao H. Phytohormone regulation of root growth triggered by P deficiency or Al toxicity. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3655-3664. [PMID: 27190050 DOI: 10.1093/jxb/erw188] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Phosphorus (P) deficiency and aluminum (Al) toxicity often coexist and limit plant growth on acid soils. It has been well documented that both P deficiency and Al toxicity alter root growth, including inhibition of primary roots and promotion of lateral roots. This suggests that plants adapt to both stresses through a common regulation pathway. Although an expanding set of results shows that phytohormones play vital roles in controlling root responses to Pi starvation and Al toxicity, it remains largely unknown whether P and Al coordinately regulate root growth through interacting phytohormone biosynthesis and signal transduction pathways. This review provides a summary of recent results concerning the influences of P deficiency and Al toxicity on root growth through the action of phytohormones, most notably auxin and ethylene. The objective is to facilitate increasing insights into complex responses of plants to adverse factors common on acid soils, which can spur development of 'smart' cultivars with better root growth and higher yield on these globally distributed marginal soils.
Collapse
Affiliation(s)
- Lili Sun
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Jiang Tian
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Root Biology Center, South China Agricultural University, Guangzhou 510642, China
| | - Haiyan Zhang
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Hong Liao
- Root Biology Center, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
177
|
Madmon O, Mazuz M, Kumari P, Dam A, Ion A, Mayzlish-Gati E, Belausov E, Wininger S, Abu-Abied M, McErlean CSP, Bromhead LJ, Perl-Treves R, Prandi C, Kapulnik Y, Koltai H. Expression of MAX2 under SCARECROW promoter enhances the strigolactone/MAX2 dependent response of Arabidopsis roots to low-phosphate conditions. PLANTA 2016; 243:1419-1427. [PMID: 26919985 DOI: 10.1007/s00425-016-2477-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 01/22/2016] [Indexed: 06/05/2023]
Abstract
MAX2/strigolactone signaling in the endodermis and/or quiescent center of the root is partially sufficient to exert changes in F-actin density and cellular trafficking in the root epidermis, and alter gene expression during plant response to low Pi conditions. Strigolactones (SLs) are a new group of plant hormones that regulate different developmental processes in the plant via MAX2, an F-box protein that interacts with their receptor. SLs and MAX2 are necessary for the marked increase in root-hair (RH) density in seedlings under conditions of phosphate (Pi) deprivation. This marked elevation was associated with an active reduction in actin-filament density and endosomal movement in root epidermal cells. Also, expression of MAX2 under the SCARECROW (SCR) promoter was sufficient to confer SL sensitivity in roots, suggesting that SL signaling pathways act through a root-specific, yet non-cell-autonomous regulatory mode of action. Here we show evidence for a non-cell autonomous signaling of SL/MAX2, originating from the root endodermis, and necessary for seedling response to conditions of Pi deprivation. SCR-derived expression of MAX2 in max2-1 mutant background promoted the root low Pi response, whereas supplementation of the synthetic SL GR24 to these SCR:MAX2 expressing lines further enhanced this response. Moreover, the SCR:MAX2 expression led to changes in actin density and endosome movement in epidermal cells and in TIR1 and PHO2 gene expression. These results demonstrate that MAX2 signaling in the endodermis and/or quiescent center is partially sufficient to exert changes in F-actin density and cellular trafficking in the epidermis, and alter gene expression under low Pi conditions.
Collapse
Affiliation(s)
- Ortal Madmon
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Moran Mazuz
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Puja Kumari
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Anandamoy Dam
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Aurel Ion
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Einav Mayzlish-Gati
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Eduard Belausov
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Smadar Wininger
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Mohamad Abu-Abied
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | | | - Liam J Bromhead
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Rafael Perl-Treves
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, 52900, Ramat-Gan, Israel
| | - Cristina Prandi
- Dipartimento di Chimica, Turin University, 10125, Turin, Italy
| | - Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), The Volcani Center, 50250, Bet Dagan, Israel.
| |
Collapse
|
178
|
Salazar-Henao JE, Vélez-Bermúdez IC, Schmidt W. The regulation and plasticity of root hair patterning and morphogenesis. Development 2016; 143:1848-58. [DOI: 10.1242/dev.132845] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Root hairs are highly specialized cells found in the epidermis of plant roots that play a key role in providing the plant with water and mineral nutrients. Root hairs have been used as a model system for understanding both cell fate determination and the morphogenetic plasticity of cell differentiation. Indeed, many studies have shown that the fate of root epidermal cells, which differentiate into either root hair or non-hair cells, is determined by a complex interplay of intrinsic and extrinsic cues that results in a predictable but highly plastic pattern of epidermal cells that can vary in shape, size and function. Here, we review these studies and discuss recent evidence suggesting that environmental information can be integrated at multiple points in the root hair morphogenetic pathway and affects multifaceted processes at the chromatin, transcriptional and post-transcriptional levels.
Collapse
Affiliation(s)
| | | | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
179
|
Khan GA, Vogiatzaki E, Glauser G, Poirier Y. Phosphate Deficiency Induces the Jasmonate Pathway and Enhances Resistance to Insect Herbivory. PLANT PHYSIOLOGY 2016; 171:632-44. [PMID: 27016448 PMCID: PMC4854718 DOI: 10.1104/pp.16.00278] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 03/24/2016] [Indexed: 05/19/2023]
Abstract
During their life cycle, plants are typically confronted by simultaneous biotic and abiotic stresses. Low inorganic phosphate (Pi) is one of the most common nutrient deficiencies limiting plant growth in natural and agricultural ecosystems, while insect herbivory accounts for major losses in plant productivity and impacts ecological and evolutionary changes in plant populations. Here, we report that plants experiencing Pi deficiency induce the jasmonic acid (JA) pathway and enhance their defense against insect herbivory. Pi-deficient Arabidopsis (Arabidopsis thaliana) showed enhanced synthesis of JA and the bioactive conjugate JA-isoleucine, as well as activation of the JA signaling pathway, in both shoots and roots of wild-type plants and in shoots of the Pi-deficient mutant pho1 The kinetics of the induction of the JA signaling pathway by Pi deficiency was influenced by PHOSPHATE STARVATION RESPONSE1, the main transcription factor regulating the expression of Pi starvation-induced genes. Phenotypes of the pho1 mutant typically associated with Pi deficiency, such as high shoot anthocyanin levels and poor shoot growth, were significantly attenuated by blocking the JA biosynthesis or signaling pathway. Wounded pho1 leaves hyperaccumulated JA/JA-isoleucine in comparison with the wild type. The pho1 mutant also showed an increased resistance against the generalist herbivore Spodoptera littoralis that was attenuated in JA biosynthesis and signaling mutants. Pi deficiency also triggered increased resistance to S. littoralis in wild-type Arabidopsis as well as tomato (Solanum lycopersicum) and Nicotiana benthamiana, revealing that the link between Pi deficiency and enhanced herbivory resistance is conserved in a diversity of plants, including crops.
Collapse
Affiliation(s)
- Ghazanfar Abbas Khan
- Departof Lausanne, CH-1015 Lausanne, Switzerland (G.A.K., E.V., Y.P.); andNeuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland (G.G.)
| | - Evangelia Vogiatzaki
- Departof Lausanne, CH-1015 Lausanne, Switzerland (G.A.K., E.V., Y.P.); andNeuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland (G.G.)
| | - Gaétan Glauser
- Departof Lausanne, CH-1015 Lausanne, Switzerland (G.A.K., E.V., Y.P.); andNeuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland (G.G.)
| | - Yves Poirier
- Departof Lausanne, CH-1015 Lausanne, Switzerland (G.A.K., E.V., Y.P.); andNeuchâtel Platform of Analytical Chemistry, University of Neuchâtel, CH-2009 Neuchâtel, Switzerland (G.G.)
| |
Collapse
|
180
|
Wen C, Zhao Q, Nie J, Liu G, Shen L, Cheng C, Xi L, Ma N, Zhao L. Physiological controls of chrysanthemum DgD27 gene expression in regulation of shoot branching. PLANT CELL REPORTS 2016; 35:1053-70. [PMID: 26883225 DOI: 10.1007/s00299-016-1938-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 01/15/2016] [Indexed: 05/21/2023]
Abstract
DgD27 was cloned from D. grandiflorum for the first time and played an important role in shoot branching of chrysanthemum. Shoot branching plays an important role in determining plant architecture. D27 was previously proven to be involved in the strigolactone biosynthetic pathway in rice, Arabidopsis, and Medicago. To investigate the role of D27 in shoot branching of chrysanthemum, we isolated the D27 homolog DgD27. Functional analysis showed that DgD27 was a plastid-localized protein that restored the phenotype of Arabidopsis d27-1. Gene expression analysis revealed that DgD27 was expressed at the highest levels in stem, and was up-regulated by exogenous auxin. Decapitation could down-regulate DgD27 expression, but this effect could be restored by exogenous auxin. DgD27 expression was significantly down-regulated by dark treatment in axillary buds. In addition, DgD27 transcripts produced rapid responses in shoots and roots under conditions of phosphate absence, but only mild variation in responses in buds, stems, and roots with low nitrogen treatment. DgBRC1 transcripts also showed the same response in buds under low nitrogen conditions. Under phosphate deficiency, indole-3-acetic acid (IAA) levels increased, zeatin riboside levels decreased, and abscisic acid (ABA) levels increased in the shoot, while both IAA and ABA levels increased in the shoot under low nitrogen treatments. Gibberellin acid levels were unaffected by phosphate deficiency and low nitrogen treatments. Taken together, these results demonstrated the diverse roles of DgD27 in response to physiological controls in chrysanthemum shoot branching.
Collapse
Affiliation(s)
- Chao Wen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Qingcui Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Jing Nie
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Guoqin Liu
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Lin Shen
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Chenxia Cheng
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Lin Xi
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Nan Ma
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China
| | - Liangjun Zhao
- Beijing Key Laboratory of Development and Quality Control of Ornamental Crops, Department of Ornamental Horticulture and Landscape Architecture, China Agricultural University, No. 2 Yuanmingyuan West Road, Haidian District, Beijing, 100193, China.
| |
Collapse
|
181
|
Nath M, Tuteja N. NPKS uptake, sensing, and signaling and miRNAs in plant nutrient stress. PROTOPLASMA 2016; 253:767-786. [PMID: 26085375 DOI: 10.1007/s00709-015-0845-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 06/08/2015] [Indexed: 05/24/2023]
Abstract
Sessile nature of higher plants consequently makes it highly adaptable for nutrient absorption and acquisition from soil. Plants require 17 essential elements for their growth and development which include 14 minerals (macronutrients: N, P, K, Mg, Ca, S; micronutrients: Cl, Fe, B, Mn, Zn, Cu, Ni, Mo) and 3 non-mineral (C, H, O) elements. The roots of higher plants must acquire these macronutrients and micronutrients from rhizosphere and further allocate to other plant parts for completing their life cycle. Plants evolved an intricate series of signaling and sensing cascades to maintain nutrient homeostasis and to cope with nutrient stress/availability. The specific receptors for nutrients in root, root system architecture, and internal signaling pathways help to develop plasticity in response to the nutrient starvation. Nitrogen (N), phosphorus (P), potassium (K), and sulfur (S) are essential for various metabolic processes, and their deficiency negatively effects the plant growth and yield. Genes coding for transporters and receptors for nutrients as well as some small non-coding RNAs have been implicated in nutrient uptake and signaling. This review summarizes the N, P, K, and S uptake, sensing and signaling events in nutrient stress condition especially in model plant Arabidopsis thaliana and involvement of microRNAs in nutrient deficiency. This article also provides a framework of uptake, sensing, signaling and to highlight the microRNA as an emerging major players in nutrient stress condition. Nutrient-plant-miRNA cross talk may help plant to cope up nutrient stress, and understanding their precise mechanism(s) will be necessary to develop high yielding smart crop with low nutrient input.
Collapse
Affiliation(s)
- Manoj Nath
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067, New Delhi, India
| | - Narendra Tuteja
- Plant Molecular Biology Group, International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, 110067, New Delhi, India.
| |
Collapse
|
182
|
Rellán-Álvarez R, Lobet G, Dinneny JR. Environmental Control of Root System Biology. ANNUAL REVIEW OF PLANT BIOLOGY 2016; 67:619-42. [PMID: 26905656 DOI: 10.1146/annurev-arplant-043015-111848] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The plant root system traverses one of the most complex environments on earth. Understanding how roots support plant life on land requires knowing how soil properties affect the availability of nutrients and water and how roots manipulate the soil environment to optimize acquisition of these resources. Imaging of roots in soil allows the integrated analysis and modeling of environmental interactions occurring at micro- to macroscales. Advances in phenotyping of root systems is driving innovation in cross-platform-compatible methods for data analysis. Root systems acclimate to the environment through architectural changes that act at the root-type level as well as through tissue-specific changes that affect the metabolic needs of the root and the efficiency of nutrient uptake. A molecular understanding of the signaling mechanisms that guide local and systemic signaling is providing insight into the regulatory logic of environmental responses and has identified points where crosstalk between pathways occurs.
Collapse
Affiliation(s)
- Rubén Rellán-Álvarez
- Laboratorio Nacional de Genómica para la Biodiversidad (Langebio), Unidad de Genómica Avanzada, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Irapuato, Guanajuato 36821, Mexico;
| | - Guillaume Lobet
- PhytoSYSTEMS, University of Liège, 4000 Liège, Belgium;
- Institut für Bio- und Geowissenschaften: Agrosphäre, Forschungszentrum Jülich, D-52425 Jülich, Germany
| | - José R Dinneny
- Department of Plant Biology, Carnegie Institution for Science, Stanford, California 94305;
| |
Collapse
|
183
|
Kapulnik Y, Koltai H. Fine-tuning by strigolactones of root response to low phosphate. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2016; 58:203-12. [PMID: 26667884 DOI: 10.1111/jipb.12454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 12/09/2015] [Indexed: 05/10/2023]
Abstract
Strigolactones are plant hormones that regulate the development of different plant parts. In the shoot, they regulate axillary bud outgrowth and in the root, root architecture and root-hair length and density. Strigolactones are also involved with communication in the rhizosphere, including enhancement of hyphal branching of arbuscular mycorrhizal fungi. Here we present the role and activity of strigolactones under conditions of phosphate deprivation. Under these conditions, their levels of biosynthesis and exudation increase, leading to changes in shoot and root development. At least for the latter, these changes are likely to be associated with alterations in auxin transport and sensitivity. On the other hand, strigolactones may positively affect plant-mycorrhiza interactions and thereby promote phosphate acquisition by the plant. Strigolactones may be a way for plants to fine-tune their growth pattern under phosphate deprivation.
Collapse
Affiliation(s)
- Yoram Kapulnik
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| | - Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization (ARO), Volcani Center, Bet Dagan 50250, Israel
| |
Collapse
|
184
|
Volpe V, Giovannetti M, Sun XG, Fiorilli V, Bonfante P. The phosphate transporters LjPT4 and MtPT4 mediate early root responses to phosphate status in non mycorrhizal roots. PLANT, CELL & ENVIRONMENT 2016; 39:660-71. [PMID: 26476189 DOI: 10.1111/pce.12659] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 05/23/2023]
Abstract
Arbuscular mycorrhizal (AM) symbiosis improves host plant phosphorous (P) status and elicits the expression of AM-inducible phosphate transporters (PTs) in arbuscule-containing cells, where they control arbuscule morphogenesis and P release. We confirmed such functions for LjPT4 in mycorrhizal Lotus japonicus. Promoter-GUS experiments showed LjPT4 transcription not only in arbusculated cells but also in root tips, in the absence of the fungus: here LjPT4 transcription profile depended on the phosphate level. In addition, quantitative RT-PCR confirmed the expression of Lotus and Medicago truncatula PT4 in the tips of non-mycorrhizal roots. Starting from these observations, we hypothesized that AM-inducible PTs may have a regulatory role in plant development, irrespective of the fungal presence. Firstly, we focused on root development responses to different phosphate treatments in both plants demonstrating that phosphate starvation induced a higher number of lateral roots. By contrast, Lotus PT4i plants and Medicago mtpt4 mutants did not show any differential response to phosphate levels, suggesting that PT4 genes affect early root branching. Phosphate starvation-induced genes and a key auxin receptor, MtTIR1, showed an impaired expression in mtpt4 plants. We suggest PT4 genes as novel components of the P-sensing machinery at the root tip level, independently of AM fungi.
Collapse
Affiliation(s)
- Veronica Volpe
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, I-10125, Torino, Italy
| | - Marco Giovannetti
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, I-10125, Torino, Italy
| | - Xue-Guang Sun
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, I-10125, Torino, Italy
| | - Valentina Fiorilli
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, I-10125, Torino, Italy
| | - Paola Bonfante
- Department of Life Science and Systems Biology, University of Turin, Viale Mattioli 25, I-10125, Torino, Italy
| |
Collapse
|
185
|
Crombez H, Roberts I, Vangheluwe N, Motte H, Jansen L, Beeckman T, Parizot B. Lateral Root Inducible System in Arabidopsis and Maize. J Vis Exp 2016:e53481. [PMID: 26862837 DOI: 10.3791/53481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Lateral root development contributes significantly to the root system, and hence is crucial for plant growth. The study of lateral root initiation is however tedious, because it occurs only in a few cells inside the root and in an unpredictable manner. To circumvent this problem, a Lateral Root Inducible System (LRIS) has been developed. By treating seedlings consecutively with an auxin transport inhibitor and a synthetic auxin, highly controlled lateral root initiation occurs synchronously in the primary root, allowing abundant sampling of a desired developmental stage. The LRIS has first been developed for Arabidopsis thaliana, but can be applied to other plants as well. Accordingly, it has been adapted for use in maize (Zea mays). A detailed overview of the different steps of the LRIS in both plants is given. The combination of this system with comparative transcriptomics made it possible to identify functional homologs of Arabidopsis lateral root initiation genes in other species as illustrated here for the CYCLIN B1;1 (CYCB1;1) cell cycle gene in maize. Finally, the principles that need to be taken into account when an LRIS is developed for other plant species are discussed.
Collapse
Affiliation(s)
- Hanne Crombez
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Ianto Roberts
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Nick Vangheluwe
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Hans Motte
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Leentje Jansen
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University;
| | - Boris Parizot
- Department of Plant Systems Biology, VIB, Ghent; Department of Plant Biotechnology and Bioinformatics, Ghent University
| |
Collapse
|
186
|
Jiang L, Matthys C, Marquez-Garcia B, De Cuyper C, Smet L, De Keyser A, Boyer FD, Beeckman T, Depuydt S, Goormachtig S. Strigolactones spatially influence lateral root development through the cytokinin signaling network. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:379-89. [PMID: 26519957 PMCID: PMC4682444 DOI: 10.1093/jxb/erv478] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strigolactones are important rhizosphere signals that act as phytohormones and have multiple functions, including modulation of lateral root (LR) development. Here, we show that treatment with the strigolactone analog GR24 did not affect LR initiation, but negatively influenced LR priming and emergence, the latter especially near the root-shoot junction. The cytokinin module ARABIDOPSIS HISTIDINE KINASE3 (AHK3)/ARABIDOPSIS RESPONSE REGULATOR1 (ARR1)/ARR12 was found to interact with the GR24-dependent reduction in LR development, because mutants in this pathway rendered LR development insensitive to GR24. Additionally, pharmacological analyses, mutant analyses, and gene expression analyses indicated that the affected polar auxin transport stream in mutants of the AHK3/ARR1/ARR12 module could be the underlying cause. Altogether, the data reveal that the GR24 effect on LR development depends on the hormonal landscape that results from the intimate connection with auxins and cytokinins, two main players in LR development.
Collapse
Affiliation(s)
- Lingxiang Jiang
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Cedrick Matthys
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Belen Marquez-Garcia
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Carolien De Cuyper
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Lien Smet
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Annick De Keyser
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - François-Didier Boyer
- Institut Jean-Pierre Bourgin, Unité Mixte de Recherche 1318, Institut National de la Recherche Agronomique-AgroParisTech, 78026 Versailles Cedex, France Centre de Recherche de Gif, Institut de Chimie des Substances Naturelles, Unité Propre de Recherche 2301, Centre National de la Recherche Scientifique, 91198 Gif-sur-Yvette, France
| | - Tom Beeckman
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| | - Stephen Depuydt
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium Ghent University Global Campus, Incheon 406-840, Korea
| | - Sofie Goormachtig
- Department of Plant Systems Biology, VIB, 9052 Gent, Belgium Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Gent, Belgium
| |
Collapse
|
187
|
Wege S, Khan GA, Jung JY, Vogiatzaki E, Pradervand S, Aller I, Meyer AJ, Poirier Y. The EXS Domain of PHO1 Participates in the Response of Shoots to Phosphate Deficiency via a Root-to-Shoot Signal. PLANT PHYSIOLOGY 2016; 170:385-400. [PMID: 26546667 PMCID: PMC4704572 DOI: 10.1104/pp.15.00975] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Accepted: 11/04/2015] [Indexed: 05/17/2023]
Abstract
The response of shoots to phosphate (Pi) deficiency implicates long-distance communication between roots and shoots, but the participating components are poorly understood. We have studied the topology of the Arabidopsis (Arabidopsis thaliana) PHOSPHATE1 (PHO1) Pi exporter and defined the functions of its different domains in Pi homeostasis and signaling. The results indicate that the amino and carboxyl termini of PHO1 are both oriented toward the cytosol and that the protein spans the membrane twice in the EXS domain, resulting in a total of six transmembrane α-helices. Using transient expression in Nicotiana benthamiana leaf, we demonstrated that the EXS domain of PHO1 is essential for Pi export activity and proper localization to the Golgi and trans-Golgi network, although the EXS domain by itself cannot mediate Pi export. In contrast, removal of the amino-terminal hydrophilic SPX domain does not affect the Pi export capacity of the truncated PHO1 in N. benthamiana. While the Arabidopsis pho1 mutant has low shoot Pi and shows all the hallmarks associated with Pi deficiency, including poor shoot growth and overexpression of numerous Pi deficiency-responsive genes, expression of only the EXS domain of PHO1 in the roots of the pho1 mutant results in a remarkable improvement of shoot growth despite low shoot Pi. Transcriptomic analysis of pho1 expressing the EXS domain indicates an attenuation of the Pi signaling cascade and the up-regulation of genes involved in cell wall synthesis and the synthesis or response to several phytohormones in leaves as well as an altered expression of genes responsive to abscisic acid in roots.
Collapse
Affiliation(s)
- Stefanie Wege
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Ghazanfar Abbas Khan
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Ji-Yul Jung
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Evangelia Vogiatzaki
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Sylvain Pradervand
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Isabel Aller
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Andreas J Meyer
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| | - Yves Poirier
- Department for Plant Molecular Biology (S.W., G.A.K., J.-Y.J., E.V., Y.P.) and Genomic Technologies Facility, Center for Integrative Genomics (S.P.), University of Lausanne, 1015 Lausanne, Switzerland;Vital-IT, Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland (S.P.); andInstitute for Crop Science and Natural Resources, Chemical Signaling, University of Bonn, 53113 Bonn, Germany (I.A., A.J.M.)
| |
Collapse
|
188
|
Slovak R, Ogura T, Satbhai SB, Ristova D, Busch W. Genetic control of root growth: from genes to networks. ANNALS OF BOTANY 2016; 117:9-24. [PMID: 26558398 PMCID: PMC4701154 DOI: 10.1093/aob/mcv160] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/28/2015] [Accepted: 08/28/2015] [Indexed: 05/08/2023]
Abstract
BACKGROUND Roots are essential organs for higher plants. They provide the plant with nutrients and water, anchor the plant in the soil, and can serve as energy storage organs. One remarkable feature of roots is that they are able to adjust their growth to changing environments. This adjustment is possible through mechanisms that modulate a diverse set of root traits such as growth rate, diameter, growth direction and lateral root formation. The basis of these traits and their modulation are at the cellular level, where a multitude of genes and gene networks precisely regulate development in time and space and tune it to environmental conditions. SCOPE This review first describes the root system and then presents fundamental work that has shed light on the basic regulatory principles of root growth and development. It then considers emerging complexities and how they have been addressed using systems-biology approaches, and then describes and argues for a systems-genetics approach. For reasons of simplicity and conciseness, this review is mostly limited to work from the model plant Arabidopsis thaliana, in which much of the research in root growth regulation at the molecular level has been conducted. CONCLUSIONS While forward genetic approaches have identified key regulators and genetic pathways, systems-biology approaches have been successful in shedding light on complex biological processes, for instance molecular mechanisms involving the quantitative interaction of several molecular components, or the interaction of large numbers of genes. However, there are significant limitations in many of these methods for capturing dynamic processes, as well as relating these processes to genotypic and phenotypic variation. The emerging field of systems genetics promises to overcome some of these limitations by linking genotypes to complex phenotypic and molecular data using approaches from different fields, such as genetics, genomics, systems biology and phenomics.
Collapse
Affiliation(s)
- Radka Slovak
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Santosh B Satbhai
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Daniela Ristova
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), Dr. Bohr-Gasse 3, 1030 Vienna, Austria
| |
Collapse
|
189
|
Jin J, Tang C, Sale P. The impact of elevated carbon dioxide on the phosphorus nutrition of plants: a review. ANNALS OF BOTANY 2015; 116:987-99. [PMID: 26113632 PMCID: PMC4640125 DOI: 10.1093/aob/mcv088] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/06/2015] [Accepted: 04/29/2015] [Indexed: 05/03/2023]
Abstract
BACKGROUND Increasing attention is being focused on the influence of rapid increases in atmospheric CO2 concentration on nutrient cycling in ecosystems. An understanding of how elevated CO2 affects plant utilization and acquisition of phosphorus (P) will be critical for P management to maintain ecosystem sustainability in P-deficient regions. SCOPE This review focuses on the impact of elevated CO2 on plant P demand, utilization in plants and P acquisition from soil. Several knowledge gaps on elevated CO2-P associations are highlighted. CONCLUSIONS Significant increases in P demand by plants are likely to happen under elevated CO2 due to the stimulation of photosynthesis, and subsequent growth responses. Elevated CO2 alters P acquisition through changes in root morphology and increases in rooting depth. Moreover, the quantity and composition of root exudates are likely to change under elevated CO2, due to the changes in carbon fluxes along the glycolytic pathway and the tricarboxylic acid cycle. As a consequence, these root exudates may lead to P mobilization by the chelation of P from sparingly soluble P complexes, by the alteration of the biochemical environment and by changes to microbial activity in the rhizosphere. Future research on chemical, molecular, microbiological and physiological aspects is needed to improve understanding of how elevated CO2 might affect the use and acquisition of P by plants.
Collapse
Affiliation(s)
- Jian Jin
- Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Vic. 3086, Australia and Key Laboratory of Mollisols Agroecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Caixian Tang
- Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Vic. 3086, Australia and
| | - Peter Sale
- Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Vic. 3086, Australia and
| |
Collapse
|
190
|
Biancucci M, Mattioli R, Moubayidin L, Sabatini S, Costantino P, Trovato M. Proline affects the size of the root meristematic zone in Arabidopsis. BMC PLANT BIOLOGY 2015; 15:263. [PMID: 26514776 PMCID: PMC4625561 DOI: 10.1186/s12870-015-0637-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/01/2015] [Indexed: 05/19/2023]
Abstract
BACKGROUND We reported previously that root elongation in Arabidopsis is promoted by exogenous proline, raising the possibility that this amino acid may modulate root growth. RESULTS To evaluate this hypothesis we used a combination of genetic, pharmacological and molecular analyses, and showed that proline specifically affects root growth by modulating the size of the root meristem. The effects of proline on meristem size are parallel to, and independent from, hormonal pathways, and do not involve the expression of genes controlling cell differentiation at the transition zone. On the contrary, proline appears to control cell division in early stages of postembryonic root development, as shown by the expression of the G2/M-specific CYCLINB1;1 (CYCB1;1) gene. CONCLUSIONS The overall data suggest that proline can modulate the size of root meristematic zone in Arabidopsis likely controlling cell division and, in turn, the ratio between cell division and cell differentiation.
Collapse
Affiliation(s)
- Marco Biancucci
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Roberto Mattioli
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Laila Moubayidin
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Sabrina Sabatini
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Paolo Costantino
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| | - Maurizio Trovato
- Dipartimento di Biologia e Biotecnologie, Sapienza, Università di Roma, P.le Aldo Moro 5, 00185, Rome, Italy.
| |
Collapse
|
191
|
de Wit M, Ljung K, Fankhauser C. Contrasting growth responses in lamina and petiole during neighbor detection depend on differential auxin responsiveness rather than different auxin levels. THE NEW PHYTOLOGIST 2015; 208:198-209. [PMID: 25963518 DOI: 10.1111/nph.13449] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Accepted: 04/03/2015] [Indexed: 05/04/2023]
Abstract
Foliar shade triggers rapid growth of specific structures that facilitate access of the plant to direct sunlight. In leaves of many plant species, this growth response is complex because, although shade triggers the elongation of petioles, it reduces the growth of the lamina. How the same external cue leads to these contrasting growth responses in different parts of the leaf is not understood. Using mutant analysis, pharmacological treatment and gene expression analyses, we investigated the role of PHYTOCHROME INTERACTING FACTOR7 (PIF7) and the growth-promoting hormone auxin in these contrasting leaf growth responses. Both petiole elongation and lamina growth reduction are dependent on PIF7. The induction of auxin production is both necessary and sufficient to induce opposite growth responses in petioles vs lamina. However, these contrasting growth responses are not caused by different auxin concentrations in the two leaf parts. Our work suggests that a transient increase in auxin levels triggers tissue-specific growth responses in different leaf parts. We provide evidence suggesting that this may be caused by the different sensitivity to auxin in the petiole vs the blade and by tissue-specific gene expression.
Collapse
Affiliation(s)
- Mieke de Wit
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, SE-901 83, Umeå, Sweden
| | - Christian Fankhauser
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, CH-1015, Lausanne, Switzerland
| |
Collapse
|
192
|
Song L, Liu D. Ethylene and plant responses to phosphate deficiency. FRONTIERS IN PLANT SCIENCE 2015; 6:796. [PMID: 26483813 PMCID: PMC4586416 DOI: 10.3389/fpls.2015.00796] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 09/13/2015] [Indexed: 05/20/2023]
Abstract
Phosphorus is an essential macronutrient for plant growth and development. Phosphate (Pi), the major form of phosphorus that plants take up through roots, however, is limited in most soils. To cope with Pi deficiency, plants activate an array of adaptive responses to reprioritize internal Pi use and enhance external Pi acquisition. These responses are modulated by sophisticated regulatory networks through both local and systemic signaling, but the signaling mechanisms are poorly understood. Early studies suggested that the phytohormone ethylene plays a key role in Pi deficiency-induced remodeling of root system architecture. Recently, ethylene was also shown to be involved in the regulation of other signature responses of plants to Pi deficiency. In this article, we review how researchers have used pharmacological and genetic approaches to dissect the roles of ethylene in regulating Pi deficiency-induced developmental and physiological changes. The interactions between ethylene and other signaling molecules, such as sucrose, auxin, and microRNA399, in the control of plant Pi responses are also examined. Finally, we provide a perspective for the future research in this field.
Collapse
Affiliation(s)
| | - Dong Liu
- Ministry of Education Key Laboratory of Bioinformatics, Center for Plant Biology, School of Life Sciences, Tsinghua University, BeijingChina
| |
Collapse
|
193
|
Wang L, ZengJ HQ, Song J, Feng SJ, Yang ZM. miRNA778 and SUVH6 are involved in phosphate homeostasis in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:273-85. [PMID: 26259194 DOI: 10.1016/j.plantsci.2015.06.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 06/21/2015] [Accepted: 06/22/2015] [Indexed: 05/04/2023]
Abstract
microRNAs (miRNAs) play an important role in plant adaptation to phosphate (Pi) starvation. Histone methylation can remodel chromatin structure and mediate gene expression. This study identified Arabidopsis miR778, a Pi-responsive miRNA, and its target gene Su(var) 3-9 homologs 6 (SUVH6) encoding a histone H3 lysine 9 (H3K9) methyltransferase. Overexpression of miR778 moderately enhanced primary and lateral root growth, free phosphate accumulation in shoots, and accumulation of anthocyanin under Pi deficient conditions. miR778 overexpression relieved the arrest of columella cell development under Pi starvation. Conversely, transgenic plants overexpressing a miR778-target mimic (35S::MIM778), that act as a sponge and sequesters miR778, showed opposite phenotypes of 35S::miR778 plants under Pi deficiency. Expression of several Pi deficiency-responsive genes such as miR399, Phosphate Transporter (PHT1;4), Low Phosphate-Resistant1 (LPR1) and Production of Anthocyanin Pigment 1 (PAP1) were elevated in the miR778 overexpressing plants, suggesting that both miR778 and SUVH6 are involved in phosphate homeostasis in plants. This study has provided a basis for further investigation on how SUVH6 regulates its downstream genes through chromatin remodeling and DNA methylation in plants stressed by Pi deficiency.
Collapse
Affiliation(s)
- Lei Wang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Hou Qing ZengJ
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China; College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 310036, China
| | - Jun Song
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Sheng Jun Feng
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhi Min Yang
- Department of Biochemistry and Molecular Biology, College of Life Science, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
194
|
Mehra P, Pandey BK, Giri J. Genome-wide DNA polymorphisms in low Phosphate tolerant and sensitive rice genotypes. Sci Rep 2015; 5:13090. [PMID: 26278778 PMCID: PMC4538390 DOI: 10.1038/srep13090] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 07/17/2015] [Indexed: 12/30/2022] Open
Abstract
Soil Phosphorus (P) deficiency is one of the major challenges to rice crop world-wide. Modern rice genotypes are highly P-responsive and rely on high input of P fertilizers. However, low P tolerant traditional cultivars and landraces have genetic potential to sustain well under low P. Identification of high resolution DNA polymorphisms (SNPs and InDels) in such contrasting genotypes is largely missing for low P response at gene levels. Here, we report high quality DNA polymorphisms in low P sensitive genotype, PB1 and tolerant traditional genotype, Dular. We performed whole genome resequencing using Illumina NGS platform and identified a total of 5,157,939 sequence variants in PB1 and Dular with reference to Nipponbare genome. We have identified approximately 2.3 million and 2.9 million high quality polymorphisms in PB1 and Dular, respectively, with an average read depth of ≥24X. We further mapped several DNA polymorphisms (non-synonymous and regulatory variants) having potential functional significance to key Phosphate Starvation Responsive (PSR) and root architecture genes in Dular and Kasalath using a compiled list of low P responsive genes. These identified variants can serve as a useful source of genetic variability for improving low P tolerance and root architecture of high yielding modern genotypes.
Collapse
Affiliation(s)
- Poonam Mehra
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Bipin K Pandey
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Jitender Giri
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
195
|
De Smet S, Cuypers A, Vangronsveld J, Remans T. Gene Networks Involved in Hormonal Control of Root Development in Arabidopsis thaliana: A Framework for Studying Its Disturbance by Metal Stress. Int J Mol Sci 2015; 16:19195-224. [PMID: 26287175 PMCID: PMC4581294 DOI: 10.3390/ijms160819195] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2015] [Accepted: 08/01/2015] [Indexed: 01/23/2023] Open
Abstract
Plant survival under abiotic stress conditions requires morphological and physiological adaptations. Adverse soil conditions directly affect root development, although the underlying mechanisms remain largely to be discovered. Plant hormones regulate normal root growth and mediate root morphological responses to abiotic stress. Hormone synthesis, signal transduction, perception and cross-talk create a complex network in which metal stress can interfere, resulting in root growth alterations. We focus on Arabidopsis thaliana, for which gene networks in root development have been intensively studied, and supply essential terminology of anatomy and growth of roots. Knowledge of gene networks, mechanisms and interactions related to the role of plant hormones is reviewed. Most knowledge has been generated for auxin, the best-studied hormone with a pronounced primary role in root development. Furthermore, cytokinins, gibberellins, abscisic acid, ethylene, jasmonic acid, strigolactones, brassinosteroids and salicylic acid are discussed. Interactions between hormones that are of potential importance for root growth are described. This creates a framework that can be used for investigating the impact of abiotic stress factors on molecular mechanisms related to plant hormones, with the limited knowledge of the effects of the metals cadmium, copper and zinc on plant hormones and root development included as case example.
Collapse
Affiliation(s)
- Stefanie De Smet
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Ann Cuypers
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Jaco Vangronsveld
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| | - Tony Remans
- Centre for Environmental Sciences, Environmental Biology, Hasselt University, Agoralaan Gebouw D, 3590 Diepenbeek, Belgium.
| |
Collapse
|
196
|
Li J, Xu HH, Liu WC, Zhang XW, Lu YT. Ethylene Inhibits Root Elongation during Alkaline Stress through AUXIN1 and Associated Changes in Auxin Accumulation. PLANT PHYSIOLOGY 2015; 168:1777-91. [PMID: 26109425 PMCID: PMC4528753 DOI: 10.1104/pp.15.00523] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 06/23/2015] [Indexed: 05/03/2023]
Abstract
Soil alkalinity causes major reductions in yield and quality of crops worldwide. The plant root is the first organ sensing soil alkalinity, which results in shorter primary roots. However, the mechanism underlying alkaline stress-mediated inhibition of root elongation remains to be further elucidated. Here, we report that alkaline conditions inhibit primary root elongation of Arabidopsis (Arabidopsis thaliana) seedlings by reducing cell division potential in the meristem zones and that ethylene signaling affects this process. The ethylene perception antagonist silver (Ag(+)) alleviated the inhibition of root elongation by alkaline stress. Moreover, the ethylene signaling mutants ethylene response1-3 (etr1-3), ethylene insensitive2 (ein2), and ein3-1 showed less reduction in root length under alkaline conditions, indicating a reduced sensitivity to alkalinity. Ethylene biosynthesis also was found to play a role in alkaline stress-mediated root inhibition; the ethylene overproducer1-1 mutant, which overproduces ethylene because of increased stability of 1-AMINOCYCLOPROPANE-1-CARBOXYLIC ACID SYNTHASE5, was hypersensitive to alkaline stress. In addition, the ethylene biosynthesis inhibitor cobalt (Co(2+)) suppressed alkaline stress-mediated inhibition of root elongation. We further found that alkaline stress caused an increase in auxin levels by promoting expression of auxin biosynthesis-related genes, but the increase in auxin levels was reduced in the roots of the etr1-3 and ein3-1 mutants and in Ag(+)/Co(2+)-treated wild-type plants. Additional genetic and physiological data showed that AUXIN1 (AUX1) was involved in alkaline stress-mediated inhibition of root elongation. Taken together, our results reveal that ethylene modulates alkaline stress-mediated inhibition of root growth by increasing auxin accumulation by stimulating the expression of AUX1 and auxin biosynthesis-related genes.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Heng-Hao Xu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Wen-Cheng Liu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Xiao-Wei Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| | - Ying-Tang Lu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan 430072, China (J.L., W.-C.L., X.-W.Z., Y.-T.L.); andJiangsu Key Laboratory of Marine Pharmaceutical Compound Screening and Co-Innovation Center for Jiangsu Marine Bio-Industry Technology, Huaihai Institute of Technology, Lianyungang 222005, China (H.-H.X.)
| |
Collapse
|
197
|
Koltai H. Cellular events of strigolactone signalling and their crosstalk with auxin in roots. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:4855-61. [PMID: 25900617 DOI: 10.1093/jxb/erv178] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Strigolactones are a new group of plant hormones that suppress shoot branching. In roots, they regulate primary-root growth and lateral-root formation and increase root-hair elongation. Reception of strigolactones occurs via a specific cellular system which includes a D14-like/MAX2-like/SCF complex that, upon perception of strigolactone signalling, leads to certain degradation of receptors and to the release of downstream targets. This signalling pathway may eventually result in changes in actin-filament bundling, cellular trafficking, and PIN localization in the plasma membrane. As a result, auxin flux may be regulated in the shoot or root. Strigolactones are also involved with the response to phosphate conditions in roots, acting by both dampening auxin transport via depletion of PIN2 from the plasma membrane and inducing TIR1 transcription to increase auxin perception. In these instances and, possibly, others, strigolactones manipulate the auxin pathway, affecting its transport, perception or both. However, other mechanisms for strigolactone-regulated plant development and the involvement of other plant hormones are evident.
Collapse
Affiliation(s)
- Hinanit Koltai
- Institute of Plant Sciences, Agricultural Research Organization, Volcani Center, Israel
| |
Collapse
|
198
|
Zhan A, Lynch JP. Reduced frequency of lateral root branching improves N capture from low-N soils in maize. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2055-65. [PMID: 25680794 PMCID: PMC4378636 DOI: 10.1093/jxb/erv007] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 12/14/2014] [Accepted: 12/19/2014] [Indexed: 05/17/2023]
Abstract
Suboptimal nitrogen (N) availability is a primary constraint for crop production in developing countries, while in developed countries, intensive N fertilization is a primary economic, energy, and environmental cost for crop production. We tested the hypothesis that under low-N conditions, maize (Zea mays) lines with few but long (FL) lateral roots would have greater axial root elongation, deeper rooting, and greater N acquisition than lines with many but short (MS) lateral roots. Maize recombinant inbred lines contrasting in lateral root number and length were grown with adequate and suboptimal N in greenhouse mesocosms and in the field in the USA and South Africa (SA). In low-N mesocosms, the FL phenotype had substantially reduced root respiration and greater rooting depth than the MS phenotype. In low-N fields in the USA and SA, the FL phenotype had greater rooting depth, shoot N content, leaf photosynthesis, and shoot biomass than the MS phenotype. The FL phenotype yielded 31.5% more than the MS phenotype under low N in the USA. Our results are consistent with the hypothesis that sparse but long lateral roots improve N capture from low-N soils. These results with maize probably pertain to other species. The FL lateral root phenotype merits consideration as a selection target for greater crop N efficiency.
Collapse
Affiliation(s)
- Ai Zhan
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi 712100, China Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
199
|
Kudoyarova GR, Dodd IC, Veselov DS, Rothwell SA, Veselov SY. Common and specific responses to availability of mineral nutrients and water. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2133-44. [PMID: 25697793 PMCID: PMC4986719 DOI: 10.1093/jxb/erv017] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2014] [Revised: 01/04/2015] [Accepted: 01/08/2015] [Indexed: 05/08/2023]
Abstract
Changes in resource (mineral nutrients and water) availability, due to their heterogeneous distribution in space and time, affect plant development. Plants need to sense these changes to optimize growth and biomass allocation by integrating root and shoot growth. Since a limited supply of water or nutrients can elicit similar physiological responses (the relative activation of root growth at the expense of shoot growth), similar underlying mechanisms may affect perception and acquisition of either nutrients or water. This review compares root and shoot responses to availability of different macronutrients and water. Attention is given to the roles of root-to-shoot signalling and shoot-to-root signalling, with regard to coordinating changes in root and shoot growth and development. Involvement of plant hormones in regulating physiological responses such as stomatal and hydraulic conductance is revealed by measuring the effects of resource availability on phytohormone concentrations in roots and shoots, and their flow between roots and shoots in xylem and phloem saps. More specific evidence can be obtained by measuring the physiological responses of genotypes with altered hormone responses or concentrations. We discuss the similarity and diversity of changes in shoot growth, allocation to root growth, and root architecture under changes in water, nitrate, and phosphorus availability, and the possible involvement of abscisic acid, indole-acetic acid, and cytokinin in their regulation. A better understanding of these mechanisms may contribute to better crop management for efficient use of these resources and to selecting crops for improved performance under suboptimal soil conditions.
Collapse
Affiliation(s)
- Guzel R Kudoyarova
- Institute of Biology, Ufa Science Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054 Ufa, Russia
| | - Ian C Dodd
- The Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | - Dmitry S Veselov
- Institute of Biology, Ufa Science Centre, Russian Academy of Sciences, pr. Oktyabrya 69, 450054 Ufa, Russia
| | - Shane A Rothwell
- The Lancaster Environment Centre, Lancaster University, LA1 4YQ Lancaster, UK
| | | |
Collapse
|
200
|
Pandey R, Zinta G, AbdElgawad H, Ahmad A, Jain V, Janssens IA. Physiological and molecular alterations in plants exposed to high [CO2] under phosphorus stress. Biotechnol Adv 2015; 33:303-16. [PMID: 25797341 DOI: 10.1016/j.biotechadv.2015.03.011] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 03/07/2015] [Accepted: 03/14/2015] [Indexed: 11/24/2022]
Abstract
Atmospheric [CO2] has increased substantially in recent decades and will continue to do so, whereas the availability of phosphorus (P) is limited and unlikely to increase in the future. P is a non-renewable resource, and it is essential to every form of life. P is a key plant nutrient controlling the responsiveness of photosynthesis to [CO2]. Increases in [CO2] typically results in increased biomass through stimulation of net photosynthesis, and hence enhance the demand for P uptake. However, most soils contain low concentrations of available P. Therefore, low P is one of the major growth-limiting factors for plants in many agricultural and natural ecosystems. The adaptive responses of plants to [CO2] and P availability encompass alterations at morphological, physiological, biochemical and molecular levels. In general low P reduces growth, whereas high [CO2] enhances it particularly in C3 plants. Photosynthetic capacity is often enhanced under high [CO2] with sufficient P supply through modulation of enzyme activities involved in carbon fixation such as ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco). However, high [CO2] with low P availability results in enhanced dry matter partitioning towards roots. Alterations in below-ground processes including root morphology, exudation and mycorrhizal association are influenced by [CO2] and P availability. Under high P availability, elevated [CO2] improves the uptake of P from soil. In contrast, under low P availability, high [CO2] mainly improves the efficiency with which plants produce biomass per unit P. At molecular level, the spatio-temporal regulation of genes involved in plant adaptation to low P and high [CO2] has been studied individually in various plant species. Genome-wide expression profiling of high [CO2] grown plants revealed hormonal regulation of biomass accumulation through complex transcriptional networks. Similarly, differential transcriptional regulatory networks are involved in P-limitation responses in plants. Analysis of expression patterns of some typical P-limitation induced genes under high [CO2] suggests that long-term exposure of plants to high [CO2] would have a tendency to stimulate similar transcriptional responses as observed under P-limitation. However, studies on the combined effect of high [CO2] and low P on gene expression are scarce. Such studies would provide insights into the development of P efficient crops in the context of anticipated increases in atmospheric [CO2].
Collapse
Affiliation(s)
- Renu Pandey
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India.
| | - Gaurav Zinta
- Department of Biology, University of Antwerp, 2610, Belgium
| | - Hamada AbdElgawad
- Department of Biology, University of Antwerp, 2610, Belgium; Department of Botany, Faculty of Science, University of Beni-Sueif, Beni-Sueif 62511, Egypt
| | - Altaf Ahmad
- Department of Botany, Aligarh Muslim University, Aligarh 201002, India
| | - Vanita Jain
- Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi 110012, India
| | | |
Collapse
|