151
|
Wang W, Fei Y, Wang Y, Song B, Li L, Zhang W, Cheng H, Zhang X, Chen S, Zhou JM. SHOU4/4L link cell wall cellulose synthesis to pattern-triggered immunity. THE NEW PHYTOLOGIST 2023; 238:1620-1635. [PMID: 36810979 DOI: 10.1111/nph.18829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Pattern recognition receptors (PRRs) are plasma membrane-localised proteins that sense molecular patterns to initiate pattern-triggered immunity (PTI). Receptor-like cytoplasmic kinases (RLCKs) function downstream of PRRs to propagate signal transduction via the phosphorylation of substrate proteins. The identification and characterisation of RLCK-regulated substrate proteins are critical for our understanding of plant immunity. We showed that SHOU4 and SHOU4L are rapidly phosphorylated upon various patterns elicitation and are indispensable for plant resistance to bacterial and fungal pathogens. Protein-protein interaction and phosphoproteomic analysis revealed that BOTRYTIS-INDUCED KINASE 1, a prominent protein kinase of RLCK subfamily VII (RLCK-VII), interacted with SHOU4/4L and phosphorylated multiple serine residues on SHOU4L N-terminus upon pattern flg22 treatment. Neither phospho-dead nor phospho-mimic SHOU4L variants complemented pathogen resistance and plant development defect of the loss-of-function mutant, suggesting that reversible phosphorylation of SHOU4L is critical to plant immunity and plant development. Co-immunoprecipitation data revealed that flg22 induced SHOU4L dissociation from cellulose synthase 1 (CESA1) and that a phospho-mimic SHOU4L variant inhibited the interaction between SHOU4L and CESA1, indicating the link between SHOU4L-mediated cellulose synthesis and plant immunity. This study thus identified SHOU4/4L as new components of PTI and preliminarily revealed the mechanism governing SHOU4L regulation by RLCKs.
Collapse
Affiliation(s)
- Weibing Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yue Fei
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongjin Wang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beibei Song
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lin Li
- National Institute of Biological Sciences, Beijing, 100101, China
| | - Wenjing Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hangyuan Cheng
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojuan Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - She Chen
- National Institute of Biological Sciences, Beijing, 100101, China
| | - Jian-Min Zhou
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, 572025, China
| |
Collapse
|
152
|
Wang J, Liu S, Ren P, Jia F, Kang F, Wang R, Xue R, Yan X, Huang L. A novel protein elicitor (PeSy1) from Saccharothrix yanglingensis induces plant resistance and interacts with a receptor-like cytoplasmic kinase in Nicotiana benthamiana. MOLECULAR PLANT PATHOLOGY 2023; 24:436-451. [PMID: 36872468 PMCID: PMC10098051 DOI: 10.1111/mpp.13312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/28/2022] [Accepted: 01/30/2023] [Indexed: 05/03/2023]
Abstract
Previously, we reported a rare actinomycete Saccharothrix yanglingensis Hhs.015 with strong biocontrol ability, which can colonize plant tissues and induce resistance, but the key elicitor and immune mechanisms were unclear. In this study, a novel protein elicitor screened from the genome of Hhs.015, PeSy1 (protein elicitor of S. yanglingensis 1), could induce a strong hypersensitive response (HR) and resistance in plants. The PeSy1 gene encodes an 11 kDa protein with 109 amino acids that is conserved in Saccharothrix species. PeSy1-His recombinant protein induced early defence events such as a cellular reactive oxygen species burst, callose deposition, and the activation of defence hormone signalling pathways, which enhanced Nicotiana benthamiana resistance to Sclerotinia sclerotiorum and Phytophthora capsici, and Solanum lycopersicum resistance to Pseudomonas syringae pv. tomato DC3000. Through pull-down and mass spectrometry, candidate proteins that interacted with PeSy1 were obtained from N. benthamiana. We confirmed the interaction between receptor-like cytoplasmic kinase RSy1 (Response to PeSy1) and PeSy1 using co-immunoprecipitation, bimolecular fluorescence complementation, and microscale thermophoresis. PeSy1 treatment promoted up-regulation of marker genes in pattern-triggered immunity. The cell death it elicited was dependent on the co-receptors NbBAK1 and NbSOBIR1, suggesting that PeSy1 acts as a microbe-associated molecular pattern from Hhs.015. Additionally, RSy1 positively regulated PeSy1-induced plants resistant to S. sclerotiorum. In conclusion, our results demonstrated a novel receptor-like cytoplasmic kinase in the plant perception of microbe-associated molecular patterns, and the potential of PeSy1 in induced resistance provided a new strategy for biological control of actinomycetes in agricultural diseases.
Collapse
Affiliation(s)
- Jianxun Wang
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Shang Liu
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Peng Ren
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Fengguo Jia
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Feng Kang
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Ruolin Wang
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Renzheng Xue
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Xia Yan
- College of Life ScienceNorthwest A&F UniversityYanglingChina
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
| | - Lili Huang
- State Key Laboratory of Crop Stress Biology for Arid AreasNorthwest A&F UniversityYanglingChina
- College of Plant ProtectionNorthwest A&F UniversityYanglingChina
| |
Collapse
|
153
|
Cong S, Li JZ, Xiong ZZ, Wei HL. Diverse interactions of five core type III effectors from Ralstonia solanacearum with plants. J Genet Genomics 2023; 50:341-352. [PMID: 35597445 DOI: 10.1016/j.jgg.2022.04.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/29/2022] [Accepted: 04/30/2022] [Indexed: 11/24/2022]
Abstract
Ralstonia solanacearum is a widespread plant bacterial pathogen that can launch a range of type III effectors (T3Es) to cause disease. In this study, we isolate a pathogenic R. solanacearum strain named P380 from tomato rhizosphere. Five out of 12 core T3Es of strain P380 are introduced into Pseudomonas syringae DC3000D36E separately to determine their functions in interacting with plants. DC3000D36E that harbors each effector suppresses FliC-triggered Pti5 and ACRE31 expression, ROS burst, and callose deposition. RipAE, RipU, and RipW elicit cell death as well as upregulate the MAPK cascades in Nicotiana benthamiana. The derivatives RipC1ΔDXDX(T/V) and RipWΔDKXXQ but not RipAEK310R fail to suppress ROS burst. Moreover, RipAEK310R and RipWΔDKXXQ retain the cell death elicitation ability. RipAE and RipW are associated with salicylic acid and jasmonic acid pathways, respectively. RipAE and RipAQ significantly promote the propagation of DC3000D36E in plants. The five core T3Es localize in diverse subcellular organelles of nucleus, plasma membrane, endoplasmic reticulum, and Golgi network. The suppressor of G2 allele of Skp1 is required for RipAE but not RipU-triggered cell death in N. benthamiana. These results indicate that the core T3Es in R. solanacearum play diverse roles in plant-pathogen interactions.
Collapse
Affiliation(s)
- Shen Cong
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jun-Zhou Li
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zheng-Zhong Xiong
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Hai-Lei Wei
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
154
|
Bao Y, Li Y, Chang Q, Chen R, Wang W, Zhang Q, Chen S, Xu G, Wang X, Cui F, Dou D, Liang X. A pair of G-type lectin receptor-like kinases modulates nlp20-mediated immune responses by coupling to the RLP23 receptor complex. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:1312-1327. [PMID: 36633200 DOI: 10.1111/jipb.13449] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/05/2023] [Indexed: 05/13/2023]
Abstract
Plant cells recognize microbial patterns with the plasma-membrane-localized pattern-recognition receptors consisting mainly of receptor kinases (RKs) and receptor-like proteins (RLPs). RKs, such as bacterial flagellin receptor FLS2, and their downstream signaling components have been studied extensively. However, newly discovered regulatory components of RLP-mediated immune signaling, such as the nlp20 receptor RLP23, await identification. Unlike RKs, RLPs lack a cytoplasmic kinase domain, instead recruiting the receptor-like kinases (RLKs) BAK1 and SOBIR1. SOBIR1 specifically works as an adapter for RLP-mediated immunity. To identify new regulators of RLP-mediated signaling, we looked for SOBIR1-binding proteins (SBPs) in Arabidopsis thaliana using protein immunoprecipitation and mass spectrometry, identifying two G-type lectin RLKs, SBP1 and SBP2, that physically interacted with SOBIR1. SBP1 and SBP2 showed high sequence similarity, were tandemly repeated on chromosome 4, and also interacted with both RLP23 and BAK1. sbp1 sbp2 double mutants obtained via CRISPR-Cas9 gene editing showed severely impaired nlp20-induced reactive oxygen species burst, mitogen-activated protein kinase (MAPK) activation, and defense gene expression, but normal flg22-induced immune responses. We showed that SBP1 regulated nlp20-induced immunity in a kinase activity-independent manner. Furthermore, the nlp20-induced the RLP23-BAK1 interaction, although not the flg22-induced FLS2-BAK1 interaction, was significantly reduced in sbp1 sbp2. This study identified SBPs as new regulatory components in RLP23 receptor complex that may specifically modulate RLP23-mediated immunity by positively regulating the interaction between the RLP23 receptor and the BAK1 co-receptor.
Collapse
Affiliation(s)
- Yazhou Bao
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yixin Li
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Qin Chang
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Rubin Chen
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Weijie Wang
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Qian Zhang
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Shuxian Chen
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Guangyuan Xu
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Xiaodan Wang
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Fuhao Cui
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
| | - Daolong Dou
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiangxiu Liang
- MOA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing, 100193, China
- College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| |
Collapse
|
155
|
Zhong G, Chen Y, Liu S, Gao C, Chen R, Wang Z, Wang W, Tang D. EDR1 associates with its homologs to synergistically regulate plant immunity in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 330:111619. [PMID: 36737004 DOI: 10.1016/j.plantsci.2023.111619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
ENHANCED DISEASE RESISTANCE 1 (EDR1), a Raf-like mitogen-activated protein kinase (MAPK) kinase kinase (MAPKKK), is a negative regulator of resistance. There are three homologs, RAF3/4/5, of EDR1 in Arabidopsis. However, the roles of RAF3/4/5 in resistance and their functional link with EDR1 in plant immunity remain unclear. Here, we showed that the raf3/4/5 triple mutant displayed wild-type-like phenotypes to the powdery mildew pathogen Golovinomyces cichoracearum UCSC1 and the bacterial pathogen Pseudomonas syringae pv. tomato (Pto) DC3000. However, the edr1 raf3/4/5 quadruple mutant exhibited enhanced resistance to G. cichoracearum UCSC1 and Pto DC3000 compared to edr1. Consistently, MPK3/6 kinase activity was more highly activated in edr1 raf3/4/5 than that in edr1. Moreover, the enhanced resistance of edr1 raf3/4/5 required SALICYLIC ACID INDUCTION DEFICIENT 2 (SID2), an isochorismate synthase required for salicylic acid (SA) synthesis. Additionally, unlike EDR1, RAF3/4/5 weakly and indirectly associated with MKK4/5, and EDR1 was directly associated with RAF3/4/5. Taken together, these data indicate that EDR1 associates with RAF3/4/5, and they may function together to synergistically suppress MAPK cascades activation, which reveal the complexity and importance of Raf-like MAPKKKs in plant immunity regulation.
Collapse
Affiliation(s)
- Guitao Zhong
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China; State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yongming Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Simu Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Renjie Chen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanchun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
156
|
Chen C, Zhao Y, Tabor G, Nian H, Phillips J, Wolters P, Yang Q, Balint-Kurti P. A leucine-rich repeat receptor kinase gene confers quantitative susceptibility to maize southern leaf blight. THE NEW PHYTOLOGIST 2023; 238:1182-1197. [PMID: 36721267 DOI: 10.1111/nph.18781] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Southern leaf blight (SLB), caused by the necrotrophic fungal pathogen Cochliobolus heterostrophus (anamorph Bipolaris maydis), is a major foliar disease which causes significant yield losses in maize worldwide. A major quantitative trait locus, qSLB3.04 , conferring recessive resistance to SLB was previously mapped on maize chromosome 3. Using a combination of map-based cloning, association analysis, ethyl methanesulfonate and transposon mutagenesis, and CRISPR-Cas9 editing, we demonstrate that a leucine-rich repeat receptor-like kinase gene which we have called ChSK1 (Cochliobolus heterostrophus Susceptibility Kinase 1) at qSLB3.04 causes increased susceptibility to SLB. Genes of this type have generally been associated with the defense response. We present evidence that ChSK1 may be associated with suppression of the basal immune response. These findings contribute to our understanding of plant disease susceptibility genes and the potential to use them for engineering durable disease resistance.
Collapse
Affiliation(s)
- Chuan Chen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yaqi Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Girma Tabor
- Corteva Agriscience™, Johnston, IA, 50131, USA
| | - Huiqin Nian
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | | | | | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
| |
Collapse
|
157
|
Abstract
Robust plant immune systems are fine-tuned by both protein-coding genes and non-coding RNAs. Long non-coding RNAs (lncRNAs) refer to RNAs with a length of more than 200 nt and usually do not have protein-coding function and do not belong to any other well-known non-coding RNA types. The non-protein-coding, low expression, and non-conservative characteristics of lncRNAs restrict their recognition. Although studies of lncRNAs in plants are in the early stage, emerging studies have shown that plants employ lncRNAs to regulate plant immunity. Moreover, in response to stresses, numerous lncRNAs are differentially expressed, which manifests the actions of low-expressed lncRNAs and makes plant-microbe/insect interactions a convenient system to study the functions of lncRNAs. Here, we summarize the current advances in plant lncRNAs, discuss their regulatory effects in different stages of plant immunity, and highlight their roles in diverse plant-microbe/insect interactions. These insights will not only strengthen our understanding of the roles and actions of lncRNAs in plant-microbe/insect interactions but also provide novel insight into plant immune responses and a basis for further research in this field.
Collapse
Affiliation(s)
- Juan Huang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Wenling Zhou
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Zhang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
- HainanYazhou Bay Seed Lab, Sanya, China
| | - Yi Li
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| |
Collapse
|
158
|
Rêgo APB, Mora-Ocampo IY, Corrêa RX. Interactions of Different Species of Phytophthora with Cacao Induce Genetic, Biochemical, and Morphological Plant Alterations. Microorganisms 2023; 11:1172. [PMID: 37317146 DOI: 10.3390/microorganisms11051172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/22/2023] [Accepted: 04/24/2023] [Indexed: 06/16/2023] Open
Abstract
Diseases associated with Phytophthora cause considerable losses in cocoa production worldwide. Analyzing genes, proteins, and metabolites involved in Theobroma cacao's interaction with Phytophthora species is essential to explaining the molecular aspects of plant defense. Through a systematic literature review, this study aims to identify reports of genes, proteins, metabolites, morphological characteristics, and molecular and physiological processes of T. cacao involved in its interaction with species of Phytophthora. After the searches, 35 papers were selected for the data extraction stage, according to pre-established inclusion and exclusion criteria. In these studies, 657 genes and 32 metabolites, among other elements (molecules and molecular processes), were found to be involved in the interaction. The integration of this information resulted in the following conclusions: the expression patterns of pattern recognition receptors (PRRs) and a possible gene-to-gene interaction participate in cocoa resistance to Phytophthora spp.; the expression pattern of genes that encode pathogenesis-related (PRs) proteins is different between resistant and susceptible genotypes; phenolic compounds play an important role in preformed defenses; and proline accumulation may be involved in cell wall integrity. Only one proteomics study of T. cacao-Phytophthora spp. was found, and some genes proposed via QTL analysis were confirmed in transcriptomic studies.
Collapse
Affiliation(s)
- Angra Paula Bomfim Rêgo
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Irma Yuliana Mora-Ocampo
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado km 16, Ilhéus 45662-900, Bahia, Brazil
| | - Ronan Xavier Corrêa
- Centro de Biotecnologia e Genética (CBG), Universidade Estadual de Santa Cruz (UESC), Rodovia Jorge Amado km 16, Ilhéus 45662-900, Bahia, Brazil
- Departamento de Ciências Biológicas (DCB), Universidade Estadual de Santa Cruz, Ilhéus 45662-900, Bahia, Brazil
| |
Collapse
|
159
|
Yadav AK, Singh CK, Kalia RK, Mittal S, Wankhede DP, Kakani RK, Ujjainwal S, Aakash, Saroha A, Nathawat NS, Rani R, Panchariya P, Choudhary M, Solanki K, Chaturvedi KK, Archak S, Singh K, Singh GP, Singh AK. Genetic diversity, population structure, and genome-wide association study for the flowering trait in a diverse panel of 428 moth bean (Vigna aconitifolia) accessions using genotyping by sequencing. BMC PLANT BIOLOGY 2023; 23:228. [PMID: 37120525 PMCID: PMC10148550 DOI: 10.1186/s12870-023-04215-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/05/2023] [Indexed: 05/03/2023]
Abstract
BACKGROUND Moth bean (Vigna aconitifolia) is an underutilized, protein-rich legume that is grown in arid and semi-arid areas of south Asia and is highly resistant to abiotic stresses such as heat and drought. Despite its economic importance, the crop remains unexplored at the genomic level for genetic diversity and trait mapping studies. To date, there is no report of SNP marker discovery and association mapping of any trait in this crop. Therefore, this study aimed to dissect the genetic diversity, population structure and marker-trait association for the flowering trait in a diversity panel of 428 moth bean accessions using genotyping by sequencing (GBS) approach. RESULTS A total of 9078 high-quality single nucleotide polymorphisms (SNPs) were discovered by genotyping of 428 moth bean accessions. Model-based structure analysis and PCA grouped the moth bean accessions into two subpopulations. Cluster analysis revealed accessions belonging to the Northwestern region of India had higher variability than accessions from the other regions suggesting that this region represents its center of diversity. AMOVA revealed more variations within individuals (74%) and among the individuals (24%) than among the populations (2%). Marker-trait association analysis using seven multi-locus models including mrMLM, FASTmrEMMA FASTmrEMMA, ISIS EM-BLASSO, MLMM, BLINK and FarmCPU revealed 29 potential genomic regions for the trait days to 50% flowering, which were consistently detected in three or more models. Analysis of the allelic effect of the major genomic regions explaining phenotypic variance of more than 10% and those detected in at least 2 environments showed 4 genomic regions with significant phenotypic effect on this trait. Further, we also analyzed genetic relationships among the Vigna species using SNP markers. The genomic localization of moth bean SNPs on genomes of closely related Vigna species demonstrated that maximum numbers of SNPs were getting localized on Vigna mungo. This suggested that the moth bean is most closely related to V. mungo. CONCLUSION Our study shows that the north-western regions of India represent the center of diversity of the moth bean. Further, the study revealed flowering-related genomic regions/candidate genes which can be potentially exploited in breeding programs to develop early-maturity moth bean varieties.
Collapse
Affiliation(s)
- Arvind Kumar Yadav
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Chandan Kumar Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Rajwant K Kalia
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Shikha Mittal
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | | | - Rajesh K Kakani
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Shraddha Ujjainwal
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Aakash
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Ankit Saroha
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - N S Nathawat
- ICAR- Central Arid Zone Research Institute, Regional Research Station, Bikaner, Rajasthan, India
| | - Reena Rani
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Pooja Panchariya
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Manoj Choudhary
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - Kantilal Solanki
- ICAR- Central Arid Zone Research Institute, Jodhpur, Rajasthan, India
| | - K K Chaturvedi
- ICAR- Indian Agricultural Statistics Research Institute, New Delhi, Delhi, India
| | - Sunil Archak
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
| | - Kuldeep Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | | | - Amit Kumar Singh
- ICAR- National Bureau of Plant Genetic Resources, Pusa Campus, New Delhi, Delhi, India.
| |
Collapse
|
160
|
Majumdar A, Sharma A, Belludi R. Natural and Engineered Resistance Mechanisms in Plants against Phytoviruses. Pathogens 2023; 12:619. [PMID: 37111505 PMCID: PMC10143959 DOI: 10.3390/pathogens12040619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/14/2023] [Accepted: 04/16/2023] [Indexed: 04/29/2023] Open
Abstract
Plant viruses, as obligate intracellular parasites, rely exclusively on host machinery to complete their life cycle. Whether a virus is pathogenic or not depends on the balance between the mechanisms used by both plants and viruses during the intense encounter. Antiviral defence mechanisms in plants can be of two types, i.e., natural resistance and engineered resistance. Innate immunity, RNA silencing, translational repression, autophagy-mediated degradation, and resistance to virus movement are the possible natural defence mechanisms against viruses in plants, whereas engineered resistance includes pathogen-derived resistance along with gene editing technologies. The incorporation of various resistance genes through breeding programmes, along with gene editing tools such as CRISPR/Cas technologies, holds great promise in developing virus-resistant plants. In this review, different resistance mechanisms against viruses in plants along with reported resistance genes in major vegetable crops are discussed.
Collapse
Affiliation(s)
- Anik Majumdar
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| | - Abhishek Sharma
- Department of Vegetable Science, College of Horticulture and Forestry, Punjab Agricultural University, Ludhiana 141004, Punjab, India
| | - Rakesh Belludi
- Department of Plant Pathology, College of Agriculture, Punjab Agricultural University, Ludhiana 141004, Punjab, India; (A.M.); (R.B.)
| |
Collapse
|
161
|
Che Z, Zhang S, Pu Y, Yang Y, Liu H, Yang H, Wang L, Zhang Y, Liu B, Zhang H, Wang H, Cheng H, Yu D. A novel soybean malectin-like receptor kinase-encoding gene, GmMLRK1, provides resistance to soybean mosaic virus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2692-2706. [PMID: 36728590 DOI: 10.1093/jxb/erad046] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 01/31/2023] [Indexed: 06/06/2023]
Abstract
Soybean mosaic virus (SMV) severely damages soybean [Glycine max (L.) Merr.] yield and seed quality. Moreover, the underlying genetic determinants of resistance to SMV remain largely unknown. Here, we performed a genome-wide association study (GWAS) of SMV resistance in a panel of 219 diverse soybean accessions across four environments and identified a new resistance-related gene, GmMLRK1, at the major resistance locus Rsv4 on chromosome 2. GmMLRK1 encodes a malectin-like receptor kinase (RK) that was induced earlier and to a greater degree in leaves of the SMV-resistant cultivar Kefeng No. 1 than in those of the susceptible cultivar Nannong 1138-2 after inoculation. We demonstrated that soybean plants overexpressing GmMLRK1 show broad-spectrum resistance to both strains SC7 and SC3 on the basis of reduced viral accumulation, increased reactive oxygen species production, and local cell death associated with the hypersensitive response. In contrast, GmMLRK1 knockout mutants were more susceptible to both pathotypes. Haplotype analysis revealed the presence of five haplotypes (H1-H5) within the soybean population, and only H1 provided SMV resistance, which was independent of its tightly linked SMV resistance gene RNase-H at the same locus. These results report a novel gene that adds new understanding of SMV resistance and can be used for breeding resistant soybean accessions.
Collapse
Affiliation(s)
- Zhijun Che
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- School of Life Sciences, Guangzhou University, Guangzhou, China
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Shuyu Zhang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yixiang Pu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yuming Yang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
- Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, China
| | - Hailun Liu
- Institute of Fruit Tree Research, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Hui Yang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Li Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Yuhang Zhang
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hengyou Zhang
- Key Laboratory of Soybean Molecular Design and Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin, China
| | - Hui Wang
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Hao Cheng
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| | - Deyue Yu
- National Center for Soybean Improvement, National Key Laboratory of Crop Genetics and Germplasm Enhancement, Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
162
|
Sun E, Yu H, Chen Z, Cai M, Mao X, Li Y, Zuo C. The enhanced Valsa canker resistance conferred by MdLecRK-S.4.3 in Pyrus betulifolia can be largely suppressed by PbePUB36. JOURNAL OF EXPERIMENTAL BOTANY 2023:erad126. [PMID: 37013998 DOI: 10.1093/jxb/erad126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Indexed: 06/19/2023]
Abstract
L-type lectin receptor-like kinases (L-LecRKs) act as a sensor of extracellular signals and an initiator for plant immune responses. However, the function of LecRK-S.4 on plant immunity has not been extensively investigated. At present, in the apple (Malus domestica) genome, we identified that MdLecRK-S.4.3, a homologous gene of LecRK-S.4, was differentially expressed during the occursion of Valsa canker. Over-expression of MdLecRK-S.4.3 facilitated the induction of immune response and enhanced the Valsa canker resistance of apple and pear fruit, and 'Duli-G03' (Pyrus betulifolia) suspension cells. On the contrary, the expression of PbePUB36, RLCK XI subfamily member, was significantly repressed in the MdLecRK-S.4.3 overexpressed cell lines. Over-expression of PbePUB36 interfered with the Valsa canker resistance and immune response caused by up-regulation of MdLecRK-S.4.3. Furthermore, MdLecRK-S.4.3 interacted with BAK1 or PbePUB36 in vivo. In conclusion, MdLecRK-S.4.3 activated various immune responses and positively regulate Valsa canker resistance, which could be largely compromised by PbePUB36. MdLecRK-S.4.3 interacted with PbePUB36 and/or MdBAK1 to mediate the immune responses. This finding provides a reference for studying the molecular mechanism of resistance to Valsa canker and resistance breeding.
Collapse
Affiliation(s)
- E Sun
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Hongqiang Yu
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Zhongjian Chen
- Agro-Biological Gene Research Center, Guangdong Academy of Agriculture, Guangzhou 510640, China
| | - Minrui Cai
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Xia Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Yanyan Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
| | - Cunwu Zuo
- College of Horticulture, Gansu Agricultural University, Lanzhou, Gansu, 730070, China
- State Key Laboratory of Aridland Crop Science, Lanzhou 730070, China
| |
Collapse
|
163
|
Huang F, He N, Yu M, Li D, Yang D. Identification and fine mapping of a new bacterial blight resistance gene, Xa43(t), in Zhangpu wild rice (Oryza rufipogon). PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:433-439. [PMID: 36689326 DOI: 10.1111/plb.13502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Bacterial blight (BB) is currently considered one of the most serious rice diseases and is caused by Xanthomonas oryzae pv. oryzae (Xoo). Numerous studies have shown that breeding resistant rice varieties is one of the most effective methods to prevent BB, and it is important to identify and isolate more BB resistance (R) genes from different rice resources. Using a map-based approach, we identified a new QTL/gene, Xa43(t), from ZhangPu wild rice, which was highly resistant to the BB isolate PX099. We performed bulked segregant analysis combined with candidate gene prediction to identify the candidate gene. The Xa43(t) gene was narrowed down to a 29-kb region containing four putative genes. More importantly, the candidate gene Xa43(t) did not affect the main agronomic traits of rice. We also identified a widely applicable molecular marker, namely Inde1-18, which co-segregates with the Xa43(t) gene. The Xa43(t) gene is a new broad-spectrum BB resistance gene without identified alleles and has good application prospects for rice disease resistance breeding.
Collapse
Affiliation(s)
- F Huang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, China
| | - N He
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, China
| | - M Yu
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, China
| | - D Li
- Anxi Agricultural and Rural Bureau, Anxi, Fujian Province, China
| | - D Yang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fujian High Quality Rice Research & Development Center, Fuzhou, China
| |
Collapse
|
164
|
Wang R, Bai J, Yan G, Xiao Z, Chen K, Li K, Tang J, Lu D. The enzymatic hydrolysate of fucoidan from Sargassum hemiphyllum triggers immunity in plants. JOURNAL OF PLANT PHYSIOLOGY 2023; 283:153967. [PMID: 36924537 PMCID: PMC9998127 DOI: 10.1016/j.jplph.2023.153967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 06/18/2023]
Abstract
Fucoidans are polysaccharides that consist predominantly of sulfated L-fucoses, from which, fucoidan oligosaccharides (FOSs) are prepared through different methods. Fucoidan has versatile physiological activities, like antiviral functions against SARS CoV-2 and bioactivitiy in enhancing immune responses. Although fucoidan or FOS has been widely used in mammals as functional foods and new drugs, its application in plants is still very limited. Moreover, whether fucoidan or its derived hydrolytic products can trigger immune responses in plants remained unknown. In this work, we demonstrate that the fucoidan enzymatic hydrolysate (FEH) prepared from Sargassum hemiphyllum triggers various immune responses, such as ROS production, MAPK activation, gene expression reprogramming, callose deposition, stomatal closure, and plant resistance to the bacterial strain Pseudomonas syringae pv. tomato (Pst) DC3000. Notably, FEH did not induce Arabidopsis root growth inhibition at the concentration used for triggering other immune responses. Our work suggests that EHF can potentially be used as a non-microbial elicitor in agricultural practices to protect plants from pathogen infection.
Collapse
Affiliation(s)
- Ranran Wang
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiaojiao Bai
- College of Pharmacy and Life Science, Jiujiang University, Jiujiang, Jiangxi, 332000, China
| | - Guofu Yan
- Beijing Leili Marine Bioindustry Inc., Beijing, 100093, China
| | - Zejun Xiao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kexin Chen
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaikai Li
- Beijing Leili Marine Bioindustry Inc., Beijing, 100093, China
| | - Jie Tang
- Beijing Leili Marine Bioindustry Inc., Beijing, 100093, China.
| | - Dongping Lu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei, 050021, China.
| |
Collapse
|
165
|
Wang Z, Yang B, Zheng W, Wang L, Cai X, Yang J, Song R, Yang S, Wang Y, Xiao J, Liu H, Wang Y, Wang X, Wang Y. Recognition of glycoside hydrolase 12 proteins by the immune receptor RXEG1 confers Fusarium head blight resistance in wheat. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:769-781. [PMID: 36575911 PMCID: PMC10037148 DOI: 10.1111/pbi.13995] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/21/2022] [Accepted: 12/20/2022] [Indexed: 05/13/2023]
Abstract
Fusarium head blight (FHB), caused by Fusarium graminearum, is a devastating disease in wheat (Triticum aestivum) that results in substantial yield losses and mycotoxin contamination. Reliable genetic resources for FHB resistance in wheat are lacking. In this study, we characterized glycoside hydrolase 12 (GH12) family proteins secreted by F. graminearum. We established that two GH12 proteins, Fg05851 and Fg11037, have functionally redundant roles in F. graminearum colonization of wheat. Furthermore, we determined that the GH12 proteins Fg05851 and Fg11037 are recognized by the leucine-rich-repeat receptor-like protein RXEG1 in the dicot Nicotiana benthamiana. Heterologous expression of RXEG1 conferred wheat responsiveness to Fg05851 and Fg11037, enhanced wheat resistance to F. graminearum and reduced levels of the mycotoxin deoxynivalenol in wheat grains in an Fg05851/Fg11037-dependent manner. In the RXEG1 transgenic lines, genes related to pattern-triggered plant immunity, salicylic acid, jasmonic acid, and anti-oxidative homeostasis signalling pathways were upregulated during F. graminearum infection. However, the expression of these genes was not significantly changed during infection by the deletion mutant ΔFg05851/Fg11037, suggesting that the recognition of Fg05851/Fg11037 by RXEG1 triggered plant resistance against FHB. Moreover, introducing RXEG1 into three other different wheat cultivars via crossing also conferred resistance to F. graminearum. Expression of RXEG1 did not have obvious deleterious effects on plant growth and development in wheat. Our study reveals that N. benthamiana RXEG1 remains effective when transferred into wheat, a monocot, which in turn suggests that engineering wheat with interfamily plant immune receptor transgenes is a viable strategy for increasing resistance to FHB.
Collapse
Affiliation(s)
- Zongkuan Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsuChina
- State Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics Institute, Nanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Bo Yang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsuChina
- College of Grassland ScienceNanjing Agricultural UniversityNanjingChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Wenyue Zheng
- College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Lei Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xingxing Cai
- State Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics Institute, Nanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Rongrong Song
- State Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics Institute, Nanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Sen Yang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Yuyin Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Jin Xiao
- State Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics Institute, Nanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Huiquan Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Plant ProtectionNorthwest A&F UniversityYanglingShaanxiChina
| | - Yan Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| | - Xiue Wang
- State Key Laboratory of Crop Genetics and Germplasm EnhancementCytogenetics Institute, Nanjing Agricultural University/JCIC‐MCPNanjingJiangsuChina
| | - Yuanchao Wang
- College of Plant ProtectionNanjing Agricultural UniversityNanjingJiangsuChina
- The Key Laboratory of Plant ImmunityNanjing Agricultural UniversityNanjingChina
| |
Collapse
|
166
|
Wu X, Zhang X, Wang H, Fang RX, Ye J. Structure-function analyses of coiled-coil immune receptors define a hydrophobic module for improving plant virus resistance. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1372-1388. [PMID: 36472617 PMCID: PMC10010612 DOI: 10.1093/jxb/erac477] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
Plant immunity relies on nucleotide-binding oligomerization domain (NOD)-like receptors (NLRs) that detect microbial patterns released by pathogens, and activate localized cell death to prevent the spread of pathogens. Tsw is the only identified resistance (R) gene encoding an NLR, conferring resistance to tomato spotted wilt orthotospovirus (TSWV) in pepper species (Capsicum, Solanaceae). However, molecular and cellular mechanisms of Tsw-mediated resistance are still elusive. Here, we analysed the structural and cellular functional features of Tsw protein, and defined a hydrophobic module to improve NLR-mediated virus resistance. The plasma membrane associated N-terminal 137 amino acid in the coiled-coil (CC) domain of Tsw is the minimum fragment sufficient to trigger cell death in Nicotiana benthamiana plants. Transient and transgenic expression assays in plants indicated that the amino acids of the hydrophobic groove (134th-137th amino acid) in the CC domain is critical for its full function and can be modified for enhanced disease resistance. Based on the structural features of Tsw, a super-hydrophobic funnel-like mutant, TswY137W, was identified to confer higher resistance to TSWV in a SGT1 (Suppressor of G-two allele of Skp1)-dependent manner. The same point mutation in a tomato Tsw-like NLR protein also improved resistance to pathogens, suggesting a feasible way of structure-assisted improvement of NLRs.
Collapse
Affiliation(s)
| | | | - Hongwei Wang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Rong-xiang Fang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | | |
Collapse
|
167
|
Chen L, Xiao J, Huang Z, Zhou Q, Liu B. Quantitative phosphoproteomic analysis of chitin-triggered immune responses in the plasma membrane of Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:219-229. [PMID: 36396124 DOI: 10.1071/fp22045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 10/25/2022] [Indexed: 06/16/2023]
Abstract
Plant diseases seriously damage crop production, and most plant diseases are caused by fungi. Fungal cell walls contain chitin, a highly conserved component that is widely recognised by plants as a PAMP (pathogen-associated molecular pattern) to induce defence responses. The molecular mechanisms that function downstream of chitin-triggered intracellular phosphorylation remain largely unknown. In this study, we performed quantitative phosphoproteomics analysis to study protein phosphorylation changes in the plasma membrane after chitin treatment in Arabidopsis thaliana L. seedlings. Proteins with altered phosphorylation status after chitin treatment participated in biological processes ranging from signalling, localisation, and transport, to biogenesis, processing, and metabolism, suggesting that PAMP signalling targets multiple processes to coordinate the immune response. These results provide important insights into the molecular mechanism of chitin-induced plant immunity.
Collapse
Affiliation(s)
- Lijuan Chen
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Jiahui Xiao
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Zhanhao Huang
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Qi Zhou
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| | - Bing Liu
- Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, People's Republic of China
| |
Collapse
|
168
|
Wang K, Li S, Chen L, Tian H, Chen C, Fu Y, Du H, Hu Z, Li R, Du Y, Li J, Zhao Q, Du C. E3 ubiquitin ligase OsPIE3 destabilises the B-lectin receptor-like kinase PID2 to control blast disease resistance in rice. THE NEW PHYTOLOGIST 2023; 237:1826-1842. [PMID: 36440499 DOI: 10.1111/nph.18637] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Accepted: 11/18/2022] [Indexed: 06/16/2023]
Abstract
Previous studies have reported that PID2, which encodes a B-lectin receptor-like kinase, is a key gene in the resistance of rice to Magnaporthe oryzae strain ZB15. However, the PID2-mediated downstream signalling events remain largely unknown. The U-box E3 ubiquitin ligase OsPIE3 (PID2-interacting E3) was isolated and confirmed to play key roles in PID2-mediated rice blast resistance. Yeast two-hybrid analysis showed that the armadillo repeat region of OsPIE3 is required for its interaction with PID2. Further investigation demonstrated that OsPIE3 can modify the subcellular localisation of PID2, thus promoting its nuclear recruitment from the plasma membrane for protein degradation in the ubiquitin-proteasome system. Site-directed mutagenesis of a conserved cysteine site (C230S) within the U-box domain of OsPIE3 reduces PID2 translocation and ubiquitination. Genetic analysis suggested that OsPIE3 loss-of-function mutants exhibited enhanced resistance to M. oryzae isolate ZB15, whereas mutants with overexpressed OsPIE3 exhibited reduced resistance. Furthermore, the OsPIE3/PID2-double mutant displayed a similar blast phenotype to that of the PID2 single mutant, suggesting that OsPIE3 is a negative regulator and functions along with PID2 in blast disease resistance. Our findings confirm that the E3 ubiquitin ligase OsPIE3 is necessary for PID2-mediated rice blast disease resistance regulation.
Collapse
Affiliation(s)
- Ke Wang
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Shen Li
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Longxin Chen
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Haoran Tian
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Cong Chen
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yihan Fu
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Haitao Du
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Zheng Hu
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Runting Li
- Molecular Biology Laboratory, Zhengzhou Normal University, Zhengzhou, 450044, China
| | - Yanxiu Du
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Junzhou Li
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
- Rice Industrial Technology Research Institute, Guizhou University, Guiyang, 550025, China
| | - Changqing Du
- Collaborative Innovation Center of Henan Grain Crops, Key Laboratory of Henan Rice Biology, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, China
| |
Collapse
|
169
|
Molecular regulation of immunity in tea plants. Mol Biol Rep 2023; 50:2883-2892. [PMID: 36538170 DOI: 10.1007/s11033-022-08177-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 12/06/2022] [Indexed: 12/24/2022]
Abstract
Tea, which is mainly produced using the young leaves and buds of tea plants (Camellia sinensis (L.) O. Kuntze), is one of the most common non-alcoholic beverages consumed in the world. The standard of tea mostly depends on the variety and quality of tea plants, which generally grow in subtropical areas, where the warm and humid conditions are also conducive to the occurrence of diseases. In fighting against pathogens, plants rely on their sophisticated innate immune systems which has been extensively studied in model plants. Many components involved in pathogen associated molecular patterns (PAMPs) triggered immunity (PTI) and effector triggered immunity (ETI) have been found. Nevertheless, the molecular regulating network against pathogens (e.g., Pseudopestalotiopsis sp., Colletotrichum sp. and Exobasidium vexans) causing widespread disease (such as grey blight disease, anthracnose, and blister blight) in tea plants is still unclear. With the recent release of the genome data of tea plants, numerous genes involved in tea plant immunity have been identified, and the molecular mechanisms behind tea plant immunity is being studied. Therefore, the recent achievements in identifying and cloning functional genes/gene families, in finding crucial components of tea immunity signaling pathways, and in understanding the role of secondary metabolites have been summarized and the opportunities and challenges in the future studies of tea immunity are highlighted in this review.
Collapse
|
170
|
Wang Y, Zhang H, Wang P, Zhong H, Liu W, Zhang S, Xiong L, Wu Y, Xia Y. Arabidopsis EXTRA-LARGE G PROTEIN 1 (XLG1) functions together with XLG2 and XLG3 in PAMP-triggered MAPK activation and immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:825-837. [PMID: 36250681 DOI: 10.1111/jipb.13391] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Pattern-triggered immunity (PTI) is an essential strategy used by plants to deploy broad-spectrum resistance against pathogen attacks. Heterotrimeric G proteins have been reported to contribute to PTI. Of the three non-canonical EXTRA-LARGE G PROTEINs (XLGs) in Arabidopsis thaliana, XLG2 and XLG3 were shown to positively regulate immunity, but XLG1 was not considered to function in defense, based on the analysis of a weak xlg1 allele. In this study, we characterized the xlg1 xlg2 xlg3 triple knockout mutants generated from an xlg1 knockout allele. The strong xlg1 xlg2 xlg3 triple mutants compromised pathogen-associated molecular pattern (PAMP)-triggered activation of mitogen-activated protein kinases (MAPKs) and resistance to pathogen infection. The three XLGs interacted with MAPK cascade proteins involved in defense signaling, including the MAPK kinase kinases MAPKKK3 and MAPKKK5, the MAPK kinases MKK4 and MKK5, and the MAPKs MPK3 and MPK6. Expressing a constitutively active form of MKK4 restored MAPK activation and partially recovered the compromised disease resistance seen in the strong xlg1 xlg2 xlg3 triple mutant. Furthermore, mutations of all three XLGs largely restored the phenotype of the autoimmunity mutant bak1-interacting receptor-like kinase 1. Our study reveals that all three XLGs function redundantly in PAMP-triggered MAPK activation and plant immunity.
Collapse
Affiliation(s)
- Yiping Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
- Institute for Research and Continuing Education, Hong Kong Baptist University, Shen Zhen, 518057, China
| | - Hailei Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Pengxi Wang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Huan Zhong
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Wuzhen Liu
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Shoudong Zhang
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Liming Xiong
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yingying Wu
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yiji Xia
- Department of Biology, Hong Kong Baptist University, Hong Kong, 999077, China
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
- State Key Laboratory of Biological and Environmental Analysis, Hong Kong Baptist University, Hong Kong, 999077, China
| |
Collapse
|
171
|
Comparison of Tomato Transcriptomic Profiles Reveals Overlapping Patterns in Abiotic and Biotic Stress Responses. Int J Mol Sci 2023; 24:ijms24044061. [PMID: 36835470 PMCID: PMC9961515 DOI: 10.3390/ijms24044061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Until a few years ago, many studies focused on the transcriptomic response to single stresses. However, tomato cultivations are often constrained by a wide range of biotic and abiotic stress that can occur singularly or in combination, and several genes can be involved in the defensive mechanism response. Therefore, we analyzed and compared the transcriptomic responses of resistant and susceptible genotypes to seven biotic stresses (Cladosporium fulvum, Phytophthora infestans, Pseudomonas syringae, Ralstonia solanacearum, Sclerotinia sclerotiorum, Tomato spotted wilt virus (TSWV) and Tuta absoluta) and five abiotic stresses (drought, salinity, low temperatures, and oxidative stress) to identify genes involved in response to multiple stressors. With this approach, we found genes encoding for TFs, phytohormones, or participating in signaling and cell wall metabolic processes, participating in defense against various biotic and abiotic stress. Moreover, a total of 1474 DEGs were commonly found between biotic and abiotic stress. Among these, 67 DEGs were involved in response to at least four different stresses. In particular, we found RLKs, MAPKs, Fasciclin-like arabinogalactans (FLAs), glycosyltransferases, genes involved in the auxin, ET, and JA pathways, MYBs, bZIPs, WRKYs and ERFs genes. Detected genes responsive to multiple stress might be further investigated with biotechnological approaches to effectively improve plant tolerance in the field.
Collapse
|
172
|
Qi H, Yu J, Yuan X, Shen W, Zhang Z. The somatic embryogenesis receptor kinase TaSERK1 participates in the immune response to Rhizoctonia cerealis infection by interacting and phosphorylating the receptor-like cytoplasmic kinase TaRLCK1B in wheat. Int J Biol Macromol 2023; 228:604-614. [PMID: 36581032 DOI: 10.1016/j.ijbiomac.2022.12.240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/12/2022] [Accepted: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The sharp eyespot, caused by necrotrophic pathogen Rhizoctonia cerealis, often causes serious yield loss in wheat (Triticum aestivum). However, the mechanisms underlying wheat resistant responses to the pathogen are still limited. In this study, we performed a genome-wide analysis of somatic embryogenesis receptor kinase (SERK) family in wheat. As a result, a total of 26 TaSERK candidate genes were identified from the wheat genome. Only 6 TaSERK genes on the chromosomes 2A, 2B, 2D, 3A, 3B, and 3D showed obvious heightening expression patterns in resistant wheat infected with R. cerealis compared than those un-infected wheat. Of them, the transcripts of 3 TaSERK1 homoeologs on the chromosomes 2A, 2B, and 2D were significantly up-regulated in the highest level compared to other TaSERKs. Importantly, silencing of TaSERK1 significantly impaired wheat resistance to sharp eyespot. Further bio-molecular assays showed that TaSERK1 could interact with the defence-associated receptor-like cytoplasmic kinase TaRLCK1B, and phosphorylated TaRLCK1B. Together, the results suggest that TaSERK1 mediated resistance responses to R. cerealis infection by interacting and phosphorylating TaRLCK1B in wheat. This study sheds light on the understanding of the wheat SERKs in the innate immunity against R. cerealis, and provided a theoretical fulcrum to identify candidate resistant genes for improving wheat resistance against sharp eyespot in wheat.
Collapse
Affiliation(s)
- Haijun Qi
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture and Rural Affairs of the People's Republic China/The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jinfeng Yu
- College of Plant Protection, Shandong Agricultural University, Tai'an, Shandong 271018, China
| | - Xili Yuan
- Bureau of Agriculture, Animal Husbandry and Science and Technology of Ulat Middle Banner, Inner Mongolia 015300, China
| | - Wenbiao Shen
- College of Life Science, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| | - Zengyan Zhang
- Key Laboratory of Biology and Genetic Improvement of Triticeae Crops, Ministry of Agriculture and Rural Affairs of the People's Republic China/The National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
173
|
He J, Kong M, Qian Y, Gong M, Lv G, Song J. Cellobiose elicits immunity in lettuce conferring resistance to Botrytis cinerea. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:1022-1038. [PMID: 36385320 DOI: 10.1093/jxb/erac448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 11/09/2022] [Indexed: 06/16/2023]
Abstract
Cellobiose is the primary product of cellulose hydrolysis and is expected to function as a type of pathogen/damage-associated molecular pattern in evoking plant innate immunity. In this study, cellobiose was demonstrated to be a positive regulator in the immune response of lettuce, but halted autoimmunity when lettuce was exposed to concentrations of cellobiose >60 mg l-1. When lettuce plants were infected by Botrytis cinerea, cellobiose endowed plants with enhanced pre-invasion resistance by activating high β-1,3-glucanase and antioxidative enzyme activities at the initial stage of pathogen infection. Cellobiose-activated core regulatory factors such as EDS1, PTI6, and WRKY70, as well as salicylic acid signaling, played an indispensable role in modulating plant growth-defense trade-offs. Transcriptomics data further suggested that the cellobiose-activated plant-pathogen pathways are involved in microbe/pathogen-associated molecular pattern-triggered immune responses. Genes encoding receptor-like kinases, transcription factors, and redox homeostasis, phytohormone signal transduction, and pathogenesis-related proteins were also up- or down-regulated by cellobiose. Taken together, the findings of this study demonstrated that cellobiose serves as an elicitor to directly activate disease-resistance-related cellular functions. In addition, multiple genes have been identified as potential modulators of the cellobiose-induced immune response, which could aid understanding of underlying molecular events.
Collapse
Affiliation(s)
- Jiuxing He
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Meng Kong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yuanchao Qian
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Min Gong
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Guohua Lv
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Jiqing Song
- Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
174
|
Martín-Dacal M, Fernández-Calvo P, Jiménez-Sandoval P, López G, Garrido-Arandía M, Rebaque D, Del Hierro I, Berlanga DJ, Torres MÁ, Kumar V, Mélida H, Pacios LF, Santiago J, Molina A. Arabidopsis immune responses triggered by cellulose- and mixed-linked glucan-derived oligosaccharides require a group of leucine-rich repeat malectin receptor kinases. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 113:833-850. [PMID: 36582174 DOI: 10.1111/tpj.16088] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 05/20/2023]
Abstract
The plant immune system perceives a diversity of carbohydrate ligands from plant and microbial cell walls through the extracellular ectodomains (ECDs) of pattern recognition receptors (PRRs), which activate pattern-triggered immunity (PTI). Among these ligands are oligosaccharides derived from mixed-linked β-1,3/β-1,4-glucans (MLGs; e.g. β-1,4-D-(Glc)2 -β-1,3-D-Glc, MLG43) and cellulose (e.g. β-1,4-D-(Glc)3 , CEL3). The mechanisms behind carbohydrate perception in plants are poorly characterized except for fungal chitin oligosaccharides (e.g. β-1,4-d-(GlcNAc)6 , CHI6), which involve several receptor kinase proteins (RKs) with LysM-ECDs. Here, we describe the isolation and characterization of Arabidopsis thaliana mutants impaired in glycan perception (igp) that are defective in PTI activation mediated by MLG43 and CEL3, but not by CHI6. igp1-igp4 are altered in three RKs - AT1G56145 (IGP1), AT1G56130 (IGP2/IGP3) and AT1G56140 (IGP4) - with leucine-rich-repeat (LRR) and malectin (MAL) domains in their ECDs. igp1 harbors point mutation E906K and igp2 and igp3 harbor point mutation G773E in their kinase domains, whereas igp4 is a T-DNA insertional loss-of-function mutant. Notably, isothermal titration calorimetry (ITC) assays with purified ECD-RKs of IGP1 and IGP3 showed that IGP1 binds with high affinity to CEL3 (with dissociation constant KD = 1.19 ± 0.03 μm) and cellopentaose (KD = 1.40 ± 0.01 μM), but not to MLG43, supporting its function as a plant PRR for cellulose-derived oligosaccharides. Our data suggest that these LRR-MAL RKs are components of a recognition mechanism for both cellulose- and MLG-derived oligosaccharide perception and downstream PTI activation in Arabidopsis.
Collapse
Affiliation(s)
- Marina Martín-Dacal
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Patricia Fernández-Calvo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Pedro Jiménez-Sandoval
- University of Lausanne (UNIL), Biophore Building, Départament de Biologie Moléculaire Végétale (DBMV), UNIL Sorge, CH-1015, Lausanne, Switzerland
| | - Gemma López
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - María Garrido-Arandía
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Diego Rebaque
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Irene Del Hierro
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Diego José Berlanga
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Miguel Ángel Torres
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Varun Kumar
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Hugo Mélida
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
| | - Luis F Pacios
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| | - Julia Santiago
- University of Lausanne (UNIL), Biophore Building, Départament de Biologie Moléculaire Végétale (DBMV), UNIL Sorge, CH-1015, Lausanne, Switzerland
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM) - Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA/CSIC), Campus de Montegancedo UPM, 28223, Pozuelo de Alarcón, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaría y de Biosistemas, UPM, 28040, Madrid, Spain
| |
Collapse
|
175
|
Gou M, Balint-Kurti P, Xu M, Yang Q. Quantitative disease resistance: Multifaceted players in plant defense. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:594-610. [PMID: 36448658 DOI: 10.1111/jipb.13419] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/29/2022] [Indexed: 06/17/2023]
Abstract
In contrast to large-effect qualitative disease resistance, quantitative disease resistance (QDR) exhibits partial and generally durable resistance and has been extensively utilized in crop breeding. The molecular mechanisms underlying QDR remain largely unknown but considerable progress has been made in this area in recent years. In this review, we summarize the genes that have been associated with plant QDR and their biological functions. Many QDR genes belong to the canonical resistance gene categories with predicted functions in pathogen perception, signal transduction, phytohormone homeostasis, metabolite transport and biosynthesis, and epigenetic regulation. However, other "atypical" QDR genes are predicted to be involved in processes that are not commonly associated with disease resistance, such as vesicle trafficking, molecular chaperones, and others. This diversity of function for QDR genes contrasts with qualitative resistance, which is often based on the actions of nucleotide-binding leucine-rich repeat (NLR) resistance proteins. An understanding of the diversity of QDR mechanisms and of which mechanisms are effective against which classes of pathogens will enable the more effective deployment of QDR to produce more durably resistant, resilient crops.
Collapse
Affiliation(s)
- Mingyue Gou
- State Key Laboratory of Wheat and Maize Crop Science, Collaborative Innovation Center of Henan Grain Crops, Center for Crop Genome Engineering, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- The Shennong Laboratory, Zhengzhou, 450002, China
| | - Peter Balint-Kurti
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC, 27695, USA
- Plant Science Research Unit, USDA-ARS, Raleigh, NC, 27695, USA
| | - Mingliang Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Center for Crop Functional Genomics and Molecular Breeding, College of Agronomy, China Agricultural University, Beijing, 100193, China
| | - Qin Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Key Laboratory of Maize Biology and Genetic Breeding in Arid Area of Northwest Region of the Ministry of Agriculture, College of Agronomy, Northwest A&F University, Yangling, 712100, China
| |
Collapse
|
176
|
Yang K, Wang Y, Li J, Du Y, Zhai Y, Liang D, Shen D, Ji R, Ren X, Peng H, Jing M, Dou D. The Pythium periplocum elicitin PpEli2 confers broad-spectrum disease resistance by triggering a novel receptor-dependent immune pathway in plants. HORTICULTURE RESEARCH 2023; 10:uhac255. [PMID: 37533673 PMCID: PMC10390855 DOI: 10.1093/hr/uhac255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/14/2022] [Indexed: 08/04/2023]
Abstract
Elicitins are microbe-associated molecular patterns produced by oomycetes to elicit plant defense. It is still unclear whether elicitins derived from non-pathogenic oomycetes can be used as bioactive molecules for disease control. Here, for the first time we identify and characterize an elicitin named PpEli2 from the soil-borne oomycete Pythium periplocum, which is a non-pathogenic mycoparasite colonizing the root ecosystem of diverse plant species. Perceived by a novel cell surface receptor-like protein, REli, that is conserved in various plants (e.g. tomato, pepper, soybean), PpEli2 can induce hypersensitive response cell death and an immunity response in Nicotiana benthamiana. Meanwhile, PpEli2 enhances the interaction between REli and its co-receptor BAK1. The receptor-dependent immune response triggered by PpEli2 is able to protect various plant species against Phytophthora and fungal infections. Collectively, our work reveals the potential agricultural application of non-pathogenic elicitins and their receptors in conferring broad-spectrum resistance for plant protection.
Collapse
Affiliation(s)
- Kun Yang
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wang
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Jialu Li
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yaxin Du
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Zhai
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | - Dong Liang
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Rui Ji
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xuexiang Ren
- Institute of Plant Protection and Agro-Products Safety, Anhui Academy of Agricultural Sciences, Hefei 230001, China
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, USA
| | | | - Daolong Dou
- Key Laboratory of Biological Interaction and Crop Health, Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
177
|
Ma Y, Yu H, Lu Y, Gao S, Fatima M, Ming R, Yue J. Transcriptome analysis of sugarcane reveals rapid defense response of SES208 to Xanthomonas albilineans in early infection. BMC PLANT BIOLOGY 2023; 23:52. [PMID: 36694139 PMCID: PMC9872421 DOI: 10.1186/s12870-023-04073-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Diseases are the major factor affecting the quality and yield of sugarcane during its growth and development. However, our knowledge about the factors regulating disease responses remain limited. The present study focuses on identifying genes regulating transcriptional mechanisms responsible for resistance to leaf scald caused by Xanthomonas albilineans in S. spontaneum and S. officinarum. RESULTS After inoculation of the two sugarcane varieties SES208 (S. spontaneum) and LA Purple (S. officinarum) with Xanthomonas albilineans, SES208 exhibited significantly greater resistance to leaf scald caused by X. albilineans than did LA Purple. Using transcriptome analysis, we identified a total of 4323 and 1755 differentially expressed genes (DEGs) in inoculated samples of SES208 and LA Purple, respectively. Significantly, 262 DEGs were specifically identified in SES208 that were enriched for KEGG pathway terms such as plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Furthermore, we built a transcriptional regulatory co-expression network that specifically identified 16 and 25 hub genes in SES208 that were enriched for putative functions in plant-pathogen interactions, MAPK signaling, and plant hormone signal transduction. All of these essential genes might be significantly involved in resistance-regulating responses in SES208 after X. albilineans inoculation. In addition, we found allele-specific expression in SES208 that was associated with the resistance phenotype of SES208 when infected by X. albilineans. After infection with X. albilineans, a great number of DEGs associated with the KEGG pathways 'phenylpropanoid biosynthesis' and 'flavonoid biosynthesis' exhibited significant expression changes in SES208 compared to LA Purple that might contribute to superior leaf scald resistance in SES208. CONCLUSIONS We provided the first systematical transcriptome map that the higher resistance of SES208 is associated with and elicited by the rapid activation of multiple clusters of defense response genes after infection by X. albilineans and not merely due to changes in the expression of genes generically associated with stress resistance. These results will serve as the foundation for further understanding of the molecular mechanisms of resistance against X. albilineans in S. spontaneum.
Collapse
Affiliation(s)
- Yaying Ma
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Hongying Yu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518120, China
| | - Yijing Lu
- Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Genetics, Breeding and Multiple Utilization of Crops, Ministry of Education, Fujian Agriculture and Forestry University, Fuzhou, 350002, Fujian, China
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Sanji Gao
- National Engineering Research Center for Sugarcane, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Mahpara Fatima
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ray Ming
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Jingjing Yue
- College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
178
|
Traeger J, Hu D, Yang M, Stacey G, Orr G. Super-Resolution Imaging of Plant Receptor-Like Kinases Uncovers Their Colocalization and Coordination with Nanometer Resolution. MEMBRANES 2023; 13:142. [PMID: 36837645 PMCID: PMC9958960 DOI: 10.3390/membranes13020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 01/07/2023] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Plant cell signaling often relies on the cellular organization of receptor-like kinases (RLKs) within membrane nanodomains to enhance signaling specificity and efficiency. Thus, nanometer-scale quantitative analysis of spatial organizations of RLKs could provide new understanding of mechanisms underlying plant responses to environmental stress. Here, we used stochastic optical reconstruction fluorescence microscopy (STORM) to quantify the colocalization of the flagellin-sensitive-2 (FLS2) receptor and the nanodomain marker, remorin, within Arabidopsis thaliana root hair cells. We found that recovery of FLS2 and remorin in the plasma membrane, following ligand-induced internalization by bacterial-flagellin-peptide (flg22), reached ~85% of their original membrane density after ~90 min. The pairs colocalized at the membrane at greater frequencies, compared with simulated randomly distributed pairs, except for directly after recovery, suggesting initial uncoordinated recovery followed by remorin and FLS2 pairing in the membrane. The purinergic receptor, P2K1, colocalized with remorin at similar frequencies as FLS2, while FLS2 and P2K1 colocalization occurred at significantly lower frequencies, suggesting that these RLKs mostly occupy distinct nanodomains. The chitin elicitor receptor, CERK1, colocalized with FLS2 and remorin at much lower frequencies, suggesting little coordination between CERK1 and FLS2. These findings emphasize STORM's capacity to observe distinct nanodomains and degrees of coordination between plant cell receptors, and their respective immune pathways.
Collapse
Affiliation(s)
- Jeremiah Traeger
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Mengran Yang
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Gary Stacey
- Division of Plant Sciences, University of Missouri, Columbia, MO 65211, USA
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| |
Collapse
|
179
|
Zhang Y, Yin Z, Pi L, Wang N, Wang J, Peng H, Dou D. A Nicotiana benthamiana receptor-like kinase regulates Phytophthora resistance by coupling with BAK1 to enhance elicitin-triggered immunity. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36661038 DOI: 10.1111/jipb.13458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/19/2023] [Indexed: 06/17/2023]
Abstract
Cell-surface-localized leucine-rich-repeat receptor-like kinases (LRR-RLKs) are crucial for plant immunity. Most LRR-RLKs that act as receptors directly recognize ligands via a large extracellular domain (ECD), whereas LRR-RLK that serve as regulators are relatively small and contain fewer LRRs. Here, we identified LRR-RLK regulators using high-throughput tobacco rattle virus (TRV)-based gene silencing in the model plant Nicotiana benthamiana. We used the cell-death phenotype caused by INF1, an oomycete elicitin that induces pattern-triggered immunity, as an indicator. By screening 33 small LRR-RLKs (≤6 LRRs) of unknown function, we identified ELICITIN INSENSITIVE RLK 1 (NbEIR1) as a positive regulator of INF1-induced immunity and oomycete resistance. Nicotiana benthamiana mutants of eir1 generated by CRISPR/Cas9-editing showed significantly compromised immune responses to INF1 and were more vulnerable to the oomycete pathogen Phytophthora capsici. NbEIR1 associates with BRI1-ASSOCIATED RECEPTOR KINASE 1 (NbBAK1) and a downstream component, BRASSINOSTEROID-SIGNALING KINASE 1 (NbBSK1). NbBSK1 also contributes to INF1-induced defense and P. capsici resistance. Upon INF1 treatment, NbEIR1 was released from NbBAK1 and NbBSK1 in vivo. Moreover, the silencing of NbBSK1 compromised the association of NbEIR1 with NbBAK1. We also showed that NbEIR1 regulates flg22-induced immunity and associates with its receptor, FLAGELLIN SENSING 2 (NbFLS2). Collectively, our results suggest that NbEIR1 is a novel regulatory element for BAK1-dependent immunity. NbBSK1-NbEIR1 association is required for maintaining the NbEIR1/NbBAK1 complex in the resting state.
Collapse
Affiliation(s)
- Yifan Zhang
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
| | - Zhiyuan Yin
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lei Pi
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
| | - Nan Wang
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
| | - Hao Peng
- Department of Plant Pathology, Washington State University, Pullman, Washington, 99164, USA
| | - Daolong Dou
- College of Plant Protection, China Agricultural University, Beijing, 100094, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
180
|
Sun HH, Wang ZZ, Gao YY, Hao GF, Yang GF. Protein Kinases as Potential Targets Contribute to the Development of Agrochemicals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:52-64. [PMID: 36592042 DOI: 10.1021/acs.jafc.2c06222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Using agrochemicals against pest insects, fungi, and weeds plays a major part in maintaining and improving crop yields, which helps to solve the issue of food security. Due to the limited targets and resistance of agrochemicals, protein kinases are regarded as attractive potential targets to develop new agrochemicals. Recently, a lot of investigations have shown the extension of agrochemicals by targeting protein kinases, implying an increasing concern for this kind of method. However, few people have summarized and discussed the targetability of protein kinases contributing to the development of agrochemicals. In this work, we introduce the research on protein kinases as potential targets used in crop protection and discuss the prospects of protein kinases in the field of agrochemical development. This study may not only provide guidance for the contribution of protein kinases to the development of agrochemicals but also help nonprofessionals such as students learn and understand the role of protein kinases quickly.
Collapse
Affiliation(s)
- Hao-Han Sun
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Zhi-Zheng Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Yang-Yang Gao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, People's Republic of China
| | - Ge-Fei Hao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Research and Development Center for Fine Chemicals, Guizhou University, Guiyang 550025, People's Republic of China
| | - Guang-Fu Yang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| |
Collapse
|
181
|
Micol-Ponce R, García-Alcázar M, Lebrón R, Capel C, Pineda B, García-Sogo B, Alché JDD, Ortiz-Atienza A, Bretones S, Yuste-Lisbona FJ, Moreno V, Capel J, Lozano R. Tomato POLLEN DEFICIENT 2 encodes a G-type lectin receptor kinase required for viable pollen grain formation. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:178-193. [PMID: 36260406 PMCID: PMC9786849 DOI: 10.1093/jxb/erac419] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 10/18/2022] [Indexed: 05/16/2023]
Abstract
Pollen development is a crucial biological process indispensable for seed set in flowering plants and for successful crop breeding. However, little is known about the molecular mechanisms regulating pollen development in crop species. This study reports a novel male-sterile tomato mutant, pollen deficient 2 (pod2), characterized by the production of non-viable pollen grains and resulting in the development of small parthenocarpic fruits. A combined strategy of mapping-by-sequencing and RNA interference-mediated gene silencing was used to prove that the pod2 phenotype is caused by the loss of Solanum lycopersicum G-type lectin receptor kinase II.9 (SlG-LecRK-II.9) activity. In situ hybridization of floral buds showed that POD2/SlG-LecRK-II.9 is specifically expressed in tapetal cells and microspores at the late tetrad stage. Accordingly, abnormalities in meiosis and tapetum programmed cell death in pod2 occurred during microsporogenesis, resulting in the formation of four dysfunctional microspores leading to an aberrant microgametogenesis process. RNA-seq analyses supported the existence of alterations at the final stage of microsporogenesis, since we found tomato deregulated genes whose counterparts in Arabidopsis are essential for the normal progression of male meiosis and cytokinesis. Collectively, our results revealed the essential role of POD2/SlG-LecRK-II.9 in regulating tomato pollen development.
Collapse
Affiliation(s)
| | | | - Ricardo Lebrón
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Carmen Capel
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Benito Pineda
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain
| | - Begoña García-Sogo
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain
| | - Juan de Dios Alché
- Departamento de Bioquímica, Biología Celular y Molecular de Plantas, Estación Experimental del Zaidín-CSIC, 18008 Granada, Spain
| | - Ana Ortiz-Atienza
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Sandra Bretones
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Fernando Juan Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | - Vicente Moreno
- Instituto de Biología Molecular y Celular de Plantas (UPV-CSIC), Universidad Politécnica de Valencia, 46011 Valencia, Spain
| | - Juan Capel
- Centro de Investigación en Biotecnología Agroalimentaria (CIAIMBITAL), Universidad de Almería, 04120 Almería, Spain
| | | |
Collapse
|
182
|
Shinohara H. Functional Expression of the Ectodomain of Plant Receptor Kinases in Plant Suspension Culture. Methods Mol Biol 2023; 2652:129-143. [PMID: 37093473 DOI: 10.1007/978-1-0716-3147-8_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
Extracellular signals are usually perceived by membrane-localized receptors that transduce intercellular signals to activate various pathways. In plants, single transmembrane receptor kinases act as receptors for extracellular signals. Endogenous secreted peptide hormones have been recognized as novel signaling molecules, functioning through the formation of ligand-receptor pairs in plants. Recently, research on plant peptide hormone-receptor interactions based on the structural biology approach has greatly improved; however, the dissociation constant of recombinant receptor molecules expressed in insect cells using the baculovirus expression system is relatively low. We introduce here a method for creating a stable and functional homogeneous expression system for plant receptor kinases using tobacco BY-2 cells while maintaining conventional ligand-binding activity. This strategy will help improve our understanding of plant endogenous peptide ligand-receptor interactions.
Collapse
Affiliation(s)
- Hidefumi Shinohara
- Department of Bioscience and Biotechnology, Fukui Prefectural University, Fukui, Japan.
| |
Collapse
|
183
|
Zhao L, Cheng Q. Heterologous expression of Arabidopsis pattern recognition receptor RLP23 increases broad-spectrum resistance in poplar to fungal pathogens. MOLECULAR PLANT PATHOLOGY 2023; 24:80-86. [PMID: 36253956 PMCID: PMC9742489 DOI: 10.1111/mpp.13275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/15/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
The pattern recognition receptor AtRLP23 from Arabidopsis thaliana recognizes the epitopes (nlp24s) of necrosis and ethylene-inducing peptide 1-like proteins (NLPs) and triggers pattern-triggered immunity (PTI). Here, we established methods for studying the early events of PTI in the hybrid poplar cultivar Shanxin (Populus davidiana × Populus bolleana) in response to the flagellin epitope. We confirmed that wild-type Shanxin cannot generate PTI responses on nlp24 treatment. Four NLP homologues were characterized from two common fungal pathogens of Shanxin, namely Marssonina brunnea f. sp. monogermtubi (MbMo) and Elsinoë australis (Ea), which cause black leaf spot and anthracnose disease, respectively, and the nlp24s of three of them could be responded to by Nicotiana benthamiana leaves expressing AtRLP23. We then created AtRLP23 transgenic Shanxin lines and confirmed that the heterologous expression of AtRLP23 conferred on transgenic Shanxin the ability to respond to one nlp24 of each fungal pathogen. Consistently, infection assays with MbMo or Ea showed obviously lower levels of disease symptoms and significantly inhibited the growth of fungi on the transgenic poplar compared with that in wild-type poplar. Overall, our results indicated that the heterologous expression of AtRLP23 allowed transgenic Shanxin to generate a PTI response to nlp24s, resulting in increased broad-spectrum fungal disease resistance.
Collapse
Affiliation(s)
- Lijuan Zhao
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| | - Qiang Cheng
- Key Laboratory of Forest Genetics & Biotechnology of Ministry of Education, Co‐Innovation Center for Sustainable Forestry in Southern ChinaNanjing Forestry UniversityNanjingChina
| |
Collapse
|
184
|
Kong F, Yang L. Pathogen-triggered changes in plant development: Virulence strategies or host defense mechanism? Front Microbiol 2023; 14:1122947. [PMID: 36876088 PMCID: PMC9975269 DOI: 10.3389/fmicb.2023.1122947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Plants, as sessile organisms, are constantly exposed to pathogens in nature. Plants rely on physical barriers, constitutive chemical defenses, and sophisticated inducible immunity to fight against pathogens. The output of these defense strategies is highly associated with host development and morphology. Successful pathogens utilize various virulence strategies to colonize, retrieve nutrients, and cause disease. In addition to the overall defense-growth balance, the host-pathogen interactions often lead to changes in the development of specific tissues/organs. In this review, we focus on recent advances in understanding the molecular mechanisms of pathogen-induced changes in plants' development. We discuss that changes in host development could be a target of pathogen virulence strategies or an active defense strategy of plants. Current and ongoing research about how pathogens shape plant development to increase their virulence and causes diseases could give us novel views on plant disease control.
Collapse
Affiliation(s)
- Feng Kong
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| | - Li Yang
- Department of Plant Pathology, University of Georgia, Athens, GA, United States
| |
Collapse
|
185
|
Liang Z, Liu K, Jiang C, Yang A, Yan J, Han X, Zhang C, Cong P, Zhang L. Insertion of a TRIM-like sequence in MdFLS2-1 promoter is associated with its allele-specific expression in response to Alternaria alternata in apple. FRONTIERS IN PLANT SCIENCE 2022; 13:1090621. [PMID: 36643297 PMCID: PMC9834810 DOI: 10.3389/fpls.2022.1090621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Alternaria blotch disease, caused by Alternaria alternata apple pathotype (AAAP), is one of the major fungal diseases in apple. Early field observations revealed, the anther-derived homozygote Hanfu line (HFTH1) was highly susceptible to AAAP, whereas Hanfu (HF) exhibited resistance to AAAP. To understand the molecular mechanisms underlying the difference in sensitivity of HF and HFTH1 to AAAP, we performed allele-specific expression (ASE) analysis and comparative transcriptomic analysis before and after AAAP inoculation. We reported an important immune gene, namely, MdFLS2, which displayed strong ASE in HF with much lower expression levels of HFTH1-derived alleles. Transient overexpression of the dominant allele of MdFLS2-1 from HF in GL-3 apple leaves could enhance resistance to AAAP and induce expression of genes related to salicylic acid pathway. In addition, MdFLS2-1 was identified with an insertion of an 85-bp terminal-repeat retrotransposon in miniature (TRIM) element-like sequence in the upstream region of the nonreference allele. In contrast, only one terminal direct repeat (TDR) from TRIM-like sequence was present in the upstream region of the HFTH1-derived allele MdFLS2-2. Furthermore, the results of luciferase and β-glucuronidase reporter assays demonstrated that the intact TRIM-like sequence has enhancer activity. This suggested that insertion of the TRIM-like sequence regulates the expression level of the allele of MdFLS2, in turn, affecting the sensitivity of HF and HFTH1 to AAAP.
Collapse
Affiliation(s)
- Zhaolin Liang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Kai Liu
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Chunyang Jiang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - An Yang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Jiadi Yan
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Xiaolei Han
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Caixia Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Peihua Cong
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| | - Liyi Zhang
- Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Xingcheng, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Germplasm Resources Utilization), Research Institute of Pomology, Chinese Academy of Agricultural Sciences, Ministry of Agriculture, Xingcheng, China
| |
Collapse
|
186
|
Yang K, Wang Y, Zhao H, Shen D, Dou D, Jing M. Novel EIicitin from Pythium oligandrum Confers Disease Resistance against Phytophthora capsici in Solanaceae Plants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:16135-16145. [PMID: 36528808 DOI: 10.1021/acs.jafc.2c06431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The mycoparasite Pythium oligandrum is a nonpathogenic oomycete that can boost plant immune responses. Elicitins are microbe-associated molecular patterns (MAMPs) specifically produced by oomycetes that activate plant defense. Here, we identified a novel elicitin, PoEli8, from P. oligandrum that exhibits immunity-inducing activity in plants. In vitro-purified PoEli8 induced strong innate immune responses and enhanced resistance to the oomycete pathogen Phytophthora capsici in Solanaceae plants, including Nicotiana benthamiana, tomato, and pepper. Cell death and reactive oxygen species (ROS) accumulation triggered by the PoEli8 protein were dependent on the plant coreceptors receptor-like kinases (RLKs) BAK1 and SOBIR1. Furthermore, REli from N. benthamiana, a cell surface receptor-like protein (RLP) was implicated in the perception of PoEli8 in N. benthamiana. These results indicate the potential value of PoEli8 as a bioactive formula to protect Solanaceae plants against Phytophthora.
Collapse
Affiliation(s)
- Kun Yang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Yi Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Hanqing Zhao
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Danyu Shen
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Daolong Dou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| | - Maofeng Jing
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
187
|
Sarwar R, Li L, Yu J, Zhang Y, Geng R, Meng Q, Zhu K, Tan XL. Functional Characterization of the Cystine-Rich-Receptor-like Kinases ( CRKs) and Their Expression Response to Sclerotinia sclerotiorum and Abiotic Stresses in Brassica napus. Int J Mol Sci 2022; 24:ijms24010511. [PMID: 36613954 PMCID: PMC9820174 DOI: 10.3390/ijms24010511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Cysteine-rich receptor-like kinases (CRKs) are transmembrane proteins that bind to the calcium ion to regulate stress-signaling and plant development-related pathways, as indicated by several pieces of evidence. However, the CRK gene family hasn’t been inadequately examined in Brassica napus. In our study, 27 members of the CRK gene family were identified in Brassica napus, which are categorized into three phylogenetic groups and display synteny relationship to the Arabidopsis thaliana orthologs. All the CRK genes contain highly conserved N-terminal PKINASE domain; however, the distribution of motifs and gene structure were variable conserved. The functional divergence analysis between BnaCRK groups indicates a shift in evolutionary rate after duplication events, demonstrating that BnaCRKs might direct a specific function. RNA-Seq datasets and quantitative real-time PCR (qRT-PCR) exhibit the complex expression profile of the BnaCRKs in plant tissues under multiple stresses. Nevertheless, BnaA06CRK6-1 and BnaA08CRK8 from group B were perceived to play a predominant role in the Brassica napus stress signaling pathway in response to drought, salinity, and Sclerotinia sclerotiorum infection. Insights gained from this study improve our knowledge about the Brassica napus CRK gene family and provide a basis for enhancing the quality of rapeseed.
Collapse
Affiliation(s)
- Rehman Sarwar
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Lei Li
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Jiang Yu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Yijie Zhang
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Rui Geng
- School of Food Science and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Qingfeng Meng
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Keming Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
188
|
Cai J, Yang S, Liu W, Yan J, Jiang B, Xie D. A transcriptome analysis of Benincasa hispida revealed the pathways and genes involved in response to Phytophthora melonis infection. FRONTIERS IN PLANT SCIENCE 2022; 13:1106123. [PMID: 36618646 PMCID: PMC9815465 DOI: 10.3389/fpls.2022.1106123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 12/08/2022] [Indexed: 06/17/2023]
Abstract
Wilt disease caused by Phytophthora melonis infection is one of the most serious threats to Benincasa hispida production. However, the mechanism of the response of B. hispida to a P. melonis infection remains largely unknown. In the present study, two B. hispida cultivars with different degrees of resistance to P. melonis were identified: B488 (a moderately resistant cultivar) and B214 (a moderately susceptible cultivar). RNA-seq was performed on P. melonis-infected B488 and B214 12 hours post infection (hpi). Compared with the control, 680 and 988 DEGs were respectively detected in B488 and B214. A KEGG pathway analysis combined with a cluster analysis revealed that phenylpropanoid biosynthesis, plant-pathogen interaction, the MAPK signaling pathway-plant, and plant hormone signal transduction were the most relevant pathways during the response of both B488 and B214 to P. melonis infection, as well as the differentially expressed genes in the two cultivars. In addition, a cluster analysis of transcription factor genes in DEGs identified four genes upregulated in B488 but not in B214 at 6 hpi and 12 hpi, which was confirmed by qRT-PCR. These were candidate genes for elucidating the mechanism of the B. hispida response to P. melonis infection and laying the foundation for the improvement of B. hispida.
Collapse
Affiliation(s)
- Jinsen Cai
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Songguang Yang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Wenrui Liu
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Jinqiang Yan
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Biao Jiang
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dasen Xie
- Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, China
| |
Collapse
|
189
|
Yang L, Gao J, Gao M, Jiang L, Luo L. Characterization of plasma membrane proteins in stylosanthes leaves and roots using simplified enrichment method with a nonionic detergent. FRONTIERS IN PLANT SCIENCE 2022; 13:1071225. [PMID: 36589080 PMCID: PMC9798454 DOI: 10.3389/fpls.2022.1071225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Plant plasma membranes (PMs) play an important role in maintaining the stability of the intracellular environment and exchanging information with the external environment. Therefore, deciphering dynamics of PM proteome provides crucial information for elucidating cellular regulation in response to diverse stimuli. In the study, we developed a simplified method for enriching PM proteins in leaf and root tissues of a tropical forage Stylosanthes by combining differential centrifugation and Brij-58 treatment. Both immunoblot analysis and mass spectrometry demonstrated that the representation and abundance of PM proteins were increased in the enrichment fraction, and the contamination of other organellar proteins was decreased. A total of 426 and 388 proteins were predicted to be PM proteins in leaves and roots, respectively. Functional analysis classified these PM proteins into six major categories (transporter, enzyme, receptor, membrane structure protein, vesicular trafficking and chaperone), and orthologs of many PM proteins regulating the responses to abiotic and biotic stresses have been detected. In addition, the sequence analysis, subcellular localization and gene expression analyses of a newly identified receptor-like kinase, SgRKL1, has been performed. Together, these results show that the simplified PM enrichment method can be successfully applied to different plant tissue types and to study the dynamics of PM proteome of Stylosanthes in response to multiple stresses.
Collapse
Affiliation(s)
| | | | | | | | - Lijuan Luo
- *Correspondence: Lingyan Jiang, ; Lijuan Luo,
| |
Collapse
|
190
|
Wang N, Yin Z, Zhao Y, Wang J, Pei Y, Ji P, Daly P, Li Z, Dou D, Wei L. An F-box protein attenuates fungal xylanase-triggered immunity by destabilizing LRR-RLP NbEIX2 in a SOBIR1-dependent manner. THE NEW PHYTOLOGIST 2022; 236:2202-2215. [PMID: 36151918 DOI: 10.1111/nph.18509] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Receptor-like proteins (RLPs) lacking the cytoplasmic kinase domain play crucial roles in plant growth, development and immunity. However, what remains largely elusive is whether RLP protein levels are fine-tuned by E3 ubiquitin ligases, which are employed by receptor-like kinases for signaling attenuation. Nicotiana benthamiana NbEIX2 is a leucine-rich repeat RLP (LRR-RLP) that mediates fungal xylanase-triggered immunity. Here we show that NbEIX2 associates with an F-box protein NbPFB1, which promotes NbEIX2 degradation likely by forming an SCF E3 ubiquitin ligase complex, and negatively regulates NbEIX2-mediated immune responses. NbEIX2 undergoes ubiquitination and proteasomal degradation in planta. Interestingly, NbEIX2 without its cytoplasmic tail is still associated with and destabilized by NbPFB1. In addition, NbPFB1 also associates with and destabilizes NbSOBIR1, a co-receptor of LRR-RLPs, and fails to promote NbEIX2 degradation in the sobir1 mutant. Our findings reveal a distinct model of NbEIX2 degradation, in which an F-box protein destabilizes NbEIX2 indirectly in a SOBIR1-dependent manner.
Collapse
Affiliation(s)
- Nan Wang
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhiyuan Yin
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Yaning Zhao
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Jinghao Wang
- College of Plant Protection, China Agricultural University, 100193, Beijing, China
| | - Yong Pei
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Peiyun Ji
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Paul Daly
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| | - Zhengpeng Li
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, 223300, Huaian, China
| | - Daolong Dou
- College of Plant Protection, Nanjing Agricultural University, 210095, Nanjing, China
| | - Lihui Wei
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, China
| |
Collapse
|
191
|
Ishida K, Noutoshi Y. The function of the plant cell wall in plant-microbe interactions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 192:273-284. [PMID: 36279746 DOI: 10.1016/j.plaphy.2022.10.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 09/07/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
The plant cell wall is an interface of plant-microbe interactions. The ability of microbes to decompose cell wall polysaccharides contributes to microbial pathogenicity. Plants have evolved mechanisms to prevent cell wall degradation. However, the role of the cell wall in plant-microbe interactions is not well understood. Here, we discuss four functions of the plant cell wall-physical defence, storage of antimicrobial compounds, production of cell wall-derived elicitors, and provision of carbon sources-in the context of plant-microbe interactions. In addition, we discuss the four families of cell surface receptors associated with plant cell walls (malectin-like receptor kinase family, wall-associated kinase family, leucine-rich repeat receptor-like kinase family, and lysin motif receptor-like kinase family) that have been the subject of several important studies in recent years. This review summarises the findings on both plant cell wall and plant immunity, improving our understanding and may provide impetus to various researchers.
Collapse
Affiliation(s)
- Konan Ishida
- Department of Biochemistry, University of Cambridge, Hopkins Building, The Downing Site, Tennis Court Road, Cambridge, CB2 1QW, UK
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, 700-8530, Japan.
| |
Collapse
|
192
|
De-la-Cruz IM, Kariñho-Betancourt E, Núñez-Farfán J, Oyama K. Gene family evolution and natural selection signatures in Datura spp. (Solanaceae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.916762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Elucidating the diversification process of congeneric species makes it necessary to identify the factors promoting species variation and diversification. Comparative gene family analysis allows us to elucidate the evolutionary history of species by identifying common genetic/genomic mechanisms underlying species responses to biotic and abiotic environments at the genomic level. In this study, we analyzed the high-quality transcriptomes of four Datura species, D. inoxia, D. pruinosa, D. stramonium, and D. wrightii. We performed a thorough comparative gene family analysis to infer the role of selection in molecular variation, changes in protein physicochemical properties, and gain/loss of genes during their diversification processes. The results revealed common and species-specific signals of positive selection, physicochemical divergence and/or expansion of metabolic genes (e.g., transferases and oxidoreductases) associated with terpene and tropane metabolism and some resistance genes (R genes). The gene family analysis presented here is a valuable tool for understanding the genome evolution of economically and ecologically significant taxa such as the Solanaceae family.
Collapse
|
193
|
Identification of candidate genes associated with resistance against race 0 of Colletotrichum lentis in Lens ervoides. Sci Rep 2022; 12:18447. [PMID: 36323877 PMCID: PMC9630317 DOI: 10.1038/s41598-022-23175-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/26/2022] [Indexed: 11/06/2022] Open
Abstract
Resistance to anthracnose caused by the fungal pathogen Colletotrichum lentis was explored through transcriptome sequencing over a period of 24 to 96 h post-inoculation (hpi) of the partially resistant recombinant inbred lines (RIL) LR-66-528 and susceptible LR-66-524 of the crop wild relative Lens ervoides population LR-66. The development of infection vesicles and primary hyphae by C. lentis were significantly higher on susceptible RIL LR-66-524 compared to partially resistant LR-66-528 at 24 and 48 hpi, but exponential trends in fungal growth were observed between 24 to 96 hpi in both RILs. Comparison of inoculated with mock-inoculated samples revealed 3091 disease responsive genes, among which 477 were differentially expressed between the two RILs. These were clustered into six expression clusters with genes that had either high or low expression in one of the RILs. Differentially expressed genes (DEGs) were functionally annotated and included genes coding LRR and NB-ARC domain disease resistance proteins, protein detoxification, LRR receptor-like kinase family proteins, and wall-associated Ser/Thr Kinases. DEGs were compared to genes in previously published anthracnose resistance QTLs mapped in LR-66 and revealed 22 DEGs located in 3 QTLs. Expression of 21 DEGs was validated using RT-qPCR confirming expression trends in RNA-seq.
Collapse
|
194
|
Walker PL, Girard IJ, Becker MG, Giesbrecht S, Whyard S, Fernando WGD, de Kievit TR, Belmonte MF. Tissue-specific mRNA profiling of the Brassica napus-Sclerotinia sclerotiorum interaction uncovers novel regulators of plant immunity. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:6697-6710. [PMID: 35961003 DOI: 10.1093/jxb/erac333] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 08/10/2022] [Indexed: 05/05/2023]
Abstract
White mold is caused by the fungal pathogen Sclerotinia sclerotiorum and leads to rapid and significant loss in plant yield. Among its many brassicaceous hosts, including Brassica napus (canola) and Arabidopsis, the response of individual tissue layers directly at the site of infection has yet to be explored. Using laser microdissection coupled with RNA sequencing, we profiled the epidermis, mesophyll, and vascular leaf tissue layers of B. napus in response to S. sclerotiorum. High-throughput tissue-specific mRNA sequencing increased the total number of detected transcripts compared with whole-leaf assessments and provided novel insight into the conserved and specific roles of ontogenetically distinct leaf tissue layers in response to infection. When subjected to pathogen infection, the epidermis, mesophyll, and vasculature activate both specific and shared gene sets. Putative defense genes identified through transcription factor network analysis were then screened for susceptibility against necrotrophic, hemi-biotrophic, and biotrophic pathogens. Arabidopsis deficient in PR5-like RECEPTOR KINASE (PR5K) mRNA levels were universally susceptible to all pathogens tested and were further characterized to identify putative interacting partners involved in the PR5K signaling pathway. Together, these data provide insight into the complexity of the plant defense response directly at the site of infection.
Collapse
Affiliation(s)
- Philip L Walker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Ian J Girard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Michael G Becker
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Shayna Giesbrecht
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Steve Whyard
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | | | - Teresa R de Kievit
- Department of Microbiology, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| | - Mark F Belmonte
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada
| |
Collapse
|
195
|
Singh R, Dwivedi A, Singh Y, Kumar K, Ranjan A, Verma PK. A Global Transcriptome and Co-expression Analysis Reveals Robust Host Defense Pathway Reprogramming and Identifies Key Regulators of Early Phases of Cicer-Ascochyta Interactions. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2022; 35:1034-1047. [PMID: 35939621 DOI: 10.1094/mpmi-06-22-0134-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Ascochyta blight (AB) caused by the filamentous fungus Ascochyta rabiei is a major threat to global chickpea production. The mechanisms underlying chickpea response to A. rabiei remain elusive to date. Here, we investigated the comparative transcriptional dynamics of AB-resistant and -susceptible chickpea genotypes upon A. rabiei infection, to understand the early host defense response. Our findings revealed that AB-resistant plants underwent rapid and extensive transcriptional reprogramming compared with a susceptible host. At the early stage (24 h postinoculation [hpi]), mainly cell-wall remodeling and secondary metabolite pathways were highly activated, while differentially expressed genes related to signaling components, such as protein kinases, transcription factors, and hormonal pathways, show a remarkable upsurge at 72 hpi, especially in the resistant genotype. Notably, our data suggest an imperative role of jasmonic acid, ethylene, and abscisic acid signaling in providing immunity against A. rabiei. Furthermore, gene co-expression networks and modules corroborated the importance of cell-wall remodeling, signal transduction, and phytohormone pathways. Hub genes such as MYB14, PRE6, and MADS-SOC1 discovered in these modules might be the master regulators governing chickpea immunity. Overall, we not only provide novel insights for comprehensive understanding of immune signaling components mediating AB resistance and susceptibility at early Cicer-Ascochyta interactions but, also, offer a valuable resource for developing AB-resistant chickpea. [Formula: see text] Copyright © 2022 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Ritu Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aditi Dwivedi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Yeshveer Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kamal Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Aashish Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Praveen Kumar Verma
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
- Plant Immunity Laboratory, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
196
|
Gao C, Tang D, Wang W. The Role of Ubiquitination in Plant Immunity: Fine-Tuning Immune Signaling and Beyond. PLANT & CELL PHYSIOLOGY 2022; 63:1405-1413. [PMID: 35859340 DOI: 10.1093/pcp/pcac105] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/08/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Ubiquitination is an essential posttranslational modification and plays a crucial role in regulating plant immunity by modulating protein activity, stability, abundance and interaction. Recently, major breakthroughs have been made in understanding the mechanisms associated with the regulation of immune signaling by ubiquitination. In this mini review, we highlight the recent advances in the role of ubiquitination in fine-tuning the resistance activated by plant pattern recognition receptors (PRRs) and intracellular nucleotide-binding site and leucine-rich repeat domain receptors (NLRs). We also discuss current understanding of the positive regulation of plant immunity by ubiquitination, including the modification of immune negative regulators and of the guardee proteins monitored by NLRs.
Collapse
Affiliation(s)
- Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Dingzhong Tang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
- Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
197
|
Silva JCF, Ferreira MA, Carvalho TFM, Silva FF, de A. Silveira S, Brommonschenkel SH, Fontes EPB. RLPredictiOme, a Machine Learning-Derived Method for High-Throughput Prediction of Plant Receptor-like Proteins, Reveals Novel Classes of Transmembrane Receptors. Int J Mol Sci 2022; 23:12176. [PMID: 36293031 PMCID: PMC9603095 DOI: 10.3390/ijms232012176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/16/2022] Open
Abstract
Cell surface receptors play essential roles in perceiving and processing external and internal signals at the cell surface of plants and animals. The receptor-like protein kinases (RLK) and receptor-like proteins (RLPs), two major classes of proteins with membrane receptor configuration, play a crucial role in plant development and disease defense. Although RLPs and RLKs share a similar single-pass transmembrane configuration, RLPs harbor short divergent C-terminal regions instead of the conserved kinase domain of RLKs. This RLP receptor structural design precludes sequence comparison algorithms from being used for high-throughput predictions of the RLP family in plant genomes, as has been extensively performed for RLK superfamily predictions. Here, we developed the RLPredictiOme, implemented with machine learning models in combination with Bayesian inference, capable of predicting RLP subfamilies in plant genomes. The ML models were simultaneously trained using six types of features, along with three stages to distinguish RLPs from non-RLPs (NRLPs), RLPs from RLKs, and classify new subfamilies of RLPs in plants. The ML models achieved high accuracy, precision, sensitivity, and specificity for predicting RLPs with relatively high probability ranging from 0.79 to 0.99. The prediction of the method was assessed with three datasets, two of which contained leucine-rich repeats (LRR)-RLPs from Arabidopsis and rice, and the last one consisted of the complete set of previously described Arabidopsis RLPs. In these validation tests, more than 90% of known RLPs were correctly predicted via RLPredictiOme. In addition to predicting previously characterized RLPs, RLPredictiOme uncovered new RLP subfamilies in the Arabidopsis genome. These include probable lipid transfer (PLT)-RLP, plastocyanin-like-RLP, ring finger-RLP, glycosyl-hydrolase-RLP, and glycerophosphoryldiester phosphodiesterase (GDPD, GDPDL)-RLP subfamilies, yet to be characterized. Compared to the only Arabidopsis GDPDL-RLK, molecular evolution studies confirmed that the ectodomain of GDPDL-RLPs might have undergone a purifying selection with a predominance of synonymous substitutions. Expression analyses revealed that predicted GDPGL-RLPs display a basal expression level and respond to developmental and biotic signals. The results of these biological assays indicate that these subfamily members have maintained functional domains during evolution and may play relevant roles in development and plant defense. Therefore, RLPredictiOme provides a framework for genome-wide surveys of the RLP superfamily as a foundation to rationalize functional studies of surface receptors and their relationships with different biological processes.
Collapse
Affiliation(s)
- Jose Cleydson F. Silva
- National Institute of Science and Technology in Plant-Pest Interactions, Bioagro, Viçosa 36570-900, Brazil
| | - Marco Aurélio Ferreira
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Thales F. M. Carvalho
- Institute of Engineering, Science and Technology, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Janaúba 39447-814, Brazil
| | - Fabyano F. Silva
- Departament of Animal Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | - Sabrina de A. Silveira
- Department of Computer Science, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| | | | - Elizabeth P. B. Fontes
- Departament of Biochemistry and Molecular Biology, Universidade Federal de Viçosa, Viçosa 36570-900, Brazil
| |
Collapse
|
198
|
Le Boulch P, Poëssel JL, Roux D, Lugan R. Molecular mechanisms of resistance to Myzus persicae conferred by the peach Rm2 gene: A multi-omics view. FRONTIERS IN PLANT SCIENCE 2022; 13:992544. [PMID: 36275570 PMCID: PMC9581297 DOI: 10.3389/fpls.2022.992544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
The transcriptomic and metabolomic responses of peach to Myzus persicae infestation were studied in Rubira, an accession carrying the major resistance gene Rm2 causing antixenosis, and GF305, a susceptible accession. Transcriptome and metabolome showed both a massive reconfiguration in Rubira 48 hours after infestation while GF305 displayed very limited changes. The Rubira immune system was massively stimulated, with simultaneous activation of genes encoding cell surface receptors involved in pattern-triggered immunity and cytoplasmic NLRs (nucleotide-binding domain, leucine-rich repeat containing proteins) involved in effector-triggered immunity. Hypersensitive reaction featured by necrotic lesions surrounding stylet punctures was supported by the induction of cell death stimulating NLRs/helpers couples, as well as the activation of H2O2-generating metabolic pathways: photorespiratory glyoxylate synthesis and activation of the futile P5C/proline cycle. The triggering of systemic acquired resistance was suggested by the activation of pipecolate pathway and accumulation of this defense hormone together with salicylate. Important reduction in carbon, nitrogen and sulphur metabolic pools and the repression of many genes related to cell division and growth, consistent with reduced apices elongation, suggested a decline in the nutritional value of apices. Finally, the accumulation of caffeic acid conjugates pointed toward their contribution as deterrent and/or toxic compounds in the mechanisms of resistance.
Collapse
Affiliation(s)
| | | | - David Roux
- UMR Qualisud, Avignon Université, Avignon, France
| | | |
Collapse
|
199
|
Gauthier AE, Rotjan RD, Kagan JC. Lipopolysaccharide detection by the innate immune system may be an uncommon defence strategy used in nature. Open Biol 2022; 12:220146. [PMID: 36196535 PMCID: PMC9533005 DOI: 10.1098/rsob.220146] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 09/09/2022] [Indexed: 11/12/2022] Open
Abstract
Since the publication of the Janeway's Pattern Recognition hypothesis in 1989, study of pathogen-associated molecular patterns (PAMPs) and their immuno-stimulatory activities has accelerated. Most studies in this area have been conducted in model organisms, which leaves many open questions about the universality of PAMP biology across living systems. Mammals have evolved multiple proteins that operate as receptors for the PAMP lipopolysaccharide (LPS) from Gram-negative bacteria, but LPS is not immuno-stimulatory in all eukaryotes. In this review, we examine the history of LPS as a PAMP in mammals, recent data on LPS structure and its ability to activate mammalian innate immune receptors, and how these activities compare across commonly studied eukaryotes. We discuss why LPS may have evolved to be immuno-stimulatory in some eukaryotes but not others and propose two hypotheses about the evolution of PAMP structure based on the ecology and environmental context of the organism in question. Understanding PAMP structures and stimulatory mechanisms across multi-cellular life will provide insights into the evolutionary origins of innate immunity and may lead to the discovery of new PAMP variations of scientific and therapeutic interest.
Collapse
Affiliation(s)
- Anna E. Gauthier
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Program in Virology, Harvard Medical School, Boston, MA, USA
| | - Randi D. Rotjan
- Department of Biology, Boston University, 5 Cummington Mall, Boston, MA 02215, USA
| | - Jonathan C. Kagan
- Division of Gastroenterology, Boston Children's Hospital and Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115, USA
- Harvard Medical School, and Boston Children's Hospital, Division of Immunology, Division of Gastroenterology, USA
| |
Collapse
|
200
|
Wang Y, Shen C, Jiang Q, Wang Z, Gao C, Wang W. Seed priming with calcium chloride enhances stress tolerance in rice seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 323:111381. [PMID: 35853520 DOI: 10.1016/j.plantsci.2022.111381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 06/15/2023]
Abstract
Calcium is a crucial second messenger in plant cells and contributes to plant resistance against biotic and abiotic stress. Plant defense priming with natural or synthetic compounds leads to quicker and stronger resistance responses. However, whether pretreatment of plant seeds with calcium could improve their resistance to stress remains poorly understood. In this study, we showed that rice seedlings grown from calcium chloride (CaCl2)-pretreated seeds displayed enhanced resistance to the rice blast fungus Magnaporthe oryzae and the rice bacterial pathogen Xanthomonas oryzae pv. Oryzae (Xoo). Seed priming with CaCl2 also led to enhanced rice tolerance to salt and cold. Furthermore, the reactive oxygen species (ROS) burst increased significantly upon immunity activation in the leaves of rice seedlings grown from CaCl2-pretreated seeds. Additionally, we analyzed the rice calmodulin-binding protein 60 (OsCBP60) family and found that there were 19 OsCBP60s in rice cultivar Zhonghua 11 (ZH11). The transcripts of several OsCBP60s were chitin- and M. oryzae-inducible, suggesting that they may contribute to rice resistance. Taken together, these data indicate that seed priming with CaCl2 can effectively enhance rice tolerance to multiple stresses, perhaps by boosting the burst of ROS, and OsCBP60 family members may also play an essential role in this process.
Collapse
Affiliation(s)
- Yameng Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chengbin Shen
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qiaochu Jiang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhanchun Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chenyang Gao
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Wei Wang
- State Key Laboratory of Ecological Control of Fujian-Taiwan Crop Pests, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Plant Immunity Center, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|