151
|
Tian D, Wang J, Zeng X, Gu K, Qiu C, Yang X, Zhou Z, Goh M, Luo Y, Murata-Hori M, White FF, Yin Z. The rice TAL effector-dependent resistance protein XA10 triggers cell death and calcium depletion in the endoplasmic reticulum. THE PLANT CELL 2014; 26:497-515. [PMID: 24488961 PMCID: PMC3963592 DOI: 10.1105/tpc.113.119255] [Citation(s) in RCA: 172] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/30/2013] [Accepted: 01/13/2014] [Indexed: 05/19/2023]
Abstract
The recognition between disease resistance (R) genes in plants and their cognate avirulence (Avr) genes in pathogens can produce a hypersensitive response of localized programmed cell death. However, our knowledge of the early signaling events of the R gene-mediated hypersensitive response in plants remains limited. Here, we report the cloning and characterization of Xa10, a transcription activator-like (TAL) effector-dependent R gene for resistance to bacterial blight in rice (Oryza sativa). Xa10 contains a binding element for the TAL effector AvrXa10 (EBEAvrXa10) in its promoter, and AvrXa10 specifically induces Xa10 expression. Expression of Xa10 induces programmed cell death in rice, Nicotiana benthamiana, and mammalian HeLa cells. The Xa10 gene product XA10 localizes as hexamers in the endoplasmic reticulum (ER) and is associated with ER Ca(2+) depletion in plant and HeLa cells. XA10 variants that abolish programmed cell death and ER Ca(2+) depletion in N. benthamiana and HeLa cells also abolish disease resistance in rice. We propose that XA10 is an inducible, intrinsic terminator protein that triggers programmed cell death by a conserved mechanism involving disruption of the ER and cellular Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Dongsheng Tian
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Junxia Wang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Xuan Zeng
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| | - Keyu Gu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Chengxiang Qiu
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Xiaobei Yang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Zhiyun Zhou
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Meiling Goh
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Yanchang Luo
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Maki Murata-Hori
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
| | - Frank F. White
- Department of Plant Pathology, Kansas State University, Manhattan, Kansas 66506
| | - Zhongchao Yin
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Republic of Singapore
- Department of Biological Sciences, National University of Singapore, Singapore 117543, Republic of Singapore
| |
Collapse
|
152
|
Ruelland E, Pokotylo I, Djafi N, Cantrel C, Repellin A, Zachowski A. Salicylic acid modulates levels of phosphoinositide dependent-phospholipase C substrates and products to remodel the Arabidopsis suspension cell transcriptome. FRONTIERS IN PLANT SCIENCE 2014; 5:608. [PMID: 25426125 PMCID: PMC4227474 DOI: 10.3389/fpls.2014.00608] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 10/19/2014] [Indexed: 05/05/2023]
Abstract
Basal phosphoinositide-dependent phospholipase C (PI-PLC) activity controls gene expression in Arabidopsis suspension cells and seedlings. PI-PLC catalyzes the production of phosphorylated inositol and diacylglycerol (DAG) from phosphoinositides. It is not known how PI-PLC regulates the transcriptome although the action of DAG-kinase (DGK) on DAG immediately downstream from PI-PLC is responsible for some of the regulation. We previously established a list of genes whose expression is affected in the presence of PI-PLC inhibitors. Here this list of genes was used as a signature in similarity searches of curated plant hormone response transcriptome data. The strongest correlations obtained with the inhibited PI-PLC signature were with salicylic acid (SA) treatments. We confirm here that in Arabidopsis suspension cells SA treatment leads to an increase in phosphoinositides, then demonstrate that SA leads to a significant 20% decrease in phosphatidic acid, indicative of a decrease in PI-PLC products. Previous sets of microarray data were re-assessed. The SA response of one set of genes was dependent on phosphoinositides. Alterations in the levels of a second set of genes, mostly SA-repressed genes, could be related to decreases in PI-PLC products that occur in response to SA action. Together, the two groups of genes comprise at least 40% of all SA-responsive genes. Overall these two groups of genes are distinct in the functional categories of the proteins they encode, their promoter cis-elements and their regulation by DGK or phospholipase D. SA-regulated genes dependent on phosphoinositides are typical SA response genes while those with an SA response that is possibly dependent on PI-PLC products are less SA-specific. We propose a model in which SA inhibits PI-PLC activity and alters levels of PI-PLC products and substrates, thereby regulating gene expression divergently.
Collapse
Affiliation(s)
- Eric Ruelland
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- *Correspondence: Eric Ruelland, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de Paris, Université Paris-Est Créteil, Faculté des Sciences, 61 Avenue du Général de Gaulle, 94010 Créteil, France e-mail:
| | - Igor Pokotylo
- Molecular Mechanisms of Plant Cell Regulation, Institute of Bioorganic Chemistry and Petrochemistry, National Academy of SciencesKyiv, Ukraine
| | - Nabila Djafi
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| | - Catherine Cantrel
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| | - Anne Repellin
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| | - Alain Zachowski
- Université Paris-Est Créteil, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
- Centre National de la Recherche Scientifique, Unité Mixte de Recherche 7618, Institut d'Ecologie et des Sciences de l'Environnement de ParisCréteil, France
| |
Collapse
|
153
|
Rojas CM, Senthil-Kumar M, Tzin V, Mysore KS. Regulation of primary plant metabolism during plant-pathogen interactions and its contribution to plant defense. FRONTIERS IN PLANT SCIENCE 2014; 5:17. [PMID: 24575102 PMCID: PMC3919437 DOI: 10.3389/fpls.2014.00017] [Citation(s) in RCA: 341] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Accepted: 01/15/2014] [Indexed: 05/18/2023]
Abstract
Plants are constantly exposed to microorganisms in the environment and, as a result, have evolved intricate mechanisms to recognize and defend themselves against potential pathogens. One of these responses is the downregulation of photosynthesis and other processes associated with primary metabolism that are essential for plant growth. It has been suggested that the energy saved by downregulation of primary metabolism is diverted and used for defense responses. However, several studies have shown that upregulation of primary metabolism also occurs during plant-pathogen interactions. We propose that upregulation of primary metabolism modulates signal transduction cascades that lead to plant defense responses. In support of this thought, we here compile evidence from the literature to show that upon exposure to pathogens or elicitors, plants induce several genes associated with primary metabolic pathways, such as those involved in the synthesis or degradation of carbohydrates, amino acids and lipids. In addition, genetic studies have confirmed the involvement of these metabolic pathways in plant defense responses. This review provides a new perspective highlighting the relevance of primary metabolism in regulating plant defense against pathogens with the hope to stimulate further research in this area.
Collapse
Affiliation(s)
- Clemencia M. Rojas
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
| | - Muthappa Senthil-Kumar
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- National Institute of Plant Genome Research, Jawaharlal Nehru University CampusNew Delhi, India
| | - Vered Tzin
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- Boyce Thompson Institute for Plant ResearchIthaca, NY, USA
| | - Kirankumar S. Mysore
- Plant Biology Division, The Samuel Roberts Noble FoundationArdmore, OK, USA
- *Correspondence: Kirankumar S. Mysore, Plant Biology Division, The Samuel Roberts Noble Foundation, Ardmore, OK 73401, USA e-mail:
| |
Collapse
|
154
|
Miura K, Tada Y. Regulation of water, salinity, and cold stress responses by salicylic acid. FRONTIERS IN PLANT SCIENCE 2014; 5:4. [PMID: 24478784 PMCID: PMC3899523 DOI: 10.3389/fpls.2014.00004] [Citation(s) in RCA: 299] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 01/04/2014] [Indexed: 05/18/2023]
Abstract
Salicylic acid (SA) is a naturally occurring phenolic compound. SA plays an important role in the regulation of plant growth, development, ripening, and defense responses. The role of SA in the plant-pathogen relationship has been extensively investigated. In addition to defense responses, SA plays an important role in the response to abiotic stresses, including drought, low temperature, and salinity stresses. It has been suggested that SA has great agronomic potential to improve the stress tolerance of agriculturally important crops. However, the utility of SA is dependent on the concentration of the applied SA, the mode of application, and the state of the plants (e.g., developmental stage and acclimation). Generally, low concentrations of applied SA alleviate the sensitivity to abiotic stresses, and high concentrations of applied induce high levels of oxidative stress, leading to a decreased tolerance to abiotic stresses. In this article, the effects of SA on the water stress responses and regulation of stomatal closure are reviewed.
Collapse
Affiliation(s)
- Kenji Miura
- Faculty of Life and Environmental Sciences, University of TsukubaTsukuba, Japan
- *Correspondence: Kenji* Miura, Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8572, Japan e-mail:
| | - Yasuomi Tada
- Faculty of Agriculture, Kagawa UniversityKagawa, Japan
| |
Collapse
|
155
|
Ding Y, Shaholli D, Mou Z. A large-scale genetic screen for mutants with altered salicylic acid accumulation in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2014; 5:763. [PMID: 25610446 PMCID: PMC4285869 DOI: 10.3389/fpls.2014.00763] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 12/10/2014] [Indexed: 05/03/2023]
Abstract
Salicylic acid (SA) is a key defense signal molecule against biotrophic and hemibiotrophic pathogens in plants, but how SA is synthesized in plant cells still remains elusive. Identification of new components involved in pathogen-induced SA accumulation would help address this question. To this end, we performed a large-scale genetic screen for mutants with altered SA accumulation during pathogen infection in Arabidopsis using a bacterial biosensor Acinetobacter sp. ADPWH_lux-based SA quantification method. A total of 35,000 M2 plants in the npr1-3 mutant background have been individually analyzed for the bacterial pathogen Pseudomonas syringae pv. maculicola (Psm) ES4326-induced SA accumulation. Among the mutants isolated, 19 had SA levels lower than npr1 (sln) and two exhibited increased SA accumulation in npr1 (isn). Complementation tests revealed that seven of the sln mutants are new alleles of eds5/sid1, two are sid2/eds16 alleles, one is allelic to pad4, and the remaining seven sln and two isn mutants are new non-allelic SA accumulation mutants. Interestingly, a large group of mutants (in the npr1-3 background), in which Psm ES4326-induced SA levels were similar to those in the wild-type Columbia plants, were identified, suggesting that the signaling network fine-tuning pathogen-induced SA accumulation is complex. We further characterized the sln1 single mutant and found that Psm ES4326-induced defense responses were compromised in this mutant. These defense response defects could be rescued by exogenous SA, suggesting that SLN1 functions upstream of SA. The sln1 mutation was mapped to a region on the north arm of chromosome I, which contains no known genes regulating pathogen-induced SA accumulation, indicating that SLN1 likely encodes a new regulator of SA biosynthesis. Thus, the new sln and isn mutants identified in this genetic screen are valuable for dissecting the molecular mechanisms underlying pathogen-induced SA accumulation in plants.
Collapse
Affiliation(s)
| | | | - Zhonglin Mou
- *Correspondence: Zhonglin Mou, Department of Microbiology and Cell Science, University of Florida, Museum Road, Building 981, Gainesville, FL 32611, USA e-mail:
| |
Collapse
|
156
|
Niranjana SR, Hariprasad P. Understanding the Mechanism Involved in PGPR-Mediated Growth Promotion and Suppression of Biotic and Abiotic Stress in Plants. Fungal Biol 2014. [DOI: 10.1007/978-1-4939-1188-2_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
157
|
Okuma E, Nozawa R, Murata Y, Miura K. Accumulation of endogenous salicylic acid confers drought tolerance to Arabidopsis. PLANT SIGNALING & BEHAVIOR 2014; 9:e28085. [PMID: 24603484 PMCID: PMC4091426 DOI: 10.4161/psb.28085] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We investigated stomatal phenotype and drought tolerance of Arabidopsis salicylic acid-accumulating mutants, acd6 and cpr5. In these mutants, the light-induced stomatal opening was impaired and the impairment of stomatal opening was restored by peroxidase inhibitors, salicylhydroxamic acid, and azide. The acd6 and cpr5 mutant plants were more tolerant to drought stress than wild-type plants. Introduction of nahG gene into the acd6 and cpr5 mutants removed the inhibition of stomatal opening and reduced the drought tolerance. Drought tolerance-related genes were more highly expressed in the cpr5 and acd6 mutant plants than in the wild-type plants. These results suggest that accumulation of salicylic acid improves drought tolerance through inhibition of light-induced stomatal opening in Arabidopsis.
Collapse
Affiliation(s)
- Eiji Okuma
- Graduate School of Natural Science and Technology; Okayama University; Okayama, Japan
| | - Rieko Nozawa
- Faculty of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan
| | - Yoshiyuki Murata
- Graduate School of Natural Science and Technology; Okayama University; Okayama, Japan
- Correspondence to: Yoshiyuki Murata, and Kenji Miura,
| | - Kenji Miura
- Faculty of Life and Environmental Sciences; University of Tsukuba; Tsukuba, Japan
- Correspondence to: Yoshiyuki Murata, and Kenji Miura,
| |
Collapse
|
158
|
Orjuela J, Deless EFT, Kolade O, Chéron S, Ghesquière A, Albar L. A recessive resistance to rice yellow mottle virus is associated with a rice homolog of the CPR5 gene, a regulator of active defense mechanisms. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2013; 26:1455-63. [PMID: 23944999 DOI: 10.1094/mpmi-05-13-0127-r] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
RYMV2 is a major recessive resistance gene identified in cultivated African rice (Oryza glaberrima) which confers high resistance to the Rice yellow mottle virus (RYMV). We mapped RYMV2 in an approximately 30-kb interval in which four genes have been annotated. Sequencing of the candidate region in the resistant Tog7291 accession revealed a single mutation affecting a predicted gene, as compared with the RYMV-susceptible O. glaberrima CG14 reference sequence. This mutation was found to be a one-base deletion leading to a truncated and probably nonfunctional protein. It affected a gene homologous to the Arabidopsis thaliana CPR5 gene, known to be a defense mechanism regulator. Only seven O. glaberrima accessions showing this deletion were identified in a collection consisting of 417 accessions from three rice species. All seven accessions were resistant to RYMV, which is an additional argument in favor of the involvement of the deletion in resistance. In addition, fine mapping of a resistance quantitative trait locus in O. sativa advanced backcrossed lines pinpointed a 151-kb interval containing RYMV2, suggesting that allelic variants of the same gene may control both high and partial resistance.
Collapse
|
159
|
Mathur V, Tytgat TOG, Hordijk CA, Harhangi HR, Jansen JJ, Reddy AS, Harvey JA, Vet LEM, van Dam NM. An ecogenomic analysis of herbivore-induced plant volatiles in Brassica juncea. Mol Ecol 2013; 22:6179-96. [PMID: 24219759 DOI: 10.1111/mec.12555] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Revised: 09/23/2013] [Accepted: 09/27/2013] [Indexed: 11/27/2022]
Abstract
Upon herbivore feeding, plants emit complex bouquets of induced volatiles that may repel insect herbivores as well as attract parasitoids or predators. Due to differences in the temporal dynamics of individual components, the composition of the herbivore-induced plant volatile (HIPV) blend changes with time. Consequently, the response of insects associated with plants is not constant either. Using Brassica juncea as the model plant and generalist Spodoptera spp. larvae as the inducing herbivore, we investigated herbivore and parasitoid preference as well as the molecular mechanisms behind the temporal dynamics in HIPV emissions at 24, 48 and 72 h after damage. In choice tests, Spodoptera litura moth preferred undamaged plants, whereas its parasitoid Cotesia marginiventris favoured plants induced for 48 h. In contrast, the specialist Plutella xylostella and its parasitoid C. vestalis preferred plants induced for 72 h. These preferences matched the dynamic changes in HIPV blends over time. Gene expression analysis suggested that the induced response after Spodoptera feeding is mainly controlled by the jasmonic acid pathway in both damaged and systemic leaves. Several genes involved in sulphide and green leaf volatile synthesis were clearly up-regulated. This study thus shows that HIPV blends vary considerably over a short period of time, and these changes are actively regulated at the gene expression level. Moreover, temporal changes in HIPVs elicit differential preferences of herbivores and their natural enemies. We argue that the temporal dynamics of HIPVs may play a key role in shaping the response of insects associated with plants.
Collapse
Affiliation(s)
- Vartika Mathur
- Department of Zoology, Sri Venkateswara College, University of Delhi, Benito Juarez Marg, Dhaula kuan, New Delhi, 11002, India
| | | | | | | | | | | | | | | | | |
Collapse
|
160
|
Liu D, Cheng Z, Liu G, Liu G, Wang Y, Zhao X, Zhu L. Characterization and mapping of a lesion mimic mutant in rice (Oryza sativa L.). Sci Bull (Beijing) 2013. [DOI: 10.1007/bf03325671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
161
|
Lopez DH, Fiol-deRoque MA, Noguera-Salvà MA, Terés S, Campana F, Piotto S, Castro JA, Mohaibes RJ, Escribá PV, Busquets X. 2-hydroxy arachidonic acid: a new non-steroidal anti-inflammatory drug. PLoS One 2013; 8:e72052. [PMID: 24015204 PMCID: PMC3754997 DOI: 10.1371/journal.pone.0072052] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 07/07/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Nonsteroidal anti-inflammatory drugs (NSAIDs) are a family of COX1 and COX2 inhibitors used to reduce the synthesis of pro-inflammatory mediators. In addition, inflammation often leads to a harmful generation of nitric oxide. Efforts are being done in discovering safer NSAIDs molecules capable of inhibiting the synthesis of pro-inflammatory lipid mediators and nitric oxide to reduce the side effects associated with long term therapies. METHODOLOGY/PRINCIPAL FINDINGS The analogue of arachidonic acid (AA), 2-hydroxy-arachidonic acid (2OAA), was designed to inhibit the activities of COX1 and COX2 and it was predicted to have similar binding energies as AA for the catalytic sites of COX1 and COX2. The interaction of AA and 2OAA with COX1 and COX2 was investigated calculating the free energy of binding and the Fukui function. Toxicity was determined in mouse microglial BV-2 cells. COX1 and COX2 (PGH2 production) activities were measured in vitro. COX1 and COX2 expression in human macrophage-like U937 cells were carried out by Western blot, immunocytochemistry and RT-PCR analysis. NO production (Griess method) and iNOS (Western blot) were determined in mouse microglial BV-2 cells. The comparative efficacy of 2OAA, ibuprofen and cortisone in lowering TNF-α serum levels was determined in C57BL6/J mice challenged with LPS. We show that the presence of the -OH group reduces the likelihood of 2OAA being subjected to H* abstraction in COX, without altering significantly the free energy of binding. The 2OAA inhibited COX1 and COX2 activities and the expression of COX2 in human U937 derived macrophages challenged with LPS. In addition, 2OAA inhibited iNOS expression and the production of NO in BV-2 microglial cells. Finally, oral administration of 2OAA decreased the plasma TNF-α levels in vivo. CONCLUSION/SIGNIFICANCE These findings demonstrate the potential of 2OAA as a NSAID.
Collapse
Affiliation(s)
- Daniel H. Lopez
- Lipopharma Therapeutics, Palma de Mallorca, Balearic Islands, Spain
| | - Maria A. Fiol-deRoque
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Maria A. Noguera-Salvà
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Silvia Terés
- Lipopharma Therapeutics, Palma de Mallorca, Balearic Islands, Spain
| | - Federica Campana
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fischiano, Salerno, Italy
| | - Stefano Piotto
- Department of Pharmaceutical and Biomedical Sciences, University of Salerno, Fischiano, Salerno, Italy
| | - José A. Castro
- Laboratory of Genetics, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Raheem J. Mohaibes
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| | - Pablo V. Escribá
- Laboratory of Molecular and Cellular Biomedicine, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
- * E-mail:
| | - Xavier Busquets
- Laboratory of Cell Biology, Department of Biology-IUNICS, University of the Balearic Islands, Palma de Mallorca, Balearic Islands, Spain
| |
Collapse
|
162
|
Wang Y, Zhang Y, Wang Z, Zhang X, Yang S. A missense mutation in CHS1, a TIR-NB protein, induces chilling sensitivity in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 75:553-565. [PMID: 23651299 DOI: 10.1111/tpj.12232] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Revised: 04/28/2013] [Accepted: 05/02/2013] [Indexed: 05/28/2023]
Abstract
Low temperature is an environmental factor that affects plant growth and development and plant-pathogen interactions. How temperature regulates plant defense responses is not well understood. In this study, we characterized chilling-sensitive mutant 1 (chs1), and functionally analyzed the role of the CHS1 gene in plant responses to chilling stress. The chs1 mutant displayed a chilling-sensitive phenotype, and also displayed defense-associated phenotypes, including extensive cell death, the accumulation of hydrogen peroxide and salicylic acid, and an increased expression of PR genes: these phenotypes indicated that the mutation in chs1 activates the defense responses under chilling stress. A map-based cloning analysis revealed that CHS1 encodes a TIR-NB-type protein. The chilling sensitivity of chs1 was fully rescued by pad4 and eds1, but not by ndr1. The overexpression of the TIR and NB domains can suppress the chs1-conferred phenotypes. Interestingly, the stability of the CHS1 protein was positively regulated by low temperatures independently of the 26S proteasome pathway. This study revealed the role of a TIR-NB-type gene in plant growth and cell death under chilling stress, and suggests that temperature modulates the stability of the TIR-NB protein in Arabidopsis.
Collapse
Affiliation(s)
- Yuancong Wang
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | | | | | | | | |
Collapse
|
163
|
Han C, Ren C, Zhi T, Zhou Z, Liu Y, Chen F, Peng W, Xie D. Disruption of fumarylacetoacetate hydrolase causes spontaneous cell death under short-day conditions in Arabidopsis. PLANT PHYSIOLOGY 2013; 162:1956-64. [PMID: 23743712 PMCID: PMC3729774 DOI: 10.1104/pp.113.216804] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Fumarylacetoacetate hydrolase (FAH) hydrolyzes fumarylacetoacetate to fumarate and acetoacetate, the final step in the tyrosine (Tyr) degradation pathway that is essential to animals. Deficiency of FAH in animals results in an inborn lethal disorder. However, the role for the Tyr degradation pathway in plants remains to be elucidated. In this study, we isolated an Arabidopsis (Arabidopsis thaliana) short-day sensitive cell death1 (sscd1) mutant that displays a spontaneous cell death phenotype under short-day conditions. The SSCD1 gene was cloned via a map-based cloning approach and found to encode an Arabidopsis putative FAH. The spontaneous cell death phenotype of the sscd1 mutant was completely eliminated by further knockout of the gene encoding the putative homogentisate dioxygenase, which catalyzes homogentisate into maleylacetoacetate (the antepenultimate step) in the Tyr degradation pathway. Furthermore, treatment of Arabidopsis wild-type seedlings with succinylacetone, an abnormal metabolite caused by loss of FAH in the Tyr degradation pathway, mimicked the sscd1 cell death phenotype. These results demonstrate that disruption of FAH leads to cell death in Arabidopsis and suggest that the Tyr degradation pathway is essential for plant survival under short-day conditions.
Collapse
|
164
|
Liu Y, Wang L, Cai G, Jiang S, Sun L, Li D. Response of tobacco to the Pseudomonas syringae pv. Tomato DC3000 is mainly dependent on salicylic acid signaling pathway. FEMS Microbiol Lett 2013; 344:77-85. [PMID: 23581479 DOI: 10.1111/1574-6968.12157] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 12/29/2022] Open
Abstract
Pseudomonas syringae pv. Tomato DC3000 (Pst DC3000) was the first pathogen to be demonstrated to infect Arabidopsis and to cause disease symptoms in the laboratory setting. However, the defense response to Pst DC3000 was unclear in tobacco. In this report, the expression profiles of twelve defense response-related genes were analyzed after treatment with salicylic acid (SA), jasmonic acid (JA), and pathogen Pst DC3000 by qRT-PCR. According to our results, it could be presented that the genes primarily induced by SA were also induced to higher levels after Pst DC3000 infection. SA accumulation could be induced to a higher level than that of JA after Pst DC3000 infection. In addition, SA could result in hypersensitive response (HR), which did not completely depend on accumulation of reactive oxygen species. These results indicated that tobacco mainly depended on SA signaling pathway rather than on JA signaling pathway in response to Pst DC3000. Further study demonstrated that JA could significantly inhibit the accumulation of SA and the generation of the HR induced by Pst DC3000.
Collapse
Affiliation(s)
- Yang Liu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an, Shandong, China
| | | | | | | | | | | |
Collapse
|
165
|
Kurepin LV, Dahal KP, Savitch LV, Singh J, Bode R, Ivanov AG, Hurry V, Hüner NPA. Role of CBFs as integrators of chloroplast redox, phytochrome and plant hormone signaling during cold acclimation. Int J Mol Sci 2013; 14:12729-63. [PMID: 23778089 PMCID: PMC3709810 DOI: 10.3390/ijms140612729] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2013] [Revised: 05/24/2013] [Accepted: 06/06/2013] [Indexed: 11/16/2022] Open
Abstract
Cold acclimation of winter cereals and other winter hardy species is a prerequisite to increase subsequent freezing tolerance. Low temperatures upregulate the expression of C-repeat/dehydration-responsive element binding transcription factors (CBF/DREB1) which in turn induce the expression of COLD-REGULATED (COR) genes. We summarize evidence which indicates that the integration of these interactions is responsible for the dwarf phenotype and enhanced photosynthetic performance associated with cold-acclimated and CBF-overexpressing plants. Plants overexpressing CBFs but grown at warm temperatures mimic the cold-tolerant, dwarf, compact phenotype; increased photosynthetic performance; and biomass accumulation typically associated with cold-acclimated plants. In this review, we propose a model whereby the cold acclimation signal is perceived by plants through an integration of low temperature and changes in light intensity, as well as changes in light quality. Such integration leads to the activation of the CBF-regulon and subsequent upregulation of COR gene and GA 2-oxidase (GA2ox) expression which results in a dwarf phenotype coupled with increased freezing tolerance and enhanced photosynthetic performance. We conclude that, due to their photoautotrophic nature, plants do not rely on a single low temperature sensor, but integrate changes in light intensity, light quality, and membrane viscosity in order to establish the cold-acclimated state. CBFs appear to act as master regulators of these interconnecting sensing/signaling pathways.
Collapse
Affiliation(s)
- Leonid V. Kurepin
- Department of Biology and the Biotron Center for Experimental Climate Change Research, Western University, London, ON N6A 5B7, Canada; E-Mails: (R.B.); (A.G.I.)
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden; E-Mail:
- Authors to whom correspondence should be addressed; E-Mails: (L.V.K.); (N.P.A.H.); Tel.: +1-519-661-2111 (ext. 86638) (L.V.K.); +1-519-661-2111 (ext. 86488) (N.P.A.H.); Fax: +1-519-850-2343(L.V.K. & N.P.A.H.)
| | - Keshav P. Dahal
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada; E-Mail:
| | - Leonid V. Savitch
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; E-Mails: (L.V.S.); (J.S.)
| | - Jas Singh
- Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; E-Mails: (L.V.S.); (J.S.)
| | - Rainer Bode
- Department of Biology and the Biotron Center for Experimental Climate Change Research, Western University, London, ON N6A 5B7, Canada; E-Mails: (R.B.); (A.G.I.)
| | - Alexander G. Ivanov
- Department of Biology and the Biotron Center for Experimental Climate Change Research, Western University, London, ON N6A 5B7, Canada; E-Mails: (R.B.); (A.G.I.)
| | - Vaughan Hurry
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, Umeå 901 87, Sweden; E-Mail:
| | - Norman P. A. Hüner
- Department of Biology and the Biotron Center for Experimental Climate Change Research, Western University, London, ON N6A 5B7, Canada; E-Mails: (R.B.); (A.G.I.)
- Authors to whom correspondence should be addressed; E-Mails: (L.V.K.); (N.P.A.H.); Tel.: +1-519-661-2111 (ext. 86638) (L.V.K.); +1-519-661-2111 (ext. 86488) (N.P.A.H.); Fax: +1-519-850-2343(L.V.K. & N.P.A.H.)
| |
Collapse
|
166
|
Derksen H, Rampitsch C, Daayf F. Signaling cross-talk in plant disease resistance. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 207:79-87. [PMID: 23602102 DOI: 10.1016/j.plantsci.2013.03.004] [Citation(s) in RCA: 166] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2012] [Revised: 03/04/2013] [Accepted: 03/06/2013] [Indexed: 05/21/2023]
Abstract
Hormone signaling crosstalk plays a major role in plant defense against a wide range of both biotic and abiotic stresses. While many reviews on plant-microbe interactions have well described the general trends of signaling pathways in shaping host responses to pathogens, few discussions have considered a synthesis of positive versus negative interactions among such pathways, or variations in the signaling molecules themselves. This review deals with the interaction trends between salicylic, jasmonic, and abscisic acids in the signaling pathways, as well as exceptions to such trends. Here we focused on antagonistic versus cooperative interactions between salicylic and jasmonic acids, two major disease resistance signaling molecules, and some interactions with abscisic acid, a known abiotic stress hormone, and another player in plant defense mechanisms. We provide a set of examples materializing either antagonism or cooperation for each interaction between two pathways, thereby showing the trends and pinpointing the exceptions. Such analyses are practical for researchers working on the subject and essential for a better exploitation of the data already available in plant disease resistance signaling, both in Arabidopsis and crop species, toward the development of better disease management strategies for economically important crops.
Collapse
Affiliation(s)
- Holly Derksen
- Department of Plant Science, University of Manitoba, 66 Dafoe Road, Winnipeg, MB R3T 2N2, Canada
| | | | | |
Collapse
|
167
|
Guo CY, Wu GH, Xing J, Li WQ, Tang DZ, Cui BM. A mutation in a coproporphyrinogen III oxidase gene confers growth inhibition, enhanced powdery mildew resistance and powdery mildew-induced cell death in Arabidopsis. PLANT CELL REPORTS 2013; 32:687-702. [PMID: 23462936 DOI: 10.1007/s00299-013-1403-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 02/07/2013] [Accepted: 02/20/2013] [Indexed: 05/27/2023]
Abstract
A gene encoding a coproporphyrinogen III oxidase mediates disease resistance in plants by the salicylic acid pathway. A number of genes that regulate powdery mildew resistance have been identified in Arabidopsis, such as ENHANCED DISEASE RESISTANCE 1 to 3 (EDR1 to 3). To further study the molecular interactions between the powdery mildew pathogen and Arabidopsis, we isolated and characterized a mutant that exhibited enhanced resistance to powdery mildew. The mutant also showed dramatic powdery mildew-induced cell death as well as growth defects and early senescence in the absence of pathogens. We identified the affected gene by map-based cloning and found that the gene encodes a coproporphyrinogen III oxidase, a key enzyme in the tetrapyrrole biosynthesis pathway, previously known as LESION INITIATION 2 (LIN2). Therefore, we designated the mutant lin2-2. Further studies revealed that the lin2-2 mutant also displayed enhanced resistance to Hyaloperonospora arabidopsidis (H.a.) Noco2. Genetic analysis showed that the lin2-2-mediated disease resistance and spontaneous cell death were dependent on PHYTOALEXIN DEFICIENT 4 (PAD4), SALICYLIC ACID INDUCTION-DEFICIENT 2 (SID2), and NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1), which are all involved in salicylic acid signaling. Furthermore, the relative expression levels of defense-related genes were induced after powdery mildew infection in the lin2-2 mutant. These data indicated that LIN2 plays an important role in cell death control and defense responses in plants.
Collapse
Affiliation(s)
- Chuan-yu Guo
- College of Life Science, Shihezi University, Shihezi, 832003, Xinjiang, PR China.
| | | | | | | | | | | |
Collapse
|
168
|
Salicylic acid interferes with clathrin-mediated endocytic protein trafficking. Proc Natl Acad Sci U S A 2013; 110:7946-51. [PMID: 23613581 DOI: 10.1073/pnas.1220205110] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Removal of cargos from the cell surface via endocytosis is an efficient mechanism to regulate activities of plasma membrane (PM)-resident proteins, such as receptors or transporters. Salicylic acid (SA) is an important plant hormone that is traditionally associated with pathogen defense. Here, we describe an unanticipated effect of SA on subcellular endocytic cycling of proteins. Both exogenous treatments and endogenously enhanced SA levels repressed endocytosis of different PM proteins. The SA effect on endocytosis did not involve transcription or known components of the SA signaling pathway for transcriptional regulation. SA likely targets an endocytic mechanism that involves the coat protein clathrin, because SA interfered with the clathrin incidence at the PM and clathrin-deficient mutants were less sensitive to the impact of SA on the auxin distribution and root bending during the gravitropic response. By contrast, SA did not affect the ligand-induced endocytosis of the flagellin sensing2 (FLS2) receptor during pathogen responses. Our data suggest that the established SA impact on transcription in plant immunity and the nontranscriptional effect of SA on clathrin-mediated endocytosis are independent mechanisms by which SA regulates distinct aspects of plant physiology.
Collapse
|
169
|
Zhang C, Ouyang B, Yang C, Zhang X, Liu H, Zhang Y, Zhang J, Li H, Ye Z. Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant. PLoS One 2013; 8:e61987. [PMID: 23626761 PMCID: PMC3633959 DOI: 10.1371/journal.pone.0061987] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 03/15/2013] [Indexed: 01/07/2023] Open
Abstract
As a vital antioxidant, L-ascorbic acid (AsA) affects diverse biological processes in higher plants. Lack of AsA in cell impairs plant development. In the present study, we manipulated a gene of GDP-mannose pyrophosphorylase which catalyzes the conversion of D-mannose-1-P to GDP-D-mannose in AsA biosynthetic pathway and found out the phenotype alteration of tomato. In the tomato genome, there are four members of GMP gene family and they constitutively expressed in various tissues in distinct expression patterns. As expected, over-expression of SlGMP3 increased total AsA contents and enhanced the tolerance to oxidative stress in tomato. On the contrary, knock-down of SlGMP3 significantly decreased AsA contents below the threshold level and altered the phenotype of tomato plants with lesions and further senescence. Further analysis indicated the causes for this symptom could result from failing to instantly deplete the reactive oxygen species (ROS) as decline of free radical scavenging activity. More ROS accumulated in the leaves and then triggered expressions of defence-related genes and mimic symptom occurred on the leaves similar to hypersensitive responses against pathogens. Consequently, the photosynthesis of leaves was dramatically fallen. These results suggested the vital roles of AsA as an antioxidant in leaf function and defence response of tomato.
Collapse
Affiliation(s)
- Chanjuan Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Bo Ouyang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Changxian Yang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Xiaohui Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hui Liu
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Yuyang Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Junhong Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Hanxia Li
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | - Zhibiao Ye
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
- * E-mail:
| |
Collapse
|
170
|
Zou B, Jia Z, Tian S, Wang X, Gou Z, L B, Dong H. AtMYB44 positively modulates disease resistance to Pseudomonas syringae through the salicylic acid signalling pathway in Arabidopsis. FUNCTIONAL PLANT BIOLOGY : FPB 2013; 40:304-313. [PMID: 32481109 DOI: 10.1071/fp12253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/17/2012] [Indexed: 05/18/2023]
Abstract
Plant MYB transcription factors are implicated in resistance to biotic and abiotic stresses. Here, we demonstrate that an R2-R3 MYB transcription factor, AtMYB44, plays a role in the plant defence response to the bacterial pathogen Pseudomonas syringae pv. tomato DC3000 (PstDC3000). The expression of AtMYB44 was upregulated upon pathogen infection and treatments with defence-related phytohormones. Transgenic plants overexpressing AtMYB44 (35S-Ms) exhibited greater levels of PR1 gene expression, cell death, callose deposition and hydrogen peroxide (H2O2) accumulation in leaves infected with PstDC3000. Consequently, 35S-M lines displayed enhanced resistance to PstDC3000. In contrast, the atmyb44 T-DNA insertion mutant was more susceptible to PstDC3000 and exhibited decreased PR1 gene expression upon infection. Using double mutants constructed via crosses of 35S-M lines with NahG transgenic plants and nonexpressor of pathogenesis-related genes1 mutant (npr1-1), we demonstrated that the enhanced PR1 gene expression and PstDC3000 resistance in 35S-M plants occur mainly through the salicylic acid signalling pathway.
Collapse
Affiliation(s)
- Baohong Zou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenhua Jia
- Institute of Biology, Hebei Academy of Science, Shijiazhuang, Hebei 050051, China
| | - Shuangmei Tian
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaomeng Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Zhenhua Gou
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Beibei L
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Hansong Dong
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
171
|
Kwon SI, Cho HJ, Kim SR, Park OK. The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. PLANT PHYSIOLOGY 2013; 161:1722-36. [PMID: 23404918 PMCID: PMC3613451 DOI: 10.1104/pp.112.208108] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2012] [Accepted: 02/08/2013] [Indexed: 05/18/2023]
Abstract
A central component of the plant defense response to pathogens is the hypersensitive response (HR), a form of programmed cell death (PCD). Rapid and localized induction of HR PCD ensures that pathogen invasion is prevented. Autophagy has been implicated in the regulation of HR cell death, but the functional relationship between autophagy and HR PCD and the regulation of these processes during the plant immune response remain controversial. Here, we show that a small GTP-binding protein, RabG3b, plays a positive role in autophagy and promotes HR cell death in response to avirulent bacterial pathogens in Arabidopsis (Arabidopsis thaliana). Transgenic plants overexpressing a constitutively active RabG3b (RabG3bCA) displayed accelerated, unrestricted HR PCD within 1 d of infection, in contrast to the autophagy-defective atg5-1 mutant, which gradually developed chlorotic cell death through uninfected sites over several days. Microscopic analyses showed the accumulation of autophagic structures during HR cell death in RabG3bCA cells. Our results suggest that RabG3b contributes to HR cell death via the activation of autophagy, which plays a positive role in plant immunity-triggered HR PCD.
Collapse
|
172
|
Dobón A, Wulff BBH, Canet JV, Fort P, Tornero P. An allele of Arabidopsis COI1 with hypo- and hypermorphic phenotypes in plant growth, defence and fertility. PLoS One 2013; 8:e55115. [PMID: 23383073 PMCID: PMC3559596 DOI: 10.1371/journal.pone.0055115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2012] [Accepted: 12/19/2012] [Indexed: 12/02/2022] Open
Abstract
Resistance to biotrophic pathogens is largely dependent on the hormone salicylic acid (SA) while jasmonic acid (JA) regulates resistance against necrotrophs. JA negatively regulates SA and is, in itself, negatively regulated by SA. A key component of the JA signal transduction pathway is its receptor, the COI1 gene. Mutations in this gene can affect all the JA phenotypes, whereas mutations in other genes, either in JA signal transduction or in JA biosynthesis, lack this general effect. To identify components of the part of the resistance against biotrophs independent of SA, a mutagenised population of NahG plants (severely depleted of SA) was screened for suppression of susceptibility. The screen resulted in the identification of intragenic and extragenic suppressors, and the results presented here correspond to the characterization of one extragenic suppressor, coi1-40. coi1-40 is quite different from previously described coi1 alleles, and it represents a strategy for enhancing resistance to biotrophs with low levels of SA, likely suppressing NahG by increasing the perception to the remaining SA. The phenotypes of coi1-40 lead us to speculate about a modular function for COI1, since we have recovered a mutation in COI1 which has a number of JA-related phenotypes reduced while others are equal to or above wild type levels.
Collapse
Affiliation(s)
- Albor Dobón
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
| | - Brande B. H. Wulff
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
| | - Juan Vicente Canet
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
| | - Patrocinio Fort
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
| | - Pablo Tornero
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), Universidad Politécnica de Valencia (UPV)-Consejo Superior de Investigaciones Científicas (CSIC), Ciudad Politécnica de la Innovación (CPI), Valencia, Spain
- * E-mail:
| |
Collapse
|
173
|
Shim JS, Jung C, Lee S, Min K, Lee YW, Choi Y, Lee JS, Song JT, Kim JK, Choi YD. AtMYB44 regulates WRKY70 expression and modulates antagonistic interaction between salicylic acid and jasmonic acid signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:483-95. [PMID: 23067202 DOI: 10.1111/tpj.12051] [Citation(s) in RCA: 132] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/18/2012] [Accepted: 10/08/2012] [Indexed: 05/19/2023]
Abstract
The role of AtMYB44, an R2R3 MYB transcription factor, in signaling mediated by jasmonic acid (JA) and salicylic acid (SA) is examined. AtMYB44 is induced by JA through CORONATINE INSENSITIVE 1 (COI1). AtMYB44 over-expression down-regulated defense responses against the necrotrophic pathogen Alternaria brassicicola, but up-regulated WRKY70 and PR genes, leading to enhanced resistance to the biotrophic pathogen Pseudomonas syringae pv. tomato DC3000. The knockout mutant atmyb44 shows opposite effects. Induction of WRKY70 by SA is reduced in atmyb44 and npr1-1 mutants, and is totally abolished in atmyb44 npr1-1 double mutants, showing that WRKY70 is regulated independently through both NPR1 and AtMYB44. AtMYB44 over-expression does not change SA content, but AtMYB44 over-expression phenotypes, such as retarded growth, up-regulated PR1 and down-regulated PDF1.2 are reversed by SA depletion. The wrky70 mutation suppressed AtMYB44 over-expression phenotypes, including up-regulation of PR1 expression and down-regulation of PDF1.2 expression. β-estradiol-induced expression of AtMYB44 led to WRKY70 activation and thus PR1 activation. AtMYB44 binds to the WRKY70 promoter region, indicating that AtMYB44 acts as a transcriptional activator of WRKY70 by directly binding to a conserved sequence element in the WRKY70 promoter. These results demonstrate that AtMYB44 modulates antagonistic interaction by activating SA-mediated defenses and repressing JA-mediated defenses through direct control of WRKY70.
Collapse
Affiliation(s)
- Jae Sung Shim
- Department of Agricultural Biotechnology, Seoul National University, Seoul, 151-921, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
174
|
Scala A, Mirabella R, Mugo C, Matsui K, Haring MA, Schuurink RC. E-2-hexenal promotes susceptibility to Pseudomonas syringae by activating jasmonic acid pathways in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2013; 4:74. [PMID: 23630530 PMCID: PMC3624080 DOI: 10.3389/fpls.2013.00074] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/15/2013] [Indexed: 05/20/2023]
Abstract
Green leaf volatiles (GLVs) are C6-molecules - alcohols, aldehydes, and esters - produced by plants upon herbivory or during pathogen infection. Exposure to this blend of volatiles induces defense-related responses in neighboring undamaged plants, thus assigning a role to GLVs in regulating plant defenses. Here we compared Arabidopsis thaliana ecotype Landsberg erecta (Ler) with a hydroperoxide lyase line, hpl1, unable to synthesize GLVs, for susceptibility to Pseudomonas syringae pv. tomato (DC3000). We found that the growth of DC3000 was significantly reduced in the hpl1 mutant. This phenomenon correlated with lower jasmonic acid (JA) levels and higher salicylic acid levels in the hpl1 mutant. Furthermore, upon infection, the JA-responsive genes VSP2 and LEC were only slightly or not induced, respectively, in hpl1. This suggests that the reduced growth of DC3000 in hpl1 plants is due to the constraint of JA-dependent responses. Treatment of hpl1 plants with E-2-hexenal, one of the more reactive GLVs, prior to infection with DC3000, resulted in increased growth of DC3000 in hpl1, thus complementing this mutant. Interestingly, the growth of DC3000 also increased in Ler plants treated with E-2-hexenal. This stronger growth was not dependent on the JA-signaling component MYC2, but on ORA59, an integrator of JA and ethylene signaling pathways, and on the production of coronatine by DC3000. GLVs may have multiple effects on plant-pathogen interactions, in this case reducing resistance to Pseudomonas syringae via JA and ORA59.
Collapse
Affiliation(s)
- Alessandra Scala
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Rossana Mirabella
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Cynthia Mugo
- Department of Biological Chemistry, Faculty of Agriculture, Graduate School of Medicine, Yamaguchi UniversityYamaguchi, Japan
| | - Kenji Matsui
- Department of Biological Chemistry, Faculty of Agriculture, Graduate School of Medicine, Yamaguchi UniversityYamaguchi, Japan
| | - Michel A. Haring
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
| | - Robert C. Schuurink
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of AmsterdamAmsterdam, Netherlands
- *Correspondence: Robert C. Schuurink, Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, Netherlands. e-mail:
| |
Collapse
|
175
|
Zhang C, Ouyang B, Yang C, Zhang X, Liu H, Zhang Y, Zhang J, Li H, Ye Z. Reducing AsA leads to leaf lesion and defence response in knock-down of the AsA biosynthetic enzyme GDP-D-mannose pyrophosphorylase gene in tomato plant. PLoS One 2013. [PMID: 23626761 DOI: 10.1371/journal.pone.0061987.g001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
As a vital antioxidant, L-ascorbic acid (AsA) affects diverse biological processes in higher plants. Lack of AsA in cell impairs plant development. In the present study, we manipulated a gene of GDP-mannose pyrophosphorylase which catalyzes the conversion of D-mannose-1-P to GDP-D-mannose in AsA biosynthetic pathway and found out the phenotype alteration of tomato. In the tomato genome, there are four members of GMP gene family and they constitutively expressed in various tissues in distinct expression patterns. As expected, over-expression of SlGMP3 increased total AsA contents and enhanced the tolerance to oxidative stress in tomato. On the contrary, knock-down of SlGMP3 significantly decreased AsA contents below the threshold level and altered the phenotype of tomato plants with lesions and further senescence. Further analysis indicated the causes for this symptom could result from failing to instantly deplete the reactive oxygen species (ROS) as decline of free radical scavenging activity. More ROS accumulated in the leaves and then triggered expressions of defence-related genes and mimic symptom occurred on the leaves similar to hypersensitive responses against pathogens. Consequently, the photosynthesis of leaves was dramatically fallen. These results suggested the vital roles of AsA as an antioxidant in leaf function and defence response of tomato.
Collapse
Affiliation(s)
- Chanjuan Zhang
- The Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, China
| | | | | | | | | | | | | | | | | |
Collapse
|
176
|
Denancé N, Ranocha P, Oria N, Barlet X, Rivière MP, Yadeta KA, Hoffmann L, Perreau F, Clément G, Maia-Grondard A, van den Berg GCM, Savelli B, Fournier S, Aubert Y, Pelletier S, Thomma BPHJ, Molina A, Jouanin L, Marco Y, Goffner D. Arabidopsis wat1 (walls are thin1)-mediated resistance to the bacterial vascular pathogen, Ralstonia solanacearum, is accompanied by cross-regulation of salicylic acid and tryptophan metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:225-39. [PMID: 22978675 DOI: 10.1111/tpj.12027] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 09/05/2012] [Accepted: 09/07/2012] [Indexed: 05/23/2023]
Abstract
Inactivation of Arabidopsis WAT1 (Walls Are Thin1), a gene required for secondary cell-wall deposition, conferred broad-spectrum resistance to vascular pathogens, including the bacteria Ralstonia solanacearum and Xanthomonas campestris pv. campestris, and the fungi Verticillium dahliae and Verticillium albo-atrum. Introduction of NahG, the bacterial salicylic acid (SA)-degrading salicylate hydroxylase gene, into the wat1 mutant restored full susceptibility to both R. solanacearum and X. campestris pv. campestris. Moreover, SA content was constitutively higher in wat1 roots, further supporting a role for SA in wat1-mediated resistance to vascular pathogens. By combining transcriptomic and metabolomic data, we demonstrated a general repression of indole metabolism in wat1-1 roots as shown by constitutive down-regulation of several genes encoding proteins of the indole glucosinolate biosynthetic pathway and reduced amounts of tryptophan (Trp), indole-3-acetic acid and neoglucobrassicin, the major form of indole glucosinolate in roots. Furthermore, the susceptibility of the wat1 mutant to R. solanacearum was partially restored when crossed with either the trp5 mutant, an over-accumulator of Trp, or Pro35S:AFB1-myc, in which indole-3-acetic acid signaling is constitutively activated. Our original hypothesis placed cell-wall modifications at the heart of the wat1 resistance phenotype. However, the results presented here suggest a mechanism involving root-localized metabolic channeling away from indole metabolites to SA as a central feature of wat1 resistance to R. solanacearum.
Collapse
Affiliation(s)
- Nicolas Denancé
- Université de Toulouse, UPS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| | - Philippe Ranocha
- Université de Toulouse, UPS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| | - Nicolas Oria
- Institut National de la Recherche Agronomique, INRA, AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Centre de Versailles-Grignon, Route de Saint-Cyr, F-78026, Versailles, France
| | - Xavier Barlet
- Institut National de la Recherche Agronomique, INRA, Unité Mixte de Recherche 441, Laboratoire des Interactions Plantes Microorganismes, 24 Chemin de Borde Rouge, F-31326, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Unité Mixte de Recherche 2594, Laboratoire des Interactions Plantes Microorganismes, 24 Chemin de Borde Rouge, F-31326, Castanet-Tolosan, France
| | - Marie-Pierre Rivière
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, E-28223, Pozuelo de Alarcón, Spain
| | - Koste A Yadeta
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, The Netherlands
| | - Laurent Hoffmann
- Université de Toulouse, UPS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| | - François Perreau
- Institut National de la Recherche Agronomique, INRA, AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Centre de Versailles-Grignon, Route de Saint-Cyr, F-78026, Versailles, France
| | - Gilles Clément
- Institut National de la Recherche Agronomique, INRA, AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Centre de Versailles-Grignon, Route de Saint-Cyr, F-78026, Versailles, France
| | - Alessandra Maia-Grondard
- Institut National de la Recherche Agronomique, INRA, AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Centre de Versailles-Grignon, Route de Saint-Cyr, F-78026, Versailles, France
| | - Grardy C M van den Berg
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, The Netherlands
| | - Bruno Savelli
- Université de Toulouse, UPS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| | - Sylvie Fournier
- Université de Toulouse, UPS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| | - Yann Aubert
- Université de Toulouse, UPS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| | - Sandra Pelletier
- Unité de Recherche en Génomique Végétale, Institut National de la Recherche Agronomique (INRA)/ Centre National de la Recherche Scientifique (CNRS), 91057, Evry, France
| | - Bart P H J Thomma
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708, PB Wageningen, The Netherlands
| | - Antonio Molina
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Campus Montegancedo, E-28223, Pozuelo de Alarcón, Spain
| | - Lise Jouanin
- Institut National de la Recherche Agronomique, INRA, AgroParisTech, Unité Mixte de Recherche 1318, Institut Jean-Pierre Bourgin, Centre de Versailles-Grignon, Route de Saint-Cyr, F-78026, Versailles, France
| | - Yves Marco
- Institut National de la Recherche Agronomique, INRA, Unité Mixte de Recherche 441, Laboratoire des Interactions Plantes Microorganismes, 24 Chemin de Borde Rouge, F-31326, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Unité Mixte de Recherche 2594, Laboratoire des Interactions Plantes Microorganismes, 24 Chemin de Borde Rouge, F-31326, Castanet-Tolosan, France
| | - Deborah Goffner
- Université de Toulouse, UPS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
- Centre National de la Recherche Scientifique, CNRS, Unité Mixte de Recherche 5546, Laboratoire de Recherche en Sciences Végétales, BP 42617, F-31326, Castanet-Tolosan, France
| |
Collapse
|
177
|
Miura K, Okamoto H, Okuma E, Shiba H, Kamada H, Hasegawa PM, Murata Y. SIZ1 deficiency causes reduced stomatal aperture and enhanced drought tolerance via controlling salicylic acid-induced accumulation of reactive oxygen species in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:91-104. [PMID: 22963672 DOI: 10.1111/tpj.12014] [Citation(s) in RCA: 148] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2011] [Revised: 09/04/2012] [Accepted: 09/06/2012] [Indexed: 05/20/2023]
Abstract
Transpiration and gas exchange occur through stomata. Thus, the control of stomatal aperture is important for the efficiency and regulation of water use, and for the response to drought. Here, we demonstrate that SIZ1-mediated endogenous salicylic acid (SA) accumulation plays an important role in stomatal closure and drought tolerance. siz1 reduced stomatal apertures. The reduced stomatal apertures of siz1 were inhibited by the application of peroxidase inhibitors, salicylhydroxamic acid and azide, which inhibits SA-dependent reactive oxygen species (ROS) production, but not by an NADPH oxidase inhibitor, diphenyl iodonium chloride, which inhibits ABA-dependent ROS production. Furthermore, the introduction of nahG into siz1, which reduces SA accumulation, restored stomatal opening. Stomatal closure is generally induced by water deficit. The siz1 mutation caused drought tolerance, whereas nahG siz1 suppressed the tolerant phenotype. Drought stresses also induced expression of SA-responsive genes, such as PR1 and PR2. Furthermore, other SA-accumulating mutants, cpr5 and acd6, exhibited stomatal closure and drought tolerance, and nahG suppressed the phenotype of cpr5 and acd6, as did siz1 and nahG siz1. Together, these results suggest that SIZ1 negatively affects stomatal closure and drought tolerance through the accumulation of SA.
Collapse
Affiliation(s)
- Kenji Miura
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tukuba, 305-8572, Japan
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907-2010, USA
| | - Hiroyuki Okamoto
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Eiji Okuma
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Hayato Shiba
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tukuba, 305-8572, Japan
| | - Hiroshi Kamada
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Tukuba, 305-8572, Japan
| | - Paul M Hasegawa
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907-2010, USA
| | - Yoshiyuki Murata
- Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| |
Collapse
|
178
|
Návarová H, Bernsdorff F, Döring AC, Zeier J. Pipecolic acid, an endogenous mediator of defense amplification and priming, is a critical regulator of inducible plant immunity. THE PLANT CELL 2012; 24:5123-41. [PMID: 23221596 PMCID: PMC3556979 DOI: 10.1105/tpc.112.103564] [Citation(s) in RCA: 391] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 11/08/2012] [Accepted: 11/15/2012] [Indexed: 05/18/2023]
Abstract
Metabolic signals orchestrate plant defenses against microbial pathogen invasion. Here, we report the identification of the non-protein amino acid pipecolic acid (Pip), a common Lys catabolite in plants and animals, as a critical regulator of inducible plant immunity. Following pathogen recognition, Pip accumulates in inoculated Arabidopsis thaliana leaves, in leaves distal from the site of inoculation, and, most specifically, in petiole exudates from inoculated leaves. Defects of mutants in AGD2-LIKE DEFENSE RESPONSE PROTEIN1 (ALD1) in systemic acquired resistance (SAR) and in basal, specific, and β-aminobutyric acid-induced resistance to bacterial infection are associated with a lack of Pip production. Exogenous Pip complements these resistance defects and increases pathogen resistance of wild-type plants. We conclude that Pip accumulation is critical for SAR and local resistance to bacterial pathogens. Our data indicate that biologically induced SAR conditions plants to more effectively synthesize the phytoalexin camalexin, Pip, and salicylic acid and primes plants for early defense gene expression. Biological priming is absent in the pipecolate-deficient ald1 mutants. Exogenous pipecolate induces SAR-related defense priming and partly restores priming responses in ald1. We conclude that Pip orchestrates defense amplification, positive regulation of salicylic acid biosynthesis, and priming to guarantee effective local resistance induction and the establishment of SAR.
Collapse
Affiliation(s)
- Hana Návarová
- Department of Biology, Heinrich Heine University Düsseldorf, D-40225 Duesseldorf, Germany
- Plant Biology Section, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Friederike Bernsdorff
- Department of Biology, Heinrich Heine University Düsseldorf, D-40225 Duesseldorf, Germany
| | - Anne-Christin Döring
- Department of Biology, Heinrich Heine University Düsseldorf, D-40225 Duesseldorf, Germany
| | - Jürgen Zeier
- Department of Biology, Heinrich Heine University Düsseldorf, D-40225 Duesseldorf, Germany
- Plant Biology Section, University of Fribourg, CH-1700 Fribourg, Switzerland
- Address correspondence to
| |
Collapse
|
179
|
Sanchez L, Courteaux B, Hubert J, Kauffmann S, Renault JH, Clément C, Baillieul F, Dorey S. Rhamnolipids elicit defense responses and induce disease resistance against biotrophic, hemibiotrophic, and necrotrophic pathogens that require different signaling pathways in Arabidopsis and highlight a central role for salicylic acid. PLANT PHYSIOLOGY 2012; 160:1630-41. [PMID: 22968829 PMCID: PMC3490604 DOI: 10.1104/pp.112.201913] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/06/2012] [Indexed: 05/19/2023]
Abstract
Plant resistance to phytopathogenic microorganisms mainly relies on the activation of an innate immune response usually launched after recognition by the plant cells of microbe-associated molecular patterns. The plant hormones, salicylic acid (SA), jasmonic acid, and ethylene have emerged as key players in the signaling networks involved in plant immunity. Rhamnolipids (RLs) are glycolipids produced by bacteria and are involved in surface motility and biofilm development. Here we report that RLs trigger an immune response in Arabidopsis (Arabidopsis thaliana) characterized by signaling molecules accumulation and defense gene activation. This immune response participates to resistance against the hemibiotrophic bacterium Pseudomonas syringae pv tomato, the biotrophic oomycete Hyaloperonospora arabidopsidis, and the necrotrophic fungus Botrytis cinerea. We show that RL-mediated resistance involves different signaling pathways that depend on the type of pathogen. Ethylene is involved in RL-induced resistance to H. arabidopsidis and to P. syringae pv tomato whereas jasmonic acid is essential for the resistance to B. cinerea. SA participates to the restriction of all pathogens. We also show evidence that SA-dependent plant defenses are potentiated by RLs following challenge by B. cinerea or P. syringae pv tomato. These results highlight a central role for SA in RL-mediated resistance. In addition to the activation of plant defense responses, antimicrobial properties of RLs are thought to participate in the protection against the fungus and the oomycete. Our data highlight the intricate mechanisms involved in plant protection triggered by a new type of molecule that can be perceived by plant cells and that can also act directly onto pathogens.
Collapse
Affiliation(s)
- Lisa Sanchez
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | - Barbara Courteaux
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | - Jane Hubert
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | | | - Jean-Hugues Renault
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | - Christophe Clément
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | - Fabienne Baillieul
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| | - Stéphan Dorey
- Laboratoire de Stress, Défenses, et Reproduction des Plantes, L'Unité de Recherche Vignes et Vins de Champagne, Equipe d'Accueil 4707 (L.S., B.C., C.C., F.B., S.D.) and Institut de Chimie Moléculaire de Reims Unité Mixte de Recherche, Centre National de la Recherche Scientifique 6229, Institut Fédératif Recherche 53 (J.H., J.-H.R.), Université de Reims Champagne-Ardenne, F-51687 Reims cedex 2, France; and Institut de Biologie Moléculaire des Plantes, Centre National de la Recherche Scientifique, Unité Propre de Recherche 2357, F-67084 Strasbourg, France (S.K.)
| |
Collapse
|
180
|
Zhu X, Thalor SK, Takahashi Y, Berberich T, Kusano T. An inhibitory effect of the sequence-conserved upstream open-reading frame on the translation of the main open-reading frame of HsfB1 transcripts in Arabidopsis. PLANT, CELL & ENVIRONMENT 2012; 35:2014-30. [PMID: 22571635 DOI: 10.1111/j.1365-3040.2012.02533.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plants have as many as 20 heat shock factors (Hsfs) grouped into three classes, A, B and C, based on sequence similarity and modular structures. Through screening for cell death-inducing factor(s) in Nicotiana benthamiana, we identified Arabidopsis HsfB2b and thus subjected all other members of Arabidopsis Hsf class B (HsfB1, HsfB2a, HsfB2b, HsfB3 and HsfB4) to the same cell death assay. When expressed in N. benthamiana leaves, only HsfB1 and HsfB2b elicited mild cell death. Simultaneously we found that HsfB1 has a post-transcriptional control mechanism, in which a sequence-conserved upstream open-reading frame (sc-uORF) is involved. The known repressor function of the respective HsfBs was confirmed and the difference in cell death-inducing activity of HsfBs was explained by the fact that HsfB1 and HsfB2b are transcriptional repressors but the others are not. Indeed, the cell death symptom by HsfB1 and HsfB2b required not only their repression activity but also their nuclear localization activity. HsfB1 expression was drastically and transiently induced by heat shock (HS) and the intactness of sc-uORF was required for its HS response. Based on the results, the physiological significance of cell death-inducing activity of HsfB1 and HsfB2b and the sc-uORF in the HsfB1 transcript during HS response is discussed.
Collapse
Affiliation(s)
- Xujun Zhu
- Graduate School of Life Sciences, Tohoku University, 2-1-1 Katahira, Aoba, Sendai-city, Miyagi 980-8577, Japan
| | | | | | | | | |
Collapse
|
181
|
2-Hydroxyoleic acid induces ER stress and autophagy in various human glioma cell lines. PLoS One 2012; 7:e48235. [PMID: 23133576 PMCID: PMC3484997 DOI: 10.1371/journal.pone.0048235] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 09/28/2012] [Indexed: 02/07/2023] Open
Abstract
Background 2-Hydroxyoleic acid is a synthetic fatty acid with potent anti-cancer activity which does not induce undesired side effects. However, the molecular and cellular mechanisms by which this compound selectively kills human glioma cancer cells without killing normal cells is not fully understood. The present study was designed to determine the molecular bases underlying the potency against 1321N1, SF-767 and U118 human glioma cell lines growth without affecting non cancer MRC-5 cells. Methodology/Principal Findings The cellular levels of endoplasmic reticulum (ER) stress, unfolded protein response (UPR) and autophagy markers were determined by quantitative RT-PCR and immunoblotting on 1321N1, SF-767 and U118 human glioma cells and non-tumor MRC-5 cells incubated in the presence or absence of 2OHOA or the ER stress/autophagy inducer, palmitate. The cellular response to these agents was evaluated by fluorescence microscopy, electron microscopy and flow cytometry. We have observed that 2OHOA treatments induced augments in the expression of important ER stress/UPR markers, such as phosphorylated eIF2α, IRE1α, CHOP, ATF4 and the spliced form of XBP1 in human glioma cells. Concomitantly, 2OHOA led to the arrest of 1321N1 cells in the G2/M phase of the cell cycle, with down-regulation of cyclin B1 and Cdk1/Cdc2 proteins in the three glioma cell lines studied. Finally, 2OHOA induced autophagy in 1321N1, SF-767 and U118 cells, with the appearance of autophagic vesicles and the up-regulation of LC3BI, LC3BII and ATG7 in 1321N1 cells, increases of LC3BI, LC3BII and ATG5 in SF-767 cells and up-regulation of LC3BI and LC3BII in U118 cells. Importantly, 2OHOA failed to induce such changes in non-tumor MRC-5 cells. Conclusion/Significance The present results demonstrate that 2OHOA induces ER stress/UPR and autophagy in human glioma (1321N1, SF-767 and U118 cell lines) but not normal (MRC-5) cells, unraveling the molecular bases underlying the efficacy and lack of toxicity of this compound.
Collapse
|
182
|
Guan H, Liu C, Zhao Y, Zeng B, Zhao H, Jiang Y, Song W, Lai J. Characterization, fine mapping and expression profiling of Ragged leaves1 in maize. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2012; 125:1125-35. [PMID: 22648613 DOI: 10.1007/s00122-012-1899-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/11/2012] [Indexed: 05/11/2023]
Abstract
The Ragged leaves1 (Rg1) maize mutant frequently develops lesions on leaves, leaf sheaths, and ear bracts. Lesion formation is independent of biotic stress. High-level accumulation of H(2)O(2) revealed by staining Rg1 leaves, with 3',3'-diaminobenzidine and trypan blue, suggested that lesion formation appeared to be due to cell death. Rg1 was initially mapped to an interval around 70.5 Mb in bin 3.04 on the short arm of chromosome 3. Utilizing 15 newly developed markers, Rg1 was delimitated to an interval around 17 kb using 16,356 individuals of a BC1 segregating population. There was only one gene, rp3, predicted in this region according to the B73 genome. Analysis of transcriptome data revealed that 441 genes significantly up-regulated in Rg1 leaves were functionally over-represented. Among those genes, several were involved in the production of reactive oxygen species (ROS). Our results suggested that lesions of Rg1 maize arose probably due to an aberrant rust resistance allele of Rp3, which elicited the accumulation of ROS independent of biotic stress.
Collapse
Affiliation(s)
- Haiying Guan
- Department of Plant Genetics and Breeding, State Key Laboratory of Agrobiotechnology and National Maize Improvement Center of China, China Agricultural University, Beijing, 100193, China
| | | | | | | | | | | | | | | |
Collapse
|
183
|
Kim HS, Park HC, Kim KE, Jung MS, Han HJ, Kim SH, Kwon YS, Bahk S, An J, Bae DW, Yun DJ, Kwak SS, Chung WS. A NAC transcription factor and SNI1 cooperatively suppress basal pathogen resistance in Arabidopsis thaliana. Nucleic Acids Res 2012; 40:9182-92. [PMID: 22826500 PMCID: PMC3467076 DOI: 10.1093/nar/gks683] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Transcriptional repression of pathogen defense-related genes is essential for plant growth and development. Several proteins are known to be involved in the transcriptional regulation of plant defense responses. However, mechanisms by which expression of defense-related genes are regulated by repressor proteins are poorly characterized. Here, we describe the in planta function of CBNAC, a calmodulin-regulated NAC transcriptional repressor in Arabidopsis. A T-DNA insertional mutant (cbnac1) displayed enhanced resistance to a virulent strain of the bacterial pathogen Pseudomonas syringae DC3000 (PstDC3000), whereas resistance was reduced in transgenic CBNAC overexpression lines. The observed changes in disease resistance were correlated with alterations in pathogenesis-related protein 1 (PR1) gene expression. CBNAC bound directly to the PR1 promoter. SNI1 (suppressor of nonexpressor of PR genes1, inducible 1) was identified as a CBNAC-binding protein. Basal resistance to PstDC3000 and derepression of PR1 expression was greater in the cbnac1 sni1 double mutant than in either cbnac1 or sni1 mutants. SNI1 enhanced binding of CBNAC to its cognate PR1 promoter element. CBNAC and SNI1 are hypothesized to work as repressor proteins in the cooperative suppression of plant basal defense.
Collapse
Affiliation(s)
- Ho Soo Kim
- Division of Applied Life Science (BK21 Program), Gyeongsang National University, Jinju 660-701, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
184
|
Igarashi D, Tsuda K, Katagiri F. The peptide growth factor, phytosulfokine, attenuates pattern-triggered immunity. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 71:194-204. [PMID: 22353039 DOI: 10.1111/j.1365-313x.2012.04950.x] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Pattern-triggered immunity (PTI) is triggered by recognition of elicitors called microbe-associated molecular patterns (MAMPs). Although immune responses may provide good protection of plants from pathogen attack, excessive immune responses have negative impacts on plant growth and development. Thus, a good balance between positive and negative effects on the immune signaling network is important for plant fitness. However, little information is known about the molecular mechanisms that are involved in attenuation of PTI. Here, we describe a growth-promoting peptide hormone, phytosulfokine (PSK), as attenuating PTI signaling in Arabidopsis. This research was motivated by the observation that expression of the PSK Receptor 1 (PSKR1) gene was induced by MAMP treatment. Plants homozygous for pskr1 T-DNA insertions showed enhanced defense gene expression and seedling growth inhibition triggered by MAMPs. The pskr1 plants also showed enhanced PTI against the bacterial pathogen Pseudomonas syringae. These results indicate that the PSKR-mediated signaling attenuates immune responses. Tyrosyl protein sulfotransferase (TPST) is an enzyme required for production of the mature sulfated PSK. Like pskr1 mutants, a tpst T-DNA insertion line exhibited enhanced MAMP-triggered seedling growth inhibition, which was suppressed by exogenous application of PSK. Thus, PSK signaling mediated by PSKR1 attenuates PTI but stimulates growth.
Collapse
Affiliation(s)
- Daisuke Igarashi
- Department of Plant Biology, Microbial and Plant Genomics Institute, University of Minnesota, 1500 Gortner Avenue, St. Paul, MN, 55108, USA
| | | | | |
Collapse
|
185
|
Li J, Brader G, Helenius E, Kariola T, Palva ET. Biotin deficiency causes spontaneous cell death and activation of defense signaling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2012; 70:315-26. [PMID: 22126457 DOI: 10.1111/j.1365-313x.2011.04871.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
In addition to its essential metabolic functions, biotin has been suggested to play a critical role in regulating gene expression. The first committed enzyme in biotin biosynthesis in Arabidopsis, 7-keto-8-aminopelargonic acid synthase, is encoded by At5g04620 (BIO4). We isolated a T-DNA insertion mutant of BIO4 (bio4-1) with a spontaneous cell death phenotype, which was rescued both by exogenous biotin and genetic complementation. The bio4-1 plants exhibited massive accumulation of hydrogen peroxide and constitutive up-regulation of a number of genes that are diagnostic for defense and reactive oxygen species signaling. The cell-death phenotype was independent of salicylic acid and jasmonate signaling. Interestingly, the observed increase in defense gene expression was not accompanied by enhanced resistance to bacterial pathogens, which may be explained by uncoupling of defense gene transcription from accumulation of the corresponding protein. Characterization of biotinylated protein profiles showed a substantial reduction of both chloroplastic biotinylated proteins and a nuclear biotinylated polypeptide in the mutant. Our results suggest that biotin deficiency results in light-dependent spontaneous cell death and modulates defense gene expression. The isolation and molecular characterization of the bio4-1 mutant provides a valuable tool for elucidating new functions of biotin.
Collapse
Affiliation(s)
- Jing Li
- Division of Genetics, Department of Biosciences, Viikki Biocenter, University of Helsinki, 00014 Helsinki, Finland
| | | | | | | | | |
Collapse
|
186
|
An L, Zhou Z, Yan A, Gan Y. Progress on trichome development regulated by phytohormone signaling. PLANT SIGNALING & BEHAVIOR 2011; 6:1959-62. [PMID: 22105030 PMCID: PMC3337187 DOI: 10.4161/psb.6.12.18120] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Trichomes are specialized structures that develop from epidermal cells in the aerial parts of plants, and are an excellent model system to study all aspects of cell differentiation including cell fate determination, cell cycle regulation, cell polarity and cell expansion. The development of the trichome is a process of integration of both external signals and endogenous developmental programs. During recent years, molecular analysis of trichome development at different stages has been well studied, and through the mutant phenotypes and the function of corresponding genes, the underlying mechanism has been revealed in a first glimpse. This paper offers a mini-view on this integration process with emphasis on the effects of plant hormone signaling on trichome development in plants through GLABROUS INFLORESCENCE STEMS (GIS) family and subfamily genes.
Collapse
|
187
|
Swain S, Roy S, Shah J, Van Wees S, Pieterse CM, Nandi AK. Arabidopsis thaliana cdd1 mutant uncouples the constitutive activation of salicylic acid signalling from growth defects. MOLECULAR PLANT PATHOLOGY 2011; 12:855-65. [PMID: 21726384 PMCID: PMC6640339 DOI: 10.1111/j.1364-3703.2011.00717.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Arabidopsis genotypes with a hyperactive salicylic acid-mediated signalling pathway exhibit enhanced disease resistance, which is often coupled with growth and developmental defects, such as dwarfing and spontaneous necrotic lesions on the leaves, resulting in reduced biomass yield. In this article, we report a novel recessive mutant of Arabidopsis, cdd1 (constitutive defence without defect in growth and development1), that exhibits enhanced disease resistance associated with constitutive salicylic acid signalling, but without any observable pleiotropic phenotype. Both NPR1 (NON-EXPRESSOR OF PATHOGENESIS-RELATED GENES1)-dependent and NPR1-independent salicylic acid-regulated defence pathways are hyperactivated in cdd1 mutant plants, conferring enhanced resistance against bacterial pathogens. However, a functional NPR1 allele is required for the cdd1-conferred heightened resistance against the oomycete pathogen Hyaloperonospora arabidopsidis. Salicylic acid accumulates at elevated levels in cdd1 and cdd1 npr1 mutant plants and is necessary for cdd1-mediated PR1 expression and disease resistance phenotypes. In addition, we provide data which indicate that the cdd1 mutation negatively regulates the npr1 mutation-induced hyperactivation of ethylene/jasmonic acid signalling.
Collapse
Affiliation(s)
- Swadhin Swain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, India
| | | | | | | | | | | |
Collapse
|
188
|
Perazza D, Laporte F, Balagué C, Chevalier F, Remo S, Bourge M, Larkin J, Herzog M, Vachon G. GeBP/GPL transcription factors regulate a subset of CPR5-dependent processes. PLANT PHYSIOLOGY 2011; 157:1232-42. [PMID: 21875893 PMCID: PMC3252139 DOI: 10.1104/pp.111.179804] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Accepted: 08/28/2011] [Indexed: 05/22/2023]
Abstract
The CONSTITUTIVE EXPRESSOR OF PATHOGENESIS-RELATED GENES5 (CPR5) gene of Arabidopsis (Arabidopsis thaliana) encodes a putative membrane protein of unknown biochemical function and displays highly pleiotropic functions, particularly in pathogen responses, cell proliferation, cell expansion, and cell death. Here, we demonstrate a link between CPR5 and the GLABRA1 ENHANCER BINDING PROTEIN (GeBP) family of transcription factors. We investigated the primary role of the GeBP/GeBP-like (GPL) genes using transcriptomic analysis of the quadruple gebp gpl1,2,3 mutant and one overexpressing line that displays several cpr5-like phenotypes including dwarfism, spontaneous necrotic lesions, and increased pathogen resistance. We found that GeBP/GPLs regulate a set of genes that represents a subset of the CPR5 pathway. This subset includes genes involved in response to stress as well as cell wall metabolism. Analysis of the quintuple gebp gpl1,2,3 cpr5 mutant indicates that GeBP/GPLs are involved in the control of cell expansion in a CPR5-dependent manner but not in the control of cell proliferation. In addition, to our knowledge, we provide the first evidence that the CPR5 protein is localized in the nucleus of plant cells and that a truncated version of the protein with no transmembrane domain can trigger cpr5-like processes when fused to the VP16 constitutive transcriptional activation domain. Our results provide clues on how CPR5 and GeBP/GPLs play opposite roles in the control of cell expansion and suggest that the CPR5 protein is involved in transcription.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Gilles Vachon
- Institut Albert Bonniot, Institut National de la Santé et de la Recherche Médicale/Université Joseph Fourier U823, Equipe Interference ARN et Epigenetique, Rond-point de la Chantourne, 38706 La Tronche cedex, France (D.P.); Laboratoire d’Ecologie Alpine, Université Joseph Fourier and Centre National de la Recherche Scientifique, Unité Mixte de Recherche 5553, 2233, F–38041 Grenoble cedex 9, France (F.L., M.H.); Laboratoire des Interactions Plantes-Microorganismes Unité Mixte de Recherche Centre National de la Recherche Scientifique/Institut National de la Recherche Agronomique 2594/441 BP 52627, 31326 Castanet-Tolosan cedex, France (C.B.); Laboratoire des Interactions Plantes-Microorganismes, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 2594, F–31326 Castanet-Tolosan, France (C.B.); Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana 70808 (S.R., J.L.); Institut des Sciences Végétales Centre National de la Recherche Scientifique, F–91198 Gif-sur-Yvette cedex, France (M.B.); Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5168, Centre National de la Recherche Scientifique/Commissariat à l'Energie Atomique et aux Energies Alternatives/Institut National de la Recherche Agronomique/Université Joseph Fourier, Commissariat à l'Energie Atomique et aux Energies Alternatives, 38054 Grenoble cedex 9, France (G.V.)
| |
Collapse
|
189
|
von Saint Paul V, Zhang W, Kanawati B, Geist B, Faus-Keßler T, Schmitt-Kopplin P, Schäffner AR. The Arabidopsis glucosyltransferase UGT76B1 conjugates isoleucic acid and modulates plant defense and senescence. THE PLANT CELL 2011; 23:4124-45. [PMID: 22080599 PMCID: PMC3246326 DOI: 10.1105/tpc.111.088443] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Revised: 09/30/2011] [Accepted: 10/24/2011] [Indexed: 05/18/2023]
Abstract
Plants coordinate and tightly regulate pathogen defense by the mostly antagonistic salicylate (SA)- and jasmonate (JA)-mediated signaling pathways. Here, we show that the previously uncharacterized glucosyltransferase UGT76B1 is a novel player in this SA-JA signaling crosstalk. UGT76B1 was selected as the top stress-induced isoform among all 122 members of the Arabidopsis thaliana UGT family. Loss of UGT76B1 function leads to enhanced resistance to the biotrophic pathogen Pseudomonas syringae and accelerated senescence but increased susceptibility toward necrotrophic Alternaria brassicicola. This is accompanied by constitutively elevated SA levels and SA-related marker gene expression, whereas JA-dependent markers are repressed. Conversely, UGT76B1 overexpression has the opposite effect. Thus, UGT76B1 attenuates SA-dependent plant defense in the absence of infection, promotes the JA response, and delays senescence. The ugt76b1 phenotypes were SA dependent, whereas UGT76B1 overexpression indicated that this gene possibly also has a direct effect on the JA pathway. Nontargeted metabolomic analysis of UGT76B1 knockout and overexpression lines using ultra-high-resolution mass spectrometry and activity assays with the recombinant enzyme led to the ab initio identification of isoleucic acid (2-hydroxy-3-methyl-pentanoic acid) as a substrate of UGT76B1. Exogenously applied isoleucic acid increased resistance against P. syringae infection. These findings indicate a novel link between amino acid-related molecules and plant defense that is mediated by small-molecule glucosylation.
Collapse
Affiliation(s)
- Veronica von Saint Paul
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Wei Zhang
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Basem Kanawati
- Institute of Ecological Chemistry, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Birgit Geist
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Theresa Faus-Keßler
- Institute of Developmental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | | | - Anton R. Schäffner
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Address correspondence to
| |
Collapse
|
190
|
Borghi M, Rus A, Salt DE. Loss-of-function of Constitutive Expresser of Pathogenesis Related Genes5 affects potassium homeostasis in Arabidopsis thaliana. PLoS One 2011; 6:e26360. [PMID: 22046278 PMCID: PMC3203115 DOI: 10.1371/journal.pone.0026360] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2011] [Accepted: 09/25/2011] [Indexed: 11/24/2022] Open
Abstract
Here, we demonstrate that the reduction in leaf K(+) observed in a mutant previously identified in an ionomic screen of fast neutron mutagenized Arabidopsis thaliana is caused by a loss-of-function allele of CPR5, which we name cpr5-3. This observation establishes low leaf K(+) as a new phenotype for loss-of-function alleles of CPR5. We investigate the factors affecting this low leaf K(+) in cpr5 using double mutants defective in salicylic acid (SA) and jasmonic acid (JA) signalling, and by gene expression analysis of various channels and transporters. Reciprocal grafting between cpr5 and Col-0 was used to determine the relative importance of the shoot and root in causing the low leaf K(+) phenotype of cpr5. Our data show that loss-of-function of CPR5 in shoots primarily determines the low leaf K(+) phenotype of cpr5, though the roots also contribute to a lesser degree. The low leaf K(+) phenotype of cpr5 is independent of the elevated SA and JA known to occur in cpr5. In cpr5 expression of genes encoding various Cyclic Nucleotide Gated Channels (CNGCs) are uniquely elevated in leaves. Further, expression of HAK5, encoding the high affinity K(+) uptake transporter, is reduced in roots of cpr5 grown with high or low K(+) supply. We suggest a model in which low leaf K(+) in cpr5 is driven primarily by enhanced shoot-to-root K(+) export caused by a constitutive activation of the expression of various CNGCs. This activation may enhance K(+) efflux, either indirectly via enhanced cytosolic Ca(2+) and/or directly by increased K(+) transport activity. Enhanced shoot-to-root K(+) export may also cause the reduced expression of HAK5 observed in roots of cpr5, leading to a reduction in uptake of K(+). All ionomic data presented is publically available at www.ionomicshub.org.
Collapse
Affiliation(s)
- Monica Borghi
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - Ana Rus
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| | - David E. Salt
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
191
|
Ng DWK, Zhang C, Miller M, Shen Z, Briggs SP, Chen ZJ. Proteomic divergence in Arabidopsis autopolyploids and allopolyploids and their progenitors. Heredity (Edinb) 2011; 108:419-30. [PMID: 22009271 DOI: 10.1038/hdy.2011.92] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Autopolyploidy and allopolyploidy are common in many plants and some animals. Rapid changes in genomic composition and gene expression have been observed in both autopolyploids and allopolyploids, but the effects of polyploidy on proteomic divergence are poorly understood. Here, we report quantitative analysis of protein changes in leaves of Arabidopsis autopolyploids and allotetraploids and their progenitors using isobaric tags for relative and absolute quantitation (iTRAQ) coupled with mass spectrometry. In more than 1000 proteins analyzed, the levels of protein divergence were relatively high (~18%) between Arabidopsis thaliana and Arabidopsis arenosa, relatively low (~6.8%) between an A. thaliana diploid and autotetraploid and intermediate (~8.3 and 8.2%) in F(1)- and F(8)-resynthesized allotetraploids relative to mid-parent values, respectively. This pattern of proteomic divergence was consistent with the previously reported gene expression data. In particular, many non-additively accumulated proteins (61-62%) in the F(1) and F(8) allotetraploids were also differentially expressed between the parents. The differentially accumulated proteins in functional categories of abiotic and biotic stresses were overrepresented between an A. thaliana autotetraploid and diploid and between two Arabidopsis species, but not significantly different between allotetraploids and their progenitors. Although the trend of changes is similar, the percentage of differentially accumulated proteins that matched previously reported differentially expressed genes was relatively low. Western blot analysis confirmed several selected proteins with isoforms the cumulative levels of which were differentially expressed. These data suggest high protein divergence between species and rapid changes in post-transcriptional regulation and translational modifications of proteins during polyploidization.
Collapse
Affiliation(s)
- D W-K Ng
- Section of Molecular Cell and Developmental Biology, Center for Computational Biology and Bioinformatics, and Institute for Cellular and Molecular Biology, The University of Texas at Austin, TX, USA
| | | | | | | | | | | |
Collapse
|
192
|
Yao Y, Danna CH, Zemp FJ, Titov V, Ciftci ON, Przybylski R, Ausubel FM, Kovalchuk I. UV-C-irradiated Arabidopsis and tobacco emit volatiles that trigger genomic instability in neighboring plants. THE PLANT CELL 2011; 23:3842-52. [PMID: 22028460 PMCID: PMC3229153 DOI: 10.1105/tpc.111.089003] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Revised: 09/18/2011] [Accepted: 10/12/2011] [Indexed: 05/02/2023]
Abstract
We have previously shown that local exposure of plants to stress results in a systemic increase in genome instability. Here, we show that UV-C-irradiated plants produce a volatile signal that triggers an increase in genome instability in neighboring nonirradiated Arabidopsis thaliana plants. This volatile signal is interspecific, as UV-C-irradiated Arabidopsis plants transmit genome destabilization to naive tobacco (Nicotiana tabacum) plants and vice versa. We report that plants exposed to the volatile hormones methyl salicylate (MeSA) or methyl jasmonate (MeJA) exhibit a similar level of genome destabilization as UV-C-irradiated plants. We also found that irradiated Arabidopsis plants produce MeSA and MeJA. The analysis of mutants impaired in the synthesis and/or response to salicylic acid (SA) and/or jasmonic acid showed that at least one other volatile compound besides MeSA and MeJA can communicate interplant genome instability. The NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 (npr1) mutant, defective in SA signaling, is impaired in both the production and the perception of the volatile signals, demonstrating a key role for NPR1 as a central regulator of genome stability. Finally, various forms of stress resulting in the formation of necrotic lesions also generate a volatile signal that leads to genomic instability.
Collapse
Affiliation(s)
- Youli Yao
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Cristian H. Danna
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Franz J. Zemp
- Department of Medical Sciences, University of Calgary, Alberta T2N 4N1, Canada
| | - Viktor Titov
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Ozan Nazim Ciftci
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Roman Przybylski
- Department of Chemistry and Biochemistry, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| | - Frederick M. Ausubel
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02114
- Department of Molecular Biology, Massachusetts General Hospital, Boston, Massachusetts 02114
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge, Alberta T1K 3M4, Canada
| |
Collapse
|
193
|
Tateda C, Watanabe K, Kusano T, Takahashi Y. Molecular and genetic characterization of the gene family encoding the voltage-dependent anion channel in Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:4773-85. [PMID: 21705391 PMCID: PMC3192994 DOI: 10.1093/jxb/err113] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The voltage-dependent anion channel (VDAC), a major outer mitochondrial membrane protein, is thought to play an important role in energy production and apoptotic cell death in mammalian systems. However, the function of VDACs in plants is largely unknown. In order to determine the individual function of plant VDACs, molecular and genetic analysis was performed on four VDAC genes, VDAC1-VDAC4, found in Arabidopsis thaliana. VDAC1 and VDAC3 possess the eukaryotic mitochondrial porin signature (MPS) in their C-termini, while VDAC2 and VDAC4 do not. Localization analysis of VDAC-green fluorescent protein (GFP) fusions and their chimeric or mutated derivatives revealed that the MPS sequence is important for mitochondrial localization. Through the functional analysis of vdac knockout mutants due to T-DNA insertion, VDAC2 and VDAC4 which are expressed in the whole plant body are important for various physiological functions such as leaf development, the steady state of the mitochondrial membrane potential, and pollen development. Moreover, it was demonstrated that VDAC1 is not only necessary for normal growth but also important for disease resistance through regulation of hydrogen peroxide generation.
Collapse
|
194
|
Christiansen KM, Gu Y, Rodibaugh N, Innes RW. Negative regulation of defence signalling pathways by the EDR1 protein kinase. MOLECULAR PLANT PATHOLOGY 2011; 12:746-58. [PMID: 21726375 PMCID: PMC3296526 DOI: 10.1111/j.1364-3703.2011.00708.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The enhanced disease resistance 1 (edr1) mutant of Arabidopsis confers enhanced resistance to bacterial and fungal pathogens. To better understand how edr1-mediated resistance occurs, we performed transcriptome analyses on wild-type and edr1 plants inoculated with the fungal pathogen Golovinomyces cichoracearum (powdery mildew). The expression of many known and putative defence-associated genes was more rapidly induced, and to higher levels, in edr1 plants relative to the wild-type. Many of the genes with elevated expression encoded WRKY transcription factors and there was enrichment for their binding sites in promoters of the genes upregulated in edr1. Confocal microscopy of transiently expressed EDR1 protein showed that a significant fraction of EDR1 was localized to the nucleus, suggesting that EDR1 could potentially interact with transcription factors in the nucleus. Analysis of gene ontology annotations revealed that genes associated with the endomembrane system, defence, reactive oxygen species (ROS) production and protein kinases were induced early in the edr1 mutant, and that elevated expression of the endomembrane system, defence and ROS-related genes was maintained for at least 4 days after infection.
Collapse
|
195
|
Wang Y, Nishimura MT, Zhao T, Tang D. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:74-87. [PMID: 21645148 DOI: 10.1111/j.1365-313x.2011.04669.x] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The molecular interactions between Arabidopsis and the pathogenic powdery mildew Golovinomyces cichoracearum were studied by characterizing a disease-resistant Arabidopsis mutant atg2-2. The atg2-2 mutant showed enhanced resistance to powdery mildew and dramatic mildew-induced cell death as well as early senescence phenotypes in the absence of pathogens. Defense-related genes were constitutively activated in atg2-2. In atg2-2 mutants, spontaneous cell death, early senescence and disease resistance required the salicylic acid (SA) pathway, but interestingly, mildew-induced cell death was not fully suppressed by inactivation of SA signaling. Thus, cell death could be uncoupled from disease resistance, suggesting that cell death is not sufficient for resistance to powdery mildew. ATG2 encodes autophagy-related 2, a protein known to be involved in the early steps of autophagosome biogenesis. The atg2-2 mutant exhibited typical autophagy defects in autophagosome formation. Furthermore, mutations in several other ATG genes, including ATG5, ATG7 and ATG10, exhibited similar powdery mildew resistance and mildew-induced cell death phenotypes. Taken together, our findings provide insights into the role of autophagy in cell death and disease resistance, and may indicate general links between autophagy, senescence, programmed cell death and defense responses in plants.
Collapse
Affiliation(s)
- Yiping Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | |
Collapse
|
196
|
Che YZ, Li YR, Zou HS, Zou LF, Zhang B, Chen GY. A novel antimicrobial protein for plant protection consisting of a Xanthomonas oryzae harpin and active domains of cecropin A and melittin. Microb Biotechnol 2011; 4:777-93. [PMID: 21895994 PMCID: PMC3815413 DOI: 10.1111/j.1751-7915.2011.00281.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Discoveries about antimicrobial peptides and plant defence activators have made possible the de novo and rational design of novel peptides for use in crop protection. Here we report a novel chimeric protein, Hcm1, which was made by linking the active domains of cecropin A and melittin to the hypersensitive response (HR)‐elicitor Hpa1 of Xanthomonas oryzae pv. oryzicola, the causal agent of rice bacterial leaf streak. The resulting chimeric protein maintained not only the HR‐inducing property of the harpin, but also the antimicrobial activity of the cecropin A‐melittin hybrid. Hcm1 was purified from engineered Escherichia coli and evaluated in terms of the minimal inhibitory concentration (MIC) and the 50% effective dose (ED50) against important plant pathogenic bacteria and fungi. Importantly, the protein acted as a potential pesticide by inducing disease resistance for viral, bacterial and fungal pathogens. This designed drug can be considered as a lead compound for use in plant protection, either for the development of new broad‐spectrum pesticides or for expression in transgenic plants.
Collapse
Affiliation(s)
- Yi-Zhou Che
- Department of Plant Pathology, Nanjing Agricultural University/Key Laboratory of Monitoring and Management for Plant Diseases and Insects, Ministry of Agriculture of China, Nanjing 210095, China
| | | | | | | | | | | |
Collapse
|
197
|
Huang QN, Shi YF, Yang Y, Feng BH, Wei YL, Chen J, Baraoidan M, Leung H, Wu JL. Characterization and genetic analysis of a light- and temperature-sensitive spotted-leaf mutant in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:671-81. [PMID: 21605341 DOI: 10.1111/j.1744-7909.2011.01056.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
A rice spotted-leaf mutant was isolated from an ethane methyl sulfonate (EMS) -induced IR64 mutant bank. The mutant, designated as spl30 (spotted-leaf30), displayed normal green leaf color under shade but exhibited red-brown lesions under natural summer field conditions. Initiation of the lesions was induced by light and the symptom was enhanced at 33 (°) C relative to 26 (°) C. Histochemical staining did not show cell death around the red-brown lesions. Chlorophyll contents in the mutant were significantly lower than those of the wild type while the ratio of chlorophyll a/b remained the same, indicating that spl30 was impaired in biosynthesis or degradation of chlorophyll. Disease reaction patterns of the mutant to Xanthomonas oryzae pv. oryzae were largely unchanged to most races tested except for a few strains. Genetic analysis showed that the mutation was controlled by a single recessive gene, tentatively named spl30(t), which co-segregated with RM15380 on chromosome 3, and was delimited to a 94 kb region between RM15380 and RM15383. Spl30(t) is likely a novel rice spotted-leaf gene since no other similar genes have been identified near the chromosomal region. The genetic data and recombination populations provided in this study will enable further fine-mapping and cloning of the gene.
Collapse
Affiliation(s)
- Qi-Na Huang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
198
|
Rivas-San Vicente M, Plasencia J. Salicylic acid beyond defence: its role in plant growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:3321-38. [PMID: 21357767 DOI: 10.1093/jxb/err031] [Citation(s) in RCA: 622] [Impact Index Per Article: 44.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In recent years salicylic acid (SA) has been the focus of intensive research due to its function as an endogenous signal mediating local and systemic plant defence responses against pathogens. It has also been found that SA plays a role during the plant response to abiotic stresses such as drought, chilling, heavy metal toxicity, heat, and osmotic stress. In this sense, SA appears to be, just like in mammals, an 'effective therapeutic agent' for plants. Besides this function during biotic and abiotic stress, SA plays a crucial role in the regulation of physiological and biochemical processes during the entire lifespan of the plant. The discovery of its targets and the understanding of its molecular modes of action in physiological processes could help in the dissection of the complex SA signalling network, confirming its important role in both plant health and disease. Here, the evidence that supports the role of SA during plant growth and development is reviewed by comparing experiments performed by exogenous application of SA with analysis of genotypes affected by SA levels and/or perception.
Collapse
Affiliation(s)
- Mariana Rivas-San Vicente
- Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Av. Universidad y Copilco, 04510, México, DF, México
| | | |
Collapse
|
199
|
Song J, Durrant WE, Wang S, Yan S, Tan EH, Dong X. DNA repair proteins are directly involved in regulation of gene expression during plant immune response. Cell Host Microbe 2011; 9:115-24. [PMID: 21320694 DOI: 10.1016/j.chom.2011.01.011] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2010] [Revised: 11/29/2010] [Accepted: 01/24/2011] [Indexed: 12/13/2022]
Abstract
Systemic acquired resistance (SAR), an inducible plant-defense response to local infection, requires the signaling molecule salicylic acid (SA) and the transcriptional coactivator NPR1, with concerted activation of pathogenesis-related (PR) genes. Arabidopsis sni1 is an npr1 suppressor and derepression of defense genes in sni1 causes reduced growth and fertility and increased homologous recombination. Characterizing suppressors of sni1, we identify the DNA damage repair proteins SSN2 and RAD51D as genetic and physical interactors with SNI1. During plant defense, SSN2 and possibly RAD51D replace the transcription repressor SNI1 at pathogenesis-related gene promoters. In the presence of SNI1, NPR1 is also required for SSN2 binding. Thus, coordinated action of SNI1, SSN2-RAD51D, and NPR1 ensures the tight control of plant immune gene expression. Given that the SSN2-RAD51D complex is conserved in eukaryotes, their dual function in homologous recombination and transcription regulation of plant-defense genes suggests a general link between these two stress responses.
Collapse
Affiliation(s)
- Junqi Song
- Department of Biology, Duke University, Durham, NC 27708, USA
| | | | | | | | | | | |
Collapse
|
200
|
Ghanta S, Bhattacharyya D, Sinha R, Banerjee A, Chattopadhyay S. Nicotiana tabacum overexpressing γ-ECS exhibits biotic stress tolerance likely through NPR1-dependent salicylic acid-mediated pathway. PLANTA 2011; 233:895-910. [PMID: 21234598 DOI: 10.1007/s00425-011-1349-4] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Accepted: 01/04/2011] [Indexed: 05/09/2023]
Abstract
The elaborate networks and the crosstalk of established signaling molecules like salicylic acid (SA), jasmonic acid (JA), ethylene (ET), abscisic acid (ABA), reactive oxygen species (ROS) and glutathione (GSH) play key role in plant defense response. To obtain further insight into the mechanism through which GSH is involved in this crosstalk to mitigate biotic stress, transgenic Nicotiana tabacum overexpressing Lycopersicon esculentum gamma-glutamylcysteine synthetase (LeECS) gene (NtGB lines) were generated with enhanced level of GSH in comparison with wild-type plants exhibiting resistance to pathogenesis as well. The expression levels of non-expressor of pathogenesis-related genes 1 (NPR1)-dependent genes like pathogenesis-related gene 1 (NtPR1), mitogen-activated protein kinase kinase (NtMAPKK), glutamine synthetase (NtGLS) were significantly enhanced along with NtNPR1. However, the expression levels of NPR1-independent genes like NtPR2, NtPR5 and short-chain dehydrogenase/reductase family protein (NtSDRLP) were either insignificant or were downregulated. Additionally, increase in expression of thioredoxin (NtTRXh), S-nitrosoglutathione reductase 1 (NtGSNOR1) and suppression of isochorismate synthase 1 (NtICS1) was noted. Comprehensive analysis of GSH-fed tobacco BY2 cell line in a time-dependent manner reciprocated the in planta results. Better tolerance of NtGB lines against biotrophic Pseudomonas syringae pv. tabaci was noted as compared to necrotrophic Alternaria alternata. Through two-dimensional gel electrophoresis (2-DE) and image analysis, 48 differentially expressed spots were identified and through identification as well as functional categorization, ten proteins were found to be SA-related. Collectively, our results suggest GSH to be a member in cross-communication with other signaling molecules in mitigating biotic stress likely through NPR1-dependent SA-mediated pathway.
Collapse
Affiliation(s)
- Srijani Ghanta
- Plant Biotechnology Laboratory, Drug Development/Diagnostics and Biotechnology Division, Indian Institute of Chemical Biology (A unit of Council of Scientific and Industrial Research), 4, Raja S. C. Mullick Road, Kolkata 700-032, India
| | | | | | | | | |
Collapse
|