151
|
Volta V, Pérez-Baos S, de la Parra C, Katsara O, Ernlund A, Dornbaum S, Schneider RJ. A DAP5/eIF3d alternate mRNA translation mechanism promotes differentiation and immune suppression by human regulatory T cells. Nat Commun 2021; 12:6979. [PMID: 34848685 PMCID: PMC8632918 DOI: 10.1038/s41467-021-27087-w] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/02/2021] [Indexed: 12/16/2022] Open
Abstract
Regulatory T cells (Treg cells) inhibit effector T cells and maintain immune system homeostasis. Treg cell maturation in peripheral sites requires inhibition of protein kinase mTORC1 and TGF-beta-1 (TGF-beta). While Treg cell maturation requires protein synthesis, mTORC1 inhibition downregulates it, leaving unanswered how Treg cells achieve essential mRNA translation for development and immune suppression activity. Using human CD4+ T cells differentiated in culture and genome-wide transcription and translation profiling, here we report that TGF-beta transcriptionally reprograms naive T cells to express Treg cell differentiation and immune suppression mRNAs, while mTORC1 inhibition impairs translation of T cell mRNAs but not those induced by TGF-beta. Rather than canonical mTORC1/eIF4E/eIF4G translation, Treg cell mRNAs utilize the eIF4G homolog DAP5 and initiation factor eIF3d in a non-canonical translation mechanism that requires cap-dependent binding by eIF3d directed by Treg cell mRNA 5' noncoding regions. Silencing DAP5 in isolated human naive CD4+ T cells impairs their differentiation into Treg cells. Treg cell differentiation is mediated by mTORC1 downregulation and TGF-beta transcriptional reprogramming that establishes a DAP5/eIF3d-selective mechanism of mRNA translation.
Collapse
Affiliation(s)
- Viviana Volta
- Synthis LLC, 430 East 29th Street, Launch Labs, Alexandria Center for Life Sciences, New York, NY, 10016, USA
| | - Sandra Pérez-Baos
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Columba de la Parra
- Department of Chemistry, Herbert H. Lehman College, City University of New York, The Graduate Center, Biochemistry Ph.D. Program, City University of New York, New York, NY, 10016, USA
| | - Olga Katsara
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Amanda Ernlund
- Johns Hopkins Applied Physics Lab, 11000 Johns Hopkins Road, Laurel, MD, 20723, USA
| | - Sophie Dornbaum
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA
| | - Robert J Schneider
- Department of Microbiology, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Perlmutter Cancer Center, NYU Grossman School of Medicine, New York, NY, 10016, USA.
- Colton Center for Autoimmunity, NYU Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
152
|
Tao Z, Jiang Y, Xia S. Regulation of thymic T regulatory cell differentiation by TECs in health and disease. Scand J Immunol 2021; 94:e13094. [PMID: 34780092 DOI: 10.1111/sji.13094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/22/2022]
Abstract
The thymus produces self-limiting and self-tolerant T cells through the interaction between thymocytes and thymus epithelial cells (TECs), thereby generating central immune tolerance. The TECs are composed of cortical and medullary thymic epithelial cells, which regulate the positive and negative selection of T cells, respectively. During the process of negative selection, thymocytes with self-reactive ability are deleted or differentiated into regulatory T cells (Tregs). Tregs are a subset of suppressor T cells that are important for maintaining immune homeostasis. The differentiation and development of Tregs depend on the development of TECs and other underlying molecular mechanisms. Tregs regulated by thymic epithelial cells are closely related to human health and are significant in autoimmune diseases, thymoma and pregnancy. In this review, we summarize the current molecular and transcriptional regulatory mechanisms by which TECs affect the development and function of thymic Tregs. We also review the pathophysiological models of thymic epithelial cells regulating thymic Tregs in human diseases and specific physiological conditions.
Collapse
Affiliation(s)
- Zehua Tao
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Yalan Jiang
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| | - Sheng Xia
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, China
| |
Collapse
|
153
|
Zhang T, Wang G, Zheng J, Li S, Xu J. Profile of serum cytokine concentrations in patients with gouty arthritis. J Int Med Res 2021; 49:3000605211055618. [PMID: 34772308 PMCID: PMC8593300 DOI: 10.1177/03000605211055618] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Objective This study aimed to analyze the changes in serum inflammatory cytokines and anti-inflammatory cytokines in patients with gouty arthritis (GA). Methods The clinical data and serum samples in patients with gouty arthritis and those in healthy volunteers were collected in China-Japan Friendship Hospital from July 2018 to January 2019. Serum cytokine concentrations in patients with GA and volunteers (controls) were determined by a chemiluminescence method. The differences in cytokine concentrations were compared between the two groups. Results Concentrations of serum interleukin-1 beta (IL-1ß), tumor necrosis factor-alpha (TNF-α), IL-6, IL-8, and IL-4 were significantly higher in patients with acute GA than in controls. Serum concentrations of IL-1ß, TNF-α, IL-6, IL-8, and immunoglobulin E in patients with remission of GA were significantly lower, whereas concentrations of IL-10 and interferon-γ were significantly higher, compared with those in patients with acute GA. Conclusion This study shows that serum concentrations of IL-1ß, TNF-α, IL-6, IL-8, and IL-4 are significantly elevated in patients with GA, and may be involved in the pathogenesis of GA.
Collapse
Affiliation(s)
- Tie Zhang
- Laboratory of China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P. R. China
- Tie Zhang, Laboratory of China-Japan Friendship Hospital, Sakura Garden East Street, Beijing 100029, P.R. China.
| | - Guozhen Wang
- Laboratory of China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P. R. China
| | - Jing Zheng
- Laboratory of China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P. R. China
| | - Shirui Li
- Department of Endocrine, China-Japan Friendship Hospital, China-Japan Friendship Hospital, Beijing, P.R. China
| | - Jing Xu
- Department of Echocadiography, The First Hospital of JiLin University, Changchun, P. R. China
| |
Collapse
|
154
|
Tran DT, Sundararaj K, Atkinson C, Nadig SN. T-cell Immunometabolism: Therapeutic Implications in Organ Transplantation. Transplantation 2021; 105:e191-e201. [PMID: 33795597 PMCID: PMC8464628 DOI: 10.1097/tp.0000000000003767] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although solid-organ transplantation has evolved steadily with many breakthroughs in the past 110 y, many problems remain to be addressed, and advanced therapeutic strategies need to be considered. T-cell immunometabolism is a rapidly advancing field that has gathered much attention recently, providing ample mechanistic insight from which many novel therapeutic approaches have been developed. Applications from the field include antitumor and antimicrobial therapies, as well as for reversing graft-versus-host disease and autoimmune diseases. However, the immunometabolism of T cells remains underexplored in solid-organ transplantation. In this review, we will highlight key findings from hallmark studies centered around various metabolic modes preferred by different T-cell subtypes (categorized into naive, effector, regulatory, and memory T cells), including glycolysis, glutaminolysis, oxidative phosphorylation, fatty acid synthesis, and oxidation. This review will discuss the underlying cellular signaling components that affect these processes, including the transcription factors myelocytomatosis oncogene, hypoxia-inducible factor 1-alpha, estrogen-related receptor alpha, and sterol regulatory element-binding proteins, along with the mechanistic target of rapamycin and adenosine monophosphate-activated protein kinase signaling. We will also explore potential therapeutic strategies targeting these pathways, as applied to the potential for tolerance induction in solid-organ transplantation.
Collapse
Affiliation(s)
- Danh T. Tran
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
| | - Kamala Sundararaj
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Carl Atkinson
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| | - Satish N. Nadig
- Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC
- Department of Surgery, Division of Transplant Surgery, Lee Patterson Allen Transplant Immunobiology Laboratory, Medical University of South Carolina, Charleston, SC
- South Carolina Investigators in Transplantation, Department of Surgery, Medical University of South Carolina, Charleston, SC
| |
Collapse
|
155
|
Gerner W, Mair KH, Schmidt S. Local and Systemic T Cell Immunity in Fighting Pig Viral and Bacterial Infections. Annu Rev Anim Biosci 2021; 10:349-372. [PMID: 34724393 DOI: 10.1146/annurev-animal-013120-044226] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
T cells are an essential component of the adaptive immune system. Over the last 15 years, a constantly growing toolbox with which to study T cell biology in pigs has allowed detailed investigations on these cells in various viral and bacterial infections. This review provides an overview on porcine CD4, CD8, and γδ T cells and the current knowledge on the differentiation of these cells following antigen encounter. Where available, the responses of these cells to viral infections like porcine reproductive and respiratory syndrome virus, classical swine fever virus, swine influenza A virus, and African swine fever virus are outlined. In addition, knowledge on the porcine T cell response to bacterial infections like Actinobacillus pleuropneumoniae and Salmonella Typhimurium is reviewed. For CD4 T cells, the response to the outlined infections is reflected toward the Th1/Th2/Th17/Tfh/Treg paradigm for functional differentiation. Expected final online publication date for the Annual Review of Animal Biosciences, Volume 10 is February 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Wilhelm Gerner
- The Pirbright Institute, Pirbright, Woking, United Kingdom; ,
| | - Kerstin H Mair
- Christian Doppler Laboratory for Optimized Prediction of Vaccination Success in Pigs, Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Vienna, Austria; .,Institute of Immunology, Department of Pathobiology, University of Veterinary Medicine Vienna, Austria
| | - Selma Schmidt
- The Pirbright Institute, Pirbright, Woking, United Kingdom; ,
| |
Collapse
|
156
|
Grover P, Goel PN, Greene MI. Regulatory T Cells: Regulation of Identity and Function. Front Immunol 2021; 12:750542. [PMID: 34675933 PMCID: PMC8524049 DOI: 10.3389/fimmu.2021.750542] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
T regulatory cells suppress a variety of immune responses to self-antigens and play a role in peripheral tolerance maintenance by limiting autoimmune disorders, and other pathological immune responses such as limiting immune reactivity to oncoprotein encoded antigens. Forkhead box P3 (FOXP3) expression is required for Treg stability and affects functional activity. Mutations in the master regulator FOXP3 and related components have been linked to autoimmune diseases in humans, such as IPEX, and a scurfy-like phenotype in mice. Several lines of evidence indicate that Treg use a variety of immunosuppressive mechanisms to limit an immune response by targeting effector cells, including secretion of immunoregulatory cytokines, granzyme/perforin-mediated cell cytolysis, metabolic perturbation, directing the maturation and function of antigen-presenting cells (APC) and secretion of extracellular vesicles for the development of immunological tolerance. In this review, several regulatory mechanisms have been highlighted and discussed.
Collapse
Affiliation(s)
- Payal Grover
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Peeyush N Goel
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Mark I Greene
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| |
Collapse
|
157
|
The Defect in Regulatory T Cells in Psoriasis and Therapeutic Approaches. J Clin Med 2021; 10:jcm10173880. [PMID: 34501328 PMCID: PMC8432197 DOI: 10.3390/jcm10173880] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 08/26/2021] [Indexed: 12/11/2022] Open
Abstract
Psoriasis is a chronic inflammatory skin disease characterized by accelerated tumor necrosis factor-α/interleukin (IL)-23/IL-17 axis. Patients with psoriasis manifest functional defects in CD4+CD25+ forkhead box protein 3 (Foxp3)+ regulatory T cells (Tregs), which suppress the excess immune response and mediate homeostasis. Defects in Tregs contribute to the pathogenesis of psoriasis and may attribute to enhanced inhibition and/or impaired stimulation of Tregs. IL-23 induces the conversion of Tregs into type 17 helper T (Th17) cells. IL-17A reduces transforming growth factor (TGF)-β1 production, Foxp3 expression, and suppresses Treg activity. Short-chain fatty acids (SCFAs), butyrate, propionate, and acetate are microbiota-derived fermentation products that promote Treg development and function by inducing Foxp3 expression or inducing dendritic cells or intestinal epithelial cells to produce retinoic acids or TGF-β1, respectively. The gut microbiome of patients with psoriasis revealed reduced SCFA-producing bacteria, Bacteroidetes, and Faecallibacterium, which may contribute to the defect in Tregs. Therapeutic agents currently used, viz., anti-IL-23p19 or anti-IL-17A antibodies, retinoids, vitamin D3, dimethyl fumarate, narrow-band ultraviolet B, or those under development for psoriasis, viz., signal transducer and activator of transcription 3 inhibitors, butyrate, histone deacetylase inhibitors, and probiotics/prebiotics restore the defected Tregs. Thus, restoration of Tregs is a promising therapeutic target for psoriasis.
Collapse
|
158
|
Pilat N, Lefsihane K, Brouard S, Kotsch K, Falk C, Steiner R, Thaunat O, Fusil F, Montserrat N, Amarelli C, Casiraghi F. T- and B-cell therapy in solid organ transplantation: current evidence and future expectations. Transpl Int 2021; 34:1594-1606. [PMID: 34448274 DOI: 10.1111/tri.13972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023]
Abstract
Cell therapy has emerged as an attractive therapeutic option in organ transplantation. During the last decade, the therapeutic potency of Treg immunotherapy has been shown in various preclinical animal models and safety was demonstrated in first clinical trials. However, there are still critical open questions regarding specificity, survival, and migration to the target tissue so the best Treg population for infusion into patients is still under debate. Recent advances in CAR technology hold the promise for Treg-functional superiority. Another exciting strategy is the generation of B-cell antibody receptor (BAR) Treg/cytotoxic T cells to specifically regulate or deplete alloreactive memory B cells. Finally, B cells are also capable of immune regulation, making them promising candidates for immunomodulatory therapeutic strategies. This article summarizes available literature on cell-based innovative therapeutic approaches aiming at modulating alloimmune response for transplantation. Crucial areas of investigation that need a joined effort of the transplant community for moving the field toward successful achievement of tolerance are highlighted.
Collapse
Affiliation(s)
- Nina Pilat
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Katia Lefsihane
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Sophie Brouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Katja Kotsch
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin, Germany.,Department for General and Visceral Surgery, Berlin Institute of Health, Berlin, Germany
| | - Christine Falk
- Institute of Transplant Immunology, Hannover Medical School, MHH, Hannover, Germany
| | - Romy Steiner
- Department of General Surgery, Medical University of Vienna, Vienna, Austria
| | - Olivier Thaunat
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France.,Department of Transplantation, Nephrology and Clinical Immunology, Hospices Civils de Lyon, Edouard Herriot Hospital, Lyon, France.,Lyon-Est Medical Faculty, Claude Bernard University (Lyon 1), Lyon, France
| | - Floriane Fusil
- International Center of Infectiology Research (CIRI), French Institute of Health and Medical Research (INSERM) Unit 1111, Claude Bernard University Lyon I, National Center for Scientific Research (CNRS) Mixed University Unit (UMR) 5308, Ecole Normale Supérieure de Lyon, University of Lyon, Lyon, France
| | - Nuria Montserrat
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Cristiano Amarelli
- Department of Cardiac Surgery and Transplants Monaldi, A.O. dei Colli, Naples, Italy
| | | |
Collapse
|
159
|
Pinheiro-Rosa N, Torres L, Oliveira MDA, Andrade-Oliveira MF, Guimarães MADF, Coelho MM, Alves JDL, Maioli TU, Faria AMC. Oral tolerance as antigen-specific immunotherapy. IMMUNOTHERAPY ADVANCES 2021; 1:ltab017. [PMID: 35919733 PMCID: PMC9327124 DOI: 10.1093/immadv/ltab017] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 07/23/2021] [Accepted: 08/23/2021] [Indexed: 12/19/2022] Open
Abstract
Summary
Oral tolerance is a physiological phenomenon described more than a century ago as a suppressive immune response to antigens that gain access to the body by the oral route. It is a robust and long-lasting event with local and systemic effects in which the generation of mucosally induced regulatory T cells (iTreg) plays an essential role. The idea of using oral tolerance to inhibit autoimmune and allergic diseases by oral administration of target antigens was an important development that was successfully tested in 1980s. Since then, several studies have shown that feeding specific antigens can be used to prevent and control chronic inflammatory diseases in both animal models and clinically. Therefore, oral tolerance can be classified as an antigen-specific form of oral immunotherapy (OIT). In the light of novel findings on mechanisms, sites of induction and factors affecting oral tolerance, this review will focus on specific characteristics of oral tolerance induction and how they impact in its therapeutic application.
Collapse
Affiliation(s)
- Natália Pinheiro-Rosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Lícia Torres
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mariana de Almeida Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcos Felipe Andrade-Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Mauro Andrade de Freitas Guimarães
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Monique Macedo Coelho
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana de Lima Alves
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tatiani Uceli Maioli
- Departamento de Nutrição, Escola de Enfermagem, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana M Caetano Faria
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
160
|
Tian W, Jiang SY, Jiang X, Tamosiuniene R, Kim D, Guan T, Arsalane S, Pasupneti S, Voelkel NF, Tang Q, Nicolls MR. The Role of Regulatory T Cells in Pulmonary Arterial Hypertension. Front Immunol 2021; 12:684657. [PMID: 34489935 PMCID: PMC8418274 DOI: 10.3389/fimmu.2021.684657] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 08/04/2021] [Indexed: 01/10/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a chronic, incurable condition characterized by pulmonary vascular remodeling, perivascular inflammation, and right heart failure. Regulatory T cells (Tregs) stave off autoimmunity, and there is increasing evidence for their compromised activity in the inflammatory milieu of PAH. Abnormal Treg function is strongly correlated with a predisposition to PAH in animals and patients. Athymic Treg-depleted rats treated with SU5416, an agent causing pulmonary vascular injury, develop PAH, which is prevented by infusing missing CD4+CD25highFOXP3+ Tregs. Abnormal Treg activity may also explain why PAH disproportionately affects women more than men. This mini review focuses on the role of Tregs in PAH with a special view to sexual dimorphism and the future promise of Treg therapy.
Collapse
Affiliation(s)
- Wen Tian
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Shirley Y. Jiang
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Xinguo Jiang
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Rasa Tamosiuniene
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Dongeon Kim
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Torrey Guan
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
| | - Siham Arsalane
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Shravani Pasupneti
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Norbert F. Voelkel
- Department of Pulmonary Medicine, Amsterdam University Medical Centers, Amsterdam, Netherlands
| | - Qizhi Tang
- Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Mark R. Nicolls
- Department of Medicine, VA Palo Alto Health Care System, Palo Alto, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| |
Collapse
|
161
|
Zhang W, Liu X, Zhu Y, Liu X, Gu Y, Dai X, Li B. Transcriptional and posttranslational regulation of Th17/Treg balance in health and disease. Eur J Immunol 2021; 51:2137-2150. [PMID: 34322865 DOI: 10.1002/eji.202048794] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 06/14/2021] [Accepted: 07/20/2021] [Indexed: 12/17/2022]
Abstract
Regulatory T (Treg) cells and T helper type 17 (Th17) cells play important roles in adaptive immune responses, antagonizing each other in immune disorders. Th17/Treg balance is critical to maintaining the immune homeostasis of human bodies and is tightly regulated under healthy conditions. The transcription factors that are required for driving Th17 and Treg cell lineages differentiation respectively, RORγt and FOXP3 are tightly regulated under different tissue microenvironment, especially the transcriptional induction, posttranslational modifications, and dynamic enzymatic cofactors binding. The imbalance caused by alteration of the quantity or properties of RORγt+ Th17 or FOXP3+ Treg can contribute to inflammatory disorders in humans. Restoring Th17/Treg balance by modifying the enzymatic activities of RORγt and FOXP3 binding partners may be therapeutically applied to treat severe immune disorders. In this review, we focus on the transcriptional and posttranslational regulations of Th17/Treg balance, immune disorders caused by Th17/Treg imbalance, and new therapeutic strategies for restoring immune homeostasis.
Collapse
Affiliation(s)
- Weiqi Zhang
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xu Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yicheng Zhu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xinnan Liu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yunting Gu
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Xueyu Dai
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Bin Li
- Department of Immunology and Microbiology, Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
162
|
Prenek L, Litvai T, Balázs N, Kugyelka R, Boldizsár F, Najbauer J, Németh P, Berki T. Regulatory T cells are less sensitive to glucocorticoid hormone induced apoptosis than CD4 + T cells. Apoptosis 2021; 25:715-729. [PMID: 32737651 PMCID: PMC7527366 DOI: 10.1007/s10495-020-01629-x] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Earlier we have reported that thymic regulatory T cells (Treg) are resistant to in vivo glucocorticoid hormone (GC)-induced apoptosis, while the most GC-sensitive DP thymocytes died through the activation of mitochondrial apoptotic pathway. Here we analyzed the apoptosis-inducing effect of high dose (10-6 M) in vitro dexamethasone (DX) treatment in mouse thymic- and splenic Tregs and CD4+ T cells. Activation of both extrinsic and intrinsic apoptotic pathways started after 2 h of DX treatment in CD4 SP thymocytes and was 3 × higher than in CD4+ splenocytes, while in Treg cells, weak activation of the extrinsic apoptotic pathway started only after 3 h. We also investigated the expression of 21 apoptosis-related molecules using a protein array and found higher level of both pro-and anti-apoptotic molecules in Tregs compared to CD4+ T cells. 4 h in vitro DX treatment induced upregulation of most apoptosis-related molecules both in Tregs and CD4+ T cells, except for the decrease of Bcl-2 expression in CD4+ T cells. We found high basal cytosolic Ca2+ levels in untreated Treg cells, which further increased after DX treatment, while the specific TCR-induced Ca2+ signal was lower in Tregs than in CD4+ T cells. Our results suggest that in the background of the relative apoptosis resistance of Treg cells to GCs might be their high basal cytosolic Ca2+ level and upregulated Bcl-2 expression. In contrast, downregulation of Bcl-2 expression in CD4+ T cells can explain their higher, DX-induced apoptosis sensitivity.
Collapse
Affiliation(s)
- Lilla Prenek
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Tímea Litvai
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Noémi Balázs
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Réka Kugyelka
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Ferenc Boldizsár
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - József Najbauer
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary
| | - Timea Berki
- Department of Immunology and Biotechnology, Clinical Center, Medical School, University of Pécs, Szigeti út 12, Pécs, 7624, Hungary.
| |
Collapse
|
163
|
Li W, Gong M, Park YP, Elshikha AS, Choi SC, Brown J, Kanda N, Yeh WI, Peters L, Titov AA, Teng X, Brusko TM, Morel L. Lupus susceptibility gene Esrrg modulates regulatory T cells through mitochondrial metabolism. JCI Insight 2021; 6:e143540. [PMID: 34156979 PMCID: PMC8410062 DOI: 10.1172/jci.insight.143540] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 06/16/2021] [Indexed: 01/31/2023] Open
Abstract
Estrogen-related receptor γ (Esrrg) is a murine lupus susceptibility gene associated with T cell activation. Here, we report that Esrrg controls Tregs through mitochondria homeostasis. Esrrg deficiency impaired the maintenance and function of Tregs, leading to global T cell activation and autoimmunity in aged mice. Further, Esrrg-deficient Tregs presented an impaired differentiation into follicular Tregs that enhanced follicular helper T cells' responses. Mechanistically, Esrrg-deficient Tregs presented with dysregulated mitochondria with decreased oxygen consumption as well as ATP and NAD+ production. In addition, Esrrg-deficient Tregs exhibited decreased phosphatidylinositol and TGF-β signaling pathways and increased mTOR complex 1 activation. We found that the expression of human ESRRG, which is high in Tregs, was lower in CD4+ T cells from patients with lupus than in healthy controls. Finally, knocking down ESRRG in Jurkat T cells decreased their metabolism. Together, our results reveal a critical role of Esrrg in the maintenance and metabolism of Tregs, which may provide a genetic link between lupus pathogenesis and mitochondrial dysfunction in T cells.
Collapse
Affiliation(s)
- Wei Li
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Minghao Gong
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Yuk Pheel Park
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Ahmed S Elshikha
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA.,Department of Pharmaceutics, Zagazig University, Zagazig, Egypt
| | - Seung-Chul Choi
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Josephine Brown
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Nathalie Kanda
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Wen-I Yeh
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Leeana Peters
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Anton A Titov
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Xiangyu Teng
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Todd M Brusko
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| | - Laurence Morel
- Department of Pathology, Immunology and Laboratory Medicine, College of Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
164
|
Negi S, Saini S, Tandel N, Sahu K, Mishra RP, Tyagi RK. Translating Treg Therapy for Inflammatory Bowel Disease in Humanized Mice. Cells 2021; 10:1847. [PMID: 34440615 PMCID: PMC8393385 DOI: 10.3390/cells10081847] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 07/06/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Crohn's disease and ulcerative colitis, two major forms of inflammatory bowel disease (IBD) in humans, afflicted in genetically predisposed individuals due to dysregulated immune response directed against constituents of gut flora. The defective immune responses mounted against the regulatory mechanisms amplify and maintain the IBD-induced mucosal inflammation. Therefore, restoring the balance between inflammatory and anti-inflammatory immunepathways in the gut may contribute to halting the IBD-associated tissue-damaging immune response. Phenotypic and functional characterization of various immune-suppressive T cells (regulatory T cells; Tregs) over the last decade has been used to optimize the procedures for in vitro expansion of these cells for developing therapeutic interventional strategies. In this paper, we review the mechanisms of action and functional importance of Tregs during the pathogenesis of IBD and modulating the disease induced inflammation as well as role of mouse models including humanized mice repopulated with the human immune system (HIS) to study the IBD. "Humanized" mouse models provide new tools to analyze human Treg ontogeny, immunobiology, and therapy and the role of Tregs in developing interventional strategies against IBD. Overall, humanized mouse models replicate the human conditions and prove a viable tool to study molecular functions of human Tregs to harness their therapeutic potential.
Collapse
MESH Headings
- Adoptive Transfer
- Animals
- Colitis, Ulcerative/genetics
- Colitis, Ulcerative/immunology
- Colitis, Ulcerative/metabolism
- Colitis, Ulcerative/therapy
- Crohn Disease/genetics
- Crohn Disease/immunology
- Crohn Disease/metabolism
- Crohn Disease/therapy
- Disease Models, Animal
- Hematopoietic Stem Cell Transplantation
- Humans
- Mice, Transgenic
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
- T-Lymphocytes, Regulatory/transplantation
- Transplantation, Heterologous
Collapse
Affiliation(s)
- Sushmita Negi
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
- BERPDC Department, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Sheetal Saini
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| | - Nikunj Tandel
- Institute of Science, Nirma University, Ahmedabad, Gujarat 382481, India;
| | - Kiran Sahu
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| | - Ravi P.N. Mishra
- BERPDC Department, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India
| | - Rajeev K. Tyagi
- Biomedical Parasitology and Nano-Immunology Lab, Division of Cell Biology and Immunology, CSIR-Institute of Microbial Technology (IMTECH), Chandigarh 160036, India; (S.N.); (S.S.); (K.S.)
| |
Collapse
|
165
|
Norlander AE, Peebles RS. Prostaglandin I 2 and T Regulatory Cell Function: Broader Impacts. DNA Cell Biol 2021; 40:1231-1234. [PMID: 34265210 DOI: 10.1089/dna.2021.0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
T regulatory cells (Tregs) are an important member of the adaptive immune system and function to reduce and resolve inflammation. Prostaglandin I2 (PGI2) is a lipid mediator that has potent anti-inflammatory effects on immune cells. Several studies have investigated the interplay between PGI2 and Tregs. Together, the data from these studies demonstrate that PGI2 promotes the formation and function of Tregs. This suggests that therapeutic supplementation of PGI2 may be a treatment for various autoimmune or inflammatory diseases through enhancement of Treg function.
Collapse
Affiliation(s)
- Allison E Norlander
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - R Stokes Peebles
- Division of Allergy, Pulmonary and Critical Care Medicine, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA.,United States Department of Veterans Affairs, Research Service, Nashville, Tennessee, USA
| |
Collapse
|
166
|
Lu C, Chen W. Influenza virus infection selectively triggers the accumulation and persistence of more potent Helios-expressing Foxp3 + regulatory T cells in the lungs. Immunol Cell Biol 2021; 99:1011-1025. [PMID: 34251701 DOI: 10.1111/imcb.12492] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 06/14/2021] [Accepted: 07/11/2021] [Indexed: 12/19/2022]
Abstract
Foxp3+ regulatory T cells (Tregs) represent a special lineage of CD4+ T cells. Analysis of Treg response during primary and secondary influenza virus infection clearly demonstrates a robust accumulation of Tregs into the infected lungs and the existence of a population of long-lived antigen-specific memory Tregs in the same tissues after resolution of the infection. However, it remains unknown whether these Tregs co-express Helios, a member of the Ikaros transcription factor family. In this study, Foxp3+ Helios+ and Foxp3+ Helios- Tregs in the lungs, mLNs and spleens of influenza virus-infected and uninfected control mice were tracked. The data show that while there is a co-existence of Foxp3+ Helios+ and Foxp3+ Helios- Tregs in the tissues, the accumulated Tregs in the lungs and lung-draining mediastinal lymph nodes (mLNs) of the infected mice are highly enriched for Foxp3+ Helios+ cells. It was further demonstrated that, after the clearance of primary infection, Foxp3+ Helios+ cells have the ability to persist in the tissues over their Helios- counterparts. More importantly, Foxp3+ Helios+ Tregs accumulated in an accelerated kinetics during recall response to reinfection. In vitro analysis of Treg suppressive function revealed that Foxp3+ Helios+ Tregs are more capable of suppressing influenza virus-specific CD8+ T cell activation, cytokine production and proliferation. Together, the data provide new insights into Treg responses during primary and secondary influenza virus infection and suggest that Foxp3+ Helios+ Tregs predominantly drive the Treg responses.
Collapse
Affiliation(s)
- Chunni Lu
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia.,School of Medicine, Deakin University, Waurn Ponds, VIC, Australia
| | - Weisan Chen
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, Australia
| |
Collapse
|
167
|
Liu G, Liu M, Wang J, Mou Y, Che H. The Role of Regulatory T Cells in Epicutaneous Immunotherapy for Food Allergy. Front Immunol 2021; 12:660974. [PMID: 34305893 PMCID: PMC8297384 DOI: 10.3389/fimmu.2021.660974] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
In recent decades, a rapid increase in the prevalence of food allergies has led to extensive research on novel treatment strategies and their mechanisms. Mouse models have provided preliminary insights into the mechanism of epicutaneous immunotherapy (EPIT)-induced immune tolerance. In EPIT, antigen applied on the skin surface can be captured, processed, and presented in the lymph nodes (LNs) by Antigen-presenting cells (APCs). In the LNs, induction of regulatory T cells (Treg cells) requires both direct contact during antigen presentation and indirect mechanisms such as cytokines. Foxp3+CD62L+ Treg cells can exhibit the characteristics of hypomethylation of Foxp3 TSDR and Foxp3-LAP+ Treg cells, which increase the expression of surface tissue-specific homing molecules to exert further sustained systemic immune tolerance. Studies have shown that EPIT is a potential treatment for food allergies and can effectively induce immune tolerance, but its mechanism needs further exploration. Here, we review Treg cells' role in immune tolerance induced by EPIT and provide a theoretical basis for future research directions, such as the mechanism of EPIT and the development of more effective EPIT treatments.
Collapse
Affiliation(s)
| | | | | | | | - Huilian Che
- Key Laboratory of Precision Nutrition and Food Quality, Key Laboratory of Functional Dairy, Ministry of Education, College of Food Science and Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
168
|
Piotrowska M, Gliwiński M, Trzonkowski P, Iwaszkiewicz-Grzes D. Regulatory T Cells-Related Genes Are under DNA Methylation Influence. Int J Mol Sci 2021; 22:7144. [PMID: 34281195 PMCID: PMC8267835 DOI: 10.3390/ijms22137144] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 12/12/2022] Open
Abstract
Regulatory T cells (Tregs) exert a highly suppressive function in the immune system. Disturbances in their function predispose an individual to autoimmune dysregulation, with a predominance of the pro-inflammatory environment. Besides Foxp3, which is a master regulator of these cells, other genes (e.g., Il2ra, Ctla4, Tnfrsf18, Ikzf2, and Ikzf4) are also involved in Tregs development and function. Multidimensional Tregs suppression is determined by factors that are believed to be crucial in the action of Tregs-related genes. Among them, epigenetic changes, such as DNA methylation, tend to be widely studied over the past few years. DNA methylation acts as a repressive mark, leading to diminished gene expression. Given the role of increased CpG methylation upon Tregs imprinting and functional stability, alterations in the methylation pattern can cause an imbalance in the immune response. Due to the fact that epigenetic changes can be reversible, so-called epigenetic modifiers are broadly used in order to improve Tregs performance. In this review, we place emphasis on the role of DNA methylation of the genes that are key regulators of Tregs function. We also discuss disease settings that have an impact on the methylation status of Tregs and systematize the usefulness of epigenetic drugs as factors able to influence Tregs functions.
Collapse
Affiliation(s)
| | | | | | - Dorota Iwaszkiewicz-Grzes
- Department of Medical Immunology, Medical University of Gdansk, 80-210 Gdańsk, Poland; (M.P.); (M.G.); (P.T.)
| |
Collapse
|
169
|
Wang J, Zheng S, Yang X, Huazeng B, Cheng Q. Influences of non-IgE-mediated cow's milk protein allergy-associated gut microbial dysbiosis on regulatory T cell-mediated intestinal immune tolerance and homeostasis. Microb Pathog 2021; 158:105020. [PMID: 34089791 DOI: 10.1016/j.micpath.2021.105020] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 05/02/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Gut microbial dysbiosis is closely associated with cow's milk protein allergy (CMPA) during infancy. Recent research has highlighted the crucial role of the commensal microbiota-induced intestinal regulatory T (Treg) cell response in the development of oral tolerance and protection against IgE-mediated food allergies. However, the influences of CMPA (particularly non-IgE-mediated CMPA)-associated microbial dysbiosis on Treg cell-mediated intestinal immune tolerance and homeostasis remain poorly characterized. To investigate this issue, fecal microbiota from infant donors with food protein-induced allergic proctocolitis (FPIAP) associated with cow's milk, which is the most frequent clinical type of non-IgE-mediated gastrointestinal CMPA, and from age-matched healthy controls were transplanted into germ-free mice in this study. Two weeks post fecal microbiota transplantation, the gut microbiome of the recipient mice was analyzed by 16S rRNA gene sequencing, and the intestinal immunological alterations associated with the Treg cell compartment and intestinal immune homeostasis were detected. The specific gut microbial phylotypes that were potentially responsible for the disruption of intestinal immune homeostasis were also analyzed. We observed that the main characteristics of the gut microbiome in infant donors could be stably maintained in recipient mice. We also found that mice colonized with the gut microbiome from infants with cow's milk-induced FPIAP showed significant deficiencies in the accumulation and function of intestinal Treg cells. Furthermore, these mice showed disrupted intestinal immune homeostasis, which was characterized by an overactivated Th2 biased immune response. We further identified two potentially pathogenic genera that contribute to this disruption. Overall, our results highlight a destructive effect of non-IgE-mediated CMPA-associated microbial dysbiosis on intestinal immune tolerance and homeostasis. We believe these findings will help improve our understanding of the gut microbiota-mediated pathogenesis of non-IgE-mediated CMPA in the future.
Collapse
Affiliation(s)
- Jinzhi Wang
- Department of Nephrology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatircs, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Shuang Zheng
- Department of Child Health Care, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Xin Yang
- Department of Child Health Care, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Ben Huazeng
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Qian Cheng
- Department of Child Health Care, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Health and Nutrition, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| |
Collapse
|
170
|
Mikami N, Tani H, Kawakami R, Sugimoto A, Sakaguchi S, Ikuta T. Brazilian green propolis promotes TNFR2 expression on regulatory T cells. Food Sci Nutr 2021; 9:3200-3208. [PMID: 34136184 PMCID: PMC8194755 DOI: 10.1002/fsn3.2281] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 01/20/2023] Open
Abstract
FoxP3+ regulatory T cells (Tregs) are needed to suppress inflammatory diseases and maintain immune homeostasis. The suppressive function of Tregs can be used to control autoimmune or inflammatory diseases; therefore, it is well studied how Tregs can be artificially up- or downregulated in vitro and in vivo, by using antibodies, chemical compounds, foods, and natural resources. Propolis is a famous functional food that has an anti-inflammatory effect. However, the influences of propolis on Treg function have not been fully evaluated so far. Here, we demonstrated that Brazilian green propolis increases TNFR2 expression in Tregs via the IRF4/cMyc axis, and artepillin C was a major effective component of propolis on Tregs. These results indicate that propolis and artepillin C have the potential as Treg activators via TNFR2 expression and may be useful for the prevention and/or therapy of autoimmune or inflammatory diseases.
Collapse
Affiliation(s)
- Norihisa Mikami
- Department of Experimental ImmunologyImmunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Hiroko Tani
- Institute for Bee Products and Health ScienceYamada Bee Company, Inc.OkayamaJapan
| | - Ryoji Kawakami
- Department of Experimental ImmunologyImmunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Atsushi Sugimoto
- Department of Experimental ImmunologyImmunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Shimon Sakaguchi
- Department of Experimental ImmunologyImmunology Frontier Research CenterOsaka UniversitySuitaJapan
| | - Tomoki Ikuta
- Institute for Bee Products and Health ScienceYamada Bee Company, Inc.OkayamaJapan
| |
Collapse
|
171
|
Ni X, Wang Q, Gu J, Lu L. Clinical and Basic Research Progress on Treg-Induced Immune Tolerance in Liver Transplantation. Front Immunol 2021; 12:535012. [PMID: 34093514 PMCID: PMC8173171 DOI: 10.3389/fimmu.2021.535012] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 04/26/2021] [Indexed: 12/29/2022] Open
Abstract
Rejection after organ transplantation is a cause of graft failure. Effectively reducing rejection and inducing tolerance is a challenge in the field of transplantation immunology. The liver, as an immunologically privileged organ, has high rates of spontaneous and operational tolerance after transplantation, allowing it to maintain its normal function for long periods. Although modern immunosuppression regimens have serious toxicity and side effects, it is very risky to discontinue immunosuppression regimens blindly. A more effective treatment to induce immune tolerance is the most sought-after goal in transplant medicine. Tregs have been shown to play a pivotal role in the regulation of immune balance, and infusion of Tregs can also effectively prevent rejection and cure autoimmune diseases without significant side effects. Given the immune characteristics of the liver, the correct use of Tregs can more effectively induce the occurrence of operational tolerance for liver transplants than for other organ transplants. This review mainly summarizes the latest research advances regarding the characteristics of the hepatic immune microenvironment, operational tolerance, Treg generation in vitro, and the application of Tregs in liver transplantation. It is hoped that this review will provide a deeper understanding of Tregs as the most effective treatment to induce and maintain operational tolerance after liver transplantation.
Collapse
Affiliation(s)
- Xuhao Ni
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Qi Wang
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Jian Gu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| | - Ling Lu
- Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing Medical University Affiliated Cancer Hospital, Nanjing, China.,Hepatobiliary Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Research Unit of Liver Transplantation and Transplant Immunology, Chinese Academy of Medical Sciences, Nanjing, China.,Key Laboratory of Liver Transplantation, Chinese Academy of Medical Sciences, NHC Key Laboratory of Living Donor Liver Transplantation, Nanjing, China
| |
Collapse
|
172
|
Ramos-Ramírez P, Malmhäll C, Tliba O, Rådinger M, Bossios A. Adiponectin/AdipoR1 Axis Promotes IL-10 Release by Human Regulatory T Cells. Front Immunol 2021; 12:677550. [PMID: 34084174 PMCID: PMC8167046 DOI: 10.3389/fimmu.2021.677550] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/29/2021] [Indexed: 12/11/2022] Open
Abstract
Background Adiponectin is an important immunomodulatory mediator in inflammatory conditions. While we previously showed that adiponectin receptor 1 (AdipoR1) is expressed in murine regulatory T cells (Tregs), its expression in human Tregs remain unknown. Here, we examined the expression of AdipoR1 in human Tregs and whether its ligand, globular adiponectin (gAd) affects the Treg ability to secrete IL-10 and the role of Type 2 (T2) inflammation in such process. Methods Human Tregs from peripheral blood were analyzed by flow cytometry for AdipoR1, Helios and IL-10 expression. CD4+ T cells enriched from peripheral blood mononuclear cells (PBMCs) were cultured in the presence or the absence of gAd or the chemical adiponectin receptor agonist, AdipoRon, or in a T2 cytokine milieu. Flow cytometry was then used to assess intracellular IL-10, IL-10 secreting cells, FOXP3 and Helios expression, and phosphorylated p38 MAP kinase (MAPK). IL-10 levels in CD4+ T cell supernatants were quantified by ELISA. Results We found that a subset of human Tregs expressed AdipoR1. Importantly, more Helios- cells expressed AdipoR1 than Helios+ cells. Likewise, there was a higher frequency of IL-10+ cells within Helios- AdipoR1+ Tregs compared to Helios+ AdipoR1+ Tregs. In contrast, the IL-10 mean fluorescence intensity (MFI) was higher in Helios+ AdipoR1+ Tregs compared to Helios-AdipoR1+ Tregs. When human CD4+ T cells were treated with gAd or AdipoRon, a significant increase in IL-10 secretion, FOXP3 expression, and p38 MAPK phosphorylation was observed in Helios- AdipoR1+ Tregs. Interestingly, gAd under T2 cytokine milieu significantly increased the intracellular levels of IL-10, mainly in Helios+ AdipoR1+ Tregs, and IL-10 levels in supernatants of CD4+ T cells. Conclusions Collectively, our findings suggest that adiponectin/AdipoR1 axis promotes IL-10 release by Tregs, mainly in Helios- Tregs, and the effect was amplified by T2 inflammation in Helios+ Tregs.
Collapse
Affiliation(s)
- Patricia Ramos-Ramírez
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Carina Malmhäll
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Omar Tliba
- Department of Biomedical Sciences, College of Veterinary Medicine, Long Island University, Brookville, NY, United States
| | - Madeleine Rådinger
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Apostolos Bossios
- Krefting Research Centre, Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Respiratory Medicine and Allergy, Karolinska University Hospital, Huddinge and Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
173
|
Zhang Y, Zhang J, Shi Y, Shen M, Lv H, Chen S, Feng Y, Chen H, Xu X, Yang T, Xu K. Differences in Maturation Status and Immune Phenotypes of Circulating Helios + and Helios - Tregs and Their Disrupted Correlations With Monocyte Subsets in Autoantibody-Positive T1D Individuals. Front Immunol 2021; 12:628504. [PMID: 34054801 PMCID: PMC8149963 DOI: 10.3389/fimmu.2021.628504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
CD4 Tregs are involved in the regulation of various autoimmune diseases but believed to be highly heterogeneous. Studies have indicated that Helios controls a distinct subset of functional Tregs. However, the immunological changes in circulating Helios+ and Helios− Tregs are not fully explored in type 1 diabetes (T1D). Here, we elucidated the differences in maturation status and immune regulatory phenotypes of Helios+ and Helios− Tregs and their correlations with monocyte subsets in T1D individuals. As CD25−/low FOXP3+ Tregs also represent a subset of functional Tregs, we defined Tregs as FOXP3+CD127−/low and examined circulating Helios+ and Helios− Treg subpopulations in 68 autoantibody-positive T1D individuals and 68 age-matched healthy controls. We found that expression of both FOXP3 and CTLA4 diminished in Helios− Tregs, while the proportion of CD25−/low Tregs increased in Helios+ Tregs of T1D individuals. Although the frequencies of neither Helios+ nor Helios− Tregs were affected by investigated T1D genetic risk loci, Helios+ Tregs correlated with age at T1D diagnosis negatively and disease duration positively. Moreover, the negative correlation between central and effector memory proportions of Helios+ Tregs in healthy controls was disrupted in T1D individuals. Finally, regulatory non-classical and intermediate monocytes also decreased in T1D individuals, and positive correlations between these regulatory monocytes and Helios+/Helios− Treg subsets in healthy controls disappeared in T1D individuals. In conclusion, we demonstrated the alternations in maturation status and immune phenotypes in Helios+ and Helios− Treg subsets and revealed the missing association between these Treg subsets and monocyte subsets in T1D individuals, which might point out another option for elucidating T1D mechanisms.
Collapse
Affiliation(s)
- Yuyue Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jie Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Shi
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Min Shen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Lv
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shu Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yingjie Feng
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Heng Chen
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinyu Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Tao Yang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Kuanfeng Xu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
174
|
Chen X, Li S, Long D, Shan J, Li Y. Rapamycin facilitates differentiation of regulatory T cells via enhancement of oxidative phosphorylation. Cell Immunol 2021; 365:104378. [PMID: 34015699 DOI: 10.1016/j.cellimm.2021.104378] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/14/2021] [Accepted: 05/06/2021] [Indexed: 02/05/2023]
Abstract
We explored the interplay between energy metabolism and the impact of rapamycin (Rapa) on regulatory T cell (Treg) differentiation. Naïve CD4+ T cells were stimulated under Treg-polarizing conditions with or without Rapa. Rapa promoted Treg induction, as the expression of Foxp3 and Treg phenotypic markers were enhanced. Rapa disrupts glycolysis while favoring mitochondrial metabolism in induced Tregs (iTregs). Metabolic profiling showed reduced glycolytic metabolites in Rapa-treated iTregs, in line with the downregulation of glucose uptake and the expression of glycolytic enzymes. Conversely, Rapa increased the ratios of ATP/ADP and ATP/AMP, the production of mitochondrial ATP, and the expression of ATP5A. Treatment with oxidative phosphorylation inhibitors suppressed Foxp3 expression in Rapa-treated cells. Moreover, Rapa decreased oleic acid and palmitoleic acid levels and increased l-carnitine and acetylcarnitine levels and CPT1A expression in iTregs, indicative of augmented fatty acid oxidation. In conclusion, Rapa induces metabolic reprogramming in Tregs, affecting their differentiation.
Collapse
Affiliation(s)
- Xuelu Chen
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Shengfu Li
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Dan Long
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China
| | - Juan Shan
- Chengdu Medical College, Chengdu 610500, Sichuan Province, PR China.
| | - Youping Li
- Key Laboratory of Transplant Engineering and Immunology of The Ministry of Health, Regenerative Medicine Research Centre, The Organ Transplantation Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China; Chinese Cochrane Centre, Chinese Evidence-Based Medicine Centre, West China Hospital, Sichuan University, Chengdu 610041, Sichuan Province, PR China.
| |
Collapse
|
175
|
Liu MF, Jin C, Wu T, Chen EH, Lu M, Qin HL. Helios serves as a suppression marker to reduce regulatory T cell function in pancreatic cancer patients. Immunol Res 2021; 69:275-284. [PMID: 33959834 DOI: 10.1007/s12026-021-09200-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 04/28/2021] [Indexed: 11/28/2022]
Abstract
Destabilizing and reprogramming regulatory T (Treg) cells have become a potential strategy to treat tumor. Mounting evidence indicates that the transcription factor Helios is required for the stable differentiation of Treg lineage. Hence, we investigated whether Helios suppression could be a potential treatment option for pancreatic cancer patients. We found that Helios+ cells were predominantly in Foxp3+ Treg cells. By contrast, Foxp3+ Treg cells can be Helios+ or Helios-, but the level of Foxp3 expression was significantly higher in Helios+Foxp3+ Treg cells than in Helios-Foxp3+ Treg cells. Resected pancreatic tumors were highly enriched with both Helios+Foxp3+ Treg cells and Helios-Foxp3+ Treg cells. Also, the proportion of Helios+ cells in total Foxp3+ Treg cells was significantly higher in peripheral blood mononuclear cells (PBMCs) of patients than in PBMCs of healthy controls and further increased in patient tumors. Using shRNA, we knocked down Helios expression without significant downregulation of Foxp3. After Helios knockdown, CD4+CD25+CD127- Treg cells presented significantly lower levels of TGF-β secretion, lower levels of IL-10 secretion, and higher levels of IFN-γ secretion. In addition, Helios shRNA-transfected CD4+CD25+CD127- Treg cells presented lower capacity to inhibit CD4+CD25-CD127+ T conventional cell proliferation than control shRNA-transfected CD4+CD25+CD127- Treg cells. Of note, CD4+CD25+CD127- Treg cells from pancreatic cancer patients demonstrated higher TGF-β expression and higher suppression capacity than the cells from healthy controls. Overall, these results suggest that in pancreatic cancer patients, Helios may serve as a candidate to suppress Treg function, which could be used as a target to treat pancreatic cancer.
Collapse
Affiliation(s)
- Min-Feng Liu
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Cheng Jin
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Tao Wu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - En-Hong Chen
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu, China
| | - Minxue Lu
- Department of Gastroenterology, Zhebei Mingzhou Hospital, 255 Gongyuan Road, Huzhou, Zhejiang, China.
| | - Huan-Long Qin
- Department of Gastrointestinal Surgery, Shanghai Tenth People's Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
176
|
Dong Y, Yang C, Pan F. Post-Translational Regulations of Foxp3 in Treg Cells and Their Therapeutic Applications. Front Immunol 2021; 12:626172. [PMID: 33912156 PMCID: PMC8071870 DOI: 10.3389/fimmu.2021.626172] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 03/17/2021] [Indexed: 12/15/2022] Open
Abstract
Regulatory T (Treg) cells are indispensable for immune homeostasis due to their roles in peripheral tolerance. As the master transcription factor of Treg cells, Forkhead box P3 (Foxp3) strongly regulates Treg function and plasticity. Because of this, considerable research efforts have been directed at elucidating the mechanisms controlling Foxp3 and its co-regulators. Such work is not only advancing our understanding on Treg cell biology, but also uncovering novel targets for clinical manipulation in autoimmune diseases, organ transplantation, and tumor therapies. Recently, many studies have explored the post-translational regulation of Foxp3, which have shown that acetylation, phosphorylation, glycosylation, methylation, and ubiquitination are important for determining Foxp3 function and plasticity. Additionally, some of these targets have been implicated to have great therapeutic values. In this review, we will discuss emerging evidence of post-translational regulations on Foxp3 in Treg cells and their exciting therapeutic applications.
Collapse
Affiliation(s)
- Yi Dong
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Cuiping Yang
- Department of Gastroenterology, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Fan Pan
- Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Science, Shenzhen, China
| |
Collapse
|
177
|
Liu Y, Sun J, Xia Y, Lyaker MR, Yu J. Effect of intraoperative blood transfusion on Treg and FOXP3 in patients with digestive tract malignancies and different ABO blood types. BMC Anesthesiol 2021; 21:110. [PMID: 33838641 PMCID: PMC8035765 DOI: 10.1186/s12871-021-01330-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 03/31/2021] [Indexed: 01/17/2023] Open
Abstract
Background Blood transfusion can cause immunosuppression and lead to worse outcomes in patients with digestive tract malignancies; however, the specific mechanism behind this is not completely understood. One theory is that increased numbers of regulatory CD3+CD4+CD25+FOXP3+ T cells (Tregs) and forkhead box protein-3 mRNA (FOXP3) expression in the blood after transfusion contribute to these outcomes. The effect of blood transfusion on immune function in patients with different ABO blood types is variable. This study investigates the effect of intraoperative blood transfusion on the number of Tregs and the expression of FOXP3 in the blood of patients with different ABO blood types and digestive tract malignancies. Methods Patients with digestive tract malignancies who underwent radical resection and received intraoperative blood transfusion were divided into four groups according to their blood types:blood group A, blood group B, blood group O and blood group AB (n = 20 for each group). Blood was collected from all patients before surgery, immediately after transfusion, 1 day after transfusion, and 5 days after transfusion. The number of Tregs was measured by flow cytometry. The expression of FOXP3 was detected by real time reverse transcription polymerase chain reaction (RT-PCR). Results There was no significant difference in the number of Tregs or expression of FOXP3 mRNA among patients with different blood types before surgery. However, the number of Tregs and the expression of FOXP3 increased after blood transfusion in all blood type groups. This increase was especially evident and statistically significant on the first day after blood transfusion when compared with measures obtained before the surgery. Measures returned to the preoperative level five days after surgery. There were significant differences in the increase of Tregs and expression of FOXP3 among patients with different blood types. The greatest increase was seen in patients with blood group B and the least in blood group A. Conclusions Intraoperative blood transfusion can lead to an increase in blood Tregs and FOXP3 expression in patients with digestive tract malignancies. Increases were greatest on the first day after surgery and differed among patients with different blood types. Increases were greatest in blood type B and least in blood type A.
Collapse
Affiliation(s)
- Yajun Liu
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Junzhi Sun
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China
| | - Yun Xia
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Michael R Lyaker
- Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jianshe Yu
- Department of Anesthesiology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, China.
| |
Collapse
|
178
|
Norlander AE, Bloodworth MH, Toki S, Zhang J, Zhou W, Boyd K, Polosukhin VV, Cephus JY, Ceneviva ZJ, Gandhi VD, Chowdhury NU, Charbonnier LM, Rogers LM, Wang J, Aronoff DM, Bastarache L, Newcomb DC, Chatila TA, Peebles RS. Prostaglandin I2 signaling licenses Treg suppressive function and prevents pathogenic reprogramming. J Clin Invest 2021; 131:140690. [PMID: 33529171 PMCID: PMC8011897 DOI: 10.1172/jci140690] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 01/27/2021] [Indexed: 12/29/2022] Open
Abstract
Tregs restrain both the innate and adaptive immune systems to maintain homeostasis. Allergic airway inflammation, characterized by a Th2 response that results from a breakdown of tolerance to innocuous environmental antigens, is negatively regulated by Tregs. We previously reported that prostaglandin I2 (PGI2) promoted immune tolerance in models of allergic inflammation; however, the effect of PGI2 on Treg function was not investigated. Tregs from mice deficient in the PGI2 receptor IP (IP KO) had impaired suppressive capabilities during allergic airway inflammatory responses compared with mice in which PGI2 signaling was intact. IP KO Tregs had significantly enhanced expression of immunoglobulin-like transcript 3 (ILT3) compared with WT Tregs, which may contribute to the impairment of the IP KO Treg's ability to suppress Th2 responses. Using fate-mapping mice, we reported that PGI2 signaling prevents Treg reprogramming toward a pathogenic phenotype. PGI2 analogs promoted the differentiation of naive T cells to Tregs in both mice and humans via repression of β-catenin signaling. Finally, a missense variant in IP in humans was strongly associated with chronic obstructive asthma. Together, these data support that PGI2 signaling licenses Treg suppressive function and that PGI2 is a therapeutic target for enhancing Treg function.
Collapse
Affiliation(s)
| | | | - Shinji Toki
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Jian Zhang
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Weisong Zhou
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Kelli Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | | | | | | | - Vivek D. Gandhi
- Division of Allergy, Pulmonary, and Critical Care Medicine and
| | - Nowrin U. Chowdhury
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Louis-Marie Charbonnier
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | | | - Janey Wang
- Department of Biomedical Informatics, and
| | - David M. Aronoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- Division of Infectious Diseases, Department of Medicine
- Department of Obstetrics and Gynecology, Vanderbilt University Medical Center (VUMC), Nashville, Tennessee, USA
| | | | - Dawn C. Newcomb
- Division of Allergy, Pulmonary, and Critical Care Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
| | - Talal A. Chatila
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - R. Stokes Peebles
- Division of Allergy, Pulmonary, and Critical Care Medicine and
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, Tennessee, USA
- United States Department of Veterans Affairs, Nashville, Tennessee, USA
| |
Collapse
|
179
|
Lee JG, Jaeger KE, Seki Y, Wei Lim Y, Cunha C, Vuchkovska A, Nelson AJ, Nikolai A, Kim D, Nishimura M, Knight KL, White P, Iwashima M. Human CD36 hi monocytes induce Foxp3 + CD25 + T cells with regulatory functions from CD4 and CD8 subsets. Immunology 2021; 163:293-309. [PMID: 33524161 DOI: 10.1111/imm.13316] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/31/2020] [Accepted: 01/22/2021] [Indexed: 12/12/2022] Open
Abstract
The fetal and neonatal immune systems are uniquely poised to generate tolerance to self, maternal and environmental antigens encountered in the womb and shortly after birth. However, the tolerogenic nature of fetal and neonatal immunity can be detrimental in the context of pathogens, leading to overwhelming bacterial infections or chronic viral infections. A variety of mechanisms contribute to fetal and neonatal tolerance, including a propensity to generate Foxp3+ regulatory T cells (Treg cells). However, the mechanism(s) of fetal Foxp3+ T-cell differentiation, the specific antigen-presenting cells required and factors that inhibit Treg generation after the neonatal period are poorly understood. Here, we demonstrate that a subset of CD14+ monocytes expressing the scavenger molecule, CD36, can generate CD4+ and CD8+ T cells that coexpress Foxp3 and T-bet from both umbilical cord blood. These Foxp3+ T-bet+ T cells potently suppress T-cell proliferation and ameliorate xenogeneic graft-versus-host disease. CD14+ CD36+ monocytes provide known Treg-inducing signals: membrane-bound transforming growth factor-beta and retinoic acid. Unexpectedly, adult peripheral blood monocytes are also capable of inducing Foxp3+ T cells from both cord blood and adult peripheral naïve T cells. The induction of Foxp3+ T cells in umbilical cord blood by monocytes was inhibited by the lymphoid fraction of adult peripheral blood cells. These studies highlight a novel immunoregulatory role of monocytes and suggest that antigen presentation by CD36hi monocytes may contribute to the peripheral development of Foxp3+ T-bet+ T cells with regulatory functions in both neonates and adults.
Collapse
Affiliation(s)
- Jessica G Lee
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Kathleen E Jaeger
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Yoichi Seki
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Yi Wei Lim
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Christina Cunha
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Aleksandra Vuchkovska
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Alexander J Nelson
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Anya Nikolai
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Dan Kim
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Michael Nishimura
- Department of Surgery, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Katherine L Knight
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Paula White
- Department of Obstetrics and Gynecology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| | - Makio Iwashima
- Department of Microbiology and Immunology, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA.,Van Kampen Cardio-Pulmonary Research Laboratory, Stritch School of Medicine, Loyola University Chicago, Maywood, IL, USA
| |
Collapse
|
180
|
Gao SX, Sun C, Zhu YT, Zhao JB, Sun J, Zhou P, Jiang HY, Fan YA, Wei L, Zhang T, Guan JC. Exposure of pregnant rats to staphylococcal enterotoxin B increases offspring splenic Treg number and function via decreasing FoxP3 methylation. Immunobiology 2021; 226:152060. [PMID: 33529803 DOI: 10.1016/j.imbio.2021.152060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 01/12/2021] [Accepted: 01/20/2021] [Indexed: 12/30/2022]
Abstract
Staphylococcus aureus is an infectious pathogen that is relatively common, but that can cause severe disease in pregnant women and their fetus. We previously demonstrated that exposing pregnant rats to staphylococcal enterotoxin B (SEB) altered splenic CD4/CD8 T cell frequencies in their offspring. Whether prenatal SEB exposure impacts Tregs in these offspring, however, remains to be determined. As such, in this study, we intravenously injected pregnant rats with 15 μg of SEB on gestational day 16. Splenic tissue was then harvested from 1-, 3-, and 5-day-old neonatal rats and analyzed via flow cytometry to assess Treg numbers. In addition, FoxP3 expression levels were assessed via qPCR and western blotting, while FoxP3 methylation status was evaluated via methyl-DNA immunoprecipitation qPCR. Immunosuppression assays were additionally used to gauge Treg suppressive functionality. We found that exposing pregnant rats to SEB resulted in a significant increase in Treg numbers, FoxP3 expression, and Treg suppressive capacity in the spleens of both neonatal and adult offspring. In addition, total T cell, CD4+T cell, and non-Treg CD4+ T cell numbers were elevated in the spleens of offspring following prenatal SEB exposure. We additionally determined that SEB exposure resulted in a significant reduction in FoxP3 DNA methylation. Together, our results indicate that prenatal SEB exposure can markedly enhance offspring splenic Treg numbers and functionality at least in part by decreasing FoxP3 methylation.
Collapse
Affiliation(s)
- Shu-Xian Gao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Chao Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Yu-Ting Zhu
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jia-Bao Zhao
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jing Sun
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Ping Zhou
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Hao-Yuan Jiang
- An Under Graduate Student Majored Clinical Medicine, Bengbu Medical College, Anhui 233030, PR China
| | - Ying-Ao Fan
- An Under Graduate Student Majored Clinical Medicine, Bengbu Medical College, Anhui 233030, PR China
| | - Li Wei
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Tao Zhang
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China
| | - Jun-Chang Guan
- Anhui Key Laboratory of Infection and Immunity, Bengbu Medical College, Bengbu, Anhui 233030, PR China; Department of Microbiology, Bengbu Medical College, Bengbu, Anhui 233030, PR China.
| |
Collapse
|
181
|
Longhi MS, Mieli-Vergani G, Vergani D. Regulatory T cells in autoimmune hepatitis: an updated overview. J Autoimmun 2021; 119:102619. [PMID: 33652348 DOI: 10.1016/j.jaut.2021.102619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 12/12/2022]
Abstract
Regulatory T-cells (Tregs) are key players in the maintenance of immune homeostasis by preventing immune responses to self-antigens. Defects in Treg frequency and/or function result in overwhelming CD4 and CD8 T cell immune responses participating in the autoimmune attack. Perpetuation of autoimmune damage is also favored by Treg predisposition to acquire effector cell features upon exposure to a proinflammatory challenge. Treg impairment plays a permissive role in the initiation and perpetuation of autoimmune liver diseases, namely autoimmune hepatitis, primary biliary cholangitis and primary sclerosing cholangitis. In this Review, we outline studies reporting the role of Treg impairment in the pathogenesis of these conditions and discuss methods to restore Treg number and function either by generation/expansion in the test tube or through in vivo expansion upon administration of low dose IL-2. Challenges and caveats of these potential therapeutic strategies are also reviewed and discussed.
Collapse
Affiliation(s)
- Maria Serena Longhi
- Department of Anesthesia, Critical Care and Pain Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, 330 Brookline Avenue, Boston, MA, 02215, USA.
| | - Giorgina Mieli-Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, United Kingdom.
| | - Diego Vergani
- Institute of Liver Studies, MowatLabs, Department of Inflammation Biology, School of Immunology & Microbial Sciences, Faculty of Liver Sciences and Medicine, King's College London, London, United Kingdom.
| |
Collapse
|
182
|
Chen MR, Kuo HC, Lee YJ, Chi H, Li SC, Lee HC, Yang KD. Phenotype, Susceptibility, Autoimmunity, and Immunotherapy Between Kawasaki Disease and Coronavirus Disease-19 Associated Multisystem Inflammatory Syndrome in Children. Front Immunol 2021; 12:632890. [PMID: 33732254 PMCID: PMC7959769 DOI: 10.3389/fimmu.2021.632890] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease-19 (COVID-19) in children is usually mild but some are susceptible to a Kawasaki disease (KD)-like multisystem inflammatory syndrome in children (MIS-C) in the convalescent stage, posing a need to differentiate the phenotype, susceptibility, autoimmunity, and immunotherapy between KD and MIS-C, particularly in the upcoming mass vaccination of COVID-19. Patients with MIS-C are prone to gastrointestinal symptoms, coagulopathy, and shock in addition to atypical KD syndrome with fever, mucocutaneous lesions, lymphadenopathy, and/or cardiovascular events. MIS-C manifests KD-like symptoms that alert physicians to early recognize and adopt the KD treatment regimen for patients with MIS-C. MIS-C linked to COVID-19 teaches us infection-associated autoimmune vasculitis and vice versa. Studies on genetic susceptibility have identified certain human leukocyte antigen (HLA) locus and toll-like receptor (TLR) associated with KD and/or COVID-19. Certain HLA subtypes, such as HLA-DRB1 and HLA-MICA A4 are associated with KD. HLA-B*46:01 is proposed to be the risk allele of severe COVID-19 infection, and blood group O type is a protective factor of COVID-19. The autoimmune vasculitis of KD, KD shock syndrome (KDSS), or MIS-C is mediated by a genetic variant of HLA, FcγR, and/or antibody-dependent enhancement (ADE) resulting in hyperinflammation with T helper 17 (Th17)/Treg imbalance with augmented Th17/Th1 mediators: interleukin-6 (IL-6), IL-10, inducible protein-10 (IP-10), Interferon (IFNγ), and IL-17A, and lower expression of Treg-signaling molecules, FoxP3, and transforming growth factor (TGF-β). There are certain similarities and differences in phenotypes, susceptibility, and pathogenesis of KD, KDSS, and MIS-C, by which a physician can make early protection, prevention, and precision treatment of the diseases. The evolution of immunotherapies for the diseases has shown that intravenous immunoglobulin (IVIG) alone or combined with corticosteroids is the standard treatment for KD, KDSS, and MIS-C. However, a certain portion of patients who revealed a treatment resistance to IVIG or IVIG plus corticosteroids, posing a need to early identify the immunopathogenesis, to protect hosts with genetic susceptibility, and to combat Th17/Treg imbalance by anti-cytokine or pro-Treg for reversal of the hyperinflammation and IVIG resistance. Based on physiological and pathological immunity of the diseases under genetic susceptibility and host milieu conditions, a series of sequential regimens are provided to develop a so-called "Know thyself, enemy (pathogen), and ever-victorious" strategy for the prevention and immunotherapy of KD and/or MIS-C.
Collapse
Affiliation(s)
- Ming-Ren Chen
- MacKay Children's Hospital, Taipei, Taiwan
- MacKay Junior College of Medicine, Nursing, and Management, New Taipei City, Taiwan
| | - Ho-Chang Kuo
- Kawasaki Disease Center and Department of Pediatrics, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | - Hsin Chi
- MacKay Children's Hospital, Taipei, Taiwan
| | - Sung Chou Li
- Genomic and Proteomic Center, Kaohsiung Chang Gung Memorial Hospital, Kaohsiung, Taiwan
| | | | - Kuender D. Yang
- MacKay Children's Hospital, Taipei, Taiwan
- Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
183
|
Xie J, Shi CW, Huang HB, Yang WT, Jiang YL, Ye LP, Zhao Q, Yang GL, Wang CF. Induction of the IL-10-producing regulatory B cell phenotype following Trichinella spiralis infection. Mol Immunol 2021; 133:86-94. [PMID: 33636433 DOI: 10.1016/j.molimm.2021.02.012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 07/19/2020] [Accepted: 02/10/2021] [Indexed: 12/15/2022]
Abstract
Regulatory B cells (Bregs), a subset of B lymphocytes discovered in the past few decades, have the capacity to suppress the immune response and dampen inflammation by secreting cytokines (IL-10 and TGF-β). Whether Bregs are involved in Trichinella spiralis infection and the phenotypic characteristics of these cells after infection are still unknown. We investigated the phenotype of and dynamic changes in IL-10-producing Bregs in Trichinella spiralis infection in BALB/c mice. We used multicolour fluorescence immunostaining of microwave-treated paraffin sections to investigate the number of Bregs in T. spiralis infection. Flow cytometry (FCM) was used to determine the frequency of Bregs and related subgroups and cytokines in the spleen and mesenteric lymph nodes (MLNs). High levels of IL-10 were detected in the spleen and MLNs of mice after infection with T. spiralis. Furthermore, the frequencies of IL-10-producing CD19+CD1dhighCD5+ regulatory B cells and CD19+ cells were increased during T. spiralis infection. We also showed that the induced phenotype was similar to that of transitional type 2 marginal zone precursor B cells (T-MZP) cells after T. spiralis infection in mice. This study is the first demonstration of the expansion of Bregs following T. spiralis infection.
Collapse
Affiliation(s)
- Jing Xie
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Chun-Wei Shi
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Hai-Bin Huang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Wen-Tao Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Yan-Long Jiang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Li-Ping Ye
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Quan Zhao
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China
| | - Gui-Lian Yang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| | - Chun-Feng Wang
- College of Veterinary Medicine, Jilin Agricultural University, Changchun, China; Jilin Provincial Engineering Research Center of Animal Probiotics, Jilin Agricultural University, Changchun, China; Key Laboratory of Animal Production and Product Quality Safety of Ministry of Education, Jilin Agricultural University, Changchun, China.
| |
Collapse
|
184
|
Li Y, Tunbridge HM, Britton GJ, Hill EV, Sinai P, Cirillo S, Thompson C, Fallah-Arani F, Dovedi SJ, Wraith DC, Wülfing C. A LAT-Based Signaling Complex in the Immunological Synapse as Determined with Live Cell Imaging Is Less Stable in T Cells with Regulatory Capability. Cells 2021; 10:418. [PMID: 33671236 PMCID: PMC7921939 DOI: 10.3390/cells10020418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/12/2021] [Accepted: 02/12/2021] [Indexed: 12/03/2022] Open
Abstract
Peripheral immune regulation is critical for the maintenance of self-tolerance. Here we have investigated signaling processes that distinguish T cells with regulatory capability from effector T cells. The murine Tg4 T cell receptor recognizes a peptide derived from the self-antigen myelin basic protein. T cells from Tg4 T cell receptor transgenic mice can be used to generate effector T cells and three types of T cells with regulatory capability, inducible regulatory T cells, T cells tolerized by repeated in vivo antigenic peptide exposure or T cells treated with the tolerogenic drug UCB9608 (a phosphatidylinositol 4 kinase IIIβ inhibitor). We comparatively studied signaling in all of these T cells by activating them with the same antigen presenting cells presenting the same myelin basic protein peptide. Supramolecular signaling structures, as efficiently detected by large-scale live cell imaging, are critical mediators of T cell activation. The formation of a supramolecular signaling complex anchored by the adaptor protein linker for activation of T cells (LAT) was consistently terminated more rapidly in Tg4 T cells with regulatory capability. Such termination could be partially reversed by blocking the inhibitory receptors CTLA-4 and PD-1. Our work suggests that attenuation of proximal signaling may favor regulatory over effector function in T cells.
Collapse
Affiliation(s)
- Yikui Li
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Helen M Tunbridge
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Graham J Britton
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elaine V Hill
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Parisa Sinai
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | - Silvia Cirillo
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| | | | | | - Simon J Dovedi
- R&D Oncology, AstraZeneca, Granta Park, Cambridge, CB21 6GH, UK
| | - David C Wraith
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
- Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, B15 2TT, UK
| | - Christoph Wülfing
- School of Cellular and Molecular Medicine, University of Bristol, Bristol, BS8 1TD, UK
| |
Collapse
|
185
|
Regulatory T Cells for the Induction of Transplantation Tolerance. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33523454 DOI: 10.1007/978-981-15-6407-9_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Organ transplantation is the optimal treatment for terminal and irreversible organ failure. Achieving transplantation tolerance has long been the ultimate goal in the field of transplantation. Regulatory T cell (Treg)-based therapy is a promising novel approach for inducing donor organ-specific tolerance. Tregs play critical roles in the maintenance of immune homeostasis and self-tolerance, by promoting transplantation tolerance through a variety of mechanisms on different target cells, including anti-inflammatory cytokine production, induction of apoptosis, disruption of metabolic pathways, and mutual interaction with dendritic cells. The continued success of Treg-based therapy in the clinical setting is critically dependent on preclinical studies that support its translational potential. However, although some initial clinical trials of adoptive Treg therapy have successively demonstrated safety and efficacy for immunosuppressant minimization and transplantation tolerance induction, most Treg-based hematopoietic stem cell and solid organ clinical trials are still in their infancy. These clinical trials have not only focused on safety and efficacy but also included optimization and standardization protocols of good manufacturing practice regarding cell isolation, expansion, dosing, timing, specificity, quality control, concomitant immunosuppressants, and post-administration monitoring. We herein report a brief introduction of Tregs, including their phenotypic and functional characterization, and focus on the clinical translation of Treg-based therapeutic applications in the setting of transplantation.
Collapse
|
186
|
Hwang JH, Piao H, Jang JY, Lee SK, Han D, Lee GM, Go C, Kim Y, Oh KI, Kang JS, Yan JJ, Yang J. Suppressive effects of vitamin C-treated induced-regulatory T cells on heart allograft rejection under vitamin C-deficient or -sufficient conditions. PLoS One 2021; 16:e0246967. [PMID: 33577562 PMCID: PMC7880463 DOI: 10.1371/journal.pone.0246967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/28/2021] [Indexed: 12/30/2022] Open
Abstract
Foxp3 stability of vitamin C-treated induced-regulatory T cells (V-iTregs) is superior to that of conventional iTregs (C-iTregs). However, the role of V-iTregs in allograft rejection under vitamin C-deficient conditions, such as those seen in humans, remains unclear. We aimed to elucidate the role of vitamin C treatment on generation and maintenance of iTregs from gulo knockout (Gulo-KO) mice as well as wild type (WT) mice, and in vitro and in vivo suppressive effects of V-iTregs on heart allograft rejection in either Gulo-KO or WT recipient mice. Conversion efficiency of iTregs was similar between C- and V-iTregs in both WT and Gulo-KO mice. V-iTregs from WT or Gulo-KO mice showed better in vitro Foxp3 stability than C-iTregs, although there was no difference between WT V-iTregs and Gulo-KO V-iTregs. Furthermore, V-iTregs from WT or Gulo-KO mice suppressed in vitro T cell proliferation better than C-iTregs. Heterotrophic heart transplantation from BALB/c mice to WT or vitamin C-deficient Gulo-KO C57BL/6J mice was performed following adoptive transfer of C- or V-iTregs. V-iTregs as well as C-iTregs prolonged heart allograft survival in WT and Gulo-KO mice. However, there was no difference between the C- and V-iTreg groups. Supplementation of low- or high-dose vitamin C did not induce significant changes in heart allograft survival in Gulo-KO recipients that had received V-iTregs. In conclusion, V-iTregs do not exert better suppressive effects on heart allograft survival than C-iTregs in either WT or vitamin C-deficient recipients.
Collapse
Affiliation(s)
- Ju Hee Hwang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Honglin Piao
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Joon Young Jang
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Sun-Kyung Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
- Department of Medicine, Graduate School, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Dongkyu Han
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Gwang-Min Lee
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Cheolhyeon Go
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yejin Kim
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Kwon Ik Oh
- Department of Pathology, Hallym University College of Medicine, Chuncheon, Republic of Korea
| | - Jae Seung Kang
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Institute of Allergy and Clinical Immunology, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Ji-Jing Yan
- Biomedical Research Institute, Seoul National University Hospital, Seoul, Republic of Korea
| | - Jaeseok Yang
- Transplantation Center, Seoul National University Hospital, Seoul, Republic of Korea
- Department of surgery, Seoul National University hospital, Seoul, Republic of Korea
| |
Collapse
|
187
|
Lower Functional and Proportional Characteristics of Cord Blood Treg of Male Newborns Compared with Female Newborns. Biomedicines 2021; 9:biomedicines9020170. [PMID: 33572097 PMCID: PMC7915235 DOI: 10.3390/biomedicines9020170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/04/2021] [Indexed: 11/16/2022] Open
Abstract
Understanding the early events involved in the induction of immune tolerance to harmless environmental antigens and microbiota compounds could reveal potential targets for allergic disease therapy or prevention. Regulatory T cells (Treg), particularly induced Treg (iTreg), are crucial for the induction and maintenance of tolerance against environmental antigens including allergens. A decrease in the number and/or function of Treg or iTreg could represent an early predictor of allergy development. We analyzed proportional and functional properties of Treg in the cord blood of children of allergic mothers (neonates at high risk of allergy development) and healthy mothers (neonates with relatively low risk of allergy development). We observed a higher number of induced Treg in the cord blood of females compared to males, suggesting an impaired capacity of male immunity to set up tolerance to allergens, which could contribute to the higher incidence of allergy observed in male infants. The decreased proportion of iTreg in cord blood compared with maternal peripheral blood documents the general immaturity of the neonatal immune system. We observed a positive correlation in the demethylation of the Treg-specific demethylated region (TSDR) and the proportion of Treg in cord blood. Our data suggest that immaturity of the neonatal immune system is more severe in males, predisposing them to increased risk of allergy development.
Collapse
|
188
|
Marx A, Yamada Y, Simon-Keller K, Schalke B, Willcox N, Ströbel P, Weis CA. Thymus and autoimmunity. Semin Immunopathol 2021; 43:45-64. [PMID: 33537838 PMCID: PMC7925479 DOI: 10.1007/s00281-021-00842-3] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/12/2021] [Indexed: 12/19/2022]
Abstract
The thymus prevents autoimmune diseases through mechanisms that operate in the cortex and medulla, comprising positive and negative selection and the generation of regulatory T-cells (Tregs). Egress from the thymus through the perivascular space (PVS) to the blood is another possible checkpoint, as shown by some autoimmune/immunodeficiency syndromes. In polygenic autoimmune diseases, subtle thymic dysfunctions may compound genetic, hormonal and environmental cues. Here, we cover (a) tolerance-inducing cell types, whether thymic epithelial or tuft cells, or dendritic, B- or thymic myoid cells; (b) tolerance-inducing mechanisms and their failure in relation to thymic anatomic compartments, and with special emphasis on human monogenic and polygenic autoimmune diseases and the related thymic pathologies, if known; (c) polymorphisms and mutations of tolerance-related genes with an impact on positive selection (e.g. the gene encoding the thymoproteasome-specific subunit, PSMB11), promiscuous gene expression (e.g. AIRE, PRKDC, FEZF2, CHD4), Treg development (e.g. SATB1, FOXP3), T-cell migration (e.g. TAGAP) and egress from the thymus (e.g. MTS1, CORO1A); (d) myasthenia gravis as the prototypic outcome of an inflamed or disordered neoplastic ‘sick thymus’.
Collapse
Affiliation(s)
- Alexander Marx
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany.
| | - Yosuke Yamada
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, 606-8507, Japan
| | - Katja Simon-Keller
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| | - Berthold Schalke
- Department of Neurology, Bezirkskrankenhaus, University of Regensburg, 93042, Regensburg, Germany
| | - Nick Willcox
- Neurosciences Group, Nuffield Department of Clinical Neurology, Weatherall Institute of Molecular Medicine, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Philipp Ströbel
- Institute of Pathology, University Medical Center Göttingen, University of Göttigen, 37075, Göttingen, Germany
| | - Cleo-Aron Weis
- Institute of Pathology, University Medical Centre Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167, Mannheim, Germany
| |
Collapse
|
189
|
Ramadan HKA, Badr G, Ramadan NK, Sayed A. Enhanced immune responses, PI3K/AKT and JAK/STAT signaling pathways following hepatitis C virus eradication by direct-acting antiviral therapy among Egyptian patients: a case control study. Pathog Dis 2021; 79:6125967. [PMID: 33524139 DOI: 10.1093/femspd/ftab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 01/28/2021] [Indexed: 01/23/2023] Open
Abstract
The use of direct-acting antivirals (DAAs) therapy for the treatment of hepatitis C virus (HCV) results in a high-sustained virological response (SVR) and subsequently alters liver immunologic environment. However, hepatocellular carcinoma (HCC) may occur after DAAs treatment. We aimed to clarify changes of immune responses, PI3K/AKT and JAK/STAT signaling pathways in HCV-induced liver diseases and HCC following DAAs treatment. Four cohorts were classified as chronic HCV patients, HCV-related cirrhosis without HCC, HCV-related cirrhosis and HCC, and healthy control group. The patient groups were further divided into treated or untreated with DAAs with SVR12. Increased percentages of CD3, CD8 and CD4, decreased CD4/FoxP3/CD25, CD8/PD-1 and CD19/PDL-1 were found in DAAs-treated patients in the three HCV groups. Following DAAs therapy, the levels of ROS, IL-1β, IL-6, IL-8 and TNF-α were significantly decreased in the three HCV groups. Treated HCV patients showed up regulation of p-AKT and p-STAT5 and down regulation of p-STAT3, HIF-1α and COX-2. In conclusion, DAAs enhance the immune response in chronic HCV and liver cirrhosis, hence our study is the first to show change in PI3K/AKT and JAK/STAT signaling pathways in different HCV-induced liver diseases after DAAs. In chronic HCV, DAAs have better impact on the immune response while in liver cirrhosis not all immune changes were prominent.
Collapse
Affiliation(s)
- Haidi Karam-Allah Ramadan
- Department of Tropical Medicine and Gastroenterology, Faculty of Medicine, Assiut University, 71515 Assiut, Egypt
| | - Gamal Badr
- Laboratory of Immunology, Zoology Department, Faculty of Science, Assiut University, 71516-Assiut, Egypt
| | - Nancy K Ramadan
- Agricultural Research Center, Animal Health Research Institute, Assiut Branch, 12618 Assiut, Egypt
| | - Aml Sayed
- Mallawy Hospital, 23th of July Street, Mallawy, Minya, Egypt.,Shebin El-Kom Hospital of Infectious Disease and Hepatology, Menoufia, Egypt
| |
Collapse
|
190
|
Rocamora-Reverte L, Melzer FL, Würzner R, Weinberger B. The Complex Role of Regulatory T Cells in Immunity and Aging. Front Immunol 2021; 11:616949. [PMID: 33584708 PMCID: PMC7873351 DOI: 10.3389/fimmu.2020.616949] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 12/07/2020] [Indexed: 12/20/2022] Open
Abstract
The immune system is a tightly regulated network which allows the development of defense mechanisms against foreign antigens and tolerance toward self-antigens. Regulatory T cells (Treg) contribute to immune homeostasis by maintaining unresponsiveness to self-antigens and suppressing exaggerated immune responses. Dysregulation of any of these processes can lead to serious consequences. Classically, Treg cell functions have been described in CD4+ T cells, but other immune cells also harbour the capacity to modulate immune responses. Regulatory functions have been described for different CD8+ T cell subsets, as well as other T cells such as γδT cells or NKT cells. In this review we describe the diverse populations of Treg cells and their role in different scenarios. Special attention is paid to the aging process, which is characterized by an altered composition of immune cells. Treg cells can contribute to the development of various age-related diseases but they are poorly characterized in aged individuals. The huge diversity of cells that display immune modulatory functions and the lack of universal markers to identify Treg make the expanding field of Treg research complex and challenging. There are still many open questions that need to be answered to solve the enigma of regulatory T cells.
Collapse
Affiliation(s)
- Lourdes Rocamora-Reverte
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Franz Leonard Melzer
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| | - Reinhard Würzner
- Institute of Hygiene & Medical Microbiology, Department of Hygiene, Microbiology and Public Health, Medical University Innsbruck, Innsbruck, Austria
| | - Birgit Weinberger
- Department of Immunology, Institute for Biomedical Aging Research, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
191
|
Th17 Cells in Inflammatory Bowel Disease: Cytokines, Plasticity, and Therapies. J Immunol Res 2021; 2021:8816041. [PMID: 33553436 PMCID: PMC7846404 DOI: 10.1155/2021/8816041] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 12/15/2020] [Accepted: 01/12/2021] [Indexed: 12/22/2022] Open
Abstract
Autoimmune diseases (such as rheumatoid arthritis, asthma, autoimmune bowel disease) are a complex disease. Improper activation of the immune system or imbalance of immune cells can cause the immune system to transform into a proinflammatory state, leading to autoimmune pathological damage. Recent studies have shown that autoimmune diseases are closely related to CD4+ T helper cells (Th). The original CD4 T cells will differentiate into different T helper (Th) subgroups after activation. According to their cytokines, the types of Th cells are different to produce lineage-specific cytokines, which play a role in autoimmune homeostasis. When Th differentiation and its cytokines are not regulated, it will induce autoimmune inflammation. Autoimmune bowel disease (IBD) is an autoimmune disease of unknown cause. Current research shows that its pathogenesis is closely related to Th17 cells. This article reviews the role and plasticity of the upstream and downstream cytokines and signaling pathways of Th17 cells in the occurrence and development of autoimmune bowel disease and summarizes the new progress of IBD immunotherapy.
Collapse
|
192
|
Dadey RE, Workman CJ, Vignali DAA. Regulatory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1273:105-134. [PMID: 33119878 DOI: 10.1007/978-3-030-49270-0_6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Regulatory T cells (Tregs) are an immunosuppressive subpopulation of CD4+ T cells that are endowed with potent suppressive activity and function to limit immune activation and maintain homeostasis. These cells are identified by the hallmark transcription factor FOXP3 and the high-affinity interleukin-2 (IL-2) receptor chain CD25. Tregs can be recruited to and persist within the tumor microenvironment (TME), acting as a potent barrier to effective antitumor immunity. This chapter will discuss [i] the history and hallmarks of Tregs; [ii] the recruitment, development, and persistence of Tregs within the TME; [iii] Treg function within TME; asnd [iv] the therapeutic targeting of Tregs in the clinic. This chapter will conclude with a discussion of likely trends and future directions.
Collapse
Affiliation(s)
- Rebekah E Dadey
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.,Graduate Program of Microbiology and Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Creg J Workman
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA.,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA
| | - Dario A A Vignali
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA. .,Tumor Microenvironment Center, University of Pittsburgh Medical Center (UPMC) Hillman Cancer Center, Pittsburgh, PA, USA. .,Cancer Immunology and Immunotherapy Program, UPMC Hillman Cancer Center, Pittsburgh, PA, USA.
| |
Collapse
|
193
|
Administration of CD4 +CD25 highCD127 -FoxP3 + Regulatory T Cells for Relapsing-Remitting Multiple Sclerosis: A Phase 1 Study. BioDrugs 2021; 35:47-60. [PMID: 33400237 DOI: 10.1007/s40259-020-00462-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Multiple sclerosis (MS) is an immune-mediated disease in which autoimmune T conventional (Tconv) cells break the blood-brain barrier and destroy neurons of the central nervous system. It is hypothesized that CD4+CD25highCD127-FoxP3+ T regulatory (Treg) cells may inhibit this destruction through suppressive activity exerted on Tconv cells. METHODS We present the results of a phase 1b/2a, open-label, two-arm clinical trial in 14 patients treated with autologous Treg cells for relapsing-remitting MS. The patients received either expanded ex vivo Treg cells intravenously (intravenous [IV] group, n = 11; dose 40 × 106 Treg cells/kg of body weight) or freshly isolated Treg cells intrathecally (intrathecal [IT] group, n = 3; dose 1.0 × 106 Treg cells). Importantly, patients were not treated with any other disease-modifying drugs for at least 6 months before the recruitment and during the follow-up. RESULTS No severe adverse events were observed. Self-assessed quality of life (EuroQol-5 Dimensions [EQ-5D] form) did not change and did not differ significantly between the groups. A total of 12 relapses were noted in five intravenously treated patients, who had from one to three attacks per year. Three out of ten participants who completed the trial in the IV group deteriorated more than 1 point on the Expanded Disability Status Scale (EDSS) during the follow-up. At the same time, no patients in the IT group experienced a relapse or such a deterioration in the EDSS. No significant differences were found in the Multiple Sclerosis Functional Composite (MSFC) scale in both the IV and IT groups. Magnetic resonance imaging (MRI) scans revealed a significantly lower change in the T2 lesion volume in the IT group compared to the IV group. The increase in the number of new T2 lesions during the follow-up was significant for the IV group only. There were no significant changes in the level of Treg cells or Tconv cells in the peripheral blood throughout the follow-up or between the groups. Interestingly, Treg cells in all patients consisted of two different phenotypes: peripheral Treg cells Helios(-) (≈ 20%) and thymic Treg cells Helios(+) (≈ 80%). The analysis of the cytokine pattern revealed higher levels of transforming growth factor-α and proinflammatory factors MCP3, CXCL8, and IL-1RA in the IT group compared with the IV group. CONCLUSIONS No serious adverse events were reported in the 14 patients with MS treated with Treg cells in this study. The results suggest that IT administration is more promising than IV administration. Because of the low number of patients recruited, the statistical results may be underpowered and further studies are necessary to reach conclusions on efficacy and safety. TRIAL REGISTRATION EudraCT: 2014-004320-22; registered 18 November 2014.
Collapse
|
194
|
De Groot AS, Rosenberg AS, Miah SMS, Skowron G, Roberts BJ, Lélias S, Terry FE, Martin WD. Identification of a potent regulatory T cell epitope in factor V that modulates CD4+ and CD8+ memory T cell responses. Clin Immunol 2021; 224:108661. [PMID: 33412295 DOI: 10.1016/j.clim.2020.108661] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 12/29/2020] [Accepted: 12/30/2020] [Indexed: 02/06/2023]
Abstract
Identification of T cell epitopes that are recognized by Tregs may elucidate the relative contributions of thymic Tregs and induced Tregs to control of autoimmune diseases and allergy. One such T regulatory cell epitope or 'Tregitope', derived from blood Factor V, is described here. Tregs responding to Tregitope FV621 are potent suppressors of CD4+ T effector responses to Tetanus Toxoid in an in vitro bystander suppression assay, strongly inhibit proliferation of effector CD8+ T cells, down-modulate CD86 and HLA DR on antigen-presenting cells, and enhance expression of granzyme B in Tregs. Tregitope FV621 also suppresses anti-OVA immune responses in vivo. The immunomodulatory effect of Tregitope FV621 is enhanced when conjugated to albumin, suggesting that the short half-life of Tregitope peptides can be prolonged. The in silico tools used to prospectively identify the FV Tregitope described here, when combined with in vitro /in vivo validating assays, may facilitate future Tregitope discoveries.
Collapse
Affiliation(s)
- Anne S De Groot
- EpiVax, Inc., Providence, RI, USA; Center for Vaccines and Immunology, University of Georgia, USA.
| | - Amy S Rosenberg
- Center for Drug Evaluation and Research, FDA, White Oak, MD, USA
| | | | | | | | | | | | | |
Collapse
|
195
|
Roth-Walter F, Adcock IM, Benito-Villalvilla C, Bianchini R, Bjermer L, Boyman O, Caramori G, Cari L, Fan Chung K, Diamant Z, Eguiluz-Gracia I, Knol EF, Kolios A, Levi-Schaffer F, Nocentini G, Palomares O, Redegeld F, Van Esch B, Stellato C. Immune modulation via T regulatory cell enhancement: Disease-modifying therapies for autoimmunity and their potential for chronic allergic and inflammatory diseases-An EAACI position paper of the Task Force on Immunopharmacology (TIPCO). Allergy 2021; 76:90-113. [PMID: 32593226 DOI: 10.1111/all.14478] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Therapeutic advances using targeted biologicals and small-molecule drugs have achieved significant success in the treatment of chronic allergic, autoimmune, and inflammatory diseases particularly for some patients with severe, treatment-resistant forms. This has been aided by improved identification of disease phenotypes. Despite these achievements, not all severe forms of chronic inflammatory and autoimmune diseases are successfully targeted, and current treatment options, besides allergen immunotherapy for selected allergic diseases, fail to change the disease course. T cell-based therapies aim to cure diseases through the selective induction of appropriate immune responses following the delivery of engineered, specific cytotoxic, or regulatory T cells (Tregs). Adoptive cell therapies (ACT) with genetically engineered T cells have revolutionized the oncology field, bringing curative treatment for leukemia and lymphoma, while therapies exploiting the suppressive functions of Tregs have been developed in nononcological settings, such as in transplantation and autoimmune diseases. ACT with Tregs are also being considered in nononcological settings such as cardiovascular disease, obesity, and chronic inflammatory disorders. After describing the general features of T cell-based approaches and current applications in autoimmune diseases, this position paper reviews the experimental models testing or supporting T cell-based approaches, especially Treg-based approaches, in severe IgE-mediated responses and chronic respiratory airway diseases, such as severe asthma and COPD. Along with an assessment of challenges and unmet needs facing the application of ACT in these settings, this article underscores the potential of ACT to offer curative options for patients with severe or treatment-resistant forms of these immune-driven disorders.
Collapse
Affiliation(s)
- Franziska Roth-Walter
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Ian M Adcock
- Molecular Cell Biology Group, National Heart & Lung Institute, Imperial College London, London, UK
| | - Cristina Benito-Villalvilla
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Rodolfo Bianchini
- Comparative Medicine, The Interuniversity Messerli Research Institute of the University of Veterinary Medicine Vienna, Medical University Vienna and University Vienna, Vienna, Austria
| | - Leif Bjermer
- Department of Respiratory Medicine and Allergology, Lung and Allergy research, Allergy, Asthma and COPD Competence Center, Lund University, Lund, Sweden
| | - Onur Boyman
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Gaetano Caramori
- Department of Biomedical Sciences, Dentistry and Morphological and Functional Imaging (BIOMORF), Respiratory Medicine Unit, University of Messina, Messina, Italy
| | - Luigi Cari
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Kian Fan Chung
- Experimental Studies Medicine at National Heart & Lung Institute, Imperial College London & Royal Brompton & Harefield NHS Trust, London, UK
| | - Zuzana Diamant
- Department of Respiratory Medicine and Allergology, Institute for Clinical Science, Skane University Hospital, Lund, Sweden
- Department of Respiratory Medicine, First Faculty of Medicine, Charles University and Thomayer Hospital, Prague, Czech Republic
- Department of Clinical Pharmacy & Pharmacology, University Groningen, University Medical Center Groningen and QPS-NL, Groningen, Netherlands
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Málaga-Instituto de Investigación Biomédica de Málaga (IBIMA)-ARADyAL, Málaga, Spain
| | - Edward F Knol
- Departments of Immunology and Dermatology/Allergology, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Antonios Kolios
- Department of Immunology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Francesca Levi-Schaffer
- Pharmacology Unit, Faculty of Medicine, Institute for Drug Research, The Hebrew University of Jerusalem, Israel
| | - Giuseppe Nocentini
- Department of Medicine, Section of Pharmacology, University of Perugia, Perugia, Italy
| | - Oscar Palomares
- Department of Biochemistry and Molecular Biology, School of Chemistry, Complutense University of Madrid, Madrid, Spain
| | - Frank Redegeld
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Betty Van Esch
- Faculty of Science, Division of Pharmacology, Department of Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Cristiana Stellato
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Salerno, Italy
| |
Collapse
|
196
|
Abstract
Mucosal surfaces are distinctive sites exposed to environmental, dietary, and microbial antigens. Particularly in the gut, the host continuously actively adapts via complex interactions between the microbiota and dietary compounds and immune and other tissue cells. Regulatory T cells (Tregs) are critical for tuning the intestinal immune response to self- and non-self-antigens in the intestine. Its importance in intestinal homeostasis is illustrated by the onset of overt inflammation caused by deficiency in Treg generation, function, or stability in the gut. A substantial imbalance in Tregs has been observed in intestinal tissue during pathogenic conditions, when a tightly regulated and equilibrated system becomes dysregulated and leads to unimpeded and chronic immune responses. In this chapter, we compile and critically discuss the current knowledge on the key factors that promote Treg-mediated tolerance in the gut, such as those involved in intestinal Treg differentiation, specificity and suppressive function, and their immunophenotype during health and disease. We also discuss the current state of knowledge on Treg dysregulation in human intestine during pathological states such as inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), graft-versus-host disease (GVHD), and colorectal cancer (CRC), and how that knowledge is guiding development of Treg-targeted therapies to treat or prevent intestinal disorders.
Collapse
|
197
|
Fan L, Qi Y, Qu S, Chen X, Li A, Hendi M, Xu C, Wang L, Hou T, Si J, Chen S. B. adolescentis ameliorates chronic colitis by regulating Treg/Th2 response and gut microbiota remodeling. Gut Microbes 2021; 13:1-17. [PMID: 33557671 PMCID: PMC7889144 DOI: 10.1080/19490976.2020.1826746] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 09/12/2020] [Accepted: 09/15/2020] [Indexed: 02/04/2023] Open
Abstract
Inflammatory bowel disease (IBD) is defined as an immune dysregulation disease with poor prognosis. Various therapies based on gut microbe modulation have been proposed. In this study, we aim to explore the therapeutic effect of B. adolescentis on IBD, as well as the immune and microecology mechanism of B. adolescentis in IBD. The fecal level of B. adolescentis was decreased in the IBD patients compared with the normal people in our cohort and the GMrepo database. To further clarify the role of B. adolescentis in IBD, we induced chronic colitis with three cycles of dextran sulfate sodium (DSS). We found B. adolescentis gavage exhibited protective effects as evidenced by the significantly decreased diarrhea score, spleen weight, and increased colon length. Accordingly, the cumulative histological grading was decreased in the B. adolescentis administration group. In addition, tight junction protein and mucin family were enhanced after B. adolescentis treatment. Furthermore, distinct effects were found with decreased pro-inflammatory cytokines such as TNF-α, IL-6, IL-1β, IL-18, IL-22, IL-9 and increased anti-inflammatory cytokines IL-10, IL-4, IL-5. Importantly, the colon lamina propria in the B. adolescentis group consisted of more Treg and Th2 cells, which inhibited extreme gut inflammation. Additionally, 16srRNA sequencing showed an evident increase in the B:F ratio in the B. adolescentis group. In particular, B. adolescentis application inhibited the excessive growth of Akkermansia and Escherichia-Shigella in genus level. In conclusion, B. adolescentis refined the DSS-induced chronic colitis by stimulating protective Treg/Th2 response and gut microbiota remodeling. B. adolescentis regularly treatment might improve the therapeutic effects for inflammatory bowel disease.
Collapse
Affiliation(s)
- Lina Fan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Yadong Qi
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Siwen Qu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Xueqin Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Aiqing Li
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Maher Hendi
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
| | - Chaochao Xu
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Lan Wang
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Tongyao Hou
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Jianmin Si
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| | - Shujie Chen
- Department of Gastroenterology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, China
- Institute of Gastroenterology, Zhejiang University, Zhejiang, China
| |
Collapse
|
198
|
Chang L, Yang HW, Lin TY, Yang KD. Perspective of Immunopathogenesis and Immunotherapies for Kawasaki Disease. Front Pediatr 2021; 9:697632. [PMID: 34350146 PMCID: PMC8326331 DOI: 10.3389/fped.2021.697632] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/22/2021] [Indexed: 12/13/2022] Open
Abstract
Kawasaki Disease (KD) is an acute inflammatory illness that mostly occurs in children below 5 years of age, with intractable fever, mucocutaneous lesions, lymphadenopathy, and lesions of the coronary artery (CAL). KD is sharing clinical symptoms with systemic inflammatory syndrome in children (MIS-C) which is related to COVID-19. Certain genes are identified to be associated with KD, but the findings usually differ between countries and races. Human Leukocyte Antigen (HLA) allele types and toll-like receptor (TLR) expression are also correlated to KD. The acute hyperinflammation in KD is mediated by an imbalance between augmented T helper 17 (Th17)/Th1 responses with high levels of interleukin (IL)-6, IL-10, IL-17A, IFN-γ, and IP-10, in contrast to reduced Th2/Treg responses with lower IL-4, IL-5, FoxP3, and TGF-β expression. KD has varying phenotypic variations regarding age, gender, intravenous immunoglobulin (IVIG) resistance, macrophage activation and shock syndrome. The signs of macrophage activation syndrome (MAS) can be interpreted as hyperferritinemia and thrombocytopenia contradictory to thrombocytosis in typical KD; the signs of KD with shock syndrome (KDSS) can be interpreted as overproduction of nitric oxide (NO) and coagulopathy. For over five decades, IVIG and aspirin are the standard treatment for KD. However, some KD patients are refractory to IVIG required additional medications against inflammation. Further studies are proposed to delineate the immunopathogenesis of IVIG-resistance and KDSS, to identify high risk patients with genetic susceptibility, and to develop an ideal treatment regimen, such as by providing idiotypic immunoglobulins to curb cytokine storms, NO overproduction, and the epigenetic induction of Treg function.
Collapse
Affiliation(s)
- Lung Chang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan.,Division of Infectious Disease, MacKay Children's Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
| | - Horng-Woei Yang
- Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan
| | - Tang-Yu Lin
- Division of Allergy-Immunology-Rheumatology, MacKay Children's Hospital, Taipei, Taiwan
| | - Kuender D Yang
- Department of Pediatrics, MacKay Memorial Hospital, Taipei, Taiwan.,Department of Medical Research, MacKay Memorial Hospital, New Taipei City, Taiwan.,Department of Medicine, Mackay Medical College, New Taipei City, Taiwan.,Division of Allergy-Immunology-Rheumatology, MacKay Children's Hospital, Taipei, Taiwan.,Department of Microbiology & Immunology, National Defense Medical Center, Taipei, Taiwan.,Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
199
|
The Association of Gut Microbiota and Treg Dysfunction in Autoimmune Diseases. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1278:191-203. [PMID: 33523449 PMCID: PMC9290759 DOI: 10.1007/978-981-15-6407-9_10] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Autoimmune conditions affect 23 million Americans or 7% of the US population. There are more than 100 autoimmune disorders, affecting every major organ system in humans. This chapter aims to further explain Treg dysfunction autoimmune disorders, including monogenic primary immune deficiency such as immune dysregulation polyendocrinopathy, enteropathy, X-linked inheritance (IPEX) syndrome, and polygenic autoimmune diseases with Treg dysfunction such as multiple sclerosis (MS), inflammatory bowel disease (IBD), and food allergy. These conditions are associated with an abnormal small intestinal and colonic microbiome. Some disorders clearly improve with therapies aimed at microbial modification, including probiotics and fecal microbiota transplantation (FMT). Approaches to prevent and treat these disorders will need to focus on the acquisition and maintenance of a healthy colonic microbiota, in addition to more focused approaches at immune suppression during acute disease exacerbations.
Collapse
|
200
|
Chatzileontiadou DSM, Sloane H, Nguyen AT, Gras S, Grant EJ. The Many Faces of CD4 + T Cells: Immunological and Structural Characteristics. Int J Mol Sci 2020; 22:E73. [PMID: 33374787 PMCID: PMC7796221 DOI: 10.3390/ijms22010073] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 12/14/2022] Open
Abstract
As a major arm of the cellular immune response, CD4+ T cells are important in the control and clearance of infections. Primarily described as helpers, CD4+ T cells play an integral role in the development and activation of B cells and CD8+ T cells. CD4+ T cells are incredibly heterogeneous, and can be divided into six main lineages based on distinct profiles, namely T helper 1, 2, 17 and 22 (Th1, Th2, Th17, Th22), regulatory T cells (Treg) and T follicular helper cells (Tfh). Recent advances in structural biology have allowed for a detailed characterisation of the molecular mechanisms that drive CD4+ T cell recognition. In this review, we discuss the defining features of the main human CD4+ T cell lineages and their role in immunity, as well as their structural characteristics underlying their detection of pathogens.
Collapse
Affiliation(s)
- Demetra S. M. Chatzileontiadou
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Hannah Sloane
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Andrea T. Nguyen
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| | - Stephanie Gras
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
- Australian Research Council Centre of Excellence for Advanced Molecular Imaging, Monash University, Clayton, VIC 3800, Australia
| | - Emma J. Grant
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia; (D.S.M.C.); (H.S.); (A.T.N.); (S.G.)
| |
Collapse
|