151
|
Egipto RJL, Aquino A, Andújar JM. Predicting the canopy conductance to water vapor of grapevines using a biophysical model in a hot and arid climate. FRONTIERS IN PLANT SCIENCE 2024; 15:1334215. [PMID: 38405587 PMCID: PMC10885811 DOI: 10.3389/fpls.2024.1334215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 01/17/2024] [Indexed: 02/27/2024]
Abstract
Canopy conductance is a crucial factor in modelling plant transpiration and is highly responsive to water stress. The objective of this study is to develop a straightforward method for estimating canopy conductance (gc) in grapevines. To predict gc, this study combines stomatal conductance to water vapor (gsw) measurements from grapevine leaves, scaled to represent the canopy size by the leaf area index (LAI), with atmospheric variables, such as net solar radiation (Rn) and air vapor pressure deficit (VPD). The developed model was then validated by comparing its predictions with gc values calculated using the inverse of the Penman Monteith equation. The proposed model demonstrates its effectiveness in estimating the gc, with the highest root-mean-squared-error (RMSE=1.45x10-4 m.s-1) being lower than the minimum gc measured in the field (gc obs=0.0005 m.s-1). The results of this study reveal the significant influence of both VPD and gsw on grapevine canopy conductance.
Collapse
Affiliation(s)
- Ricardo Jorge Lopes Egipto
- INIAV, I.P.—Instituto Nacional de Investigação Agrária e Veterinária, Pólo de Inovação de Dois Portos, Dois Portos, Portugal
| | - Arturo Aquino
- CITES, Centro de Investigación en Tecnología, Energía y Sostenibilidad, Universidad de Huelva, Huelva, Spain
| | - José Manuel Andújar
- CITES, Centro de Investigación en Tecnología, Energía y Sostenibilidad, Universidad de Huelva, Huelva, Spain
| |
Collapse
|
152
|
Crockett JL, Hurteau MD. Ability of seedlings to survive heat and drought portends future demographic challenges for five southwestern US conifers. TREE PHYSIOLOGY 2024; 44:tpad136. [PMID: 37935402 DOI: 10.1093/treephys/tpad136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Climate change and disturbance are altering forests and the rates and locations of tree regeneration. In semi-arid forests of the southwestern USA, limitations imposed by hot and dry conditions are likely to influence seedling survival. We examined how the survival of 1-year seedlings of five southwestern US conifer species whose southwestern distributions range from warmer and drier woodlands and forests (Pinus edulis Engelm., Pinus ponderosa Douglas ex C. Lawson) to cooler and wetter subalpine forests (Pseudotsuga menziesii (Mirb.) Franco, Abies concolor (Gord. & Glend.) Lindl. Ex Hildebr. and Picea engelmannii Parry ex Engelm.) changed in response to low moisture availability, high temperatures and high vapor pressure deficit in incubators. We used a Bayesian framework to construct discrete-time proportional hazard models that explained 55-75% of the species-specific survival variability. We applied these to the recent climate (1980-2019) of the southwestern USA as well as 1980-2099 CMIP5 climate projections with the RCP8.5 emissions pathway. We found that the more mesic species (i.e., P. menziesii, A. concolor and P. engelmannii) were more susceptible to the effects of hot and dry periods. However, their existing ranges are not projected to experience the conditions we tested as early in the 21st century as the more xeric P. edulis and P. ponderosa, leading to lower percentages of their existing ranges predicted to experience seedling-killing conditions. By late-century, extensive areas of each species southwestern range could experience climate conditions that increase the likelihood of seedling mortality. These results demonstrate that empirically derived physiological limitations can be used to inform where species composition or vegetation type change are likely to occur in the southwestern USA.
Collapse
Affiliation(s)
- Joseph L Crockett
- Department of Biology, MSC03-20201, University of New Mexico, Albuquerque, NM 87131-0001
| | - Matthew D Hurteau
- Department of Biology, MSC03-20201, University of New Mexico, Albuquerque, NM 87131-0001
| |
Collapse
|
153
|
Mas E, Cochard H, Deluigi J, Didion-Gency M, Martin-StPaul N, Morcillo L, Valladares F, Vilagrosa A, Grossiord C. Interactions between beech and oak seedlings can modify the effects of hotter droughts and the onset of hydraulic failure. THE NEW PHYTOLOGIST 2024; 241:1021-1034. [PMID: 37897156 DOI: 10.1111/nph.19358] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023]
Abstract
Mixing species with contrasting resource use strategies could reduce forest vulnerability to extreme events. Yet, how species diversity affects seedling hydraulic responses to heat and drought, including mortality risk, is largely unknown. Using open-top chambers, we assessed how, over several years, species interactions (monocultures vs mixtures) modulate heat and drought impacts on the hydraulic traits of juvenile European beech and pubescent oak. Using modeling, we estimated species interaction effects on timing to drought-induced mortality and the underlying mechanisms driving these impacts. We show that mixtures mitigate adverse heat and drought impacts for oak (less negative leaf water potential, higher stomatal conductance, and delayed stomatal closure) but enhance them for beech (lower water potential and stomatal conductance, narrower leaf safety margins, faster tree mortality). Potential underlying mechanisms include oak's larger canopy and higher transpiration, allowing for quicker exhaustion of soil water in mixtures. Our findings highlight that diversity has the potential to alter the effects of extreme events, which would ensure that some species persist even if others remain sensitive. Among the many processes driving diversity effects, differences in canopy size and transpiration associated with the stomatal regulation strategy seem the primary mechanisms driving mortality vulnerability in mixed seedling plantations.
Collapse
Affiliation(s)
- Eugénie Mas
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Hervé Cochard
- Université Clermont Auvergne, INRAE, PIAF, 63000, Clermont-Ferrand, France
| | - Janisse Deluigi
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Margaux Didion-Gency
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| | - Nicolas Martin-StPaul
- Unité Ecologie des Forêts Méditerranéennes (UR629), INRAE, DomaineSaint Paul, Site Agroparc, 84914, Avignon Cedex 9, France
| | - Luna Morcillo
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, PO Box 99, C. San Vicente del Raspeig, s/n, 03080, Alicante, Spain
| | - Fernando Valladares
- Depto de Biogeografía y Cambio Global, LINCGlobal, Museo Nacional de Ciencias Naturales (MNCN-CSIC), 28006, Madrid, Spain
- Área de Biodiversidad y Conservación, Univ. Rey Juan Carlos, Móstoles, 28933, Madrid, Spain
| | - Alberto Vilagrosa
- CEAM Foundation, Joint Research Unit University of Alicante-CEAM, Department of Ecology, University of Alicante, PO Box 99, C. San Vicente del Raspeig, s/n, 03080, Alicante, Spain
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory (PERL), School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015, Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015, Lausanne, Switzerland
| |
Collapse
|
154
|
Zhang J, Shoaib N, Lin K, Mughal N, Wu X, Sun X, Zhang L, Pan K. Boosting cadmium tolerance in Phoebe zhennan: the synergistic effects of exogenous nitrogen and phosphorus treatments promoting antioxidant defense and root development. FRONTIERS IN PLANT SCIENCE 2024; 15:1340287. [PMID: 38362448 PMCID: PMC10867629 DOI: 10.3389/fpls.2024.1340287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
Plants possess intricate defense mechanisms to resist cadmium (Cd) stress, including strategies like metal exclusion, chelation, osmoprotection, and the regulation of photosynthesis, with antioxidants playing a pivotal role. The application of nitrogen (N) and phosphorus (P) fertilizers are reported to bolster these defenses against Cd stress. Several studies investigated the effects of N or P on Cd stress in non-woody plants and crops. However, the relationship between N, P application, and Cd stress resistance in valuable timber trees remains largely unexplored. This study delves into the Cd tolerance mechanisms of Phoebe zhennan, a forest tree species, under various treatments: Cd exposure alone, combined Cd stress with either N or P and Cd stress with both N and P application. Our results revealed that the P application enhanced root biomass and facilitated the translocation of essential nutrients like K, Mn, and Zn. Conversely, N application, especially under Cd stress, significantly inhibited plant growth, with marked reductions in leaf and stem biomass. Additionally, while the application of P resulted in reduced antioxidant enzyme levels, the combined application of N and P markedly amplified the activities of peroxidase by 266.36%, superoxide dismutase by 168.44%, and ascorbate peroxidase by 26.58% under Cd stress. This indicates an amplified capacity of the plant to neutralize reactive oxygen species. The combined treatment also led to effective regulation of nutrient and Cd distribution in roots, shoots, and leaves, illustrating a synergistic effect in mitigating toxic impact of N. The study also highlights a significant alteration in photosynthetic activities under different treatments. The N addition generally reduced chlorophyll content by over 50%, while P and NP treatments enhanced transpiration rates by up to 58.02%. Our findings suggest P and NP fertilization can manage Cd toxicity by facilitating antioxidant production, osmoprotectant, and root development, thus enhancing Cd tolerance processes, and providing novel strategies for managing Cd contamination in the environment.
Collapse
Affiliation(s)
- Juan Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Noman Shoaib
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kexin Lin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Nishbah Mughal
- College of Agronomy, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaogang Wu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoming Sun
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Lin Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kaiwen Pan
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
155
|
Lai Y, Tang S, Lambers H, Hietz P, Tang W, Gilliam FS, Lu X, Luo X, Lin Y, Wang S, Zeng F, Wang Q, Kuang Y. Global change progressively increases foliar nitrogen-phosphorus ratios in China's subtropical forests. GLOBAL CHANGE BIOLOGY 2024; 30:e17201. [PMID: 38385993 DOI: 10.1111/gcb.17201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/31/2023] [Accepted: 02/02/2024] [Indexed: 02/23/2024]
Abstract
Globally increased nitrogen (N) to phosphorus (P) ratios (N/P) affect the structure and functioning of terrestrial ecosystems, but few studies have addressed the variation of foliar N/P over time in subtropical forests. Foliar N/P indicates N versus P limitation in terrestrial ecosystems. Quantifying long-term dynamics of foliar N/P and their potential drivers is crucial for predicting nutrient status and functioning in forest ecosystems under global change. We detected temporal trends of foliar N/P, quantitatively estimated their potential drivers and their interaction between plant types (evergreen vs. deciduous and trees vs. shrubs), using 1811 herbarium specimens of 12 widely distributed species collected during 1920-2010 across China's subtropical forests. We found significant decreases in foliar P concentrations (23.1%) and increases in foliar N/P (21.2%). Foliar N/P increased more in evergreen species (22.9%) than in deciduous species (16.9%). Changes in atmospheric CO2 concentrations (P CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ ), atmospheric N deposition and mean annual temperature (MAT) dominantly contributed to the increased foliar N/P of evergreen species, whileP CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ , MAT, and vapor pressure deficit, to that of deciduous species. Under future Shared Socioeconomic Pathway (SSP) scenarios, increasing MAT andP CO 2 $$ {\mathrm{P}}_{{\mathrm{CO}}_2} $$ would continuously increase more foliar N/P in deciduous species than in evergreen species, with more 12.9%, 17.7%, and 19.4% versus 6.1%, 7.9%, and 8.9% of magnitudes under the scenarios of SSP1-2.6, SSP3-7.0, and SSP5-8.5, respectively. The results suggest that global change has intensified and will progressively aggravate N-P imbalance, further altering community composition and ecosystem functioning of subtropical forests.
Collapse
Affiliation(s)
- Yuan Lai
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Songbo Tang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- School of Ecological and Environmental Sciences, East China Normal University, Shanghai, China
| | - Hans Lambers
- School of Biological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Peter Hietz
- Institute of Botany, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Frank S Gilliam
- Department of Earth and Environmental Sciences, University of West Florida, Pensacola, Florida, USA
| | - Xiankai Lu
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Xianzhen Luo
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yutong Lin
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Shu Wang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Feiyan Zeng
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Qi Wang
- National-Regional Joint Engineering Research Center for Soil Pollution Control and Remediation in South China, Guangdong Key Laboratory of Integrated Agro-Environmental Pollution Control and Management, Institute of Eco-Environmental and Soil Sciences, Guangdong Academy of Sciences, Guangzhou, China
| | - Yuanwen Kuang
- Guangdong Provincial Key Laboratory of Applied Botany and Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
156
|
Vleminckx J, Hogan JA, Metz MR, Comita LS, Queenborough SA, Wright SJ, Valencia R, Zambrano M, Garwood NC. Flower production decreases with warmer and more humid atmospheric conditions in a western Amazonian forest. THE NEW PHYTOLOGIST 2024; 241:1035-1046. [PMID: 37984822 DOI: 10.1111/nph.19388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 10/18/2023] [Indexed: 11/22/2023]
Abstract
Climate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue-based processes. Additionally, more persistent cloud cover should reduce the amounts of solar irradiance, which could limit flower production. We tested whether interannual variation in flower production has changed in response to fluctuations in irradiance, rainfall, temperature, and relative humidity over 18 yrs in an everwet forest in Ecuador. Analyses of 184 plant species showed that flower production declined as nighttime temperature and relative humidity increased, suggesting that warmer nights and greater atmospheric water saturation negatively impacted reproduction. Species varied in their flowering responses to climatic variables but this variation was not explained by life form or phylogeny. Our results shed light on how plant communities will respond to climatic changes in this everwet region, in which the impacts of these changes have been poorly studied compared with more seasonal Neotropical areas.
Collapse
Affiliation(s)
- Jason Vleminckx
- Department of Biology of Organisms, Université Libre de Bruxelles, Brussels, 1050, Belgium
- Yale Institute for Biospheric Studies, Yale University, New Haven, CT, 06511, USA
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - J Aaron Hogan
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Margaret R Metz
- Department of Biology, Lewis & Clark College, Portland, OR, 97219, USA
| | - Liza S Comita
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | | | - S Joseph Wright
- Smithsonian Tropical Research Institute, Apartado, Balboa, 0843-03092, Panama
| | - Renato Valencia
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, 170143, Ecuador
| | - Milton Zambrano
- Escuela de Ciencias Biológicas, Pontificia Universidad Católica del Ecuador, Quito, 170143, Ecuador
| | - Nancy C Garwood
- School of Biological Sciences, Southern Illinois University, Carbondale, IL, 62901, USA
| |
Collapse
|
157
|
Didion-Gency M, Vitasse Y, Buchmann N, Gessler A, Gisler J, Schaub M, Grossiord C. Chronic warming and dry soils limit carbon uptake and growth despite a longer growing season in beech and oak. PLANT PHYSIOLOGY 2024; 194:741-757. [PMID: 37874743 PMCID: PMC10828195 DOI: 10.1093/plphys/kiad565] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 09/26/2023] [Accepted: 09/30/2023] [Indexed: 10/26/2023]
Abstract
Progressively warmer and drier climatic conditions impact tree phenology and carbon cycling with large consequences for forest carbon balance. However, it remains unclear how individual impacts of warming and drier soils differ from their combined effects and how species interactions modulate tree responses. Using mesocosms, we assessed the multiyear impact of continuous air warming and lower soil moisture alone or in combination on phenology, leaf-level photosynthesis, nonstructural carbohydrate concentrations, and aboveground growth of young European beech (Fagus sylvatica L.) and Downy oak (Quercus pubescens Willd.) trees. We further tested how species interactions (in monocultures and in mixtures) modulated these effects. Warming prolonged the growing season of both species but reduced growth in oak. In contrast, lower moisture did not impact phenology but reduced carbon assimilation and growth in both species. Combined impacts of warming and drier soils did not differ from their single effects. Under warmer and drier conditions, performances of both species were enhanced in mixtures compared to monocultures. Our work revealed that higher temperature and lower soil moisture have contrasting impacts on phenology vs. leaf-level assimilation and growth, with the former being driven by temperature and the latter by moisture. Furthermore, we showed a compensation in the negative impacts of chronic heat and drought by tree species interactions.
Collapse
Affiliation(s)
- Margaux Didion-Gency
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
| | - Yann Vitasse
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
| | - Nina Buchmann
- Institute of Agricultural Sciences, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Arthur Gessler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
- Institute of Terrestrial Ecosystems, ETH Zurich, CH-8092 Zurich, Switzerland
| | - Jonas Gisler
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
| | - Marcus Schaub
- Forest Dynamics Research Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-8903 Birmensdorf, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, CH-1015 Lausanne, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape WSL, CH-1015 Lausanne, Switzerland
| |
Collapse
|
158
|
Hogan JA, Domke GM, Zhu K, Johnson DJ, Lichstein JW. Climate change determines the sign of productivity trends in US forests. Proc Natl Acad Sci U S A 2024; 121:e2311132121. [PMID: 38227667 PMCID: PMC10823222 DOI: 10.1073/pnas.2311132121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 12/01/2023] [Indexed: 01/18/2024] Open
Abstract
Forests are integral to the global land carbon sink, which has sequestered ~30% of anthropogenic carbon emissions over recent decades. The persistence of this sink depends on the balance of positive drivers that increase ecosystem carbon storage-e.g., CO2 fertilization-and negative drivers that decrease it-e.g., intensifying disturbances. The net response of forest productivity to these drivers is uncertain due to the challenge of separating their effects from background disturbance-regrowth dynamics. We fit non-linear models to US forest inventory data (113,806 plot remeasurements in non-plantation forests from ~1999 to 2020) to quantify productivity trends while accounting for stand age, tree mortality, and harvest. Productivity trends were generally positive in the eastern United States, where climate change has been mild, and negative in the western United States, where climate change has been more severe. Productivity declines in the western United States cannot be explained by increased mortality or harvest; these declines likely reflect adverse climate-change impacts on tree growth. In the eastern United States, where data were available to partition biomass change into age-dependent and age-independent components, forest maturation and increasing productivity (likely due, at least in part, to CO2 fertilization) contributed roughly equally to biomass carbon sinks. Thus, adverse effects of climate change appear to overwhelm any positive drivers in the water-limited forests of the western United States, whereas forest maturation and positive responses to age-independent drivers contribute to eastern US carbon sinks. The future land carbon balance of forests will likely depend on the geographic extent of drought and heat stress.
Collapse
Affiliation(s)
- J. Aaron Hogan
- Department of Biology, University of Florida, Gainesville, FL32611
| | - Grant M. Domke
- Northern Research Station, United States Department of Agriculture Forest Service, Saint Paul, MN55108
| | - Kai Zhu
- School for Environment and Sustainability, University of Michigan, Ann Arbor, MI48109
| | - Daniel J. Johnson
- School of Forest, Fisheries, and Geomatics Sciences, University of Florida, Gainesville, FL32611
| | | |
Collapse
|
159
|
Wang Y, Zhang C, Xiao X, Wu H, Zhang J. Water-use strategies and functional traits explain divergent linkages in physiological responses to simulated precipitation change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168238. [PMID: 37939960 DOI: 10.1016/j.scitotenv.2023.168238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/14/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
As a part of global climate change, precipitation patterns in arid regions will change significantly, and the different responses of desert plants to these changes will lead to alterations in community composition, thereby impacting ecosystem stability. Thus, understanding the mechanism underlying the associations among physiological response variables considering changing precipitation is crucial. Here, water-use strategies, functional traits, and physiological processes (e.g., photosynthesis (An), transpiration (Tr), leaf water potential (Ψl), stomatal conductance (gs), and soil respiration (Rs)) were measured in a precipitation experiment with two coexisting desert riparian species to determine how water-use strategies and functional traits operate together in generating physiological response mechanisms. The results showed that the two species exhibited divergent response pathways of physiological processes following rainfall events, although both were identified as isohydric plants with stringent stomatal regulation. For the shallow-rooted species N. sphaerocarpa, gs was sensitive to changes in both surface soil moisture (Swc) and Ψl, and Swc was the primary factor influencing Rs. These results were supported by the preference for shallow water and predominance of functional traits associated with drought avoidance. For the deep-rooted species R. soongorica, variations in gs were decoupled from Swc and directly influenced by enhanced Ψl, An was the main factor affecting Rs, while Ψl negatively affected Rs. These correlations could be attributed to the preference for deep water and functional traits associated with drought tolerance. These findings suggest that R. soongorica had a stronger tolerance to environmental water deficits and may expand extensively under drier climatic conditions in the future.
Collapse
Affiliation(s)
- Yang Wang
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot 010022, China; Key Laboratory of Biodiversity conservation and Sustainable utilization in Mongolian Plateau for College and University of Inner Mongolia Autonomous Region, Hohhot 010022, China.; Key Laboratory of Infinite-dimensional Hamiltonian System and Its Algorithm Application, Inner Mongolia Normal University, Hohhot 010022, China..
| | - Cicheng Zhang
- College of Geographic Science, Hunan Normal University, Changsha, China.
| | - Xiong Xiao
- College of Geographic Science, Hunan Normal University, Changsha, China.
| | - Huawu Wu
- Key Laboratory of Watershed Geographic Sciences, Nanjing Institute of Geography and Limnology Chinese Academy of Sciences, Nanjing 210008, China.
| | - Jinghui Zhang
- School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| |
Collapse
|
160
|
Xia H, Xu X, Xu J, Huang Y, Jiang H, Xu X, Zhang T. Warming, rather than drought, remains the primary factor limiting carbon sequestration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167755. [PMID: 37832680 DOI: 10.1016/j.scitotenv.2023.167755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/15/2023]
Abstract
Steppe ecosystems in arid and semiarid regions are particularly sensitive to climate change and strongly regulate the global carbon balance. However, carbon fluxes respond differently to climate change in different growing seasons, and the mechanism of this control is not yet clear. Therefore, we (i) obtained carbon flux data observed by a field eddy station in Inner Mongolia from 2006 to 2021; (ii) investigated the constraint effects of climatic factors on carbon fluxes; (iii) explored the response mechanisms of carbon fluxes to coupled changes in temperature and moisture; (iv) investigated the adaptation of steppe ecosystem to changes in temperature and drought. The results showed that (i) the steppe ecosystem was a carbon sink, with an average annual carbon fixation of 73.55 g C m-2 yr-1 and a roughly N-shaped carbon sink accumulation process within one year. (ii) The constraint effect of temperature and Vapor Pressure Deficit (VPD) on Net Ecosystem Productivity (NEP) and Gross Primary Productivity (GPP) was parabolic, with a clear optimum point. (iii) Temperature and moisture in the soil played a greater role in ecosystem carbon sequestration. Soil Water Content (SWC) could alleviate the inhibitory effect of temperature changes on the carbon sequestration of ecosystem. (iv) This ecosystem was capable of adapting well to changes in temperature and drought. However, warming, rather than drought, remains the primary factor limiting carbon sequestration. Specifically, it was GPP that drives the adaptation of ecosystem carbon sequestration to changes in temperature and drought, rather than Ecosystem Respiration (RECO). Although the steppe ecosystem has a good adaptation to changes in temperature and drought, it is still in the boundary region of warming. We hope that our study will deepen our comprehensive understanding of the relationship between temperature and moisture and ecosystem carbon fluxes and provide evidence for steppe ecosystem adaptation to climate change.
Collapse
Affiliation(s)
- Haoyu Xia
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Xia Xu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Faculty of Geographical Science, Beijing Normal University, Beijing, China.
| | - Jiayu Xu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Yiqin Huang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Honglei Jiang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea, Coral Reef Research Centre of China, School of Marine Sciences, Guangxi University, Nanning, China
| | - Xiaoqing Xu
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Faculty of Geographical Science, Beijing Normal University, Beijing, China
| | - Tong Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Beijing Normal University, Beijing, China; Faculty of Geographical Science, Beijing Normal University, Beijing, China
| |
Collapse
|
161
|
Beckett HAA, Webb D, Turner M, Sheppard A, Ball MC. Bark water uptake through lenticels increases stem hydration and contributes to stem swelling. PLANT, CELL & ENVIRONMENT 2024; 47:72-90. [PMID: 37811590 DOI: 10.1111/pce.14733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023]
Abstract
Foliar water uptake can recharge water storage tissue and enable greater hydration than through access to soil water alone; however, few studies have explored the role of the bark in facilitating water uptake. We investigated pathways and dynamics of bark water uptake (BWU) in stems of the mangrove Avicennia marina. We provide novel evidence that specific entry points control dynamics of water uptake through the outer bark surface. Furthermore, using a fluorescent symplastic tracer dye we provide the first evidence that lenticels on the outer bark surface facilitate BWU, thus increasing stem water content by up to 3.7%. X-ray micro-computed tomography showed that BWU was sufficient to cause measurable swelling of stem tissue layers increasing whole stem cross-sectional area by 0.83 mm2 or 2.8%, implicating it as a contributor to the diel patterns of water storage recharge that buffer xylem water potential and maintain hydration of living tissue.
Collapse
Affiliation(s)
- Holly A A Beckett
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| | - Daryl Webb
- Centre for Advanced Microscopy, Australian National University, Canberra, Australia
| | - Michael Turner
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Adrian Sheppard
- Department of Applied Mathematics, Research School of Physics, Australian National University, Canberra, Australia
| | - Marilyn C Ball
- Plant Science Division, Research School of Biology, Australian National University, Canberra, Australia
| |
Collapse
|
162
|
Huynh A, Aguirre BA, English J, Guzman D, Wright AJ. Atmospheric drying and soil drying: Differential effects on grass community composition. GLOBAL CHANGE BIOLOGY 2024; 30:e17106. [PMID: 38273553 DOI: 10.1111/gcb.17106] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 12/01/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Global surface temperatures are projected to increase in the future; this will modify regional precipitation regimes and increase global atmospheric drying. Despite many drought studies examining the consequences of reduced precipitation, there are few experimental studies exploring plant responses to atmospheric drying via relative humidity and vapor pressure deficit (VPD). We examined eight native California perennial grass species grown in pots in a greenhouse in Los Angeles, California for 34 weeks. All pots were well-watered for 21 weeks, at which point we reduced watering to zero and recorded daily growth and dormancy for 3 weeks. We used this information to better understand the drought tolerance of our species in a larger soil drying × atmospheric drying experiment. In this larger experiment, we grew all eight species together in outdoor mesocosms and measured changes in community composition after 4 years of growth. Soil drying in our small pot experiment mirrored compositional shifts in the larger experiment. Namely, our most drought-tolerant species in our pot experiment was Poa secunda, due to a summer dormancy strategy. Similarly, the grass community shifted toward P. secunda in the driest soils as P. secunda was mostly unaffected by either soil drying or atmospheric drying. We found that some species responded strongly to soil drying (Elymus glaucus, Festuca idahoensis, and Hordeum b. californicum), while others responded strongly to atmospheric drying (Bromus carinatus and Stipa cernua). As result, community composition shifted in different and interacting ways in response to soil drying, atmospheric drying, and their combination. Further study of community responses to increasing atmospheric aridity is an essential next step to predicting the future consequences of climate change.
Collapse
Affiliation(s)
- A Huynh
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - B A Aguirre
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca, New York, USA
| | - J English
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | - D Guzman
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| | - A J Wright
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, California, USA
| |
Collapse
|
163
|
Liang C, Zhang M, Wang Z, Xiang X, Gong H, Wang K, Liu H. The strengthened impact of water availability at interannual and decadal time scales on vegetation GPP. GLOBAL CHANGE BIOLOGY 2024; 30:e17138. [PMID: 38273499 DOI: 10.1111/gcb.17138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/27/2024]
Abstract
Water availability (WA) is a key factor influencing the carbon cycle of terrestrial ecosystems under climate warming, but its effects on gross primary production (EWA-GPP ) at multiple time scales are poorly understood. We used ensemble empirical mode decomposition (EEMD) and partial correlation analysis to assess the WA-GPP relationship (RWA-GPP ) at different time scales, and geographically weighted regression (GWR) to analyze their temporal dynamics from 1982 to 2018 with multiple GPP datasets, including near-infrared radiance of vegetation GPP, FLUXCOM GPP, and eddy covariance-light-use efficiency GPP. We found that the 3- and 7-year time scales dominated global WA variability (61.18% and 11.95%), followed by the 17- and 40-year time scales (7.28% and 8.23%). The long-term trend also influenced 10.83% of the regions, mainly in humid areas. We found consistent spatiotemporal patterns of the EWA-GPP and RWA-GPP with different source products: In high-latitude regions, RWA-GPP changed from negative to positive as the time scale increased, while the opposite occurred in mid-low latitudes. Forests had weak RWA-GPP at all time scales, shrublands showed negative RWA-GPP at long time scales, and grassland (GL) showed a positive RWA-GPP at short time scales. Globally, the EWA-GPP , whether positive or negative, enhanced significantly at 3-, 7-, and 17-year time scales. For arid and humid zones, the semi-arid and sub-humid zones experienced a faster increase in the positive EWA-GPP , whereas the humid zones experienced a faster increase in the negative EWA-GPP . At the ecosystem types, the positive EWA-GPP at a 3-year time scale increased faster in GL, deciduous broadleaf forest, and savanna (SA), whereas the negative EWA-GPP at other time scales increased faster in evergreen needleleaf forest, woody savannas, and SA. Our study reveals the complex and dynamic EWA-GPP at multiple time scales, which provides a new perspective for understanding the responses of terrestrial ecosystems to climate change.
Collapse
Affiliation(s)
- Chuanzhuang Liang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China
- College of Geography Science, Nanjing Normal University, Nanjing, China
| | - Mingyang Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, CAS, Changsha, China
- Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang, China
| | - Zheng Wang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China
- College of Geography Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing, China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing Normal University, Nanjing, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
| | - Xueqiao Xiang
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China
- College of Geography Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing, China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing Normal University, Nanjing, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
| | - Haibo Gong
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China
- College of Geography Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing, China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing Normal University, Nanjing, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, China
- Institutional Center for Shared Technologies and Facilities of Institute of Subtropical Agriculture, CAS, Changsha, China
| | - Huiyu Liu
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing Normal University, Nanjing, China
- College of Geography Science, Nanjing Normal University, Nanjing, China
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, Nanjing Normal University, Nanjing, China
- State Key Laboratory Cultivation Base of Geographical Environment Evolution (Jiangsu Province), Nanjing Normal University, Nanjing, China
- Key Laboratory of Virtual Geographic Environment (Nanjing Normal University), Ministry of Education, Nanjing, China
| |
Collapse
|
164
|
Kašpar J, Tumajer J, Altman J, Altmanová N, Čada V, Čihák T, Doležal J, Fibich P, Janda P, Kaczka R, Kolář T, Lehejček J, Mašek J, Hellebrandová KN, Rybníček M, Rydval M, Shetti R, Svoboda M, Šenfeldr M, Šamonil P, Vašíčková I, Vejpustková M, Treml V. Major tree species of Central European forests differ in their proportion of positive, negative, and nonstationary growth trends. GLOBAL CHANGE BIOLOGY 2024; 30:e17146. [PMID: 38273515 DOI: 10.1111/gcb.17146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 12/08/2023] [Accepted: 12/15/2023] [Indexed: 01/27/2024]
Abstract
Temperate forests are undergoing significant transformations due to the influence of climate change, including varying responses of different tree species to increasing temperature and drought severity. To comprehensively understand the full range of growth responses, representative datasets spanning extensive site and climatic gradients are essential. This study utilizes tree-ring data from 550 sites from the temperate forests of Czechia to assess growth trends of six dominant Central European tree species (European beech, Norway spruce, Scots pine, silver fir, sessile and pedunculate oak) over 1990-2014. By modeling mean growth series for each species and site, and employing principal component analysis, we identified the predominant growth trends. Over the study period, linear growth trends were evident across most sites (56% increasing, 32% decreasing, and 10% neutral). The proportion of sites with stationary positive trends increased from low toward high elevations, whereas the opposite was true for the stationary negative trends. Notably, within the middle range of their distribution (between 500 and 700 m a.s.l.), Norway spruce and European beech exhibited a mix of positive and negative growth trends. While Scots pine growth trends showed no clear elevation-based pattern, silver fir and oaks displayed consistent positive growth trends regardless of site elevation, indicating resilience to the ongoing warming. We demonstrate divergent growth trajectories across space and among species. These findings are particularly important as recent warming has triggered a gradual shift in the elevation range of optimal growth conditions for most tree species and has also led to a decoupling of growth trends between lowlands and mountain areas. As a result, further future shifts in the elevation range and changes in species diversity of European temperate forests can be expected.
Collapse
Affiliation(s)
- Jakub Kašpar
- Department of Forest Ecology, The Silva Tarouca Research Institute, Brno, Czech Republic
| | - Jan Tumajer
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jan Altman
- Institute of Botany of the Czech Academy of Sciences, Třeboň, Czech Republic
- Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic
| | - Nela Altmanová
- Institute of Botany of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Vojtěch Čada
- Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic
| | - Tomáš Čihák
- Forestry and Game Management Research Institute, Praha, Czech Republic
| | - Jiří Doležal
- Institute of Botany of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Fibich
- Institute of Botany of the Czech Academy of Sciences, Třeboň, Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Pavel Janda
- Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic
| | - Ryszard Kaczka
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Kolář
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- Global Change Research Institute of the Czech Academy of Science, Brno, Czech Republic
| | - Jiří Lehejček
- Department of Environment, Faculty of Environment, University of Jan Evangelista Purkyně, Ústí nad Labem, Czech Republic
| | - Jiří Mašek
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| | | | - Michal Rybníček
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
- Global Change Research Institute of the Czech Academy of Science, Brno, Czech Republic
| | - Miloš Rydval
- Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic
| | - Rohan Shetti
- Department of Environment, Faculty of Environment, University of Jan Evangelista Purkyně, Ústí nad Labem, Czech Republic
| | - Miroslav Svoboda
- Department of Forest Ecology, Czech University of Life Sciences, Prague, Czech Republic
| | - Martin Šenfeldr
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Pavel Šamonil
- Department of Forest Ecology, The Silva Tarouca Research Institute, Brno, Czech Republic
- Faculty of Forestry and Wood Technology, Mendel University in Brno, Brno, Czech Republic
| | - Ivana Vašíčková
- Department of Forest Ecology, The Silva Tarouca Research Institute, Brno, Czech Republic
| | | | - Václav Treml
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Prague, Czech Republic
| |
Collapse
|
165
|
Hou S, Rodrigues O, Liu Z, Shan L, He P. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. MOLECULAR PLANT 2024; 17:26-49. [PMID: 38041402 PMCID: PMC10872522 DOI: 10.1016/j.molp.2023.11.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.
Collapse
Affiliation(s)
- Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse Midi-Pyrénées, INP-PURPAN, 31076 Toulouse, France
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
166
|
Alderotti F, Sillo F, Brilli L, Bussotti F, Centritto M, Ferrini F, Gori A, Inghes R, Pasquini D, Pollastrini M, Saurer M, Cherubini P, Balestrini R, Brunetti C. Quercus ilex L. dieback is genetically determined: Evidence provided by dendrochronology, δ 13C and SSR genotyping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166809. [PMID: 37690750 DOI: 10.1016/j.scitotenv.2023.166809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/20/2023] [Accepted: 09/02/2023] [Indexed: 09/12/2023]
Abstract
Quercus ilex L. dieback has been reported in several Mediterranean forests, revealing different degree of crown damages even in close sites, as observed in two Q. ilex forest stands in southern Tuscany (IT). In this work, we applied a novel approach combining dendrochronological, tree-ring δ13C and genetic analysis to test the hypothesis that different damage levels observed in a declining (D) and non-declining (ND) Q. ilex stands are connected to population features linked to distinct response to drought. Furthermore, we investigated the impact of two major drought events (2012 and 2017), that occurred in the last fifteen years in central Italy, on Q. ilex growth and intrinsic water use efficiency (WUEi). Overall, Q. ilex showed slightly different ring-width patterns between the two stands, suggesting a lower responsiveness to seasonal climatic variations for trees at D stand, while Q. ilex at ND stand showed changes in the relationship between climatic parameters and growth across time. The strong divergence in δ13C signals between the two stands suggested a more conservative use of water for Q. ilex at ND compared to D stand that may be genetically driven. Q. ilex at ND resulted more resilient to drought compared to trees at D, probably thanks to its safer water strategy. Genotyping analysis based on simple-sequence repeat (SSR) markers revealed the presence of different Q. ilex populations at D and ND stands. Our study shows intraspecific variations in drought response among trees grown in close. In addition, it highlights the potential of combining tree-ring δ13C data with SSR genotyping for the selection of seed-bearing genotypes aimed to preserve Mediterranean holm oak ecosystem and improve its forest management.
Collapse
Affiliation(s)
- Francesca Alderotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Fabiano Sillo
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Lorenzo Brilli
- CNR-IBE, National Research Council of Italy (CNR), Institute for the BioEconomy, Via Caproni 8, 50145 Firenze, Italy
| | - Filippo Bussotti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Mauro Centritto
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Francesco Ferrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy; National Biodiversity Future Center (www.nfbc.it), Italy
| | - Antonella Gori
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Roberto Inghes
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Dalila Pasquini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy
| | - Martina Pollastrini
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Biodiversity Future Center (www.nfbc.it), Italy
| | - Matthias Saurer
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland
| | - Paolo Cherubini
- WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Zürcherstrasse 111, CH-8903 Birmensdorf, Switzerland; University of British Columbia, Department of Forest and Conservation Sciences, Vancouver, BC, Canada
| | - Raffaella Balestrini
- National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy
| | - Cecilia Brunetti
- University of Florence, Department of Agriculture, Food, Environment and Forestry, Viale delle idee 30, 50019 Sesto Fiorentino, Piazzale delle Cascine 28, 50144 Florence, Italy; National Research Council of Italy (CNR), Institute for Sustainable Plant Protection, Via Madonna del Piano 10, 50019 Sesto Fiorentino (FI), Italy; Strada delle Cacce 73, 10135, Torino, Italy.
| |
Collapse
|
167
|
Carabajo-Hidalgo A, Sabaté S, Crespo P, Asbjornsen H. Brief windows with more favorable atmospheric conditions explain patterns of Polylepis reticulata tree water use in a high-altitude Andean forest. TREE PHYSIOLOGY 2023; 43:2085-2097. [PMID: 37672256 DOI: 10.1093/treephys/tpad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Revised: 08/16/2023] [Accepted: 09/03/2023] [Indexed: 09/07/2023]
Abstract
Polylepis trees occur throughout the Andean mountain region, and it is the tree genus that grows at the highest elevation worldwide. In the humid Andes where moisture is rarely limiting, Polylepis trees must adapt to extreme environmental conditions, especially rapid fluctuations in temperature, ultraviolet radiation and vapor pressure deficit (VPD). However, Polylepis' water-use patterns remain largely unknown despite the importance of understanding their response to microclimate variation to determine their capacity to maintain resilience under future environmental change. We conducted a study in a Polylepis reticulata Kunth forest in the Ecuadorian Andes to evaluate its tree water-use dynamics and to identify the main environmental drivers of transpiration. Tree sap flow was monitored simultaneously with soil volumetric water content (VWC) and microclimate during 2 years for trees growing in forest edge and interior locations. We found that sap flow was primarily controlled by VPD and that VWC exerted a secondary role in driving sap flow dynamics. The highest values for sap flow rates were found when VPD > 0.15 kPa and VCW < 0.73 cm3 cm-3, but these threshold conditions only occurred during brief periods of time and were only found in 11% of our measurements. Moreover, these brief windows of more favorable conditions occurred more frequently in forest edge compared with forest interior locations, resulting in edge trees maintaining 46% higher sap flow compared with interior trees. Our results also suggest that P. reticulata has a low stomatal control of transpiration, as the sap flow did not decline with increasing VPD. This research provides valuable information about the potential impacts of projected future increases in VPD due to climate change on P. reticulata water-use dynamics, which include higher sap flow rates leading to greater transpirational water loss due to this species' poor stomatal control.
Collapse
Affiliation(s)
- Aldemar Carabajo-Hidalgo
- Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Campus Balzay, Víctor Manuel Albornoz y los Cerezos s/n, Cuenca 010107, Ecuador
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universitat de Barcelona, Av. Diagonal, 643, Barcelona 08028, Spain
| | - Santiago Sabaté
- Departamento de Biología Evolutiva, Ecología y Ciencias Ambientales, Universitat de Barcelona, Av. Diagonal, 643, Barcelona 08028, Spain
- CREAF (Centre de Recerca i Aplicacions Forestals), Campus de Bellaterra (UAB) Edifici C., Cerdanyola del Vallès 08193, Spain
| | - Patricio Crespo
- Departamento de Recursos Hídricos y Ciencias Ambientales, Universidad de Cuenca, Campus Balzay, Víctor Manuel Albornoz y los Cerezos s/n, Cuenca 010107, Ecuador
| | - Heidi Asbjornsen
- Department of Natural Resources and the Environment and Earth Systems Research Center, University of New Hampshire, 114 James Hall, Durham, NH 03824, USA
| |
Collapse
|
168
|
Waite PA, Leuschner C, Delzon S, Triadiati T, Saad A, Schuldt B. Plasticity of wood and leaf traits related to hydraulic efficiency and safety is linked to evaporative demand and not soil moisture in rubber (Hevea brasiliensis). TREE PHYSIOLOGY 2023; 43:2131-2149. [PMID: 37707940 DOI: 10.1093/treephys/tpad113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/15/2023]
Abstract
The predicted increase of drought intensity in South-East Asia has raised concern about the sustainability of rubber (Hevea brasiliensis Müll. Arg.) cultivation. In order to quantify the degree of phenotypic plasticity in this important tree crop species, we analysed a set of wood and leaf traits related to the hydraulic safety and efficiency in PB260 clones from eight small-holder plantations in Jambi province, Indonesia, representing a gradient in local microclimatic and edaphic conditions. Across plots, branch embolism resistance (P50) ranged from -2.14 to -2.58 MPa. The P50 and P88 values declined, and the hydraulic safety margin increased, with an increase in the mean annual vapour pressure deficit (VPD). Among leaf traits, only the changes in specific leaf area were related to the differences in evaporative demand. These variations of hydraulic trait values were not related to soil moisture levels. We did not find a trade-off between hydraulic safety and efficiency, but vessel density (VD) emerged as a major trait associated with both safety and efficiency. The VD, and not vessel diameter, was closely related to P50 and P88 as well as to specific hydraulic conductivity, the lumen-to-sapwood area ratio and the vessel grouping index. In conclusion, our results demonstrate some degree of phenotypic plasticity in wood traits related to hydraulic safety in this tropical tree species, but this is only in response to the local changes in evaporative demand and not soil moisture. Given that VPD may increasingly limit plant growth in a warmer world, our results provide evidence of hydraulic trait changes in response to a rising evaporative demand.
Collapse
Affiliation(s)
- Pierre-André Waite
- Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Straße 7, Tharandt 01737, Germany
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| | - Christoph Leuschner
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| | - Sylvain Delzon
- Department of Biodiversity, Genes, and Communities (BIOGECO), Institut National de Recherche pour Agriculture, Alimentation et Environnement (INRAE), Université Bordeaux, Bat. 2 Allée Geoffroy St-Hilaire, Pessac 33615, France
| | - Triadiati Triadiati
- Department of Biology, Faculty of Mathematics and Natural Sciences, Bogor IPB University, Darmaga Campus, Bogor 16680, Indonesia
| | - Asmadi Saad
- Department of Soil Science, University of Jambi, Jalan Raya Jambi Muara Bulian KM 15 Mandalo Indah, Jambi, Sumatra 36361, Indonesia
| | - Bernhard Schuldt
- Institute of Forest Botany and Forest Zoology, Technical University of Dresden, Pienner Straße 7, Tharandt 01737, Germany
- Plant Ecology, Albrecht von Haller Institute for Plant Sciences, University of Goettingen, Untere Karspüle 2, Goettingen 37073, Germany
| |
Collapse
|
169
|
Han Y, Zhao W, Ding J, Ferreira CSS. Soil erodibility for water and wind erosion and its relationship to vegetation and soil properties in China's drylands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166639. [PMID: 37647966 DOI: 10.1016/j.scitotenv.2023.166639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 08/23/2023] [Accepted: 08/26/2023] [Indexed: 09/01/2023]
Abstract
Drylands with fragile socio-ecological systems are vulnerable to soil erosion. China's drylands face the dual threat of water (WAE) and wind erosion (WIE). To mitigate soil erosion in drylands, China has implemented numerous ecological restoration measures. However, whether vegetation and soil have different effects on soil erodibility for water erosion (soil erodibility, K) and wind erosion (soil erodible fraction, EF) in drylands is unclear, hindering decision makers to develop suitable ecological restoration strategies. Here, we conducted a large-scale belt transect survey to explore the spatial variation of K and EF in China's drylands, and examined the linear and nolinear effects of aridity (aridity index), vegetation (fractional vegetation cover and below-ground biomass), and soil properties (bulk density, total nitrogen, and total phosphorus) on K and EF. The results showed in China's drylands that the K ranges from 0.02 to 0.07, with high values recorded in the northern Loess Plateau and the eastern Inner Mongolia Plateau. The EF ranges from 0.26 to 0.98, and shows longitudinal zonation with higher values in the east and lower values in the west. Aridity has a negative linear effect on K and an inverse U-shaped nonlinear effect on EF. Aridity can affect K and EF by suppressing vegetation growth and disrupting soil properties. However, K and EF had different responses to some vegetation and soil variables. K and EF had opposite relationships with soil bulk density, and EF was significantly affected by fractional vegetation cover, while K was not. Overall, the effects of aridity and soil properties on soil erodibility were more pronounced than those from vegetation, whose effect on soil erodibility was limited. This study provides relevant information to support reducing soil water and wind erosion by highlighting the hotspot areas of soil erodibility, relevant for implementing vegetation restoration and soil conservation measures in drylands.
Collapse
Affiliation(s)
- Yi Han
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Wenwu Zhao
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China.
| | - Jingyi Ding
- State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China; Institute of Land Surface System and Sustainable Development, Faculty of Geographical Science, Beijing Normal University, Beijing 100875, China
| | - Carla Sofia Santos Ferreira
- Department of Physical Geography and Bolin Centre for Climate Research, Stockholm University, Stockholm SE-10691, Sweden; Research Centre for Natural Resources, Environment and Society (CERNAS), Polytechnic Institute of Coimbra, Coimbra Agrarian Technical School, Coimbra, Portugal
| |
Collapse
|
170
|
Das R, Chaturvedi RK, Roy A, Karmakar S, Ghosh S. Warming inhibits increases in vegetation net primary productivity despite greening in India. Sci Rep 2023; 13:21309. [PMID: 38042916 PMCID: PMC10693629 DOI: 10.1038/s41598-023-48614-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023] Open
Abstract
India is the second-highest contributor to the post-2000 global greening. However, with satellite data, here we show that this 18.51% increase in Leaf Area Index (LAI) during 2001-2019 fails to translate into increased carbon uptake due to warming constraints. Our analysis further shows 6.19% decrease in Net Primary Productivity (NPP) during 2001-2019 over the temporally consistent forests in India despite 6.75% increase in LAI. We identify hotspots of statistically significant decreasing trends in NPP over the key forested regions of Northeast India, Peninsular India, and the Western Ghats. Together, these areas contribute to more than 31% of the NPP of India (1274.8 TgC.year-1). These three regions are also the warming hotspots in India. Granger Causality analysis confirms that temperature causes the changes in net-photosynthesis of vegetation. Decreasing photosynthesis and stable respiration, above a threshold temperature, over these regions, as seen in observations, are the key reasons behind the declining NPP. Our analysis shows that warming has already started affecting carbon uptake in Indian forests and calls for improved climate resilient forest management practices in a warming world.
Collapse
Affiliation(s)
- Ripan Das
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Rajiv Kumar Chaturvedi
- Department of Humanities and Social Sciences, Birla Institute of Technology and Science-Goa Campus, Zuarinagar, India
| | - Adrija Roy
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Subhankar Karmakar
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
- Environmental Science and Engineering Department, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India
| | - Subimal Ghosh
- Interdisciplinary Program in Climate Studies, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
- Department of Civil Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400 076, India.
| |
Collapse
|
171
|
Bai Y, Liu M, Guo Q, Wu G, Wang W, Li S. Diverse responses of gross primary production and leaf area index to drought on the Mongolian Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166507. [PMID: 37619736 DOI: 10.1016/j.scitotenv.2023.166507] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Revised: 08/04/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
Drought is a crucial factor regulating vegetation growth on the Mongolian Plateau (MP). Previous studies of drought effects on the MP have mainly concentrated on drought characterization, while the response of vegetation to drought remains unclear. To close this knowledge gap, we examined the response of MP vegetation to drought in terms of gross primary production (GPP) and leaf area index (LAI) from 1982 to 2018. Our findings show that intra-seasonally the frequency of drought occurrence in autumn had a greater impact on GPP (relative importance over 70 %), while the intensity of drought was more influential for LAI (relative importance approximately 60 %). Inter-seasonally, summer droughts had the most pronounced effect on vegetation (with median standardized anomalies of -0.72 for GPP and -0.4 for LAI, respectively). Additionally, we found that meteorological drought was more consistent with atmospheric aridity (high vapor pressure deficit) than soil drought (low soil moisture). This study advances knowledge of vegetation's susceptibility to climate extremes and improves the precision of predicting ecosystem response to climate change.
Collapse
Affiliation(s)
- Yu Bai
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100190, China
| | - Menghang Liu
- University of Chinese Academy of Sciences, Beijing 100190, China; Key Laboratory of Regional Sustainable Development Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Qun Guo
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China
| | - Genan Wu
- Institute of Spacecraft Application System Engineering, China Academy of Space Technology, Beijing 100094, China
| | - Weimin Wang
- Shenzhen Ecological Environmental Monitoring Center of Guangdong Province, Shenzhen 518049, China; Guangdong Greater Bay Area, Change and Comprehensive Treatment of Regional Ecology and Environment, National Observation and Research Station, Shenzhen 523722, China; State Environmental Protection Scientific Observation and Research Station for Ecology and Environment of Rapid Urbanization Region, Shenzhen 518000, China
| | - Shenggong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
172
|
Battisti I, Zambonini D, Ebinezer LB, Trentin AR, Meggio F, Petit G, Masi A. Perfluoroalkyl substances exposure alters stomatal opening and xylem hydraulics in willow plants. CHEMOSPHERE 2023; 344:140380. [PMID: 37813249 DOI: 10.1016/j.chemosphere.2023.140380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Climate change and pollution are increasingly important stress factors for life on Earth. Dispersal of poly- and perfluoroalkyl substances (PFAS) are causing worldwide contamination of soils and water tables. PFAS are partially hydrophobic and can easily bioaccumulate in living organisms, causing metabolic alterations. Different plant species can uptake large amounts of PFAS, but little is known about its consequences for the plant water relation and other physiological processes, especially in woody plants. In this study, we investigated the fractionation of PFAS bioaccumulation from roots to leaves and its effects on the conductive elements of willow plants. Additionally, we focused on the stomal opening and the phytohormonal content. For this purpose, willow cuttings were exposed to a mixture of 11 PFAS compounds and the uptake was evaluated by LC-MS/MS. Stomatal conductance was measured and the xylem vulnerability to air embolism was tested and further, the abscisic acid and salicylic acid contents were quantified using LC-MS/MS. PFAS accumulated from roots to leaves based on their chemical structure. PFAS-exposed plants showed reduced stomatal conductance, while no differences were observed in abscisic acid and salicylic acid contents. Interestingly, PFAS exposure caused a higher vulnerability to drought-induced xylem embolism in treated plants. Our study provides novel information about the PFAS effects on the xylem hydraulics, suggesting that the plant water balance may be affected by PFAS exposure. In this perspective, drought events may be more stressful for PFAS-exposed plants, thus reducing their potential for phytoremediation.
Collapse
Affiliation(s)
- Ilaria Battisti
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy.
| | - Dario Zambonini
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Leonard Barnabas Ebinezer
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Anna Rita Trentin
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Franco Meggio
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Giai Petit
- Department of Land, Environment, Agriculture and Forestry (TESAF), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| | - Antonio Masi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padova, Viale dell'Università 16, Legnaro, PD, Italy
| |
Collapse
|
173
|
Coleman D, Windt CW, Buckley TN, Merchant A. Leaf relative water content at 50% stomatal conductance measured by noninvasive NMR is linked to climate of origin in nine species of eucalypt. PLANT, CELL & ENVIRONMENT 2023; 46:3791-3805. [PMID: 37641435 DOI: 10.1111/pce.14700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 08/07/2023] [Accepted: 08/14/2023] [Indexed: 08/31/2023]
Abstract
Stomata are the gatekeepers of plant water use and must quickly respond to changes in plant water status to ensure plant survival under fluctuating environmental conditions. The mechanism for their closure is highly sensitive to disturbances in leaf water status, which makes isolating their response to declining water content difficult to characterise and to compare responses among species. Using a small-scale non-destructive nuclear magnetic resonance spectrometer as a leaf water content sensor, we measure the stomatal response to rapid induction of water deficit in the leaves of nine species of eucalypt from contrasting climates. We found a strong linear correlation between relative water content at 50% stomatal conductance (RWCgs50 ) and mean annual temperature at the climate of origin of each species. We also show evidence for stomata to maintain control over water loss well below turgor loss point in species adapted to warmer climates and secondary increases in stomatal conductance despite declining water content. We propose that RWCgs50 is a promising trait to guide future investigations comparing stomatal responses to water deficit. It may provide a useful phenotyping trait to delineate tolerance and adaption to hot temperatures and high leaf-to-air vapour pressure deficits.
Collapse
Affiliation(s)
- David Coleman
- School of Life, Earth and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, California, USA
| | - Andrew Merchant
- School of Life, Earth and Environmental Sciences, Faculty of Science, The University of Sydney, Sydney, New South Wales, Australia
- Institute for Bio-Geosciences, Juelich, Germany
| |
Collapse
|
174
|
Preisler Y, Grünzweig JM, Ahiman O, Amer M, Oz I, Feng X, Muller JD, Ruehr N, Rotenberg E, Birami B, Yakir D. Vapour pressure deficit was not a primary limiting factor for gas exchange in an irrigated, mature dryland Aleppo pine forest. PLANT, CELL & ENVIRONMENT 2023; 46:3775-3790. [PMID: 37680062 DOI: 10.1111/pce.14712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/23/2023] [Indexed: 09/09/2023]
Abstract
Climate change is often associated with increasing vapour pressure deficit (VPD) and changes in soil moisture (SM). While atmospheric and soil drying often co-occur, their differential effects on plant functioning and productivity remain uncertain. We investigated the divergent effects and underlying mechanisms of soil and atmospheric drought based on continuous, in situ measurements of branch gas exchange with automated chambers in a mature semiarid Aleppo pine forest. We investigated the response of control trees exposed to combined soil-atmospheric drought (low SM, high VPD) during the rainless Mediterranean summer and that of trees experimentally unconstrained by soil dryness (high SM; using supplementary dry season water supply) but subjected to atmospheric drought (high VPD). During the seasonal dry period, branch conductance (gbr ), transpiration rate (E) and net photosynthesis (Anet ) decreased in low-SM trees but greatly increased in high-SM trees. The response of E and gbr to the massive rise in VPD (to 7 kPa) was negative in low-SM trees and positive in high-SM trees. These observations were consistent with predictions based on a simple plant hydraulic model showing the importance of plant water potential in the gbr and E response to VPD. These results demonstrate that avoiding drought on the supply side (SM) and relying on plant hydraulic regulation constrains the effects of atmospheric drought (VPD) as a stressor on canopy gas exchange in mature pine trees under field conditions.
Collapse
Affiliation(s)
- Yakir Preisler
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - José M Grünzweig
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Ori Ahiman
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
- Institute of Soil, Water and Environmental Sciences, ARO Volcani Center, Beit Dagan, Israel
| | - Madi Amer
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Itai Oz
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Minneapolis, Minnesota, USA
| | - Jonathan D Muller
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
- School for Climate Studies, Stellenbosch University, Stellenbosch, South Africa
| | - Nadine Ruehr
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Eyal Rotenberg
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| | - Benjamin Birami
- Institute of Meteorology and Climate Research-Atmospheric Environmental Research (IMK-IFU), KIT-Campus Alpin, Karlsruhe Institute of Technology (KIT), Garmisch-Partenkirchen, Germany
| | - Dan Yakir
- Department of Earth and Planetary Science, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
175
|
Laughlin DC, Siefert A, Fleri JR, Tumber-Dávila SJ, Hammond WM, Sabatini FM, Damasceno G, Aubin I, Field R, Hatim MZ, Jansen S, Lenoir J, Lens F, McCarthy JK, Niinemets Ü, Phillips OL, Attorre F, Bergeron Y, Bruun HH, Byun C, Ćušterevska R, Dengler J, De Sanctis M, Dolezal J, Jiménez-Alfaro B, Hérault B, Homeier J, Kattge J, Meir P, Mencuccini M, Noroozi J, Nowak A, Peñuelas J, Schmidt M, Škvorc Ž, Sultana F, Ugarte RM, Bruelheide H. Rooting depth and xylem vulnerability are independent woody plant traits jointly selected by aridity, seasonality, and water table depth. THE NEW PHYTOLOGIST 2023; 240:1774-1787. [PMID: 37743552 DOI: 10.1111/nph.19276] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 08/29/2023] [Indexed: 09/26/2023]
Abstract
Evolutionary radiations of woody taxa within arid environments were made possible by multiple trait innovations including deep roots and embolism-resistant xylem, but little is known about how these traits have coevolved across the phylogeny of woody plants or how they jointly influence the distribution of species. We synthesized global trait and vegetation plot datasets to examine how rooting depth and xylem vulnerability across 188 woody plant species interact with aridity, precipitation seasonality, and water table depth to influence species occurrence probabilities across all biomes. Xylem resistance to embolism and rooting depth are independent woody plant traits that do not exhibit an interspecific trade-off. Resistant xylem and deep roots increase occurrence probabilities in arid, seasonal climates over deep water tables. Resistant xylem and shallow roots increase occurrence probabilities in arid, nonseasonal climates over deep water tables. Vulnerable xylem and deep roots increase occurrence probabilities in arid, nonseasonal climates over shallow water tables. Lastly, vulnerable xylem and shallow roots increase occurrence probabilities in humid climates. Each combination of trait values optimizes occurrence probabilities in unique environmental conditions. Responses of deeply rooted vegetation may be buffered if evaporative demand changes faster than water table depth under climate change.
Collapse
Affiliation(s)
- Daniel C Laughlin
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Andrew Siefert
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | - Jesse R Fleri
- Department of Botany, University of Wyoming, Laramie, WY, 82071, USA
| | | | - William M Hammond
- Agronomy Department, University of Florida, Gainesville, FL, 32611, USA
| | - Francesco Maria Sabatini
- BIOME Lab, Department of Biological, Geological and Environmental Sciences (BiGeA), Alma Mater Studiorum University of Bologna, Via Irnerio 42, 40126, Bologna, Italy
- Faculty of Forestry and Wood Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 165 21, Praha 6, Suchdol, Czech Republic
| | - Gabriella Damasceno
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology and Geobotany and Botanical Garden, Martin-Luther University, Halle-Wittenberg, Halle, 06108, Germany
| | - Isabelle Aubin
- Great Lakes Forestry Centre, Canadian Forest Service, Natural Resources Canada, Sault Ste. Marie, Ontario, P6A 2E5, Canada
| | - Richard Field
- School of Geography, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | - Mohamed Z Hatim
- Plant Ecology and Nature Conservation Group, Environmental Sciences Department, Wageningen University and Research, 6700 AA, Wageningen, the Netherlands
- Botany and Microbiology Department, Tanta University, Tanta, 3527, Egypt
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, 89081, Germany
| | - Jonathan Lenoir
- UMR CNRS 7058, Ecologie et Dynamique des Systèmes Anthropisés (EDYSAN), Université de Picardie Jules Verne, 80000, Amiens, France
| | - Frederic Lens
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, the Netherlands
- Plant Sciences, Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, the Netherlands
| | | | - Ülo Niinemets
- Crop Science and Plant Biology, Estonian University of Life Sciences, Tartu, 51006, Estonia
| | | | - Fabio Attorre
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
| | - Yves Bergeron
- Institut de recherche sur les forêts Université du Québec en Abitibi-Témiscamingue, 445 boul. de l'université, Rouyn-Noranda, Québec, J9X5E4, Canada
| | - Hans Henrik Bruun
- Department of Biology, University of Copenhagen, 2100, Copenhagen Ø, Denmark
| | - Chaeho Byun
- Department of Biological Science, Andong National University, Andong-si, 36729, South Korea
| | - Renata Ćušterevska
- Institute of Biology, Faculty of Natural Sciences and Mathematics, Ss. Cyril and Methodius University, 1000, Skopje, North Macedonia
| | - Jürgen Dengler
- Vegetation Ecology Research Group, Institute of Natural Resource Sciences (IUNR), Zurich University of Applied Sciences (ZHAW), 8820, Wädenswil, Switzerland
- Plant Ecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95447, Bayreuth, Germany
| | - Michele De Sanctis
- Department of Environmental Biology, Sapienza University of Rome, Rome, 00185, Italy
| | - Jiri Dolezal
- Department of Functional Ecology, Institute of Botany, Czech Academy of Sciences, Trebon, Czech Republic
- Department of Botany, Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
| | - Borja Jiménez-Alfaro
- Biodiversity Research Institute (Univ. Oviedo-CSIC-Princ. Asturias), Mieres, Asturias, Spain
| | - Bruno Hérault
- CIRAD, UPR Forêts et Sociétés, F-34398, Montpellier, France
- Forêts et Sociétés, Univ Montpellier, CIRAD, Montpellier, France
| | - Jürgen Homeier
- Plant Ecology and Ecosystems Research, University of Goettingen, 37073, Goettingen, Germany
- Resource Management, HAWK University of Applied Sciences and Arts, 37077, Goettingen, Germany
| | - Jens Kattge
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Patrick Meir
- School of Geosciences, University of Edinburgh, Edinburgh, UK
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Maurizio Mencuccini
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
- ICREA, 08010, Barcelona, Spain
| | - Jalil Noroozi
- Department of Botany and Biodiversity Research, Universitiy of Vienna, 1030, Vienna, Austria
| | - Arkadiusz Nowak
- Botanical Garden, Polish Academy of Sciences, Warsaw, Poland
- Department of Botany and Nature Protection, University of Warmia and Mazury, Olsztyn, Poland
| | - Josep Peñuelas
- CREAF, Cerdanyola del Vallès, 08193, Barcelona, Catalonia, Spain
- Global Ecology Unit CREAF-CSIC-UAB, CSIC, Bellaterra, 08193, Barcelona, Catalonia, Spain
| | - Marco Schmidt
- Palmengarten der Stadt Frankfurt am Main, 60323, Frankfurt am Main, Germany
| | - Željko Škvorc
- Faculty of Forestry and Wood Technology, University of Zagreb, 10000, Zagreb, Croatia
| | - Fahmida Sultana
- Department of Forestry and Environmental Science, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Rosina Magaña Ugarte
- Botany Unit, Department of Pharmacology, Pharmacognosy and Botany, Faculty of Pharmacy, Universidad Complutense de Madrid, Madrid, Spain
| | - Helge Bruelheide
- German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, 04103, Germany
- Institute of Biology and Geobotany and Botanical Garden, Martin-Luther University, Halle-Wittenberg, Halle, 06108, Germany
| |
Collapse
|
176
|
Chen N, Zhang Y, Yuan F, Song C, Xu M, Wang Q, Hao G, Bao T, Zuo Y, Liu J, Zhang T, Song Y, Sun L, Guo Y, Zhang H, Ma G, Du Y, Xu X, Wang X. Warming-induced vapor pressure deficit suppression of vegetation growth diminished in northern peatlands. Nat Commun 2023; 14:7885. [PMID: 38036495 PMCID: PMC10689446 DOI: 10.1038/s41467-023-42932-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Recent studies have reported worldwide vegetation suppression in response to increasing atmospheric vapor pressure deficit (VPD). Here, we integrate multisource datasets to show that increasing VPD caused by warming alone does not suppress vegetation growth in northern peatlands. A site-level manipulation experiment and a multiple-site synthesis find a neutral impact of rising VPD on vegetation growth; regional analysis manifests a strong declining gradient of VPD suppression impacts from sparsely distributed peatland to densely distributed peatland. The major mechanism adopted by plants in response to rising VPD is the "open" water-use strategy, where stomatal regulation is relaxed to maximize carbon uptake. These unique surface characteristics evolve in the wet soil‒air environment in the northern peatlands. The neutral VPD impacts observed in northern peatlands contrast with the vegetation suppression reported in global nonpeatland areas under rising VPD caused by concurrent warming and decreasing relative humidity, suggesting model improvement for representing VPD impacts in northern peatlands remains necessary.
Collapse
Affiliation(s)
- Ning Chen
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China
| | - Yifei Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| | - Fenghui Yuan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
- Department of Soil, Water, and Climate, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China.
- School of Hydraulic Engineering, Dalian University of Technology, 116024, Dalian, China.
| | - Mingjie Xu
- College of Agronomy, Shenyang Agricultural University, 110866, Shenyang, China
| | - Qingwei Wang
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China
| | - Guangyou Hao
- CAS Key Laboratory of Forest Ecology and Management, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, Shenyang, China
| | - Tao Bao
- Key Laboratory of Regional Climate-Environment for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
| | - Yunjiang Zuo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| | - Jianzhao Liu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
- College of Surveying and Exploration Engineering, Jilin Jianzhu University, 130018, Changchun, China
| | - Tao Zhang
- College of Agronomy, Shenyang Agricultural University, 110866, Shenyang, China
| | - Yanyu Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| | - Li Sun
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| | - Yuedong Guo
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| | - Hao Zhang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| | - Guobao Ma
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| | - Yu Du
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China
| | - Xiaofeng Xu
- Biology Department, San Diego State University, San Diego, 92182, USA.
| | - Xianwei Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, 130102, Changchun, China.
| |
Collapse
|
177
|
Burkhardt J, Zinsmeister D, Roth-Nebelsick A, Hüging H, Pariyar S. Ambient aerosols increase stomatal transpiration and conductance of hydroponic sunflowers by extending the hydraulic system to the leaf surface. FRONTIERS IN PLANT SCIENCE 2023; 14:1275358. [PMID: 38098798 PMCID: PMC10720890 DOI: 10.3389/fpls.2023.1275358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/06/2023] [Indexed: 12/17/2023]
Abstract
Introduction Many atmospheric aerosols are hygroscopic and play an important role in cloud formation. Similarly, aerosols become sites of micro-condensation when they deposit to the upper and lower surfaces of leaves. Deposited salts, in particular can trigger condensation at humidities considerably below atmospheric saturation, according to their hygroscopicity and the relative humidity within the leaf boundary layer. Salt induced water potential gradients and the resulting dynamics of concentrated salt solutions can be expected to affect plant water relations. Methods Hydroponic sunflowers were grown in filtered (FA) and unfiltered, ambient air (AA). Sap flow was measured for 18 days and several indicators of incipient drought stress were studied. Results At 2% difference in mean vapor pressure deficit (D), AA sunflowers had 49% higher mean transpiration rates, lower osmotic potential, higher proline concentrations, and different tracer transport patterns in the leaf compared to FA sunflowers. Aerosols increased plant conductance particularly at low D. Discussion The proposed mechanism is that thin aqueous films of salt solutions from deliquescent deposited aerosols enter into stomata and cause an extension of the hydraulic system. This hydraulic connection leads - parallel to stomatal water vapor transpiration - to wick-like stomatal loss of liquid water and to a higher impact of D on plant water loss. Due to ample water supply by hydroponic cultivation, AA plants thrived as well as FA plants, but under more challenging conditions, aerosol deposits may make plants more susceptible to drought stress.
Collapse
Affiliation(s)
- Juergen Burkhardt
- Institute of Crop Science and Resource Conservation, Plant Nutrition Group, University of Bonn, Bonn, Germany
| | - Daniel Zinsmeister
- Institute of Crop Science and Resource Conservation, Plant Nutrition Group, University of Bonn, Bonn, Germany
| | - Anita Roth-Nebelsick
- Department Palaeontology, State Museum of Natural History Stuttgart, Stuttgart, Germany
| | - Hubert Hüging
- Institute of Crop Science and Resource Conservation, Crop Science Group, University of Bonn, Bonn, Germany
| | - Shyam Pariyar
- Institute of Crop Science and Resource Conservation, Plant Nutrition Group, University of Bonn, Bonn, Germany
| |
Collapse
|
178
|
Guiquan S, Jiali F, Shuai G, Wenya H, Xiangkun K, Sheng Z, Yueling Z, Xuelian J. Geographic distribution and impacts of climate change on the suitable habitats of Rhamnus utilis Decne in China. BMC PLANT BIOLOGY 2023; 23:592. [PMID: 38008724 PMCID: PMC10680213 DOI: 10.1186/s12870-023-04574-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/30/2023] [Indexed: 11/28/2023]
Abstract
BACKGROUND Rhamnus utilis Decne (Rhamnaceae) is an ecologically and economically important tree species. The growing market demands and recent anthropogenic impacts to R. utilis forests has negatively impacted its populations severely. However, little is known about the potential distribution of this species and environmental factors that affect habitat suitability for this species. By using 219 occurrence records along with 51 environmental factors, present and future suitable habitats were estimated for R. utilis using Maxent modeling; the important environmental factors affecting its distribution were analyzed. RESULTS January water vapor pressure, normalized difference vegetation index, mean diurnal range, and precipitation of the warmest quarter represented the critical factors explaining the environmental requirements of R. utilis. The potential habitat of R. utilis included most provinces from central to southeast China. Under the climate change scenario SSP 245, Maxent predicted a cumulative loss of ca. 0.73 × 105 km2 in suitable habitat for R. utilis during 2041-2060 while an increase of ca. 0.65 × 105 km2 occurred during 2081-2100. Furthermore, under this climate change scenario, the suitable habitat will geographically expand to higher elevations. CONCLUSIONS The findings of our study provide a foundation for targeted conservation efforts and inform future research on R. utilis. By considering the identified environmental factors and anticipating the potential impacts of climate change, conservation strategies can be developed to preserve and restore suitable habitats for R. utilis. Protecting this species is not only crucial for maintaining biodiversity but also for sustaining the economic benefits associated with its ecological services.
Collapse
Affiliation(s)
- Song Guiquan
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China
| | - Feng Jiali
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China
| | - Gong Shuai
- Sinochem Agriculture Holdings Co. Ltd, Beijing, 1000323, China
| | - Hao Wenya
- Sinochem Agriculture Holdings Co. Ltd, Beijing, 1000323, China
| | - Kong Xiangkun
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China
| | - Zhao Sheng
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China
| | - Zhao Yueling
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China
| | - Jiang Xuelian
- Weifang Municipal Key Laboratory of Agricultural Planting Quantization and Application, Weifang University, Weifang, Shandong, 261061, China.
| |
Collapse
|
179
|
Mok D, Leung A, Searles P, Sage TL, Sage RF. CAM photosynthesis in Bulnesia retama (Zygophyllaceae), a non-succulent desert shrub from South America. ANNALS OF BOTANY 2023; 132:655-670. [PMID: 37625031 PMCID: PMC10799978 DOI: 10.1093/aob/mcad114] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 07/19/2023] [Accepted: 08/23/2023] [Indexed: 08/27/2023]
Abstract
BACKGROUND AND AIMS Bulnesia retama is a drought-deciduous, xerophytic shrub from arid landscapes of South America. In a survey of carbon isotope ratios (δ13C) in specimens from the field, B. retama exhibited less negative values, indicative of CAM or C4 photosynthesis. Here, we investigate whether B. retama is a C4 or CAM plant. METHODS Gas-exchange responses to intercellular CO2, diurnal gas-exchange profiles, δ13C and dawn vs. afternoon titratable acidity were measured on leaves and stems of watered and droughted B. retama plants. Leaf and stem cross-sections were imaged to determine whether the tissues exhibited succulent CAM or C4 Kranz anatomy. KEY RESULTS Field-collected stems and fruits of B. retama exhibited δ13C between -16 and -19 ‰. Plants grown in a glasshouse from field-collected seeds had leaf δ13C values near -31 ‰ and stem δ13C values near -28 ‰. The CO2 response of photosynthesis showed that leaves and stems used C3 photosynthesis during the day, while curvature in the nocturnal response of net CO2 assimilation rate (A) in all stems, coupled with slightly positive rates of A at night, indicated modest CAM function. C4 photosynthesis was absent. Succulence was absent in all tissues, although stems exhibited tight packing of the cortical chlorenchyma in a CAM-like manner. Tissue titratable acidity increased at night in droughted stems. CONCLUSIONS Bulnesia retama is a weak to modest C3 + CAM plant. This is the first report of CAM in the Zygophyllaceae and the first showing that non-succulent, xerophytic shrubs use CAM. CAM alone in B. retama was too limited to explain less negative δ13C in field-collected plants, but combined with effects of low stomatal and mesophyll conductance it could raise δ13C to observed values between -16 and -19 ‰. Modest CAM activity, particularly during severe drought, could enable B. retama to persist in arid habitats of South America.
Collapse
Affiliation(s)
- Daniel Mok
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario M5R3C6, Canada
| | - Arthur Leung
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario M5R3C6, Canada
| | - Peter Searles
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR-CONICET), Entre Ríos y Mendoza s/n, Anillaco (5301), La Rioja, Argentina
| | - Tammy L Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario M5R3C6, Canada
| | - Rowan F Sage
- Department of Ecology and Evolutionary Biology, University of Toronto, 25 Wilcocks Street, Toronto, Ontario M5R3C6, Canada
| |
Collapse
|
180
|
Tumajer J, Braun S, Burger A, Scharnweber T, Smiljanic M, Walthert L, Zweifel R, Wilmking M. Dendrometers challenge the 'moon wood concept' by elucidating the absence of lunar cycles in tree stem radius oscillation. Sci Rep 2023; 13:19904. [PMID: 37963987 PMCID: PMC10645754 DOI: 10.1038/s41598-023-47013-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 11/08/2023] [Indexed: 11/16/2023] Open
Abstract
Wood is a sustainable natural resource and an important global commodity. According to the 'moon wood theory', the properties of wood, including its growth and water content, are believed to oscillate with the lunar cycle. Despite contradicting our current understanding of plant functioning, this theory is commonly exploited for marketing wooden products. To examine the moon wood theory, we applied a wavelet power transformation to series of 2,000,000 hourly stem radius records from dendrometers. We separated the influence of 74 consecutive lunar cycles and meteorological conditions on the stem variation of 62 trees and six species. We show that the dynamics of stem radius consist of overlapping oscillations with periods of 1 day, 6 months, and 1 year. These oscillations in stem dimensions were tightly coupled to oscillations in the series of air temperature and vapour pressure deficit. By contrast, we revealed no imprint of the lunar cycle on the stem radius variation of any species. We call for scepticism towards the moon wood theory, at least as far as the stem water content and radial growth are concerned. We foresee that similar studies employing robust scientific approaches will be increasingly needed in the future to cope with misleading concepts.
Collapse
Affiliation(s)
- Jan Tumajer
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17487, Greifswald, Germany.
- Department of Physical Geography and Geoecology, Faculty of Science, Charles University, Albertov 6, 12843, Prague, Czech Republic.
| | - Sabine Braun
- Institute for Applied Plant Biology AG, Benkenstrasse 254a, 4108, Witterswil, Switzerland
| | - Andreas Burger
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17487, Greifswald, Germany
| | - Tobias Scharnweber
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17487, Greifswald, Germany
| | - Marko Smiljanic
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17487, Greifswald, Germany
| | - Lorenz Walthert
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Roman Zweifel
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903, Birmensdorf, Switzerland
| | - Martin Wilmking
- Institute of Botany and Landscape Ecology, University of Greifswald, Soldmannstraße 15, 17487, Greifswald, Germany
| |
Collapse
|
181
|
Lloyd MK, Stein RA, Ibarra DE, Barclay RS, Wing SL, Stahle DW, Dawson TE, Stolper DA. Isotopic clumping in wood as a proxy for photorespiration in trees. Proc Natl Acad Sci U S A 2023; 120:e2306736120. [PMID: 37931112 PMCID: PMC10655223 DOI: 10.1073/pnas.2306736120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/22/2023] [Indexed: 11/08/2023] Open
Abstract
Photorespiration can limit gross primary productivity in terrestrial plants. The rate of photorespiration relative to carbon fixation increases with temperature and decreases with atmospheric [CO2]. However, the extent to which this rate varies in the environment is unclear. Here, we introduce a proxy for relative photorespiration rate based on the clumped isotopic composition of methoxyl groups (R-O-CH3) in wood. Most methoxyl C-H bonds are formed either during photorespiration or the Calvin cycle and thus their isotopic composition may be sensitive to the mixing ratio of these pathways. In water-replete growing conditions, we find that the abundance of the clumped isotopologue 13CH2D correlates with temperature (18-28 °C) and atmospheric [CO2] (280-1000 ppm), consistent with a common dependence on relative photorespiration rate. When applied to a global dataset of wood, we observe global trends of isotopic clumping with climate and water availability. Clumped isotopic compositions are similar across environments with temperatures below ~18 °C. Above ~18 °C, clumped isotopic compositions in water-limited and water-replete trees increasingly diverge. We propose that trees from hotter climates photorespire substantially more than trees from cooler climates. How increased photorespiration is managed depends on water availability: water-replete trees export more photorespiratory metabolites to lignin whereas water-limited trees either export fewer overall or direct more to other sinks that mitigate water stress. These disparate trends indicate contrasting responses of photorespiration rate (and thus gross primary productivity) to a future high-[CO2] world. This work enables reconstructing photorespiration rates in the geologic past using fossil wood.
Collapse
Affiliation(s)
- Max K. Lloyd
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
- Department of Geosciences, The Pennsylvania State University, University Park, PA16802
| | - Rebekah A. Stein
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
- Department of Chemistry and Physical Sciences, Quinnipiac University, Hamden, CT06518
| | - Daniel E. Ibarra
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
- Department of Earth, Environmental, and Planetary Sciences, Brown University, Providence, RI02912
| | - Richard S. Barclay
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | - Scott L. Wing
- Department of Paleobiology, National Museum of Natural History, Smithsonian Institution, Washington, DC20560
| | - David W. Stahle
- Department of Geosciences, University of Arkansas, Fayetteville, AR72701
| | - Todd E. Dawson
- Department of Integrative Biology, University of California, Berkeley, CA94720
| | - Daniel A. Stolper
- Department of Earth and Planetary Science, University of California, Berkeley, CA94720
| |
Collapse
|
182
|
Liu M, Zhou Y, Sun J, Mao F, Yao Q, Li B, Wang Y, Gao Y, Dong X, Liao S, Wang P, Huang S. From the floret to the canopy: High temperature tolerance during flowering. PLANT COMMUNICATIONS 2023; 4:100629. [PMID: 37226443 PMCID: PMC10721465 DOI: 10.1016/j.xplc.2023.100629] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/29/2023] [Accepted: 05/22/2023] [Indexed: 05/26/2023]
Abstract
Heat waves induced by climate warming have become common in food-producing regions worldwide, frequently coinciding with high temperature (HT)-sensitive stages of many crops and thus threatening global food security. Understanding the HT sensitivity of reproductive organs is currently of great interest for increasing seed set. The responses of seed set to HT involve multiple processes in both male and female reproductive organs, but we currently lack an integrated and systematic summary of these responses for the world's three leading food crops (rice, wheat, and maize). In the present work, we define the critical high temperature thresholds for seed set in rice (37.2°C ± 0.2°C), wheat (27.3°C ± 0.5°C), and maize (37.9°C ± 0.4°C) during flowering. We assess the HT sensitivity of these three cereals from the microspore stage to the lag period, including effects of HT on flowering dynamics, floret growth and development, pollination, and fertilization. Our review synthesizes existing knowledge about the effects of HT stress on spikelet opening, anther dehiscence, pollen shedding number, pollen viability, pistil and stigma function, pollen germination on the stigma, and pollen tube elongation. HT-induced spikelet closure and arrest of pollen tube elongation have a catastrophic effect on pollination and fertilization in maize. Rice benefits from pollination under HT stress owing to bottom anther dehiscence and cleistogamy. Cleistogamy and secondary spikelet opening increase the probability of pollination success in wheat under HT stress. However, cereal crops themselves also have protective measures under HT stress. Lower canopy/tissue temperatures compared with air temperatures indicate that cereal crops, especially rice, can partly protect themselves from heat damage. In maize, husk leaves reduce inner ear temperature by about 5°C compared with outer ear temperature, thereby protecting the later phases of pollen tube growth and fertilization processes. These findings have important implications for accurate modeling, optimized crop management, and breeding of new varieties to cope with HT stress in the most important staple crops.
Collapse
Affiliation(s)
- Mayang Liu
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuhan Zhou
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jiaxin Sun
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Fen Mao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Baole Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Yuanyuan Wang
- College of Agronomy, South China Agricultural University, Guangdong, China
| | - Yingbo Gao
- Shandong Academy of Agricultural Sciences, Jinan, China
| | - Xin Dong
- Chongqing Academy of Agricultural Sciences, Chongqing, China
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
183
|
Bourbia I, Lucani C, Carins-Murphy MR, Gracie A, Brodribb TJ. In situ characterisation of whole-plant stomatal responses to VPD using leaf optical dendrometry. PLANT, CELL & ENVIRONMENT 2023; 46:3273-3286. [PMID: 37488973 DOI: 10.1111/pce.14658] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/12/2023] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Vapour pressure deficit (VPD) plays a crucial role in regulating plant carbon and water fluxes due to its influence on stomatal behaviour and transpiration. Yet, characterising stomatal responses of the whole plant to VPD remains challenging due to methodological limitations. Here, we develop a novel method for in situ assessment of whole-plant stomatal responses (gc ) to VPD in the herbaceous plant Tanacetum cinerariifolium. To do this, we examine the relationship between daytime VPD and the corresponding soil-stem water potential gradient (ΔΨ) monitored using the optical dendrometry in well-hydrated plants under nonlimiting light in both glasshouse and field conditions. In glasshouse plants, ΔΨ increased proportionally with the VPD up to a threshold of 1.53 kPa, beyond which the slope decreased, suggesting a two-phase response in gc . This pattern aligned with corresponding gravimetrically measured gc behaviour, which also showed a decline when VPD exceeded a similar threshold. This response was then compared with that of field plants monitored using the optical dendrometry technique over a growing season under naturally variable VPD conditions and nonlimiting light and water supply. Field plants exhibited a similar threshold-type response to VPD but were more sensitive than glasshouse individuals with a VPD threshold of 0.74 kPa. The results showed that whole-plant gc responses to VPD can be characterised optically in T. cinerariifolium, introducing a new tool for the monitoring and characterisation of stomatal behaviour in situ.
Collapse
Affiliation(s)
- Ibrahim Bourbia
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Christopher Lucani
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | | | - Alistair Gracie
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| | - Timothy J Brodribb
- School of Natural Sciences, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
184
|
Binks O, Cernusak LA, Liddell M, Bradford M, Coughlin I, Bryant C, Palma AC, Hoffmann L, Alam I, Carle HJ, Rowland L, Oliveira RS, Laurance SGW, Mencuccini M, Meir P. Vapour pressure deficit modulates hydraulic function and structure of tropical rainforests under nonlimiting soil water supply. THE NEW PHYTOLOGIST 2023; 240:1405-1420. [PMID: 37705460 DOI: 10.1111/nph.19257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Atmospheric conditions are expected to become warmer and drier in the future, but little is known about how evaporative demand influences forest structure and function independently from soil moisture availability, and how fast-response variables (such as canopy water potential and stomatal conductance) may mediate longer-term changes in forest structure and function in response to climate change. We used two tropical rainforest sites with different temperatures and vapour pressure deficits (VPD), but nonlimiting soil water supply, to assess the impact of evaporative demand on ecophysiological function and forest structure. Common species between sites allowed us to test the extent to which species composition, relative abundance and intraspecific variability contributed to site-level differences. The highest VPD site had lower midday canopy water potentials, canopy conductance (gc ), annual transpiration, forest stature, and biomass, while the transpiration rate was less sensitive to changes in VPD; it also had different height-diameter allometry (accounting for 51% of the difference in biomass between sites) and higher plot-level wood density. Our findings suggest that increases in VPD, even in the absence of soil water limitation, influence fast-response variables, such as canopy water potentials and gc , potentially leading to longer-term changes in forest stature resulting in reductions in biomass.
Collapse
Affiliation(s)
- Oliver Binks
- CREAF, Cerdanyola del Vallès, Barcelona, 08193, Spain
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Lucas A Cernusak
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Michael Liddell
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Matt Bradford
- CSIRO Land and Water, Atherton, 4883, Qld, Australia
| | - Ingrid Coughlin
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Callum Bryant
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Ana C Palma
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Luke Hoffmann
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Iftakharul Alam
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | - Hannah J Carle
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
| | - Lucy Rowland
- Geography, Faculty of Environment Science and Economy, University of Exeter, Laver Building, Exeter, EX4 4QE, UK
| | - Rafael S Oliveira
- Departamento de Biologia Vegetal, Instituto de Biologia, Universidade Estadual de Campinas (UNICAMP), Campinas, 13083-970, SP, Brazil
| | - Susan G W Laurance
- Centre for Tropical Environmental and Sustainability Science, College of Science and Engineering, James Cook University, Cairns, 4878, Qld, Australia
| | | | - Patrick Meir
- Research School of Biology, The Australian National University, Canberra, 2601, ACT, Australia
- School of Geosciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| |
Collapse
|
185
|
Marchin RM, Medlyn BE, Tjoelker MG, Ellsworth DS. Decoupling between stomatal conductance and photosynthesis occurs under extreme heat in broadleaf tree species regardless of water access. GLOBAL CHANGE BIOLOGY 2023; 29:6319-6335. [PMID: 37698501 DOI: 10.1111/gcb.16929] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 08/09/2023] [Indexed: 09/13/2023]
Abstract
High air temperatures increase atmospheric vapor pressure deficit (VPD) and the severity of drought, threatening forests worldwide. Plants regulate stomata to maximize carbon gain and minimize water loss, resulting in a close coupling between net photosynthesis (Anet ) and stomatal conductance (gs ). However, evidence for decoupling of gs from Anet under extreme heat has been found. Such a response both enhances survival of leaves during heat events but also quickly depletes available water. To understand the prevalence and significance of this decoupling, we measured leaf gas exchange in 26 tree and shrub species growing in the glasshouse or at an urban site in Sydney, Australia on hot days (maximum Tair > 40°C). We hypothesized that on hot days plants with ample water access would exhibit reduced Anet and use transpirational cooling leading to stomatal decoupling, whereas plants with limited water access would rely on other mechanisms to avoid lethal temperatures. Instead, evidence for stomatal decoupling was found regardless of plant water access. Transpiration of well-watered plants was 23% higher than model predictions during heatwaves, which effectively cooled leaves below air temperature. For hotter, droughted plants, the increase in transpiration during heatwaves was even more pronounced-gs was 77% higher than model predictions. Stomatal decoupling was found for most broadleaf evergreen and broadleaf deciduous species at the urban site, including some wilted trees with limited water access. Decoupling may simply be a passive consequence of the physical effects of high temperature on plant leaves through increased cuticular conductance of water vapor, or stomatal decoupling may be an adaptive response that is actively regulated by stomatal opening under high temperatures. This temperature response is not yet included in any land surface model, suggesting that model predictions of evapotranspiration may be underpredicted at high temperature and high VPD.
Collapse
Affiliation(s)
- Renée M Marchin
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Belinda E Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - Mark G Tjoelker
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| | - David S Ellsworth
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, New South Wales, Australia
| |
Collapse
|
186
|
Mirabel A, Girardin MP, Metsaranta J, Way D, Reich PB. Increasing atmospheric dryness reduces boreal forest tree growth. Nat Commun 2023; 14:6901. [PMID: 37903759 PMCID: PMC10616230 DOI: 10.1038/s41467-023-42466-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
Rising atmospheric vapour pressure deficit (VPD) associated with climate change affects boreal forest growth via stomatal closure and soil dryness. However, the relationship between VPD and forest growth depends on the climatic context. Here we assess Canadian boreal forest responses to VPD changes from 1951-2018 using a well-replicated tree-growth increment network with approximately 5,000 species-site combinations. Of the 3,559 successful growth models, we observed a relationship between growth and concurrent summer VPD in one-third of the species-site combinations, and between growth and prior summer VPD in almost half of those combinations. The relationship between previous year VPD and current year growth was almost exclusively negative, while current year VPD also tended to reduce growth. Tree species, age, annual temperature, and soil moisture primarily determined tree VPD responses. Younger trees and species like white spruce and Douglas fir exhibited higher VPD sensitivity, as did areas with high annual temperature and low soil moisture. Since 1951, summer VPD increases in Canada have paralleled tree growth decreases, particularly in spruce species. Accelerating atmospheric dryness in the decades ahead will impair carbon storage and societal-economic services.
Collapse
Affiliation(s)
- Ariane Mirabel
- Department of Biology, University of Western Ontario, London, Ontario, Canada.
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada.
- UMR DECOD (Ecosystem Dynamics and Sustainability), Institut Agro, IFREMER, INRAE, Rennes, France.
| | - Martin P Girardin
- Natural Resources Canada, Canadian Forest Service, Laurentian Forestry Centre, Quebec City, QC, Canada.
| | - Juha Metsaranta
- Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre, Edmonton, AB, Canada
| | - Danielle Way
- Department of Biology, University of Western Ontario, London, Ontario, Canada
- Research School of Biology, The Australian National University, Acton, ACT, 2601, Australia
- Environmental & Climate Sciences Department, Brookhaven National Laboratory, Upton, New York, USA
- Nicholas School of the Environment, Duke University, Durham, NC, USA
| | - Peter B Reich
- Department of Forest Resources, University of Minnesota, St. Paul, MN, 55108, USA
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, 2753, Australia
- Institute for Global Change Biology, and School for the Environment and Sustainability, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
187
|
Ping J, Cui E, Du Y, Wei N, Zhou J, Wang J, Niu S, Luo Y, Xia J. Enhanced causal effect of ecosystem photosynthesis on respiration during heatwaves. SCIENCE ADVANCES 2023; 9:eadi6395. [PMID: 37878695 PMCID: PMC10599625 DOI: 10.1126/sciadv.adi6395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 09/21/2023] [Indexed: 10/27/2023]
Abstract
Because of global warming, Earth's ecosystems have been experiencing more frequent and severe heatwaves. Heatwaves are expected to tip terrestrial carbon sequestration by elevating ecosystem respiration and suppressing gross primary productivity (GPP). Here, using the convergent cross-mapping technique, this study detected positive bidirectional causal effects between GPP and respiration in two unprecedented European heatwaves. Heatwaves enhanced the causal effect strength of GPP on respiration rather than respiration on GPP across 40 site-years of observations. Further analyses and global simulations revealed spatial heterogeneity in the heatwave response of the causal link strength between GPP and respiration, which was jointly driven by the local climate and vegetation properties. However, the causal effect strength of GPP on respiration showed considerable uncertainties in CMIP6 models. This study reveals an enhanced causal link strength between GPP and respiration during heatwaves, shedding light on improving projections for terrestrial carbon sink dynamics under future climate extremes.
Collapse
Affiliation(s)
- Jiaye Ping
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Research Center for Global Change and Complex Ecosystems, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Erqian Cui
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Research Center for Global Change and Complex Ecosystems, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Ying Du
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Research Center for Global Change and Complex Ecosystems, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Ning Wei
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Research Center for Global Change and Complex Ecosystems, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Jian Zhou
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Jing Wang
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Research Center for Global Change and Complex Ecosystems, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| | - Shuli Niu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yiqi Luo
- School of Integrative Plant Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY, 14850, USA
| | - Jianyang Xia
- Zhejiang Tiantong Forest Ecosystem National Observation and Research Station, State Key Laboratory of Estuarine and Coastal Research, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, China
- Research Center for Global Change and Complex Ecosystems, Institute of Eco-Chongming, East China Normal University, Shanghai 200241, China
| |
Collapse
|
188
|
Wu D, Grodsky SM, Xu W, Liu N, Almeida RM, Zhou L, Miller LM, Roy SB, Xia G, Agrawal AA, Houlton BZ, Flecker AS, Xu X. Observed impacts of large wind farms on grassland carbon cycling. Sci Bull (Beijing) 2023; 68:S2095-9273(23)00716-8. [PMID: 39492018 DOI: 10.1016/j.scib.2023.10.016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2024]
Affiliation(s)
- Donghai Wu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA.
| | - Steven M Grodsky
- U.S. Geological Survey, New York Cooperative Fish and Wildlife Research Unit, Department of Natural Resources and the Environment, Cornell University, Ithaca NY 14853, USA
| | - Wenfang Xu
- Key Laboratory of Vegetation Restoration and Management of Degraded Ecosystems, State Key Laboratory of Plant Diversity and Specialty Crops, Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Naijing Liu
- POWERCHINA Northwest Engineering Corporation Limited, Xi'an 710065, China
| | - Rafael M Almeida
- School of Earth, Environmental, and Marine Sciences, the University of Texas Rio Grande Valley, Edinburg TX 78539, USA
| | - Liming Zhou
- Department of Atmospheric and Environmental Sciences, University at Albany, Albany NY 12222, USA
| | - Lee M Miller
- Energy and Environment Directorate, Pacific Northwest National Lab, Richland WA 99354, USA
| | - Somnath Baidya Roy
- Centre for Atmospheric Science, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Geng Xia
- National Wind Technology Center, National Renewable Energy Laboratory, Golden CO 80401, USA
| | - Anurag A Agrawal
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA
| | - Benjamin Z Houlton
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA; Department of Global Development, Cornell University, Ithaca NY 14853, USA
| | - Alexander S Flecker
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA
| | - Xiangtao Xu
- Department of Ecology and Evolutionary Biology, Cornell University, Ithaca NY 14853, USA.
| |
Collapse
|
189
|
Varghese S, Aguirre B, Isbell F, Wright A. Simulating atmospheric drought: Silica gel packets dehumidify mesocosm microclimates. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.06.561294. [PMID: 37873293 PMCID: PMC10592642 DOI: 10.1101/2023.10.06.561294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
1. As global temperatures rise, droughts are becoming more frequent and severe. To predict how drought might affect plant communities, ecologists have traditionally designed experiments with controlled watering regimes and rainout shelters. Both treatments have proven effective for simulating soil drought. However, neither are designed to directly modify atmospheric drought. 2. Here, we detail the efficacy of a silica gel atmospheric drought treatment in outdoor mesocosms with and without a cooccurring soil drought treatment. At California State University, Los Angeles, we monitored relative humidity (RH), temperature, and vapor pressure deficit (VPD) every 10 minutes for five months in a bare-ground experiment featuring mesocosms treated with soil drought (reduced watering) and/or atmospheric drought (silica packets suspended 12 cm above soil). 3. We found that silica packets dehumidified these microclimates most effectively (-5% RH) when combined with reduced soil water, regardless of the ambient humidity levels of the surrounding air. Further, packets increased microclimate VPD most effectively (+0.4 kPa) when combined with reduced soil water and ambient air temperatures above 20°C. Finally, packets simulated atmospheric drought most consistently when replaced within three days of deployment. 4. Our results demonstrate the use of silica packets as effective dehumidification agents in outdoor drought experiments. We emphasize that incorporating atmospheric drought in existing soil drought experiments can improve our understandings of the ecological impacts of drought.
Collapse
Affiliation(s)
- S. Varghese
- California State University Los Angeles, Department of Biological Sciences, Los Angeles, CA
- University of Minnesota, Department of Ecology, Evolution, and Behavior, Minneapolis, MN
| | - B.A. Aguirre
- Cornell University, Department of Ecology and Evolutionary Biology, Ithaca, NY
| | - F. Isbell
- University of Minnesota, Department of Ecology, Evolution, and Behavior, Minneapolis, MN
| | - A.J. Wright
- California State University Los Angeles, Department of Biological Sciences, Los Angeles, CA
| |
Collapse
|
190
|
Potkay A, Feng X. Dynamically optimizing stomatal conductance for maximum turgor-driven growth over diel and seasonal cycles. AOB PLANTS 2023; 15:plad044. [PMID: 37899972 PMCID: PMC10601388 DOI: 10.1093/aobpla/plad044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 07/04/2023] [Indexed: 10/31/2023]
Abstract
Stomata have recently been theorized to have evolved strategies that maximize turgor-driven growth over plants' lifetimes, finding support through steady-state solutions in which gas exchange, carbohydrate storage and growth have all reached equilibrium. However, plants do not operate near steady state as plant responses and environmental forcings vary diurnally and seasonally. It remains unclear how gas exchange, carbohydrate storage and growth should be dynamically coordinated for stomata to maximize growth. We simulated the gas exchange, carbohydrate storage and growth that dynamically maximize growth diurnally and annually. Additionally, we test whether the growth-optimization hypothesis explains nocturnal stomatal opening, particularly through diel changes in temperature, carbohydrate storage and demand. Year-long dynamic simulations captured realistic diurnal and seasonal patterns in gas exchange as well as realistic seasonal patterns in carbohydrate storage and growth, improving upon unrealistic carbohydrate responses in steady-state simulations. Diurnal patterns of carbohydrate storage and growth in day-long simulations were hindered by faulty modelling assumptions of cyclic carbohydrate storage over an individual day and synchronization of the expansive and hardening phases of growth, respectively. The growth-optimization hypothesis cannot currently explain nocturnal stomatal opening unless employing corrective 'fitness factors' or reframing the theory in a probabilistic manner, in which stomata adopt an inaccurate statistical 'memory' of night-time temperature. The growth-optimization hypothesis suggests that diurnal and seasonal patterns of stomatal conductance are driven by a dynamic carbon-use strategy that seeks to maintain homeostasis of carbohydrate reserves.
Collapse
Affiliation(s)
- Aaron Potkay
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| | - Xue Feng
- Department of Civil, Environmental, and Geo-Engineering, University of Minnesota, Twin Cities, 500 Pillsbury Drive S.E., Minneapolis, MN 55455, USA
- Saint Anthony Falls Laboratory, University of Minnesota, Twin Cities, 23rd Ave SE, Minneapolis, MN 55414, USA
| |
Collapse
|
191
|
Gauthey A, Bachofen C, Deluigi J, Didion-Gency M, D'Odorico P, Gisler J, Mas E, Schaub M, Schuler P, Still CJ, Tunas A, Grossiord C. Absence of canopy temperature variation despite stomatal adjustment in Pinus sylvestris under multidecadal soil moisture manipulation. THE NEW PHYTOLOGIST 2023; 240:127-137. [PMID: 37483100 DOI: 10.1111/nph.19136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 06/23/2023] [Indexed: 07/25/2023]
Abstract
Global warming and droughts push forests closer to their thermal limits, altering tree carbon uptake and growth. To prevent critical overheating, trees can adjust their thermotolerance (Tcrit ), temperature and photosynthetic optima (Topt and Aopt ), and canopy temperature (Tcan ) to stay below damaging thresholds. However, we lack an understanding of how soil droughts affect photosynthetic thermal plasticity and Tcan regulation. In this study, we measured the effect of soil moisture on the seasonal and diurnal dynamics of net photosynthesis (A), stomatal conductance (gs ), and Tcan , as well as the thermal plasticity of photosynthesis (Tcrit , Topt , and Aopt ), over the course of 1 yr using a long-term irrigation experiment in a drought-prone Pinus sylvestris forest in Switzerland. Irrigation resulted in higher needle-level A, gs , Topt , and Aopt compared with naturally drought-exposed trees. No daily or seasonal differences in Tcan were observed between treatments. Trees operated below their thermal thresholds (Tcrit ), independently of soil moisture content. Despite strong Tcan and Tair coupling, we provide evidence that drought reduces trees' temperature optimum due to a substantial reduction of gs during warm and dry periods of the year. These findings provide important insights regarding the effects of soil drought on the thermal tolerance of P. sylvestris.
Collapse
Affiliation(s)
- Alice Gauthey
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Christoph Bachofen
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Janisse Deluigi
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Margaux Didion-Gency
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Petra D'Odorico
- Land Change Science Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Jonas Gisler
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Eugénie Mas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Marcus Schaub
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Philipp Schuler
- Forest Dynamics Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Christopher J Still
- Forest Ecosystems and Society, Oregon State University, Corvallis, 97331, OR, USA
| | - Alex Tunas
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| | - Charlotte Grossiord
- Plant Ecology Research Laboratory PERL, School of Architecture, Civil and Environmental Engineering, EPFL, Lausanne, CH-1015, Switzerland
- Community Ecology Unit, Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, CH-8903, Switzerland
| |
Collapse
|
192
|
Merino G, Ramírez-Barahona S, Olson ME, Núñez-Farfán J, García-Oliva F, Eguiarte LE. Distribution and morphological variation of tree ferns (Cyatheaceae) along an elevation gradient. PLoS One 2023; 18:e0291945. [PMID: 37756353 PMCID: PMC10530041 DOI: 10.1371/journal.pone.0291945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Knowing how species and communities respond to environmental change is fundamental in the context of climate change. The search for patterns of abundance and phenotypic variation along altitudinal gradients can provide evidence on adaptive limits. We evaluated the species abundance and the variation in morphometric and stomatal characters in five tree ferns species (Cyathea fulva, C. divergens, C. myosuroides, Alsophila firma and Gymnosphaera salvinii) distributed along an elevation gradient in a well-preserved Mexican cloud forest. Variation at the community and species level was assessed using exploratory and multivariate data analysis methods. We wanted to explore if the species abundance is environmentally determined, to determine the degree of variation along the elevation gradient, to test for differences between zones and associations with elevation, humidity and soil nutrients, and to assess contribution of the intra- and interspecific variation to the community response to elevation and soil nutrients. The studied fern community showed strong species turnover along the elevation gradient, with some influence of soil nutrient concentration, supporting environmental determinism. All measured characters displayed variation along the gradient. Stomatal characters (size and density) had significantly less variation than morphometric characters (trunk diameter, stipe length and blade length), but stomatal density also shows interesting intraspecific patterns. In general, patterns within the fern community suggest a strong influence of species identity, especially of species inhabiting the lower edge of the cloud forest, which showed the clearest morphometric and stomatal patterns, associated to contrasting environments rather than to changes in elevation. The coincidence between morphometric and stomatal patterns in this area suggest hydraulic adjustments in response to contrasting environments. Our results provide evidence that tree ferns species respond to environmental changes through adjustments of morphometric plasticity and stomatal density, which is relevant to predict possible responses to variation in environmental conditions resulting from climate change.
Collapse
Affiliation(s)
- Gabriel Merino
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Unidad de Posgrado, Ciudad Universitaria, Coyoacán, Mexico City, Mexico
| | - Santiago Ramírez-Barahona
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Mark E. Olson
- Departamento de Botánica, Instituto de Biología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Juan Núñez-Farfán
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Felipe García-Oliva
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México (UNAM), Morelia, Michoacán, Mexico
| | - Luis E. Eguiarte
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
193
|
Qiao Y, Gu H, Xu H, Ma Q, Zhang X, Yan Q, Gao J, Yang Y, Rossi S, Smith NG, Liu J, Chen L. Accelerating effects of growing-season warming on tree seasonal activities are progressively disappearing. Curr Biol 2023; 33:3625-3633.e3. [PMID: 37567171 DOI: 10.1016/j.cub.2023.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 06/19/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
The phenological changes induced by climate warming have profound effects on water, energy, and carbon cycling in forest ecosystems. In addition to pre-season warming, growing-season warming may drive tree phenology by altering photosynthetic carbon uptake. It has been reported that the effect of pre-season warming on tree phenology is decreasing. However, temporal change in the effect of growing-season warming on tree phenology is not yet clear. Combining long-term ground observations and remote-sensing data, here we show that spring and autumn phenology were advanced by growing-season warming, while the accelerating effects of growing-season warming on tree phenology were progressively disappearing, manifesting as phenological events converted from being advanced to being delayed, in the temperate deciduous broadleaved forests across the Northern Hemisphere between 1983 and 2014. We further observed that the effect of growing-season warming on photosynthetic productivity showed a synchronized decline over the same period. The responses of phenology and photosynthetic productivity had a strong linear relationship with each other, and both showed significant negative correlations with the elevated temperature and vapor pressure deficit during the growing season. These findings indicate that warming-induced water stress may drive the observed decline in the responses of tree phenology to growing-season warming by decelerating photosynthetic productivity. Our results not only demonstrate a close link between photosynthetic carbon uptake and tree seasonal activities but also provide a physiological perspective of the nonlinear phenological responses to climate warming.
Collapse
Affiliation(s)
- Yuxin Qiao
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hongshuang Gu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Hanfeng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qimei Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Xin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Qin Yan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Jie Gao
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, China
| | - Yuchuan Yang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Sergio Rossi
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
| | - Nicholas G Smith
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - Jianquan Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
| | - Lei Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
194
|
Rouichi S, Idrissi O, Sohail Q, Marrou H, Sinclair TR, Hejjaoui K, Amri M, Ghanem ME. Limited-transpiration trait in response to high vapor pressure deficit from wild to cultivated species: study of the Lens genus. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4875-4887. [PMID: 37422910 DOI: 10.1093/jxb/erad264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
Lentil (Lens culinaris Medik.) is commonly grown in drought-prone areas where terminal heat and drought are frequent. The limited-transpiration (TRlim) trait under high vapor pressure deficit (VPD) could be a way to conserve water and increase yield under water deficit conditions. The TRlim trait was examined in cultivated and wild lentil species together with its evolution throughout the breeding pipeline. Sixty-one accessions representing the six wild lentil species (L. orientalis, L. tomentosus, L. odemensis, L. lamottei, L. ervoides, and L. nigricans) and 13 interspecific advanced lines were evaluated in their transpiration response to high VPD. A large variation in transpiration rate (TR) response to increased VPD was recorded among wild lentil accessions, with 43 accessions exhibiting a breakpoint (BP) in their TR response to increasing VPD, with values ranging from 0.92 kPa to 3.38 kPa under greenhouse conditions. Ten genotypes for the interspecific advanced lines displayed a BP with an average of 1.95 kPa, much lower than previously reported for cultivated lentil. Results from field experiments suggest that the TRlim trait (BP=0.97 kPa) positively affected yield and yield-related parameters during the years with late-season water stress. The selection of TRlim genotypes for high VPD environments could improve lentil productivity in drought-prone areas.
Collapse
Affiliation(s)
- Salma Rouichi
- College of Sustainable Agriculture and Environmental Science, AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Omar Idrissi
- Laboratory of Food Legumes Breeding, Regional Center of Agricultural Research of Settat, National Institute of Agricultural Research, Avenue Ennasr, BP 415 Rabat Principale, Rabat 10090, Morocco
| | - Quahir Sohail
- College of Sustainable Agriculture and Environmental Science, AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Hélène Marrou
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
| | - Thomas R Sinclair
- Crop and Soil Sciences Department, North Carolina State University, Raleigh, NC, USA
| | - Kamal Hejjaoui
- College of Sustainable Agriculture and Environmental Science, AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Moez Amri
- College of Sustainable Agriculture and Environmental Science, AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Michel Edmond Ghanem
- College of Sustainable Agriculture and Environmental Science, AgroBioSciences Program, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, F-34398 Montpellier, France
- CIRAD, UMR AGAP Institut, F-34398 Montpellier, France
| |
Collapse
|
195
|
Scoffoni C, Albuquerque C, Buckley TN, Sack L. The dynamic multi-functionality of leaf water transport outside the xylem. THE NEW PHYTOLOGIST 2023; 239:2099-2107. [PMID: 37386735 DOI: 10.1111/nph.19069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/12/2023] [Indexed: 07/01/2023]
Abstract
A surge of papers have reported low leaf vulnerability to xylem embolism during drought. Here, we focus on the less studied, and more sensitive, outside-xylem leaf hydraulic responses to multiple internal and external conditions. Studies of 34 species have resolved substantial vulnerability to dehydration of the outside-xylem pathways, and studies of leaf hydraulic responses to light also implicate dynamic outside-xylem responses. Detailed experiments suggest these dynamic responses arise at least in part from strong control of radial water movement across the vein bundle sheath. While leaf xylem vulnerability may influence leaf and plant survival during extreme drought, outside-xylem dynamic responses are important for the control and resilience of water transport and leaf water status for gas exchange and growth.
Collapse
Affiliation(s)
- Christine Scoffoni
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr., Los Angeles, CA, 90032, USA
| | - Caetano Albuquerque
- Department of Biological Sciences, California State University Los Angeles, 5151 State University Dr., Los Angeles, CA, 90032, USA
| | - Thomas N Buckley
- Department of Plant Sciences, University of California, Davis, 1 Shields Ave, Davis, CA, 95616, USA
| | - Lawren Sack
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, 612 Charles E. Young Dr., Los Angeles, CA, 90095, USA
| |
Collapse
|
196
|
Liu Q, Peng C, Schneider R, Cyr D, Liu Z, Zhou X, Du M, Li P, Jiang Z, McDowell NG, Kneeshaw D. Vegetation browning: global drivers, impacts, and feedbacks. TRENDS IN PLANT SCIENCE 2023; 28:1014-1032. [PMID: 37087358 DOI: 10.1016/j.tplants.2023.03.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Revised: 03/22/2023] [Accepted: 03/30/2023] [Indexed: 05/03/2023]
Abstract
As global climate conditions continue to change, disturbance regimes and environmental drivers will continue to shift, impacting global vegetation dynamics. Following a period of vegetation greening, there has been a progressive increase in remotely sensed vegetation browning globally. Given the many societal benefits that forests provide, it is critical that we understand vegetation dynamic alterations. Here, we review associative drivers, impacts, and feedbacks, revealing the complexity of browning. Concomitant increases in browning include the weakening of ecosystem services and functions and alterations to vegetation structure and species composition, as well as the development of potential positive climate change feedbacks. Also discussed are the current challenges in browning detection and understanding associated impacts and feedbacks. Finally, we outline recommended strategies.
Collapse
Affiliation(s)
- Qiuyu Liu
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Changhui Peng
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; College of Geographic Science, Hunan Normal University, Changsha, 410081, China.
| | - Robert Schneider
- University of Quebec at Rimouski (UQAR), Rimouski, Quebec, G5L 3A1, Canada
| | - Dominic Cyr
- Science and Technology Branch, Environment and Climate Change Canada, 351 St-Joseph Blvd, Gatineau, Quebec, Canada
| | - Zelin Liu
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Xiaolu Zhou
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Mingxi Du
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peng Li
- College of Geographic Science, Hunan Normal University, Changsha, 410081, China
| | - Zihan Jiang
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Nate G McDowell
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Lab, PO Box 999, Richland, WA 99352, USA; School of Biological Sciences, Washington State University, PO Box 644236, Pullman, WA 99164-4236, USA
| | - Daniel Kneeshaw
- Institute of Environment Sciences, Department of Biology Sciences, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada; Centre for Forest Research, University of Quebec at Montreal, Case Postale 8888, Succ. Centre-Ville, Montreal, H3C 3P8, Canada
| |
Collapse
|
197
|
Clark CM, Phelan J, Ash J, Buckley J, Cajka J, Horn K, Thomas RQ, Sabo RD. Future climate change effects on US forest composition may offset benefits of reduced atmospheric deposition of N and S. GLOBAL CHANGE BIOLOGY 2023; 29:4793-4810. [PMID: 37417247 PMCID: PMC11166206 DOI: 10.1111/gcb.16817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/26/2023] [Indexed: 07/08/2023]
Abstract
Climate change and atmospheric deposition of nitrogen (N) and sulfur (S) are important drivers of forest demography. Here we apply previously derived growth and survival responses for 94 tree species, representing >90% of the contiguous US forest basal area, to project how changes in mean annual temperature, precipitation, and N and S deposition from 20 different future scenarios may affect forest composition to 2100. We find that under the low climate change scenario (RCP 4.5), reductions in aboveground tree biomass from higher temperatures are roughly offset by increases in aboveground tree biomass from reductions in N and S deposition. However, under the higher climate change scenario (RCP 8.5) the decreases from climate change overwhelm increases from reductions in N and S deposition. These broad trends underlie wide variation among species. We found averaged across temperature scenarios the relative abundance of 60 species were projected to decrease more than 5% and 20 species were projected to increase more than 5%; and reductions of N and S deposition led to a decrease for 13 species and an increase for 40 species. This suggests large shifts in the composition of US forests in the future. Negative climate effects were mostly from elevated temperature and were not offset by scenarios with wetter conditions. We found that by 2100 an estimated 1 billion trees under the RCP 4.5 scenario and 20 billion trees under the RCP 8.5 scenario may be pushed outside the temperature record upon which these relationships were derived. These results may not fully capture future changes in forest composition as several other factors were not included. Overall efforts to reduce atmospheric deposition of N and S will likely be insufficient to overcome climate change impacts on forest demography across much of the United States unless we adhere to the low climate change scenario.
Collapse
Affiliation(s)
- Christopher M. Clark
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington DC
| | | | - Jeremy Ash
- US Department of Agriculture, US Forest Service, Region 8, Ashville, NC
| | | | - James Cajka
- RTI International, Research Triangle Park, NC
| | - Kevin Horn
- Virginia Polytechnical University, Department of Forest Resources and Environmental Conservation, Blacksburg, VA
| | - R. Quinn Thomas
- Virginia Polytechnical University, Department of Forest Resources and Environmental Conservation, Blacksburg, VA
| | - Robert D. Sabo
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Washington DC
| |
Collapse
|
198
|
Shekhar A, Hörtnagl L, Buchmann N, Gharun M. Long-term changes in forest response to extreme atmospheric dryness. GLOBAL CHANGE BIOLOGY 2023; 29:5379-5396. [PMID: 37381105 DOI: 10.1111/gcb.16846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 06/01/2023] [Indexed: 06/30/2023]
Abstract
Atmospheric dryness, as indicated by vapor pressure deficit (VPD), has a strong influence on forest greenhouse gas exchange with the atmosphere. In this study, we used long-term (10-30 years) net ecosystem productivity (NEP) measurements from 60 forest sites across the world (1003 site-years) to quantify long-term changes in forest NEP resistance and NEP recovery in response to extreme atmospheric dryness. We tested two hypotheses: first, across sites differences in NEP resistance and NEP recovery of forests will depend on both the biophysical characteristics (i.e., leaf area index [LAI] and forest type) of the forest as well as on the local meteorological conditions of the site (i.e., mean VPD of the site), and second, forests experiencing an increasing trend in frequency and intensity of extreme dryness will show an increasing trend in NEP resistance and NEP recovery over time due to emergence of long-term ecological stress memory. We used a data-driven statistical learning approach to quantify NEP resistance and NEP recovery over multiple years. Our results showed that forest types, LAI, and median local VPD conditions explained over 50% of variance in both NEP resistance and NEP recovery, with drier sites showing higher NEP resistance and NEP recovery compared to sites with less atmospheric dryness. The impact of extreme atmospheric dryness events on NEP lasted for up to 3 days following most severe extreme events in most forests, indicated by an NEP recovery of less than 100%. We rejected our second hypothesis as we found no consistent relationship between trends of extreme VPD with trends in NEP resistance and NEP recovery across different forest sites, thus an increase in atmospheric dryness as it is predicted might not increase the resistance or recovery of forests in terms of NEP.
Collapse
Affiliation(s)
- Ankit Shekhar
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Lukas Hörtnagl
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Nina Buchmann
- Department of Environmental Systems Science, ETH Zürich, Zürich, Switzerland
| | - Mana Gharun
- Institute of Landscape Ecology, Faculty of Geosciences, University of Münster, Münster, Germany
| |
Collapse
|
199
|
Tulva I, Välbe M, Merilo E. Plants lacking OST1 show conditional stomatal closure and wildtype-like growth sensitivity at high VPD. PHYSIOLOGIA PLANTARUM 2023; 175:e14030. [PMID: 37882302 DOI: 10.1111/ppl.14030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/27/2023]
Abstract
Climate change-associated rise in VPD (atmospheric vapor pressure deficit) results in increased plant transpiration and reduced stomatal conductance, photosynthesis, biomass, and yield. High VPD-induced stomatal closure of Arabidopsis is an active process regulated via the kinase SnRK2.6 (OPEN STOMATA 1, OST1). Here, we performed gas exchange, leaf water potential and rosette growth measurements to study, whether (1) high VPD-induced stomatal closure is detected in plants carrying loss-of-function mutations in OST1 (ost1-3) when they are grown at reduced soil water content or measured at increased air temperature; (2) ost1-3 plants expressing OST1 construct with no ABA-activation domain, but intact ABA-independent activation, show stronger stomatal VPD response compared with ost1-3 plants; and (3) rosette area and biomass of ost1-3 are more affected by growth at high VPD compared with Col-0. The stomata of well-watered ost1-3 plants were insensitive to high VPD regardless of air temperature, but in deficit-irrigated ost1-3, leaf water potential decreased the most and stomata closed at high VPD. Differences between VPD-induced stomatal closures of ost1-3 plants and ost1-3 plants expressing OST1 with no ABA-activation domain point at gradual VPD-induced ABA-independent activation of OST1. High VPD conditions led to similar reductions in rosette area and specific leaf area of well-watered Col-0 and ost1-3 plants. Rosette dry mass was unaffected by high VPD. Our results show that OST1 loss-of-function plants display conditional stomatal closure and no extra sensitivity of rosette area growth compared with Col-0 wildtype under high VPD conditions.
Collapse
Affiliation(s)
- Ingmar Tulva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mikk Välbe
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
200
|
Nölte A, Yousefpour R, Cifuentes-Jara M, Hanewinkel M. Sharp decline in future productivity of tropical reforestation above 29°C mean annual temperature. SCIENCE ADVANCES 2023; 9:eadg9175. [PMID: 37611114 PMCID: PMC10446480 DOI: 10.1126/sciadv.adg9175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 07/21/2023] [Indexed: 08/25/2023]
Abstract
Tropical reforestation is among the most powerful tools for carbon sequestration. Yet, climate change impacts on productivity are often not accounted for when estimating its mitigation potential. Using the process-based forest growth model 3-PGmix, we analyzed future productivity of tropical reforestation in Central America. Around 29°C mean annual temperature, productivity sharply and consistently declined (-11% per 1°C of warming) across all tropical lowland climate zones and five tree species spanning a wide range of ecological characteristics. Under a high-emission scenario (SSP3-7.0), productivity of dry tropical reforestation nearly halved and tropical moist and rain forest sites showed moderate losses around 10% by the end of the century. Under SSP2-4.5, tropical moist and rain forest sites were resilient and tropical dry forest sites showed moderate losses (-17%). Increased vapor pressure deficit, caused by increasing temperatures, was the main driver of growth decline. Thus, to continue following high-emission pathways could reduce the effectiveness of reforestation as climate action tool.
Collapse
Affiliation(s)
- Anja Nölte
- University of Freiburg, Tennenbacherstr. 4, Freiburg 79106, Germany
| | - Rasoul Yousefpour
- University of Freiburg, Tennenbacherstr. 4, Freiburg 79106, Germany
- Institute of Forestry and Forest Conservation, John H. Daniels Faculty of Architecture, Landscape, and Design, University of Toronto, 33 Willcocks Street, Toronto, ON M5S3B3, Canada
| | - Miguel Cifuentes-Jara
- Conservation International, 2011 Crystal Dr., Ste 600, Arlington, VA 22202, USA
- CATIE—Centro Agronómico Tropical de Investigación y Enseñanza, Turrialba 30501, Costa Rica
| | - Marc Hanewinkel
- University of Freiburg, Tennenbacherstr. 4, Freiburg 79106, Germany
| |
Collapse
|