151
|
Komuroglu AU, Seckin H, Ertaş M, Meydan I. Metagenomic Analysis of Intestinal Microbiota in Florated Rats. Biol Trace Elem Res 2022; 200:3275-3283. [PMID: 34786660 DOI: 10.1007/s12011-021-03003-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 10/29/2021] [Indexed: 12/14/2022]
Abstract
Changes in gut microbiota have shown that it plays an important role in animal health and metabolic diseases. The intestinal microbiota is a complex structure that functions as an organ system with the presence of trillions of microorganisms. In this study, changes in the intestinal microbiota of Wistar rats with high fluorine were evaluated. Water containing 100 ppm NaF was given to 14 male Wistar albino rats as drinking water for 12 weeks. Fluorine is known to be an inducer of protein oxidation, lipid peroxidation, modulation of intracellular redox homeostasis, and oxidative stress. In this study, it was determined that the level of MDA (molandialdehyde), one of the oxidative stress parameters, increased significantly in the intestinal tissue after fluorine intoxication. The decrease in CAT (catalase) and SOD (superoxide dismutase) enzyme activities was found to be statistically significant. Intestinal tissues were taken under aseptic conditions and microorganisms found in flora were replicated by V3-V4 16S rRNA gene-specific primers. As a result of the sequence analysis, a statistical comparison of the control group and the fluorine applied group was made. The study we have done showed that there was a significant difference in species diversity in the intestinal microbiota of mice treated with fluorine. As a result, the composition of the intestinal microflora, especially Lactobacillus species, was significantly changed in rats with high fluorine.
Collapse
Affiliation(s)
- Ahmet Ufuk Komuroglu
- Health Services Vocational High School, Yuzuncu Yil University, Tuşba, Van, Turkey
| | - Hamdullah Seckin
- Health Services Vocational High School, Yuzuncu Yil University, Tuşba, Van, Turkey
| | - Metin Ertaş
- Department of Plant and Animal Production, Hakkari University, Hakkari, Turkey.
- Hakkari University Biological Diversity Application and Research Center, Hakkari, Turkey.
| | - Ismet Meydan
- Health Services Vocational High School, Yuzuncu Yil University, Tuşba, Van, Turkey
| |
Collapse
|
152
|
Khanna HN, Roy S, Shaikh A, Bandi V. Emerging Role and Place of Probiotics in the Management of Pediatric Neurodevelopmental Disorders. Euroasian J Hepatogastroenterol 2022; 12:102-108. [PMID: 36959989 PMCID: PMC10028704 DOI: 10.5005/jp-journals-10018-1384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The current decade has witnessed significant developments with the latest therapeutic agents for managing various infectious diseases to complex hemato-oncological conditions, leading to a decrease in morbidity and mortality, while improving the quality of life (QoL), and increasing the life span. Non-communicable diseases (NCDs), which are on the rise across all age-groups, are being driven by unhealthy lifestyles and improved mental health issues. The current therapeutic agents were found to offer only symptomatic relief of varying efficacy and significant adverse effects, leading clinicians to evaluate other options for the management of both neurodevelopmental and neurodegenerative disorders. The role of gut microbiota has emerged as a potential target for the treatment of both neurodegenerative diseases and neurodevelopmental disorders like attention-deficit hyperactivity disorder (ADHD)/autism spectrum disorders (ASD) as a result of the decoding of the human genome and advances in our understanding of the human gut microbiome, including its interactions with the human brain. This review has been undertaken to understand on date level of understanding of human microbiota and towards identifying probiotic strains with proven efficacy and safety. According to recent investigations, several lactobacillus strains, including L. Paracasei 37, L. Planetarium 128, L. reuteri DSM 17938, and Bifidobacterium longum, have been effective in treating children's neurodevelopmental disorders such as ASD and ADHD. Future clinical studies are nonetheless required to confirm the long-term safety and effectiveness of probiotic strains in managing the primary and comorbid symptoms, hence improving patient and family quality of life. How to cite this article Khanna HN, Roy S, Shaikh A, et al. Emerging Role and Place of Probiotics in the Management of Pediatric Neurodevelopmental Disorders. Euroasian J Hepato-Gastroenterol 2022;12(2):102-108.
Collapse
Affiliation(s)
- Himani Narula Khanna
- Department of community Medicine, HIMSR, Jamia-Hamdard University, New Delhi, India
| | - Sushovan Roy
- Department of Community Medicine, HIMSR, New Delhi, India
| | - Aqsa Shaikh
- Department of Community Medicine, HIMSR, New Delhi, India
| | - Viswanath Bandi
- Research Scholar, Faculty of management studies, ICFAI University, Ranchi, Jharkhand, India
| |
Collapse
|
153
|
Catlett JL, Carr S, Cashman M, Smith MD, Walter M, Sakkaff Z, Kelley C, Pierobon M, Cohen MB, Buan NR. Metabolic Synergy between Human Symbionts Bacteroides and Methanobrevibacter. Microbiol Spectr 2022; 10:e0106722. [PMID: 35536023 PMCID: PMC9241691 DOI: 10.1128/spectrum.01067-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/11/2022] [Indexed: 12/12/2022] Open
Abstract
Trophic interactions between microbes are postulated to determine whether a host microbiome is healthy or causes predisposition to disease. Two abundant taxa, the Gram-negative heterotrophic bacterium Bacteroides thetaiotaomicron and the methanogenic archaeon Methanobrevibacter smithii, are proposed to have a synergistic metabolic relationship. Both organisms play vital roles in human gut health; B. thetaiotaomicron assists the host by fermenting dietary polysaccharides, whereas M. smithii consumes end-stage fermentation products and is hypothesized to relieve feedback inhibition of upstream microbes such as B. thetaiotaomicron. To study their metabolic interactions, we defined and optimized a coculture system and used software testing techniques to analyze growth under a range of conditions representing the nutrient environment of the host. We verify that B. thetaiotaomicron fermentation products are sufficient for M. smithii growth and that accumulation of fermentation products alters secretion of metabolites by B. thetaiotaomicron to benefit M. smithii. Studies suggest that B. thetaiotaomicron metabolic efficiency is greater in the absence of fermentation products or in the presence of M. smithii. Under certain conditions, B. thetaiotaomicron and M. smithii form interspecies granules consistent with behavior observed for syntrophic partnerships between microbes in soil or sediment enrichments and anaerobic digesters. Furthermore, when vitamin B12, hematin, and hydrogen gas are abundant, coculture growth is greater than the sum of growth observed for monocultures, suggesting that both organisms benefit from a synergistic mutual metabolic relationship. IMPORTANCE The human gut functions through a complex system of interactions between the host human tissue and the microbes which inhabit it. These diverse interactions are difficult to model or examine under controlled laboratory conditions. We studied the interactions between two dominant human gut microbes, B. thetaiotaomicron and M. smithii, using a seven-component culturing approach that allows the systematic examination of the metabolic complexity of this binary microbial system. By combining high-throughput methods with machine learning techniques, we were able to investigate the interactions between two dominant genera of the gut microbiome in a wide variety of environmental conditions. Our approach can be broadly applied to studying microbial interactions and may be extended to evaluate and curate computational metabolic models. The software tools developed for this study are available as user-friendly tutorials in the Department of Energy KBase.
Collapse
Affiliation(s)
- Jennie L. Catlett
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Sean Carr
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mikaela Cashman
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Megan D. Smith
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Mary Walter
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Zahmeeth Sakkaff
- Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Christine Kelley
- Department of Mathematics, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Massimiliano Pierobon
- Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | - Myra B. Cohen
- Department of Computer Science & Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
- Department of Computer Science, Iowa State University, Ames, Iowa, USA
| | - Nicole R. Buan
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| |
Collapse
|
154
|
Ambivalent Roles of Oxidative Stress in Triangular Relationships among Arthropod Vectors, Pathogens and Hosts. Antioxidants (Basel) 2022; 11:antiox11071254. [PMID: 35883744 PMCID: PMC9312350 DOI: 10.3390/antiox11071254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/17/2022] Open
Abstract
Blood-feeding arthropods, particularly ticks and mosquitoes are considered the most important vectors of arthropod-borne diseases affecting humans and animals. While feeding on blood meals, arthropods are exposed to high levels of reactive oxygen species (ROS) since heme and other blood components can induce oxidative stress. Different ROS have important roles in interactions among the pathogens, vectors, and hosts. ROS influence various metabolic processes of the arthropods and some have detrimental effects. In this review, we investigate the various roles of ROS in these arthropods, including their innate immunity and the homeostasis of their microbiomes, that is, how ROS are utilized to maintain the balance between the natural microbiota and potential pathogens. We elucidate the mechanism of how ROS are utilized to fight off invading pathogens and how the arthropod-borne pathogens use the arthropods’ antioxidant mechanism to defend against these ROS attacks and their possible impact on their vector potentials or their ability to acquire and transmit pathogens. In addition, we describe the possible roles of ROS in chemical insecticide/acaricide activity and/or in the development of resistance. Overall, this underscores the importance of the antioxidant system as a potential target for the control of arthropod and arthropod-borne pathogens.
Collapse
|
155
|
Effects of Spore-Displayed p75 Protein from Lacticaseibacillus rhamnosus GG on the Transcriptional Response of HT-29 Cells. Microorganisms 2022; 10:microorganisms10071276. [PMID: 35888995 PMCID: PMC9323162 DOI: 10.3390/microorganisms10071276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/20/2022] [Accepted: 06/22/2022] [Indexed: 12/10/2022] Open
Abstract
A Lacticaseibacillus rhamnosus GG-derived protein, p75, is one of the key molecules exhibiting probiotic activity. However, the molecular mechanism and transcriptional response of p75 in human intestinal epithelial cells are not completely understood. To gain a deeper understanding of its potential probiotic action, this study investigated genome-wide responses of HT-29 cells to stimulation by spore-displayed p75 (CotG-p75) through a transcriptome analysis based on RNA sequencing. Analysis of RNA-seq data showed significant changes of gene expression in HT-29 cells stimulated by CotG-p75 compared to the control. A total of 189 up-regulated and 314 down-regulated genes was found as differentially expressed genes. Gene ontology enrichment analysis revealed that a large number of activated genes was involved in biological processes, such as epithelial cell differentiation, development, and regulation of cell proliferation. A gene–gene interaction network analysis showed that several DEGs, including AREG, EREG, HBEGF, EPGN, FASLG, GLI2, CDKN1A, FOSL1, MYC, SERPINE1, TNFSF10, BCL6, FLG, IVL, SPRR1A, SPRR1B, SPRR3, and MUC5AC, might play a critical role in these biological processes. RNA-seq results for selected genes were verified by reverse transcription-quantitative polymerase chain reaction. Overall, these results provide extensive knowledge about the transcriptional responses of HT-29 cells to stimulation by CotG-p75. This study showed that CotG-p75 can contribute to cell survival and epithelial development in human intestinal epithelial cells.
Collapse
|
156
|
Diet Is a Stronger Covariate than Exercise in Determining Gut Microbial Richness and Diversity. Nutrients 2022; 14:nu14122507. [PMID: 35745235 PMCID: PMC9229834 DOI: 10.3390/nu14122507] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/11/2022] [Accepted: 06/14/2022] [Indexed: 02/06/2023] Open
Abstract
Obesity is a common metabolic disorder caused by a sedentary lifestyle, and a high-fat and a high-glucose diet in the form of fast foods. High-fat diet-induced obesity is a major cause of diabetes and cardiovascular diseases, whereas exercise and physical activity can ameliorate these disorders. Moreover, exercise and the gut microbiota are known to be interconnected, since exercise can increase the gut microbial diversity and contribute to the beneficial health effects. In this context, we analyzed the effect of diet and exercise on the gut microbiota of mice, by next-generation sequencing of the bacterial V4 region of 16S rRNA. Briefly, mice were divided into four groups: chow-diet (CD), high-fat diet (HFD), high-fat diet + exercise (HFX), and exercise-only (EX). The mice underwent treadmill exercise and diet intervention for 8 weeks, followed by the collection of their feces and DNA extraction for sequencing. The data were analyzed using the QIIME 2 bioinformatics platform and R software to assess their gut microbial composition, richness, and diversity. The Bacteroidetes to Firmicutes ratio was found to be decreased manifold in the HFD and HFX groups compared to the CD and EX groups. The gut microbial richness was comparatively lower in the HFD and HFX groups and higher in the CD and EX groups (ACE, Chao1, and observed OTUs). However, the Shannon alpha diversity index was higher in the HFD and HFX groups than in the CD and EX groups. The beta diversity based on Jaccard, Bray-Curtis, and weighted UniFrac distance metrics was significant among the groups, as measured by PERMANOVA. Paraprevotella, Desulfovibrio, and Lactococcus were the differentially abundant/present genera based on the intervention groups and in addition to these three bacteria, Butyricimonas and Desulfovibrio C21c20 were differentially abundant/present based on diet. Hence, diet significantly contributed to the majority of the changes in the gut microbiota.
Collapse
|
157
|
Yang T, Shen J. Small nucleolar RNAs and SNHGs in the intestinal mucosal barrier: Emerging insights and current roles. J Adv Res 2022; 46:75-85. [PMID: 35700920 PMCID: PMC10105082 DOI: 10.1016/j.jare.2022.06.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/23/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Previous studies have focused on the involvement of small nucleolar RNAs (snoRNAs) and SNHGs in tumor cell proliferation, apoptosis, invasion, and metastasis via multiple pathways, including phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT), Wnt/β catenin, and mitogen-activated protein kinase (MAPK). These molecular mechanisms affect the integrity of the intestinal mucosal barrier. AIM OF REVIEW Current evidence regarding snoRNAs and SNHGs in the context of the mucosal barrier and modulation of homeostasis is fragmented. In this review, we collate the established information on snoRNAs and SNHGs as well as discuss the major pathways affecting the mucosal barrier. KEY SCIENTIFIC CONCEPTS OF REVIEW Intestinal mucosal immunity, microflora, and the physical barrier are altered in non-neoplastic diseases such as inflammatory bowel diseases. Dysregulated snoRNAs and SNHGs may impact the intestinal mucosal barrier to promote the pathogenesis and progression of multiple diseases. SnoRNAs or SNHGs has been shown to be associated with poor disease behaviors, indicating that they may be exploited as prognostic biomarkers. Additionally, clarifying the complicated interactions between snoRNAs or SNHGs and the mucosal barrier may provide novel insights for the therapeutic treatment targeting strengthen the intestinal mucosal barrier.
Collapse
Affiliation(s)
- Tian Yang
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Center. Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160# Pu Jian Ave, Shanghai 200127, China; Shanghai Institute of Digestive Disease, China.
| |
Collapse
|
158
|
Huang R, Su C, Fang L, Lu J, Chen J, Ding Y. Dry eye syndrome: comprehensive etiologies and recent clinical trials. Int Ophthalmol 2022; 42:3253-3272. [PMID: 35678897 PMCID: PMC9178318 DOI: 10.1007/s10792-022-02320-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 04/18/2022] [Indexed: 12/07/2023]
Abstract
Dry eye syndrome (DES) is multifactorial and likely to be a cause of concern more so than ever given the rapid pace of modernization, which is directly associated with many of the extrinsic causative factors. Additionally, recent studies have also postulated novel etiologies that may provide the basis for alternative treatment methods clinically. Such insights are especially important given that current approaches to tackle DES remains suboptimal. This review will primarily cover a comprehensive list of causes that lead to DES, summarize all the upcoming and ongoing clinical trials that focuses on treating this disease as well as discuss future potential treatments that can improve inclusivity.
Collapse
Affiliation(s)
- Ruojing Huang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Caiying Su
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Lvjie Fang
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Jiaqi Lu
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China
| | - Jiansu Chen
- Institute of Ophthalmology, Medical College, Jinan University, Huangpu Avenue West 601, Tianhe District, Guangzhou, 510632, China.
| | - Yong Ding
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Huangpu Avenue West 613, Tianhe District, Guangzhou, 510630, China.
| |
Collapse
|
159
|
Nayebi A, Navashenaq JG, Soleimani D, Nachvak SM. Probiotic supplementation: A prospective approach in the treatment of COVID-19. Nutr Health 2022; 28:163-175. [PMID: 34747257 PMCID: PMC9160438 DOI: 10.1177/02601060211049631] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Background: Despite strategies based on social distancing, the coronavirus disease 2019 (COVID-19) expands globally, and so far, many attempts have been made to achieve effective treatment for patients with COVID-19. This disease infects the lower respiratory tract and may lead to severe acute respiratory syndrome coronavirus (SARS-CoV). COVID-19 also can cause gastrointestinal infections. Therefore, COVID-19 patients with gastrointestinal symptoms are more likely to be complicated by SARS-CoV. In this disease, acquired immune responses are impaired, and uncontrolled inflammatory responses result in cytokine storms, leading to acute lung injury and thrombus formation. Probiotics are living microorganisms that contribute to the health of the host if administered in appropriate doses. Aim: This study aimed to provide evidence to show the importance of gut dysbiosis in viral disease, especially COVID-19. Therefore, we have focused on the impact of probiotics consumption on preventing severe symptoms of the disease. Methods: We have entirely searched SCOPUS, PubMed, and Google Scholar databases to collect evidence regarding the relationship between probiotics and viral infections to expand this relationship to the COVID-19. Results: It has been shown that probiotics directly counteract SARS-CoV in the gastrointestinal and respiratory tracts. Moreover, probiotics suppress severe immune responses and prevent cytokine storms to inhibit pathologic inflammatory conditions in the body via modulation of immune responses. Conclusion: According to available evidence based on their antiviral and respiratory activities, using probiotics might be an adjuvant therapy to reduce the burden and severity of this disease.
Collapse
Affiliation(s)
- Atiyeh Nayebi
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Davood Soleimani
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Research Center of Oils and Fats, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyyed Mostafa Nachvak
- Student Research Committee, Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Nutritional Sciences Department, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
160
|
Factors Affecting Spontaneous Endocytosis and Survival of Probiotic Lactobacilli in Human Intestinal Epithelial Cells. Microorganisms 2022; 10:microorganisms10061142. [PMID: 35744660 PMCID: PMC9230732 DOI: 10.3390/microorganisms10061142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/25/2022] [Accepted: 05/30/2022] [Indexed: 11/29/2022] Open
Abstract
Mutualistic bacteria have different forms of interaction with the host. In contrast to the invasion of pathogenic bacteria, naturally occurring internalization of commensal bacteria has not been studied in depth. Three in vitro methods, gentamicin protection, flow cytometry and confocal laser scanning microscopy, have been implemented to accurately assess the internalization of two lactobacillus strains—Lacticaseibacillus paracasei BL23 and Lacticaseibacillus rhamnosus GG—in Caco-2 and T84 intestinal epithelial cells (IECs) under a variety of physiological conditions and with specific inhibitors. First and most interesting, internalization occurred at a variable rate that depends on the bacterial strain and IEC line, and the most efficient was BL23 internalization by T84 and, second, efficient internalization required active IEC proliferation, as it improved naturally at the early confluence stages and by stimulation with epidermal growth factor (EGF). IFN-γ is bound to innate immune responses and autolysis; this cytokine had a significant effect on internalization, as shown by flow cytometry, but increased internalization was not perceived in all conditions, possibly because it was also stimulating autolysis and, as a consequence, the viability of bacteria after uptake could be affected. Bacterial uptake required actin polymerization, as shown by cytochalasin D inhibition, and it was partially bound to clathrin and caveolin dependent endocytosis. It also showed partial inhibition by ML7 indicating the involvement of cholesterol lipid rafts and myosin light chain kinase (MLCK) activation, at least in the LGG uptake by Caco-2. Most interestingly, bacteria remained viable inside the IEC for as long as 72 h without damaging the epithelial cells, and paracellular transcytosis was observed. These results stressed the fact that internalization of commensal and mutualistic bacteria is a natural, nonpathogenic process that may be relevant in crosstalk processes between the intestinal populations and the host, and future studies could determine its connection to processes such as commensal tolerance, resilience of microbial populations or transorganic bacterial migration.
Collapse
|
161
|
Qiu J, Zhou C, Xiang S, Dong J, Zhu Q, Yin J, Lu X, Xiao Z. Association Between Trajectory Patterns of Body Mass Index Change Up to 10 Months and Early Gut Microbiota in Preterm Infants. Front Microbiol 2022; 13:828275. [PMID: 35572657 PMCID: PMC9093742 DOI: 10.3389/fmicb.2022.828275] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/28/2022] [Indexed: 11/23/2022] Open
Abstract
Recent research suggests that gut microbiota plays an important role in the occurrence and development of excessive weight and obesity, and the early-life gut microbiota may be correlated with weight gain and later growth. However, the association between neonatal gut microbiota, particularly in preterm infants, and excessive weight and obesity remains unclear. To evaluate the relationship between gut microbiota and body mass index (BMI) growth trajectories in preterm infants, we examined microbial composition by performing 16S rDNA gene sequencing on the fecal samples from 75 preterm infants within 3 months after birth who were hospitalized in the neonatal intensive care unit of Hunan Children’s Hospital from August 1, 2018 to October 31, 2019. Then, we collected their physical growth information during 0–10 months. Latent growth mixture models were used to estimate growth trajectories of infantile BMI, and the relationship between the gut microbiota and the BMI growth trajectories was analyzed. The results demonstrated that there were 63,305 and 61 operational taxonomic units in the higher BMI group (n = 18), the lower BMI group (n = 51), and the BMI catch-up group (n = 6), respectively. There were significant differences in the abundance of the gut microbiota, but no significant differences in the diversity of it between the lower and the higher BMI group. The BMI growth trajectories could not be clearly distinguished because principal component analysis showed that gut microbiota composition among these three groups was similar. The three groups were dominated by Firmicutes and Proteobacteria in gut microbiota composition, and the abundance of Lactobacillus in the higher BMI group was significantly different from the lower BMI group. Further intervention experiments and dynamic monitoring are needed to determine the causal relationship between gut microbiota differences and the BMI change.
Collapse
Affiliation(s)
- Jun Qiu
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Changci Zhou
- Academy of Pediatrics, Hengyang Medical School, University of South China, Hengyang, China
| | - Shiting Xiang
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Jie Dong
- Pediatrics Research Institute of Hunan Province, Hunan Children's Hospital, Changsha, China
| | - Qifeng Zhu
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Jieyun Yin
- School of Public Health, Medical College of Soochow University, Suzhou, China
| | - Xiulan Lu
- Department of Intensive Care Unit, Hunan Children's Hospital, Changsha, China
| | - Zhenghui Xiao
- Department of Intensive Care Unit, Hunan Children's Hospital, Changsha, China
| |
Collapse
|
162
|
Yan J, Chen Q, Tian L, Li K, Lai W, Bian L, Han J, Jia R, Liu X, Xi Z. Intestinal toxicity of micro- and nano-particles of foodborne titanium dioxide in juvenile mice: Disorders of gut microbiota-host co-metabolites and intestinal barrier damage. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153279. [PMID: 35074372 DOI: 10.1016/j.scitotenv.2022.153279] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/09/2022] [Accepted: 01/16/2022] [Indexed: 05/28/2023]
Abstract
The wide use of TiO2 particles in food and the high exposure risk to children have prompted research into the health risks of TiO2. We used the microbiome and targeted metabolomics to explore the potential mechanism of intestinal toxicity of foodborne TiO2 micro-/nanoparticles after oral exposure for 28 days in juvenile mice. Results showed that the gut microbiota-including the abundance of Bacteroides, Bifidobacterium, Lactobacillus, and Prevotella-changed dynamically during exposure. The organic inflammatory response was activated, and lipopolysaccharide levels increased. Intestinal toxicity manifested as increased mucosal permeability, impaired intestinal barrier, immune damage, and pathological changes. The expression of antimicrobial peptides, occludin, and ZO-1 significantly reduced, while that of JNK2 and Src/pSrc increased. Compared with micro-TiO2 particles, the nano-TiO2 particles had strong toxicity. Fecal microbiota transplant confirmed the key role of gut microbiota in intestinal toxicity. The levels of gut microbiota-host co-metabolites, including pyroglutamic acid, L-glutamic acid, phenylacetic acid, and 3-hydroxyphenylacetic acid, changed significantly. Significant changes were observed in the glutathione and propanoate metabolic pathways. There was a significant correlation between the changes in gut microbiota, metabolites, and intestinal cytokine levels. These, together with the intestinal barrier damage signaling pathway, constitute the network mechanism of the intestinal toxicity of TiO2 particles.
Collapse
Affiliation(s)
- Jun Yan
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Qi Chen
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Lei Tian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Kang Li
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Wenqing Lai
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Liping Bian
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Jie Han
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Rui Jia
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China
| | - Xiaohua Liu
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| | - Zhuge Xi
- Tianjin Institute of Environmental & Operational Medicine, No. 1, Dali Road, Heping District, Tianjin 300050, China.
| |
Collapse
|
163
|
Lan J, Chen C, Chen L, Liu P. Intestinal Microflora Provides Biomarkers for Infertile Women with Endometrial Polyps. Biomarkers 2022; 27:579-586. [PMID: 35546106 DOI: 10.1080/1354750x.2022.2077445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Endometrial polyps (EPs) are related to infertility; however, there are no biomarkers for identification. We evaluated changes in the intestinal microflora to identify microflora-based biomarkers that may be useful for detecting EPs. Intestinal specimens were prospectively collected from 100 women: 25 infertile women with EPs (InfEP + group), 25 infertile women without EPs (InfEP- group), and 50 healthy women (Fertile group). The microbiota composition was analyzed using 16S ribosomal RNA gene amplification and the intestinal expression of selected human genes using quantitative reverse transcription polymerase chain reaction. The InfEP + group had higher proportions of Prevotella, Streptococcus, Fusobacterium, Fenollaria, and Porphyromonas than the InfEP- and Fertile groups, while the Fertile group had higher proportions of Faecalibacterium, Bacteroides, and Blautia. We constructed a microbial dysbiosis index based on the intestinal microbiota at the genus level as a predictive model. The most accurate model to predict the presence of EPs was that including the Fertile and InfEP + groups (area under the curve: 0.89, 95% confidence interval: 0.79-0.96). The InfEP- and Fertile groups had significant differences in microflora composition compared with the InfEP + group. The intestinal microflora may be a useful biomarker for identifying EPs in infertile women.
Collapse
Affiliation(s)
- Jun Lan
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao North Road, Baiyun District, Guangzhou City 510000, Guangdong Province, China.,Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Dong Guan, 99 Zhenxing Road, Dongguan City, Guangdong Province, Dongguan, 523000, China
| | - Chunlin Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao North Road, Baiyun District, Guangzhou City 510000, Guangdong Province, China
| | - Ling Chen
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao North Road, Baiyun District, Guangzhou City 510000, Guangdong Province, China
| | - Ping Liu
- Department of Obstetrics and Gynecology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Dadao North Road, Baiyun District, Guangzhou City 510000, Guangdong Province, China
| |
Collapse
|
164
|
Takáčová M, Bomba A, Tóthová C, Micháľová A, Turňa H. Any Future for Faecal Microbiota Transplantation as a Novel Strategy for Gut Microbiota Modulation in Human and Veterinary Medicine? Life (Basel) 2022; 12:723. [PMID: 35629390 PMCID: PMC9146664 DOI: 10.3390/life12050723] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 04/28/2022] [Accepted: 05/10/2022] [Indexed: 11/16/2022] Open
Abstract
Alterations in the composition of the intestinal microbiome, also known as dysbiosis, are the result of many factors such as diet, antibiotics, stress, diseases, etc. There are currently several ways to modulate intestinal microbiome such as dietary modulation, the use of antimicrobials, prebiotics, probiotics, postbiotics, and synbiotics. Faecal microbiota transplantation (FMT) represents one new method of gut microbiota modulation in humans with the aim of reconstructing the intestinal microbiome of the recipient. In human medicine, this form of bacteriotherapy is successfully used in cases of recurrent Clostridium difficile infection (CDI). FMT has been known in large animal medicine for several years. In small animal medicine, the use of FMT is not part of normal practice.
Collapse
Affiliation(s)
- Martina Takáčová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alojz Bomba
- Prebiotix s.r.o., 024 01 Kysucké Nové Mesto, Slovakia
| | - Csilla Tóthová
- Clinic of Ruminants, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Alena Micháľová
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| | - Hana Turňa
- Small Animal Clinic, University of Veterinary Medicine and Pharmacy, 041 81 Košice, Slovakia
| |
Collapse
|
165
|
Du Y, Li H, Shao J, Wu T, Xu W, Hu X, Chen J. Adhesion and Colonization of the Probiotic Lactobacillus plantarum HC-2 in the Intestine of Litopenaeus Vannamei Are Associated With Bacterial Surface Proteins. Front Microbiol 2022; 13:878874. [PMID: 35535252 PMCID: PMC9076606 DOI: 10.3389/fmicb.2022.878874] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Surface proteins are a type of proteins expressed on the surface of bacteria that play an important role in cell wall synthesis, maintenance of cell morphology, and signaling with the host. Our previous study showed that the probiotic Lactobacillus plantarum HC-2 improved the growth performance and immune response of Litopenaeus vannamei. To further investigate the probiotic mechanism, we determined the automatic aggregation ability of the bacteria and surface hydrophobicity of HC-2 after being treated with 5 M of lithium chloride (LiCl) and observed the morphology and adhesion of the bacteria to HCT116 cells. The results showed that with the removal of the HC-2 surface protein, the auto-aggregation ability and surface hydrophobicity of HC-2 decreased, and the crude mucus layer coated on the bacterial surface gradually dissociated. The adhesion rate of HC-2 to HCT116 cells decreased from 98.1 to 20.9%. Moreover, a total of 201 unique proteins were identified from the mixture of the surface proteins by mass spectrometry (MS). Several proteins are involved in transcription and translation, biosynthetic or metabolic process, cell cycle or division, cell wall synthesis, and emergency response. Meanwhile, a quantitative real-time PCR qPCR_ showed that HC-2 was mainly colonized in the midgut of shrimp, and the colonization numbers were 15 times higher than that in the foregut, while the colonization rate in the hindgut was lower. The adhesion activity measurement showed that the adhesion level of HC-2 to crude intestinal mucus of L. vannamei was higher than that of bovine serum albumin (BSA) and collagen, and the adhesion capacity of the bacterial cells decreased with the extension of LiCl-treatment time. Finally, we identified the elongation factor Tu, Type I glyceraldehyde-3-phosphate dehydrogenase, small heat shock protein, and 30S ribosomal protein from the surface proteins, which may be the adhesion proteins of HC-2 colonization in the shrimp intestine. The above results indicate that surface proteins play an important role in maintaining the cell structure stability and cell adhesion. Surface proteomics analysis contributes to describing potential protein-mediated probiotic-host interactions. The identification of some interacting proteins in this work may be beneficial to further understand the adhesion/colonization mechanism and probiotic properties of L. plantarum HC-2 in the shrimp intestine.
Collapse
Affiliation(s)
- Yang Du
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hao Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jianchun Shao
- Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ting Wu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - WenLong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Xiaoman Hu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Ningbo University, Ningbo, China.,Laboratory of Biochemistry and Molecular Biology, School of Marine Sciences, Ningbo University, Ningbo, China.,Key Laboratory of Aquacultural Biotechnology of Ministry of Education, Ningbo University, Ningbo, China
| |
Collapse
|
166
|
Zhou S, Rajput AP, Mao T, Liu Y, Ellepola G, Herath J, Yang J, Meegaskumbura M. Adapting to Novel Environments Together: Evolutionary and Ecological Correlates of the Bacterial Microbiome of the World's Largest Cavefish Diversification (Cyprinidae, Sinocyclocheilus). Front Microbiol 2022; 13:823254. [PMID: 35359710 PMCID: PMC8964274 DOI: 10.3389/fmicb.2022.823254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 02/09/2022] [Indexed: 11/27/2022] Open
Abstract
The symbiosis between a host and its microbiome is essential for host fitness, and this association is a consequence of the host’s physiology and habitat. Sinocyclocheilus, the largest cavefish diversification of the world, an emerging multi-species model system for evolutionary novelty, provides an excellent opportunity for examining correlates of host evolutionary history, habitat, and gut-microbial community diversity. From the diversification-scale patterns of habitat occupation, major phylogenetic clades (A–D), geographic distribution, and knowledge from captive-maintained Sinocyclocheilus populations, we hypothesize habitat to be the major determinant of microbiome diversity, with phylogeny playing a lesser role. For this, we subject environmental water samples and fecal samples (representative of gut-microbiome) from 24 Sinocyclocheilus species, both from the wild and after being in captivity for 6 months, to bacterial 16S rRNA gene profiling using Illumina sequencing. We see significant differences in the gut microbiota structure of Sinocyclocheilus, reflective of the three habitat types; gut microbiomes too, were influenced by host-related factors. There is no significant association between the gut microbiomes and host phylogeny. However, there is some microbiome related structure at the clade level, with the most geographically distant clades (A and D) being the most distinct, and the two overlapping clades (B and C) showing similarities. Microbes inhabiting water were not a cause for significant differences in fish-gut microbiota, but water quality parameters were. Transferring from wild to captivity, the fish microbiomes changed significantly and became homogenized, signifying plastic changes and highlighting the importance of environmental factors (habitat) in microbiome community assembly. The core microbiome of this group, at higher taxonomic scale, resembled that of other teleost fishes. Our results suggest that divergent natural environments giving rise to evolutionary novelties underlying host adaptations, also includes the microbiome of these fishes.
Collapse
Affiliation(s)
- Shipeng Zhou
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Amrapali P Rajput
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Tingru Mao
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Yewei Liu
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Gajaba Ellepola
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jayampathi Herath
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jian Yang
- Key Laboratory of Environment Change and Resources Use in Beibu Gulf, Nanning Normal University, Nanning, China
| | - Madhava Meegaskumbura
- Eco-Evo-Devo Laboratory, Guangxi Key Laboratory in Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| |
Collapse
|
167
|
Kimble R, Gouinguenet P, Ashor A, Stewart C, Deighton K, Matu J, Griffiths A, Malcomson FC, Joel A, Houghton D, Stevenson E, Minihane AM, Siervo M, Shannon OM, Mathers JC. Effects of a mediterranean diet on the gut microbiota and microbial metabolites: A systematic review of randomized controlled trials and observational studies. Crit Rev Food Sci Nutr 2022; 63:8698-8719. [PMID: 35361035 DOI: 10.1080/10408398.2022.2057416] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Consumption of the Mediterranean dietary pattern (MedDiet) is associated with reduced risk of numerous non-communicable diseases. Modulation of the composition and metabolism of the gut microbiota represents a potential mechanism through which the MedDiet elicits these effects. We conducted a systematic literature search (Prospero registration: CRD42020168977) using PubMed, The Cochrane Library, MEDLINE, SPORTDiscuss, Scopus and CINAHL databases for randomized controlled trials (RCTs) and observational studies exploring the impact of a MedDiet on gut microbiota composition (i.e., relative abundance of bacteria or diversity metrics) and metabolites (e.g., short chain fatty acids). Seventeen RCTs and 17 observational studies were eligible for inclusion in this review. Risk of bias across the studies was mixed but mainly identified as low and unclear. Overall, RCTs and observational studies provided no clear evidence of a consistent effect of a MedDiet on composition or metabolism of the gut microbiota. These findings may be related to the diverse methods across studies (e.g., MedDiet classification and analytical techniques), cohort characteristics, and variable quality of studies. Further, well-designed studies are warranted to advance understanding of the potential effects of the MedDiet using more detailed examination of microbiota and microbial metabolites with reference to emerging characteristics of a healthy gut microbiome.
Collapse
Affiliation(s)
- Rachel Kimble
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Phebee Gouinguenet
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
- Nutrition & Food Sciences, University of Bordeaux, Bordeaux, France
| | - Ammar Ashor
- Department of Pharmacology, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq
| | - Christopher Stewart
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | | | - Jamie Matu
- School of Clinical Applied Sciences, Leeds Beckett University, Leeds, UK
| | - Alex Griffiths
- Institute for Sport, Physical Activity & Leisure, Leeds Beckett University, Leeds, UK
| | - Fiona C Malcomson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Abraham Joel
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - David Houghton
- Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Emma Stevenson
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Anne Marie Minihane
- Department of Nutrition and Preventive Medicine, Norwich Medical School, University of East Anglia (UEA), Norwich, UK
| | - Mario Siervo
- School of Life Sciences, The University of Nottingham Medical School, Queen's Medical Centre, Nottingham, UK
| | - Oliver M Shannon
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - John C Mathers
- Human Nutrition Research Centre, Centre for Healthier Lives, Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
168
|
Linh H, Iwata Y, Senda Y, Sakai-Takemori Y, Nakade Y, Oshima M, Yoneda-Nakagawa S, Ogura H, Sato K, Minami T, Kitajima S, Toyama T, Yamamura Y, Miyakawa T, Hara A, Shimizu M, Furuichi K, Sakai N, Yamada H, Asanuma K, Matsushima K, Wada T. Intestinal Bacterial Translocation Contributes to Diabetic Kidney Disease. J Am Soc Nephrol 2022; 33:1105-1119. [PMID: 35264456 PMCID: PMC9161796 DOI: 10.1681/asn.2021060843] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 02/22/2022] [Indexed: 11/03/2022] Open
Abstract
Background In recent years, many studies have focused on the intestinal environment to elucidate pathogenesis of various diseases, including kidney diseases. Impairment of the intestinal barrier function, the "leaky gut," reportedly contributes to pathological processes in some disorders. Mitochondrial antiviral signaling protein (MAVS), a component of innate immunity, maintains intestinal integrity. The effects of disrupted intestinal homeostasis associated with MAVS signaling in diabetic kidney disease remains unclear. Methods To evaluate the contribution of intestinal barrier impairment to kidney injury under diabetic conditions, we induced diabetic kidney disease in wild-type and MAVS knockout mice through unilateral nephrectomy and streptozotocin treatment. We then assessed effects on the kidney, intestinal injuries, and bacterial translocation. Results MAVS knockout diabetic mice showed more severe glomerular and tubular injuries compared with wild-type diabetic mice. Owing to impaired intestinal integrity, the presence of intestine-derived Klebsiella oxytoca and elevated IL-17 were detected in the circulation and kidneys of diabetic mice, especially in diabetic MAVS knockout mice. Stimulation of tubular epithelial cells with K. oxytoca activated MAVS pathways and the phosphorylation of Stat3 and ERK1/2, leading to the production of kidney injury molecule-1 (KIM-1). Nevertheless, MAVS inhibition induced inflammation in the intestinal epithelial cells and KIM-1 production in tubular epithelial cells under K. oxytoca supernatant or IL-17 stimulation. Treatment with neutralizing anti-IL-17 antibody treatment had renoprotective effects. In contrast, lipopolysaccharide administration accelerated kidney injury in the murine diabetic kidney disease model. Conclusions Impaired MAVS signaling both in the kidney and intestine contributes to the disrupted homeostasis, leading to diabetic kidney disease progression. Controlling intestinal homeostasis may offer a novel therapeutic approach for this condition.
Collapse
Affiliation(s)
- Hoang Linh
- H Linh, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yasunori Iwata
- Y Iwata, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yasuko Senda
- Y Senda, Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Yukiko Sakai-Takemori
- Y Sakai-Takemori, Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Yusuke Nakade
- Y Nakade, Division of Infection Control, Kanazawa University Hospital, Kanazawa, Japan
| | - Megumi Oshima
- M Oshima, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shiori Yoneda-Nakagawa
- S Yoneda-Nakagawa, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hisayuki Ogura
- H Ogura, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Koichi Sato
- K Sato, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Taichiro Minami
- T Minami, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Shinji Kitajima
- S Kitajima, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Tadashi Toyama
- T Toyama, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Yuta Yamamura
- Y Yamamura, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Taro Miyakawa
- T Miyakawa, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Akinori Hara
- A Hara, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Miho Shimizu
- M Shimizu, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Kengo Furuichi
- K Furuichi, Division of Nephrology, Kanazawa Medical University School of Medicine Graduate School of Medicine, Kahoku-gun, Japan
| | - Norihiko Sakai
- N Sakai, Department of Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| | - Hiroyuki Yamada
- H Yamada, Department of Nephrology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Katsuhiko Asanuma
- K Asanuma, Department of Nephrology, Chiba University Graduate School of Medicine School of Medicine, Chiba, Japan
| | - Kouji Matsushima
- K Matsushima, Division of Molecular Regulation of Inflammatory and Immune Diseases, Research Institute of Biomedical Sciences, Tokyo University of Science, Shinjuku-ku, Japan
| | - Takashi Wada
- T Wada, Nephrology and Laboratory Medicine, Kanazawa University, Kanazawa, Japan
| |
Collapse
|
169
|
Droz L, Jannel R, Rupprecht CDD. Living through multispecies societies: Approaching the microbiome with Imanishi Kinji. ENDEAVOUR 2022; 46:100814. [PMID: 35697549 DOI: 10.1016/j.endeavour.2022.100814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 09/03/2021] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Recent research about the microbiome points to a picture in which we, humans, are 'living through' nature, and nature itself is living in us. Our bodies are hosting-and depend on-the multiple species that constitute human microbiota. This article will discuss current research on the microbiome through the ideas of Japanese ecologist Imanishi Kinji (1902-1992). First, some of Imanishi's key ideas regarding the world of living beings and multispecies societies are presented. Second, seven types of relationships concerning the human microbiome, human beings, and the environment are explored. Third, inspired by Imanishi's work, this paper develops the idea of dynamic, porous, and complex multispecies societies in which different living beings or species are codependent on others, including microbiota and human beings.
Collapse
Affiliation(s)
- Laÿna Droz
- Basque Center for Climate Change, Spain.
| | - Romaric Jannel
- Kyoto University, Institute for Research in Humanities, Japan.
| | - Christoph D D Rupprecht
- Ehime Daigaku, Faculty of Collaborative Regional Innovation, Department of Environmental Design, Matsuyama, Ehime, Japan.
| |
Collapse
|
170
|
Imdad S, Lim W, Kim JH, Kang C. Intertwined Relationship of Mitochondrial Metabolism, Gut Microbiome and Exercise Potential. Int J Mol Sci 2022; 23:ijms23052679. [PMID: 35269818 PMCID: PMC8910986 DOI: 10.3390/ijms23052679] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 02/25/2022] [Accepted: 02/25/2022] [Indexed: 02/04/2023] Open
Abstract
The microbiome has emerged as a key player contributing significantly to the human physiology over the past decades. The potential microbial niche is largely unexplored in the context of exercise enhancing capacity and the related mitochondrial functions. Physical exercise can influence the gut microbiota composition and diversity, whereas a sedentary lifestyle in association with dysbiosis can lead to reduced well-being and diseases. Here, we have elucidated the importance of diverse microbiota, which is associated with an individual's fitness, and moreover, its connection with the organelle, the mitochondria, which is the hub of energy production, signaling, and cellular homeostasis. Microbial by-products, such as short-chain fatty acids, are produced during regular exercise that can enhance the mitochondrial capacity. Therefore, exercise can be employed as a therapeutic intervention to circumvent or subside various metabolic and mitochondria-related diseases. Alternatively, the microbiome-mitochondria axis can be targeted to enhance exercise performance. This review furthers our understanding about the influence of microbiome on the functional capacity of the mitochondria and exercise performance, and the interplay between them.
Collapse
Affiliation(s)
- Saba Imdad
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
| | - Wonchung Lim
- Department of Sports Medicine, College of Health Science, Cheongju University, Cheongju 28503, Korea;
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea
- Correspondence: (J.-H.K.); (C.K.)
| | - Chounghun Kang
- Molecular Metabolism in Health & Disease, Exercise Physiology Laboratory, Sport Science Research Institute, Inha University, Incheon 22212, Korea;
- Department of Physical Education, College of Education, Inha University, Incheon 22212, Korea
- Correspondence: (J.-H.K.); (C.K.)
| |
Collapse
|
171
|
Foolchand A, Ghazi T, Chuturgoon AA. Malnutrition and Dietary Habits Alter the Immune System Which May Consequently Influence SARS-CoV-2 Virulence: A Review. Int J Mol Sci 2022; 23:2654. [PMID: 35269795 PMCID: PMC8910702 DOI: 10.3390/ijms23052654] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
COVID-19, resulting from the SARS-CoV-2 virus, is a major pandemic that the world is fighting. SARS-CoV-2 primarily causes lung infection by attaching to the ACE2 receptor on the alveolar epithelial cells. However, the ACE2 receptor is also present in intestinal epithelial cells, suggesting a link between nutrition, virulence and clinical outcomes of COVID-19. Respiratory viral infections perturb the gut microbiota. The gut microbiota is shaped by our diet; therefore, a healthy gut is important for optimal metabolism, immunology and protection of the host. Malnutrition causes diverse changes in the immune system by repressing immune responses and enhancing viral vulnerability. Thus, improving gut health with a high-quality, nutrient-filled diet will improve immunity against infections and diseases. This review emphasizes the significance of dietary choices and its subsequent effects on the immune system, which may potentially impact SARS-CoV-2 vulnerability.
Collapse
Affiliation(s)
| | | | - Anil A. Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Science, College of Health Sciences, Howard College Campus, University of Kwa-Zulu Natal, Durban 4041, South Africa; (A.F.); (T.G.)
| |
Collapse
|
172
|
Hughey MC, Rebollar EA, Harris RN, Ibáñez R, Loftus SC, House LL, Minbiole KPC, Bletz MC, Medina D, Shoemaker WR, Swartwout MC, Belden LK. An experimental test of disease resistance function in the skin-associated bacterial communities of three tropical amphibian species. FEMS Microbiol Ecol 2022; 98:6536914. [PMID: 35212765 DOI: 10.1093/femsec/fiac023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 02/10/2022] [Accepted: 02/23/2022] [Indexed: 11/14/2022] Open
Abstract
Variation in the structure of host-associated microbial communities has been correlated with the occurrence and severity of disease in diverse host taxa, suggesting a key role of the microbiome in pathogen defense. However, whether these correlations are typically a cause or consequence of pathogen exposure remains an open question, and requires experimental approaches to disentangle. In amphibians, infection by the fungal pathogen Batrachochytrium dendrobatidis (Bd) alters the skin microbial community in some host species, whereas in other species, the skin microbial community appears to mediate infection dynamics. In this study, we completed experimental Bd exposures in three species of tropical frogs (Agalychnis callidryas, Dendropsophus ebraccatus, Craugastor fitzingeri) that were sympatric with Bd at the time of the study. For all three species, we identified key taxa within the skin bacterial communities that were linked to Bd infection dynamics. We also measured higher Bd infection intensities in D. ebraccatus and C. fitzingeri that were associated with higher mortality in C. fitzingeri. Our findings indicate that microbially-mediated pathogen resistance is a complex trait that can vary within and across host species, and suggest that symbiont communities that have experienced prior selection for defensive microbes may be less likely to be disturbed by pathogen exposure.
Collapse
Affiliation(s)
- Myra C Hughey
- Biology Department; Vassar College; 124 Raymond Avenue; Poughkeepsie, NY 12604; USA
| | - Eria A Rebollar
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, México
| | - Reid N Harris
- Department of Biology, James Madison University, Harrisonburg, VA, USA
| | - Roberto Ibáñez
- Smithsonian Tropical Research Institute, Panamá, Republic of Panama. Sistema Nacional de Investigación, SENACYT, Panamá, Republic of Panama
| | | | | | | | - Molly C Bletz
- Department of Biology, University of Massachusetts Amherst, Amherst, MA, USA
| | | | - William R Shoemaker
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles, CA, USA
| | | | - Lisa K Belden
- Department of Biological Sciences, VA Tech, Blacksburg, VA, USA
| |
Collapse
|
173
|
Lan H, Liu WH, Zheng H, Feng H, Zhao W, Hung WL, Li H. Bifidobacterium lactis BL-99 protects mice with osteoporosis caused by colitis via gut inflammation and gut microbiota regulation. Food Funct 2022; 13:1482-1494. [PMID: 35060590 DOI: 10.1039/d1fo02218k] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Patients diagnosed with inflammatory bowel disease or related conditions also frequently suffer from osteoporosis as a consequence of changes in the intestinal microenvironment and consequent dysbiosis. We hypothesized that anti-inflammatory probiotic treatment would be sufficient to alleviate intestinal inflammation and thereby prevent the development of osteoporosis. To that end, the ability of Bifidobacterium lactis BL-99 administration to protect against bone loss in an experimental model of dextran sodium sulfate-induced ulcerative colitis (UC) was analyzed, and the underlying molecular mechanisms were interrogated in detail. The results of these analyses revealed that BL-99 administration suppressed colitis-associated weight loss (P < 0.05), disease activity index scores, and the production of proinflammatory cytokines (TNF-α, IL-1β, IL-6, and IL-17) (P < 0.05). Colon tissue pathological sections similarly revealed BL-99-mediated reductions in tissue injury severity. Micro-computed tomography (Micro-CT) analyses further exhibited significant improvements in percent bone volume (BV/TV) as well as trabecular number and thickness in BL-99-treated animals (P < 0.05). Such probiotic supplementation also resulted in pronounced changes in the composition of the gut microbiota. Moreover, BL-99 intervention markedly increased the expression of intestinal barrier-related proteins (Claudin-1, MUC2, ZO-1, and Occludin). Together, these results suggest that BL-99 can be utilized as a beneficial probiotic preparation to prevent the incidence of osteoporosis in UC patients owing to its ability to shape the intestinal microflora and to suppress inflammatory cytokine production.
Collapse
Affiliation(s)
- Hui Lan
- School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.
| | - Wei-Hsien Liu
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Hanying Zheng
- School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.
| | - Haotian Feng
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Wen Zhao
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Wei-Lian Hung
- Inner Mongolia Yili Industrial Group Co., Ltd., Hohhot 010110, Inner Mongolia, China.
| | - Hongwei Li
- School of Public Health, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
174
|
Somathilaka SS, Martins DP, Barton W, O'Sullivan O, Cotter PD, Balasubramaniam S. A Graph-based Molecular Communications Model Analysis of the Human Gut Bacteriome. IEEE J Biomed Health Inform 2022; 26:3567-3577. [PMID: 35120016 DOI: 10.1109/jbhi.2022.3148672] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Alterations in the human Gut Bacteriome (GB) can be associated with human health issues, such as type-2 diabetes and obesity. Both external and internal factors can drive changes in the composition and in interactions of the human GB, impacting negatively on the host cells. This paper focuses on the human GB metabolism and proposes a two-layer network system to investigate its dynamics. Furthermore, we develop an in-silico simulation model (virtual GB), allowing us to study the impact of the metabolite exchange through molecular communications in the human GB network system. Our results show that regulation of molecular inputs strongly affect bacterial population growth and create an unbalanced network, as shown by shifts in the node weights based on the produced molecular signals. Additionally, we show that the metabolite molecular communication production is greatly affected when directly manipulating the composition of the human GB network in the virtual GB. These results indicate that our human GB interaction model can help to identify hidden behaviors of the human GB depending on molecular signal interactions. Moreover, the virtual GB can support the research and development of novel medical treatments based on the accurate control of bacterial population growth and exchange of metabolites.
Collapse
|
175
|
Wu J, Tian S, Luo K, Zhang Y, Pan H, Zhang W, Mai K. Dietary recombinant human lysozyme improves the growth, intestinal health, immunity and disease resistance of Pacific white shrimp Litopenaeus vannamei. FISH & SHELLFISH IMMUNOLOGY 2022; 121:39-52. [PMID: 34983003 DOI: 10.1016/j.fsi.2021.12.052] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
The present study was conducted to investigate the effects of dietary recombinant human lysozyme (RHL) on the growth, immune response, anti-oxidative activity, intestinal morphology, intestinal microflora and disease resistance of shrimp Litopenaeus vannamei. Shrimps with an initial body weight of 2.36 ± 0.02 g were fed diets supplemented with 0 (control group, R0), 0.0025% (R1), 0.005% (R2), 0.01% (R3), 0.02% (R4) and 0.04% (R5) of RHL, respectively. After a 10-week feeding trial, the final body weight, survival rate, weight gain ratio and protein efficiency rate of the shrimps in dietary RHL supplemented groups were significantly higher than that in the control group, while feed conversion ratio was significantly lower (P < 0.05). The total haemocyte count, total anti-oxidative capacity, respiratory burst, activities of phagocytosis, nitric oxide synthase, phenol oxidase and lysozyme in serum were significantly higher in dietary RHL supplemented groups than those in the control group (P < 0.05). Meanwhile, the intestinal pile height and wall thickness were significantly higher in dietary RHL supplemented groups than those in the control group (P < 0.05). Dietary RHL significantly improved the expressions of immune-related genes in gill, such as lipopolysaccharide-β-glucan binding protein, Toll, immune deficiency, heat shock protein 70 and Crustin (P < 0.05). The abundance of proteobacteria and bacteroidetes in intestine was higher, while the abundance of firmicutes and cyanobacteria was lower than those in the control group at the phylum level. In addition, dietary RHL supplementation significantly improved the protective ability of shrimp against V. parahaemolyticus infection (P < 0.05). Based on the broken-line model analysis for weight gain ratio after the feeding trial, the optimal level of dietary RHL supplementation for shrimp was estimated to be 0.006375%.
Collapse
Affiliation(s)
- Jing Wu
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, China; The Key Laboratory of Mariculture, Ministry of Education, China; Ocean University of China, Qingdao, 266003, China
| | - Shuangjie Tian
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, China; The Key Laboratory of Mariculture, Ministry of Education, China; Ocean University of China, Qingdao, 266003, China
| | - Kai Luo
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, China; The Key Laboratory of Mariculture, Ministry of Education, China; Ocean University of China, Qingdao, 266003, China
| | - Yanjiao Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, China; The Key Laboratory of Mariculture, Ministry of Education, China; Ocean University of China, Qingdao, 266003, China
| | - Hongtao Pan
- Zhejiang Aegis Biotech Co., Ltd., Jinghua, 322200, China
| | - Wenbing Zhang
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, China; The Key Laboratory of Mariculture, Ministry of Education, China; Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China.
| | - Kangsen Mai
- The Key Laboratory of Aquaculture Nutrition and Feeds, Ministry of Agriculture and Rural Affairs, China; The Key Laboratory of Mariculture, Ministry of Education, China; Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Wen Hai Road, Qingdao, 266237, China
| |
Collapse
|
176
|
Li H, Lu L, Chen R, Li S, Xu D. Exploring Sexual Dimorphism in the Intestinal Microbiota of the Yellow Drum ( Nibea albiflora, Sciaenidae). Front Microbiol 2022; 12:808285. [PMID: 35069512 PMCID: PMC8767002 DOI: 10.3389/fmicb.2021.808285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/06/2021] [Indexed: 11/13/2022] Open
Abstract
Most of fish species exhibit striking sexual dimorphism, particularly during growth. There are also sexual dimorphisms of internal organs and biological functions, including those of intestinal microbiota, which likely plays a key role in growth. In this study, the growth and intestinal microbiota of the female, male, and all-female Nibea albiflora (yellow drums) were comprehensively analyzed. The caged culture female and all-female yellow drums showed higher growth rates than males. A further analysis of the intestinal microbiota showed a significant difference in diversity between females and males in the summer, whereas there were no significant differences in the diversity and richness between females and males in the winter. In contrast, a significant difference in richness was observed between all-female and male fish, regardless of the season. Although the main composition of the intestinal microbiota showed no significant sex differences, the community structure of the intestinal microbiota of yellow drums did. Furthermore, the correlations between intestinal microbial communities are likely to be influenced by sex. The ecological processes of the intestinal microbial communities of the yellow drums showed clear sexual dimorphism. Further network analysis revealed that, although the main components of the network in the intestinal microbiota of female, male, and all-female fish were similar, the network structures showed significant sex differences. The negative interactions among microbial species were the dominant relationships in the intestinal ecosystem, and Bacteroidetes, Firmicutes, and Proteobacteria were identified as the functional keystone microbes. In addition, the functional pathways in the intestinal microbiota of yellow drums showed no significant sexual or seasonal differences. Based on the findings of this study, we gain a comprehensive understanding of the interactions between sex, growth, and intestinal microbiota in yellow drums.
Collapse
Affiliation(s)
- Haidong Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Lei Lu
- School of Fishery, Zhejiang Ocean University, Zhoushan, China.,Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Ruiyi Chen
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| | - Shanshan Li
- School of Fishery, Zhejiang Ocean University, Zhoushan, China
| | - Dongdong Xu
- Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan, China
| |
Collapse
|
177
|
van der Goot E, Vink SN, van Vliet D, van Spronsen FJ, Falcao Salles J, van der Zee EA. Gut-Microbiome Composition in Response to Phenylketonuria Depends on Dietary Phenylalanine in BTBR Pah enu2 Mice. Front Nutr 2022; 8:735366. [PMID: 35059423 PMCID: PMC8763796 DOI: 10.3389/fnut.2021.735366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/17/2021] [Indexed: 01/03/2023] Open
Abstract
Phenylketonuria (PKU) is a metabolic disorder caused by a hepatic enzyme deficiency causing high blood and brain levels of the amino acid Phenylalanine (Phe), leading to severe cognitive and psychological deficits that can be prevented, but not completely, by dietary treatment. The behavioral outcome of PKU could be affected by the gut-microbiome-brain axis, as diet is one of the major drivers of the gut microbiome composition. Gut-microbiome alterations have been reported in treated patients with PKU, although the question remains whether this is due to PKU, the dietary treatment, or their interaction. We, therefore, examined the effects of dietary Phe restriction on gut-microbiome composition and relationships with behavioral outcome in mice. Male and female BTBR Pahenu2 mice received either a control diet (normal protein, “high” Phe), liberalized Phe-restricted (33% natural protein restriction), or severe Phe-restricted (75% natural protein restriction) diet with protein substitutes for 10 weeks (n = 14 per group). Their behavioral performance was examined in an open field test, novel and spatial object location tests, and a balance beam. Fecal samples were collected and sequenced for the bacterial 16S ribosomal RNA (rRNA) region. Results indicated that PKU on a high Phe diet reduced Shannon diversity significantly and altered the microbiome composition compared with wild-type animals. Phe-restriction prevented this loss in Shannon diversity but changed community composition even more than the high-Phe diet, depending on the severity of the restriction. Moreover, on a taxonomic level, we observed the highest number of differentially abundant genera in animals that received 75% Phe-restriction. Based on correlation analyses with differentially abundant taxa, the families Entereococacceae, Erysipelotrichaceae, Porphyromonadaceae, and the genus Alloprevotella showed interesting relationships with either plasma Phe levels and/or object memory. According to our results, these bacterial taxa could be good candidates to start examining the microbial metabolic potential and probiotic properties in the context of PKU. We conclude that PKU leads to an altered gut microbiome composition in mice, which is least severe on a liberalized Phe-restricted diet. This may suggest that the current Phe-restricted diet for PKU patients could be optimized by taking dietary effects on the microbiome into account.
Collapse
Affiliation(s)
- Els van der Goot
- Molecular Neurobiology, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands.,Microbial Ecology Cluster, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| | - Stefanie N Vink
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| | - Danique van Vliet
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Francjan J van Spronsen
- Department of Pediatrics, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, Netherlands
| | - Joana Falcao Salles
- Microbial Ecology Cluster, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| | - Eddy A van der Zee
- Molecular Neurobiology, Groningen Institute for Evolutionary Sciences, University of Groningen, Groningen, Netherlands
| |
Collapse
|
178
|
Koyun OY, Callaway TR, Nisbet DJ, Anderson RC. Innovative Treatments Enhancing the Functionality of Gut Microbiota to Improve Quality and Microbiological Safety of Foods of Animal Origin. Annu Rev Food Sci Technol 2022; 13:433-461. [DOI: 10.1146/annurev-food-100121-050244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gastrointestinal tract, or gut, microbiota is a microbial community containing a variety of microorganisms colonizing throughout the gut that plays a crucial role in animal health, growth performance, and welfare. The gut microbiota is closely associated with the quality and microbiological safety of foods and food products originating from animals. The gut microbiota of the host can be modulated and enhanced in ways that improve the quality and safety of foods of animal origin. Probiotics—also known as direct-fed microbials—competitive exclusion cultures, prebiotics, and synbiotics have been utilized to achieve this goal. Reducing foodborne pathogen colonization in the gut prior to slaughter and enhancing the chemical, nutritional, or sensory characteristics of foods (e.g., meat, milk, and eggs) are two of many positive outcomes derived from the use of these competitive enhancement–based treatments in food-producing animals. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Osman Y. Koyun
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - Todd R. Callaway
- Department of Animal and Dairy Science, University of Georgia, Athens, Georgia, USA
| | - David J. Nisbet
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| | - Robin C. Anderson
- Food and Feed Safety Research Unit, Southern Plains Agricultural Research Center, Agricultural Research Service, United States Department of Agriculture, College Station, Texas, USA
| |
Collapse
|
179
|
Aganetti MA, Cruz CS, Galvão I, Engels DF, Ricci MF, Vieira AT. The Gut Microbiota and Immunopathophysiology. COMPREHENSIVE PHARMACOLOGY 2022:492-514. [DOI: 10.1016/b978-0-12-820472-6.00128-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
180
|
New Concepts of the Interplay Between the Gut Microbiota and the Enteric Nervous System in the Control of Motility. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1383:55-69. [PMID: 36587146 DOI: 10.1007/978-3-031-05843-1_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Propulsive gastrointestinal (GI) motility is critical for digestive physiology and host defense. GI motility is finely regulated by the intramural reflex pathways of the enteric nervous system (ENS). The ENS is in turn regulated by luminal factors: diet and the gut microbiota. The gut microbiota is a vast ecosystem of commensal bacteria, fungi, viruses, and other microbes. The gut microbiota not only regulates the motor programs of the ENS but also is critical for the normal structure and function of the ENS. In this chapter, we highlight recent research that has shed light on the microbial mechanisms of interaction with the ENS involved in the control of motility. Toll-like receptor signaling mechanisms have been shown to maintain the structural integrity of the ENS and the neurochemical phenotypes of enteric neurons, in part through the production of trophic factors including glia-derived neurotrophic factor. Microbiota-derived short-chain fatty acids and/or single-stranded RNA regulates the synthesis of serotonin in enterochromaffin cells, which are involved in the initiation of enteric reflexes, among other functions. Further evidence suggests a crucial role for microbial modulation of serotonin in maintaining the integrity of the ENS through enteric neurogenesis. Understanding the microbial pathways of enteric neural control sheds new light on digestive health and provides novel treatment strategies for GI motility disorders.
Collapse
|
181
|
Yin XQ, An YX, Yu CG, Ke J, Zhao D, Yu K. The Association Between Fecal Short-Chain Fatty Acids, Gut Microbiota, and Visceral Fat in Monozygotic Twin Pairs. Diabetes Metab Syndr Obes 2022; 15:359-368. [PMID: 35153497 PMCID: PMC8828081 DOI: 10.2147/dmso.s338113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 01/11/2022] [Indexed: 12/29/2022] Open
Abstract
PURPOSE To examine the association of short-chain fatty acids (SCFAs), gut microbiota and obesity in individual twins and to control for genetic and shared environmental effects by studying monozygotic intrapair differences. PATIENTS AND METHODS The study recruited 20 pairs of monozygotic twins. Body composition measurements were performed by using the multi-frequency bioelectrical impedance technique. SCFAs were extracted from feces and quantified by gas chromatography-mass spectrometer. Gut microbiota was evaluated by 16S rRNA gene sequencing. RESULTS Fecal SCFAs were negatively correlated with adiposity parameters including body mass index, visceral adipose tissue and waist circumference (all P < 0.05). Metastat analysis showed that the top 5 relatively abundant bacterial taxa of viscerally obese and non-obese groups were Bacteroides, Collinsella, Eubacterium rectale group, Lachnoclostridium, and Tyzzerella. Participants with visceral obesity had lower abundance of Bacteroides and Collinsella compared to non-obese patients (P < 0.05). Among them, the abundance of Collinsella was positively correlated with acetic acid concentrations (r = 0.63, P = 0.011). There were no significant intrapair differences in each SCFA concentrations between the twins in our study (P > 0.05). CONCLUSION Low fecal concentrations of SCFAs were associated with visceral obesity, and the gut microbiota might be involved in the underlying mechanism.
Collapse
Affiliation(s)
- Xing-Qi Yin
- Center for Endocrine Metabolism and Immune Diseases, Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ya-Xin An
- Center for Endocrine Metabolism and Immune Diseases, Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Cai-Guo Yu
- Center for Endocrine Metabolism and Immune Diseases, Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Jing Ke
- Center for Endocrine Metabolism and Immune Diseases, Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Dong Zhao
- Center for Endocrine Metabolism and Immune Diseases, Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
| | - Ke Yu
- Center for Endocrine Metabolism and Immune Diseases, Luhe Hospital, Capital Medical University, Beijing, People’s Republic of China
- Correspondence: Ke Yu, Center for Endocrine Metabolism and Immune Diseases, Luhe Hospital, Capital Medical University, No. 82, Xinhua South Road, Tongzhou District, Beijing, People’s Republic of China, Tel +86 13811657618, Email
| |
Collapse
|
182
|
Wan Y, Zuo T. OUP accepted manuscript. Gastroenterol Rep (Oxf) 2022; 10:goac009. [PMID: 35401987 PMCID: PMC8991093 DOI: 10.1093/gastro/goac009] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/15/2021] [Accepted: 01/21/2022] [Indexed: 11/21/2022] Open
Abstract
The gut microbiota is considered a key ‘metabolic organ’. Its metabolic activities play essential roles complementary to the host metabolic functions. The interplays between gut microbes and commonly used non-antibiotic drugs have garnered substantial attention over the years. Drugs can reshape the gut microorganism communities and, vice versa, the diverse gut microbes can affect drug efficacy by altering the bioavailability and bioactivity of drugs. The metabolism of drugs by gut microbial action or by microbiota–host cometabolism can transform the drugs into various metabolites. Secondary metabolites produced from the gut microbial metabolism of drugs contribute to both the therapeutic benefits and the side effects. In view of the significant effect of the gut microbiota on drug efficiency and clinical outcomes, it is pivotal to explore the interactions between drugs and gut microbiota underlying medical treatments. In this review, we describe and summarize the complex bidirectional interplays between gut microbes and drugs. We also illustrate the gut-microbiota profile altered by non-antibiotic drugs, the impacts and consequences of microbial alteration, and the biochemical mechanism of microbes impacting drug effectiveness. Understanding how the gut microbes interact with drugs and influence the therapeutic efficacy will help in discovering diverse novel avenues of regulating the gut microbes to improve the therapeutic effects and clinical outcomes of a drug in precision.
Collapse
Affiliation(s)
- Yating Wan
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, P. R. China
| | - Tao Zuo
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Center for Gut Microbiota Research, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
- Corresponding author. Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, 26 Yuancun Erheng Road, Guangzhou, Guangdong 510655, P. R. China. Tel: +86-13242077365;
| |
Collapse
|
183
|
Ericsson AC, Bains M, McAdams Z, Daniels J, Busi SB, Waschek JA, Dorsam GP. The G Protein-Coupled Receptor, VPAC1, Mediates Vasoactive Intestinal Peptide-Dependent Functional Homeostasis of the Gut Microbiota. GASTRO HEP ADVANCES 2022; 1:253-264. [PMID: 36910129 PMCID: PMC9997614 DOI: 10.1016/j.gastha.2021.11.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
BACKGROUND AND AIMS Vasoactive intestinal peptide (VIP) is a neuropeptide involved in the regulation of feeding behavior and circadian rhythms, metabolism, and immunity. Previous studies revealed the homeostatic effects of VIP signaling on the gut microbiota. VIP-deficient mice demonstrate a gut microbiota dysbiosis characterized by reduced α-diversity and decreased relative abundance (RA) of Gram-positive Firmicutes. However, the mechanism by which VIP signaling affects changes in the microbiota is unknown. METHODS To investigate the role of the 2 cognate G protein-coupled receptors for VIP (VPAC1 and VPAC2) in VIP-mediated homeostasis of the microbiota, fecal samples from VPAC1- and VPAC2-deficient, heterozygous, and wild-type littermate mice were assessed via targeted amplicon sequencing. Their microbiota profiles were additionally compared with microbiota from VIP-deficient, heterozygous, and wild-type littermates, where genotype-dependent changes in the composition and predicted function of each cohort were compared. RESULTS While wild-type mice in each line differed in α-diversity and β-diversity, consistent changes in both metrics were observed in VIP-deficient and VPAC1-deficient mice. This includes a dramatic reduction in α-diversity, increased RA of Proteobacteria and Bacteroidetes, and decreased RA of Lachnospiraceae, Ruminococcaceae, Muribaculaceae, and Rikenellaceae. Specific amplicon sequence variants and predicted functions found to differ significantly based on VIP or VPAC1 genotype were concordant in their directions of change. Multiplatform predicted functional profiling suggested a defective VIP-VPAC1 axis was associated with reduced amino acid degradation along with reduced quinol and quinone biosynthesis. Furthermore, alterations in predicted functions include increased sugar degradation, nitrate reduction, and fatty acid biosynthetic pathways, among other changes. CONCLUSION We conclude that VIP signaling through VPAC1 is critical for the maintenance of normal function of the gut microbiota.
Collapse
Affiliation(s)
- Aaron C. Ericsson
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Manpreet Bains
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, North Dakota
| | - Zachary McAdams
- Department of Veterinary Pathobiology, University of Missouri Metagenomics Center, College of Veterinary Medicine, University of Missouri, Columbia, Missouri
| | - Justin Daniels
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, North Dakota
| | - Susheel B. Busi
- Department of Systems Ecology, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, Esch-sur-Alzette, Luxembourg
| | - James A. Waschek
- Department of Psychiatry and Biobehavioral Sciences, Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior/Neuropsychiatric Institute, University of California, Los Angeles, Los Angeles, California
| | - Glenn P. Dorsam
- Department of Microbiological Sciences, College of Agriculture, Food Systems and Natural Resources, North Dakota State University, Fargo, North Dakota
| |
Collapse
|
184
|
Huang L, Deng L, Liu C, Huang E, Han X, Xiao C, Liang X, Sun H, Liu C, Chen L. Fecal microbial signatures of healthy Han individuals from three bio-geographical zones in Guangdong. Front Microbiol 2022; 13:920780. [PMID: 36003930 PMCID: PMC9393523 DOI: 10.3389/fmicb.2022.920780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/01/2022] [Indexed: 11/25/2022] Open
Abstract
Important forensic evidence traced from crime scenes, such as fecal materials, can help in the forensic investigation of criminal cases. Intestines are the largest microbial pool in the human body whose microbial community is considered to be the human "second fingerprint". The present study explored the potential for community characteristics of gut microbes in forensic medicine. Fecal microbiota profiles of healthy individuals from three representative Han populations (Guangzhou, Shantou and Meizhou) in Guangdong Province, China were evaluated using High-throughput sequencing of V3-V4 hypervariable regions of the 16SrRNA gene. Results of the present study showed that at the genus level, Shantou, Guangzhou, and Meizhou behaved as Enterotype1, Enterotype2, and Enterotype3, which were mainly composed of Bacteroides, Prevotella, and Blautia, respectively. Based on OTU abundance at the genus level, using the random forest prediction model, it was found that there might be potential for distinguishing individuals of Guangzhou, Meizhou, and Shantou according to their fecal microbial community. Moreover, the findings of the microbial community of fecal samples in the present study were significantly different from that of saliva samples reported in our previous study, and thus it is evident that the saliva and feces can be distinguished. In conclusion, this study reported the fecal microbial signature of three Han populations, which may provide basic data for the potential application in forensic practice, containing body fluid identification, and geographical inference.
Collapse
Affiliation(s)
- Litao Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Liting Deng
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Changhui Liu
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Enping Huang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaolong Han
- Guangzhou Forensic Science Institute, Guangzhou, China
| | - Cheng Xiao
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Xiaomin Liang
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
| | - Huilin Sun
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- *Correspondence: Huilin Sun
| | - Chao Liu
- Guangzhou Forensic Science Institute, Guangzhou, China
- Chao Liu
| | - Ling Chen
- Guangzhou Key Laboratory of Forensic Multi-Omics for Precision Identification, School of Forensic Medicine, Southern Medical University, Guangzhou, China
- Ling Chen
| |
Collapse
|
185
|
Brichová M, Svozílková P, Klímová A, Dušek O, Kverka M, Heissigerová J. MICROBIOME AND UVEITIDES. A REVIEW. CESKA A SLOVENSKA OFTALMOLOGIE : CASOPIS CESKE OFTALMOLOGICKE SPOLECNOSTI A SLOVENSKE OFTALMOLOGICKE SPOLECNOSTI 2022; 78:47-52. [PMID: 35105146 DOI: 10.31348/2021/30] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Microorganisms inhabiting all surfaces of mucous membranes and skin and forming a complex ecosystem with the host is called microbiota. The term microbiome is used for the aggregate genome of microbiota. The microbiota plays important role in the mechanisms of number of physiological and pathological processes, especially of the hosts immune system. The origin and course of autoimmune diseases not only of the digestive tract, but also of the distant organs, including the eye, are significantly influenced by intestinal microbiota. The role of microbiota and its changes (dysbiosis) in the etiopathogenesis of uveitis has so far been studied mainly in experimental models. Reduction of severity of non-infectious intraocular inflammation in germ-free mice or in conventional mice treated with broad-spectrum antibiotics was observed in both the induced experimental autoimmune uveitis model (EAU) and the spontaneous R161H model. Studies have confirmed that autoreactive T cell activation occurs in the intestinal wall in the absence of retinal antigen. Recent experiments focused on the effect of probiotic administration on the composition of intestinal microbiota and on the course of autoimmune uveitis. Our study group demonstrated significant prophylactic effect of the administration of the probiotic Escherichia coli Nissle 1917 on the intensity of inflammation in EAU. To date, only a few studies have been published investigating intestinal dysbiosis in patients with uveitis (e.g., in Behcets disease or Vogt-Koyanagi-Harada syndrome). The results of preclinical studies will be presumably used in clinical practice, mainly in the sense of prophylaxis and therapy, such as change in the lifestyle, diet and especially the therapeutic use of probiotics or the transfer of faecal microbiota.
Collapse
|
186
|
Mosby CA, Bhar S, Phillips MB, Edelmann MJ, Jones MK. Interaction with mammalian enteric viruses alters outer membrane vesicle production and content by commensal bacteria. J Extracell Vesicles 2022; 11:e12172. [PMID: 34981901 PMCID: PMC8725172 DOI: 10.1002/jev2.12172] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 11/09/2021] [Accepted: 11/13/2021] [Indexed: 01/22/2023] Open
Abstract
Intestinal commensal bacteria contribute to maintaining gut homeostasis. Disruptions to the commensal flora are linked to the development and persistence of disease. The importance of these organisms is further demonstrated by the widespread ability of enteric viruses to exploit commensal bacteria to enhance viral infection. These viruses interact directly with commensal bacteria, and while the impact of this interaction on viral infection is well described for several viruses, the impact on the commensal bacteria has yet to be explored. In this article, we demonstrate, for the first time, that enteric viruses alter the gene expression and phenotype of individual commensal bacteria. Human and murine norovirus interaction with bacteria resulted in genome-wide differential gene expression and marked changes in the surface architecture of the bacterial cells. Furthermore, the interaction of the virus with bacteria led to increased production of smaller outer membrane vesicles (OMVs). Enhanced production of smaller vesicles was also observed when noroviruses were incubated with other commensal bacteria, indicating a potentially broad impact of norovirus interaction. The vesicle production observed in the in vivo model followed a similar trend where an increased quantity of smaller bacterial vesicles was observed in stool collected from virus-infected mice compared to mock-infected mice. Furthermore, changes in vesicle size were linked to changes in protein content and abundance, indicating that viral binding induced a shift in the mechanism of the OMV biogenesis. Collectively, these data demonstrate that enteric viruses induce specific changes in bacterial gene expression, leading to changes in bacterial extracellular vesicle production that can potentially impact host responses to infection.
Collapse
Affiliation(s)
- Chanel A. Mosby
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| | - Sutonuka Bhar
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| | - Matthew B. Phillips
- Department of Molecular Genetics and MicrobiologyCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Mariola J. Edelmann
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| | - Melissa K. Jones
- Microbiology and Cell Science DepartmentIFASUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
187
|
Xin Y, Xie J, Nan B, Tang C, Xiao Y, Wu Q, Lin Y, Zhang X, Shen H. Freeze-Thaw Pretreatment Can Improve Efficiency of Bacterial DNA Extraction From Meconium. Front Microbiol 2021; 12:753688. [PMID: 34956118 PMCID: PMC8695897 DOI: 10.3389/fmicb.2021.753688] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 11/18/2021] [Indexed: 11/13/2022] Open
Abstract
Although the presence of live microbes in utero remains under debate, newborn gastrointestinal bacteria are undoubtedly important to infant health. Measuring bacteria in meconium is an ideal strategy to understand this issue; however, the low efficiency of bacterial DNA extraction from meconium has limited its utilization. This study aims to improve the efficiency of bacterial DNA extraction from meconium, which generally has low levels of microflora but high levels of PCR inhibitors in the viscous matrix. The research was approved by the ethical committee of the Xiamen Maternity and Child Health Care Hospital, Xiamen, China. All the mothers delivered naturally, and their newborns were healthy. Meconium samples passed by the newborns within 24 h were collected. Each sample was scraped off of a sterile diaper, transferred to a 5-ml sterile tube, and stored at −80°C. For the assay, a freeze-thawing sample preparation protocol was designed, in which a meconium-InhibitEX buffer mixture was intentionally frozen 1–3 times at −20°C, −80°C, and (or) in liquid nitrogen. Then, DNA was extracted using a commercial kit and sequenced by 16S rDNA to verify the enhanced bacterial DNA extraction efficiency. Ultimately, we observed the following: (1) About 30 mg lyophilized meconium was the optimal amount for DNA extraction. (2) Freezing treatment for 6 h improved DNA extraction at −20°C. (3) DNA extraction efficiency was significantly higher with the immediate thaw strategy than with gradient thawing at −20°C, −80°C, and in liquid nitrogen. (4) Among the conditions of −20°C, −80°C, and liquid nitrogen, −20°C was the best freezing condition for both improving DNA extraction efficiency and preserving microbial species diversity in meconium, while liquid nitrogen was the worst condition. (5) Three freeze-thaw cycles could markedly enhance DNA extraction efficiency and preserve the species diversity of meconium microflora. We developed a feasible freeze-thaw pretreatment protocol to improve the extraction of microbial DNA from meconium, which may be beneficial for newborn bacterial colonization studies.
Collapse
Affiliation(s)
- Yuntian Xin
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Jingxian Xie
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Bingru Nan
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Chen Tang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Yunshan Xiao
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Quanfeng Wu
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Yi Lin
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| | - Xueqin Zhang
- Department of Obstetrics, Women and Children's Hospital, School of Medicine, Xiamen University, Xiamen, China
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, Xiamen, China
| |
Collapse
|
188
|
Beopoulos A, Gea M, Fasano A, Iris F. Autonomic Nervous System Neuroanatomical Alterations Could Provoke and Maintain Gastrointestinal Dysbiosis in Autism Spectrum Disorder (ASD): A Novel Microbiome-Host Interaction Mechanistic Hypothesis. Nutrients 2021; 14:65. [PMID: 35010940 PMCID: PMC8746684 DOI: 10.3390/nu14010065] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 12/08/2021] [Accepted: 12/21/2021] [Indexed: 12/13/2022] Open
Abstract
Dysbiosis secondary to environmental factors, including dietary patterns, antibiotics use, pollution exposure, and other lifestyle factors, has been associated to many non-infective chronic inflammatory diseases. Autism spectrum disorder (ASD) is related to maternal inflammation, although there is no conclusive evidence that affected individuals suffer from systemic low-grade inflammation as in many psychological and psychiatric diseases. However, neuro-inflammation and neuro-immune abnormalities are observed within ASD-affected individuals. Rebalancing human gut microbiota to treat disease has been widely investigated with inconclusive and contradictory findings. These observations strongly suggest that the forms of dysbiosis encountered in ASD-affected individuals could also originate from autonomic nervous system (ANS) functioning abnormalities, a common neuro-anatomical alteration underlying ASD. According to this hypothesis, overactivation of the sympathetic branch of the ANS, due to the fact of an ASD-specific parasympathetic activity deficit, induces deregulation of the gut-brain axis, attenuating intestinal immune and osmotic homeostasis. This sets-up a dysbiotic state, that gives rise to immune and osmotic dysregulation, maintaining dysbiosis in a vicious cycle. Here, we explore the mechanisms whereby ANS imbalances could lead to alterations in intestinal microbiome-host interactions that may contribute to the severity of ASD by maintaining the brain-gut axis pathways in a dysregulated state.
Collapse
Affiliation(s)
- Athanasios Beopoulos
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Manuel Gea
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| | - Alessio Fasano
- Mucosal Immunology and Biology Research Center, Center for Celiac Research and Treatment, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital for Children, Boston, MA 022114, USA;
| | - François Iris
- Bio-Modeling Systems, Tour CIT, 3 Rue de l’Arrivée, 75015 Paris, France; (A.B.); (M.G.)
| |
Collapse
|
189
|
Abstract
Colorectal cancer (CRC) is a significant public health problem accounting for about 10% of all new cancer cases globally. Though genetic and epigenetic factors influence CRC, the gut microbiota acts as a significant component of the disease's etiology. Further research is still needed to clarify the specific roles and identify more bacteria related to CRC development. This review aims to provide an overview of the "driver-passenger" model of CRC. The colonization and active invasion of the "driver(s)" bacteria cause damages allowing other commensals, known as "passengers," or their by-products, i.e., metabolites, to pass through the epithelium . This review will not only focus on the species of bacteria implicated in this model but also on their biological functions implicated in the occurrence of CRC, such as forming biofilms, mucus, penetration and production of enterotoxins and genotoxins.
Collapse
Affiliation(s)
- Marion Avril
- Department of Medicine, University of Washington, Seattle, WA, USA
| | - R. William DePaolo
- Department of Medicine, University of Washington, Seattle, WA, USA,Department of Medicine, Center for Microbiome Sciences & Therapeutics, University of Washington, Seattle, WA, USA,CONTACT R. William DePaolo Department of Medicine, University of Washington, 1959 NE Pacific Avenue, Seattle, WA98195, USA
| |
Collapse
|
190
|
Li J, Zhou J, Zhao S, Guo R, Zhong C, Xue T, Peng Q, Zhang B, Fan B, Liu C, Ni Y, Ren L, Zhu X, Li B. Pathogenicity, infective dose and altered gut microbiota in piglets infected with porcine deltacoronavirus. Virology 2021; 567:26-33. [PMID: 34952414 DOI: 10.1016/j.virol.2021.12.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/12/2021] [Accepted: 12/12/2021] [Indexed: 12/16/2022]
Abstract
Porcine deltacoronavirus (PDCoV) is an emerging swine enteropathogenic coronavirus that cause severe diarrhea, resulting in high mortality in neonatal piglets. Little is known regarding the pathogenicity of PDCoV in different infective dose and the dynamic changes in the composition of the gut microbiota in PDCoV-induced diarrhea piglets. In this study, 5-day-old piglets were experimentally infected with different dose of PDCoV. The challenged piglets developed typical symptoms, characterized by acute and severe watery diarrhea from 1 to 8 days post-inoculation (DPI), and viral shedding was detected in rectal swab until 11 DPI. Tissues of small intestines displayed significant macroscopic and microscopic lesions with clear viral antigen expression. However, no significant differences among groups were found in challenged piglets. Then alteration in gut microbiota in the jejunum and colon of PDCoV infected-piglets were analyzed using 16S rRNA sequencing. PDCoV infection reduced bacterial diversity and richness, and significantly altered the structure and abundance of the microbiota from the phylum to genus. Fusobacterium, and Proteobacteria was significantly increased (P < 0.05), while the abundance of Bacteroidota was markedly decreased in the infected-piglets. Furthermore, microbial function prediction indicated that the changes in intestinal bacterial also affected the immune system, excretory system, circulatory system, neurodegenerative disease, cardiovascular disease, xenobiotics biodegradation and metabolism, etc. These findings suggest that regulating gut microbiota community may be an effective approach for preventing PDCoV infection.
Collapse
Affiliation(s)
- Jizong Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; School of Pharmacy, Linyi University, Linyi, 276000, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Jinzhu Zhou
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Shuqing Zhao
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; School of Pharmacy, Nanjing Tech University, Nanjing, 21009, China
| | - Rongli Guo
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Chunyan Zhong
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Biological Engineering Department, Southwest Guizhou Vocational and Technical College for Nationalities, Xingyi, 562400, China
| | - Tao Xue
- School of Pharmacy, Linyi University, Linyi, 276000, China
| | - Qi Peng
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China
| | - Baotai Zhang
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Baochao Fan
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Chuanmin Liu
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; School of Pharmacy, Linyi University, Linyi, 276000, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Yanxiu Ni
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China
| | - Lili Ren
- School of Pharmacy, Nanjing Tech University, Nanjing, 21009, China
| | - Xing Zhu
- College of Animal Science, Guizhou University, Guiyang, 550025, China
| | - Bin Li
- Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Veterinary Biological Engineering and Technology, Ministry of Agriculture, Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Nanjing, 210014, China; Institute of Life Sciences, School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China; College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
191
|
The Multifaceted Effects of Gut Microbiota on the Immune System of the Intestinal Mucosa. IMMUNO 2021. [DOI: 10.3390/immuno1040041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The gut microbiota has diverse microbial components, including bacteria, viruses, and fungi. The interaction between gut microbiome components and immune responses has been studied extensively over the last decade. Several studies have reported the potential role of the gut microbiome in maintaining gut homeostasis and the development of disease. The commensal microbiome can preserve the integrity of the mucosal barrier by acting on the host immune system. Contrastingly, dysbiosis-induced inflammation can lead to the initiation and progression of several diseases through inflammatory processes and oxidative stress. In this review, we describe the multifaceted effects of the gut microbiota on several diseases from the perspective of mucosal immunological responses.
Collapse
|
192
|
He T, Cheng X, Xing C. The gut microbial diversity of colon cancer patients and the clinical significance. Bioengineered 2021; 12:7046-7060. [PMID: 34551683 PMCID: PMC8806656 DOI: 10.1080/21655979.2021.1972077] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 12/31/2022] Open
Abstract
The microbial diversity and communities in the excrement of healthy and patients suffered from cancer were identified by 16SrDNA sequencing performed on the Illumina Hi Seq sequencing platform. The microbial difference was also analyzed. The sequencing results showed high quality of the data, and the microbial communities were more various in the excrement of cancer patients. And the abundance of Firmicutes phylum was significantly reduced in cancer group. The phylum of Fermicutes, Bacteroidetes in cancer group are significantly down-regulated and up-regulated compared with normal group. The species of Faecalibacterium prausnitzii, Bateroides vulgatus and Fusicatenibacter saccharivorans are significantly lower in cancer group than that in normal group (P< 0.05). The species of Prevetella copri, M. uniformis, and Escherichia coli are significantly higher in the cancer group than that in normal group. The comparative results indicated that beneficial bacterium significantly decreased in colorectal cancer (CRC) group, and harmful bacterium significantly increased in the colon cancer group, meanwhile the acidity, sugar increased whereas the oxygen content decreased to facilitate the growth of harmful bacterium. The results would provide microbial approaches for the treatment of colon cancer by the intake of beneficial microbial communities.
Collapse
Affiliation(s)
- Tengfei He
- Department of Genenal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiaohui Cheng
- Department of Genenal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Chungen Xing
- Department of Genenal Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
193
|
Florfenicol Enhances Colonization of a Salmonella enterica Serovar Enteritidis floR Mutant with Major Alterations to the Intestinal Microbiota and Metabolome in Neonatal Chickens. Appl Environ Microbiol 2021; 87:e0168121. [PMID: 34613752 DOI: 10.1128/aem.01681-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Florfenicol is an important antibiotic commonly used in poultry production to prevent and treat Salmonella infection. However, oral administration of florfenicol may alter the animals' natural microbiota and metabolome, thereby reducing intestinal colonization resistance and increasing susceptibility to Salmonella infection. In this study, we determined the effect of florfenicol (30 mg/kg of body weight) on gut colonization of neonatal chickens challenged with Salmonella enterica subsp. enterica serovar Enteritidis. We then analyzed the microbial community structure and metabolic profiles of cecal contents using microbial 16S amplicon sequencing and liquid chromatography-mass spectrometry (LC-MS) untargeted metabolomics, respectively. We also screened the marker metabolites using a multi-omics technique and assessed the effect of these markers on intestinal colonization by S. Enteritidis. Florfenicol administration significantly increased the loads of S. Enteritidis in cecal contents, spleen, and liver and prolonged the residence of S. Enteritidis. Moreover, florfenicol significantly affected cecal colony structures, with reduced abundances of Lactobacillus and Bacteroidetes and increased levels of Clostridia, Clostridium, and Dorea. The metabolome was greatly influenced by florfenicol administration, and perturbation in metabolic pathways related to linoleic acid metabolism (linoleic acid, conjugated linoleic acid [CLA], 12,13-EpOME, and 12,13-diHOME) was most prominently detected. We screened CLA and 12,13-diHOME as marker metabolites, which were highly associated with Lactobacillus, Clostridium, and Dorea. Supplementation with CLA maintained intestinal integrity, reduced intestinal inflammation, and accelerated Salmonella clearance from the gut and remission of enteropathy, whereas treatment with 12,13-diHOME promoted intestinal inflammation and disrupted intestinal barrier function to sustain Salmonella infection. Thus, these results highlight that florfenicol alters the intestinal microbiota and metabolism of neonatal chickens and promotes Salmonella infection mainly by affecting linoleic acid metabolism. IMPORTANCE Florfenicol is a broad-spectrum fluorine derivative of chloramphenicol frequently used in poultry to prevent/treat Salmonella. However, oral administration of florfenicol may lead to alterations in the microbiota and metabolome in the chicken intestine, thereby reducing colonization resistance to Salmonella infection, and the possible mechanisms linking antibiotics and Salmonella colonization in poultry have not yet been fully elucidated. In the current study, we show that increased colonization by S. Enteritidis in chickens administered florfenicol is associated with large shifts in the gut microbiota and metabolic profiles. The most influential linoleic acid metabolism is highly associated with the abundances of Lactobacillus, Clostridium, and Dorea in the intestine. The screened target metabolites in linoleic acid metabolism affect S. Enteritidis colonization, intestinal inflammation, and intestinal barrier function. Our findings provide a better understanding of the susceptibility of animal species to Salmonella after antibiotic intervention, which may help to elucidate infection mechanisms that are important for both animal and human health.
Collapse
|
194
|
Hu C, Niu X, Chen S, Wen J, Bao M, Mohyuddin SG, Yong Y, Liu X, Wu L, Yu Z, Ma X, Ju X. A Comprehensive Analysis of the Colonic Flora Diversity, Short Chain Fatty Acid Metabolism, Transcripts, and Biochemical Indexes in Heat-Stressed Pigs. Front Immunol 2021; 12:717723. [PMID: 34745096 PMCID: PMC8567839 DOI: 10.3389/fimmu.2021.717723] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/04/2021] [Indexed: 01/07/2023] Open
Abstract
Heat stressed pigs show typical characteristics of inflammatory bowel disease (IBD). However, little is known about the pathogenesis of heat stress (HS)-induced IBD in pigs. In this study, we determined the effects of HS on colon morphology, intestinal microbiota diversity, transcriptome genes (transcripts), and short chain fatty acids (SCFAs) metabolism in pigs. In addition, the correlation among these parameters was analyzed by weighted gene co-expression network analysis. Results showed that the liver and kidney functions related to blood biochemical indexes were partially changed in pigs under HS. Furthermore, the levels of diamine oxidase and D-lactic acid were significantly increased, whereas the levels of secretory immunoglobulin A were decreased. The integrity of colonic tissue was damaged under HS, as bleeding, lymphatic infiltration, and villi injury were observed. The concentrations of SCFAs in the colon, such as acetic acid and butyric acid, were decreased significantly. In addition, the composition of colon microbiota, such as decrease in Lactobacillus johnsonii, Lactobacillus reuteri and increase in Clostridium sensu stricto 1 of day 7 and 14 while under HS. These changes were associated with changes in the concentration of SCFAs and biochemical indexes above mentioned. Differentially expressed genes were enriched in the nucleotide-binding oligomerization domain-like receptor signaling pathway, Th17 cell differentiation, and IBD pathway, which were also associated with the changes in SCFAs. Thus, the structure, diversity of intestinal microorganisms, and changes in the levels of SCFAs in colon of heat stressed pigs changed significantly, contributing to the activation of immune response and inflammatory signal pathways and causing abnormal physiological and biochemical indexes and intestinal mucosal damage. These results highlight the interconnections between intestinal microbiota, SCFAs, and immune response and their role in the pathogenesis of stress induced IBD therapy.
Collapse
Affiliation(s)
- Canying Hu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Xueting Niu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China
| | - Shengwei Chen
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Jiaying Wen
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Minglong Bao
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Sahar Ghulam Mohyuddin
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Yanhong Yong
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Lianyun Wu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xinbin Ma
- Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| | - Xianghong Ju
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China.,Shenzhen Institute of Guangdong Ocean University, Shenzhen, China.,Department of Veterinary Medicine, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
195
|
Bozorov TA, Toshmatov ZO, Kahar G, Zhang D, Shao H, Gafforov Y. Wild Apple-Associated Fungi and Bacteria Compete to Colonize the Larval Gut of an Invasive Wood-Borer Agrilus mali in Tianshan Forests. Front Microbiol 2021; 12:743831. [PMID: 34721341 PMCID: PMC8554297 DOI: 10.3389/fmicb.2021.743831] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/13/2021] [Indexed: 11/13/2022] Open
Abstract
The gut microflora of insects plays important roles throughout their lives. Different foods and geographic locations change gut bacterial communities. The invasive wood-borer Agrilus mali causes extensive mortality of wild apple, Malus sieversii, which is considered a progenitor of all cultivated apples, in Tianshan forests. Recent analysis showed that the gut microbiota of larvae collected from Tianshan forests showed rich bacterial diversity but the absence of fungal species. In this study, we explored the antagonistic ability of the gut bacteria to address this absence of fungi in the larval gut. The results demonstrated that the gut bacteria were able to selectively inhibit wild apple tree-associated fungi. Among them, Pseudomonas synxantha showed strong antagonistic ability, producing antifungal compounds. Using different analytical methods, such as column chromatography, mass spectrometry, HPLC, and NMR, an antifungal compound, phenazine-1-carboxylic acid (PCA), was identified. Activity of the compound was determined by the minimum inhibitory concentration method and electron microscopy. Moreover, our study showed that the gut bacteria could originate from noninfested apple microflora during infestation. Overall, the results showed that in newly invaded locations, A. mali larvae changed their gut microbiota and adopted new gut bacteria that prevented fungal colonization in the gut.
Collapse
Affiliation(s)
- Tohir A Bozorov
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Laboratory of Molecular Biochemistry and Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Zokir O Toshmatov
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China.,Laboratory of Molecular Biochemistry and Genetics, Institute of Genetics and Plants Experimental Biology, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| | - Gulnaz Kahar
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Daoyuan Zhang
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Hua Shao
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
| | - Yusufjon Gafforov
- Laboratory of Mycology, Institute of Botany, Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
| |
Collapse
|
196
|
Abstract
The neonatal body provides a range of potential habitats, such as the gut, for microbes. These sites eventually harbor microbial communities (microbiotas). A "complete" (adult) gut microbiota is not acquired by the neonate immediately after birth. Rather, the exclusive, milk-based nutrition of the infant encourages the assemblage of a gut microbiota of low diversity, usually dominated by bifidobacterial species. The maternal fecal microbiota is an important source of bacterial species that colonize the gut of infants, at least in the short-term. However, development of the microbiota is influenced by the use of human milk (breast feeding), infant formula, preterm delivery of infants, caesarean delivery, antibiotic administration, family details and other environmental factors. Following the introduction of weaning (complementary) foods, the gut microbiota develops in complexity due to the availability of a diversity of plant glycans in fruits and vegetables. These glycans provide growth substrates for the bacterial families (such as members of the Ruminococcaceae and Lachnospiraceae) that, in due course, will dominate the gut microbiota of the adult. Although current data are often fragmentary and observational, it can be concluded that the nutrition that a child receives in early life is likely to impinge not only on the development of the microbiota at that time but also on the subsequent lifelong, functional relationships between the microbiota and the human host. The purpose of this review, therefore, is to discuss the importance of promoting the assemblage of functionally robust gut microbiotas at appropriate times in early life.
Collapse
Affiliation(s)
- Gerald W. Tannock
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| |
Collapse
|
197
|
Schlender J, Behrens F, McParland V, Müller D, Wilck N, Bartolomaeus H, Holle J. Bacterial metabolites and cardiovascular risk in children with chronic kidney disease. Mol Cell Pediatr 2021; 8:17. [PMID: 34677718 PMCID: PMC8536815 DOI: 10.1186/s40348-021-00126-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 09/30/2021] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular complications are the major cause of the marked morbidity and mortality associated with chronic kidney disease (CKD). The classical cardiovascular risk factors such as diabetes and hypertension undoubtedly play a role in the development of cardiovascular disease (CVD) in adult CKD patients; however, CVD is just as prominent in children with CKD who do not have these risk factors. Hence, the CKD-specific pathophysiology of CVD remains incompletely understood. In light of this, studying children with CKD presents a unique opportunity to analyze CKD-associated mechanisms of CVD more specifically and could help to unveil novel therapeutic targets. Here, we comprehensively review the interaction of the human gut microbiome and the microbial metabolism of nutrients with host immunity and cardiovascular end-organ damage. The human gut microbiome is evolutionary conditioned and modified throughout life by endogenous factors as well as environmental factors. Chronic diseases, such as CKD, cause significant disruption to the composition and function of the gut microbiome and lead to disease-associated dysbiosis. This dysbiosis and the accompanying loss of biochemical homeostasis in the epithelial cells of the colon can be the result of poor diet (e.g., low-fiber intake), medications, and underlying disease. As a result of dysbiosis, bacteria promoting proteolytic fermentation increase and those for saccharolytic fermentation decrease and the integrity of the gut barrier is perturbed (leaky gut). These changes disrupt local metabolite homeostasis in the gut and decrease productions of the beneficial short-chain fatty acids (SCFAs). Moreover, the enhanced proteolytic fermentation generates unhealthy levels of microbially derived toxic metabolites, which further accumulate in the systemic circulation as a consequence of impaired kidney function. We describe possible mechanisms involved in the increased systemic inflammation in CKD that is associated with the combined effect of SCFA deficiency and accumulation of uremic toxins. In the future, a more comprehensive and mechanistic understanding of the gut–kidney–heart interaction, mediated largely by immune dysregulation and inflammation, might allow us to target the gut microbiome more specifically in order to attenuate CKD-associated comorbidities.
Collapse
Affiliation(s)
- Julia Schlender
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany.,Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Felix Behrens
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany.,Charité - Universitätsmedizin Berlin and Berlin Institute of Health, 10117, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.,Institute of Physiology, Charité - Universitätsmedizin Berlin, 10117, Berlin, Germany
| | - Victoria McParland
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany
| | - Dominik Müller
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany
| | - Nicola Wilck
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, 10117, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany.,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.,Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Nephrology and Internal Intensive Care Medicine, 10117, Berlin, Germany
| | - Johannes Holle
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Department of Pediatric Gastroenterology, Nephrology and Metabolic Diseases, 13353, Berlin, Germany. .,Experimental and Clinical Research Center (ECRC), a cooperation of Charité - Universitätsmedizin Berlin and Max Delbruck Center for Molecular Medicine (MDC), 13125, Berlin, Germany. .,DZHK (German Centre for Cardiovascular Research), partner site Berlin, 13316, Berlin, Germany.
| |
Collapse
|
198
|
Li Z, Xiang Y, Wang Y, Wan W, Ye Z, Zheng S, Chen Y, Xiong L, Zhu L, Ji Y, Hu K. Ocular microbial diversity, community structure, and function at high altitude. Microb Pathog 2021; 161:105253. [PMID: 34687837 DOI: 10.1016/j.micpath.2021.105253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 10/09/2021] [Accepted: 10/15/2021] [Indexed: 12/14/2022]
Abstract
PURPOSE To investigate the composition and function of ocular surface microbiome in healthy people from different altitudes. METHODS Thirty-two healthy people living in a high altitude region and 30 sex- and age-matched individuals living in a low altitude region were enrolled. Samples were collected from the lower conjunctival sac of one randomly chosen eye for each participant. 16S rRNA sequencing was conducted to study the bacterial community composition and predict gene function using PICRUSt software. RESULTS Microbial diversity and richness was significantly decreased in samples from highlanders as calculated by Abundance-based Coverage Estimator (ACE) index, Chao1 index, and observed-species index (all p < 0.01). Principle coordinate analysis (PCoA) suggested significantly distinct clustering of the conjunctival sac bacterial communities between two groups (p = 0.03), especially the dominant genera. The relative abundances of Corynebacterium, Staphylococcus, and Anaerococcus were significantly enriched in highlanders, while those of Pseudomonas and Massilia were significantly decreased as compared with lowlanders (p < 0.01). In the functional annotation analysis, we found that 74 gene pathways, mainly in metabolism, differed in abundance. Pathways related to immune system diseases and infectious diseases were also enriched in highlanders. CONCLUSION The composition and function of ocular surface microbiome in highlanders were distinct from those of lowlanders and our study may provide a reference catalog of the healthy conjunctival microbiome in highlanders.
Collapse
Affiliation(s)
- Zhouyu Li
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Yongguo Xiang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Yong Wang
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Wenjuan Wan
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Zi Ye
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Shijie Zheng
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Yanyi Chen
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Liang Xiong
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Lu Zhu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China
| | - Yan Ji
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China.
| | - Ke Hu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing Key Lab of Ophthalmology, Chongqing Eye Institute, Chongqing, 400016, China.
| |
Collapse
|
199
|
Liu R, Shi J, Shultz S, Guo D, Liu D. Fecal Bacterial Community of Allopatric Przewalski's Gazelles and Their Sympatric Relatives. Front Microbiol 2021; 12:737042. [PMID: 34630362 PMCID: PMC8499116 DOI: 10.3389/fmicb.2021.737042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 08/26/2021] [Indexed: 01/07/2023] Open
Abstract
Mammal gastrointestinal tracts harbor diverse bacterial communities that play important roles in digestion, development, behavior, and immune function. Although, there is an increasing understanding of the factors that affect microbial community composition in laboratory populations, the impact of environment and host community composition on microbiomes in wild populations is less understood. Given that the composition of bacterial communities can be shaped by ecological factors, particularly exposure to the microbiome of other individuals, inter-specific interactions should impact on microbiome community composition. Here, we evaluated inter-population and inter-specific similarity in the fecal microbiota of Przewalski's gazelle (Procapra przewalskii), an endangered endemic ruminant around Qinghai Lake in China. We compared the fecal bacterial communities of three Przewalski's gazelle populations, with those of two sympatric ruminants, Tibetan gazelle (Procapra picticaudata) and Tibetan sheep (Ovis aries). The fecal bacterial community richness (Chao1, ACE) did not vary across the three Przewalski's gazelle populations, nor did the composition vary between species. In contrast, the managed Przewalski's gazelle population had higher bacterial diversity (Shannon and Simpson) and was more similar to its sympatric Tibetan sheep in beta diversity than the wild Przewalski's gazelle populations. These results suggest that ecological factors like host community composition or diet affect Przewalski's gazelle's gastrointestinal bacterial community. The role of bacterial community composition in maintaining gastrointestinal health should be assessed to improve conservation management of endangered Przewalski's gazelle. More broadly, captive breeding and reintroduction efforts may be impeded, where captive management results in dysbiosis and introduction of pathogenic bacteria. In free ranging populations, where wildlife and livestock co-occur, infection by domestic pathogens and diseases may be an underappreciated threat to wild animals.
Collapse
Affiliation(s)
- Ruoshuang Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Jianbin Shi
- School of Environment, Beijing Normal University, Beijing, China
| | - Susanne Shultz
- Department of Earth and Environmental Sciences, University of Manchester, Manchester, United Kingdom
| | - Dongsheng Guo
- Key Laboratory of Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| | - Dingzhen Liu
- Key Laboratory of Biodiversity Sciences and Ecological Engineering, College of Life Sciences, Beijing Normal University, Beijing, China
| |
Collapse
|
200
|
Polak K, Jobbágy A, Muszyński T, Wojciechowska K, Frątczak A, Bánvölgyi A, Bergler-Czop B, Kiss N. Microbiome Modulation as a Therapeutic Approach in Chronic Skin Diseases. Biomedicines 2021; 9:biomedicines9101436. [PMID: 34680552 PMCID: PMC8533290 DOI: 10.3390/biomedicines9101436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Revised: 09/30/2021] [Accepted: 10/06/2021] [Indexed: 02/07/2023] Open
Abstract
There is a growing quantity of evidence on how skin and gut microbiome composition impacts the course of various dermatological diseases. The strategies involving the modulation of bacterial composition are increasingly in the focus of research attention. The aim of the present review was to analyze the literature available in PubMed (MEDLINE) and EMBASE databases on the topic of microbiome modulation in skin diseases. The effects and possible mechanisms of action of probiotics, prebiotics and synbiotics in dermatological conditions including atopic dermatitis (AD), psoriasis, chronic ulcers, seborrheic dermatitis, burns and acne were analyzed. Due to the very limited number of studies available regarding the topic of microbiome modulation in all skin diseases except for AD, the authors decided to also include case reports and original studies concerning oral administration and topical application of the pro-, pre- and synbiotics in the final analysis. The evaluated studies mostly reported significant health benefits to the patients or show promising results in animal or ex vivo studies. However, due to a limited amount of research and unambiguous results, the topic of microbiome modulation as a therapeutic approach in skin diseases still warrants further investigation.
Collapse
Affiliation(s)
- Karina Polak
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Antal Jobbágy
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Tomasz Muszyński
- Doctoral School of Medical and Health Sciences, Jagiellonian University Medical College, 31-530 Cracow, Poland;
| | - Kamila Wojciechowska
- Doctoral School, Medical University of Silesia, 40-055 Katowice, Poland; (K.P.); (K.W.)
| | - Aleksandra Frątczak
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - András Bánvölgyi
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
| | - Beata Bergler-Czop
- Chair and Department of Dermatology, Medical University of Silesia, 40-027 Katowice, Poland; (A.F.); (B.B.-C.)
| | - Norbert Kiss
- Department of Dermatology, Venereology and Dermatooncology, Semmelweis University, H-1085 Budapest, Hungary; (A.J.); (A.B.)
- Correspondence:
| |
Collapse
|