151
|
Bassot A, Prip-Buus C, Alves A, Berdeaux O, Perrier J, Lenoir V, Ji-Cao J, Berger MA, Loizon E, Cabaret S, Panthu B, Rieusset J, Morio B. Loss and gain of function of Grp75 or mitofusin 2 distinctly alter cholesterol metabolism, but all promote triglyceride accumulation in hepatocytes. Biochim Biophys Acta Mol Cell Biol Lipids 2021; 1866:159030. [PMID: 34419589 DOI: 10.1016/j.bbalip.2021.159030] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/03/2021] [Accepted: 08/13/2021] [Indexed: 12/15/2022]
Abstract
In the liver, contact sites between the endoplasmic reticulum (ER) and mitochondria (named MAMs) may be crucial hubs for the regulation of lipid metabolism, thus contributing to the exacerbation or prevention of fatty liver. We hypothesized that tether proteins located at MAMs could play a key role in preventing triglyceride accumulation in hepatocytes and nonalcoholic fatty liver disease (NAFLD) occurrence. To test this, we explored the role of two key partners in building MAM integrity and functionality, the glucose-regulated protein 75 (Grp75) and mitofusin 2 (Mfn2), which liver contents are altered in obesity and NAFLD. Grp75 or Mfn2 expression was either silenced using siRNA or overexpressed with adenoviruses in Huh7 cells. Silencing of Grp75 and Mfn2 resulted in decreased ER-mitochondria interactions, mitochondrial network fusion state and mitochondrial oxidative capacity, while overexpression of the two proteins induced mirror impacts on these parameters. Furthermore, Grp75 or Mfn2 silencing decreased cellular cholesterol content and enhanced triglyceride secretion in ApoB100 lipoproteins, while their overexpression led to reverse effects. Cellular phosphatidylcholine/phosphatidylethanolamine ratio was decreased only upon overexpression of the proteins, potentially contributing to altered ApoB100 assembly and secretion. Despite the opposite differences, both silencing and overexpression of Grp75 or Mfn2 induced triglyceride storage, although a fatty acid challenge was required to express the alteration upon protein silencing. Among the mechanisms potentially involved in this phenotype, ER stress was closely associated with altered triglyceride metabolism after Grp75 or Mfn2 overexpression, while blunted mitochondrial FA oxidation capacity may be the main defect causing triglyceride accumulation upon Grp75 or Mfn2 silencing. Further studies are required to decipher the link between modulation of Grp75 or Mfn2 expression, change in MAM integrity and alteration of cholesterol content of the cell. In conclusion, Grp75 or Mfn2 silencing and overexpression in Huh7 cells contribute to altering MAM integrity and cholesterol storage in opposite directions, but all promote triglyceride accumulation through distinct cellular pathways. This study also highlights that besides Mfn2, Grp75 could play a central role in hepatic lipid and cholesterol metabolism in obesity and NAFLD.
Collapse
Affiliation(s)
- Arthur Bassot
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Carina Prip-Buus
- Institut Cochin, Département d'Endocrinologie, Métabolisme et Diabète, INSERM U1016/CNRS UMR8104/Université de Paris, 75014 Paris, France.
| | - Anaïs Alves
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Olivier Berdeaux
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Université Bourgogne Franche-Comté, Agrosup Dijon, F-21000 Dijon, France.
| | - Johan Perrier
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Véronique Lenoir
- Institut Cochin, Département d'Endocrinologie, Métabolisme et Diabète, INSERM U1016/CNRS UMR8104/Université de Paris, 75014 Paris, France.
| | - Jingwei Ji-Cao
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Marie-Agnès Berger
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Emmanuelle Loizon
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Stephanie Cabaret
- ChemoSens Platform, Centre des Sciences du Goût et de l'Alimentation, CNRS, INRA, Université Bourgogne Franche-Comté, Agrosup Dijon, F-21000 Dijon, France.
| | - Baptiste Panthu
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Jennifer Rieusset
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| | - Béatrice Morio
- CarMeN Laboratory, INSERM U1060, INRAE U1397, Université Lyon 1, 69008 Lyon, France.
| |
Collapse
|
152
|
Jiang H, Zhang W, Li X, Xu Y, Cao J, Jiang W. The anti-obesogenic effects of dietary berry fruits: A review. Food Res Int 2021; 147:110539. [PMID: 34399516 DOI: 10.1016/j.foodres.2021.110539] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/23/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
The prevalence of obesity in the world is fearsomely climbing, which has brought about heavy threats on human health and economic development. For coping with this problem, researchers have looked at the profound potentials of natural products for resolving obesity because of their high efficiencies and few undesirable outcomes in the recent years. Berry fruits are huge reservoirs of bioactive components, and their anti-obesity potentials are arousing much interests. In this review, the current main strategies to manage obesity were summarized, including inhibiting appetite and lowering the food intake, improving energy expenditure and thermogenesis, suppressing absorption and digestion, reducing lipid synthesis and storage as well as modulating composition of gut microbiota. In addition, this review discussed the potentials of dietary berry fruits (blueberries, cranberries, raspberries, strawberries, mulberries, lingonberries, blackberries, black chokeberries, elderberries, bilberries, grape, blackcurrants, jaboticabas, red bayberries, sea-buckthorns, goldenberries and goji berries) to counteract obesity or obesity-associated complications based on recent animal experiments and human studies. Then, the bioaccessibility of phenolic compounds present in berry fruits was discussed. On the other hand, several challenges including securing effective dosage, further understanding their interaction with human tissues, improving bioavailability and protection of functional ingredients during delivery should be taken into account and conquered in the coming years.
Collapse
Affiliation(s)
- Haitao Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Wanli Zhang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Xiangxin Li
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Yan Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Jiankang Cao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China
| | - Weibo Jiang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, PR China.
| |
Collapse
|
153
|
Oleoylethanolamide Reduces Hepatic Oxidative Stress and Endoplasmic Reticulum Stress in High-Fat Diet-Fed Rats. Antioxidants (Basel) 2021; 10:antiox10081289. [PMID: 34439537 PMCID: PMC8389293 DOI: 10.3390/antiox10081289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/03/2021] [Accepted: 08/11/2021] [Indexed: 12/30/2022] Open
Abstract
Long-term high-fat diet (HFD) consumption can cause weight gain and obesity, two conditions often associated with hepatic non-alcoholic fatty liver and oxidative stress. Oleoylethanolamide (OEA), a lipid compound produced by the intestine from oleic acid, has been associated with different beneficial effects in diet-induced obesity and hepatic steatosis. However, the role of OEA on hepatic oxidative stress has not been fully elucidated. In this study, we used a model of diet-induced obesity to study the possible antioxidant effect of OEA in the liver. In this model rats with free access to an HFD for 77 days developed obesity, steatosis, and hepatic oxidative stress, as compared to rats consuming a low-fat diet for the same period. Several parameters associated with oxidative stress were then measured after two weeks of OEA administration to diet-induced obese rats. We showed that OEA reduced, compared to HFD-fed rats, obesity, steatosis, and the plasma level of triacylglycerols and transaminases. Moreover, OEA decreased the amount of malondialdehyde and carbonylated proteins and restored the activity of antioxidant enzymes superoxide dismutase, catalase, and glutathione peroxidase, which decreased in the liver of HFD-fed rats. OEA had also an improving effect on parameters linked to endoplasmic reticulum stress, thus demonstrating a role in the homeostatic control of protein folding. Finally, we reported that OEA differently regulated the expression of two transcription factors involved in the control of lipid metabolism and antioxidant genes, namely nuclear factor erythroid-derived 2-related factor 1 (Nrf1) and Nrf2, thus suggesting, for the first time, new targets of the protective effect of OEA in the liver.
Collapse
|
154
|
Zhang Z, Qian Q, Li M, Shao F, Ding WX, Lira VA, Chen SX, Sebag SC, Hotamisligil GS, Cao H, Yang L. The unfolded protein response regulates hepatic autophagy by sXBP1-mediated activation of TFEB. Autophagy 2021; 17:1841-1855. [PMID: 32597296 PMCID: PMC8386593 DOI: 10.1080/15548627.2020.1788889] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Defective macroautophagy/autophagy and a failure to initiate the adaptive unfolded protein response (UPR) in response to the endoplasmic reticulum (ER) stress contributes to obesity-associated metabolic dysfunction. However, whether and how unresolved ER stress leads to defects in the autophagy pathway and to the progression of obesity-associated hepatic pathologies remains unclear. Obesity suppresses the expression of hepatic spliced XBP1 (X-box binding protein 1; sXBP1), the key transcription factor that promotes the adaptive UPR. Our RNA-seq analysis revealed that sXBP1 regulates genes involved in lysosomal function in the liver under fasting conditions. Chromatin immunoprecipitation (ChIP) analyzes of both primary hepatocytes and whole livers further showed that sXBP1 occupies the -743 to -523 site of the promoter of Tfeb (transcription factor EB), a master regulator of autophagy and lysosome biogenesis. Notably, this occupancy was significantly reduced in livers from patients with steatosis. In mice, hepatic deletion of Xbp1 (xbp1 LKO) suppressed the transcription of Tfeb as well as autophagy, whereas hepatic overexpression of sXbp1 enhanced Tfeb transcription and autophagy. Moreover, overexpression of Tfeb in the xbp1 LKO mouse liver ameliorated glucose intolerance and steatosis in mice with diet-induced obesity (DIO). Conversely, loss of TFEB function impaired the protective role of sXBP1 in hepatic steatosis in mice with DIO. These data indicate that sXBP1-Tfeb signaling has direct functional consequences in the context of obesity. Collectively, our data provide novel insight into how two organelle stress responses are integrated to protect against obesity-associated metabolic dysfunction.Abbreviations: AAV8: adeno-associated virus serotype 8; ACTB: actin, beta; ANOVA: analysis of variance; ATF6: activating transcription factor-6; ATG: autophagy related; BECN1: beclin 1; BMI: body mass index; ChIP: chromatin immunoprecipitation; CLEAR: coordinated lysosomal expression and regulation; Cre: cre recombinase; DIO: diet-induced obesity; EBSS: Earle's balanced salt solution; EIF2AK3/PERK: eukaryotic translation initiation factor 2 alpha kinase 3; ER: endoplasmic reticulum; ERN1/IRE1: endoplasmic reticulum (ER) to nucleus signaling 1; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; GFP: green fluorescent protein; HFD: high-fat diet; h: hours; HSCs: hepatic stellate cells; INS: insulin; L/A: ammonium chloride and leupeptin; MAP1LC3B/LC3B: microtubule-associated protein 1 light chain 3 beta; mRNA: messenger RNA; NAFLD: nonalcoholic fatty liver disease; NASH: nonalcoholic steatohepatitis; RD: regular diet; RFP: red fluorescent protein; SERPINA7/TBG: serpin family A member 7; SQSTM1/p62: sequestome 1; sXbp1 LOE: liver-specific overexpression of spliced Xbp1; TFEB: transcription factor EB; TG: thapsigargin; TN: tunicamycin; UPR: unfolded protein response; wks: weeks; WT: wild type; XBP1: X-box binding protein 1; xbp1 LKO: liver-specific Xbp1 knockout.
Collapse
Affiliation(s)
- Zeyuan Zhang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Qingwen Qian
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Mark Li
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Fan Shao
- Iowa Institute for Oral Health Research, Division of Biostatistics and Computational Biology, Department of Endodontics, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Wen-Xing Ding
- Department of Pharmacology, Toxicology and Therapeutics, The University of Kansas Medical Center, Kansas City, KS, USA
| | - Vitor A. Lira
- Department of Health and Human Physiology, Fraternal Order of Eagles Diabetes Research Center, College of Liberal Arts and Sciences, University of Iowa, Iowa City, IA, USA
| | - Sophia X. Chen
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Sara C. Sebag
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA
| | - Gökhan S. Hotamisligil
- Sabri Ülker Center for Metabolic Research and Dept. Molecular Metabolism, Harvard TH Chan School of Public Health, Broad Institute of Harvard-MIT, Boston, MA, USA
| | - Huojun Cao
- Iowa Institute for Oral Health Research, Division of Biostatistics and Computational Biology, Department of Endodontics, University of Iowa College of Dentistry, Iowa City, IA, USA,CONTACT Ling Yang Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Huojun Cao Iowa Institute for Oral Health Research, Division of Biostatistics and Computational Biology, Department of Endodontics, University of Iowa College of Dentistry, Iowa City, IA, USA
| | - Ling Yang
- Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA,CONTACT Ling Yang Department of Anatomy and Cell Biology, Fraternal Order of Eagles Diabetes Research Center, Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA, USA; Huojun Cao Iowa Institute for Oral Health Research, Division of Biostatistics and Computational Biology, Department of Endodontics, University of Iowa College of Dentistry, Iowa City, IA, USA
| |
Collapse
|
155
|
Abstract
The immune and endocrine systems collectively control homeostasis in the body. The endocrine system ensures that values of essential factors and nutrients such as glucose, electrolytes and vitamins are maintained within threshold values. The immune system resolves local disruptions in tissue homeostasis, caused by pathogens or malfunctioning cells. The immediate goals of these two systems do not always align. The immune system benefits from optimal access to nutrients for itself and restriction of nutrient availability to all other organs to limit pathogen replication. The endocrine system aims to ensure optimal nutrient access for all organs, limited only by the nutrients stores that the body has available. The actual state of homeostatic parameters such as blood glucose levels represents a careful balance based on regulatory signals from the immune and endocrine systems. This state is not static but continuously adjusted in response to changes in the current metabolic needs of the body, the amount of resources it has available and the level of threats it encounters. This balance is maintained by the ability of the immune and endocrine systems to interact and co-regulate systemic metabolism. In context of metabolic disease, this system is disrupted, which impairs functionality of both systems. The failure of the endocrine system to retain levels of nutrients such as glucose within threshold values impairs functionality of the immune system. In addition, metabolic stress of organs in context of obesity is perceived by the immune system as a disruption in local homeostasis, which it tries to resolve by the excretion of factors which further disrupt normal metabolic control. In this chapter, we will discuss how the immune and endocrine systems interact under homeostatic conditions and during infection with a focus on blood glucose regulation. In addition, we will discuss how this system fails in the context of metabolic disease.
Collapse
|
156
|
Park SM, Kang TI, So JS. Roles of XBP1s in Transcriptional Regulation of Target Genes. Biomedicines 2021; 9:biomedicines9070791. [PMID: 34356855 PMCID: PMC8301375 DOI: 10.3390/biomedicines9070791] [Citation(s) in RCA: 145] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/03/2021] [Accepted: 07/05/2021] [Indexed: 12/17/2022] Open
Abstract
The spliced form of X-box binding protein 1 (XBP1s) is an active transcription factor that plays a vital role in the unfolded protein response (UPR). Under endoplasmic reticulum (ER) stress, unspliced Xbp1 mRNA is cleaved by the activated stress sensor IRE1α and converted to the mature form encoding spliced XBP1 (XBP1s). Translated XBP1s migrates to the nucleus and regulates the transcriptional programs of UPR target genes encoding ER molecular chaperones, folding enzymes, and ER-associated protein degradation (ERAD) components to decrease ER stress. Moreover, studies have shown that XBP1s regulates the transcription of diverse genes that are involved in lipid and glucose metabolism and immune responses. Therefore, XBP1s has been considered an important therapeutic target in studying various diseases, including cancer, diabetes, and autoimmune and inflammatory diseases. XBP1s is involved in several unique mechanisms to regulate the transcription of different target genes by interacting with other proteins to modulate their activity. Although recent studies discovered numerous target genes of XBP1s via genome-wide analyses, how XBP1s regulates their transcription remains unclear. This review discusses the roles of XBP1s in target genes transcriptional regulation. More in-depth knowledge of XBP1s target genes and transcriptional regulatory mechanisms in the future will help develop new therapeutic targets for each disease.
Collapse
|
157
|
Zhao P, Huang P, Xu T, Xiang X, Sun Y, Liu J, Yan C, Wang L, Gao J, Cui S, Wang X, Zhan L, Song H, Liu J, Song W, Liu Y. Fat body Ire1 regulates lipid homeostasis through the Xbp1s-FoxO axis in Drosophila. iScience 2021; 24:102819. [PMID: 34381963 PMCID: PMC8333185 DOI: 10.1016/j.isci.2021.102819] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/25/2021] [Accepted: 07/02/2021] [Indexed: 11/24/2022] Open
Abstract
The endoplasmic reticulum (ER)-resident transmembrane protein kinase/RNase Ire1 is a conserved sensor of the cellular unfolded protein response and has been implicated in lipid homeostasis, including lipid synthesis and transport, across species. Here we report a novel catabolic role of Ire1 in regulating lipid mobilization in Drosophila. We found that Ire1 is activated by nutrient deprivation, and, importantly, fat body-specific Ire1 deficiency leads to increased lipid mobilization and sensitizes flies to starvation, whereas fat body Ire1 overexpression results in the opposite phenotypes. Genetic interaction and biochemical analyses revealed that Ire1 regulates lipid mobilization by promoting Xbp1s-associated FoxO degradation and suppressing FoxO-dependent lipolytic programs. Our results demonstrate that Ire1 is a catabolic sensor and acts through the Xbp1s-FoxO axis to hamper the lipolytic response during chronic food deprivation. These findings offer new insights into the conserved Ire1 regulation of lipid homeostasis. Food deprivation systemically activates Ire1 and increases Xbp1 splicing Fat body Ire1-Xbp1s axis regulates lipid mobilization and survival during starvation Ire1-Xbp1s pathway enhances proteasomal degradation of FoxO Fat body Ire1-Xbp1s pathway hampers FoxO-associated lipid mobilization under starvation
Collapse
Affiliation(s)
- Peng Zhao
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China
| | - Ping Huang
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Tongfu Xu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaoxiang Xiang
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Ying Sun
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingqi Liu
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Cheng Yan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Lei Wang
- Key Laboratory of Molecular Virology and Immunology, Institute Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jiamei Gao
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Shang Cui
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012
| | - Xiangdong Wang
- Department of Cell Biology, Shandong University School of Medicine, Jinan, China, 250012
| | - Lixing Zhan
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Haiyun Song
- Key Laboratory of Nutrition and Metabolism, Institute for Nutritional Sciences, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jingnan Liu
- School of Life Science and Technology, Shanghai Tech University, Shanghai 200031, China
| | - Wei Song
- Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| | - Yong Liu
- Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences; the Institute for Advanced Studies, Wuhan University, Wuhan 430072, China.,Frontier Science Center for Immunology and Metabolism, Medical Research Institute, Wuhan University, Wuhan 430071, China
| |
Collapse
|
158
|
Zhu L, Huang X, Li Z, Cao G, Zhu X, She S, Huang T, Lu G. Evaluation of hepatotoxicity induced by 2-ethylhexyldiphenyl phosphate based on transcriptomics and its potential metabolism pathway in human hepatocytes. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125281. [PMID: 33582465 DOI: 10.1016/j.jhazmat.2021.125281] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/18/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
Increasing use of organophosphorus flame retardants (OPFRs) has aroused great concern to their uncertain environment risk, especially to human health risk. In our study, hepatotoxicity screening of six aryl-OPFRs, potential hepatotoxicity mechanism of 2-ethylhexyldiphenyl phosphate (EHDPP) using RNA-sequencing and its metabolites were investigated in human hepatocytes (L02). The toxicity results demonstrated that EHDPP should be prioritized for further research with the highest toxicity. Further RNA-seq results through GO and KEGG enrichment analysis indicated that exposure to 10 mg/L of EHDPP significantly affected energy homeostasis, endoplasmic reticulum (ER) stress, apoptosis, cell cycle, and inflammation response in cells. The top 12 hub genes were validated by RT-qPCR and conformed to be mainly related to glycolysis and ER stress, followed by cell cycle and inflammation response. Western blot, apoptosis detection, glycolysis stress test, and cell cycle analysis were further performed to verify the above main pathways. Additionally, it was found in the metabolism experiment that detoxification of EHDPP by phase I and phase II metabolism in cells wasn't significant until 48 h with a metabolic rate of 6.12%. EHDPP was stable and still dominated the induction of toxicity. Overall, this study provided valuable information regarding the toxicity and potential metabolism pathway of EHDPP.
Collapse
Affiliation(s)
- Lingfei Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xiaohan Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Zhenhua Li
- The First Affiliated Hospital, Biomedical Translational Research Institute and School of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Gang Cao
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Xuanjin Zhu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Shaohua She
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Tenghao Huang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Gang Lu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
159
|
Abuaita BH, Sule GJ, Schultz TL, Gao F, Knight JS, O'Riordan MX. The IRE1α Stress Signaling Axis Is a Key Regulator of Neutrophil Antimicrobial Effector Function. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:210-220. [PMID: 34145058 DOI: 10.4049/jimmunol.2001321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Activation of the endoplasmic reticulum stress sensor, IRE1α, is required for effective immune responses against bacterial infection and is associated with human inflammatory diseases in which neutrophils are a key immune component. However, the specific role of IRE1α in regulating neutrophil effector function has not been studied. In this study, we show that infection-induced IRE1α activation licenses neutrophil antimicrobial capacity, including IL-1β production, formation of neutrophil extracellular traps (NETs), and methicillin-resistant Staphylococcus aureus (MRSA) killing. Inhibition of IRE1α diminished production of mitochondrial reactive oxygen species and decreased CASPASE-2 activation, which both contributed to neutrophil antimicrobial activity. Mice deficient in CASPASE-2 or neutrophil IRE1α were highly susceptible to MRSA infection and failed to effectively form NETs in the s.c. abscess. IRE1α activation enhanced calcium influx and citrullination of histone H3 independently of mitochondrial reactive oxygen species production, suggesting that IRE1α coordinates multiple pathways required for NET formation. Our data demonstrate that the IRE1α-CASPASE-2 axis is a major driver of neutrophil activity against MRSA infection and highlight the importance of IRE1α in neutrophil antibacterial function.
Collapse
Affiliation(s)
- Basel H Abuaita
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Gautam J Sule
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Tracey L Schultz
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Fushan Gao
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| | - Jason S Knight
- Division of Rheumatology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Mary X O'Riordan
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI; and
| |
Collapse
|
160
|
Liu C, Zhou B, Meng M, Zhao W, Wang D, Yuan Y, Zheng Y, Qiu J, Li Y, Li G, Xiong X, Bian H, Zhang H, Wang H, Ma X, Hu C, Xu L, Lu Y. FOXA3 induction under endoplasmic reticulum stress contributes to non-alcoholic fatty liver disease. J Hepatol 2021; 75:150-162. [PMID: 33548387 DOI: 10.1016/j.jhep.2021.01.042] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 01/20/2021] [Accepted: 01/26/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND & AIMS Chronic endoplasmic reticulum (ER) stress in the liver has been shown to play a causative role in non-alcoholic fatty liver disease (NAFLD) progression, yet the underlying molecular mechanisms remain to be elucidated. Forkhead box A3 (FOXA3), a member of the FOX family, plays critical roles in metabolic homeostasis, although its possible functions in ER stress and fatty liver progression are unknown. METHODS Adenoviral delivery, siRNA delivery, and genetic knockout mice were used to crease FOXA3 gain- or loss-of-function models. Tunicamycin (TM) and a high-fat diet (HFD) were used to induce acute or chronic ER stress in mice. Chromatin immunoprecipiation (ChIP)-seq, luciferase assay, and adenoviral-mediated downstream gene manipulations were performed to reveal the transcriptional axis involved. Key axis protein levels in livers from healthy donors and patients with NAFLD were assessed via immunohistochemical staining. RESULTS FOXA3 transcription is specifically induced by XBP1s upon ER stress. FOXA3 exacerbates the excessive lipid accumulation caused by the acute ER-inducer TM, whereas FOXA3 deficiency in hepatocytes and mice alleviates it. Importantly, FOXA3 deficiency in mice reduced diet-induced chronic ER stress, fatty liver, and insulin resistance. In addition, FOXA3 suppression via siRNA or adeno-associated virus delivery ameliorated the fatty liver phenotype in HFD-fed and db/db mice. Mechanistically, ChIP-Seq analysis revealed that FOXA3 directly regulates Period1 (Per1) transcription, which in turn promotes the expression of lipogenic genes, including Srebp1c, thus enhancing lipid synthesis. Of pathophysiological significance, FOXA3, PER1, and SREBP1c levels were increased in livers of obese mice and patients with NAFLD. CONCLUSION The present study identified FOXA3 as the bridging molecule that links ER stress and NAFLD progression. Our results highlighted the role of the XBP1s-FOXA3-PER1/Srebp1c transcriptional axis in the development of NAFLD and identified FOXA3 as a potential therapeutic target for fatty liver disease. LAY SUMMARY The molecular mechanisms linking endoplasmic reticulum stress to non-alcoholic fatty liver disease (NAFLD) progression remain undefined. Herein, via in vitro and in vivo analysis, we identified Forkhead box A3 (FOXA3) as a key bridging molecule. Of pathophysiological significance, FOXA3 protein levels were increased in livers of obese mice and patients with NAFLD, indicating that FOXA3 could be a potential therapeutic target in fatty liver disease.
Collapse
Affiliation(s)
- Caizhi Liu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Bing Zhou
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meiyao Meng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Wenjun Zhao
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Dongmei Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Ying Zheng
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Jin Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Yu Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Guoqiang Li
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China
| | - Xuelian Xiong
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hua Bian
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Wang
- Department of Oncology, The First Affiliated Hospital, Institute for Liver Diseases of Anhui Medical University, Hefei, China
| | - Xinran Ma
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Cheng Hu
- Joint Center for Translational Medicine, Fengxian District Central Hospital, Fengxian District, Shanghai, China; Shanghai Diabetes Institute, Shanghai Key Laboratory of Diabetes Mellitus, Shanghai Clinical Centre for Diabetes, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, China.
| | - Yan Lu
- The Key Laboratory of Metabolism and Molecular Medicine of the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
161
|
Krumm CS, Xu X, Bare CJ, Holman CD, Kersten S, Dow LE, Lee AH, Cohen DE. Inducible hepatic expression of CREBH mitigates diet-induced obesity, insulin resistance, and hepatic steatosis in mice. J Biol Chem 2021; 297:100815. [PMID: 34023388 PMCID: PMC8246594 DOI: 10.1016/j.jbc.2021.100815] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 04/29/2021] [Accepted: 05/17/2021] [Indexed: 12/12/2022] Open
Abstract
Cyclic AMP-responsive element-binding protein H (CREBH encoded by Creb3l3) is a transcription factor that regulates the expression of genes that control lipid and glucose metabolism as well as inflammation. CREBH is upregulated in the liver under conditions of overnutrition, and mice globally lacking the gene (CREBH-/-) are highly susceptible to diet-induced obesity, insulin resistance, and hepatic steatosis. The net protective effects of CREBH have been attributed in large part to the activities of fibroblast growth factor (Fgf)-21 (Fgf21), a target gene that promotes weight loss, improves glucose homeostasis, and reduces hepatic lipid accumulation. To explore the possibility that activation of the CREBH-Fgf21 axis could ameliorate established effects of high-fat feeding, we generated an inducible transgenic hepatocyte-specific CREBH overexpression mouse model (Tg-rtTA). Acute overexpression of CREBH in livers of Tg-rtTA mice effectively reversed diet-induced obesity, insulin resistance, and hepatic steatosis. These changes were associated with increased activities of thermogenic brown and beige adipose tissues in Tg-rtTA mice, leading to reductions in fat mass, along with enhanced insulin sensitivity and glucose tolerance. Genetically silencing Fgf21 in Tg-rtTA mice abrogated the CREBH-mediated reductions in body weight loss, but only partially reversed the observed improvements in glucose metabolism. These findings reveal that the protective effects of CREBH activation may be leveraged to mitigate diet-induced obesity and associated metabolic abnormalities in both Fgf21-dependent and Fgf21-independent pathways.
Collapse
Affiliation(s)
- Christopher S Krumm
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Xu Xu
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Curtis J Bare
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Corey D Holman
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Sander Kersten
- Nutrition, Metabolism, and Genomics Group, Division of Human Nutrition and Health, Wageningen University, Wageningen, the Netherlands
| | - Lukas E Dow
- Division of Hematology & Medical Oncology, Joan & Sanford I. Weill Department of Medicine, Sandra and Edward Meyer Cancer Center, Weill Cornell Medical College, New York, New York, USA
| | - Ann-Hwee Lee
- Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - David E Cohen
- Division of Gastroenterology & Hepatology, Joan & Sanford I. Weill Department of Medicine, Weill Cornell Medical College, New York, New York, USA.
| |
Collapse
|
162
|
Zhao X, Wang M, Liu J, Su X. Stearoyl CoA Desaturase 1 and Inositol-Requiring Protein 1 α Determine the Efficiency of Oleic Acid in Alleviating Silica Nanoparticle-Induced Insulin Resistance. J Biomed Nanotechnol 2021; 17:1349-1363. [PMID: 34446138 DOI: 10.1166/jbn.2021.3109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Despite the widespread use of silica nanoparticles (SiNPs), their metabolic impact and mechanisms of action have not been well studied. Exposure to SiNPs induces insulin resistance (IR) in hepatocytes by endoplasmic reticulum (ER) stress via inositol-requiring protein 1α (IRE1α) activation of c-Jun N-terminal kinases (JNK). It has been well established that stearoyl CoA desaturase (SCD1) and its major product oleic acid elicited beneficial effects in restoring ER homeostasis. However, the potential coordination of SCD1 and IRE1α in determining SiNP regulation of insulin signaling is unclear. Herein, we investigated the effects of SCD1 and oleic acid on IR induced by SiNPs or thapsigargin in hepatocytes. SCD1 overexpression or oleic acid efficiently reversed SiNP-induced ER stress and IR, whereas the effects of thapsigargin treatment could not be restored. Thapsigargin diminished SCD1 protein levels, leading to the accumulation of IRE1α and sustained activation of the IRE1α/JNK pathway. Moreover, knockdown of activating transcription factor 4 (ATF4) upstream of SCD1 suppressed SiNP-induced SCD1 expression, rescued the activated IRE1α, and inhibited insulin signaling but was not able to restore the effects of thapsigargin. Collectively, downregulation of SCD1 and excess accumulation of IRE1α protein prevented the beneficial effects of exogenous oleic acid on IR induced by ER stress. Our results provide valuable mechanistic insights into the synergic regulation of IR by SiNPs and ER stress and suggest a combinational strategy to restore ER homeostasis by targeting SCD1 and IRE1α proteins, as well as supplementation of unsaturated fatty acids.
Collapse
Affiliation(s)
- Xiaoyang Zhao
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Min Wang
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Jingjing Liu
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| | - Xiong Su
- Department of Biochemistry and Molecular Biology, Soochow University Medical College, Suzhou, 215123, China
| |
Collapse
|
163
|
Fang H, Stone KP, Forney LA, Sims LC, Gutierrez GC, Ghosh S, Gettys TW. Implementation of dietary methionine restriction using casein after selective, oxidative deletion of methionine. iScience 2021; 24:102470. [PMID: 34113817 PMCID: PMC8169944 DOI: 10.1016/j.isci.2021.102470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/29/2021] [Accepted: 04/22/2021] [Indexed: 01/24/2023] Open
Abstract
Dietary methionine restriction (MR) is normally implemented using diets formulated from elemental amino acids (AA) that reduce methionine content to ∼0.17%. However, translational implementation of MR with elemental AA-based diets is intractable due to poor palatability. To solve this problem and restrict methionine using intact proteins, casein was subjected to mild oxidation to selectively reduce methionine. Diets were then formulated using oxidized casein, adding back methionine to produce a final concentration of 0.17%. The biological efficacy of dietary MR using the oxidized casein (Ox Cas) diet was compared with the standard elemental MR diet in terms of the behavioral, metabolic, endocrine, and transcriptional responses to the four diets. The Ox Cas MR diet faithfully reproduced the expected physiological, biochemical, and transcriptional responses in liver and inguinal white adipose tissue. Collectively, these findings demonstrate that dietary MR can be effectively implemented using casein after selective oxidative reduction of methionine.
Collapse
Affiliation(s)
- Han Fang
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Kirsten P. Stone
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Laura A. Forney
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Department of Integrative Biology and Pharmacology, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Landon C. Sims
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| | - Gabriela C. Gutierrez
- School of Nutrition and Food Sciences, Louisiana State University, Baton Rouge, LA 70809, USA
| | - Sujoy Ghosh
- Laboratory of Computational Biology, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
- Program in Cardiovascular and Metabolic Disorders and Centre for Computational Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Thomas W. Gettys
- Laboratory of Nutrient Sensing and Adipocyte Signaling, Pennington Biomedical Research Center, Baton Rouge, LA 70808, USA
| |
Collapse
|
164
|
Allopurinol ameliorates high fructose diet induced hepatic steatosis in diabetic rats through modulation of lipid metabolism, inflammation, and ER stress pathway. Sci Rep 2021; 11:9894. [PMID: 33972568 PMCID: PMC8110790 DOI: 10.1038/s41598-021-88872-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 04/06/2021] [Indexed: 02/03/2023] Open
Abstract
Excess fructose consumption contributes to development obesity, metabolic syndrome, and nonalcoholic fatty liver disease (NAFLD). Uric acid (UA), a metabolite of fructose metabolism, may have a direct role in development of NAFLD, with unclear mechanism. This study aimed to evaluate role of fructose and UA in NAFLD and explore mechanisms of allopurinol (Allo, a UA lowering medication) on NAFLD in Otsuka Long-Evans Tokushima Fatty (OLETF) rats fed a high fructose diet (HFrD), with Long-Evans Tokushima Otsuka (LETO) rats used as a control. There were six groups: LETO, LETO-Allo, OLETF, OLETF-Allo, OLETF-HFrD, and OLETF-HFrD-Allo. HFrD significantly increased body weight, epididymal fat weight, and serum concentrations of UA, cholesterol, triglyceride, HbA1c, hepatic enzymes, HOMA-IR, fasting insulin, and two hour-glucose after intraperitoneal glucose tolerance tests, as well as NAFLD activity score of liver, compared to the OLETF group. Allopurinol treatment significantly reduced hepatic steatosis, epididymal fat, serum UA, HOMA-IR, hepatic enzyme levels, and cholesterol in the OLETF-HFrD-Allo group. Additionally, allopurinol significantly downregulated expression of lipogenic genes, upregulated lipid oxidation genes, downregulated hepatic pro-inflammatory cytokine genes, and decreased ER-stress induced protein expression, in comparison with the OLETF-HFrD group. In conclusion, allopurinol ameliorates HFrD-induced hepatic steatosis through modulation of hepatic lipid metabolism, inflammation, and ER stress pathway. UA may have a direct role in development of fructose-induced hepatic steatosis, and allopurinol could be a candidate for prevention or treatment of NAFLD.
Collapse
|
165
|
Xu Q, Zhang H, Wang S, Qin C, Lu Y. Constitutive expression of spliced XBP1 causes perinatal lethality in mice. Genesis 2021; 59:e23420. [PMID: 33891366 DOI: 10.1002/dvg.23420] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/25/2021] [Accepted: 04/11/2021] [Indexed: 11/07/2022]
Abstract
Upon endoplasmic reticulum (ER) stress, inositol-requiring enzyme 1 (IRE1) is activated and catalyzes nonconventional splicing of an unspliced X-box binding protein 1 (XBP1U) mRNA to yield a spliced XBP1 (XBP1S) mRNA that encodes a potent XBP1S transcription factor. XBP1S is a key mediator of the IRE1 branch that is essential for alleviating ER stress. We generated a novel mouse strain (referred to as "Xbp1CS/+ " mice) that constitutively expressed XBP1S after Cre recombinase-mediated recombination. Further breeding of these mice with Twist2 Cre recombinase (Twist2-Cre) knock-in mice generated Twist2-Cre;Xbp1CS/+ mice. Most Twist2-Cre;Xbp1CS/+ mice died shortly after birth. Reverse-transcription polymerase chain reaction (RT-PCR) showed that constitutive expression of XBP1S occurred in various mouse tissues examined, but not in the brain. Immunohistochemistry confirmed that although the immunostaining signals for total XBP1 (XBP1U and XBP1S) were found in the calvarial bones in both Twist2-Cre;Xbp1CS/+ and control mice, the signals for XBP1S were only detected in the Twist2-Cre;Xbp1CS/+ mice, but not in the control mice. These results suggest that a precise control of XBP1S production is essential for normal mouse development.
Collapse
Affiliation(s)
- Qian Xu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Hua Zhang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Suzhen Wang
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Chunlin Qin
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, Texas, USA
| | - Yongbo Lu
- Department of Biomedical Sciences and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, Texas, USA
| |
Collapse
|
166
|
Abstract
Although oral venom systems are ecologically important characters, how they originated is still unclear. In this study, we show that oral venom systems likely originated from a gene regulatory network conserved across amniotes. This network, which we term the “metavenom network,” comprises over 3,000 housekeeping genes coexpressed with venom and play a role in protein folding and modification. Comparative transcriptomics revealed that the network is conserved between venom glands of snakes and salivary glands of mammals. This suggests that while these tissues have evolved different functions, they share a common regulatory core, that persisted since their common ancestor. We propose several evolutionary mechanisms that can utilize this common regulatory core to give rise to venomous animals from their nonvenomous ancestors. Oral venom systems evolved multiple times in numerous vertebrates enabling the exploitation of unique predatory niches. Yet how and when they evolved remains poorly understood. Up to now, most research on venom evolution has focused strictly on the toxins. However, using toxins present in modern day animals to trace the origin of the venom system is difficult, since they tend to evolve rapidly, show complex patterns of expression, and were incorporated into the venom arsenal relatively recently. Here we focus on gene regulatory networks associated with the production of toxins in snakes, rather than the toxins themselves. We found that overall venom gland gene expression was surprisingly well conserved when compared to salivary glands of other amniotes. We characterized the “metavenom network,” a network of ∼3,000 nonsecreted housekeeping genes that are strongly coexpressed with the toxins, and are primarily involved in protein folding and modification. Conserved across amniotes, this network was coopted for venom evolution by exaptation of existing members and the recruitment of new toxin genes. For instance, starting from this common molecular foundation, Heloderma lizards, shrews, and solenodon, evolved venoms in parallel by overexpression of kallikreins, which were common in ancestral saliva and induce vasodilation when injected, causing circulatory shock. Derived venoms, such as those of snakes, incorporated novel toxins, though still rely on hypotension for prey immobilization. These similarities suggest repeated cooption of shared molecular machinery for the evolution of oral venom in mammals and reptiles, blurring the line between truly venomous animals and their ancestors.
Collapse
|
167
|
Chattopadhyay P, Srinivasa Vasudevan J, Pandey R. Noncoding RNAs: modulators and modulatable players during infection-induced stress response. Brief Funct Genomics 2021; 20:28-41. [PMID: 33491070 PMCID: PMC7929421 DOI: 10.1093/bfgp/elaa026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/16/2022] Open
Abstract
The human genome has an almost equal distribution of unique and transposable genetic elements. Although at the transcriptome level, a relatively higher contribution from transposable elements derived RNA has been reported. This is further highlighted with evidence from pervasive transcription. Of the total RNA, noncoding RNAs (ncRNAs) are significant contributors to the transcriptome pool with sizeable fraction from repetitive elements of the human genome, inclusive of Long Interspersed Nuclear Elements (LINEs) and Short Interspersed Nuclear Elements (SINEs). ncRNAs are increasingly being implicated in diverse functional roles especially during conditions of stress. These stress responses are driven through diverse mediators, inclusive of long and short ncRNAs. ncRNAs such as MALAT1, GAS5, miR-204 and miR-199a-5p have been functionally involved during oxidative stress, endoplasmic reticulum (ER) stress and unfolded protein response (UPR). Also, within SINEs, Alu RNAs derived from primate-specific Alu repeats with ~11% human genome contribution, playing a significant role. Pathogenic diseases, including the recent COVID-19, leads to differential regulation of ncRNAs. Although, limited evidence suggests the need for an inquest into the role of ncRNAs in determining the host response towards pathogen challenge.
Collapse
Affiliation(s)
| | | | - Rajesh Pandey
- Corresponding author: Rajesh Pandey, INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) laboratory. CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), North Campus, Near Jubilee Hall, Mall Road, Delhi-110007, India. Tel.: +91 9811029551; E-mail:
| |
Collapse
|
168
|
Schiattarella GG, Altamirano F, Kim SY, Tong D, Ferdous A, Piristine H, Dasgupta S, Wang X, French KM, Villalobos E, Spurgin SB, Waldman M, Jiang N, May HI, Hill TM, Luo Y, Yoo H, Zaha VG, Lavandero S, Gillette TG, Hill JA. Xbp1s-FoxO1 axis governs lipid accumulation and contractile performance in heart failure with preserved ejection fraction. Nat Commun 2021; 12:1684. [PMID: 33727534 PMCID: PMC7966396 DOI: 10.1038/s41467-021-21931-9] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 02/09/2021] [Indexed: 12/12/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is now the dominant form of heart failure and one for which no efficacious therapies exist. Obesity and lipid mishandling greatly contribute to HFpEF. However, molecular mechanism(s) governing metabolic alterations and perturbations in lipid homeostasis in HFpEF are largely unknown. Here, we report that cardiomyocyte steatosis in HFpEF is coupled with increases in the activity of the transcription factor FoxO1 (Forkhead box protein O1). FoxO1 depletion, as well as over-expression of the Xbp1s (spliced form of the X-box-binding protein 1) arm of the UPR (unfolded protein response) in cardiomyocytes each ameliorates the HFpEF phenotype in mice and reduces myocardial lipid accumulation. Mechanistically, forced expression of Xbp1s in cardiomyocytes triggers ubiquitination and proteasomal degradation of FoxO1 which occurs, in large part, through activation of the E3 ubiquitin ligase STUB1 (STIP1 homology and U-box-containing protein 1) a novel and direct transcriptional target of Xbp1s. Our findings uncover the Xbp1s-FoxO1 axis as a pivotal mechanism in the pathogenesis of cardiometabolic HFpEF and unveil previously unrecognized mechanisms whereby the UPR governs metabolic alterations in cardiomyocytes.
Collapse
Affiliation(s)
- Gabriele G Schiattarella
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
- Center for Cardiovascular Research (CCR), Department of Cardiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Berlin, Germany
- Translational Approaches in Heart Failure and Cardiometabolic Disease, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Francisco Altamirano
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Soo Young Kim
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Dan Tong
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Anwarul Ferdous
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hande Piristine
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Subhajit Dasgupta
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xuliang Wang
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kristin M French
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Elisa Villalobos
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Stephen B Spurgin
- Department of Pediatrics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Maayan Waldman
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Nan Jiang
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Herman I May
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Theodore M Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Yuxuan Luo
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Heesoo Yoo
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vlad G Zaha
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Harold C. Simmons Comprehensive Cancer, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Parkland Health & Hospital System, Dallas, TX, USA
| | - Sergio Lavandero
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical & Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Thomas G Gillette
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Joseph A Hill
- Department of Internal Medicine (Cardiology), University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
169
|
Daggubati V, Hochstelter J, Bommireddy A, Choudhury A, Krup AL, Kaur P, Tong P, Li A, Xu L, Reiter JF, Raleigh DR. Smoothened-activating lipids drive resistance to CDK4/6 inhibition in Hedgehog-associated medulloblastoma cells and preclinical models. J Clin Invest 2021; 131:141171. [PMID: 33476305 DOI: 10.1172/jci141171] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Medulloblastoma is an aggressive pediatric brain tumor that can be driven by misactivation of the Hedgehog (HH) pathway. CDK6 is a critical effector of oncogenic HH signaling, but attempts to target the HH pathway in medulloblastoma have been encumbered by resistance to single-agent molecular therapy. We identified mechanisms of resistance to CDK6 inhibition in HH-associated medulloblastoma by performing orthogonal CRISPR and CRISPR interference screens in medulloblastoma cells treated with a CDK4/6 inhibitor and RNA-Seq of a mouse model of HH-associated medulloblastoma with genetic deletion of Cdk6. Our concordant in vitro and in vivo data revealed that decreased ribosomal protein expression underlies resistance to CDK6 inhibition in HH-associated medulloblastoma, leading to ER stress and activation of the unfolded protein response (UPR). These pathways increased the activity of enzymes producing Smoothened-activating (SMO-activating) sterol lipids that sustained oncogenic HH signaling in medulloblastoma despite cell-cycle attenuation. We consistently demonstrated that concurrent genetic deletion or pharmacological inhibition of CDK6 and HSD11ß2, an enzyme producing SMO-activating lipids, additively blocked cancer growth in multiple mouse genetic models of HH-associated medulloblastoma. Our data reveal what we believe to be a novel pathway of resistance to CDK4/6 inhibition as well as a novel combination therapy to treat the most common malignant brain tumor in children.
Collapse
Affiliation(s)
- Vikas Daggubati
- Department of Radiation Oncology.,Department of Neurological Surgery.,Biomedical Sciences Graduate Program, and.,Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | | | | | - Abrar Choudhury
- Department of Radiation Oncology.,Department of Neurological Surgery.,Biomedical Sciences Graduate Program, and.,Medical Scientist Training Program, UCSF, San Francisco, California, USA
| | | | | | - Pakteema Tong
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Amy Li
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Libin Xu
- Department of Medicinal Chemistry, University of Washington, Seattle, Washington, USA
| | - Jeremy F Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, Chan Zuckerberg Biohub, UCSF, San Francisco, California, USA
| | - David R Raleigh
- Department of Radiation Oncology.,Department of Neurological Surgery.,Biomedical Sciences Graduate Program, and
| |
Collapse
|
170
|
Kim JY, He F, Karin M. From Liver Fat to Cancer: Perils of the Western Diet. Cancers (Basel) 2021; 13:1095. [PMID: 33806428 PMCID: PMC7961422 DOI: 10.3390/cancers13051095] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/27/2021] [Accepted: 02/28/2021] [Indexed: 02/06/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the most common type of primary liver cancer provides the prototypical example of an obesity-related cancer. The obesity epidemic gave rise to an enormous increase in the incidence of non-alcoholic fatty liver disease (NAFLD), a condition that affects one third of American adults. In about 20% of these individuals, simple liver steatosis (hepatosteatosis) progresses to non-alcoholic steatohepatitis (NASH) characterized by chronic liver injury, inflammation, and fibrosis. In addition to liver failure, NASH greatly increases the risk of HCC. Here we discuss the metabolic processes that control the progression from NAFLD to NASH and from NASH to HCC, with a special emphasis on the role of free-non-esterified cholesterol in the process.
Collapse
Affiliation(s)
- Ju Youn Kim
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA;
| | - Feng He
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China;
| | - Michael Karin
- Laboratory of Gene Regulation and Signal Transduction, Departments of Pharmacology and Pathology, University of California San Diego, 9500 Gilman Drive, San Diego, CA 92093, USA;
| |
Collapse
|
171
|
Teresa Borrello M, Rita Emma M, Listi A, Rubis M, Coslet S, Augello G, Cusimano A, Cabibi D, Porcasi R, Giannitrapani L, Soresi M, Pantuso G, Blyth K, Montalto G, Pin C, Cervello M, Iovanna J. NUPR1 protects liver from lipotoxic injury by improving the endoplasmic reticulum stress response. FASEB J 2021; 35:e21395. [PMID: 33566371 DOI: 10.1096/fj.202002413rr] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/08/2021] [Accepted: 01/08/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver (NAFL) and related syndromes affect one-third of the adult population in industrialized and developing countries. Lifestyle and caloric oversupply are the main causes of such array of disorders, but the molecular mechanisms underlying their etiology remain elusive. Nuclear Protein 1 (NUPR1) expression increases upon cell injury in all organs including liver. Recently, we reported NUPR1 actively participates in the activation of the Unfolded Protein Response (UPR). The UPR typically maintains protein homeostasis, but downstream mediators of the pathway regulate metabolic functions including lipid metabolism. As increases in UPR and NUPR1 in obesity and liver disease have been well documented, the goal of this study was to investigate the roles of NUPR1 in this context. To establish whether NUPR1 is involved in these liver conditions we used patient-derived liver biopsies and in vitro and in vivo NUPR1 loss of functions models. First, we analyzed NUPR1 expression in a cohort of morbidly obese patients (MOPs), with simple fatty liver (NAFL) or more severe steatohepatitis (NASH). Next, we explored the metabolic roles of NUPR1 in wild-type (Nupr1+/+ ) or Nupr1 knockout mice (Nupr1-/- ) fed with a high-fat diet (HFD) for 15 weeks. Immunohistochemical and mRNA analysis revealed NUPR1 expression is inversely correlated to hepatic steatosis progression. Mechanistically, we found NUPR1 participates in the activation of PPAR-α signaling via UPR. As PPAR-α signaling is controlled by UPR, collectively, these findings suggest a novel function for NUPR1 in protecting liver from metabolic distress by controlling lipid homeostasis, possibly through the UPR.
Collapse
Affiliation(s)
- Maria Teresa Borrello
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Maria Rita Emma
- Istituto per la Ricerca e l'Innovazione Biomedicale (IRIB), Consiglio Nazionale Delle Ricerche, Palermo, Italy
| | - Angela Listi
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Marion Rubis
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Sergiu Coslet
- MI-mAbs, Aix-Marseille University, Parc Scientifique et Technologique de Luminy, Marseille, France
| | - Giuseppa Augello
- Istituto per la Ricerca e l'Innovazione Biomedicale (IRIB), Consiglio Nazionale Delle Ricerche, Palermo, Italy
| | - Antonella Cusimano
- Istituto per la Ricerca e l'Innovazione Biomedicale (IRIB), Consiglio Nazionale Delle Ricerche, Palermo, Italy
| | - Daniela Cabibi
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Rossana Porcasi
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Lydia Giannitrapani
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Maurizio Soresi
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Gianni Pantuso
- Department of Surgical Oncological and Oral Sciences, Division of General and Oncological Surgery, University of Palermo, Palermo, Italy
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Glasgow, UK
| | - Giuseppe Montalto
- Dipartimento di Promozione della Salute, Materno-Infantile, Medicina Interna e Specialistica di Eccellenza (PROMISE), University of Palermo, Palermo, Italy
| | - Christopher Pin
- Children's Health Research Institute, The University of Western Ontario, London, ON, Canada
| | - Melchiorre Cervello
- Istituto per la Ricerca e l'Innovazione Biomedicale (IRIB), Consiglio Nazionale Delle Ricerche, Palermo, Italy
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS UMR 7258, Aix-Marseille Université and Institut Paoli-Calmettes, Parc Scientifique et Technologique de Luminy, Marseille, France
| |
Collapse
|
172
|
Shabgah AG, Norouzi F, Hedayati-Moghadam M, Soleimani D, Pahlavani N, Navashenaq JG. A comprehensive review of long non-coding RNAs in the pathogenesis and development of non-alcoholic fatty liver disease. Nutr Metab (Lond) 2021; 18:22. [PMID: 33622377 PMCID: PMC7903707 DOI: 10.1186/s12986-021-00552-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/17/2021] [Indexed: 12/15/2022] Open
Abstract
One of the most prevalent diseases worldwide without a fully-known mechanism is non-alcoholic fatty liver disease (NAFLD). Recently, long non-coding RNAs (lncRNAs) have emerged as significant regulatory molecules. These RNAs have been claimed by bioinformatic research that is involved in biologic processes, including cell cycle, transcription factor regulation, fatty acids metabolism, and-so-forth. There is a body of evidence that lncRNAs have a pivotal role in triglyceride, cholesterol, and lipoprotein metabolism. Moreover, lncRNAs by up- or down-regulation of the downstream molecules in fatty acid metabolism may determine the fatty acid deposition in the liver. Therefore, lncRNAs have attracted considerable interest in NAFLD pathology and research. In this review, we provide all of the lncRNAs and their possible mechanisms which have been introduced up to now. It is hoped that this study would provide deep insight into the role of lncRNAs in NAFLD to recognize the better molecular targets for therapy.
Collapse
Affiliation(s)
| | - Fatemeh Norouzi
- Department of Food Hygiene, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | | | - Davood Soleimani
- Department of Nutritional Sciences, School of Nutrition Sciences and Food Technology, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Naseh Pahlavani
- Social Development and Health Promotion Research Center, Gonabad University of Medical Sciences, Gonabad, Iran
| | | |
Collapse
|
173
|
Poncet AF, Bosteels V, Hoffmann E, Chehade S, Rennen S, Huot L, Peucelle V, Maréchal S, Khalife J, Blanchard N, Janssens S, Marion S. The UPR sensor IRE1α promotes dendritic cell responses to control Toxoplasma gondii infection. EMBO Rep 2021; 22:e49617. [PMID: 33586853 DOI: 10.15252/embr.201949617] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 01/23/2023] Open
Abstract
The unfolded protein response (UPR) has emerged as a central regulator of immune cell responses in several pathologic contexts including infections. However, how intracellular residing pathogens modulate the UPR in dendritic cells (DCs) and thereby affect T cell-mediated immunity remains uncharacterized. Here, we demonstrate that infection of DCs with Toxoplasma gondii (T. gondii) triggers a unique UPR signature hallmarked by the MyD88-dependent activation of the IRE1α pathway and the inhibition of the ATF6 pathway. Induction of XBP1s controls pro-inflammatory cytokine secretion in infected DCs, while IRE1α promotes MHCI antigen presentation of secreted parasite antigens. In mice, infection leads to a specific activation of the IRE1α pathway, which is restricted to the cDC1 subset. Mice deficient for IRE1α and XBP1 in DCs display a severe susceptibility to T. gondii and succumb during the acute phase of the infection. This early mortality is correlated with increased parasite burden and a defect in splenic T-cell responses. Thus, we identify the IRE1α/XBP1s branch of the UPR as a key regulator of host defense upon T. gondii infection.
Collapse
Affiliation(s)
- Anaïs F Poncet
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Victor Bosteels
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Eik Hoffmann
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Sylia Chehade
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Sofie Rennen
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Ludovic Huot
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Véronique Peucelle
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Sandra Maréchal
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Jamal Khalife
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| | - Nicolas Blanchard
- Centre de Physiopathologie Toulouse Purpan (CPTP), INSERM, CNRS, UPS, Université de Toulouse, Toulouse, France
| | - Sophie Janssens
- Laboratory for ER stress and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium.,Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Sabrina Marion
- Univ. Lille, CNRS, INSERM, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, Lille, France
| |
Collapse
|
174
|
Wei J, Fang D. Endoplasmic Reticulum Stress Signaling and the Pathogenesis of Hepatocarcinoma. Int J Mol Sci 2021; 22:ijms22041799. [PMID: 33670323 PMCID: PMC7918477 DOI: 10.3390/ijms22041799] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/05/2021] [Accepted: 02/08/2021] [Indexed: 12/12/2022] Open
Abstract
Hepatocellular carcinoma (HCC), also known as hepatoma, is a primary malignancy of the liver and the third leading cause of cancer mortality globally. Although much attention has focused on HCC, its pathogenesis remains largely obscure. The endoplasmic reticulum (ER) is a cellular organelle important for regulating protein synthesis, folding, modification and trafficking, and lipid metabolism. ER stress occurs when ER homeostasis is disturbed by numerous environmental, physiological, and pathological challenges. In response to ER stress due to misfolded/unfolded protein accumulation, unfolded protein response (UPR) is activated to maintain ER function for cell survival or, in cases of excessively severe ER stress, initiation of apoptosis. The liver is especially susceptible to ER stress given its protein synthesis and detoxification functions. Experimental data suggest that ER stress and unfolded protein response are involved in HCC development, aggressiveness and response to treatment. Herein, we highlight recent findings and provide an overview of the evidence linking ER stress to the pathogenesis of HCC.
Collapse
|
175
|
Effects of Long-Term DHA Supplementation and Physical Exercise on Non-Alcoholic Fatty Liver Development in Obese Aged Female Mice. Nutrients 2021; 13:nu13020501. [PMID: 33546405 PMCID: PMC7913512 DOI: 10.3390/nu13020501] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/22/2021] [Accepted: 01/26/2021] [Indexed: 02/06/2023] Open
Abstract
Obesity and aging are associated to non-alcoholic fatty liver disease (NAFLD) development. Here, we investigate whether long-term feeding with a docosahexaenoic acid (DHA)-enriched diet and aerobic exercise, alone or in combination, are effective in ameliorating NAFLD in aged obese mice. Two-month-old female C57BL/6J mice received control or high fat diet (HFD) for 4 months. Then, the diet-induced obese (DIO) mice were distributed into four groups: DIO, DIO + DHA (15% dietary lipids replaced by a DHA-rich concentrate), DIO + EX (treadmill running), and DIO + DHA + EX up to 18 months. The DHA-rich diet reduced liver steatosis in DIO mice, decreasing lipogenic genes (Dgat2, Scd1, Srebp1c), and upregulated lipid catabolism genes (Hsl/Acox) expression. A similar pattern was observed in the DIO + EX group. The combination of DHA + exercise potentiated an increase in Cpt1a and Ppara genes, and AMPK activation, key regulators of fatty acid oxidation. Exercise, alone or in combination with DHA, significantly reversed the induction of proinflammatory genes (Mcp1, Il6, Tnfα, Tlr4) in DIO mice. DHA supplementation was effective in preventing the alterations induced by the HFD in endoplasmic reticulum stress-related genes (Ern1/Xbp1) and autophagy markers (LC3II/I ratio, p62, Atg7). In summary, long-term DHA supplementation and/or exercise could be helpful to delay NAFLD progression during aging in obesity.
Collapse
|
176
|
Chen X, Cubillos-Ruiz JR. Endoplasmic reticulum stress signals in the tumour and its microenvironment. Nat Rev Cancer 2021; 21:71-88. [PMID: 33214692 PMCID: PMC7927882 DOI: 10.1038/s41568-020-00312-2] [Citation(s) in RCA: 764] [Impact Index Per Article: 191.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/13/2020] [Indexed: 02/06/2023]
Abstract
Protein handling, modification and folding in the endoplasmic reticulum (ER) are tightly regulated processes that determine cell function, fate and survival. In several tumour types, diverse oncogenic, transcriptional and metabolic abnormalities cooperate to generate hostile microenvironments that disrupt ER homeostasis in malignant and stromal cells, as well as infiltrating leukocytes. These changes provoke a state of persistent ER stress that has been demonstrated to govern multiple pro-tumoural attributes in the cancer cell while dynamically reprogramming the function of innate and adaptive immune cells. Aberrant activation of ER stress sensors and their downstream signalling pathways have therefore emerged as key regulators of tumour growth and metastasis as well as response to chemotherapy, targeted therapies and immunotherapy. In this Review, we discuss the physiological inducers of ER stress in the tumour milieu, the interplay between oncogenic signalling and ER stress response pathways in the cancer cell and the profound immunomodulatory effects of sustained ER stress responses in tumours.
Collapse
Affiliation(s)
- Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, USA.
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| | - Juan R Cubillos-Ruiz
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA.
- Department of Obstetrics and Gynecology, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
177
|
Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE (-/-) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int J Mol Sci 2021; 22:818. [PMID: 33467546 PMCID: PMC7829901 DOI: 10.3390/ijms22020818 ] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
AIMS/HYPOTHESIS SGLT-2 inhibitors (SGLT-2i) have been studied as potential treatments against NAFLD, showing varying beneficial effects. The molecular mechanisms mediating these effects have not been fully clarified. Herein, we investigated the impact of empagliflozin on NAFLD, focusing particularly on ER stress, autophagy and apoptosis. METHODS Five-week old ApoE(-/-) mice were switched from normal to a high-fat diet (HFD). After five weeks, mice were randomly allocated into a control group (HFD + vehicle) and Empa group (HFD + empagliflozin 10 mg/kg/day) for five weeks. At the end of treatment, histomorphometric analysis was performed in liver, mRNA levels of Fasn, Screbp-1, Scd-1, Ppar-γ, Pck-1, Mcp-1, Tnf-α, Il-6, F4/80, Atf4, Elf2α, Chop, Grp78, Grp94, Χbp1, Ire1α, Atf6, mTor, Lc3b, Beclin-1, P62, Bcl-2 and Bax were measured by qRT-PCR, and protein levels of p-EIF2α, EIF2a, CHOP, LC3II, P62, BECLIN-1 and cleaved CASPASE-8 were assessed by immunoblotting. RESULTS Empagliflozin-treated mice exhibited reduced fasting glucose, total cholesterol and triglyceride serum levels, as well as decreased NAFLD activity score, decreased expression of lipogenic enzymes (Fasn, Screbp-1c and Pck-1) and inflammatory molecules (Mcp-1 and F4/80), compared to the Control group. Empagliflozin significantly decreased the expression of ER stress molecules Grp78, Ire1α, Xbp1, Elf2α, Atf4, Atf6, Chop, P62(Sqstm1) and Grp94; whilst activating autophagy via increased AMPK phosphorylation, decreased mTOR and increased LC3B expression. Finally, empagliflozin increased the Bcl2/Bax ratio and inhibited CASPASE-8 cleavage, reducing liver cell apoptosis. Immunoblotting analysis confirmed the qPCR results. CONCLUSION These novel findings indicate that empagliflozin treatment for five weeks attenuates NAFLD progression in ApoE(-/-) mice by promoting autophagy, reducing ER stress and inhibiting hepatic apoptosis.
Collapse
|
178
|
Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros CS, Kyriakopoulos G, Chatzigeorgiou A, Kalotychou V, Randeva MS, Chatha K, Kontzoglou K, Kaltsas G, Papavassiliou AG, Randeva HS, Kassi E. Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE (-/-) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int J Mol Sci 2021; 22:818. [PMID: 33467546 PMCID: PMC7829901 DOI: 10.3390/ijms22020818] [Citation(s) in RCA: 202] [Impact Index Per Article: 50.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/06/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022] Open
Abstract
AIMS/HYPOTHESIS SGLT-2 inhibitors (SGLT-2i) have been studied as potential treatments against NAFLD, showing varying beneficial effects. The molecular mechanisms mediating these effects have not been fully clarified. Herein, we investigated the impact of empagliflozin on NAFLD, focusing particularly on ER stress, autophagy and apoptosis. METHODS Five-week old ApoE(-/-) mice were switched from normal to a high-fat diet (HFD). After five weeks, mice were randomly allocated into a control group (HFD + vehicle) and Empa group (HFD + empagliflozin 10 mg/kg/day) for five weeks. At the end of treatment, histomorphometric analysis was performed in liver, mRNA levels of Fasn, Screbp-1, Scd-1, Ppar-γ, Pck-1, Mcp-1, Tnf-α, Il-6, F4/80, Atf4, Elf2α, Chop, Grp78, Grp94, Χbp1, Ire1α, Atf6, mTor, Lc3b, Beclin-1, P62, Bcl-2 and Bax were measured by qRT-PCR, and protein levels of p-EIF2α, EIF2a, CHOP, LC3II, P62, BECLIN-1 and cleaved CASPASE-8 were assessed by immunoblotting. RESULTS Empagliflozin-treated mice exhibited reduced fasting glucose, total cholesterol and triglyceride serum levels, as well as decreased NAFLD activity score, decreased expression of lipogenic enzymes (Fasn, Screbp-1c and Pck-1) and inflammatory molecules (Mcp-1 and F4/80), compared to the Control group. Empagliflozin significantly decreased the expression of ER stress molecules Grp78, Ire1α, Xbp1, Elf2α, Atf4, Atf6, Chop, P62(Sqstm1) and Grp94; whilst activating autophagy via increased AMPK phosphorylation, decreased mTOR and increased LC3B expression. Finally, empagliflozin increased the Bcl2/Bax ratio and inhibited CASPASE-8 cleavage, reducing liver cell apoptosis. Immunoblotting analysis confirmed the qPCR results. CONCLUSION These novel findings indicate that empagliflozin treatment for five weeks attenuates NAFLD progression in ApoE(-/-) mice by promoting autophagy, reducing ER stress and inhibiting hepatic apoptosis.
Collapse
Affiliation(s)
- Narjes Nasiri-Ansari
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.-A.); (C.N.); (K.P.); (G.K.); (A.G.P.)
| | - Chrysa Nikolopoulou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.-A.); (C.N.); (K.P.); (G.K.); (A.G.P.)
| | - Katerina Papoutsi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.-A.); (C.N.); (K.P.); (G.K.); (A.G.P.)
| | - Ioannis Kyrou
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK;
- Aston Medical Research Institute, Aston Medical School, Aston University, Birmingham B4 7ET, UK
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Christos S. Mantzoros
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA;
- Section of Endocrinology, Boston VA Healthcare System, Harvard Medical School, Boston, MA 02215, USA
| | - Georgios Kyriakopoulos
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.-A.); (C.N.); (K.P.); (G.K.); (A.G.P.)
- Department of Pathology, Evangelismos Hospital, 10676 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Vassiliki Kalotychou
- 1st Department of Internal Medicine, Laiko Hospital, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Manpal S. Randeva
- Human Metabolism Research Unit, WISDEM Centre, NHS Trust, Coventry CV2 2DX, UK;
| | - Kamaljit Chatha
- Department of Biochemistry & Immunology, University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK;
| | - Konstantinos Kontzoglou
- Laboratory of Experimental Surgery and Surgical Research N.S. Christeas, Athens University Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Gregory Kaltsas
- Endocrine Oncology Unit, 1st Department of Propaupedic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.-A.); (C.N.); (K.P.); (G.K.); (A.G.P.)
| | - Harpal S. Randeva
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK;
- Human Metabolism Research Unit, WISDEM Centre, NHS Trust, Coventry CV2 2DX, UK;
- Division of Translational and Experimental Medicine-Metabolic and Vascular Health, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Eva Kassi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (N.N.-A.); (C.N.); (K.P.); (G.K.); (A.G.P.)
- Endocrine Oncology Unit, 1st Department of Propaupedic Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
179
|
Moncan M, Mnich K, Blomme A, Almanza A, Samali A, Gorman AM. Regulation of lipid metabolism by the unfolded protein response. J Cell Mol Med 2021; 25:1359-1370. [PMID: 33398919 PMCID: PMC7875919 DOI: 10.1111/jcmm.16255] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 12/17/2022] Open
Abstract
The endoplasmic reticulum (ER) is the site of protein folding and secretion, Ca2+ storage and lipid synthesis in eukaryotic cells. Disruption to protein folding or Ca2+ homeostasis in the ER leads to the accumulation of unfolded proteins, a condition known as ER stress. This leads to activation of the unfolded protein response (UPR) pathway in order to restore protein homeostasis. Three ER membrane proteins, namely inositol‐requiring enzyme 1 (IRE1), protein kinase RNA‐like ER kinase (PERK) and activating transcription factor 6 (ATF6), sense the accumulation of unfolded/misfolded proteins and are activated, initiating an integrated transcriptional programme. Recent literature demonstrates that activation of these sensors can alter lipid enzymes, thus implicating the UPR in the regulation of lipid metabolism. Given the presence of ER stress and UPR activation in several diseases including cancer and neurodegenerative diseases, as well as the growing recognition of altered lipid metabolism in disease, it is timely to consider the role of the UPR in the regulation of lipid metabolism. This review provides an overview of the current knowledge on the impact of the three arms of the UPR on the synthesis, function and regulation of fatty acids, triglycerides, phospholipids and cholesterol.
Collapse
Affiliation(s)
- Matthieu Moncan
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Katarzyna Mnich
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Arnaud Blomme
- Laboratory of Cancer Signaling, GIGA-institute, University of Liège, Liège, Belgium
| | - Aitor Almanza
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Afshin Samali
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| | - Adrienne M Gorman
- Apoptosis Research Centre, School of Natural Sciences, National University of Ireland, Galway, Ireland
| |
Collapse
|
180
|
Medinas DB, Hazari Y, Hetz C. Disruption of Endoplasmic Reticulum Proteostasis in Age-Related Nervous System Disorders. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2021; 59:239-278. [PMID: 34050870 DOI: 10.1007/978-3-030-67696-4_12] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Endoplasmic reticulum (ER) stress is a prominent cellular alteration of diseases impacting the nervous system that are associated to the accumulation of misfolded and aggregated protein species during aging. The unfolded protein response (UPR) is the main pathway mediating adaptation to ER stress, but it can also trigger deleterious cascades of inflammation and cell death leading to cell dysfunction and neurodegeneration. Genetic and pharmacological studies in experimental models shed light into molecular pathways possibly contributing to ER stress and the UPR activation in human neuropathies. Most of experimental models are, however, based on the overexpression of mutant proteins causing familial forms of these diseases or the administration of neurotoxins that induce pathology in young animals. Whether the mechanisms uncovered in these models are relevant for the etiology of the vast majority of age-related sporadic forms of neurodegenerative diseases is an open question. Here, we provide a systematic analysis of the current evidence linking ER stress to human pathology and the main mechanisms elucidated in experimental models. Furthermore, we highlight the recent association of metabolic syndrome to increased risk to undergo neurodegeneration, where ER stress arises as a common denominator in the pathogenic crosstalk between peripheral organs and the nervous system.
Collapse
Affiliation(s)
- Danilo B Medinas
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile.
| | - Younis Hazari
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile.,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile
| | - Claudio Hetz
- Biomedical Neuroscience Institute, Faculty of Medicine, University of Chile, Santiago, Chile. .,Program of Cellular and Molecular Biology, Center for Molecular Studies of the Cell, Institute of Biomedical Sciences, University of Chile, Santiago, Chile. .,Center for Geroscience, Brain Health and Metabolism, Santiago, Chile. .,Buck Institute for Research on Aging, Novato, CA, USA.
| |
Collapse
|
181
|
Singh P, Reza MI, Syed AA, Garg R, Husain A, Katekar R, Goand UK, Riyazuddin M, Gupta AP, Gayen JR. PSTi8 with metformin ameliorates perimenopause induced steatohepatitis associated ER stress by regulating SIRT-1/SREBP-1c axis. Heliyon 2020; 6:e05826. [PMID: 33426334 PMCID: PMC7779780 DOI: 10.1016/j.heliyon.2020.e05826] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/23/2020] [Accepted: 12/18/2020] [Indexed: 12/12/2022] Open
Abstract
Aims Hepatic steatosis in women confronting menopause is the manifestation of substantial fructose consumption and forms a positive feedback loop to develop endoplasmic reticulum (ER) stress. Previously pancreastatin inhibitor peptide-8 (PSTi8) and Metformin (Met) combination effectively ameliorated hepatic lipid accumulation in high fructose diet (HFrD) fed diabetic mice models at reduced doses. Moreover, SIRT-1 plays a crucial role in the regulation of SREBP-1c. Hence we hypothesized that Met and PSTi8 in combination (at therapeutic lower doses) could mitigate hepatic steatosis linked ER stress by activating SIRT-1 and precluding SREBP-1c in HFrD fed 4-Vinylcyclohexenediepoxide (HVCD) induced perimenopausal rats. Main methods HVCD rats were fed HFrD for 12 weeks, accompanied by 14 days of treatment with Met, PSTi8, and combination. We confirmed model establishment by estrus cycle study, estradiol level, and intraperitoneal glucose tolerance test. Plasma lipid profile and liver function were determined. Also, mRNA and protein expressions were examined. Moreover, distribution of SIRT-1 and SREBP-1c was detected in HepG2 cells by immunofluorescence staining. Key findings HVCD group displayed augmented insulin resistance (IR), lipogenesis, and ER stress in the liver. Combination therapy improved the estrus cyclicity, estradiol, and lipid profile of HVCD rats. Met and PSTi8 combination reduced hepatic SREBP-1c and triggered SIRT-1 expression in high fructose-induced insulin-resistant HepG2 cells; consequently, combination therapy attenuated ER stress. Significance Succinctly, present research promotes impetus concerning the remedial impact of Met with PSTi8 at lower therapeutic doses to ameliorate hepatic IR, steatosis, and associated ER stress by revamping the SIRT-1/SREBP-1c axis in perimenopausal rats.
Collapse
Affiliation(s)
- Pragati Singh
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Mohammad Irshad Reza
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anees A Syed
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Richa Garg
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Athar Husain
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Roshan Katekar
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Umesh K Goand
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mohammed Riyazuddin
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Anand P Gupta
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India
| | - Jiaur R Gayen
- Pharmaceutics & Pharmacokinetics Division, CSIR-Central Drug Research Institute, Lucknow, 226031, India.,Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
182
|
Suzuki-Kemuriyama N, Abe A, Uno K, Ogawa S, Watanabe A, Sano R, Yuki M, Miyajima K, Nakae D. A trans fatty acid substitute enhanced development of liver proliferative lesions induced in mice by feeding a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet. Lipids Health Dis 2020; 19:251. [PMID: 33317575 PMCID: PMC7737357 DOI: 10.1186/s12944-020-01423-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 11/22/2020] [Indexed: 02/06/2023] Open
Abstract
Background Nonalcoholic steatohepatitis (NASH) is a form of liver disease characterized by steatosis, necroinflammation, and fibrosis, resulting in cirrhosis and cancer. Efforts have focused on reducing the intake of trans fatty acids (TFAs) because of potential hazards to human health and the increased risk for NASH. However, the health benefits of reducing dietary TFAs have not been fully elucidated. Here, the effects of TFAs vs. a substitute on NASH induced in mice by feeding a choline-deficient, methionine-lowered, L-amino acid-defined, high-fat diet (CDAA-HF) were investigated. Methods Mice were fed CDAA-HF containing shortening with TFAs (CDAA-HF-T(+)), CDAA-HF containing shortening without TFAs (CDAA-HF-T(−)), or a control chow for 13 or 26 weeks. Results At week 13, NASH was induced in mice by feeding CDAA-HF-T(+) containing TFAs or CDAA-HF-T(−) containing no TFAs, but rather mostly saturated fatty acids (FAs), as evidenced by elevated serum transaminase activity and liver changes, including steatosis, inflammation, and fibrosis. CDAA-HF-T(−) induced a greater extent of hepatocellular apoptosis at week 13. At week 26, proliferative (preneoplastic and non-neoplastic) nodular lesions were more pronounced in mice fed CDAA-HF-T(−) than CDAA-HF-T(+). Conclusions Replacement of dietary TFAs with a substitute promoted the development of proliferation lesions in the liver of a mouse NASH model, at least under the present conditions. Attention should be paid regarding use of TFA substitutes in foods for human consumption, and a balance of FAs is likely more important than the particular types of FAs. Supplementary Information The online version contains supplementary material available at 10.1186/s12944-020-01423-3.
Collapse
Affiliation(s)
- Noriko Suzuki-Kemuriyama
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , 1-1-1, Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Akari Abe
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Kiniko Uno
- Department of Food and Nutritional Science, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Shuji Ogawa
- Department of Food and Nutritional Science, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1, Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Atsushi Watanabe
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Ryuhei Sano
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Megumi Yuki
- Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Katsuhiro Miyajima
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , 1-1-1, Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.,Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan
| | - Dai Nakae
- Department of Nutritional Science and Food Safety, Faculty of Applied Bioscience, Tokyo University of Agriculture , 1-1-1, Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan. .,Department of Nutritional Science and Food Safety, Graduate School of Applied Bioscience, Tokyo University of Agriculture, 1-1-1 Sakuragaoka, Setagaya, Tokyo, 156-8502, Japan.
| |
Collapse
|
183
|
Yang J, Liu X, Yuan F, Liu J, Li D, Wei L, Wang X, Yuan L. X-box-binding protein 1 is required for pancreatic development in Xenopus laevis. Acta Biochim Biophys Sin (Shanghai) 2020; 52:1215-1226. [PMID: 33098302 DOI: 10.1093/abbs/gmaa114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 06/25/2020] [Indexed: 11/14/2022] Open
Abstract
X-box-binding protein 1 (XBP1) is a protein containing the basic leucine zipper structure. It belongs to the cAMP-response element binding protein (CREB)/activating transcription factor transcription factor family. As the main transcription factor, spliced XBP1 (XBP1s) participates in many physiological and pathological processes and plays an important role in embryonic development. Previous studies showed that XBP1-knockout mice died because of pancreatic exocrine function deficiency, indicating that XBP1 plays an important role in pancreatic development. However, the exact role of XBP1 in pancreatic development remains unclear. This study aimed to investigate the role of XBP1 in the pancreatic development of Xenopus laevis embryos. Whole-mount in situ hybridization and quantitative real-time PCR results revealed that the expression levels of pancreatic progenitor marker genes pdx1, p48, ngn3, and sox9 were downregulated in XBP1s morpholino oligonucleotide (MO)-injected embryos. The expression levels of pancreatic exocrine and endocrine marker genes insulin and amylase were also downregulated. Through the overexpression of XBP1s, the phenotype and gene expressions were opposite to those in XBP1s MO-injected embryos. Luciferase and chromatin immunoprecipitation assays showed that XBP1s could bind to the XBP1-binding site in the foxa2 promoter. These results revealed that XBP1 is required in the pancreatic development of Xenopus laevis and might function by regulating foxa2.
Collapse
Affiliation(s)
- Jing Yang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Xingjing Liu
- Department of Endocrinology, Zhongda Hospital, Institute of Diabetes, Medical School, Southeast University, Nanjing 210009, China
| | - Fang Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Jia Liu
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Deli Li
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Liyuan Wei
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Xuejun Wang
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| | - Li Yuan
- Department of Biochemistry and Molecular Biology, Nanjing Medical University, Key Laboratory of Human Functional Genomics of Jiangsu Province, Nanjing 210029, China
| |
Collapse
|
184
|
Pyun DH, Kim TJ, Kim MJ, Hong SA, Abd El-Aty AM, Jeong JH, Jung TW. Endogenous metabolite, kynurenic acid, attenuates nonalcoholic fatty liver disease via AMPK/autophagy- and AMPK/ORP150-mediated signaling. J Cell Physiol 2020; 236:4902-4912. [PMID: 33283879 DOI: 10.1002/jcp.30199] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/03/2020] [Accepted: 11/23/2020] [Indexed: 02/06/2023]
Abstract
Endoplasmic reticulum (ER) stress plays a causative role in the development of nonalcoholic fatty liver disease (NAFLD). Kynurenic acid (KA) is a tryptophan metabolite that has been shown to exert anti-inflammatory effects in macrophages and endothelial cells. However, the role of KA in ER stress-associated development of NAFLD has not been fully explored. In the current study, we observed decreased KA levels in the serum of obese subjects. Treated hepatocytes with KA attenuated palmitate-induced lipid accumulation and downregulated lipogenesis-associated genes as well as ER stress markers in a dose-dependent manner. Furthermore, KA augmented AMP-activated protein kinase (AMPK) phosphorylation, oxygen-regulated protein 150 (ORP150) expression, and autophagy markers. The small interfering RNA-mediated suppression of AMPK and ORP150, or 3-methyladenine also abrogated the effects of KA on ER stress and lipid accumulation in hepatocytes. In accordance with in vitro observations, KA administration to mice fed a high-fat diet ameliorated hepatic lipid accumulation and decreased the expression of lipogenic genes as well as ER stress. Moreover, KA treatment increased hepatic AMPK phosphorylation, ORP150 expression, and autophagy related markers in mouse livers. Knockdown of AMPK using in vivo transfection mitigated the effects of KA on hepatic steatosis and ER stress as well as autophagy and ORP150 expression. These results suggest that KA ameliorates hepatic steatosis via the AMPK/autophagy- and AMPK/ORP150-mediated suppression of ER stress. In sum, KA might be used as a promising therapeutic agent for treatment of NAFLD.
Collapse
Affiliation(s)
- Do Hyeon Pyun
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Tae Jin Kim
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Myeong Jun Kim
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| | - Soon Auck Hong
- Department of Pathology, Chung-Ang University, Seoul, Republic of Korea
| | - A M Abd El-Aty
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.,State Key Laboratory of Biobased Material and Green Papermaking, College of Food Science and Engineering, Shandong Academy of Science, Qilu University of Technology, Jinan, China.,Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| | - Ji Hoon Jeong
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea.,Department of Global Innovative Drugs, Graduate School of Chung-Ang University, Seoul, Republic of Korea
| | - Tae Woo Jung
- Department of Pharmacology, Chung-Ang University, Seoul, Republic of Korea
| |
Collapse
|
185
|
Meng H, Gonzales NM, Lonard DM, Putluri N, Zhu B, Dacso CC, York B, O'Malley BW. XBP1 links the 12-hour clock to NAFLD and regulation of membrane fluidity and lipid homeostasis. Nat Commun 2020; 11:6215. [PMID: 33277471 PMCID: PMC7718229 DOI: 10.1038/s41467-020-20028-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 10/27/2020] [Indexed: 12/11/2022] Open
Abstract
A distinct 12-hour clock exists in addition to the 24-hour circadian clock to coordinate metabolic and stress rhythms. Here, we show that liver-specific ablation of X-box binding protein 1 (XBP1) disrupts the hepatic 12-hour clock and promotes spontaneous non-alcoholic fatty liver disease (NAFLD). We show that hepatic XBP1 predominantly regulates the 12-hour rhythmicity of gene transcription in the mouse liver and demonstrate that perturbation of the 12-hour clock, but not the core circadian clock, is associated with the onset and progression of this NAFLD phenotype. Mechanistically, we provide evidence that the spliced form of XBP1 (XBP1s) binds to the hepatic 12-hour cistrome to directly regulate the 12-hour clock, with a periodicity paralleling the harmonic activation of the 12-hour oscillatory transcription of many rate-limiting metabolic genes known to have perturbations in human metabolic disease. Functionally, we show that Xbp1 ablation significantly reduces cellular membrane fluidity and impairs lipid homeostasis via rate-limiting metabolic processes in fatty acid monounsaturated and phospholipid remodeling pathways. These findings reveal that genetic disruption of the hepatic 12-hour clock links to the onset and progression of NAFLD development via transcriptional regulator XBP1, and demonstrate a role for XBP1 and the 12-hour clock in the modulation of phospholipid composition and the maintenance of lipid homeostasis.
Collapse
Affiliation(s)
- Huan Meng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Naomi M Gonzales
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David M Lonard
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Bokai Zhu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, 15219, USA
| | - Clifford C Dacso
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Brian York
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Bert W O'Malley
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, 77030, USA.
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
186
|
Preidis GA, Soni KG, Suh JH, Halder T, Kim KH, Choi JM, Li F, Devaraj S, Conner ME, Coarfa C, Jung SY, Moore DD. Coagulopathy in Malnourished Mice Is Sexually Dimorphic and Regulated by Nutrient-Sensing Nuclear Receptors. Hepatol Commun 2020; 4:1835-1850. [PMID: 33305154 PMCID: PMC7706303 DOI: 10.1002/hep4.1622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/28/2020] [Accepted: 09/18/2020] [Indexed: 11/23/2022] Open
Abstract
Liver dysfunction, including coagulopathy, is a prominent feature of protein-energy malnutrition. To identify mechanisms underlying malnutrition-associated coagulopathy, we administered a low-protein low-fat diet to lactating dams and examined hepatic transcription and plasma coagulation parameters in young adult weanlings. Malnutrition impacted body composition to a greater extent in male versus female mice. Transcriptional profiles suggested opposing effects of nutrient-sensing nuclear receptors, namely induction of peroxisome proliferator-activated receptor α (PPARα) targets and repression of farnesoid-X-receptor (FXR) targets. Coagulopathy with decreased synthesis of fibrinogen-α (FGA) and factor 11 (F11) was observed in malnourished male animals but not female animals. In primary mouse hepatocytes, FXR agonist increased and PPARα agonist decreased Fga and F11 messenger RNA expression. Nuclear receptor DNA response elements were identified in the Fga and F11 gene regulatory regions, and opposing effects of FXR and PPARα were confirmed with luciferase assays. Unexpectedly, hepatic PPARα protein was markedly depleted in malnourished male liver and was not enriched on Fga or F11 response elements. Rather, there was loss of FXR binding at these response elements. Reduced PPARα protein was associated with loss of hepatocyte peroxisomes, which are necessary for bile acid biosynthesis, and with decreased concentrations of bile acids that function as FXR ligands, most notably the FXR agonist chenodeoxycholic acid. Conclusion: Malnutrition impairs growth and liver synthetic function more severely in male mice than in female mice. Malnourished male mice are coagulopathic and exhibit decreased hepatocyte peroxisomes, FXR agonist bile acids, FXR binding on Fga and F11 gene regulatory elements, and coagulation factor synthesis. These effects are absent in female mice, which have low baseline levels of PPARα, suggesting that nutrient-sensing nuclear receptors regulate coagulation factor synthesis in response to host nutritional status in a sex-specific manner.
Collapse
Affiliation(s)
- Geoffrey A. Preidis
- Section of Gastroenterology, Hepatology & NutritionDepartment of PediatricsBaylor College of Medicine and Texas Children’s HospitalHoustonTXUSA
| | - Krishnakant G. Soni
- Section of Gastroenterology, Hepatology & NutritionDepartment of PediatricsBaylor College of Medicine and Texas Children’s HospitalHoustonTXUSA
| | - Ji Ho Suh
- Section of Gastroenterology, Hepatology & NutritionDepartment of PediatricsBaylor College of Medicine and Texas Children’s HospitalHoustonTXUSA
| | - Tripti Halder
- Section of Gastroenterology, Hepatology & NutritionDepartment of PediatricsBaylor College of Medicine and Texas Children’s HospitalHoustonTXUSA
| | - Kang Ho Kim
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Jong Min Choi
- Advanced Technology CoreMass Spectrometry Proteomics CoreBaylor College of MedicineHoustonTXUSA
| | - Feng Li
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTXUSA
| | - Sridevi Devaraj
- Department of Pathology and ImmunologyBaylor College of MedicineHoustonTXUSA
| | - Margaret E. Conner
- Department of Molecular Virology and MicrobiologyBaylor College of MedicineHoustonTXUSA
| | - Cristian Coarfa
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| | - Sung Yun Jung
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
- Advanced Technology CoreMass Spectrometry Proteomics CoreBaylor College of MedicineHoustonTXUSA
- Verna and Marrs McLean Department of Biochemistry and Molecular BiologyBaylor College of MedicineHoustonTXUSA
| | - David D. Moore
- Department of Molecular and Cellular BiologyBaylor College of MedicineHoustonTXUSA
| |
Collapse
|
187
|
Duwaerts CC, Siao K, Soon RK, Her C, Iwawaki T, Kohno K, Mattis AN, Maher JJ. Hepatocyte-specific deletion of XBP1 sensitizes mice to liver injury through hyperactivation of IRE1α. Cell Death Differ 2020; 28:1455-1465. [PMID: 33219328 DOI: 10.1038/s41418-020-00671-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 10/27/2020] [Accepted: 11/04/2020] [Indexed: 02/06/2023] Open
Abstract
X-box binding protein-1 (XBP1) is a transcription factor that plays a central role in controlling cellular responses to endoplasmic reticulum (ER) stress. Under stress conditions, the transcriptionally active form of XBP1 is generated via splicing of Xbp1 mRNA by the ER-resident protein inositol-requiring enzyme-1 (IRE1α). Genetic deletion of XBP1 has multiple consequences: some resulting from the loss of the transcription factor per se, and others related to compensatory activation of IRE1α. The objective of the current study was to investigate the effects of XBP1 deletion in adult mouse liver and determine to what extent they are direct or indirect. XBP1 was deleted from hepatocytes in adult Xbp1fl/fl mice using AAV8-Transthyretin-Cre (Xbp1Δhep). Xbp1Δhep mice exhibited no liver disease at baseline, but developed acute biochemical and histologic liver injury in response to a dietary challenge with fructose for 4 weeks. Fructose-mediated liver injury in Xbp1Δhep mice coincided with heightened IRE1α activity, as demonstrated by Xbp1 mRNA splicing, JNK activation, and regulated IRE1α-dependent RNA decay (RIDD). Activation of eIF2α was also evident, with associated up-regulation of the pro-apoptotic molecules CHOP, BIM, and PUMA. To determine whether the adverse consequences of liver-specific XBP1 deletion were due to XBP1 loss or heightened IRE1α activity, we repeated a fructose challenge in mice with liver-specific deletion of both XBP1 and IRE1α (Xbp1Δhep;Ire1aΔhep). Xbp1Δhep;Ire1aΔhep mice were protected from fructose-mediated liver injury and failed to exhibit any of the signs of ER stress seen in mice lacking XBP1 alone. The protective effect of IRE1α deletion persisted even with long-term exposure to fructose. Xbp1Δhep mice developed liver fibrosis at 16 weeks, but Xbp1Δhep;Ire1aΔhep mice did not. Overall, the results indicate that the deleterious effects of hepatocyte-specific XBP1 deletion are due primarily to hyperactivation of IRE1α. They support further exploration of IRE1α as a contributor to acute and chronic liver diseases.
Collapse
Affiliation(s)
- Caroline C Duwaerts
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,The Liver Center, University of California San Francisco, San Francisco, CA, USA
| | - Kevin Siao
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,The Liver Center, University of California San Francisco, San Francisco, CA, USA
| | - Russell K Soon
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,The Liver Center, University of California San Francisco, San Francisco, CA, USA.,BioMarin Pharmaceutical Inc. 105 Digital Drive, Novato, CA, 94949, USA
| | - Chris Her
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA.,The Liver Center, University of California San Francisco, San Francisco, CA, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Medical Research Institute, Kanazawa Medical University, Ishikawa, 920-0293, Japan
| | - Kenji Kohno
- Institute for Research Initiatives, Nara Institute of Science and Technology, Ikoma, Nara, 630-0192, Japan
| | - Aras N Mattis
- The Liver Center, University of California San Francisco, San Francisco, CA, USA.,Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Jacquelyn J Maher
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA. .,The Liver Center, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
188
|
Yap WS, Shyu P, Gaspar ML, Jesch SA, Marvalim C, Prinz WA, Henry SA, Thibault G. The yeast FIT2 homologs are necessary to maintain cellular proteostasis and membrane lipid homeostasis. J Cell Sci 2020; 133:jcs248526. [PMID: 33033181 PMCID: PMC7657468 DOI: 10.1242/jcs.248526] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 10/01/2020] [Indexed: 12/12/2022] Open
Abstract
Lipid droplets (LDs) are implicated in conditions of lipid and protein dysregulation. The fat storage-inducing transmembrane (FIT; also known as FITM) family induces LD formation. Here, we establish a model system to study the role of the Saccharomyces cerevisiae FIT homologues (ScFIT), SCS3 and YFT2, in the proteostasis and stress response pathways. While LD biogenesis and basal endoplasmic reticulum (ER) stress-induced unfolded protein response (UPR) remain unaltered in ScFIT mutants, SCS3 was found to be essential for proper stress-induced UPR activation and for viability in the absence of the sole yeast UPR transducer IRE1 Owing to not having a functional UPR, cells with mutated SCS3 exhibited an accumulation of triacylglycerol within the ER along with aberrant LD morphology, suggesting that there is a UPR-dependent compensatory mechanism that acts to mitigate lack of SCS3 Additionally, SCS3 was necessary to maintain phospholipid homeostasis. Strikingly, global protein ubiquitylation and the turnover of both ER and cytoplasmic misfolded proteins is impaired in ScFITΔ cells, while a screen for interacting partners of Scs3 identifies components of the proteostatic machinery as putative targets. Together, our data support a model where ScFITs play an important role in lipid metabolism and proteostasis beyond their defined roles in LD biogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Wei Sheng Yap
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - Peter Shyu
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - Maria Laura Gaspar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Stephen A Jesch
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Charlie Marvalim
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
| | - William A Prinz
- Laboratory of Cell and Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD 20892, USA
| | - Susan A Henry
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14853, USA
| | - Guillaume Thibault
- School of Biological Sciences Nanyang Technological University, Singapore, 637551
- Institute of Molecular and Cell Biology, A*STAR, Singapore, 138673
| |
Collapse
|
189
|
Kim DH, Kim BM, Chung KW, Choi YJ, Yu BP, Chung HY. Interaction between CHOP and FoxO6 promotes hepatic lipid accumulation. Liver Int 2020; 40:2706-2718. [PMID: 32639626 PMCID: PMC7689817 DOI: 10.1111/liv.14594] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND & AIMS Endoplasmic reticulum (ER) stress is one of the major causes of hepatic insulin resistance through increasing de novo lipogenesis. Forkhead box O6 (FoxO6) is a transcription factor mediating insulin signalling to glucose and lipid metabolism, therefore, dysregulated FoxO6 is involved in hepatic insulin resistance. In this study, we elucidated the role of FoxO6 in ER stress-induced hepatic lipogenesis. METHODS Hepatic ER stress responses and lipogenesis were monitored in mice overexpressed with constitutively active FoxO6 allele and FoxO6-null mice. In the in vitro study, HepG2 cells overexpressing constitutively active FoxO6 were treated with palmitate, and then alterations in ER stress and lipid metabolism were measured. RESULTS FoxO6 activation induced hepatic lipogenesis and the expression of ER stress-inducible genes. The expression and transcriptional activity of peroxisome proliferator-activated receptor γ (PPARγ) were significantly increased in constitutively active FoxO6 allele. Interestingly, we found that the active FoxO6 physically interacted with C/EBP homologous protein (CHOP), an ER stress-inducible transcription factor, which was responsible for PPARγ expression. Palmitate treatment caused the expression of ER stress-inducible genes, which was deteriorated by FoxO6 activation in HepG2 cells. Palmitate-induced ER stress led to PPARγ expression through interactions between CHOP and FoxO6 corresponding to findings in the in vivo study. On the other hand, the expression of PPARα and β-oxidation were decreased in constitutively active FoxO6 allele which implied that lipid catabolism is also regulated by FoxO6. CONCLUSION Our data present significant evidence demonstrating that CHOP and FoxO6 interact to induce hepatic lipid accumulation through PPARγ expression during ER stress.
Collapse
Affiliation(s)
- Dae Hyun Kim
- Department of PharmacyCollege of PharmacyPusan National UniversityGeumjeong‐GuBusanKorea
| | - Byeong Moo Kim
- Department of PharmacyCollege of PharmacyPusan National UniversityGeumjeong‐GuBusanKorea
| | - Ki Wung Chung
- Department of PharmacyCollege of PharmacyPusan National UniversityGeumjeong‐GuBusanKorea,Department of PharmacyCollege of PharmacyKyungsung UniversityNam‐guBusanKorea
| | - Yeon Ja Choi
- Department of Biopharmaceutical EngineeringDivision of Chemistry and BiotechnologyCollege of Science and TechnologyDongguk UniversityGyeongjuKorea
| | - Byung Pal Yu
- Department of PhysiologyThe University of Texas Health Science Center at San AntonioTXUSA
| | - Hae Young Chung
- Department of PharmacyCollege of PharmacyPusan National UniversityGeumjeong‐GuBusanKorea
| |
Collapse
|
190
|
Lotto J, Drissler S, Cullum R, Wei W, Setty M, Bell EM, Boutet SC, Nowotschin S, Kuo YY, Garg V, Pe'er D, Church DM, Hadjantonakis AK, Hoodless PA. Single-Cell Transcriptomics Reveals Early Emergence of Liver Parenchymal and Non-parenchymal Cell Lineages. Cell 2020; 183:702-716.e14. [PMID: 33125890 PMCID: PMC7643810 DOI: 10.1016/j.cell.2020.09.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 07/06/2020] [Accepted: 09/01/2020] [Indexed: 02/08/2023]
Abstract
The cellular complexity and scale of the early liver have constrained analyses examining its emergence during organogenesis. To circumvent these issues, we analyzed 45,334 single-cell transcriptomes from embryonic day (E)7.5, when endoderm progenitors are specified, to E10.5 liver, when liver parenchymal and non-parenchymal cell lineages emerge. Our data detail divergence of vascular and sinusoidal endothelia, including a distinct transcriptional profile for sinusoidal endothelial specification by E8.75. We characterize two distinct mesothelial cell types as well as early hepatic stellate cells and reveal distinct spatiotemporal distributions for these populations. We capture transcriptional profiles for hepatoblast specification and migration, including the emergence of a hepatomesenchymal cell type and evidence for hepatoblast collective cell migration. Further, we identify cell-cell interactions during the organization of the primitive sinusoid. This study provides a comprehensive atlas of liver lineage establishment from the endoderm and mesoderm through to the organization of the primitive sinusoid at single-cell resolution.
Collapse
Affiliation(s)
- Jeremy Lotto
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Sibyl Drissler
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Rebecca Cullum
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Wei Wei
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada
| | - Manu Setty
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Erin M Bell
- Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | | | - Sonja Nowotschin
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ying-Yi Kuo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Vidur Garg
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Pe'er
- Computational & Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Pamela A Hoodless
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5Z 1L3, Canada; Cell and Developmental Biology Program, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; School of Biomedical Engineering, University of British Columbia, Vancouver, BC V6T 1Z3, Canada; Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T 1Z3, Canada.
| |
Collapse
|
191
|
Lytridou AA, Demetriadou A, Christou M, Potamiti L, Mastroyiannopoulos NP, Kyriacou K, Phylactou LA, Drousiotou A, Petrou PP. Stbd1 promotes glycogen clustering during endoplasmic reticulum stress and supports survival of mouse myoblasts. J Cell Sci 2020; 133:jcs244855. [PMID: 32958708 PMCID: PMC7648618 DOI: 10.1242/jcs.244855] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/16/2020] [Indexed: 01/08/2023] Open
Abstract
Imbalances in endoplasmic reticulum (ER) homeostasis provoke a condition known as ER stress and activate the unfolded protein response (UPR) pathway, an evolutionarily conserved cell survival mechanism. Here, we show that mouse myoblasts respond to UPR activation by stimulating glycogenesis and the formation of α-amylase-degradable, glycogen-containing ER structures. We demonstrate that the glycogen-binding protein Stbd1 is markedly upregulated through the PERK signalling branch of the UPR pathway and is required for the build-up of glycogen structures in response to ER stress activation. In the absence of ER stress, Stbd1 overexpression is sufficient to induce glycogen clustering but does not stimulate glycogenesis. Glycogen structures induced by ER stress are degraded under conditions of glucose restriction through a process that does not depend on autophagosome-lysosome fusion. Furthermore, we provide evidence that failure to induce glycogen clustering during ER stress is associated with enhanced activation of the apoptotic pathway. Our results reveal a so far unknown response of mouse myoblasts to ER stress and uncover a novel specific function of Stbd1 in this process, which may have physiological implications during myogenic differentiation.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Andria A Lytridou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Anthi Demetriadou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Melina Christou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Louiza Potamiti
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Nikolas P Mastroyiannopoulos
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Kyriacos Kyriacou
- Department of Electron Microscopy/Molecular Pathology, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Leonidas A Phylactou
- Department of Molecular Genetics, Function and Therapy, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Anthi Drousiotou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| | - Petros P Petrou
- Department of Biochemical Genetics, The Cyprus Institute of Neurology and Genetics, P.O. Box 23462, 1683 Nicosia, Cyprus
- Cyprus School of Molecular Medicine, P.O. Box 23462, 1683 Nicosia, Cyprus
| |
Collapse
|
192
|
Kwok A, Zvetkova I, Virtue S, Luijten I, Huang-Doran I, Tomlinson P, Bulger DA, West J, Murfitt S, Griffin J, Alam R, Hart D, Knox R, Voshol P, Vidal-Puig A, Jensen J, O'Rahilly S, Semple RK. Truncation of Pik3r1 causes severe insulin resistance uncoupled from obesity and dyslipidaemia by increased energy expenditure. Mol Metab 2020; 40:101020. [PMID: 32439336 PMCID: PMC7385515 DOI: 10.1016/j.molmet.2020.101020] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/05/2020] [Accepted: 05/12/2020] [Indexed: 12/30/2022] Open
Abstract
OBJECTIVE Insulin signalling via phosphoinositide 3-kinase (PI3K) requires PIK3R1-encoded regulatory subunits. C-terminal PIK3R1 mutations cause SHORT syndrome, as well as lipodystrophy and insulin resistance (IR), surprisingly without fatty liver or metabolic dyslipidaemia. We sought to investigate this discordance. METHODS The human pathogenic Pik3r1 Y657∗ mutation was knocked into mice by homologous recombination. Growth, body composition, bioenergetic and metabolic profiles were investigated on chow and high-fat diet (HFD). We examined adipose and liver histology, and assessed liver responses to fasting and refeeding transcriptomically. RESULTS Like humans with SHORT syndrome, Pik3r1WT/Y657∗ mice were small with severe IR, and adipose expansion on HFD was markedly reduced. Also as in humans, plasma lipid concentrations were low, and insulin-stimulated hepatic lipogenesis was not increased despite hyperinsulinemia. At odds with lipodystrophy, however, no adipocyte hypertrophy nor adipose inflammation was found. Liver lipogenic gene expression was not significantly altered, and unbiased transcriptomics showed only minor changes, including evidence of reduced endoplasmic reticulum stress in the fed state and diminished Rictor-dependent transcription on fasting. Increased energy expenditure, which was not explained by hyperglycaemia nor intestinal malabsorption, provided an alternative explanation for the uncoupling of IR from dyslipidaemia. CONCLUSIONS Pik3r1 dysfunction in mice phenocopies the IR and reduced adiposity without lipotoxicity of human SHORT syndrome. Decreased adiposity may not reflect bona fide lipodystrophy, but rather, increased energy expenditure, and we suggest that further study of brown adipose tissue in both humans and mice is warranted.
Collapse
Affiliation(s)
- Albert Kwok
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Ilona Zvetkova
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Sam Virtue
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Ineke Luijten
- Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK
| | - Isabel Huang-Doran
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Patsy Tomlinson
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - David A Bulger
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - James West
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Steven Murfitt
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK
| | - Julian Griffin
- Department of Biochemistry and Cambridge Systems Biology Centre, University of Cambridge, Cambridge, UK; Biomolecular Medicine, Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Medicine, Imperial College London, The Sir Alexander Fleming Building, London, UK
| | - Rafeah Alam
- Laboratory of Lymphocyte Signalling and Development, The Babraham Institute, Cambridge, UK
| | - Daniel Hart
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Rachel Knox
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Peter Voshol
- Louis Bolk Institute, Kosterijland 3-5, NL-3981 AJ, Bunnik, the Netherlands
| | - Antonio Vidal-Puig
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Jørgen Jensen
- Department of Physical Performance, Norwegian School of Sport Sciences, P.O. Box 4014, Ulleval Stadion, 0806 Oslo, Norway
| | - Stephen O'Rahilly
- The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK
| | - Robert K Semple
- Centre for Cardiovascular Science, University of Edinburgh, 47 Little France Crescent, Edinburgh, UK; The University of Cambridge Metabolic Research Laboratories, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK; MRC Metabolic Diseases Unit, Wellcome Trust-MRC Institute of Metabolic Science, Cambridge, UK.
| |
Collapse
|
193
|
Song Q, Chen Y, Wang J, Hao L, Huang C, Griffiths A, Sun Z, Zhou Z, Song Z. ER stress-induced upregulation of NNMT contributes to alcohol-related fatty liver development. J Hepatol 2020; 73:783-793. [PMID: 32389809 PMCID: PMC8301603 DOI: 10.1016/j.jhep.2020.04.038] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 04/21/2020] [Accepted: 04/28/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS N-nicotinamide methyltransferase (NNMT) is emerging as an important enzyme in the regulation of metabolism. NNMT is highly expressed in the liver. However, the exact regulatory mechanism(s) underlying NNMT expression remains unclear and its potential involvement in alcohol-related liver disease (ALD) is completely unknown. METHODS Both traditional Lieber-De Carli and the NIAAA mouse models of ALD were employed. A small-scale chemical screening assay and a chromatin immunoprecipitation assay were performed. NNMT inhibition was achieved via both genetic (adenoviral short hairpin RNA delivery) and pharmacological approaches. RESULTS Chronic alcohol consumption induces endoplasmic reticulum (ER) stress and upregulates NNMT expression in the liver. ER stress inducers upregulated NNMT expression in both AML12 hepatocytes and mice. PERK-ATF4 pathway activation is the main contributor to ER stress-mediated NNMT upregulation in the liver. Alcohol consumption fails to upregulate NNMT in liver-specific Atf4 knockout mice. Both adenoviral NNMT knockdown and NNMT inhibitor administration prevented fatty liver development in response to chronic alcohol feeding; this was also associated with the downregulation of an array of genes involved in de novo lipogenesis, including Srebf1, Acaca, Acacb and Fasn. Further investigations revealed that activation of the lipogenic pathway by NNMT was independent of its NAD+-enhancing action; however, increased cellular NAD+, resulting from NNMT inhibition, was associated with marked liver AMPK activation. CONCLUSIONS ER stress, specifically PERK-ATF4 pathway activation, is mechanistically involved in hepatic NNMT upregulation in response to chronic alcohol exposure. Overexpression of NNMT in the liver plays an important role in the pathogenesis of ALD. LAY SUMMARY In this study, we show that nicotinamide methyltransferase (NNMT) - the enzyme that catalyzes nicotinamide degradation - is a pathological regulator of alcohol-related fatty liver development. NNMT inhibition protects against alcohol-induced fatty liver development and is associated with suppressed de novo lipogenic activity and enhanced AMPK activation. Thus, our data suggest that NNMT may be a potential therapeutic target for the treatment of alcohol-related liver disease.
Collapse
Affiliation(s)
- Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Yingli Chen
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,College of Medical Laboratory Science and Technology, Harbin Medical University (Daqing), Daqing, Heilongjiang, PR. China
| | - Jun Wang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.,Department of Gastroenterology, Tongji Medical College and The Central Hospital of Wuhan, Huazhong University of Science and Technology, Wuhan, Hubei, PR. China
| | - Liuyi Hao
- Center for Translational Biomedical Research and Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Chuyi Huang
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Alexandra Griffiths
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA
| | - Zhaoli Sun
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zhangxiang Zhou
- Center for Translational Biomedical Research and Department of Nutrition, University of North Carolina at Greensboro, North Carolina Research Campus, Kannapolis, NC, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, USA.
| |
Collapse
|
194
|
Xu L, Liu X, Peng F, Zhang W, Zheng L, Ding Y, Gu T, Lv K, Wang J, Ortinau L, Hu T, Shi X, Shi G, Shang G, Sun S, Iwawaki T, Ji Y, Li W, Rosen JM, Zhang XHF, Park D, Adoro S, Catic A, Tong W, Qi L, Nakada D, Chen X. Protein quality control through endoplasmic reticulum-associated degradation maintains haematopoietic stem cell identity and niche interactions. Nat Cell Biol 2020; 22:1162-1169. [PMID: 32958856 PMCID: PMC7888538 DOI: 10.1038/s41556-020-00581-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/21/2020] [Indexed: 12/19/2022]
Abstract
Stem cells need to be protected from genotoxic and proteotoxic stress to maintain a healthy pool throughout life1–3. Little is known about the proteostasis mechanism that safeguards the stem cells. Here, we report Endoplasmic Reticulum-Associated Degradation (ERAD) as a protein quality checkpoint that controls hematopoietic stem cell (HSC)-niche interaction and determines the fate of HSC. SEL1L-HRD1 complex, the most conserved branch of ERAD4, is highly expressed in HSC. Deletion of Sel1l led to niche displacement of HSC, complete loss of HSC identity, and allowed highly efficient donor-HSC engraftment without irradiation. Mechanistic studies identified MPL, the master regulator of HSC identity5, as a bona-fide ERAD substrate that became aggregated in the ER upon ERAD deficiency. Restoration of MPL signaling with an agonist partially rescued the number and reconstitution capacity of Sel1l-deficient HSCs. Our study defines ERAD as an essential proteostasis mechanism to safeguard a healthy stem cell pool through regulating the stem cell-niche interaction.
Collapse
Affiliation(s)
- Longyong Xu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xia Liu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Fanglue Peng
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Weijie Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Liting Zheng
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Yao Ding
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Tianpeng Gu
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Stem Cells and Regenerative Medicine Center, Baylor College of Medicine, Houston, TX, USA
| | - Kaosheng Lv
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jin Wang
- Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX, USA
| | - Laura Ortinau
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Tianyuan Hu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xiangguo Shi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Guojun Shi
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ge Shang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Shengyi Sun
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI, USA
| | - Takao Iwawaki
- Division of Cell Medicine, Department of Life Science, Medical Research Institute, Kanazawa Medical University, Uchinada, Japan
| | - Yewei Ji
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Wei Li
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jeffrey M Rosen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Xiang H-F Zhang
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dongsu Park
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stanley Adoro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Andre Catic
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ling Qi
- Department of Molecular and Integrative Physiology and Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Daisuke Nakada
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Xi Chen
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA. .,Lester and Sue Smith Breast Center and Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
195
|
Zhou X, Fouda S, Li D, Zhang K, Ye JM. Involvement of the Autophagy-ER Stress Axis in High Fat/Carbohydrate Diet-Induced Nonalcoholic Fatty Liver Disease. Nutrients 2020; 12:nu12092626. [PMID: 32872238 PMCID: PMC7551457 DOI: 10.3390/nu12092626] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/07/2020] [Accepted: 08/26/2020] [Indexed: 02/07/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease that can progress from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), and even further to liver cirrhosis or liver cancer. Overconsumption of high fat and/or carbohydrate are among the most common lifestyle factors that drive the development and progression of NAFLD. This review evaluates recent reports on the involvement of autophagy and endoplasmic reticulum (ER) stress in the pathogenesis of NAFLD. Here, we reveal a mechanism of an intrinsically linked axis of impaired autophagy and unresolved ER stress that mediates the development and progression of NAFLD resulting from the overconsumption of high fat and/or carbohydrate.
Collapse
Affiliation(s)
- Xiu Zhou
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| | - Sherouk Fouda
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
| | - Dongli Li
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
| | - Kun Zhang
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen 529020, China; (X.Z.); (D.L.); (K.Z.)
- International Healthcare Innovation Institute, Jiangmen 529040, China
- School of Health and Biomedical Sciences, RMIT University, Melbourne, VIC 3083, Australia;
- Correspondence: ; Tel.: +61-3-9925-7419; Fax: +61-3-9925-7178
| |
Collapse
|
196
|
Mu Q, Wang H, Tong L, Fang Q, Xiang M, Han L, Jin L, Yang J, Qian Z, Ning G, Zhang Y, Zhang Z. Betulinic acid improves nonalcoholic fatty liver disease through YY1/FAS signaling pathway. FASEB J 2020; 34:13033-13048. [PMID: 32777136 DOI: 10.1096/fj.202000546r] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 07/14/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022]
Abstract
The increasing prevalence of nonalcoholic fatty liver disease (NAFLD) worldwide indicates the urgent need to develop novel and effective treatment strategies. Betulinic acid (BA), a naturally occurring plant-derived pentacyclic triterpenoid, has an outstanding effect in improving metabolism. However, the pharmacological action and mechanism of BA in NAFLD remain unclear. Here, we show that BA-treated high-fat diet mice and methionine-choline deficient diet-fed mice are resistant to hepatic steatosis when compared with vehicle-treated mice. BA alleviates fatty acid synthesis, fibrosis, and inflammation and promotes fatty acid oxidation. Meanwhile, fatty acid synthase (FAS) expression and activity are markedly inhibited with BA treatment both in vitro and in vivo. Moreover, BA inhibits FAS expression through transcriptional suppression of Yin Yang 1 (YY1), leading to retard hepatocytes triglyceride accumulation. Collectively, BA protects hepatocytes from abnormal lipid deposition in NAFLD through YY1/FAS pathway. Our findings establish a novel role of BA in representing a possible therapeutic strategy to reverse NAFLD.
Collapse
Affiliation(s)
- Qian Mu
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Lei Tong
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qianhua Fang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minqi Xiang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Luyu Han
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lina Jin
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jian Yang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhen Qian
- Department of Pharmacology, School of Pharmacy, Changchun University of Chinese Medicine, Changchun, China
| | - Guang Ning
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifei Zhang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhiguo Zhang
- Department of Endocrinology and Metabolism, Shanghai Institute of Endocrine and Metabolic Diseases, Shanghai National Clinical Research Center for metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
197
|
Lachkar F, Papaioannou A, Ferré P, Foufelle F. [ER stress and NAFLD]. Biol Aujourdhui 2020; 214:15-23. [PMID: 32773026 DOI: 10.1051/jbio/2020007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 12/13/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent pathology associated with obesity. It encompasses a spectrum of hepatic disorders ranging from steatosis to non-alcoholic steatohepatitis (NASH), which may lead to cirrhosis and hepatocellular carcinoma (HCC). Endoplasmic reticulum (ER) stress has been widely involved to drive in NAFLD progression through the activation of the unfolded protein response (UPR). While transient UPR activation can boost hepatic ER functions, its continuous activation upon a chronic ER stress contributes to lipid accumulation, inflammation and hepatocyte death, which are determinant factors for the progression to more severe stages. The aim of this review is to describe the mechanisms through which the UPR can take part in the transition from a healthy to a diseased liver and to report on possible ways of pharmacological manipulation against these pathological mechanisms.
Collapse
Affiliation(s)
- Floriane Lachkar
- Centre de recherches des Cordeliers, UMRS1128 Inserm, Sorbonne Université, 15 rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Alexandra Papaioannou
- Centre de recherches des Cordeliers, UMRS1128 Inserm, Sorbonne Université, 15 rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Pascal Ferré
- Centre de recherches des Cordeliers, UMRS1128 Inserm, Sorbonne Université, 15 rue de l'École de Médecine, 75270 Paris cedex 06, France
| | - Fabienne Foufelle
- Centre de recherches des Cordeliers, UMRS1128 Inserm, Sorbonne Université, 15 rue de l'École de Médecine, 75270 Paris cedex 06, France
| |
Collapse
|
198
|
Zou Y, Qi Z. Understanding the Role of Exercise in Nonalcoholic Fatty Liver Disease: ERS-Linked Molecular Pathways. Mediators Inflamm 2020; 2020:6412916. [PMID: 32774148 PMCID: PMC7397409 DOI: 10.1155/2020/6412916] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 06/11/2020] [Accepted: 06/23/2020] [Indexed: 12/14/2022] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is globally prevalent and characterized by abnormal lipid accumulation in the liver, frequently accompanied by insulin resistance (IR), enhanced hepatic inflammation, and apoptosis. Recent studies showed that endoplasmic reticulum stress (ERS) at the subcellular level underlies these featured pathologies in the development of NAFLD. As an effective treatment, exercise significantly reduces hepatic lipid accumulation and thus alleviates NAFLD. Confusingly, these benefits of exercise are associated with increased or decreased ERS in the liver. Further, the interaction between diet, medication, exercise types, and intensity in ERS regulation is more confusing, though most studies have confirmed the benefits of exercise. In this review, we focus on understanding the role of exercise-modulated ERS in NAFLD and ERS-linked molecular pathways. Moderate ERS is an essential signaling for hepatic lipid homeostasis. Higher ERS may lead to increased inflammation and apoptosis in the liver, while lower ERS may lead to the accumulation of misfolded proteins. Therefore, exercise acts like an igniter or extinguisher to keep ERS at an appropriate level by turning it up or down, which depends on diet, medications, exercise intensity, etc. Exercise not only enhances hepatic tolerance to ERS but also prevents the malignant development of steatosis due to excessive ERS.
Collapse
Affiliation(s)
- Yong Zou
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| | - Zhengtang Qi
- The Key Laboratory of Adolescent Health Assessment and Exercise Intervention (Ministry of Education), East China Normal University, Shanghai 200241, China
- School of Physical Education and Health, East China Normal University, Shanghai 200241, China
| |
Collapse
|
199
|
Transcriptional Regulation in Non-Alcoholic Fatty Liver Disease. Metabolites 2020; 10:metabo10070283. [PMID: 32660130 PMCID: PMC7408131 DOI: 10.3390/metabo10070283] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 12/12/2022] Open
Abstract
Obesity is the primary risk factor for the pathogenesis of non-alcoholic fatty liver disease (NAFLD), the worldwide prevalence of which continues to increase dramatically. The liver plays a pivotal role in the maintenance of whole-body lipid and glucose homeostasis. This is mainly mediated by the transcriptional activation of hepatic pathways that promote glucose and lipid production or utilization in response to the nutritional state of the body. However, in the setting of chronic excessive nutrition, the dysregulation of hepatic transcriptional machinery promotes lipid accumulation, inflammation, metabolic stress, and fibrosis, which culminate in NAFLD. In this review, we provide our current understanding of the transcription factors that have been linked to the pathogenesis and progression of NAFLD. Using publicly available transcriptomic data, we outline the altered activity of transcription factors among humans with NAFLD. By expanding this analysis to common experimental mouse models of NAFLD, we outline the relevance of mouse models to the human pathophysiology at the transcriptional level.
Collapse
|
200
|
Metcalf MG, Higuchi-Sanabria R, Garcia G, Tsui CK, Dillin A. Beyond the cell factory: Homeostatic regulation of and by the UPR ER. SCIENCE ADVANCES 2020; 6:eabb9614. [PMID: 32832649 PMCID: PMC7439504 DOI: 10.1126/sciadv.abb9614] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Accepted: 06/02/2020] [Indexed: 05/02/2023]
Abstract
The endoplasmic reticulum (ER) is commonly referred to as the factory of the cell, as it is responsible for a large amount of protein and lipid synthesis. As a membrane-bound organelle, the ER has a distinct environment that is ideal for its functions in synthesizing these primary cellular components. Many different quality control machineries exist to maintain ER stability under the stresses associated with synthesizing, folding, and modifying complex proteins and lipids. The best understood of these mechanisms is the unfolded protein response of the ER (UPRER), in which transmembrane proteins serve as sensors, which trigger a coordinated transcriptional response of genes dedicated for mitigating the stress. As the name suggests, the UPRER is most well described as a functional response to protein misfolding stress. Here, we focus on recent findings and emerging themes in additional roles of the UPRER outside of protein homeostasis, including lipid homeostasis, autophagy, apoptosis, and immunity.
Collapse
|