151
|
Oh DY, Lowther S, McCaw JM, Sullivan SG, Leang SK, Haining J, Arkinstall R, Kelso A, Mcvernon J, Barr IG, Middleton D, Hurt AC. Evaluation of oseltamivir prophylaxis regimens for reducing influenza virus infection, transmission and disease severity in a ferret model of household contact. J Antimicrob Chemother 2014; 69:2458-69. [PMID: 24840623 PMCID: PMC4130381 DOI: 10.1093/jac/dku146] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 03/31/2014] [Accepted: 04/03/2014] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES The emergence of the pandemic influenza A(H1N1)pdm09 virus in 2009 saw a significant increase in the therapeutic and prophylactic use of neuraminidase inhibitors (NAIs) to mitigate the impact of this highly transmissible virus. Prior to the pandemic, many countries stockpiled NAIs and developed pandemic plans for the use of antiviral drugs, based on either treatment of high-risk individuals and/or prophylaxis of contacts. However, to date there has been a lack of in vivo models to test the efficacy of treatment or prophylaxis with NAIs, for influenza-infected individuals or exposed contacts, in a household setting. METHODS A ferret model of household contact was developed to study the efficacy of different prophylaxis regimens in preventing infection in contact ferrets exposed to influenza A(H1N1)pdm09-infected index ferrets. RESULTS Among the different prophylactic regimens, contact ferrets receiving oseltamivir prophylaxis twice daily showed better outcomes than those receiving oseltamivir once daily. Benefits included a significant delay in the time to secondary infection, lower weight loss and higher activity levels. The treatment of index ferrets at 36 h post-infection did not influence either secondary infection rates or clinical symptoms in exposed contact ferrets. Neither prophylaxis nor treatment prevented infection or reduced the duration of viral shedding, although clinical symptoms did improve in infected animals receiving prophylaxis. CONCLUSIONS Different oseltamivir prophylaxis regimens did not prevent infections, but consistently resulted in a reduction in symptoms in infected ferrets. However, oseltamivir prophylaxis failed to reduce viral titres, which warrants further investigation in humans.
Collapse
Affiliation(s)
- Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria, Australia
| | - Sue Lowther
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | - James M McCaw
- Vaccine and Immunisation Research Group, Murdoch Childrens Research Institute, Royal Childrens Hospital, Parkville, Victoria, Australia Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Sheena G Sullivan
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria, Australia
| | - Sook-Kwan Leang
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria, Australia
| | - Jessica Haining
- Australian Animal Health Laboratory, Geelong, Victoria, Australia
| | | | - Anne Kelso
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria, Australia
| | - Jodie Mcvernon
- Vaccine and Immunisation Research Group, Murdoch Childrens Research Institute, Royal Childrens Hospital, Parkville, Victoria, Australia Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ian G Barr
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria, Australia School of Applied Sciences and Engineering, Monash University, Churchill, Victoria, Australia
| | | | - Aeron C Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, North Melbourne, Victoria, Australia School of Applied Sciences and Engineering, Monash University, Churchill, Victoria, Australia
| |
Collapse
|
152
|
He L, Jiang K, Wu Q, Duan Z, Xu H, Liu J, Cui Z, Gu M, Wang X, Liu X, Liu X. Two amino acid substitutions in the haemagglutinin of the 2009 pandemic H1N1 virus decrease direct-contact transmission in guinea pigs. J Gen Virol 2014; 95:2612-2617. [PMID: 25135885 DOI: 10.1099/vir.0.067694-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The 2009 pandemic H1N1 influenza A virus spread across the globe and caused the first influenza pandemic of the 21st century. Many of the molecular factors that contributed to the airborne transmission of this pandemic virus have been determined; however, the direct-contact transmission of this virus remains poorly understood. In this study, we report that a combination of two mutations (N159D and Q226R) in the haemagglutinin (HA) protein of the representative 2009 H1N1 influenza virus A/California/04/2009 (CA04) caused a switch in receptor binding preference from the α2,6-sialoglycan to the α2,3-sialoglycan receptor, and decreased the binding intensities for both glycans. In conjunction with a significantly decreased replication efficiency in the nasal epithelium, this limited human receptor binding affinity resulted in inefficient direct-contact transmission of CA04 between guinea pigs. Our findings highlight the role of the HA gene in the transmission of the influenza virus.
Collapse
Affiliation(s)
- Liang He
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Kaijun Jiang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Qiwen Wu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zhiqiang Duan
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Haixu Xu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Jingjing Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Zhu Cui
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Min Gu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiaoquan Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiaowen Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| | - Xiufan Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, PR China
| |
Collapse
|
153
|
Casalegno JS, Ferraris O, Escuret V, Bouscambert M, Bergeron C, Linès L, Excoffier T, Valette M, Frobert E, Pillet S, Pozzetto B, Lina B, Ottmann M. Functional balance between the hemagglutinin and neuraminidase of influenza A(H1N1)pdm09 HA D222 variants. PLoS One 2014; 9:e104009. [PMID: 25119465 PMCID: PMC4131921 DOI: 10.1371/journal.pone.0104009] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 07/06/2014] [Indexed: 12/16/2022] Open
Abstract
D222G/N substitutions in A(H1N1)pdm09 hemagglutinin may be associated with increased binding of viruses causing low respiratory tract infections and human pathogenesis. We assessed the impact of such substitutions on the balance between hemagglutinin binding and neuraminidase cleavage, viral growth and in vivo virulence.Seven viruses with differing polymorphisms at codon 222 (2 with D, 3 G, 1 N and 1 E) were isolated from patients and characterized with regards hemagglutinin binding affinity (Kd) to α-2,6 sialic acid (SAα-2,6) and SAα-2,3 and neuraminidase enzymatic properties (Km, Ki and Vmax). The hemagglutination assay was used to quantitatively assess the balance between hemagglutinin binding and neuraminidase cleavage. Viral growth properties were compared in vitro in MDCK-SIAT1 cells and in vivo in BALB/c mice. Compared with D222 variants, the binding affinity of G222 variants was greater for SAα-2,3 and lower for SAα-2,6, whereas that of both E222 and N222 variants was greater for both SAα-2,3 and SAα-2,6. Mean neuraminidase activity of D222 variants (16.0 nmol/h/10(6)) was higher than that of G222 (1.7 nmol/h/10(6) viruses) and E/N222 variants (4.4 nmol/h/10(6) viruses). The hemagglutination assay demonstrated a deviation from functional balance by E222 and N222 variants that displayed strong hemagglutinin binding but weak neuraminidase activity. This deviation impaired viral growth in MDCK-SIAT1 cells but not infectivity in mice. All strains but one exhibited low infectious dose in mice (MID50) and replicated to high titers in the lung; this D222 strain exhibited a ten-fold higher MID50 and replicated to low titers. Hemagglutinin-neuraminidase balance status had a greater impact on viral replication than hemagglutinin affinity strength, at least in vitro, thus emphasizing the importance of an optimal balance for influenza virus fitness. The mouse model is effective in assessing binding to SAα-2,3 but cannot differentiate SAα-2,3- from SAα-2,6- preference, nor estimate the hemagglutinin-neuraminidase balance in A(H1N1)pdm09 strains.
Collapse
Affiliation(s)
- Jean-Sébastien Casalegno
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
- Laboratory of Virology, National Influenza Centre (South of France), Hospices Civils de Lyon, Bât A3, Bron, France
| | - Olivier Ferraris
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
- IRBA, Equipe Recherche Lyon, Lyon, France
| | - Vanessa Escuret
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
- Laboratory of Virology, National Influenza Centre (South of France), Hospices Civils de Lyon, Bât A3, Bron, France
| | - Maude Bouscambert
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
- Laboratory of Virology, National Influenza Centre (South of France), Hospices Civils de Lyon, Bât A3, Bron, France
| | - Corinne Bergeron
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
| | - Laetitia Linès
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
| | - Thierry Excoffier
- Université de Lyon, Université Lyon 1, Université Lyon 2, INSA de Lyon, École Centrale de Lyon, LIRIS UMR 5205 CNRS, Lyon, France
| | - Martine Valette
- Laboratory of Virology, National Influenza Centre (South of France), Hospices Civils de Lyon, Bât A3, Bron, France
| | - Emilie Frobert
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
- Laboratory of Virology, National Influenza Centre (South of France), Hospices Civils de Lyon, Bât A3, Bron, France
| | - Sylvie Pillet
- Laboratoire de Bactériologie-virologie-hygiène, Hôpital Nord, CHU de Saint-Étienne, Saint-Étienne, France
| | - Bruno Pozzetto
- Laboratoire de Bactériologie-virologie-hygiène, Hôpital Nord, CHU de Saint-Étienne, Saint-Étienne, France
| | - Bruno Lina
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
- Laboratory of Virology, National Influenza Centre (South of France), Hospices Civils de Lyon, Bât A3, Bron, France
| | - Michèle Ottmann
- Université de Lyon, Université Lyon 1, Faculté de Médecine Lyon Est, Laboratoire de Virologie et Pathologie Humaine, EA 4610, Lyon, France
| |
Collapse
|
154
|
Influenza virus A/Anhui/1/2013 (H7N9) replicates efficiently in the upper and lower respiratory tracts of cynomolgus macaques. mBio 2014; 5:mBio.01331-14. [PMID: 25118237 PMCID: PMC4145683 DOI: 10.1128/mbio.01331-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In March 2013, three fatal human cases of infection with influenza A virus (H7N9) were reported in China. Since then, human cases have been accumulating. Given the public health importance of this virus, we performed a pathogenicity study of the H7N9 virus in the cynomolgus macaque model, focusing on clinical aspects of disease, radiographic, histological, and gene expression profile changes in the upper and lower respiratory tracts, and changes in systemic cytokine and chemokine profiles during infection. Cynomolgus macaques developed transient, mild to severe disease with radiographic evidence of pulmonary infiltration. Virus replicated in the upper as well as lower respiratory tract, with sustained replication in the upper respiratory tract until the end of the experiment at 6 days after inoculation. Virus shedding occurred mainly via the throat. Histopathological changes in the lungs were similar to those observed in humans, albeit less severe, with diffuse alveolar damage, infiltration of polymorphonuclear cells, formation of hyaline membranes, pneumocyte hyperplasia, and fibroproliferative changes. Analysis of gene expression profiles in lung lesions identified pathways involved in tissue damage during H7N9 infection as well as leads for development of therapeutics targeting host responses rather than virus replication. Overall, H7N9 infection was not as severe in cynomolgus macaques as in humans, supporting the possible role of underlying medical complications in disease severity as discussed for human H7N9 infection (H. N. Gao et al., N. Engl. J. Med. 368:2277–2285, 2013, doi:10.1056/NEJMoa1305584). Influenza A virus H7N9 emerged early in 2013, and human cases have continued to emerge since then. Although H7N9 virus-induced disease in humans is often very severe and even lethal, the majority of reported H7N9 cases occurred in older people and people with underlying medical conditions. To better understand the pathogenicity of this virus, healthy cynomolgus macaques were inoculated with influenza A virus H7N9. Cynomolgus macaques were used as a model because the receptor distribution for H7N9 virus in macaques was recently shown to be more similar to that in humans than that of other frequently used animal models. From comparison with previous studies, we conclude that the emerging H7N9 influenza virus was more pathogenic in cynomolgus macaques than seasonal influenza A viruses and most isolates of the pandemic H1N1 virus but less pathogenic than the 1918 Spanish influenza virus or highly pathogenic avian influenza (HPAI) H5N1 virus.
Collapse
|
155
|
Influenza A virus acquires enhanced pathogenicity and transmissibility after serial passages in swine. J Virol 2014; 88:11981-94. [PMID: 25100840 DOI: 10.1128/jvi.01679-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Genetic and phylogenetic analyses suggest that the pandemic H1N1/2009 virus was derived from well-established swine influenza lineages; however, there is no convincing evidence that the pandemic virus was generated from a direct precursor in pigs. Furthermore, the evolutionary dynamics of influenza virus in pigs have not been well documented. Here, we subjected a recombinant virus (rH1N1) with the same constellation makeup as the pandemic H1N1/2009 virus to nine serial passages in pigs. The severity of infection sequentially increased with each passage. Deep sequencing of viral quasispecies from the ninth passage found five consensus amino acid mutations: PB1 A469T, PA 1129T, NA N329D, NS1 N205K, and NEP T48N. Mutations in the hemagglutinin (HA) protein, however, differed greatly between the upper and lower respiratory tracts. Three representative viral clones with the five consensus mutations were selected for functional evaluation. Relative to the parental virus, the three viral clones showed enhanced replication and polymerase activity in vitro and enhanced replication, pathogenicity, and transmissibility in pigs, guinea pigs, and ferrets in vivo. Specifically, two mutants of rH1N1 (PB1 A469T and a combination of NS1 N205K and NEP T48N) were identified as determinants of transmissibility in guinea pigs. Crucially, one mutant viral clone with the five consensus mutations, which also carried D187E, K211E, and S289N mutations in its HA, additionally was able to infect ferrets by airborne transmission as effectively as the pandemic virus. Our findings demonstrate that influenza virus can acquire viral characteristics that are similar to those of the pandemic virus after limited serial passages in pigs. Importance: We demonstrate here that an engineered reassortant swine influenza virus, with the same gene constellation pattern as the pandemic H1N1/2009 virus and subjected to only nine serial passages in pigs, acquired greatly enhanced virulence and transmissibility. In particular, one representative pathogenic passaged virus clone, which carried three mutations in the HA gene and five consensus mutations in PB1, PA, NA, NS1, and NEP genes, additionally was able to confer respiratory droplet transmission as effectively as the pandemic H1N1/2009 virus. Our findings suggest that pigs can readily induce adaptive mutational changes to a precursor pandemic-like virus to transform it into a highly virulent and infectious form akin to that of the pandemic H1N1/2009 virus, which underlines the potential direct role of pigs in promoting influenza A virus pathogenicity and transmissibility.
Collapse
|
156
|
Glycan receptor specificity as a useful tool for characterization and surveillance of influenza A virus. Trends Microbiol 2014; 22:632-41. [PMID: 25108746 DOI: 10.1016/j.tim.2014.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 07/09/2014] [Accepted: 07/11/2014] [Indexed: 01/28/2023]
Abstract
Influenza A viruses are rapidly evolving pathogens with the potential for novel strains to emerge and result in pandemic outbreaks in humans. Some avian-adapted subtypes have acquired the ability to bind to human glycan receptors and cause severe infections in humans but have yet to adapt to and transmit between humans. The emergence of new avian strains and their ability to infect humans has confounded their distinction from circulating human virus strains through linking receptor specificity to human adaptation. Herein we review the various structural and biochemical analyses of influenza hemagglutinin-glycan receptor interactions. We provide our perspectives on how receptor specificity can be used to monitor evolution of the virus to adapt to human hosts so as to facilitate improved surveillance and pandemic preparedness.
Collapse
|
157
|
Linster M, van Boheemen S, de Graaf M, Schrauwen EJA, Lexmond P, Mänz B, Bestebroer TM, Baumann J, van Riel D, Rimmelzwaan GF, Osterhaus ADME, Matrosovich M, Fouchier RAM, Herfst S. Identification, characterization, and natural selection of mutations driving airborne transmission of A/H5N1 virus. Cell 2014; 157:329-339. [PMID: 24725402 DOI: 10.1016/j.cell.2014.02.040] [Citation(s) in RCA: 229] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Revised: 02/17/2014] [Accepted: 02/24/2014] [Indexed: 12/26/2022]
Abstract
Recently, A/H5N1 influenza viruses were shown to acquire airborne transmissibility between ferrets upon targeted mutagenesis and virus passage. The critical genetic changes in airborne A/Indonesia/5/05 were not yet identified. Here, five substitutions proved to be sufficient to determine this airborne transmission phenotype. Substitutions in PB1 and PB2 collectively caused enhanced transcription and virus replication. One substitution increased HA thermostability and lowered the pH of membrane fusion. Two substitutions independently changed HA binding preference from α2,3-linked to α2,6-linked sialic acid receptors. The loss of a glycosylation site in HA enhanced overall binding to receptors. The acquired substitutions emerged early during ferret passage as minor variants and became dominant rapidly. Identification of substitutions that are essential for airborne transmission of avian influenza viruses between ferrets and their associated phenotypes advances our fundamental understanding of virus transmission and will increase the value of future surveillance programs and public health risk assessments.
Collapse
Affiliation(s)
- Martin Linster
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Sander van Boheemen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Miranda de Graaf
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Eefje J A Schrauwen
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Pascal Lexmond
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Benjamin Mänz
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Theo M Bestebroer
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Jan Baumann
- Institute of Virology, Philipps-University, 35043 Marburg, Germany
| | - Debby van Riel
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Guus F Rimmelzwaan
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | - Albert D M E Osterhaus
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| | | | - Ron A M Fouchier
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands.
| | - Sander Herfst
- Department of Viroscience, Postgraduate School of Molecular Medicine, Erasmus Medical Center, 3015GE Rotterdam, the Netherlands
| |
Collapse
|
158
|
Music N, Reber AJ, Lipatov AS, Kamal RP, Blanchfield K, Wilson JR, Donis RO, Katz JM, York IA. Influenza vaccination accelerates recovery of ferrets from lymphopenia. PLoS One 2014; 9:e100926. [PMID: 24968319 PMCID: PMC4072694 DOI: 10.1371/journal.pone.0100926] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Accepted: 06/01/2014] [Indexed: 01/06/2023] Open
Abstract
Ferrets are a useful animal model for human influenza virus infections, since they closely mimic the pathogenesis of influenza viruses observed in humans. However, a lack of reagents, especially for flow cytometry of immune cell subsets, has limited research in this model. Here we use a panel of primarily species cross-reactive antibodies to identify ferret T cells, cytotoxic T lymphocytes (CTL), B cells, and granulocytes in peripheral blood. Following infection with seasonal H3N2 or H1N1pdm09 influenza viruses, these cell types showed rapid and dramatic changes in frequency, even though clinically the infections were mild. The loss of B cells and CD4 and CD8 T cells, and the increase in neutrophils, were especially marked 1–2 days after infection, when about 90% of CD8+ T cells disappeared from the peripheral blood. The different virus strains led to different kinetics of leukocyte subset alterations. Vaccination with homologous vaccine reduced clinical symptoms slightly, but led to a much more rapid return to normal leukocyte parameters. Assessment of clinical symptoms may underestimate the effectiveness of influenza vaccine in restoring homeostasis.
Collapse
Affiliation(s)
- Nedzad Music
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Adrian J. Reber
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Aleksandr S. Lipatov
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ram P. Kamal
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Kristy Blanchfield
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jason R. Wilson
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ruben O. Donis
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Jacqueline M. Katz
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
| | - Ian A. York
- Influenza Division, Centers for Disease Control and Prevention, Atlanta, Georgia, United States of America
- * E-mail:
| |
Collapse
|
159
|
Influenza A virus attenuation by codon deoptimization of the NS gene for vaccine development. J Virol 2014; 88:10525-40. [PMID: 24965472 DOI: 10.1128/jvi.01565-14] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
UNLABELLED Influenza viral infection represents a serious public health problem that causes contagious respiratory disease, which is most effectively prevented through vaccination to reduce transmission and future infection. The nonstructural (NS) gene of influenza A virus encodes an mRNA transcript that is alternatively spliced to express two viral proteins, the nonstructural protein 1 (NS1) and the nuclear export protein (NEP). The importance of the NS gene of influenza A virus for viral replication and virulence has been well described and represents an attractive target to generate live attenuated influenza viruses with vaccine potential. Considering that most amino acids can be synthesized from several synonymous codons, this study employed the use of misrepresented mammalian codons (codon deoptimization) for the de novo synthesis of a viral NS RNA segment based on influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus. We generated three different recombinant influenza PR8 viruses containing codon-deoptimized synonymous mutations in coding regions comprising the entire NS gene or the mRNA corresponding to the individual viral protein NS1 or NEP, without modifying the respective splicing and packaging signals of the viral segment. The fitness of these synthetic viruses was attenuated in vivo, while they retained immunogenicity, conferring both homologous and heterologous protection against influenza A virus challenges. These results indicate that influenza viruses can be effectively attenuated by synonymous codon deoptimization of the NS gene and open the possibility of their use as a safe vaccine to prevent infections with these important human pathogens. IMPORTANCE Vaccination serves as the best therapeutic option to protect humans against influenza viral infections. However, the efficacy of current influenza vaccines is suboptimal, and novel approaches are necessary for the prevention of disease cause by this important human respiratory pathogen. The nonstructural (NS) gene of influenza virus encodes both the multifunctional nonstructural protein 1 (NS1), essential for innate immune evasion, and the nuclear export protein (NEP), required for the nuclear export of viral ribonucleoproteins and for timing of the virus life cycle. Here, we have generated a recombinant influenza A/Puerto Rico/8/1934 (H1N1) (PR8) virus containing a codon-deoptimized NS segment that is attenuated in vivo yet retains immunogenicity and protection efficacy against homologous and heterologous influenza virus challenges. These results open the exciting possibility of using this NS codon deoptimization methodology alone or in combination with other approaches for the future development of vaccine candidates to prevent influenza viral infections.
Collapse
|
160
|
Influenza virus infectivity and virulence following ocular-only aerosol inoculation of ferrets. J Virol 2014; 88:9647-54. [PMID: 24920819 DOI: 10.1128/jvi.01067-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Respiratory pathogens have traditionally been studied by examining the exposure and infection of respiratory tract tissues. However, these studies typically overlook the role of ocular surfaces, which represent both a potential site of virus replication and a portal of entry for the establishment of a respiratory infection. To model transocular virus entry in a mammalian species, we established a novel inoculation method that delivers an aerosol inoculum exclusively to the ferret ocular surface. Using influenza virus as a representative respiratory pathogen, we found that both human and avian viruses mounted productive respiratory infections in ferrets following ocular-only aerosol inoculation, and we demonstrated that H5N1 virus can result in a fatal infection at doses below 10 PFU or with exposure times as short as 2 min. Ferrets inoculated by the ocular aerosol route with an avian (H7N7, H7N9) or human (H1N1, H3N2v) virus were capable of transmitting the virus to naïve animals in direct-contact or respiratory-droplet models, respectively. Our results reveal that ocular-only exposure to virus-containing aerosols constitutes a valid exposure route for a potentially fatal respiratory infection, even for viruses that do not demonstrate an ocular tropism, underscoring the public health implications of ocular exposure in clinical or occupational settings. IMPORTANCE In the absence of eye protection, the human ocular surface remains vulnerable to infection with aerosolized respiratory viruses. In this study, we present a way to inoculate laboratory mammals that excludes respiratory exposure, infecting ferrets only by ocular exposure to influenza virus-containing aerosols. This study demonstrates that the use of respiratory protection alone does not fully protect against influenza virus exposure, infection, and severe disease.
Collapse
|
161
|
Abstract
Viruses are a common and important cause of severe community-acquired pneumonia, and may lead to severe respiratory disease and admission to the intensive care unit. Influenza is the most common virus associated with severe viral pneumonia, although other important causes include respiratory syncytial virus, adenovirus, metapneumonia virus, and coronaviruses. Viral pneumonias tend to have a seasonal predilection and are often preceded by a typical viral prodrome. This article focuses on severe influenza pneumonia, including the 2009 H1N1 pandemic, and briefly discusses other causes of severe respiratory disease of viral etiology.
Collapse
Affiliation(s)
- Clare D Ramsey
- Section of Respiratory Medicine, Department of Medicine, University of Manitoba, RS 314, 810 Sherbrook Street, Winnipeg, Manitoba R3A 1R8, Canada; Section of Critical Care, Department of Medicine, University of Manitoba, GC 425, 820 Sherbrook Street, Winnipeg, Manitoba R3T 2N2, Canada; Department of Community Health Sciences, University of Manitoba, S113, 750 Bannatyne Avenue, Winnipeg, Manitoba R3E 0W3, Canada.
| | | |
Collapse
|
162
|
Kwon D, Shin K, Kim SJ, Lee JY, Kang C. Mammalian pathogenesis of oseltamivir-resistant pandemic (H1N1) 2009 influenza virus isolated in South Korea. Virus Res 2014; 185:41-6. [DOI: 10.1016/j.virusres.2014.03.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/25/2014] [Accepted: 03/11/2014] [Indexed: 11/15/2022]
|
163
|
Shotgun glycomics of pig lung identifies natural endogenous receptors for influenza viruses. Proc Natl Acad Sci U S A 2014; 111:E2241-50. [PMID: 24843157 DOI: 10.1073/pnas.1323162111] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.
Collapse
|
164
|
Jie Z, Sun W, Wang S, Koster F, Li B, Harrod KS. The rapid and sustained responses of dendritic cells to influenza virus infection in a non-human primate model. Braz J Infect Dis 2014; 18:406-13. [PMID: 24780366 PMCID: PMC9478763 DOI: 10.1016/j.bjid.2013.12.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 12/17/2013] [Accepted: 12/24/2013] [Indexed: 12/11/2022] Open
Abstract
Dendritic cells (DCs) are readily infected by influenza viruses and play a crucial role in regulating host innate and adaptive immune responses to viral infection. The aims of this study are to characterize the dynamic changes in the numbers and maturation status of dendritic cells present in the lung and lung-associated lymph nodes (LALNs) in the model of a non-human primate (NHP) infected by influenza A virus (IAV). Cynomolgus macaques were infected with influenza A virus (H3N2) via bronchoscopy. Flow cytometry was used to analyze the DC numbers, maturation status and subsets during the time of acute infection (days 1, 2, 3, 4, 7) and the resolution phase (day 30). A dramatic increase in the numbers of influenza A virus-infected CD11c+CD14- myeloid dendritic cells (mDCs) and CD11c-CD123+ plasmacytoid dendritic cells (pDCs) were observed from day 1 to day 4 and peak up from day 7 post-infection. In lung and lung-associated lymph nodes, the numbers and maturation status of myeloid dendritic cells and plasmacytoid dendritic cells increased more slowly than those in the lung tissues. On day 30 post-infection, influenza A virus challenge increased the number of myeloid dendritic cells, but not plasmacytoid dendritic cells, compared with baseline. These findings indicate that dendritic cells are susceptible to influenza A virus infection, with the likely purpose of increasing mature myeloid dendritic cells numbers in the lung and lung and lung-associated lymph nodes, which provides important new insights into the regulation of dendritic cells in a non-human primate model.
Collapse
Affiliation(s)
- Zhijun Jie
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Wei Sun
- Department of Respiratory Medicine, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Shanze Wang
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Frederick Koster
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Bilan Li
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| | - Kevin S Harrod
- Infectious Disease Program, Lovelace Respiratory Research Institute, Albuquerque, NM, USA.
| |
Collapse
|
165
|
Lv J, Wang D, Hua YH, Pei SJ, Wang J, Hu WW, Wang XL, Jia N, Jiang QS. Pulmonary immune responses to 2009 pandemic influenza A (H1N1) virus in mice. BMC Infect Dis 2014; 14:197. [PMID: 24725777 PMCID: PMC4002205 DOI: 10.1186/1471-2334-14-197] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 04/07/2014] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Well-characterized mice models will afford a cheaper, easy-handling opportunity for a more comprehensive understanding of 2009 influenza A (H1N1) virus's pathogenesis potential. We aimed to provide a robust description of pulmonary immune responses in the mice infected by the virus. METHODS BALB/c mice were inoculated intranasally with A/Beijing/501/2009(H1N1) (BJ501) and A/PR/8/34(H1N1) (PR8) viruses and compared for survival rate, viral replication, and kinetics of pulmonary immune responses. RESULTS BJ501 virus replicated less efficiently in the lungs than PR8, and both caused lethal illness in the mice. The transient increases of pulmonary TNF-α 2 days post infection for BJ501 and of INF-γ and IL-10 at 6 days post infection for PR8 were observed. IL-2+ and IL-4+ secreting cells showed significant increase 12 days post infection, while IFN-γ+, IgG+ and IgA+ secreting cells increased 6 days post infection. The different patterns of pulmonary immunological parameters between two viruses were at most seen in IL-6, IL-17 secretion and IgG1/IgG2a ratio. CONCLUSIONS The BALB/c mouse is evaluated as a good pathogenic model for studying BJ501 2009 H1N1 virus. The work provided some basic and detailed data, which might be referred when further evaluating innate and adapted pulmonary immune responses and local viral load in mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xi-Liang Wang
- The Second Artillery General Hospital, PLA, Beijing 100088, China.
| | | | | |
Collapse
|
166
|
Low dose influenza virus challenge in the ferret leads to increased virus shedding and greater sensitivity to oseltamivir. PLoS One 2014; 9:e94090. [PMID: 24709834 PMCID: PMC3978028 DOI: 10.1371/journal.pone.0094090] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/11/2014] [Indexed: 01/10/2023] Open
Abstract
Ferrets are widely used to study human influenza virus infection. Their airway physiology and cell receptor distribution makes them ideal for the analysis of pathogenesis and virus transmission, and for testing the efficacy of anti-influenza interventions and vaccines. The 2009 pandemic influenza virus (H1N1pdm09) induces mild to moderate respiratory disease in infected ferrets, following inoculation with 106 plaque-forming units (pfu) of virus. We have demonstrated that reducing the challenge dose to 102 pfu delays the onset of clinical signs by 1 day, and results in a modest reduction in clinical signs, and a less rapid nasal cavity innate immune response. There was also a delay in virus production in the upper respiratory tract, this was up to 9-fold greater and virus shedding was prolonged. Progression of infection to the lower respiratory tract was not noticeably delayed by the reduction in virus challenge. A dose of 104 pfu gave an infection that was intermediate between those of the 106 pfu and 102 pfu doses. To address the hypothesis that using a more authentic low challenge dose would facilitate a more sensitive model for antiviral efficacy, we used the well-known neuraminidase inhibitor, oseltamivir. Oseltamivir-treated and untreated ferrets were challenged with high (106 pfu) and low (102 pfu) doses of influenza H1N1pdm09 virus. The low dose treated ferrets showed significant delays in innate immune response and virus shedding, delayed onset of pathological changes in the nasal cavity, and reduced pathological changes and viral RNA load in the lung, relative to untreated ferrets. Importantly, these observations were not seen in treated animals when the high dose challenge was used. In summary, low dose challenge gives a disease that more closely parallels the disease parameters of human influenza infection, and provides an improved pre-clinical model for the assessment of influenza therapeutics, and potentially, influenza vaccines.
Collapse
|
167
|
Thangavel RR, Bouvier NM. Animal models for influenza virus pathogenesis, transmission, and immunology. J Immunol Methods 2014; 410:60-79. [PMID: 24709389 PMCID: PMC4163064 DOI: 10.1016/j.jim.2014.03.023] [Citation(s) in RCA: 139] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 03/22/2014] [Accepted: 03/24/2014] [Indexed: 12/24/2022]
Abstract
In humans, infection with an influenza A or B virus manifests typically as an acute and self-limited upper respiratory tract illness characterized by fever, cough, sore throat, and malaise. However, influenza can present along a broad spectrum of disease, ranging from sub-clinical or even asymptomatic infection to a severe primary viral pneumonia requiring advanced medical supportive care. Disease severity depends upon the virulence of the influenza virus strain and the immune competence and previous influenza exposures of the patient. Animal models are used in influenza research not only to elucidate the viral and host factors that affect influenza disease outcomes in and spread among susceptible hosts, but also to evaluate interventions designed to prevent or reduce influenza morbidity and mortality in man. This review will focus on the three animal models currently used most frequently in influenza virus research - mice, ferrets, and guinea pigs - and discuss the advantages and disadvantages of each.
Collapse
Affiliation(s)
- Rajagowthamee R Thangavel
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Nicole M Bouvier
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Division of Infectious Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA.
| |
Collapse
|
168
|
Lee DH, Kim JI, Lee JW, Chung WH, Park JK, Lee YN, Han JS, Kim HY, Lee SW, Song CS. Quantitative measurement of influenza virus replication using consecutive bronchoalveolar lavage in the lower respiratory tract of a ferret model. J Vet Sci 2014; 15:439-42. [PMID: 24690606 PMCID: PMC4178147 DOI: 10.4142/jvs.2014.15.3.439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 04/01/2014] [Indexed: 11/23/2022] Open
Abstract
The ferret is an established animal model of influenza virus infection. Although viral replication in the upper respiratory tract is usually measured with consecutively collected nasal washes, daily evaluation of viral replication in the lung is limited because a large numbers of ferrets need to be sacrificed at consecutive time points. To overcome this limitation, we performed a virus quantification assay using bronchoalveolar lavage (BAL) fluid. This non-invasive BAL technique allows consecutive quantification of virus replication in the lungs of living ferrets. Our method can be used for the longitudinal evaluation of virus tropism in the lower respiratory tract.
Collapse
Affiliation(s)
- Dong-Hun Lee
- Avian Disease Laboratory, College of Veterinary Medicine, Konkuk University, Seoul 143-701, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
169
|
Oh DY, Hurt AC. A Review of the Antiviral Susceptibility of Human and Avian Influenza Viruses over the Last Decade. SCIENTIFICA 2014; 2014:430629. [PMID: 24800107 PMCID: PMC3995103 DOI: 10.1155/2014/430629] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Accepted: 03/06/2014] [Indexed: 06/03/2023]
Abstract
Antivirals play an important role in the prevention and treatment of influenza infections, particularly in high-risk or severely ill patients. Two classes of influenza antivirals have been available in many countries over the last decade (2004-2013), the adamantanes and the neuraminidase inhibitors (NAIs). During this period, widespread adamantane resistance has developed in circulating influenza viruses rendering these drugs useless, resulting in the reliance on the most widely available NAI, oseltamivir. However, the emergence of oseltamivir-resistant seasonal A(H1N1) viruses in 2008 demonstrated that NAI-resistant viruses could also emerge and spread globally in a similar manner to that seen for adamantane-resistant viruses. Previously, it was believed that NAI-resistant viruses had compromised replication and/or transmission. Fortunately, in 2013, the majority of circulating human influenza viruses remain sensitive to all of the NAIs, but significant work by our laboratory and others is now underway to understand what enables NAI-resistant viruses to retain the capacity to replicate and transmit. In this review, we describe how the susceptibility of circulating human and avian influenza viruses has changed over the last ten years and describe some research studies that aim to understand how NAI-resistant human and avian influenza viruses may emerge in the future.
Collapse
Affiliation(s)
- Ding Yuan Oh
- WHO Collaborating Centre for Reference and Research on Influenza, 10 Wreckyn Street, North Melbourne, VIC 3051, Australia
| | - Aeron C. Hurt
- WHO Collaborating Centre for Reference and Research on Influenza, 10 Wreckyn Street, North Melbourne, VIC 3051, Australia
- School of Applied Sciences and Engineering, Monash University, Churchill, VIC 3842, Australia
| |
Collapse
|
170
|
Belser JA, Maines TR, Katz JM, Tumpey TM. Considerations regarding appropriate sample size for conducting ferret transmission experiments. Future Microbiol 2014; 8:961-5. [PMID: 23902143 DOI: 10.2217/fmb.13.64] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Evaluation of: Nishiura H, Yen H-L, Cowling BJ. Sample size considerations for one-to-one animal transmission studies of the influenza A viruses. PLoS ONE 8(1), e55358 (2013). There is an urgent need to model in a laboratory setting the capacity of wild-type influenza viruses to transmit between mammals, to determine the molecular determinants and identify biological properties that confer influenza virus transmissibility, and to explore both pharmaceutical and nonpharmaceutical methods to inhibit virus transmission. Owing to its close physiologic match to humans, researchers typically utilize the ferret to measure influenza virus transmissibility. Nishiura et al. highlight the dilemma facing researchers utilizing the ferret transmission model: how to provide high-quality data to guide public health efforts, while ensuring the ethical use of animals in limited-size, individual, one-to-one transmission experiments. However, the responsible interpretation of data generated using this model can overcome this potential limitation. A closer examination of previously published studies utilizing this model as it is currently employed reveals that the 'sample size' of these studies is not always as small as it may appear.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, National Center for Immunization & Respiratory Diseases, Centers for Disease Control & Prevention, Atlanta, GA 30333, USA
| | | | | | | |
Collapse
|
171
|
Abstract
UNLABELLED Influenza viruses of the H6 subtype have been isolated from wild and domestic aquatic and terrestrial avian species throughout the world since their first detection in a turkey in Massachusetts in 1965. Since 1997, H6 viruses with different neuraminidase (NA) subtypes have been detected frequently in the live poultry markets of southern China. Although sequence information has been gathered over the last few years, the H6 viruses have not been fully biologically characterized. To investigate the potential risk posed by H6 viruses to humans, here we assessed the receptor-binding preference, replication, and transmissibility in mammals of a series of H6 viruses isolated from live poultry markets in southern China from 2008 to 2011. Among the 257 H6 strains tested, 87 viruses recognized the human type receptor. Genome sequence analysis of 38 representative H6 viruses revealed 30 different genotypes, indicating that these viruses are actively circulating and reassorting in nature. Thirty-seven of 38 viruses tested in mice replicated efficiently in the lungs and some caused mild disease; none, however, were lethal. We also tested the direct contact transmission of 10 H6 viruses in guinea pigs and found that 5 viruses did not transmit to the contact animals, 3 viruses transmitted to one of the three contact animals, and 2 viruses transmitted to all three contact animals. Our study demonstrates that the H6 avian influenza viruses pose a clear threat to human health and emphasizes the need for continued surveillance and evaluation of the H6 influenza viruses circulating in nature. IMPORTANCE Avian influenza viruses continue to present a challenge to human health. Research and pandemic preparedness have largely focused on the H5 and H7 subtype influenza viruses in recent years. Influenza viruses of the H6 subtype have been isolated from wild and domestic aquatic and terrestrial avian species throughout the world since their first detection in the United States in 1965. Since 1997, H6 viruses have been detected frequently in the live poultry markets of southern China; however, the biological characterization of these viruses is very limited. Here, we assessed the receptor-binding preference, replication, and transmissibility in mammals of a series of H6 viruses isolated from live poultry markets in southern China and found that 34% of the viruses are able to bind human type receptors and that some of them are able to transmit efficiently to contact animals. Our study demonstrates that the H6 viruses pose a clear threat to human health.
Collapse
|
172
|
Differential locus expansion distinguishes Toxoplasmatinae species and closely related strains of Toxoplasma gondii. mBio 2014; 5:e01003-13. [PMID: 24496792 PMCID: PMC3950507 DOI: 10.1128/mbio.01003-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Toxoplasma gondii is a human obligate intracellular parasite that has infected over 20% of the world population and has a vast intermediate host range compared to those of its nearest relatives Neospora caninum and Hammondia hammondi. While these 3 species have highly syntenic genomes (80 to 99%), in this study we examined and compared species-specific structural variations, specifically at loci that have undergone local (i.e., tandem) duplication and expansion. To do so, we used genomic sequence coverage analysis to identify and curate T. gondii and N. caninum loci that have undergone duplication and expansion (expanded loci [ELs]). The 53 T. gondii ELs are significantly enriched for genes with predicted signal sequences and single-exon genes and genes that are developmentally regulated at the transcriptional level. We validated 24 T. gondii ELs using comparative genomic hybridization; these data suggested significant copy number variation at these loci. High-molecular-weight Southern blotting for 3 T. gondii ELs revealed that copy number varies across T. gondii lineages and also between members of the same clonal lineage. Using similar methods, we identified 64 N. caninum ELs which were significantly enriched genes belonging to the SAG-related surface (SRS) antigen family. Moreover, there is significantly less overlap (30%) between the expanded gene sets in T. gondii and N. caninum than would be predicted by overall genomic synteny (81%). Consistent with this finding, only 59% of queried T. gondii ELs are similarly duplicated/expanded in H. hammondi despite over 99% genomic synteny between these species. Gene duplication, expansion, and diversification are a basis for phenotypic differences both within and between species. This study represents the first characterization of both the extent and degree of overlap in gene duplication and locus expansion across multiple apicomplexan parasite species. The most important finding of this study is that the locus duplications/expansions are quantitatively and qualitatively distinct, despite the high degree of genetic relatedness between the species. Given that these differential expansions are prominent species-specific genetic differences, they may also contribute to some of the more striking phenotypic differences between these species. More broadly, this work is important in providing further support for the idea that postspeciation selection events may have a dramatic impact on locus structure and copy number that overshadows selection on single-copy genes.
Collapse
|
173
|
Belser JA, Tumpey TM. Mammalian models for the study of H7 virus pathogenesis and transmission. Curr Top Microbiol Immunol 2014; 385:275-305. [PMID: 24996862 DOI: 10.1007/82_2014_383] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Mammalian models, most notably the mouse and ferret, have been instrumental in the assessment of avian influenza virus pathogenicity and transmissibility, and have been used widely to characterize the molecular determinants that confer H5N1 virulence in mammals. However, while H7 influenza viruses have typically been associated with conjunctivitis and/or mild respiratory disease in humans, severe disease and death is also possible, as underscored by the recent emergence of H7N9 viruses in China. Despite the public health need to understand the pandemic potential of this virus subtype, H7 virus pathogenesis and transmission has not been as extensively studied. In this review, we discuss the heterogeneity of H7 subtype viruses isolated from humans, and the characterization of mammalian models to study the virulence of H7 subtype viruses associated with human infection, including viruses of both high and low pathogenicity and following multiple inoculation routes. The use of the ferret transmission model to assess the influence of receptor binding preference among contemporary H7 influenza viruses is described. These models have enabled the study of preventative and therapeutic agents, including vaccines and antivirals, to reduce disease burden, and have permitted a greater appreciation that not all highly pathogenic influenza viruses are created equal.
Collapse
Affiliation(s)
- Jessica A Belser
- Influenza Division, MS G-16, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, 1600 Clifton Rd. NE, Atlanta, GA, 30333, USA
| | | |
Collapse
|
174
|
Medina RA, Stertz S, Manicassamy B, Zimmermann P, Sun X, Albrecht RA, Uusi-Kerttula H, Zagordi O, Belshe RB, Frey SE, Tumpey TM, García-Sastre A. Glycosylations in the globular head of the hemagglutinin protein modulate the virulence and antigenic properties of the H1N1 influenza viruses. Sci Transl Med 2013; 5:187ra70. [PMID: 23720581 DOI: 10.1126/scitranslmed.3005996] [Citation(s) in RCA: 101] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
With the global spread of the 2009 pandemic H1N1 (pH1N1) influenza virus, there are increasing worries about evolution through antigenic drift. One way previous seasonal H1N1 and H3N2 influenza strains have evolved over time is by acquiring additional glycosylations in the globular head of their hemagglutinin (HA) proteins; these glycosylations have been believed to shield antigenically relevant regions from antibody immune responses. We added additional HA glycosylation sites to influenza A/Netherlands/602/2009 recombinant (rpH1N1) viruses, reflecting their temporal appearance in previous seasonal H1N1 viruses. Additional glycosylations resulted in substantially attenuated infection in mice and ferrets, whereas deleting HA glycosylation sites from a pre-pandemic virus resulted in increased pathogenicity in mice. We then more directly investigated the interactions of HA glycosylations and antibody responses through mutational analysis. We found that the polyclonal antibody response elicited by wild-type rpH1N1 HA was likely directed against an immunodominant region, which could be shielded by glycosylation at position 144. However, rpH1N1 HA glycosylated at position 144 elicited a broader polyclonal response able to cross-neutralize all wild-type and glycosylation mutant pH1N1 viruses. Moreover, mice infected with a recent seasonal virus in which glycosylation sites were removed elicited antibodies that protected against challenge with the antigenically distant pH1N1 virus. Thus, acquisition of glycosylation sites in the HA of H1N1 human influenza viruses affected not only their pathogenicity and ability to escape from polyclonal antibodies elicited by previous influenza virus strains but also their ability to induce cross-reactive antibodies against drifted antigenic variants.
Collapse
Affiliation(s)
- Rafael A Medina
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
H1N1, but not H3N2, influenza A virus infection protects ferrets from H5N1 encephalitis. J Virol 2013; 88:3077-91. [PMID: 24371072 DOI: 10.1128/jvi.01840-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Seasonal influenza causes substantial morbidity and mortality because of efficient human-to-human spread. Rarely, zoonotic strains of influenza virus spread to humans, where they have the potential to mediate new pandemics with high mortality. We studied systemic viral spread after intranasal infection with highly pathogenic avian influenza virus (H5N1 [A/Viet Nam/1203/2004]) in ferrets with or without prior pandemic H1N1pdm09 (A/Mexico/4108/2009) or H3N2 (A/Victoria/361/2011) infection. After intranasal challenge with H5N1 influenza virus, naive ferrets rapidly succumbed to systemic infection. Animals challenged with H5N1 influenza virus greater than 3 months after recovering from an initial H1N1pdm09 infection survived H5N1 virus challenge and cleared virus from the respiratory tract 4 days after infection. However, a prolonged low-level infection of hematopoietic elements in the small bowel lamina propria, liver, and spleen was present for greater than 2 weeks postinfection, raising the potential for reassortment of influenza genes in a host infected with multiple strains of influenza. Animals previously infected with an H3N2 influenza virus succumbed to systemic disease and encephalitis after H5N1 virus challenge. These results indicate prior infection with different seasonal influenza strains leads to radically different protection from H5N1 challenge and fatal encephalitis. IMPORTANCE Seasonal influenza is efficiently transmitted from human to human, causing substantial morbidity and mortality. Rarely, zoonotic strains of influenza virus spread to humans, where they have the potential to mediate new pandemics with high mortality. Infection of naive ferrets with H5N1 avian influenza virus causes a rapid and lethal systemic disease. We studied systemic H5N1 viral spread after infection of ferrets with or without prior exposure to either of two seasonal influenza virus strains, H1N1 and H3N2. Ferrets previously infected with H1N1 survive H5N1 challenge while those previously infected with H3N2 die of encephalitis. However ferrets protected from lethal H5N1 infection develop persistent low-level infection of the small intestine, liver, or spleen, providing a nidus for future viral strain recombination. The mechanism by which prior infection with specific strains of seasonal influenza virus protect from lethal H5N1 challenge needs to be elucidated in order to design effective immunization and treatments.
Collapse
|
176
|
Ni F, Mbawuike IN, Kondrashkina E, Wang Q. The roles of hemagglutinin Phe-95 in receptor binding and pathogenicity of influenza B virus. Virology 2013; 450-451:71-83. [PMID: 24503069 DOI: 10.1016/j.virol.2013.11.038] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/14/2013] [Accepted: 11/26/2013] [Indexed: 12/18/2022]
Abstract
Diverged ~4000 years ago, influenza B virus has several important differences from influenza A virus, including lower receptor-binding affinity and highly restricted host range. Based on our prior structural studies, we hypothesized that a single-residue difference in the receptor-binding site of hemagglutinin (HA), Phe-95 in influenza B virus versus Tyr-98 in influenza A/H1-H15, is possibly a key determinant for the low receptor-binding affinity. Here we demonstrate that the mutation Phe95→Tyr in influenza B virus HA restores all three hydrogen bonds made by Tyr-98 in influenza A/H1-15 HA and has the potential to enhance receptor binding. However, the full realization of this potential is influenced by the local environment into which the mutation is introduced. The binding and replication of the recombinant viruses correlate well with the receptor-binding capabilities of HA. These results are discussed in relation to the roles of Phe-95 in receptor binding and pathogenicity of influenza B virus.
Collapse
Affiliation(s)
- Fengyun Ni
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA; Department of Bioengineering, Rice University, 6100 Main Street, Houston, TX 77005, USA
| | - Innocent Nnadi Mbawuike
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| | - Elena Kondrashkina
- Life Sciences Collaborative Access Team (LS-CAT), Synchrotron Research Center, Northwestern University, Argonne, IL 60439, USA
| | - Qinghua Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| |
Collapse
|
177
|
Nakao A, Hisata K, Matsunaga N, Fujimori M, Yoshikawa N, Komatsu M, Kikuchi K, Takahashi H, Shimizu T. The clinical utility of a near patient care rapid microarray-based diagnostic test for influenza and respiratory syncytial virus infections in the pediatric setting. Diagn Microbiol Infect Dis 2013; 78:363-7. [PMID: 24582577 DOI: 10.1016/j.diagmicrobio.2013.11.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/16/2013] [Accepted: 11/04/2013] [Indexed: 11/27/2022]
Abstract
We evaluated the potential clinical utility of an automated near patient molecular assay Verigene Respiratory Virus Plus (RV+) and rapid immunochromatographic antigen tests (RIAT) in the pediatric setting for diagnosis of influenza and respiratory syncytial virus infections when testing was performed by the pediatrician seeing the patient. Overall, with respect to influenza virus, sensitivity and specificity for RIAT were 70.8% and 100%, respectively, compared to 100% and 96.2%, respectively, for RV+. For respiratory syncytial virus, sensitivity and specificity for RIAT were 78.9% and 100%, respectively, compared to 100% and 100%, respectively, for RV+. When RIAT and RV+ sensitivity for influenza virus was compared based on the time the patient presented after onset of fever, the sensitivity of RIAT at 6 hours was 37.5% compared to 100% for RV+. At 12 hours, RIAT improved to 60.9%. This study confirms the clinical utility of RV+ in the pediatric setting.
Collapse
Affiliation(s)
- Akihiro Nakao
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Hisata
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan.
| | - Nobuaki Matsunaga
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Makoto Fujimori
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Naomi Yoshikawa
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Mitsutaka Komatsu
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| | - Ken Kikuchi
- Department of Infection Control Science, Juntendo University School of Medicine, Tokyo, Japan
| | | | - Toshiaki Shimizu
- Department of Pediatrics, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
178
|
Moncla LH, Ross TM, Dinis JM, Weinfurter JT, Mortimer TD, Schultz-Darken N, Brunner K, Capuano SV, Boettcher C, Post J, Johnson M, Bloom CE, Weiler AM, Friedrich TC. A novel nonhuman primate model for influenza transmission. PLoS One 2013; 8:e78750. [PMID: 24244352 PMCID: PMC3828296 DOI: 10.1371/journal.pone.0078750] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 09/16/2013] [Indexed: 12/20/2022] Open
Abstract
Studies of influenza transmission are necessary to predict the pandemic potential of emerging influenza viruses. Currently, both ferrets and guinea pigs are used in such studies, but these species are distantly related to humans. Nonhuman primates (NHP) share a close phylogenetic relationship with humans and may provide an enhanced means to model the virological and immunological events in influenza virus transmission. Here, for the first time, it was demonstrated that a human influenza virus isolate can productively infect and be transmitted between common marmosets (Callithrix jacchus), a New World monkey species. We inoculated four marmosets with the 2009 pandemic virus A/California/07/2009 (H1N1pdm) and housed each together with a naïve cage mate. We collected bronchoalveolar lavage and nasal wash samples from all animals at regular intervals for three weeks post-inoculation to track virus replication and sequence evolution. The unadapted 2009 H1N1pdm virus replicated to high titers in all four index animals by 1 day post-infection. Infected animals seroconverted and presented human-like symptoms including sneezing, nasal discharge, labored breathing, and lung damage. Transmission occurred in one cohabitating pair. Deep sequencing detected relatively few genetic changes in H1N1pdm viruses replicating in any infected animal. Together our data suggest that human H1N1pdm viruses require little adaptation to replicate and cause disease in marmosets, and that these viruses can be transmitted between animals. Marmosets may therefore be a viable model for studying influenza virus transmission.
Collapse
Affiliation(s)
- Louise H. Moncla
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
- University of Wisconsin Microbiology Doctoral Training Program, Madison, Wisconsin, United States of America
| | - Ted M. Ross
- Center for Vaccine Research, Dept. of Microbiology and Molecular Genetics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Jorge M. Dinis
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
- University of Wisconsin Microbiology Doctoral Training Program, Madison, Wisconsin, United States of America
| | - Jason T. Weinfurter
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Tatum D. Mortimer
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
- University of Wisconsin Microbiology Doctoral Training Program, Madison, Wisconsin, United States of America
| | - Nancy Schultz-Darken
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Kevin Brunner
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Saverio V. Capuano
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Carissa Boettcher
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Jennifer Post
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Michael Johnson
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Chalise E. Bloom
- Vaccine and Gene Therapy Institute of Florida, Port St. Lucie, Florida, United States of America
| | - Andrea M. Weiler
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
| | - Thomas C. Friedrich
- Department of Pathobiological Sciences, University of Wisconsin School of Veterinary Medicine, Madison, Wisconsin, United States of America
- Wisconsin National Primate Research Center, Madison, Wisconsin, United States of America
- University of Wisconsin Microbiology Doctoral Training Program, Madison, Wisconsin, United States of America
- * E-mail:
| |
Collapse
|
179
|
Koçer ZA, Obenauer J, Zaraket H, Zhang J, Rehg JE, Russell CJ, Webster RG. Fecal influenza in mammals: selection of novel variants. J Virol 2013; 87:11476-86. [PMID: 23966381 PMCID: PMC3807347 DOI: 10.1128/jvi.01544-13] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 08/09/2013] [Indexed: 12/14/2022] Open
Abstract
In aquatic birds, influenza A viruses mainly replicate in the intestinal tract without significantly affecting the health of the host, but in mammals, they replicate in the respiratory tract and often cause disease. Occasionally, influenza viruses have been detected in stool samples of hospitalized patients and in rectal swabs of naturally or experimentally infected mammals. In this study, we compared the biological and molecular differences among four wild-type avian H1N1 influenza viruses and their corresponding fecal and lung isolates in DBA/2J and BALB/cJ mice. All fecal and lung isolates were more pathogenic than the original wild-type viruses, when inoculated into mice of both strains. The increased virulence was associated with the acquisition of genetic mutations. Most of the novel genotypes emerged as PB2(E627K), HA(F128V), HA(F454L), or HA(H300P) variations, and double mutations frequently occurred in the same isolate. However, influenza virus strain- and host-specific differences were also observed in terms of selected variants. The avian H1N1 virus of shorebird origin appeared to be unique in its ability to rapidly adapt to BALB/cJ mice via the fecal route, compared to the adaptability of the H1N1 virus of mallard origin. Furthermore, a bimodal distribution in fecal shedding was observed in mice infected with the fecal isolates, while a normal distribution was observed after infection with the lung isolates or wild-type virus. Fecal isolates contained HA mutations that increased the activation pH of the HA protein. We conclude that influenza virus variants that emerge in fecal isolates in mammals might influence viral transmission, adaptation to mammals, and viral ecology or evolution.
Collapse
Affiliation(s)
| | | | | | | | - Jerold E. Rehg
- Department of Pathology, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | | | | |
Collapse
|
180
|
Kim IH, Choi JG, Lee YJ, Kwon HJ, Kim JH. Effects of different polymerases of avian influenza viruses on the growth and pathogenicity of A/Puerto Rico/8/1934 (H1N1)-derived reassorted viruses. Vet Microbiol 2013; 168:41-9. [PMID: 24296300 DOI: 10.1016/j.vetmic.2013.10.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 10/11/2013] [Accepted: 10/17/2013] [Indexed: 11/27/2022]
Abstract
We generated reassorted PR8 viruses containing six different combinations of avian influenza virus (AIV) polymerase genes from A/chicken/Korea/01310/2001 (H9N2) (01310) and A/chicken/Korea/KBNP-0028/2000 (H9N2) (0028) to examine the effects of the AIV polymerase genes PB1, PB2, and PA on replication efficiency in different host cells and pathogenicity in mice. The virus titers of the reassorted viruses possessing 01310 [rPR8-PB2(01310)] and 0028 [rPR8-PB2(0028)] PB2 genes were significantly higher than those of the others except the rPR8 virus in embryonated chicken eggs at 37°C, and those of avian polymerase reassorted viruses were significantly less than rPR8 in MDCK cells at 32 and 37°C. rPR8-PB2(01310), rPR8-PB2(0028), and rPR8-PA(0028) caused no body weight loss in BALB/c mice but rPR8-PA(01310), rPR8-PB1(01310), and rPR8-PB1(0028) caused mortality and significantly different body weight loss compared to those in the mock treatment. In contrast to rPR8-PB2(0028) and rPR8-PA(0028), rPR8-PB2(01310) was not isolated from infected mice, and rPR8-PB1(0028) was less pathogenic than rPR8-PB1(01310). We determined the amino acid residues that were specific to the less pathogenic polymerases. A comparison with those of pandemic 2009 H1N1, human fatal H5N1 and H7N9, and pathogenic AIVs to mice without adaptation revealed that they possessed the mammalian pathogenic constellation of polymerases. Thus, the novel polymerase genes and amino acid residues may be useful to understand the host-barrier overcome of AIVs in mice and to develop safer and efficacious vaccines.
Collapse
Affiliation(s)
- Il-Hwan Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea
| | - Jun-Gu Choi
- Avian Disease Division, Animal and Plant Quarantine Agency, 175 Anyangro, Manan-gu, Anyangsi, Gyeonggido 430-757, Republic of Korea
| | - Youn-Jeong Lee
- Avian Disease Division, Animal and Plant Quarantine Agency, 175 Anyangro, Manan-gu, Anyangsi, Gyeonggido 430-757, Republic of Korea
| | - Hyuk-Joon Kwon
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea.
| | - Jae-Hong Kim
- Laboratory of Avian Diseases, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea; Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 151-742, Republic of Korea.
| |
Collapse
|
181
|
Chen J, Liu Q, Chen Q, Xiong C, Yao Y, Wang H, Wang H, Chen Z. Comparative analysis of antibody induction and protection against influenza virus infection by DNA immunization with HA, HAe, and HA1 in mice. Arch Virol 2013; 159:689-700. [PMID: 24132721 DOI: 10.1007/s00705-013-1878-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 09/30/2013] [Indexed: 11/28/2022]
Abstract
Plasmid DNA vaccines are considered alternatives to inactivated influenza virus vaccines to control influenza. Vaccination with a hemagglutinin (HA)-, HA ectodomain (HAe)-, or HA subunit 1 (HA1)-based vaccine can stimulate protective immunity in animals. The aim of this study was to compare their capacity to induce an antibody response and protection against influenza virus infection in mice after DNA vaccination. We constructed three expression vectors encoding full-length HA, HAe, or HA1 of the A/California/07/2009 influenza A virus and designed three animal experiments: (i) BALB/c mice were immunized twice with 30 μg of the HA, HAe, or HA1 DNA vaccine with high-voltage electroporation (100 V), and 3 weeks after boosting, they were challenged with a lethal dose of virus. (ii) Immunization and challenge were as in experiment i, but with low-voltage electroporation (10 V). (iii) Mice were immunized once with 50 μg of DNA and challenged 1 week later. The immunogenic effects of the three DNA vaccines were evaluated in terms of antibody titer, survival rate, bodyweight change, and lung viral titer. In all three experiments, both HA and HAe induced higher antibody and neutralization titers than HA1. Following challenge with a lethal mouse-adapted homologous virus, both HA and HAe reduced the viral titers in lung washes or offered better protection from weight loss than HA1 in experiments ii and iii. Thus, HA1 induces a lower immune response than HA or HAe when used as a DNA vaccination. Our data should be valuable in choosing the optimal candidate vaccine when faced with the threat of pandemic influenza.
Collapse
Affiliation(s)
- Jianjun Chen
- Center for Emerging Infectious Diseases, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, Hubei, China,
| | | | | | | | | | | | | | | |
Collapse
|
182
|
Insights into the increasing virulence of the swine-origin pandemic H1N1/2009 influenza virus. Sci Rep 2013; 3:1601. [PMID: 23549303 PMCID: PMC3615340 DOI: 10.1038/srep01601] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2012] [Accepted: 03/19/2013] [Indexed: 12/26/2022] Open
Abstract
Pandemic H1N1/2009 viruses have been stabilized in swine herds, and some strains display higher pathogenicity than the human-origin isolates. In this study, high-throughput RNA sequencing (RNA-seq) is applied to explore the systemic transcriptome responses of the mouse lungs infected by swine (Jia6/10) and human (LN/09) H1N1/2009 viruses. The transcriptome data show that Jia6/10 activates stronger virus-sensing signals, such as the toll-like receptor, RIG-I like receptor and NOD-like receptor signalings, as well as a stronger NF-κB and JAK-STAT singals, which play significant roles in inducing innate immunity. Most cytokines and interferon-stimulated genes show higher expression lever in Jia/06 infected groups. Meanwhile, virus Jia6/10 activates stronger production of reactive oxygen species, which might further promote higher mutation rate of the virus genome. Collectively, our data reveal that the swine-origin pandemic H1N1/2009 virus elicits a stronger innate immune reaction and pro-oxidation stimulation, which might relate closely to the increasing pathogenicity.
Collapse
|
183
|
Aguas R, Ferguson NM. Feature selection methods for identifying genetic determinants of host species in RNA viruses. PLoS Comput Biol 2013; 9:e1003254. [PMID: 24130470 PMCID: PMC3794897 DOI: 10.1371/journal.pcbi.1003254] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2013] [Accepted: 08/20/2013] [Indexed: 12/31/2022] Open
Abstract
Despite environmental, social and ecological dependencies, emergence of zoonotic viruses in human populations is clearly also affected by genetic factors which determine cross-species transmission potential. RNA viruses pose an interesting case study given their mutation rates are orders of magnitude higher than any other pathogen – as reflected by the recent emergence of SARS and Influenza for example. Here, we show how feature selection techniques can be used to reliably classify viral sequences by host species, and to identify the crucial minority of host-specific sites in pathogen genomic data. The variability in alleles at those sites can be translated into prediction probabilities that a particular pathogen isolate is adapted to a given host. We illustrate the power of these methods by: 1) identifying the sites explaining SARS coronavirus differences between human, bat and palm civet samples; 2) showing how cross species jumps of rabies virus among bat populations can be readily identified; and 3) de novo identification of likely functional influenza host discriminant markers. Moving away from genome scan methods used for human GWAS (ultimately inappropriate for the short highly polymorphic genomes of RNA viruses), our work shows the power and potential of multi-class machine learning algorithms in inferring the functional genetic changes associated with phenotypic change (e.g. crossing a species barrier). We show that even distantly related viruses within a viral family share highly conserved genetic signatures of host specificity; reinforce how fitness landscapes of host adaptation are shaped by host phylogeny; and highlight the evolutionary trajectories of RNA viruses in rapid expansion and under great evolutionary pressure. We do so by (for each dataset) unveiling a set of phenotype characteristic mutations which are shown to be functionally relevant, thus providing new insights into phenotypic relationships between RNA viruses. These methods also provide a solid statistical framework with which the degree of host adaptation can be inferred, thus serving as a valuable tool for studying host transition events with particular relevance for emerging infectious diseases. These methods can then serve as rigorous tools of emergence potential assessment, specifically in scenarios where rapid host classification of newly emerging viruses can be more important than identifying putative functional sites.
Collapse
Affiliation(s)
- Ricardo Aguas
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Faculty of Medicine, London, United Kingdom
- * E-mail:
| | - Neil M. Ferguson
- MRC Centre for Outbreak Analysis and Modelling, Department of Infectious Disease Epidemiology, Imperial College London, Faculty of Medicine, London, United Kingdom
| |
Collapse
|
184
|
Abstract
The threat of a virulent, highly transmissible pandemic virus has motivated an escalating research effort to identify the transmissible genotypes of animal viruses that cross over into the human population (animal–human transmission) and sustain human–human transmission. In addition to the pursuit of the viral genotype, a greater understanding of the host-virus phenotype of infectiousness, transmissibility and susceptibility will be required. This review examines experimental animal transmission of influenza for insights into human influenza transmission. Transmission is viewed as sequential steps that the virus must pass critical thresholds to achieve transmission and ultimately survival in the human host. In particular, a quantitative understanding in animal models of viral replication efficiency, airway viral load, exhaled viral aerosol load, environmental virus survival and host susceptibility will likely yield important insights. Computational modeling will enhance animal model data, as well as guide the use of pandemic mitigation strategies.
Collapse
Affiliation(s)
- Frederick Koster
- Department of Computer Science, University of New Mexico, Albuquerque, NM, USA and The Lovelace Respiratory Research Institute, Albuquerque, NM, USA
| |
Collapse
|
185
|
Xu L, Bao L, Yuan J, Li F, Lv Q, Deng W, Xu Y, Yao Y, Yu P, Chen H, Yuen KY, Qin C. Antigenicity and transmissibility of a novel clade 2.3.2.1 avian influenza H5N1 virus. J Gen Virol 2013; 94:2616-2626. [PMID: 24077367 DOI: 10.1099/vir.0.057778-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A genetic variant of the H5N1 influenza virus, termed subclade 2.3.2.1, was first identified in Bulgaria in 2010 and has subsequently been found in Vietnam and Laos. Several cases of human infections with this virus have been identified. Thus, it is important to understand the antigenic properties and transmissibility of this variant. Our results showed that, although it is phylogenetically closely related to other previously characterized clade 2.3 viruses, this novel 2.3.2.1 variant exhibited distinct antigenic properties and showed little cross-reactivity to sera raised against other H5N1 viruses. Like other H5N1 viruses, this variant bound preferentially to avian-type receptors, but contained substitutions at positions 190 and 158 of the haemagglutinin (HA) protein that have been postulated to facilitate HA binding to human-type receptors and to enhance viral transmissibility among mammals, respectively. However, this virus did not appear to have acquired the capacity for airborne transmission between ferrets. These findings highlight the challenges in selecting vaccine candidates for H5N1 influenza because these viruses continue to evolve rapidly in the field. It is important to note that some variants have obtained mutations that may gain transmissibility between model animals, and close surveillance of H5N1 viruses in poultry is warranted.
Collapse
Affiliation(s)
- Lili Xu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health; Key Laboratory of Animal Models of Human Diseases, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Linlin Bao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health; Key Laboratory of Animal Models of Human Diseases, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Jing Yuan
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health; Key Laboratory of Animal Models of Human Diseases, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Fengdi Li
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health; Key Laboratory of Animal Models of Human Diseases, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Qi Lv
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health; Key Laboratory of Animal Models of Human Diseases, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Wei Deng
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health; Key Laboratory of Animal Models of Human Diseases, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Yanfeng Xu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health; Key Laboratory of Animal Models of Human Diseases, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Yanfeng Yao
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health; Key Laboratory of Animal Models of Human Diseases, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Pin Yu
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health; Key Laboratory of Animal Models of Human Diseases, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| | - Honglin Chen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Kwok-Yung Yuen
- State Key Laboratory of Emerging Infectious Diseases, Department of Microbiology, University of Hong Kong, Faculty of Medicine Building, 21 Sassoon Road, Pokfulam, Hong Kong SAR, China
| | - Chuan Qin
- Institute of Laboratory Animal Sciences, Chinese Academy of Medical Sciences & Comparative Medicine Center, Peking Union Medical College; Key Laboratory of Human Disease Comparative Medicine, Ministry of Health; Key Laboratory of Animal Models of Human Diseases, State Administration of Traditional Chinese Medicine, Beijing, 100021, China
| |
Collapse
|
186
|
Belser JA, Gustin KM, Pearce MB, Maines TR, Zeng H, Pappas C, Sun X, Carney PJ, Villanueva JM, Stevens J, Katz JM, Tumpey TM. Pathogenesis and transmission of avian influenza A (H7N9) virus in ferrets and mice. Nature 2013; 501:556-9. [PMID: 23842497 PMCID: PMC7094885 DOI: 10.1038/nature12391] [Citation(s) in RCA: 255] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Accepted: 06/20/2013] [Indexed: 11/09/2022]
Abstract
On 29 March 2013, the Chinese Center for Disease Control and Prevention confirmed the first reported case of human infection with an avian influenza A(H7N9) virus. The recent human infections with H7N9 virus, totalling over 130 cases with 39 fatalities to date, have been characterized by severe pulmonary disease and acute respiratory distress syndrome (ARDS). This is concerning because H7 viruses have typically been associated with ocular disease in humans, rather than severe respiratory disease. This recent outbreak underscores the need to better understand the pathogenesis and transmission of these viruses in mammals. Here we assess the ability of A/Anhui/1/2013 and A/Shanghai/1/2013 (H7N9) viruses, isolated from fatal human cases, to cause disease in mice and ferrets and to transmit to naive animals. Both H7N9 viruses replicated to higher titre in human airway epithelial cells and in the respiratory tract of ferrets compared to a seasonal H3N2 virus. Moreover, the H7N9 viruses showed greater infectivity and lethality in mice compared to genetically related H7N9 and H9N2 viruses. The H7N9 viruses were readily transmitted to naive ferrets through direct contact but, unlike the seasonal H3N2 virus, did not transmit readily by respiratory droplets. The lack of efficient respiratory droplet transmission was corroborated by low receptor-binding specificity for human-like α2,6-linked sialosides. Our results indicate that H7N9 viruses have the capacity for efficient replication in mammals and human airway cells and highlight the need for continued public health surveillance of this emerging virus.
Collapse
Affiliation(s)
- Jessica A. Belser
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - Kortney M. Gustin
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - Melissa B. Pearce
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - Taronna R. Maines
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - Hui Zeng
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - Claudia Pappas
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - Xiangjie Sun
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - Paul J. Carney
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - Julie M. Villanueva
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - Jacqueline M. Katz
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| | - Terrence M. Tumpey
- Influenza Division, National Center for Immunization and Respiratory Diseases, Centers for Disease Control and Prevention, Atlanta, 30333 Georgia USA
| |
Collapse
|
187
|
Pham VL, Nakayama M, Itoh Y, Ishigaki H, Kitano M, Arikata M, Ishida H, Kitagawa N, Shichinohe S, Okamatsu M, Sakoda Y, Tsuchiya H, Nakamura S, Kida H, Ogasawara K. Pathogenicity of pandemic H1N1 influenza A virus in immunocompromised cynomolgus macaques. PLoS One 2013; 8:e75910. [PMID: 24086663 PMCID: PMC3781065 DOI: 10.1371/journal.pone.0075910] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Accepted: 08/20/2013] [Indexed: 01/20/2023] Open
Abstract
Pandemic (H1N1) 2009 influenza virus spread throughout the world since most people did not have immunity against the virus. In the post pandemic phase when many humans might possess immunity against the pandemic virus, one of the concerns is infection in immunocompromised people. Therefore, we used an immunosuppressed macaque model to examine pathogenicity of the pandemic (H1N1) 2009 virus under an immunocompromised condition. The virus in nasal samples of immunosuppressed macaques infected with the pandemic (H1N1) 2009 virus was detected longer after infection than was the virus in nasal samples of immunocompetent macaques. As expected, not only virus amounts but also virus propagation sites in the immunosuppressed macaques were larger than those in lungs of the immunocompetent macaques when they were infected with the pandemic virus. Immunosuppressed macaques possessed low levels of immune cells producing cytokines and chemokines, but levels of inflammatory cytokines/chemokine interleukin (IL)-6, IL-18, and monocyte chemotactic protein (MCP)-1 in lungs of the immunosuppressed macaques were higher than those in lungs of the immunocompetent macaques, though the differences were not statistically significant. Therefore, under an immunosuppressive condition, the pandemic influenza (H1N1) 2009 virus might cause more severe morbidity with high cytokine/chemokine production by the host innate immune system than that seen in macaques under the immunocompetent condition.
Collapse
Affiliation(s)
- Van Loi Pham
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Misako Nakayama
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Yasushi Itoh
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
- * E-mail:
| | - Hirohito Ishigaki
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Mitsutaka Kitano
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Masahiko Arikata
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
- Department of Otorhinolaryngology-Head and Neck Surgery, Shiga University of Medical Science, Otsu, Japan
| | - Hideaki Ishida
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Naoko Kitagawa
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| | - Shintaro Shichinohe
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Masatoshi Okamatsu
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshihiro Sakoda
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Hideaki Tsuchiya
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Shinichiro Nakamura
- Research Center for Animal Life Science, Shiga University of Medical Science, Otsu, Japan
| | - Hiroshi Kida
- Laboratory of Microbiology, Department of Disease Control, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
- Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Kazumasa Ogasawara
- Division of Pathology and Disease Regulation, Department of Pathology, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
188
|
Lakdawala SS, Shih AR, Jayaraman A, Lamirande EW, Moore I, Paskel M, Kenney H, Sasisekharan R, Subbarao K. Receptor specificity does not affect replication or virulence of the 2009 pandemic H1N1 influenza virus in mice and ferrets. Virology 2013; 446:349-56. [PMID: 24074599 DOI: 10.1016/j.virol.2013.08.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 07/14/2013] [Accepted: 08/13/2013] [Indexed: 02/04/2023]
Abstract
Human influenza viruses predominantly bind α2,6 linked sialic acid (SA) while avian viruses bind α2,3 SA-containing complex glycans. Virulence and tissue tropism of influenza viruses have been ascribed to this binding preference. We generated 2009 pandemic H1N1 (pH1N1) viruses with either predominant α2,3 or α2,6 SA binding and evaluated these viruses in mice and ferrets. The α2,3 pH1N1 virus had similar virulence in mice and replicated to similar titers in the respiratory tract of mice and ferrets as the α2,6 and WT pH1N1 viruses. Immunohistochemical analysis determined that all viruses infected similar cell types in ferret lungs. There is increasing evidence that receptor specificity of influenza viruses is more complex than the binary model of α2,6 and α2,3 SA binding and our data suggest that influenza viruses use a wide range of SA moieties to infect host cells.
Collapse
Affiliation(s)
- Seema S Lakdawala
- Laboratory of Infectious Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
189
|
Milner JJ, Sheridan PA, Karlsson EA, Schultz-Cherry S, Shi Q, Beck MA. Diet-induced obese mice exhibit altered heterologous immunity during a secondary 2009 pandemic H1N1 infection. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2013; 191:2474-85. [PMID: 23904168 PMCID: PMC3756476 DOI: 10.4049/jimmunol.1202429] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
During the 2009 pandemic H1N1 influenza A virus (pH1N1) outbreak, obese individuals were at greater risk for morbidity and mortality from pandemic infection. However, the mechanisms contributing to greater infection severity in obese individuals remain unclear. Although most individuals lacked pre-existing, neutralizing Ab protection to the novel pH1N1 virus, heterologous defenses conferred from exposure to circulating strains or vaccination have been shown to impart protection against pH1N1 infection in humans and mice. Because obese humans and mice have impaired memory T cell and Ab responses following influenza vaccination or infection, we investigated the impact of obesity on heterologous protection from pH1N1 infection using a mouse model of diet-induced obesity. Lean and obese mice were infected with influenza A/Puerto Rico/8/34 (PR8) and 5 wk later challenged with a lethal dose of heterologous pH1N1. Cross-neutralizing Ab protection was absent in this model, but obese mice exhibited a significantly lower level of nonneutralizing, cross-reactive pH1N1 nucleoprotein Abs following the primary PR8 infection. Further, obese mice had elevated viral titers, greater lung inflammation and lung damage, and more cytotoxic memory CD8(+) T cells in the lung airways. Although obese mice had more regulatory T cells (Tregs) in the lung airways than did lean controls during the pH1N1 challenge, Tregs isolated from obese mice were 40% less suppressive than Tregs isolated from lean mice. In sum, excessive inflammatory responses to pH1N1 infection, potentially owing to greater viral burden and impaired Treg function, may be a novel mechanism by which obesity contributes to greater pH1N1 severity.
Collapse
Affiliation(s)
- J. Justin Milner
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Patricia A. Sheridan
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erik A. Karlsson
- Department of Infectious Diseases, St. Jude Children’s Research Hospital Memphis, Memphis, TN, USA
| | - Stacey Schultz-Cherry
- Department of Infectious Diseases, St. Jude Children’s Research Hospital Memphis, Memphis, TN, USA
| | - Qing Shi
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Melinda A. Beck
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
190
|
Shen X, Zhang X, Liu S. Novel hemagglutinin-based influenza virus inhibitors. J Thorac Dis 2013; 5 Suppl 2:S149-59. [PMID: 23977436 DOI: 10.3978/j.issn.2072-1439.2013.06.14] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 06/17/2013] [Indexed: 12/22/2022]
Abstract
Influenza virus has caused seasonal epidemics and worldwide pandemics, which caused tremendous loss of human lives and socioeconomics. Nowadays, only two classes of anti-influenza drugs, M2 ion channel inhibitors and neuraminidase inhibitors respectively, are used for prophylaxis and treatment of influenza virus infection. Unfortunately, influenza virus strains resistant to one or all of those drugs emerge frequently. Hemagglutinin (HA), the glycoprotein in influenza virus envelope, plays a critical role in viral binding, fusion and entry processes. Therefore, HA is a promising target for developing anti-influenza drugs, which block the initial entry step of viral life cycle. Here we reviewed recent understanding of conformational changes of HA in protein folding and fusion processes, and the discovery of HA-based influenza entry inhibitors, which may provide more choices for preventing and controlling potential pandemics caused by multi-resistant influenza viruses.
Collapse
Affiliation(s)
- Xintian Shen
- School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China; ; Department of Physiology, Huaihua Medical College, Huaihua 418000, China
| | | | | |
Collapse
|
191
|
Hendrickson CM, Matthay MA. Viral pathogens and acute lung injury: investigations inspired by the SARS epidemic and the 2009 H1N1 influenza pandemic. Semin Respir Crit Care Med 2013; 34:475-86. [PMID: 23934716 PMCID: PMC4045622 DOI: 10.1055/s-0033-1351122] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Acute viral pneumonia is an important cause of acute lung injury (ALI), although not enough is known about the exact incidence of viral infection in ALI. Polymerase chain reaction-based assays, direct fluorescent antigen (DFA) assays, and viral cultures can detect viruses in samples from the human respiratory tract, but the presence of the virus does not prove it to be a pathogen, nor does it give information regarding the interaction of viruses with the host immune response and bacterial flora of the respiratory tract. The severe acute respiratory syndrome (SARS) epidemic and the 2009 H1N1 influenza pandemic provided a better understanding of how viral pathogens mediate lung injury. Although the viruses initially infect the respiratory epithelium, the relative role of epithelial damage and endothelial dysfunction has not been well defined. The inflammatory host immune response to H1N1 infection is a major contributor to lung injury. The SARS coronavirus causes lung injury and inflammation in part through actions on the nonclassical renin angiotensin pathway. The lessons learned from the pandemic outbreaks of SARS coronavirus and H1N1 capture key principles of virally mediated ALI. There are pathogen-specific pathways underlying virally mediated ALI that converge onto a common end pathway resulting in diffuse alveolar damage. In terms of therapy, lung protective ventilation is the cornerstone of supportive care. There is little evidence that corticosteroids are beneficial, and they might be harmful. Future therapeutic strategies may be targeted to specific pathogens, the pathogenetic pathways in the host immune response, or enhancing repair and regeneration of tissue damage.
Collapse
Affiliation(s)
- Carolyn M Hendrickson
- Division of Pulmonary and Critical Care Medicine, Departments of Medicine and Anesthesia, Cardiovascular Research Institute, University of California-San Francisco, CA 94143, USA
| | | |
Collapse
|
192
|
Thomas Y, Boquete-Suter P, Koch D, Pittet D, Kaiser L. Survival of influenza virus on human fingers. Clin Microbiol Infect 2013; 20:O58-64. [PMID: 23927722 DOI: 10.1111/1469-0691.12324] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Revised: 05/24/2013] [Accepted: 06/28/2013] [Indexed: 01/16/2023]
Abstract
Indirect transmission of the influenza virus via finger contamination with respiratory mucus droplets has been hypothesized to contribute to transmission in the community. Under laboratory conditions, influenza-infected respiratory droplets were reconstituted as close as possible to natural conditions. We investigated experimentally the survival of influenza A (H3N2) and A (H1N1)pdm09 viruses on human fingers. Infectious virus was easily recoverable on all fingers 1 min after fingertip contamination but then decreased very rapidly. After 30 min, infectious virus was detectable in only a small minority of subjects. Infectious viruses were detected for a longer period of time when droplets of larger size containing a higher number of particles were tested or when the viral concentration increased. A rapid decrease in infectiousness was observed when droplet integrity was disrupted. Our findings could help to set up the promotion of hand hygiene to prevent influenza hand contamination.
Collapse
Affiliation(s)
- Y Thomas
- Laboratory of Virology and Swiss National Reference Center for Influenza, Division of Infectious Diseases and Division of Laboratory Medicine, University Hospitals of Geneva and Medical School, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
193
|
Abstract
After the outbreak of the swine-origin influenza A H1N1 virus in April 2009, World Health Organization declared this novel H1N1 virus as the first pandemic influenza virus (2009 pH1N1) of the 21st century. To elucidate the characteristics of 2009 pH1N1, the growth properties of A/Korea/01/09 (K/09) was analyzed in cells. Interestingly, the maximal titer of K/09 was higher than that of a seasonal H1N1 virus isolated in Korea 2008 (S/08) though the RNP complex of K/09 was less competent than that of S/08. In addition, the NS1 protein of K/09 was determined as a weak interferon antagonist as compared to that of S/08. Thus, in order to confine genetic determinants of K/09, activities of two major surface glycoproteins were analyzed. Interestingly, K/09 possesses highly reactive NA proteins and weak HA cell-binding avidity. These findings suggest that the surface glycoproteins might be a key factor in the features of 2009 pH1N1.
Collapse
Affiliation(s)
- Jin Il Kim
- Department of Microbiology, College of Medicine, Hallym University, Chuncheon 200-702, Korea
| | | | | | | |
Collapse
|
194
|
Cho KJ, Lee JH, Hong KW, Kim SH, Park Y, Lee JY, Kang S, Kim S, Yang JH, Kim EK, Seok JH, Unzai S, Park SY, Saelens X, Kim CJ, Lee JY, Kang C, Oh HB, Chung MS, Kim KH. Insight into structural diversity of influenza virus haemagglutinin. J Gen Virol 2013; 94:1712-1722. [DOI: 10.1099/vir.0.051136-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Influenza virus infects host cells through membrane fusion, a process mediated by the low pH-induced conformational change of the viral surface glycoprotein haemagglutinin (HA). We determined the structures and biochemical properties of the HA proteins from A/Korea/01/2009 (KR01), a 2009 pandemic strain, and A/Thailand/CU44/2006 (CU44), a seasonal strain. The crystal structure of KR01 HA revealed a V-shaped head-to-head arrangement, which is not seen in other HA proteins including CU44 HA. We isolated a broadly neutralizing H1-specific monoclonal antibody GC0757. The KR01 HA-Fab0757 complex structure also exhibited a head-to-head arrangement of HA. Both native and Fab complex structures reveal a different spatial orientation of HA1 relative to HA2, indicating that HA is flexible and dynamic at neutral pH. Further, the KR01 HA exhibited significantly lower protein stability and increased susceptibility to proteolytic cleavage compared with other HAs. Our structures provide important insights into the conformational flexibility of HA.
Collapse
Affiliation(s)
- Ki Joon Cho
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Ji-Hye Lee
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Kwang W. Hong
- Antibody Engineering Laboratory, Central Research Center, Green Cross Corp., Yongin Kyunggi 446-799, Korea
| | - Se-Ho Kim
- Antibody Engineering Laboratory, Central Research Center, Green Cross Corp., Yongin Kyunggi 446-799, Korea
| | - Yiho Park
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Jun Young Lee
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Seokha Kang
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Sella Kim
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Ji Hoon Yang
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Eui-Ki Kim
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Jong Hyeon Seok
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| | - Satoru Unzai
- Protein Design Laboratory, Yokohama City University, Yokohama 230-0045, Japan
| | - Sam Yong Park
- Protein Design Laboratory, Yokohama City University, Yokohama 230-0045, Japan
| | - Xavier Saelens
- Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
- Department for Molecular Biomedical Research, VIB, 9052 Ghent, Belgium
| | - Chul-Joong Kim
- College of Veterinary Medicine, Chungnam National University, DaeJeon 305-764, Korea
| | - Joo-Yeon Lee
- Influenza Virus Team, Center for Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong Chungbuk 363-951, Korea
| | - Chun Kang
- Influenza Virus Team, Center for Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong Chungbuk 363-951, Korea
| | - Hee-Bok Oh
- Influenza Virus Team, Center for Infectious Diseases, Korea Centers for Disease Control and Prevention, Osong Chungbuk 363-951, Korea
| | - Mi Sook Chung
- Department of Food and Nutrition, Duksung Women’s University, Seoul 132-714, Korea
| | - Kyung Hyun Kim
- Department of Biotechnology & Bioinformatics, College of Science & Technology, Korea University, Sejong 339-700, Korea
| |
Collapse
|
195
|
Hartshorn KL. Why does pandemic influenza virus kill? THE AMERICAN JOURNAL OF PATHOLOGY 2013; 183:1125-1127. [PMID: 23916382 DOI: 10.1016/j.ajpath.2013.06.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2013] [Accepted: 06/28/2013] [Indexed: 01/12/2023]
Affiliation(s)
- Kevan L Hartshorn
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts.
| |
Collapse
|
196
|
Abstract
Sialic acid linked to glycoproteins and gangliosides is used by many viruses as a receptor for cell entry. These viruses include important human and animal pathogens, such as influenza, parainfluenza, mumps, corona, noro, rota, and DNA tumor viruses. Attachment to sialic acid is mediated by receptor binding proteins that are constituents of viral envelopes or exposed at the surface of non-enveloped viruses. Some of these viruses are also equipped with a neuraminidase or a sialyl-O-acetyl-esterase. These receptor-destroying enzymes promote virus release from infected cells and neutralize sialic acid-containing soluble proteins interfering with cell surface binding of the virus. Variations in the receptor specificity are important determinants for host range, tissue tropism, pathogenicity, and transmissibility of these viruses.
Collapse
Affiliation(s)
| | - Philippe Delannoy
- Lille University of Science and Technology, Villeneuve d'Ascq Cedex, France
| | - Mark von Itzstein
- Institute for Glycomics, Griffith University, Southport, Queensland Australia
| |
Collapse
|
197
|
The short stalk length of highly pathogenic avian influenza H5N1 virus neuraminidase limits transmission of pandemic H1N1 virus in ferrets. J Virol 2013; 87:10539-51. [PMID: 23864615 DOI: 10.1128/jvi.00967-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
H5N1 influenza viruses pose a pandemic threat but have not acquired the ability to support sustained transmission between mammals in nature. The restrictions to transmissibility of avian influenza viruses in mammals are multigenic, and overcoming them requires adaptations in hemagglutinin (HA) and PB2 genes. Here we propose that a further restriction to mammalian transmission of the majority of highly pathogenic avian influenza (HPAI) H5N1 viruses may be the short stalk length of the neuraminidase (NA) protein. This genetic feature is selected for when influenza viruses adapt to chickens. In our study, a recombinant virus with seven gene segments from a human isolate of the 2009 H1N1 pandemic combined with the NA gene from a typical chicken-adapted H5N1 virus with a short stalk did not support transmission by respiratory droplet between ferrets. This virus was also compromised in multicycle replication in cultures of human airway epithelial cells at 32°C. These defects correlated with a reduction in the ability of virus with a short-stalk NA to penetrate mucus and deaggregate virions. The deficiency in transmission and in cleavage of tethered substrates was overcome by increasing the stalk length of the NA protein. These observations suggest that H5N1 viruses that acquire a long-stalk NA through reassortment might be more likely to support transmission between humans. Phylogenetic analysis showed that reassortment with long-stalk NA occurred sporadically and as recently as 2011. However, all identified H5N1 viruses with a long-stalk NA lacked other mammalian adapting features and were thus several genetic steps away from becoming transmissible between humans.
Collapse
|
198
|
Zhu H, Wang D, Kelvin DJ, Li L, Zheng Z, Yoon SW, Wong SS, Farooqui A, Wang J, Banner D, Chen R, Zheng R, Zhou J, Zhang Y, Hong W, Dong W, Cai Q, Roehrl MHA, Huang SSH, Kelvin AA, Yao T, Zhou B, Chen X, Leung GM, Poon LLM, Webster RG, Webby RJ, Peiris JSM, Guan Y, Shu Y. Infectivity, transmission, and pathology of human-isolated H7N9 influenza virus in ferrets and pigs. Science 2013; 341:183-6. [PMID: 23704376 DOI: 10.1126/science.1239844] [Citation(s) in RCA: 249] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The emergence of the H7N9 influenza virus in humans in Eastern China has raised concerns that a new influenza pandemic could occur. Here, we used a ferret model to evaluate the infectivity and transmissibility of A/Shanghai/2/2013 (SH2), a human H7N9 virus isolate. This virus replicated in the upper and lower respiratory tracts of the ferrets and was shed at high titers for 6 to 7 days, with ferrets showing relatively mild clinical signs. SH2 was efficiently transmitted between ferrets via direct contact, but less efficiently by airborne exposure. Pigs were productively infected by SH2 and shed virus for 6 days but were unable to transmit the virus to naïve pigs or ferrets. Under appropriate conditions, human-to-human transmission of the H7N9 virus may be possible.
Collapse
Affiliation(s)
- H Zhu
- Joint Influenza Research Centre [Shantou University Medical College/University of Hong Kong], Shantou University, Shantou, PR China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
199
|
Characterization of H7N9 influenza A viruses isolated from humans. Nature 2013; 501:551-5. [PMID: 23842494 PMCID: PMC3891892 DOI: 10.1038/nature12392] [Citation(s) in RCA: 335] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/20/2013] [Indexed: 01/20/2023]
Abstract
Avian influenza A viruses rarely infect humans; however, when human infection and subsequent human-to-human transmission occurs, worldwide outbreaks (pandemics) can result. The recent sporadic infections of humans in China with a previously unrecognized avian influenza A virus of the H7N9 subtype (A(H7N9)) have caused concern owing to the appreciable case fatality rate associated with these infections (more than 25%), potential instances of human-to-human transmission, and the lack of pre-existing immunity among humans to viruses of this subtype. Here we characterize two early human A(H7N9) isolates, A/Anhui/1/2013 (H7N9) and A/Shanghai/1/2013 (H7N9); hereafter referred to as Anhui/1 and Shanghai/1, respectively. In mice, Anhui/1 and Shanghai/1 were more pathogenic than a control avian H7N9 virus (A/duck/Gunma/466/2011 (H7N9); Dk/GM466) and a representative pandemic 2009 H1N1 virus (A/California/4/2009 (H1N1pdm09); CA04). Anhui/1, Shanghai/1 and Dk/GM466 replicated well in the nasal turbinates of ferrets. In nonhuman primates, Anhui/1 and Dk/GM466 replicated efficiently in the upper and lower respiratory tracts, whereas the replicative ability of conventional human influenza viruses is typically restricted to the upper respiratory tract of infected primates. By contrast, Anhui/1 did not replicate well in miniature pigs after intranasal inoculation. Critically, Anhui/1 transmitted through respiratory droplets in one of three pairs of ferrets. Glycan arrays showed that Anhui/1, Shanghai/1 and A/Hangzhou/1/2013 (H7N9) (a third human A(H7N9) virus tested in this assay) bind to human virus-type receptors, a property that may be critical for virus transmissibility in ferrets. Anhui/1 was found to be less sensitive in mice to neuraminidase inhibitors than a pandemic H1N1 2009 virus, although both viruses were equally susceptible to an experimental antiviral polymerase inhibitor. The robust replicative ability in mice, ferrets and nonhuman primates and the limited transmissibility in ferrets of Anhui/1 suggest that A(H7N9) viruses have pandemic potential.
Collapse
|
200
|
Zhang H, Li X, Ma R, Li X, Zhou Y, Dong H, Li X, Li Q, Zhang M, Liu Z, Wei B, Cui M, Wang H, Gao J, Yang H, Hou P, Miao Z, Chai T. Airborne spread and infection of a novel swine-origin influenza A (H1N1) virus. Virol J 2013; 10:204. [PMID: 23800032 PMCID: PMC3700749 DOI: 10.1186/1743-422x-10-204] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Accepted: 05/07/2013] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The novel swine-origin influenza A (H1N1) virus (S-O 2009 IV) can cause respiratory infectious diseases in humans and pigs, but there are few studies investigating the airborne spread of the virus. In January 2011, a swine-origin H1N1 epidemic emerged in eastern China that rapidly spread to neighboring farms, likely by aerosols carried by the wind. METHODS In this study, quantitative reverse transcription polymerase chain reaction (RT-PCR) was used to detect viruses in air samples from pig farms. Based on two aerosol infection models (Pig and guinea pig), we evaluated aerosol transmission and infection of the novel S-O 2009 IV isolate. RESULTS Three novel S-O 2009 IV were isolated from the diseased pig. The positive rate and viral loads of air samples were 26.1% and 3.14-5.72 log₁₀copies/m³ air, respectively. In both pig and guinea pig infection models, the isolate (A/swine/Shandong/07/2011) was capable of forming aerosols and infected experimental animals at a range of 2.0-4.2 m by aerosols, but aerosol route was less efficient than direct contact. CONCLUSIONS The results indicated that S-O 2009 IV is able to be aerosolized by infected animals and to be transmitted to susceptible animals by airborne routes.
Collapse
Affiliation(s)
- Hongna Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin Shandong Province, Tai’an, Shandong, China
- Key Laboratory of Animal Biotechnology and Disease Control and Prevention of Shandong Province, Tai’an, Shandong, China
| | - Xin Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| | - Ruihua Ma
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
- Affiliated Hospital of the Shandong Agricultural University, Tai’an, China
| | - Xiaoxia Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
- Taishan Medical University, Tai’an, China
| | - Yufa Zhou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
- The Animal Husbandry Bureau of Tai’an City, Tai’an, China
| | - Hongliang Dong
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| | - Xinxian Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| | - Qinglei Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| | - Mingliang Zhang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| | - Zhihao Liu
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| | - Baozhi Wei
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| | - Mingchao Cui
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| | - Hao Wang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| | - Jing Gao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| | - Huili Yang
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
- Centre for Disease Control, Tai’an, the People’s Republic of China, Tai’an, China
| | - Peiqiang Hou
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
- Centre for Disease Control, Tai’an, the People’s Republic of China, Tai’an, China
| | - Zengmin Miao
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
- Taishan Medical University, Tai’an, China
| | - Tongjie Chai
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Daizong Street 61, Tai’an 271018, China
| |
Collapse
|