151
|
Farizano JV, Pescaretti MDLM, López FE, Hsu FF, Delgado MA. The PmrAB system-inducing conditions control both lipid A remodeling and O-antigen length distribution, influencing the Salmonella Typhimurium-host interactions. J Biol Chem 2012; 287:38778-89. [PMID: 23019341 DOI: 10.1074/jbc.m112.397414] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The Salmonella enterica serovar Typhimurium lipopolysaccharide consisting of covalently linked lipid A, non-repeating core oligosaccharide, and the O-antigen polysaccharide is the most exposed component of the cell envelope. Previous studies demonstrated that all of these regions act against the host immunity barrier. The aim of this study was to define the role and interaction of PmrAB-dependent gene products required for the lipopolysaccharide component synthesis or modification mainly during the Salmonella infection. The PmrAB two-component system activation promotes a remodeling of lipid A and the core region by addition of 4-aminoarabinose and/or phosphoethanolamine. These PmrA-dependent activities are produced by activation of ugd, pbgPE, pmrC, cpta, and pmrG transcription. In addition, under PmrA regulator activation, the expression of wzz(fepE) and wzz(st) genes is induced, and their products are required to determine the O-antigen chain length. Here we report for the first time that Wzz(st) protein is necessary to maintain the balance of 4-aminoarabinose and phosphoethanolamine lipid A modifications. Moreover, we demonstrate that the interaction of the PmrA-dependent pbgE(2) and pbgE(3) gene products is important for the formation of the short O-antigen region. Our results establish that PmrAB is the global regulatory system that controls lipopolysaccharide modification, leading to a coordinate regulation of 4-aminoarabinose incorporation and O-antigen chain length to respond against the host defense mechanisms.
Collapse
Affiliation(s)
- Juan V Farizano
- Instituto Superior de Investigaciones Biológicas, Consejo Nacional de Investigaciones Científicas y Técnicas-Universidad Nacional de Tucumán, 4000 San Miguel de Tucumán, Tucumán, Argentina
| | | | | | | | | |
Collapse
|
152
|
Shin H, Lee JH, Kim H, Choi Y, Heu S, Ryu S. Receptor diversity and host interaction of bacteriophages infecting Salmonella enterica serovar Typhimurium. PLoS One 2012; 7:e43392. [PMID: 22927964 PMCID: PMC3424200 DOI: 10.1371/journal.pone.0043392] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2012] [Accepted: 07/20/2012] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Salmonella enterica subspecies enterica serovar Typhimurium is a gram-negative pathogen causing salmonellosis. Salmonella Typhimurium-targeting bacteriophages have been proposed as an alternative biocontrol agent to antibiotics. To further understand infection and interaction mechanisms between the host strains and the bacteriophages, the receptor diversity of these phages needs to be elucidated. METHODOLOGY/PRINCIPAL FINDINGS Twenty-five Salmonella phages were isolated and their receptors were identified by screening a Tn5 random mutant library of S. Typhimurium SL1344. Among them, three types of receptors were identified flagella (11 phages), vitamin B(12) uptake outer membrane protein, BtuB (7 phages) and lipopolysaccharide-related O-antigen (7 phages). TEM observation revealed that the phages using flagella (group F) or BtuB (group B) as a receptor belong to Siphoviridae family, and the phages using O-antigen of LPS as a receptor (group L) belong to Podoviridae family. Interestingly, while some of group F phages (F-I) target FliC host receptor, others (F-II) target both FliC and FljB receptors, suggesting that two subgroups are present in group F phages. Cross-resistance assay of group B and L revealed that group L phages could not infect group B phage-resistant strains and reversely group B phages could not infect group L SPN9TCW-resistant strain. CONCLUSIONS/SIGNIFICANCE In this report, three receptor groups of 25 newly isolated S. Typhimurium-targeting phages were determined. Among them, two subgroups of group F phages interact with their host receptors in different manner. In addition, the host receptors of group B or group L SPN9TCW phages hinder other group phage infection, probably due to interaction between receptors of their groups. This study provides novel insights into phage-host receptor interaction for Salmonella phages and will inform development of optimal phage therapy for protection against Salmonella.
Collapse
Affiliation(s)
- Hakdong Shin
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Ju-Hoon Lee
- Department of Food Science and Biotechnology, Kyung Hee University, Yongin, Korea
| | - Hyeryen Kim
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Younho Choi
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| | - Sunggi Heu
- Microbial Safety Division, National Academy of Agricultural Science, Rural Development Administration, Suwon, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology and Center for Agricultural Biomaterials, Seoul National University, Seoul, Korea
| |
Collapse
|
153
|
Sisti F, Fernández J, Higgins SC, Casabuono A, Couto A, Mills KHG, Hozbor D. A deep rough type structure in Bordetella bronchiseptica lipopolysaccharide modulates host immune responses. Microbiol Immunol 2012; 55:847-54. [PMID: 22039958 DOI: 10.1111/j.1348-0421.2011.00395.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The present authors have previously obtained the Bordetella bronchiseptica mutant BbLP39, which contains a deep-rough lipopolysaccharide (LPS) instead the wild type smooth LPS with O antigen. This mutant was found to be altered in the expression of some proteins and in its ability to colonize mouse lungs. Particularly, in BbLP39 the expression of pertactin is decreased. To differentiate the contribution of each bacterial component to the observed phenotype, here mice defective in the LPS sensing receptor TLR4 (TLR4-defective mice) were used. In contrast to wild-type mice, infection of TLR4-defective mice with BbLP39 resulted in lung infection, which persisted for more than 10 days post-challenge. Comparative analysis of the immune responses induced by purified mutant and wild type LPSs showed that the mutant LPS induced significantly higher degrees of expression of TNF-α and IL-10 mRNA than did the wild type. UV matrix-assisted laser desorption/ionization time-of-flight (MALDI TOF) mass spectrometry analysis revealed that both LPSs had the same penta-acylated lipid A structure. However, the lipid A from BbLP39 contained pyrophosphate instead of phosphate at position 1. This structural difference, in addition to the lack of O-antigen in BbLP39, may explain the functional differences between BbLP39 and wild type strains.
Collapse
Affiliation(s)
- Federico Sisti
- VacSal Laboratory, Biotechnology and Molecular Biology Institute, Department of Biological Sciences, Faculty of Sciences, National University of La Plata, National Council of Scientific and Technical Research (CONICET), Calles 47 y 115 (1900) La Plata, Argentina
| | | | | | | | | | | | | |
Collapse
|
154
|
Ciesielski F, Davis B, Rittig M, Bonev BB, O'Shea P. Receptor-independent interaction of bacterial lipopolysaccharide with lipid and lymphocyte membranes; the role of cholesterol. PLoS One 2012; 7:e38677. [PMID: 22685597 PMCID: PMC3369841 DOI: 10.1371/journal.pone.0038677] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/10/2012] [Indexed: 01/18/2023] Open
Abstract
Lipopolysaccharide (LPS) is a major constituent of bacterial outer membranes where it makes up the bulk of the outer leaflet and plays a key role as determinant of bacterial interactions with the host. Membrane-free LPS is known to activate T-lymphocytes through interactions with Toll-like receptor 4 via multiprotein complexes. In the present study, we investigate the role of cholesterol and membrane heterogeneities as facilitators of receptor-independent LPS binding and insertion, which underpin bacterial interactions with the host in symbiosis, pathogenesis and cell invasion. We use fluorescence spectroscopy to investigate the interactions of membrane-free LPS from intestinal Gram-negative organisms with cholesterol-containing model membranes and with T-lymphocytes. LPS preparations from Klebsiella pneumoniae and Salmonella enterica were found to bind preferentially to mixed lipid membranes by comparison to pure PC bilayers. The same was observed for LPS from the symbiote Escherichia coli but with an order of magnitude higher dissociation constant. Insertion of LPS into model membranes confirmed the preference for sphimgomyelin/cholesterol-containing systems. LPS insertion into Jurkat T-lymphocyte membranes reveals that they have a significantly greater LPS-binding capacity by comparison to methyl-β-cyclodextrin cholesterol-depleted lymphocyte membranes, albeit at slightly lower binding rates.
Collapse
Affiliation(s)
- Filip Ciesielski
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Benjamin Davis
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Michael Rittig
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Boyan B. Bonev
- School of Biomedical Sciences, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (BBB); (PS)
| | - Paul O'Shea
- School of Biology, University of Nottingham, Nottingham, United Kingdom
- * E-mail: (BBB); (PS)
| |
Collapse
|
155
|
Nielsen-LeRoux C, Gaudriault S, Ramarao N, Lereclus D, Givaudan A. How the insect pathogen bacteria Bacillus thuringiensis and Xenorhabdus/Photorhabdus occupy their hosts. Curr Opin Microbiol 2012; 15:220-31. [PMID: 22633889 DOI: 10.1016/j.mib.2012.04.006] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 10/28/2022]
Abstract
Insects are the largest group of animals on earth. Like mammals, virus, fungi, bacteria and parasites infect them. Several tissue barriers and defense mechanisms are common for vertebrates and invertebrates. Therefore some insects, notably the fly Drosophila and the caterpillar Galleria mellonella, have been used as models to study host-pathogen interactions for several insect and mammal pathogens. They are excellent tools to identify pathogen determinants and host tissue cell responses. We focus here on the comparison of effectors used by two different groups of bacterial insect pathogens to accomplish the infection process in their lepidopteran larval host: Bacillus thuringiensis and the nematode-associated bacteria, Photorhabdus and Xenorhabdus. The comparison reveals similarities in function and expression profiles for some genes, which suggest that such factors are conserved during evolution in order to attack the tissue encountered during the infection process.
Collapse
Affiliation(s)
- Christina Nielsen-LeRoux
- INRA, UMR1319, Micalis, Génétique microbienne et Environnement, La Minière, F-78280 Guyancourt, France.
| | | | | | | | | |
Collapse
|
156
|
Kawasaki K. Complexity of lipopolysaccharide modifications in Salmonella enterica: Its effects on endotoxin activity, membrane permeability, and resistance to antimicrobial peptides. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.01.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
157
|
Bardoel BW, Strijp JAG. Molecular battle between host and bacterium: recognition in innate immunity. J Mol Recognit 2012; 24:1077-86. [PMID: 22038814 DOI: 10.1002/jmr.1156] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
During infection, our innate immune system is the first line of defense and has evolved to clear invading bacteria immediately. To do so, recognition is the key element. However, how does the innate immune system distinguish self from nonself, and how does it recognize all bacteria (estimated to be far over a million species)? The answer lies in the recognition of evolutionary conserved structures. In this review, we approach this phenomenon from the bacterial perspective. What are the evolutionary conserved structures in bacteria, and what strategies are there in the human innate immune system to sense these structures? We illustrate most examples both at the functional as well as at the molecular level. Furthermore, we highlight how pathogenic bacteria can evade this recognition to survive better in the human host which in turn can result in life-threatening diseases.
Collapse
Affiliation(s)
- Bart W Bardoel
- Department of Medical Microbiology, UMC Utrecht, Utrecht, The Netherlands
| | | |
Collapse
|
158
|
Boltaña S, Roher N, Goetz FW, Mackenzie SA. PAMPs, PRRs and the genomics of gram negative bacterial recognition in fish. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2011; 35:1195-1203. [PMID: 21453721 DOI: 10.1016/j.dci.2011.02.010] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2010] [Revised: 01/12/2011] [Accepted: 02/25/2011] [Indexed: 05/30/2023]
Abstract
Understanding the mechanisms that underpin pathogen recognition and subsequent orchestration of the immune response in fish is an area of significant importance for both basic research and management of health in aquaculture. In recent years much attention has been given to the identification of pattern recognition receptors (PRRs) in fish, however, characterisation of interactions with specific pathogen-associated molecular patterns (PAMPs) is still incomplete. Microarray studies have significantly contributed to functional studies and early descriptions of PAMP-PRR driven activation of specific response cassettes in the genome have been obtained although much is left to be done. In this review we will address gram negative (G-negative) bacterial recognition in fish addressing contributing factors such as structure-function relationships between G-negative PAMPs, current knowledge of fish PRRs and the input achieved by microarray-based studies ranging from in vivo infection studies to directed in vitro PAMP-cell studies. Finally we revisit the endotoxic recognition paradigm in fish and suggest a series of future perspectives that could contribute toward the further elucidation of G-negative bacterial recognition across the highly diverse group of vertebrates that encompass the fishes.
Collapse
Affiliation(s)
- Sebastian Boltaña
- Institute of Biotechnology and Biomedicine, Dep. Biologia Cel·lular, Immunologia i Fisiologia Animal, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | | | | |
Collapse
|
159
|
Crull K, Weiss S. Antibiotic control of tumor-colonizing Salmonella enterica serovar Typhimurium. Exp Biol Med (Maywood) 2011; 236:1282-90. [PMID: 21987828 DOI: 10.1258/ebm.2011.011111] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Systemic administration of Salmonella enterica serovar Typhimurium (S. typhimurium) into tumor-bearing mice results in preferential colonization of tumors and causes shrinkage and sometimes complete tumor clearance. However, in spite of these beneficial antitumor effects, the systemic administration of a bacterial pathogen raises serious safety concerns as well. Addressing those concerns, here, we demonstrate that tumor-colonizing Salmonella can be readily controlled by systemic administration of the antibiotic - ciprofloxacin. Treatment was most effective when started early postinfection. This was achieved at the expense of the efficacy of tumor therapy. In many of the mice treated in such a way, tumors re-grew again. Nevertheless, some mice were able to clear the tumor despite the start of antibiotic treatment only 24 h after the start of infection. Furthermore, we could demonstrate that such mice had elicited a specific antitumor immune response. Thus, S. typhimurium-mediated tumor therapy might be applied safely when combined with early antibiotic treatment. However, the therapeutic power of the bacteria needs to be enhanced in order to provide a more effective therapeutic tool.
Collapse
Affiliation(s)
- Katja Crull
- Molecular Immunology, HZI - Helmholtz Centre for Infection Research, Inhoffenstr 7, D-38124 Braunschweig, Germany
| | | |
Collapse
|
160
|
Alteri CJ, Lindner JR, Reiss DJ, Smith SN, Mobley HL. The broadly conserved regulator PhoP links pathogen virulence and membrane potential in Escherichia coli. Mol Microbiol 2011; 82:145-63. [PMID: 21854465 PMCID: PMC3188958 DOI: 10.1111/j.1365-2958.2011.07804.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
PhoP is considered a virulence regulator despite being conserved in both pathogenic and non-pathogenic Enterobacteriaceae. While Escherichia coli strains represent non-pathogenic commensal isolates and numerous virulent pathotypes, the PhoP virulence regulator has only been studied in commensal E. coli. To better understand how conserved transcription factors contribute to virulence, we characterized PhoP in pathogenic E. coli. Deletion of phoP significantly attenuated E. coli during extraintestinal infection. This was not surprising since we demonstrated that PhoP differentially regulated the transcription of > 600 genes. In addition to survival at acidic pH and resistance to polymyxin, PhoP was required for repression of motility and oxygen-independent changes in the expression of primary dehydrogenase and terminal reductase respiratory chain components. All phenotypes have in common a reliance on an energized membrane. Thus, we hypothesized that PhoP mediates these effects by regulating genes encoding proteins that generate proton motive force. Indeed, bacteria lacking PhoP exhibited a hyperpolarized membrane and dissipation of the transmembrane electrochemical gradient increased susceptibility of the phoP mutant to acidic pH, while inhibiting respiratory generation of the proton gradient restored resistance to antimicrobial peptides independent of lipopolysaccharide modification. These findings demonstrate a connection between PhoP, virulence and the energized state of the membrane.
Collapse
Affiliation(s)
- Christopher J. Alteri
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, Michigan 48109
| | - Jonathon R. Lindner
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, Michigan 48109
| | - Daniel J. Reiss
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, Michigan 48109
| | - Sara N. Smith
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, Michigan 48109
| | - Harry L.T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, 5641 West Medical Center Drive, Ann Arbor, Michigan 48109
| |
Collapse
|
161
|
Li Y, Wang X, Ernst RK. A rapid one-step method for the characterization of membrane lipid remodeling in Francisella using matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2011; 25:2641-2648. [PMID: 23657959 DOI: 10.1002/rcm.5168] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2011] [Revised: 06/21/2011] [Accepted: 06/29/2011] [Indexed: 06/02/2023]
Abstract
Lipids are essential components of all bacterial membranes. The most common membrane-associated lipids in Gram-negative bacteria are phospholipids and lipid A, the hydrophobic anchor of lipopolysaccharide. Diversity in these lipids arises through structural modifications that include changes in the length and location of fatty acids, and the addition of phosphate and carbohydrate moieties. Analysis of individual structural modifications normally requires large quantities of starting material and multiple methods for the isolation, hydrolysis, and analysis. In this study, we developed a novel one-step protocol for the combined isolation of phospholipids and lipid A from Francisella subspecies followed by analysis using matrix-assisted laser desorption ionization time-of-flight tandem mass spectrometry. The total time for lipid isolation and analysis was approximately 15 min and with a lower limit of detection of approximately 100 ng of purified lipid. This protocol identified the major lipid structures using both wild-type Ft subspecies strains and lipid A biosynthesis mutants. We also determined the relative levels of individual lipid A and phospholipids after growth under conditions that mimic the mammalian infection process. This analysis showed that the bacterial membranes remodeled rapidly to adapt to changes in environmental growth conditions and may be important for Francisella pathogenesis.
Collapse
Affiliation(s)
- Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, 214122, China
| | | | | |
Collapse
|
162
|
Hansen AK, Vorburger C, Moran NA. Genomic basis of endosymbiont-conferred protection against an insect parasitoid. Genome Res 2011; 22:106-14. [PMID: 21948522 DOI: 10.1101/gr.125351.111] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Bacterial endosymbionts exert a variety of beneficial effects on insect hosts. In pea aphids (Acyrthosiphon pisum), several inherited endosymbiont species protect their hosts against parasitoid wasps, which are major natural enemies. However, strains of these symbiont species vary in their ability to confer protection against parasitoids, with some conferring almost complete protection and others conferring almost none. In this study, two strains of the endosymbiont Regiella insecticola (R. insecticola 5.15 and R. insecticola LSR1) were found to differ in ability to protect pea aphids attacked by the parasitoid Aphidius ervi. Parasitism trials reveal that R. insecticola 5.15, but not R. insecticola LSR1, significantly reduced parasitoid success and increased aphid survivorship. To address the potential genetic basis of protection conferred by R. insecticola 5.15 we sequenced the genome of this symbiont strain, and then compared its gene repertoire with that of the already sequenced nonprotective strain R. insecticola LSR1. We identified striking differences in gene sets related to eukaryote pathogenicity. The protective strain R. insecticola 5.15 encoded five categories of pathogenicity factors that were missing or inactivated in R. insecticola LSR1. These included genes encoding the O-antigen biosynthetic pathway, an intact Type 1 Secretion System and its secreted RTX toxins, an intact SPI-1 Type 3 Secretion System and its effectors, hemin transport, and the two-component system PhoPQ. These five pathogenicity factors and translocation systems are hypothesized to collectively play key roles in the endosymbiont's virulence against parasitoids, resulting in aphid protection. Mechanisms through which these factors may target parasitoids are discussed.
Collapse
Affiliation(s)
- Allison K Hansen
- Department of Ecology and Evolutionary Biology, Yale University, West Haven, Connecticut 06516-7388, USA
| | | | | |
Collapse
|
163
|
Palmitoylation state impacts induction of innate and acquired immunity by the Salmonella enterica serovar typhimurium msbB mutant. Infect Immun 2011; 79:5027-38. [PMID: 21930761 DOI: 10.1128/iai.05524-11] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Lipopolysaccharide (LPS), composed of lipid A, core, and O-antigen, is a major virulence factor of Salmonella enterica serovar Typhimurium, with lipid A being a major stimulator to induce the proinflammatory response via the Toll-like receptor 4 (TLR4)-MD2-CD14 pathway. While Salmonella msbB mutants lacking the myristate chain in lipid A were investigated widely as an anticancer vaccine, inclusion of the msbB mutation in a Salmonella vaccine to deliver heterologous antigens has not yet been investigated. We introduced the msbB mutation alone or in combination with mutations in other lipid A acyl chain modification genes encoding PagL, PagP, and LpxR into wild-type S. enterica serovar Typhimurium. The msbB mutation reduced virulence, while the pagL, pagP, and lpxR mutations did not affect virulence in the msbB mutant background when administered orally to BALB/c mice. Also, all mutants exhibited sensitivity to polymyxin B but did not display sensitivity to deoxycholate. LPS derived from msbB mutants induced less inflammatory responses in human Mono Mac 6 and murine macrophage RAW264.7 cells in vitro. However, an msbB mutant did not decrease the induction of inflammatory responses in mice compared to the levels induced by the wild-type strain, whereas an msbB pagP mutant induced less inflammatory responses in vivo. The mutations were moved to an attenuated Salmonella vaccine strain to evaluate their effects on immunogenicity. Lipid A modification caused by the msbB mutation alone and in combination with pagL, pagP, and lpxR mutations led to higher IgA production in the vaginal tract but still retained the same IgG titer level in serum to PspA, a test antigen from Streptococcus pneumoniae, and to outer membrane proteins (OMPs) from Salmonella.
Collapse
|
164
|
Cai X, Zhang J, Chen M, Wu Y, Wang X, Chen J, Zhang J, Shen X, Qu D, Jiang H. The effect of the potential PhoQ histidine kinase inhibitors on Shigella flexneri virulence. PLoS One 2011; 6:e23100. [PMID: 21853073 PMCID: PMC3154276 DOI: 10.1371/journal.pone.0023100] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 07/11/2011] [Indexed: 02/03/2023] Open
Abstract
PhoQ/PhoP is an important two-component system that regulates Shigella virulence. We explored whether the PhoQ/PhoP system is a promising target for new antibiotics against S. flexneri infection. By using a high-throughput screen and enzymatic activity coupled assay, four compounds were found as potential PhoQ inhibitors. These compounds not only inhibited the activity of SF-PhoQc autophosphorylation but also displayed high binding affinities to the SF-PhoQc protein in the Surface Plasmon Resonance response. A S. flexneri cell invasion assay showed that three of these potential PhoQ inhibitors inhibit the invasion of HeLa cells by S. flexneri 9380. In a Mouse Sereny test, mice inoculated with S. flexneri 9380 pre-treated with the potential PhoQ inhibitors 1, 2, 3 or 4 displayed no inflammation, whereas mice inoculated with S. flexneri 9380 alone displayed severe keratoconjunctival inflammation. All four potential PhoQ inhibitors showed no significant cytotoxicity or hemolytic activity. These data suggest that the four potential PhoQ inhibitors inhibited the virulence of S. flexneri and that PhoQ/PhoP is a promising target for the development of drugs against S. flexneri infection.
Collapse
Affiliation(s)
- Xia Cai
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jian Zhang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mingliang Chen
- Shanghai Municipal Center for Disease Control and Prevention, Shanghai, China
| | - Yang Wu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xueqing Wang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jiayu Chen
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Junqin Zhang
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Xu Shen
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Di Qu
- Key Laboratory of Medical Molecular Virology of Ministries of Education and Health, Institute of Medical Microbiology and Institutes of Biomedical Sciences, Fudan University, Shanghai, China
- * E-mail: (DQ); (HJ)
| | - Hualiang Jiang
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Shanghai Institutes for Biological Sciences, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- * E-mail: (DQ); (HJ)
| |
Collapse
|
165
|
Pastelin-Palacios R, Gil-Cruz C, Pérez-Shibayama CI, Moreno-Eutimio MA, Cervantes-Barragán L, Arriaga-Pizano L, Ludewig B, Cunningham AF, García-Zepeda EA, Becker I, Alpuche-Aranda C, Bonifaz L, Gunn JS, Isibasi A, López-Macías C. Subversion of innate and adaptive immune activation induced by structurally modified lipopolysaccharide from Salmonella typhimurium. Immunology 2011; 133:469-81. [PMID: 21631497 PMCID: PMC3143358 DOI: 10.1111/j.1365-2567.2011.03459.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 03/31/2011] [Accepted: 05/06/2011] [Indexed: 02/06/2023] Open
Abstract
Salmonella are successful pathogens that infect millions of people every year. During infection, Salmonella typhimurium changes the structure of its lipopolysaccharide (LPS) in response to the host environment, rendering bacteria resistant to cationic peptide lysis in vitro. However, the role of these structural changes in LPS as in vivo virulence factors and their effects on immune responses and the generation of immunity are largely unknown. We report that modified LPS are less efficient than wild-type LPS at inducing pro-inflammatory responses. The impact of this LPS-mediated subversion of innate immune responses was demonstrated by increased mortality in mice infected with a non-lethal dose of an attenuated S. typhimurium strain mixed with the modified LPS moieties. Up-regulation of co-stimulatory molecules on antigen-presenting cells and CD4(+) T-cell activation were affected by these modified LPS. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing specific antibody responses. Immunization with modified LPS moiety preparations combined with experimental antigens, induced an impaired Toll-like receptor 4-mediated adjuvant effect. Strains of S. typhimurium carrying structurally modified LPS are markedly less efficient at inducing immunity against challenge with virulent S. typhimurium. Hence, changes in S. typhimurium LPS structure impact not only on innate immune responses but also on both humoral and cellular adaptive immune responses.
Collapse
Affiliation(s)
- Rodolfo Pastelin-Palacios
- Medical Research Unit on Immunochemistry, Specialties Hospital, National Medical Centre 'Siglo XXI', Mexican Social Security Institute, Mexico City
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
166
|
Loutet SA, Valvano MA. Extreme antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. Front Cell Infect Microbiol 2011; 1:6. [PMID: 22919572 PMCID: PMC3417367 DOI: 10.3389/fcimb.2011.00006] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 12/12/2022] Open
Abstract
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, University of Western Ontario London, Ontario, Canada
| | | |
Collapse
|
167
|
Loutet SA, Valvano MA. Extreme antimicrobial Peptide and polymyxin B resistance in the genus burkholderia. Front Microbiol 2011; 2:159. [PMID: 21811491 PMCID: PMC3143681 DOI: 10.3389/fmicb.2011.00159] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 07/12/2011] [Indexed: 01/04/2023] Open
Abstract
Cationic antimicrobial peptides and polymyxins are a group of naturally occurring antibiotics that can also possess immunomodulatory activities. They are considered a new source of antibiotics for treating infections by bacteria that are resistant to conventional antibiotics. Members of the genus Burkholderia, which includes various human pathogens, are inherently resistant to antimicrobial peptides. The resistance is several orders of magnitude higher than that of other Gram-negative bacteria such as Escherichia coli, Salmonella enterica, or Pseudomonas aeruginosa. This review summarizes our current understanding of antimicrobial peptide and polymyxin B resistance in the genus Burkholderia. These bacteria possess major and minor resistance mechanisms that will be described in detail. Recent studies have revealed that many other emerging Gram-negative opportunistic pathogens may also be inherently resistant to antimicrobial peptides and polymyxins and we propose that Burkholderia sp. are a model system to investigate the molecular basis of the resistance in extremely resistant bacteria. Understanding resistance in these types of bacteria will be important if antimicrobial peptides come to be used regularly for the treatment of infections by susceptible bacteria because this may lead to increased resistance in the species that are currently susceptible and may also open up new niches for opportunistic pathogens with high inherent resistance.
Collapse
Affiliation(s)
- Slade A Loutet
- Centre for Human Immunology, University of Western Ontario London, ON, Canada
| | | |
Collapse
|
168
|
Effect of deletion of genes involved in lipopolysaccharide core and O-antigen synthesis on virulence and immunogenicity of Salmonella enterica serovar typhimurium. Infect Immun 2011; 79:4227-39. [PMID: 21768282 DOI: 10.1128/iai.05398-11] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Lipopolysaccharide (LPS) is a major virulence factor of Salmonella enterica serovar Typhimurium and is composed of lipid A, core oligosaccharide (C-OS), and O-antigen polysaccharide (O-PS). While the functions of the gene products involved in synthesis of core and O-antigen have been elucidated, the effect of removing O-antigen and core sugars on the virulence and immunogenicity of Salmonella enterica serovar Typhimurium has not been systematically studied. We introduced nonpolar, defined deletion mutations in waaG (rfaG), waaI (rfaI), rfaH, waaJ (rfaJ), wbaP (rfbP), waaL (rfaL), or wzy (rfc) into wild-type S. Typhimurium. The LPS structure was confirmed, and a number of in vitro and in vivo properties of each mutant were analyzed. All mutants were significantly attenuated compared to the wild-type parent when administered orally to BALB/c mice and were less invasive in host tissues. Strains with ΔwaaG and ΔwaaI mutations, in particular, were deficient in colonization of Peyer's patches and liver. This deficiency could be partially overcome in the ΔwaaI mutant when it was administered intranasally. In the context of an attenuated vaccine strain delivering the pneumococcal antigen PspA, all of the mutations tested resulted in reduced immune responses against PspA and Salmonella antigens. Our results indicate that nonreversible truncation of the outer core is not a viable option for developing a live oral Salmonella vaccine, while a wzy mutant that retains one O-antigen unit is adequate for stimulating the optimal protective immunity to homologous or heterologous antigens by oral, intranasal, or intraperitoneal routes of administration.
Collapse
|
169
|
Koprivnjak T, Peschel A. Bacterial resistance mechanisms against host defense peptides. Cell Mol Life Sci 2011; 68:2243-54. [PMID: 21560069 PMCID: PMC11115334 DOI: 10.1007/s00018-011-0716-4] [Citation(s) in RCA: 106] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/30/2022]
Abstract
Host defense peptides and proteins are important components of the innate host defense against pathogenic microorganisms. They target negatively charged bacterial surfaces and disrupt microbial cytoplasmic membranes, which ultimately leads to bacterial destruction. Throughout evolution, pathogens devised several mechanisms to protect themselves from deleterious damage of host defense peptides. These strategies include (a) inactivation and cleavage of host defense peptides by production of host defense binding proteins and proteases, (b) repulsion of the peptides by alteration of pathogen's surface charge employing modifications by amino acids or amino sugars of anionic molecules (e.g., teichoic acids, lipid A and phospholipids), (c) alteration of bacterial membrane fluidity, and (d) expulsion of the peptides using multi drug pumps. Together with bacterial regulatory network(s) that regulate expression and activity of these mechanisms, they represent attractive targets for development of novel antibacterials.
Collapse
Affiliation(s)
- Tomaz Koprivnjak
- Department of Biotechnology, National Institute of Chemistry Slovenia, Hajdrihova 19, 1000, Ljubljana, Slovenia,
| | | |
Collapse
|
170
|
Bile salts induce resistance to polymyxin in enterohemorrhagic Escherichia coli O157:H7. J Bacteriol 2011; 193:4509-15. [PMID: 21725004 DOI: 10.1128/jb.00200-11] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Many enteric bacteria use bile as an environmental cue to signal resistance and virulence gene expression. Microarray analysis of enterohemorrhagic Escherichia coli O157:H7 (EHEC) treated with bile salts revealed upregulation of genes for an efflux system (acrAB), a two-component signal transduction system (basRS/pmrAB), and lipid A modification (arnBCADTEF and ugd). Bile salt treatment of EHEC produced a basS- and arnT-dependent resistance to polymyxin.
Collapse
|
171
|
Fillatreau S. Novel regulatory functions for Toll-like receptor-activated B cells during intracellular bacterial infection. Immunol Rev 2011; 240:52-71. [PMID: 21349086 DOI: 10.1111/j.1600-065x.2010.00991.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Infections by intracellular bacterial pathogens remain a major cause of human diseases worldwide. Despite intensive efforts, the development of effective vaccines or immunotherapies against these diseases has largely remained unsuccessful, asking for the exploration of new aspects of the host response to these pathogens. Genetic studies have demonstrated beyond doubt that cell-mediated mechanisms of host defense involving innate immunity and T cells are of crucial importance for the control of these diseases. By contrast, the role of B cells during intracellular bacterial infection has so far received little attention besides their role as antibody-producing cells. However, the general knowledge of B-cell immunology and in particular of their antibody-independent functions has greatly increased during the last years. Recently, it was found in a model of Salmonella typhimurium infection that Toll-like receptor triggering on B cells resulted through interleukin-10 secretion in a marked suppression of innate defense mechanisms ultimately leading to uncontrolled growth of the bacteria and earlier death from the disease during both primary and secondary infections. This article reviews the protective and deleterious roles of B cells during intracellular bacterial infections and discusses how manipulating their antibody-independent functions may be a powerful means to therapeutically improve host resistance against these diseases.
Collapse
Affiliation(s)
- Simon Fillatreau
- Deutsches Rheuma-ForschungsZentrum, Leibniz Institute, Berlin, Germany.
| |
Collapse
|
172
|
Lam JS, Taylor VL, Islam ST, Hao Y, Kocíncová D. Genetic and Functional Diversity of Pseudomonas aeruginosa Lipopolysaccharide. Front Microbiol 2011; 2:118. [PMID: 21687428 PMCID: PMC3108286 DOI: 10.3389/fmicb.2011.00118] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2011] [Accepted: 05/12/2011] [Indexed: 12/13/2022] Open
Abstract
Lipopolysccharide (LPS) is an integral component of the Pseudomonas aeruginosa cell envelope, occupying the outer leaflet of the outer membrane in this Gram-negative opportunistic pathogen. It is important for bacterium-host interactions and has been shown to be a major virulence factor for this organism. Structurally, P. aeruginosa LPS is composed of three domains, namely, lipid A, core oligosaccharide, and the distal O antigen (O-Ag). Most P. aeruginosa strains produce two distinct forms of O-Ag, one a homopolymer of D-rhamnose that is a common polysaccharide antigen (CPA, formerly termed A band), and the other a heteropolymer of three to five distinct (and often unique dideoxy) sugars in its repeat units, known as O-specific antigen (OSA, formerly termed B band). Compositional differences in the O units among the OSA from different strains form the basis of the International Antigenic Typing Scheme for classification via serotyping of different strains of P. aeruginosa. The focus of this review is to provide state-of-the-art knowledge on the genetic and resultant functional diversity of LPS produced by P. aeruginosa. The underlying factors contributing to this diversity will be thoroughly discussed and presented in the context of its contributions to host-pathogen interactions and the control/prevention of infection.
Collapse
Affiliation(s)
- Joseph S. Lam
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Véronique L. Taylor
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Salim T. Islam
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Youai Hao
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| | - Dana Kocíncová
- Department of Molecular and Cellular Biology, University of GuelphGuelph, ON, Canada
| |
Collapse
|
173
|
Phosphoethanolamine modification of lipid A in colistin-resistant variants of Acinetobacter baumannii mediated by the pmrAB two-component regulatory system. Antimicrob Agents Chemother 2011; 55:3370-9. [PMID: 21576434 DOI: 10.1128/aac.00079-11] [Citation(s) in RCA: 293] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Colistin resistance is rare in Acinetobacter baumannii, and little is known about its mechanism. We investigated the role of PmrCAB in this trait, using (i) resistant and susceptible clinical strains, (ii) laboratory-selected mutants of the type strain ATCC 19606 and of the clinical isolate ABRIM, and (iii) a susceptible/resistant pair of isogenic clinical isolates, Ab15/133 and Ab15/132, isolated from the same patient. pmrAB sequences in all the colistin-susceptible isolates were identical to reference sequences, whereas resistant clinical isolates harbored one or two amino acid replacements variously located in PmrB. Single substitutions in PmrB were also found in resistant mutants of strains ATCC 19606 and ABRIM and in the resistant clinical isolate Ab15/132. No mutations in PmrA or PmrC were found. Reverse transcriptase (RT)-PCR identified increased expression of pmrA (4- to 13-fold), pmrB (2- to 7-fold), and pmrC (1- to 3-fold) in resistant versus susceptible organisms. Matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry showed the addition of phosphoethanolamine to the hepta-acylated form of lipid A in the resistant variants and in strain ATCC 19606 grown under low-Mg(2+) induction conditions. pmrB gene knockout mutants of the colistin-resistant ATCC 19606 derivative showed >100-fold increased susceptibility to colistin and 5-fold decreased expression of pmrC; they also lacked the addition of phosphoethanolamine to lipid A. We conclude that the development of a moderate level of colistin resistance in A. baumannii requires distinct genetic events, including (i) at least one point mutation in pmrB, (ii) upregulation of pmrAB, and (iii) expression of pmrC, which lead to addition of phosphoethanolamine to lipid A.
Collapse
|
174
|
Ahmer BMM, Gunn JS. Interaction of Salmonella spp. with the Intestinal Microbiota. Front Microbiol 2011; 2:101. [PMID: 21772831 PMCID: PMC3131049 DOI: 10.3389/fmicb.2011.00101] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Accepted: 04/25/2011] [Indexed: 12/20/2022] Open
Abstract
Salmonella spp. are major cause of human morbidity and mortality worldwide. Upon entry into the human host, Salmonella spp. must overcome the resistance to colonization mediated by the gut microbiota and the innate immune system. They successfully accomplish this by inducing inflammation and mechanisms of innate immune defense. Many models have been developed to study Salmonella spp. interaction with the microbiota that have helped to identify factors necessary to overcome colonization resistance and to mediate disease. Here we review the current state of studies into this important pathogen/microbiota/host interaction in the mammalian gastrointestinal tract.
Collapse
Affiliation(s)
- Brian M M Ahmer
- The Department of Microbiology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
175
|
Shevchuk O, Jäger J, Steinert M. Virulence properties of the legionella pneumophila cell envelope. Front Microbiol 2011; 2:74. [PMID: 21747794 PMCID: PMC3129009 DOI: 10.3389/fmicb.2011.00074] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Accepted: 03/30/2011] [Indexed: 01/15/2023] Open
Abstract
The bacterial envelope plays a crucial role in the pathogenesis of infectious diseases. In this review, we summarize the current knowledge of the structure and molecular composition of the Legionella pneumophila cell envelope. We describe lipopolysaccharides biosynthesis and the biological activities of membrane and periplasmic proteins and discuss their decisive functions during the pathogen–host interaction. In addition to adherence, invasion, and intracellular survival of L. pneumophila, special emphasis is laid on iron acquisition, detoxification, key elicitors of the immune response and the diverse functions of outer membrane vesicles. The critical analysis of the literature reveals that the dynamics and phenotypic plasticity of the Legionella cell surface during the different metabolic stages require more attention in the future.
Collapse
Affiliation(s)
- Olga Shevchuk
- Institut für Mikrobiologie, Technische Universität Braunschweig Braunschweig, Germany
| | | | | |
Collapse
|
176
|
Chen YY, Ko TP, Lin CH, Chen WH, Wang AHJ. Conformational change upon product binding to Klebsiella pneumoniae UDP-glucose dehydrogenase: a possible inhibition mechanism for the key enzyme in polymyxin resistance. J Struct Biol 2011; 175:300-10. [PMID: 21536136 DOI: 10.1016/j.jsb.2011.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 03/22/2011] [Accepted: 04/14/2011] [Indexed: 10/18/2022]
Abstract
Cationic modification of lipid A with 4-amino-4-deoxy-L-arabinopyranose (L-Ara4N) allows the pathogen Klebsiella pneumoniae to resist the antibiotic polymyxin and other cationic antimicrobial peptides. UDP-glucose dehydrogenase (Ugd) catalyzes the NAD⁺-dependent twofold oxidation of UDP-glucose (UPG) to produce UDP-glucuronic acid (UGA), a requisite precursor in the biosynthesis of L-Ara4N and bacterial exopolysaccharides. Here we report five crystal structures of K. pneumoniae Ugd (KpUgd) in its apo form, in complex with UPG, UPG/NADH, two UGA molecules, and finally with a C-terminal His₆-tag. The UGA-complex structure differs from the others by a 14° rotation of the N-terminal domain toward the C-terminal domain, and represents a closed enzyme conformation. It also reveals that the second UGA molecule binds to a pre-existing positively charged surface patch away from the active site. The enzyme is thus inactivated by moving the catalytically important residues C253, K256 and D257 from their original positions. Kinetic data also suggest that KpUgd has multiple binding sites for UPG, and that UGA is a competitive inhibitor. The conformational changes triggered by UGA binding to the allosteric site can be exploited in designing potent inhibitors.
Collapse
Affiliation(s)
- Ying-Yin Chen
- Institute of Biological Chemistry, Academia Sinica, Taipei 115, Taiwan; Institute of Biochemical Sciences, National Taiwan University, Taipei 106, Taiwan
| | | | | | | | | |
Collapse
|
177
|
Shanchez-Contreras M, Vlisidou I. The diversity of insect-bacteria interactions and its applications for disease control. Biotechnol Genet Eng Rev 2011; 25:203-43. [PMID: 21412357 DOI: 10.5661/bger-25-203] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Prokaryotic microorganisms are widespread in all environments on Earth, establishing diverse interactions with many eukaryotic taxa, including insects. These associations may be symbiotic, pathogenic and vectoring. Independently of the type of interaction, each association starts with the adhesion of the microorganism to the host, entry and "invasion" of the host, then progresses to establishment and dissemination within the host, by avoiding host immune responses, and concludes with transmission back to the environment or to a new host. Advances in genomics and genetics have allowed the dissection of these processes and provided important information on the elements driving the shaping of the members of each association. Furthermore, many mechanisms involved in the establishment of the associations have been scrutinised, along with the development of new methods for the management of insect populations.
Collapse
|
178
|
Arpaia N, Godec J, Lau L, Sivick KE, McLaughlin LM, Jones MB, Dracheva T, Peterson SN, Monack DM, Barton GM. TLR signaling is required for Salmonella typhimurium virulence. Cell 2011; 144:675-88. [PMID: 21376231 PMCID: PMC3063366 DOI: 10.1016/j.cell.2011.01.031] [Citation(s) in RCA: 196] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2010] [Revised: 12/06/2010] [Accepted: 01/10/2011] [Indexed: 01/02/2023]
Abstract
Toll-like receptors (TLRs) contribute to host resistance to microbial pathogens and can drive the evolution of virulence mechanisms. We have examined the relationship between host resistance and pathogen virulence using mice with a functional allele of the nramp-1 gene and lacking combinations of TLRs. Mice deficient in both TLR2 and TLR4 were highly susceptible to the intracellular bacterial pathogen Salmonella typhimurium, consistent with reduced innate immune function. However, mice lacking additional TLRs involved in S. typhimurium recognition were less susceptible to infection. In these TLR-deficient cells, bacteria failed to upregulate Salmonella pathogenicity island 2 (SPI-2) genes and did not form a replicative compartment. We demonstrate that TLR signaling enhances the rate of acidification of the Salmonella-containing phagosome, and inhibition of this acidification prevents SPI-2 induction. Our results indicate that S. typhimurium requires cues from the innate immune system to regulate virulence genes necessary for intracellular survival, growth, and systemic infection.
Collapse
Affiliation(s)
- Nicholas Arpaia
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200, USA
| | - Jernej Godec
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200, USA
| | - Laura Lau
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200, USA
| | - Kelsey E. Sivick
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200, USA
| | - Laura M. McLaughlin
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Marcus B. Jones
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, MD 20850 USA
| | - Tatiana Dracheva
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, MD 20850 USA
| | - Scott N. Peterson
- Pathogen Functional Genomics Resource Center, J. Craig Venter Institute, Rockville, MD 20850 USA
| | - Denise M. Monack
- Department of Microbiology and Immunology, Stanford University, Stanford, CA 94305, USA
| | - Gregory M. Barton
- Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720-3200, USA
| |
Collapse
|
179
|
Absence of PmrAB-mediated phosphoethanolamine modifications of Citrobacter rodentium lipopolysaccharide affects outer membrane integrity. J Bacteriol 2011; 193:2168-76. [PMID: 21378194 DOI: 10.1128/jb.01449-10] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The PmrAB two-component system of enterobacteria regulates a number of genes whose protein products modify lipopolysaccharide (LPS). The LPS is modified during transport to the bacterial outer membrane (OM). A subset of PmrAB-mediated LPS modifications consists of the addition of phosphoethanolamine (pEtN) to lipid A by PmrC and to the core by CptA. In Salmonella enterica, pEtN modifications have been associated with resistance to polymyxin B and to excess iron. To investigate putative functions of pEtN modifications in Citrobacter rodentium, ΔpmrAB, ΔpmrC, ΔcptA, and ΔpmrC ΔcptA deletion mutants were constructed. Compared to the wild type, most mutant strains were found to be more susceptible to antibiotics that must diffuse across the LPS layer of the OM. All mutant strains also showed increased influx rates of ethidium dye across their OM, suggesting that PmrAB-regulated pEtN modifications affect OM permeability. This was confirmed by increased partitioning of the fluorescent dye 1-N-phenylnaphthylamine (NPN) into the OM phospholipid layer of the mutant strains. In addition, substantial release of periplasmic β-lactamase was observed for the ΔpmrAB and ΔpmrC ΔcptA strains, indicating a loss of OM integrity. This study attributes a new role for PmrAB-mediated pEtN LPS modifications in the maintenance of C. rodentium OM integrity.
Collapse
|
180
|
|
181
|
Gaekwad J, Zhang Y, Zhang W, Reeves J, Wolfert MA, Boons GJ. Differential induction of innate immune responses by synthetic lipid a derivatives. J Biol Chem 2010; 285:29375-86. [PMID: 20634284 PMCID: PMC2937970 DOI: 10.1074/jbc.m110.115204] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 07/13/2010] [Indexed: 01/23/2023] Open
Abstract
Recent studies have indicated that lipopolysaccharides (LPS) isolated from particular bacterial strains can bias innate immune responses toward different signal transduction pathways thereby eliciting unique patterns of cytokines. Heterogeneity in the structure of lipid A (the active component of LPS) and possible contaminations with other inflammatory components have made it difficult to confirm these observations and dissect molecular motifs that may be responsible for modulatory properties. To address these issues, we have examined, for the first time, the ability of a range of well defined synthetic lipid As and isolated LPS and lipid A preparations to induce the production of a wide range of cytokines in three different mouse cell types. It was found that, for a given compound, the potencies of production of the various cytokines differed significantly. An additive model, in which a chemical change in the structure of a compound effects the potencies of all cytokines in the same manner, could describe the potencies of the cytokines for all compounds. Thus, no evidence was found that the structure of lipid A can modulate the pattern of cytokine production. In addition, the statistical analysis showed that the relative ordering of the potencies of the compounds was identical in the different cell types and that structural features such as the presence of a 3-deoxy-D-manno-octulosonic acid moiety, anomeric phosphate, lipid length, and acylation pattern were important for pro-inflammatory activity. Finally, it was found that transcriptional and post-transcription control mechanisms determine potencies and efficacies of cytokine production in cell-specific manners.
Collapse
Affiliation(s)
| | | | - Wei Zhang
- Statistics Department, University of Georgia, Athens, Georgia 30602
| | - Jaxk Reeves
- Statistics Department, University of Georgia, Athens, Georgia 30602
| | | | | |
Collapse
|
182
|
Abstract
Endotoxin refers lipopolysaccharide that constitutes the outer leaflet of the outer membrane of most Gram-negative bacteria. Lipopolysaccharide is comprised of a hydrophilic polysaccharide and a hydrophobic component known as lipid A which is responsible for the major bioactivity of endotoxin. Lipopolysaccharide can be recognized by immune cells as a pathogen-associated molecule through Toll-like receptor 4. Most enzymes and genes related to the biosynthesis and export of lipopolysaccharide have been identified in Escherichia coli, and they are shared by most Gram-negative bacteria based on available genetic information. However, the detailed structure of lipopolysaccharide differs from one bacterium to another, suggesting that additional enzymes that can modify the basic structure of lipopolysaccharide exist in bacteria, especially some pathogens. These structural modifications of lipopolysaccharide are sometimes tightly regulated. They are not required for survival but closely related to the virulence of bacteria. In this chapter we will focus on the mechanism of biosynthesis and export of lipopolysaccharide in bacteria.
Collapse
Affiliation(s)
- Xiaoyuan Wang
- State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, 214122, China.
| | | |
Collapse
|
183
|
Abstract
Salmonella enterica are Gram-negative enteric pathogens that cause typhoid fever and gastroenteritis in humans. Many bacteria, including Salmonella, use signal transduction cascades such as two-component regulatory systems to detect and respond to stimuli in the local microenvironment. During infection, environmental sensing allows bacteria to regulate gene expression to evade host immune defenses and thrive in vivo. Activation of the Salmonella two-component regulatory systems PhoP-PhoQ and PmrA-PmrB and the RcsC-RcsD-RcsB phosphorylay by specific environmental signals in the intestine and within host cells leads to several lipopolysaccharide modifications that promote bacterial survival, cationic antimicrobial peptide resistance and virulence. Many pathogens encode orthologs to Salmonella two-component regulatory systems and also modify the lipopolysaccharide to escape killing by the host immune response. However, these organisms often regulate their virulence genes, including those responsible for lipopolysaccharide modification, in ways that differ from Salmonella. Further examination of bacterial virulence gene regulation and lipopolysaccharide modifications may lead to improved antimicrobial therapies and vaccines.
Collapse
|
184
|
Latency of the lipid A deacylase PagL is involved in producing a robust permeation barrier in the outer membrane of Salmonella enterica. J Bacteriol 2010; 192:5837-40. [PMID: 20833808 DOI: 10.1128/jb.00758-10] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lipid A deacylase PagL, which detoxifies endotoxin, is latent in Salmonella enterica. This study determined the biological significance of this latency. PagL latency was beneficial for bacteria in producing a robust permeation barrier through lipid A modifications under host-mimetic conditions that induced the modification enzymes, including PagL.
Collapse
|
185
|
Chang J, Jain S, Carl DJ, Paolella L, Darveau RP, Gravett MG, Adams Waldorf KM. Differential host response to LPS variants in amniochorion and the TLR4/MD-2 system in Macaca nemestrina. Placenta 2010; 31:811-7. [PMID: 20619890 PMCID: PMC2934902 DOI: 10.1016/j.placenta.2010.06.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2010] [Revised: 06/11/2010] [Accepted: 06/16/2010] [Indexed: 12/23/2022]
Abstract
OBJECTIVES Microbial-specific factors are likely critical in determining whether bacteria trigger preterm labor. Structural variations in lipopolysaccharide (LPS), a component of gram-negative bacteria, can determine whether LPS has an inflammatory (agonist) or anti-inflammatory (antagonist) effect through Toll-like receptor 4 (TLR4). Our objective was to determine whether amniochorion could discriminate between LPS variants in a nonhuman primate model. We also cloned Macaca nemestrina TLR4 and MD-2 and compared this complex functionally to the human homologue to establish whether nonhuman primates could be used to study TLR4 signaling in preterm birth. STUDY DESIGN Amniochorion explants from M. nemestrina were stimulated with a panel of LPS variants for 24 h. Supernatants were analyzed for IL-1beta, TNF-alpha, IL-6, IL-8 and prostaglandins E2 and F2alpha. Tissue expression of TLR1, 2, 4, 6, MyD88 and NF-kappaB was studied by RT-PCR. M. nemestrina TLR4 and MD-2 genes were cloned and compared with their human counterparts in a recombinant TLR4 signaling system to determine LPS sensitivity. RESULTS LPS variants differentially stimulated cytokines and prostaglandins, which was not related to transcriptional changes of TLR4 or other TLRs. Nearly all elements of LPS binding and TLR4 leucine-rich repeats were conserved between humans and M. nemestrina. TLR4/MD-2 signaling complexes from both species were equally sensitive to LPS variants. CONCLUSIONS LPS variants elicit a hierarchical inflammatory response within amniochorion that may contribute to preterm birth. LPS sensitivity is similar between M. nemestrina and humans, validating M. nemestrina as an appropriate model to study TLR4 signaling in preterm birth.
Collapse
Affiliation(s)
- J Chang
- Department of Obstetrics & Gynecology, Magee Women's Hospital, Pittsburgh, PA, USA
| | | | | | | | | | | | | |
Collapse
|
186
|
Lu Q, Darveau RP, Samaranayake LP, Wang CY, Jin L. Differential modulation of human {beta}-defensins expression in human gingival epithelia by Porphyromonas gingivalis lipopolysaccharide with tetra- and penta-acylated lipid A structures. Innate Immun 2010; 15:325-35. [PMID: 19675119 DOI: 10.1177/1753425909104899] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Porphyromonas gingivalis lipopolysaccharide (LPS) is a crucial virulence factor strongly involved in the development of chronic periodontitis. It displays a significant amount of lipid A structural heterogeneity, containing both tetra- (LPS(1435/1449) ) and penta-acylated (LPS( 1690)) lipid A structures with opposing effects on E-selectin expression in human endothelial cells. Little is known about how these two isoforms of P. gingivalis LPS could differentially affect host innate immune responses in human gingival epithelia. The present study compares the modulatory effects of P. gingivalis LPS(1435/1449) and LPS(1690) on the expression of human beta-defensins (hBDs) in the reconstituted human gingival epithelium, and examines the involvements of a panel of pattern recognition receptors in the modulatory effects concerned. It is shown that hBD-1, hBD-2 and hBD-3 mRNAs are significantly up-regulated by P. gingivalis LPS(1690), but down-regulated by P. gingivalis LPS( 1435/1449). Toll-like receptor (TLR) 2 and CD14 mRNAs are also differentially regulated, and the modulation of hBD-2 expression may be through the co-operation of both TLR2 and TLR4. This study suggests that P. gingivalis LPS with different lipid A structures could differentially modulate host innate immune responses in human gingival epithelia, which may be a hitherto undescribed novel pathogenic mechanism of P. gingivalis in periodontal pathogenesis.
Collapse
Affiliation(s)
- Qian Lu
- The University of Hong Kong, Prince Philip Dental Hospital, Hong Kong
| | | | | | | | | |
Collapse
|
187
|
Herrera CM, Hankins JV, Trent MS. Activation of PmrA inhibits LpxT-dependent phosphorylation of lipid A promoting resistance to antimicrobial peptides. Mol Microbiol 2010; 76:1444-60. [PMID: 20384697 PMCID: PMC2904496 DOI: 10.1111/j.1365-2958.2010.07150.x] [Citation(s) in RCA: 124] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2010] [Indexed: 01/01/2023]
Abstract
During its transport to the bacterial surface, the phosphate groups of the lipid A anchor of Escherichia coli and Salmonella lipopolysaccharide are modified by membrane enzymes including ArnT, EptA and LpxT. ArnT and EptA catalyse the periplasmic addition of the positively charged substituents 4-amino-4-deoxy-L-arabinose and phosphoethanolamine respectively. These modifications are controlled by the PmrA transcriptional regulator and confer resistance to cationic antimicrobial peptides, including polymyxin. LpxT, however, catalyses the phosphorylation of lipid A at the 1-position forming 1-diphosphate lipid A increasing the negative charge of the bacterial surface. Here, we report that PmrA is involved in the regulation of LpxT. Interestingly, this regulation does not occur at the level of transcription, but rather following the assembly of LpxT into the inner membrane. PmrA-dependent inhibition of LpxT is required for phosphoethanolamine decoration of lipid A, which is shown here to be critical for E. coli to resist the bactericidal activity of polymyxin. Furthermore, although Salmonella lipid A is more prevalently modified with l-4-aminoarabinose, we demonstrate that loss of Salmonella lpxT greatly increases EptA modification. The current work is an example of the complexities associated with the structural remodelling of Gram-negative lipopolysaccharides promoting bacterial survival.
Collapse
Affiliation(s)
- Carmen M Herrera
- Section of Molecular Genetics and Microbiology, The University of Texas at AustinAustin, TX 78712, USA
| | - Jessica V Hankins
- Department of Biochemistry and Molecular Biology, Medical College of GeorgiaAugusta, Georgia, 30912, USA
| | - M Stephen Trent
- Section of Molecular Genetics and Microbiology, The University of Texas at AustinAustin, TX 78712, USA
- The Institute of Cellular and Molecular Biology, The University of Texas at AustinAustin, TX 78712, USA
| |
Collapse
|
188
|
Manabe T, Kawano M, Kawasaki K. Mutations in the lipid A deacylase PagL which release the enzyme from its latency affect the ability of PagL to interact with lipopolysaccharide in Salmonella enterica serovar Typhimurium. Biochem Biophys Res Commun 2010; 396:812-6. [PMID: 20438711 DOI: 10.1016/j.bbrc.2010.04.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 04/27/2010] [Indexed: 10/19/2022]
Abstract
PagL, a lipid A deacylase, is unique in that it is latent in the outer membrane of Salmonella enterica serovar Typhimurium. Several point mutations in the extracellular loops of PagL, which do not affect its enzymatic activity, release it from this latency. Precipitation analysis revealed that latent wild-type PagL associated with lipopolysaccharide, but non-latent PagL mutants did not. In contrast, non-latent PagL mutants preferentially associated with some membrane proteins. Precipitation analysis using inactive PagL mutants demonstrated that membrane lipid A deacylation did not affect association. These results indicate that mutations in the lipid A deacylase PagL which relieve the enzyme from its latency affect the ability of PagL to interact with lipopolysaccharide.
Collapse
Affiliation(s)
- Takayuki Manabe
- Faculty of Pharmaceutical Sciences, Doshisha Women's College, Kyotanabe, Kyoto 610-0395, Japan
| | | | | |
Collapse
|
189
|
The structure of Neisseria meningitidis lipid A determines outcome in experimental meningococcal disease. Infect Immun 2010; 78:3177-86. [PMID: 20439476 DOI: 10.1128/iai.01311-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Lipopolysaccharide (LPS), a major component of the meningococcal outer membrane, is sensed by the host through activation of Toll-like receptor 4 (TLR4). Recently, we demonstrated that a surprisingly large fraction of Neisseria meningitidis disease isolates are lipid A mutants, due to inactivating mutations in the lpxL1 gene. The lpxL1 mutants activate human TLR4 much less efficiently than wild-type bacteria, which may be advantageous by allowing them to escape from the innate immune system. Here we investigated the influence of lipid A structure on virulence in a mouse model of meningococcal sepsis. One limitation, however, is that murine TLR4 recognizes lpxL1 mutant bacteria much better than human TLR4. We show that an lpxL2 mutant, another lipid A mutant lacking an acyl chain at a different position, activates murine TLR4 less efficiently than the lpxL1 mutant. Therefore, the lpxL2 mutant in mice might be a better model for infections with lpxL1 mutants in humans. Interestingly, we found that the lpxL2 mutant is more virulent in mice than the wild-type strain, whereas the lpxL1 mutant is actually much less virulent than the wild-type strain. These results demonstrate the crucial role of N. meningitidis lipid A structure in virulence.
Collapse
|
190
|
Abstract
Yersinia enterocolitica is an important human pathogen. Y. enterocolitica must adapt to the host environment, and temperature is an important cue regulating the expression of most Yersinia virulence factors. Here, we report that Y. enterocolitica 8081 serotype O:8 synthesized tetra-acylated lipid A at 37 degrees C but that hexa-acylated lipid A predominated at 21 degrees C. By mass spectrometry and genetic methods, we have shown that the Y. enterocolitica msbB, htrB, and lpxP homologues encode the acyltransferases responsible for the addition of C(12), C(14) and C(16:1), respectively, to lipid A. The expression levels of the acyltransferases were temperature regulated. Levels of expression of msbB and lpxP were higher at 21 degrees C than at 37 degrees C, whereas the level of expression of htrB was higher at 37 degrees C. At 21 degrees C, an lpxP mutant was the strain most susceptible to polymyxin B, whereas at 37 degrees C, an htrB mutant was the most susceptible. We present evidence that the lipid A acylation status affects the expression of Yersinia virulence factors. Thus, expression of flhDC, the flagellar master regulatory operon, was downregulated in msbB and lpxP mutants, with a concomitant decrease in motility. Expression of the phospholipase yplA was also downregulated in both mutants. inv expression was downregulated in msbB and htrB mutants, and consistent with this finding, invasion of HeLa cells was diminished. However, the expression of rovA, the positive regulator of inv, was not affected in the mutants. The levels of pYV-encoded virulence factors Yops and YadA in the acyltransferase mutants were not affected. Finally, we show that only the htrB mutant was attenuated in vivo.
Collapse
|
191
|
Study of matrix additives for sensitive analysis of lipid A by matrix-assisted laser desorption ionization mass spectrometry. Appl Environ Microbiol 2010; 76:3437-43. [PMID: 20382818 DOI: 10.1128/aem.03082-09] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) has been widely used for structural characterization of bacterial endotoxins (lipid A). However, the mass spectrometric behavior of the lipid A molecule is highly dependent on the matrix. Furthermore, this dependence is strongly linked to phosphorylation patterns. Using lipid A from Escherichia coli O116 as a model system, we have investigated the effects of different matrices and comatrix compounds on the analysis of lipid A. In this paper, we report a highly sensitive matrix system for lipid A analysis, which consists of 5-chloro-2-mercaptobenzothiazole matrix and EDTA ammonium salt comatrix. This matrix system enhances the sensitivity of the analysis of diphosphorylated lipid A species by more than 100-fold and in addition provides tolerance to high concentrations of sodium dodecyl sulfate (SDS) and tolerance to sodium chloride and calcium chloride at 10 muM, 100 muM, and 10 muM concentrations. The method was further evaluated for analysis of lipid A species with different phosphorylation patterns and from different bacteria, including Helicobacter pylori, Salmonella enterica serovar Riogrande, and Francisella novicida.
Collapse
|
192
|
Oyston PCF, Mellado-Sanchez G, Pasetti MF, Nataro JP, Titball RW, Atkins HS. A Yersinia pestis guaBA mutant is attenuated in virulence and provides protection against plague in a mouse model of infection. Microb Pathog 2010; 48:191-5. [PMID: 20096773 DOI: 10.1016/j.micpath.2010.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2009] [Revised: 01/04/2010] [Accepted: 01/14/2010] [Indexed: 12/24/2022]
Abstract
There is a need to develop effective countermeasures for Yersinia pestis, the etiologic agent of plague and a potential bioterrorism agent. Salmonella and Shigella spp. deleted in the guaBA genes involved in guanine biosynthesis have been shown to be attenuated in vivo. In this study, we sought to determine whether deletion of the guaBA operon would render Y. pestis auxotrophic for guanine and avirulent; such a strain could serve as a live attenuated plague vaccine candidate. A Y. pestis guaBA mutant was generated by specific deletion of a segment of the guaBA operon, producing a guanine auxotroph that was highly attenuated in a mouse model of Y. pestis infection. Furthermore, mice vaccinated with a single dose of 7x10(4)CFU via the intravenous route were fully protected against subsequent lethal challenge with the Y. pestis parental strain. These findings identify guaBA as a target for deletion to generate a live attenuated plague vaccine.
Collapse
Affiliation(s)
- Petra C F Oyston
- Department of Biomedical Sciences, Defence Science and Technology Laboratory, Porton Down, Salisbury, Wiltshire SP4 0JQ, United Kingdom
| | | | | | | | | | | |
Collapse
|
193
|
Salmonella enterica serovar Typhimurium lipopolysaccharide deacylation enhances its intracellular growth within macrophages. FEBS Lett 2010; 584:207-12. [PMID: 19932105 DOI: 10.1016/j.febslet.2009.11.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Revised: 11/16/2009] [Accepted: 11/16/2009] [Indexed: 11/20/2022]
Abstract
Modification of lipid A is essential for bacterial adaptation to its host. Salmonella Typhimurium LpxR potentially detoxifies lipid A by 3'-O-deacylation; however, the involvement of deacylation in its adaptation remains unclear. LpxR-dependent 3'-O-deacylation was observed in the stationary phase. When macrophages were infected with stationary phase bacteria, the intracellular growth of the lpxR-null strain was lower than that of the wild-type strain. Furthermore, the expression level of inducible nitric oxide synthase was higher in the cells infected with the lpxR-null strain than in the cells infected with the wild-type strain. These results indicate that lipid A 3'-O-deacylation is beneficial for intracellular growth.
Collapse
|
194
|
Shahabi V, Maciag PC, Rivera S, Wallecha A. Live, attenuated strains of Listeria and Salmonella as vaccine vectors in cancer treatment. Bioeng Bugs 2010; 1:235-43. [PMID: 21327055 DOI: 10.4161/bbug.1.4.11243] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 12/28/2009] [Accepted: 01/04/2010] [Indexed: 02/07/2023] Open
Abstract
Live, attenuated strains of many bacteria that synthesize and secrete foreign antigens are being developed as vaccines for a number of infectious diseases and cancer. Bacterial-based vaccines provide a number of advantages over other antigen delivery strategies including low cost of production, the absence of animal products, genetic stability and safety. In addition, bacterial vaccines delivering a tumor-associated antigen (TAA) stimulate innate immunity and also activate both arms of the adaptive immune system by which they exert efficacious anti-tumor effects. Listeria monocytogenes and several strains of Salmonella have been most extensively studied for this purpose. A number of attenuated strains have been generated and used to deliver antigens associated with infectious diseases and cancer. Although both bacteria are intracellular, the immune responses invoked by Listeria and Salmonella are different due to their sub-cellular locations. Upon entering antigen-presenting cells by phagocytosis, Listeria is capable of escaping from the phagosomal compartment and thus has direct access to the cell cytosol. Proteins delivered by this vector behave as endogenous antigens, are presented on the cell surface in the context of MHC class I molecules, and generate strong cell-mediated immune responses. In contrast, proteins delivered by Salmonella, which lacks a phagosomal escape mechanism, are treated as exogenous antigens and presented by MHC class II molecules resulting predominantly in Th2 type immune responses. This fundamental disparity between the life cycles of the two vectors accounts for their differential application as antigen delivery vehicles. The present paper includes a review of the most recent advances in the development of these two bacterial vectors for treatment of cancer. Similarities and differences between the two vectors are discussed.
Collapse
Affiliation(s)
- Vafa Shahabi
- Advaxis Inc., Research and Development, North Brunswick, NJ, USA
| | | | | | | |
Collapse
|
195
|
Pilonieta MC, Erickson KD, Ernst RK, Detweiler CS. A protein important for antimicrobial peptide resistance, YdeI/OmdA, is in the periplasm and interacts with OmpD/NmpC. J Bacteriol 2009; 191:7243-52. [PMID: 19767429 PMCID: PMC2786563 DOI: 10.1128/jb.00688-09] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2009] [Accepted: 09/10/2009] [Indexed: 01/02/2023] Open
Abstract
Antimicrobial peptides (AMPs) kill or prevent the growth of microbes. AMPs are made by virtually all single and multicellular organisms and are encountered by bacteria in diverse environments, including within a host. Bacteria use sensor-kinase systems to respond to AMPs or damage caused by AMPs. Salmonella enterica deploys at least three different sensor-kinase systems to modify gene expression in the presence of AMPs: PhoP-PhoQ, PmrA-PmrB, and RcsB-RcsC-RcsD. The ydeI gene is regulated by the RcsB-RcsC-RcsD pathway and encodes a 14-kDa predicted oligosaccharide/oligonucleotide binding-fold (OB-fold) protein important for polymyxin B resistance in broth and also for virulence in mice. We report here that ydeI is additionally regulated by the PhoP-PhoQ and PmrA-PmrB sensor-kinase systems, which confer resistance to cationic AMPs by modifying lipopolysaccharide (LPS). ydeI, however, is not important for known LPS modifications. Two independent biochemical methods found that YdeI copurifies with OmpD/NmpC, a member of the trimeric beta-barrel outer membrane general porin family. Genetic analysis indicates that ompD contributes to polymyxin B resistance, and both ydeI and ompD are important for resistance to cathelicidin antimicrobial peptide, a mouse AMP produced by multiple cell types and expressed in the gut. YdeI localizes to the periplasm, where it could interact with OmpD. A second predicted periplasmic OB-fold protein, YgiW, and OmpF, another general porin, also contribute to polymyxin B resistance. Collectively, the data suggest that periplasmic OB-fold proteins can interact with porins to increase bacterial resistance to AMPs.
Collapse
Affiliation(s)
- M. Carolina Pilonieta
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, University of Maryland-Baltimore, Department of Microbial Pathogenesis, School of Dentistry, Baltimore, Maryland 21201
| | - Kimberly D. Erickson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, University of Maryland-Baltimore, Department of Microbial Pathogenesis, School of Dentistry, Baltimore, Maryland 21201
| | - Robert K. Ernst
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, University of Maryland-Baltimore, Department of Microbial Pathogenesis, School of Dentistry, Baltimore, Maryland 21201
| | - Corrella S. Detweiler
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, University of Maryland-Baltimore, Department of Microbial Pathogenesis, School of Dentistry, Baltimore, Maryland 21201
| |
Collapse
|
196
|
Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog Lipid Res 2009; 49:97-107. [PMID: 19815028 DOI: 10.1016/j.plipres.2009.06.002] [Citation(s) in RCA: 315] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2009] [Revised: 06/16/2009] [Accepted: 06/17/2009] [Indexed: 01/13/2023]
Abstract
Lipopolysaccharide that constitutes the outer leaflet of the outer membrane of most Gram-negative bacteria is referred to as an endotoxin. It is comprised of a hydrophilic polysaccharide and a hydrophobic component referred to as lipid A. Lipid A is responsible for the major bioactivity of endotoxin, and is recognized by immune cells as a pathogen-associated molecule. Most enzymes and genes coding for proteins responsible for the biosynthesis and export of lipopolysaccharide in Escherichia coli have been identified, and they are shared by most Gram-negative bacteria based on genetic information. The detailed structure of lipopolysaccharide differs from one bacterium to another, consistent with the recent discovery of additional enzymes and gene products that can modify the basic structure of lipopolysaccharide in some bacteria, especially pathogens. These modifications are not required for survival, but are tightly regulated in the cell and closely related to the virulence of bacteria. In this review we discuss recent studies of the biosynthesis and export of lipopolysaccharide, and the relationship between the structure of lipopolysaccharide and the virulence of bacteria.
Collapse
|
197
|
Duerr CU, Zenk SF, Chassin C, Pott J, Gütle D, Hensel M, Hornef MW. O-antigen delays lipopolysaccharide recognition and impairs antibacterial host defense in murine intestinal epithelial cells. PLoS Pathog 2009; 5:e1000567. [PMID: 19730692 PMCID: PMC2729928 DOI: 10.1371/journal.ppat.1000567] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2009] [Accepted: 08/05/2009] [Indexed: 12/15/2022] Open
Abstract
Although Toll-like receptor (TLR) 4 signals from the cell surface of myeloid cells, it is restricted to an intracellular compartment and requires ligand internalization in intestinal epithelial cells (IECs). Yet, the functional consequence of cell-type specific receptor localization and uptake-dependent lipopolysaccharide (LPS) recognition is unknown. Here, we demonstrate a strikingly delayed activation of IECs but not macrophages by wildtype Salmonella enterica subsp. enterica sv. (S.) Typhimurium as compared to isogenic O-antigen deficient mutants. Delayed epithelial activation is associated with impaired LPS internalization and retarded TLR4-mediated immune recognition. The O-antigen-mediated evasion from early epithelial innate immune activation significantly enhances intraepithelial bacterial survival in vitro and in vivo following oral challenge. These data identify O-antigen expression as an innate immune evasion mechanism during apical intestinal epithelial invasion and illustrate the importance of early innate immune recognition for efficient host defense against invading Salmonella. The mammalian host recognizes infection by the detection of particular microbial structures. Recognition of these structures leads to activation of host defense effector mechanisms that in turn combat infection. A very potent activating microbial structure is lipopolysaccharide, a cell wall component released by many bacteria such as Salmonella, one of the most frequent causative agents of foodborne infection of the gut. We previously showed that cells lining the gut surface require uptake of bacterial lipopolysaccharide for its detection. The functional consequence of lipopolysaccharide uptake, however, was unknown. Here, we demonstrate that the uptake of lipopolysaccharide released by Salmonella is impaired by its extensive sugar modification. Impaired lipopolysaccharide uptake prevents early activation of host defense mechanisms and thereby allows Salmonella to better survive and proliferate within the host's intestinal cells. Thus, this lipopolysaccharide modification represents a mechanism by which Salmonella impairs recognition by the mammalian host to more efficiently cause infection of the intestinal mucosa.
Collapse
Affiliation(s)
- Claudia U. Duerr
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Sebastian F. Zenk
- Institute for Microbiology, University Hospital Erlangen, Erlangen, Germany
| | - Cécilia Chassin
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Johanna Pott
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Dominique Gütle
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
| | - Michael Hensel
- Division of Infection Biology, University Hospital Erlangen, Erlangen, Germany
| | - Mathias W. Hornef
- Institute for Medical Microbiology and Hospital Epidemiology, Hannover Medical School, Hannover, Germany
- * E-mail:
| |
Collapse
|
198
|
Lukasiewicz J, Jachymek W, Niedziela T, Kenne L, Lugowski C. Structural analysis of the lipid A isolated from Hafnia alvei 32 and PCM 1192 lipopolysaccharides. J Lipid Res 2009; 51:564-74. [PMID: 19706748 DOI: 10.1194/jlr.m001362] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hafnia alvei, a Gram-negative bacterium, is an opportunistic pathogen associated with mixed hospital infections, bacteremia, septicemia, and respiratory diseases. The majority of clinical symptoms of diseases caused by this bacterium have a lipopolysaccharide (LPS, endotoxin)-related origin. The lipid A structure affects the biological activity of endotoxins predominantly. Thus, the structure of H. alvei lipid A was analyzed for the first time. The major form, asymmetrically hexa-acylated lipid A built of beta-D-GlcpN4P-(1-->6)-alpha-D-GlcpN1P substituted with (R)-14:0(3-OH) at N-2 and O-3, 14:0(3-(R)-O-12:0) at N-2', and 14:0(3-(R)-O-14:0) at O-3', was identified by ESI-MS(n) and MALDI-time-of-flight (TOF) MS. Comparative analysis performed by MS suggested that LPSs of H. alvei 32, PCM 1192, PCM 1206, and PCM 1207 share the identified structure of lipid A. LPSs of H. alvei are yet another example of enterobacterial endotoxins having the Escherichia coli-type structure of lipid A. The presence of hepta-acylated forms of H. alvei lipid A resulted from the addition of palmitate (16:0) substituting 14:0(3-OH) at N-2 of the alpha-GlcpN residue. All the studied strains of H. alvei have an ability to modify their lipid A structure by palmitoylation.
Collapse
Affiliation(s)
- Jolanta Lukasiewicz
- L. Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, R. Weigla 12, PL-53-114 Wroclaw, Poland.
| | | | | | | | | |
Collapse
|
199
|
Structural and biological diversity of lipopolysaccharides from Burkholderia pseudomallei and Burkholderia thailandensis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2009; 16:1420-8. [PMID: 19692625 DOI: 10.1128/cvi.00472-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Burkholderia pseudomallei, the etiological agent of melioidosis, is a facultative intracellular pathogen. As B. pseudomallei is a gram-negative bacterium, its outer membrane contains lipopolysaccharide (LPS) molecules, which have been shown to have low-level immunological activities in vitro. In this study, the biological activities of B. pseudomallei LPS were compared to those of Burkholderia thailandensis LPS, and it was found that both murine and human macrophages produced levels of tumor necrosis factor alpha, interleukin-6 (IL-6), and IL-10 in response to B. pseudomallei LPS that were lower than those in response to B. thailandensis LPS in vitro. In order to elucidate the molecular mechanisms underlying the low-level immunological activities of B. pseudomallei LPS, its lipid A moiety was characterized using mass spectrometry. The major lipid A species identified in B. pseudomallei consists of a biphosphorylated disaccharide backbone, which is modified with 4-amino-4-deoxy-arabinose (Ara4N) at both phosphates and penta-acylated with fatty acids (FA) C(14:0)(3-OH), C(16:0)(3-OH), and either C(14:0) or C(14:0)(2-OH). In contrast, the major lipid A species identified in B. thailandensis was a mixture of tetra- and penta-acylated structures with differing amounts of Ara4N and FA C(14:0)(3-OH). Lipid A species acylated with FA C(14:0)(2-OH) were unique to B. pseudomallei and not found in B. thailandensis. Our data thus indicate that B. pseudomallei synthesizes lipid A species with long-chain FA C(14:0)(2-OH) and Ara4N-modified phosphate groups, allowing it to evade innate immune recognition.
Collapse
|
200
|
Haiko J, Suomalainen M, Ojala T, Lähteenmäki K, Korhonen TK. Invited review: Breaking barriers--attack on innate immune defences by omptin surface proteases of enterobacterial pathogens. Innate Immun 2009; 15:67-80. [PMID: 19318417 DOI: 10.1177/1753425909102559] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The omptin family of Gram-negative bacterial transmembrane aspartic proteases comprises surface proteins with a highly conserved beta-barrel fold but differing biological functions. The omptins OmpT of Escherichia coli, PgtE of Salmonella enterica, and Pla of Yersinia pestis differ in their substrate specificity as well as in control of their expression. Their functional differences are in accordance with the differing pathogenesis of the infections caused by E. coli, Salmonella, and Y. pestis, which suggests that the omptins have adapted to the life-styles of their host species. The omptins Pla and PgtE attack on innate immunity by affecting the plasminogen/plasmin, complement, coagulation, fibrinolysis, and matrix metalloproteinase systems, by inactivating antimicrobial peptides, and by enhancing bacterial adhesiveness and invasiveness. Although the mechanistic details of the functions of Pla and PgtE differ, the outcome is the same: enhanced spread and multiplication of Y. pestis and S. enterica in the host. The omptin OmpT is basically a housekeeping protease but it also degrades cationic antimicrobial peptides and may enhance colonization of E. coli at uroepithelia. The catalytic residues in the omptin molecules are spatially conserved, and the differing polypeptide substrate specificities are dictated by minor sequence variations at regions surrounding the catalytic cleft. For enzymatic activity, omptins require association with lipopolysaccharide on the outer membrane. Modification of lipopolysaccharide by in vivo conditions or by bacterial gene loss has an impact on omptin function. Creation of bacterial surface proteolysis is thus a coordinated function involving several surface structures.
Collapse
Affiliation(s)
- Johanna Haiko
- General Microbiology, Faculty of Biosciences, University of Helsinki, Helsinki, Finland
| | | | | | | | | |
Collapse
|