151
|
Inman GJ, Allday MJ. Apoptosis induced by TGF-beta 1 in Burkitt's lymphoma cells is caspase 8 dependent but is death receptor independent. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:2500-10. [PMID: 10946276 DOI: 10.4049/jimmunol.165.5.2500] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
TGF-beta is a potent inducer of apoptosis in many Burkitt's lymphoma (BL) cell lines. In this study, we characterize this apoptotic process in the EBV-negative BL41 cell line. Induction of apoptosis was detected as early as 8 h after TGF-beta treatment, as assayed by TUNEL and poly(ADP-ribose) polymerase cleavage. FACS analysis demonstrates that this proceeds predominately from the G1, but also from the G2/M phases of the cell cycle. We observed no early detectable changes in the steady-state levels of Bcl-2 and several of its family members after TGF-beta treatment. We detected cleavage of caspases 2, 3, 7, 8, and 9 into their active subunits. Consistent with the involvement of these enzymes in TGF-beta-mediated apoptosis, the broad spectrum caspase inhibitor benzyloxycarbonyl-Val-Ala-Asp(Ome)-flouromethylketone (ZVAD-fmk) blocked TGF-beta-induced apoptosis and revealed a G1 arrest in treated cells. Use of specific caspase inhibitors revealed that the induction of apoptosis is caspase 8 dependent, but caspase 3 independent. Activation of caspase 8 has been shown to be a critical event in death receptor-mediated apoptosis. However, TGF-beta treatment of BL41 cells was found not to affect the cell surface expression of Fas, TNF-R1, DR3, DR4, or DR5, or the steady-state expression levels of Fas ligand, TNF-R1, DR3, DR4, and DR5. Furthermore, blocking experiments indicated that TGF-beta-mediated apoptosis is not dependent on Fas ligand, TNF-alpha, tumor necrosis-like apoptosis-inducing ligand, or TNF-like weak inducer of apoptosis signaling. Therefore, it appears that TGF-beta induces apoptosis in BL cell lines via caspase 8 in a death receptor-independent fashion.
Collapse
Affiliation(s)
- G J Inman
- Section of Virology and Cell Biology and the Ludwig Institute for Cancer Research, Imperial College of Science, Technology and Medicine, St. Mary's Campus, London, United Kingdom
| | | |
Collapse
|
152
|
Eliopoulos AG, Davies C, Knox PG, Gallagher NJ, Afford SC, Adams DH, Young LS. CD40 induces apoptosis in carcinoma cells through activation of cytotoxic ligands of the tumor necrosis factor superfamily. Mol Cell Biol 2000; 20:5503-15. [PMID: 10891490 PMCID: PMC86001 DOI: 10.1128/mcb.20.15.5503-5515.2000] [Citation(s) in RCA: 129] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/1999] [Accepted: 05/08/2000] [Indexed: 11/20/2022] Open
Abstract
CD40, a tumor necrosis factor (TNF) receptor (TNFR) family member, conveys signals regulating diverse cellular responses, ranging from proliferation and differentiation to growth suppression and cell death. The ability of CD40 to mediate apoptosis in carcinoma cells is intriguing given the fact that the CD40 cytoplasmic C terminus lacks a death domain homology with the cytotoxic members of the TNFR superfamily, such as Fas, TNFR1, and TNF-related apoptosis-inducing ligand (TRAIL) receptors. In this study, we have probed the mechanism by which CD40 transduces death signals. Using a trimeric recombinant soluble CD40 ligand to activate CD40, we have found that this phenomenon critically depends on the membrane proximal domain (amino acids 216 to 239) but not the TNFR-associated factor-interacting PXQXT motif in the CD40 cytoplasmic tail. CD40-mediated cytotoxicity is blocked by caspase inhibitors, such as zVAD-fmk and crmA, and involves activation of caspase 8 and caspase 3. Interestingly, CD40 ligation was found to induce functional Fas ligand, TRAIL (Apo-2L) and TNF in apoptosis-susceptible carcinoma cells and to up-regulate expression of Fas. These findings identify a novel proapoptotic mechanism which is induced by CD40 in carcinoma cells and depends on the endogenous production of cytotoxic cytokines and autocrine or paracrine induction of cell death.
Collapse
Affiliation(s)
- A G Eliopoulos
- CRC Institute for Cancer Studies, The University of Birmingham Medical School, Birmingham B15 2TT, United Kingdom.
| | | | | | | | | | | | | |
Collapse
|
153
|
Conzen SD, Gottlob K, Kandel ES, Khanduri P, Wagner AJ, O'Leary M, Hay N. Induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc: transrepression correlates with acceleration of apoptosis. Mol Cell Biol 2000; 20:6008-18. [PMID: 10913183 PMCID: PMC86077 DOI: 10.1128/mcb.20.16.6008-6018.2000] [Citation(s) in RCA: 90] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Analysis of amino-terminus mutants of c-Myc has allowed a systematic study of the interrelationship between Myc's ability to regulate transcription and its apoptotic, proliferative, and transforming functions. First, we have found that c-Myc-accelerated apoptosis does not directly correlate with its ability to transactivate transcription using the endogenous ornithine decarboxylase (ODC) gene as readout for transactivation. Furthermore, deletion of the conserved c-Myc box I domain implicated in transactivation does not inhibit apoptosis. Second, the ability of c-Myc to repress transcription, using the gadd45 gene as a readout, correlates with its ability to accelerate apoptosis. A conserved region of c-Myc implicated in mediating transrepression is absolutely required for c-Myc-accelerated apoptosis. Third, a lymphoma-derived Thr58Ala mutation diminishes c-Myc-accelerated apoptosis through a decreased ability to induce the release of cytochrome c from mitochondria. This mutation in a potential phosphorylation site does not affect cell cycle progression, providing genetic evidence that induction of cell cycle progression and acceleration of apoptosis are two separable functions of c-Myc. Finally, we show that the increased ability of Thr58Ala mutant to elicit cellular transformation correlates with its diminished ability to accelerate apoptosis. Bcl-2 overexpression blocked and the lymphoma-associated Thr58Ala mutation decreased c-Myc-accelerated apoptosis, and both led to a significant increase in the ability of Rat1a cells to form colonies in soft agar. This enhanced transformation was greater in soft agar containing a low concentration of serum, suggesting that protection from apoptosis is a mechanism contributing to the increased ability of these cells to proliferate in suspension. Thus, we show here for the first time that, in addition to mutations in complementary antiapoptotic genes, c-Myc itself can acquire mutations that potentiate neoplastic transformation by affecting apoptosis independently of cell cycle progression.
Collapse
Affiliation(s)
- S D Conzen
- Department of Molecular Genetics, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | | | | | | | | | | | | |
Collapse
|
154
|
Gil J, Esteban M. The interferon-induced protein kinase (PKR), triggers apoptosis through FADD-mediated activation of caspase 8 in a manner independent of Fas and TNF-alpha receptors. Oncogene 2000; 19:3665-74. [PMID: 10951573 DOI: 10.1038/sj.onc.1203710] [Citation(s) in RCA: 86] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The interferon-induced dsRNA-dependent protein kinase (PKR) induces apoptosis of mammalian cells. Apoptosis induction by PKR involves phosphorylation of the translational factor eIF-2alpha and activation of the transcriptional factor NF-kappaB, but caspase pathways activated by PKR are not known. Upregulation of Fas mRNA by PKR has been suggested to play a role in PKR-induced apoptosis. To learn how PKR induces apoptosis, we have analysed the role of molecules in death receptor pathways. We showed the involvement of the FADD-caspase 8 pathway on PKR-induced apoptosis based on four experimental findings: upregulation of caspase 8 activity during PKR-induced apoptosis, blocking of PKR-induced apoptosis by the use of a chemical inhibitor of caspase 8, and inhibition of PKR-induced apoptosis by expression of both a FADD dominant negative or a viral FLIP molecule. Significantly, despite the PKR-mediated upregulation of Fas mRNA expression, the Fas receptor-ligand pathway is not needed for PKR-induced apoptosis. Antibodies that inhibit TNFalpha-TNFR1 or Fas-FasL interactions were not able to block PKR-induced apoptosis. Taken together, our observations establish the involvement of caspase 8 in PKR-induced apoptosis and suggest that death receptors other than Fas or TNFR1 or, alternatively, a novel mechanism involving FADD independently of death receptors, are responsible for PKR-induced apoptosis.
Collapse
Affiliation(s)
- J Gil
- Department of Molecular and Cellular Biology, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | | |
Collapse
|
155
|
Amanullah A, Liebermann DA, Hoffman B. p53-independent apoptosis associated with c-Myc-mediated block in myeloid cell differentiation. Oncogene 2000; 19:2967-77. [PMID: 10871848 DOI: 10.1038/sj.onc.1203638] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Previously we have shown that deregulated expression of c-myc in M1 myeloid leukemic cells blocked IL-6-induced differentiation and its associated growth arrest; however, the cells proliferated at a significantly reduced rate compared to untreated cells. The basis for the increased doubling time of IL-6-treated M1myc cells was found to be due to the induction of a p53-independent apoptotic pathway. The apoptotic response was not completely penetrant; in the same population of cells both proliferation and apoptosis were continuously ongoing. Down-regulation of Bcl-2 was insufficient to account for the apoptotic response, since deregulated expression of Bcl-2 delayed, but did not block, the onset of apoptosis. Furthermore, our results indicated that the IL-6-induced partial hypophosphorylation of the retinoblastoma gene product (Rb), observed in M1myc cells, was not responsible for the apoptotic response. Finally, the findings in M1 cells were extended to myeloid cells derived from the bone marrow of wild type and p53-deficient mice, where the deregulated expression of c-myc was also shown to block terminal differentiation and induce apoptosis independent of p53. These findings provide new insights into how myc participates in the neoplastic process, and how additional mutations can promote more aggressive tumors. Oncogene (2000) 19, 2967 - 2977
Collapse
Affiliation(s)
- A Amanullah
- Fels Institute for Cancer Research and Molecular Biology, Department of Biochemistry, Temple University School of Medicine, 3307 N. Broad St., Philadelphia, Pennsylvania, PA 19140, USA
| | | | | |
Collapse
|
156
|
Abstract
Apoptosis has been well established as a vital biological phenomenon that is important in the maintenance of cellular homeostasis. Three major protooncogene families and their encoded proteins function as mediators of apoptosis in various cell types and are the subject of this chapter. Protooncogenic proteins such as c-Myc/Max, c-Fos/c-Jun, and Bcl-2/Bax utilize a synergetic effect to enhance their roles in the pro- or antiapoptotic action. These family members activate and repress the expression of their target genes, control cell cycle progression, and execute programmed cell death. Repression or overproduction of these protooncogenic proteins induces apoptosis, which may vary as a result of either cell type specificity or the nature of the apoptotic stimuli. The proapoptotic and antiapoptotic proteins exert their effects in the membrane of cellular organelles. Here they generate cell-type-specific signals that activate the caspase family of proteases and their regulators for the execution of apoptosis.
Collapse
Affiliation(s)
- C S Teng
- Department of Anatomy, Physiological Sciences, and Radiology, North Carolina State University, Raleigh 27606, USA
| |
Collapse
|
157
|
O'Connell J, Bennett MW, Nally K, Houston A, O'Sullivan GC, Shanahan F. Altered mechanisms of apoptosis in colon cancer: Fas resistance and counterattack in the tumor-immune conflict. Ann N Y Acad Sci 2000; 910:178-92; discussion 193-5. [PMID: 10911913 DOI: 10.1111/j.1749-6632.2000.tb06708.x] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Fas (CD95/APO-1) is a cell surface "death receptor" that mediates apoptosis upon engagement by its ligand, FasL. Fas-mediated apoptosis of lymphocytes normally serves immunoregulatory roles, including tolerance acquisition, immune response termination, and maintenance of immune privilege in certain organs. Colon tumors can exploit this lymphocyte death program by expressing FasL. This may enable colon tumors to mount a "Fas counterattack" against antitumor lymphocytes, impairing antitumor immune responses. FasL-expressing colon tumor-derived cell lines can trigger Fas-mediated apoptosis of cocultured T cells in vitro. FasL expressed in esophageal cancer has been significantly associated with apoptosis and depletion of tumor-infiltrating lymphocytes (TIL) in vivo. FasL may also facilitate metastatic colonization of Fas-sensitive organs such as the liver, by inducing apoptosis of target organ cells. Normal colonic epithelial cells express Fas and are relatively sensitive to Fas-mediated apoptosis. By contrast, colon tumor-derived cell lines are usually resistant to induction of Fas-mediated apoptosis, and colon cancer cells frequently coexpress Fas and FasL. The mechanisms allowing resistance to Fas-mediated apoptosis are complex, and defects have been identified at several levels of Fas signal transduction. The "Bcl-2 rheostat" may be pitched against apoptosis in colon cancer, inasmuch as overexpression of Bcl-2, downregulation of Bak, and mutation of Bax are common defects in colon tumors. Caspase-1 is also downregulated in colon cancer. The high frequency of p53 mutations in late-stage cancers may also inhibit Fas signaling. Fundamental defects in apoptosis signaling may contribute to both immuno- and chemoresistance in colon cancer and allow expression of FasL to counterattack antitumor lymphocytes.
Collapse
Affiliation(s)
- J O'Connell
- Department of Medicine, National University of Ireland, Cork, Ireland.
| | | | | | | | | | | |
Collapse
|
158
|
Abstract
Much of the proteolysis that occurs during apoptosis is directed by caspases, a family of related cysteinyl proteases. A relatively small number of cellular proteins are targeted by caspases, yet their function is dramatically affected and apoptosis is triggered. Other proteases, such as granzymes and calpain, are also involved in the apoptotic signaling process, but in a much more cell type- and/or stimulus type-specific manner. At least three distinct caspase-signaling pathways exist; one activated through ligand-dependent death receptor oligomerization, the second through mitochondrial disruption, and the third through stress-mediated events involving the endoplasmic reticulum. These pathways also appear to interact to amplify weak apoptotic signals and shorten cellular execution time. Finally, defects in caspases contribute to autoimmune disease, cancer and certain neurological disorders.
Collapse
Affiliation(s)
- V J Kidd
- Department of Tumor Cell Biology, St Jude Children's Research Hospital, Memphis, TN 38101, USA
| | | | | |
Collapse
|
159
|
Hotti A, Järvinen K, Siivola P, Hölttä E. Caspases and mitochondria in c-Myc-induced apoptosis: identification of ATM as a new target of caspases. Oncogene 2000; 19:2354-62. [PMID: 10822387 DOI: 10.1038/sj.onc.1203567] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The mechanism(s) of c-Myc transcription factor-induced apoptosis is still obscure. The activation of c-Myc has been found to lead into the processing/activation of caspases (caspase-3), but the significance of this for the cell demise is debatable. Here we report that several targets of caspases (PKCdelta, MDM2, PARP, replication factor C, 70 kDa U1snRNP, fodrin and lamins) are cleaved during c-Myc-induced apoptosis in Rat-1 MycER cells, indicating an important role for caspases in the apoptotic process. We further found that the ATM (ataxia telangiectasia mutated)--protein is a novel key substrate of caspases. In in vitro assays, purified recombinant ATM protein was found to be cleaved by the effector caspases 3 and 7. The functional significance of the ATM cleavage is supported by the finding that ectopic expression of ATM protected in part against apoptosis. We also show that c-Myc-induced apoptosis involves loss of mitochondrial transmembrane potential, release of cytochrome c from mitochondria into the cytosol and subsequent processing of caspase-9. The cleavage of caspase-9 is, however, minimal and a much later event than the processing/activation of caspase-3, suggesting that it is not the apical caspase. Evidence is provided that there is, nevertheless, an upstream caspase(s) regulating the functions of caspase-3 and mitochondria. Additionally, it was found that p53 becomes upregulated, together with its transcriptional targets MDM2 and p21, upon c-Myc induction, but this occurs also at a later time than the activation of caspase-3.
Collapse
Affiliation(s)
- A Hotti
- Haartman Institute, Department of Pathology, University of Helsinki, Finland
| | | | | | | |
Collapse
|
160
|
Das H, Koizumi T, Sugimoto T, Chakraborty S, Ichimura T, Hasegawa K, Nishimura R. Quantitation of Fas and Fas ligand gene expression in human ovarian, cervical and endometrial carcinomas using real-time quantitative RT-PCR. Br J Cancer 2000; 82:1682-8. [PMID: 10817504 PMCID: PMC2374514 DOI: 10.1054/bjoc.2000.1118] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Alterations in the expression of Fas (CD95/APO-1) and its ligand (FasL) have been demonstrated in various types of cancers as a mechanism for tumour cell to escape from the immune system. In the present study, we evaluated the expression of the Fas and FasL genes in a wide range of primary gynaecological carcinomas. These included 31 ovarian, 29 cervical and 25 endometrial carcinoma tissues as well as four ovarian and three cervical carcinoma cell lines. Our real-time quantitative reverse transcription polymerase chain reaction analysis revealed that down-regulation of Fas expression is more prominent than the up-regulation of FasL expression in all types of gynaecological cancer studied. This down-regulation of Fas expression was also true for the seven carcinoma cell lines. Only one cervical carcinoma cell line, DoT, exhibited a high level of FasL expression. These results indicated that down-regulation of Fas expression is a common abnormality in many types of cancers including gynaecological cancers, whereas an increase in FasL expression is not a common phenomenon in these cancers.
Collapse
Affiliation(s)
- H Das
- Hyogo Institute of Clinical Research, Akashi, Japan
| | | | | | | | | | | | | |
Collapse
|
161
|
|
162
|
Teitz T, Wei T, Valentine MB, Vanin EF, Grenet J, Valentine VA, Behm FG, Look AT, Lahti JM, Kidd VJ. Caspase 8 is deleted or silenced preferentially in childhood neuroblastomas with amplification of MYCN. Nat Med 2000; 6:529-35. [PMID: 10802708 DOI: 10.1038/75007] [Citation(s) in RCA: 558] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Caspase 8 is a cysteine protease regulated in both a death-receptor-dependent and -independent manner during apoptosis. Here, we report that the gene for caspase 8 is frequently inactivated in neuroblastoma, a childhood tumor of the peripheral nervous system. The gene is silenced through DNA methylation as well as through gene deletion. Complete inactivation of CASP8 occurred almost exclusively in neuroblastomas with amplification of the oncogene MYCN. Caspase 8-null neuroblastoma cells were resistant to death receptor- and doxorubicin-mediated apoptosis, deficits that were corrected by programmed expression of the enzyme. Thus, caspase 8 acts as a tumor suppressor in neuroblastomas with amplification of MYCN.
Collapse
Affiliation(s)
- T Teitz
- Department of Tumor Cell Biology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, Tennessee 38101, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
163
|
Ceballos E, Delgado MD, Gutierrez P, Richard C, Müller D, Eilers M, Ehinger M, Gullberg U, León J. c-Myc antagonizes the effect of p53 on apoptosis and p21WAF1 transactivation in K562 leukemia cells. Oncogene 2000; 19:2194-204. [PMID: 10822369 DOI: 10.1038/sj.onc.1203541] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
c-myc protooncogene positively regulates cell proliferation and overexpression of c-myc is found in many solid tumors and leukemias. In the present study we used the K562 human myeloid leukemia cell line as a model to study the functional interaction between c-Myc and p53. Using two different methods, we generated K562 transfectant cell lines with conditional expression of either c-Myc or p53. The cells expressed the p53Vall35 mutant, which adopts a wild-type conformation at 32 degrees C, while c-Myc induction was achieved with a zinc-inducible expression vector. We found that p53 in wild-type conformation induces growth arrest and apoptosis of K562. Expression of c-Myc significantly attenuated apoptosis and impaired the transcriptional activity of p53 on p21WAF1, Bax and cytomegalovirus promoters. The impairment of p21WAF1 transactivation by c-Myc was confirmed by transfection of a c-Myc-estrogen receptor fusion protein and by induction of c-myc by zinc in transfected cells. Also, p53-mediated up-regulation of p21WAF1 mRNA protein were significantly reduced by c-Myc, while Bax levels were unaffected. Consistently, c-Myc increased cyclin-dependent kinase 2 activity in K562 cells expressing p53 in wild-type conformation. These results suggest that c-Myc overexpression may antagonize the pro-apoptotic function of p53, thus providing a molecular mechanism for the frequently observed deregulation of c-myc in human cancer.
Collapse
Affiliation(s)
- E Ceballos
- Departamento de Biologia Molecular, Unidad Asociada al Centro de Investigaciones Biológicas, Universidad de Cantabria, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
164
|
Hueber AO, Zörnig M, Bernard AM, Chautan M, Evan G. A dominant negative Fas-associated death domain protein mutant inhibits proliferation and leads to impaired calcium mobilization in both T-cells and fibroblasts. J Biol Chem 2000; 275:10453-62. [PMID: 10744735 DOI: 10.1074/jbc.275.14.10453] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Death domain-containing members of the tumor necrosis factor (TNF) receptor family ("death receptors") can induce apoptosis upon stimulation by their natural ligands or by agonistic antibodies. Activated death receptors recruit death domain adapter proteins like Fas-associated death domain protein (FADD), and this ultimately leads to proteolytic activation of the caspase cascade and cell death. Recently, FADD has also been implicated in the regulation of proliferation; functional inhibition of FADD results in p53-dependent impairment of proliferation in activated T-cells. In this study we have further analyzed T-cells derived from transgenic mice expressing a dominant negative FADD mutant (FADD DN) under control of the lck promoter in vitro so as to identify the signaling pathways that become engaged upon T-cell receptor stimulation and that are regulated by death receptors. FADD DN expression inhibits T-cell proliferation, both at the G(0) --> S transition and in the G(1) phase of continuously proliferating cells. We observe a decrease in the release of calcium from intracellular stores after T-cell receptor stimulation, whereas influx of extracellular calcium seems to be unaffected. FADD DN-expressing fibroblasts show a similarly inhibited cell growth and impaired calcium mobilization indicating that the modulation of proliferation and calcium response by death receptors is not cell type-specific.
Collapse
Affiliation(s)
- A O Hueber
- Imperial Cancer Research Fund, 44 Lincolns Inn Fields, London WC2A 3PX, United Kingdom.
| | | | | | | | | |
Collapse
|
165
|
Rudolph B, Hueber AO, Evan GI. Reversible activation of c-Myc in thymocytes enhances positive selection and induces proliferation and apoptosis in vitro. Oncogene 2000; 19:1891-900. [PMID: 10773879 DOI: 10.1038/sj.onc.1203508] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
In order to study the effect of c-Myc activation in T lymphocytes in vivo, we generated transgenic mice that express a 4-hydroxytamoxifen (4-OHT)-dependent switchable c-myc oncoprotein under the control of the proximal lck promoter. Activation of c-MycER causes no obvious alteration in T cell ontogeny. However, using MHC class I restricted H-Y-TCR transgenic mice, we found that c-Myc activation in vivo enhances the efficiency of positive selection. Moreover, splenic T cells derived from lck-c-mycER transgenic mice in which c-Myc had been activated exhibited increased proliferation in vitro in response to activation with anti-CD3/CD28 antibody. Activation of c-MycER also promotes apoptosis in thymocytes in vitro.
Collapse
Affiliation(s)
- B Rudolph
- Imperial Cancer Research Fund, PO Box 123, 44 Lincoln's Inn Fields, London WC2A 3PX, UK
| | | | | |
Collapse
|
166
|
Levesque BM, Vosatka RJ, Nielsen HC. Dihydrotestosterone stimulates branching morphogenesis, cell proliferation, and programmed cell death in mouse embryonic lung explants. Pediatr Res 2000; 47:481-91. [PMID: 10759155 DOI: 10.1203/00006450-200004000-00012] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Early gestation lung development is characterized by branching morphogenesis of the airways and basic lung structure formation. Androgens delay late-gestation lung development if the androgen exposure begins in early gestation. We hypothesized that there would be effects of early gestation androgens on lung development. Embryonic mouse lungs (d 11.5) were cultured with dihydrotestosterone (DHT), DHT plus flutamide, or with nothing as controls. Branching morphogenesis was significantly increased after 24, 48, and 72 h of culture. This effect was blocked by simultaneous flutamide treatment. Fetal sex did not influence the DHT response. DHT increased cell proliferation as measured by [3H]thymidine incorporation into DNA. Autoradiography showed prominent [3H]thymidine labeling of epithelia and mesenchyme in regions of new bud formation. DHT treatment significantly increased the thymidine-labeling index of fibroblasts and airway epithelial cells. Programmed cell death, which is found in developing organs in association with cell proliferation during structure formation and tissue remodeling, was studied using terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling assay. In control lungs, programmed cell death occurred in the peripheral mesenchyme surrounding newly forming buds and underlying airway branch points. DHT treatment increased programmed cell death in association with increased branching morphogenesis. Evaluation of near-adjacent sections (control and DHT-treated lungs) showed that apoptotic mesenchymal cells were flanked by [3H]thymidine-labeled fibroblasts and epithelial cells, suggesting a coordination of these processes in the progression of branching morphogenesis. We conclude that androgen enhances the process of early lung morphogenesis by increasing cell proliferation and programmed cell death and by promoting the structural progression of branching morphogenesis.
Collapse
Affiliation(s)
- B M Levesque
- Division of Newborn Medicine, Floating Hospital for Children at New England Medical Center, Tufts University School of Medicine, Boston, Massachusetts 02111, USA
| | | | | |
Collapse
|
167
|
De Miglio MR, Muroni MR, Simile MM, Calvisi DF, Tolu P, Deiana L, Carru A, Bonelli G, Feo F, Pascale RM. Implication of Bcl-2 family genes in basal and D-amphetamine-induced apoptosis in preneoplastic and neoplastic rat liver lesions. Hepatology 2000; 31:956-65. [PMID: 10733553 DOI: 10.1053/he.2000.5411] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Molecular mechanisms of basal and D-amphetamine (AMPH)-induced apoptosis were studied in rat liver nodules, 12 (N12) and 30 (N30) weeks after initiation, and in hepatocellular carcinoma (HCC) induced by diethylnitrosamine in rats subjected to resistant hepatocyte model. Basal apoptosis in hematoxylin/eosin- and propidium iodide-stained sections was higher in nodules and HCC than in normal livers. It sharply increased in all tissues 4 hours after AMPH treatment (10 mg/kg), and declined to basal levels at 8 to 12 hours in liver and N12, but remained high up to 18 hours in N30 and HCC. c-myc, Tgf-alpha, p53, and Bcl-X(S) messenger RNA (mRNA) levels were higher, and Bcl-2 mRNA was lower in N12 and/or N30 and HCC than in normal liver. Four hours after AMPH injection, increase in c-myc and decreases in Bcl-2 and Bcl-X(L) mRNAs occurred in all tissues, whereas p53, Bax, and Bcl-X(S) mRNAs increased in N30 and HCC. These changes disappeared in liver and N12 at 18 hours, but persisted in N30 and HCC. c-Myc, P53, Bcl-2, and Bax proteins in normal liver and HCC +/- AMPH showed similar patterns. Tgf-beta1, Tgf-beta-RIII, CD95, and CD95L mRNA levels underwent slight or no changes in any tissue +/- AMPH. Basal Hsp27 expression was high in nodules and HCC, and was stimulated by AMPH in liver and N12, but not in N30 and HCC. These data suggest a role of dysregulation of Bcl-2 family genes and, at least in atypical lesions, of p53 overexpression, in basal and AMPH-induced apoptosis in nodules and HCCs. Hsp27 does not appear to sufficiently protect atypical lesions against apoptosis.
Collapse
Affiliation(s)
- M R De Miglio
- Department of Biomedical Sciences, Division of Experimental Pathology and Oncology, University of Sassari, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
168
|
Venters HD, Dantzer R, Kelley KW. A new concept in neurodegeneration: TNFalpha is a silencer of survival signals. Trends Neurosci 2000; 23:175-80. [PMID: 10717677 DOI: 10.1016/s0166-2236(99)01533-7] [Citation(s) in RCA: 165] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
The p55 receptor for the pro-inflammatory cytokine tumor necrosis factor alpha (TNFalpha) is best characterized by its ability to induce signals that trigger cell death. However, this is not the only way in which this TNF receptor kills neurons. A new view of neurodegeneration has recently emerged in which a TNF receptor induces death through the 'silencing of survival signals' (SOSS), such as phosphatidylinositol 3' kinase (PI3 kinase), that are activated by the insulin-like growth factor 1 receptor. This mechanism of intracellular crosstalk is the most pathophysiologically relevant action of TNFalpha in the brain and is applicable to a broad number of receptors that are localized on the same cell. Treatment of the more-devastating and costly neurodegenerative diseases of our time might be best promoted by increasing the efficacy of neuronal survival factors using new approaches aimed at inhibiting the SOSS.
Collapse
Affiliation(s)
- H D Venters
- Laboratory of Immunophysiology, Dept of Animal Sciences, University of Illinois, Urbana, IL 61801, USA
| | | | | |
Collapse
|
169
|
Brunner T, Kasibhatla S, Pinkoski MJ, Frutschi C, Yoo NJ, Echeverri F, Mahboubi A, Green DR. Expression of Fas ligand in activated T cells is regulated by c-Myc. J Biol Chem 2000; 275:9767-72. [PMID: 10734130 DOI: 10.1074/jbc.275.13.9767] [Citation(s) in RCA: 63] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The transcription factor c-Myc is important for the control of cell cycle progression, neoplasia, and apoptotic cell death. c-Myc dimerizes with its partner Max to form an active transcription factor complex. Little is known, however, about the transcriptional targets of c-Myc and their roles in c-Myc-induced cell death. Here we demonstrate that T cell activation-induced expression of Fas ligand (FasL, CD95-L, APO-1-L), which can induce apoptotic cell death in many different cell types, is regulated by c-Myc. Down-modulation of c-Myc protein via antisense oligonucleotides blocked activation-induced FasL mRNA and protein expression and functional FasL expression in activated T cells and T cell lines. Further, FasL promoter activity in T cells is driven by overexpression of c-Myc and inhibited by expression of dominant-negative mutants of c-Myc and Max. Our findings indicate that c-Myc controls apoptotic cell death in T cells through regulation of FasL expression.
Collapse
Affiliation(s)
- T Brunner
- Division of Immunopathology, Institute for Pathology, University of Berne, 3010 Berne, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
170
|
Schröter M, Peli J, Hahne M, Tschopp J, Reichmann E. Fas-dependent tissue turnover is implicated in tumor cell clearance. Oncogene 2000; 19:1794-800. [PMID: 10777213 DOI: 10.1038/sj.onc.1203499] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The apoptosis-inducing Fas receptor has been shown to be down-regulated in various types of tumors, while its ligand (FasL) appears to be frequently up-regulated. Here we provide evidence that there is a strong selective pressure in vivo against Fas-expressing, tumorigenic NIH3T3 cells, favoring survival, proliferation and eventually tumor formation by Fas-negative cells. Importantly, re-expression of Fas in these cells results in either the complete abolishment of tumor development, or in a significant extenuation of the latency period of tumor outgrowth. In addition, we found that environmental conditions which prevail during tumorigenesis, such as limiting amounts of survival factors and the lack of cell adhesion, are markedly sensitizing tumor cells to Fas-mediated suicide. Our data suggest that in addition to T cell-mediated immune responses, mechanisms of Fas-dependent tissue turnover are also centrally implicated in tumor cell clearance.
Collapse
Affiliation(s)
- M Schröter
- Swiss Cancer Research Institute (ISREC), Epalinges, Switzerland
| | | | | | | | | |
Collapse
|
171
|
Abstract
The immune response is regulated not only by cell proliferation and differentiation, but also by programmed cell death, or apoptosis. In response to various stimuli, death factors bind to their respective receptors and activate the apoptotic death program in target cells. A cascade of specific proteases termed caspases mediates the apoptotic process. The activated caspases cleave various cellular components, a process that leads to morphological changes of the cells and nuclei, as well as to degradation of the chromosomal DNA. Loss-of-function mutations in the signaling molecules involved in apoptosis cause hyper-proliferation of cells in mouse and human. In contrast, exaggeration of this death cascade causes the destruction of various tissues.
Collapse
Affiliation(s)
- S Nagata
- Department of Genetics, Osaka Medical School, Japan.
| |
Collapse
|
172
|
Abstract
Chemotherapy of malignant tumors including acute leukemias is largely based on empirical data and clinical experience. In the recent years it has become clear that anticancer drugs induce apoptosis in target cells. Drug-induced activation of apoptosis pathways appears to include parallel or sequential activation of death receptor systems and, most importantly, changes in mitochondrial function with concomitant release of apoptogenic factors leading to activation of downstream caspases. The identification of the critical elements of drug-induced apoptosis and activation of effector caspases will certainly provide new insights into the molecular determinants of chemosensitivity or chemoresistance of malignant tumors and leukemias.
Collapse
Affiliation(s)
- K Debatin
- University Children's Hospital, Prittwitzstrasse 43, D-89075, Ulm, Germany.
| |
Collapse
|
173
|
Ju ST, Matsui K, Ozdemirli M. Molecular and cellular mechanisms regulating T and B cell apoptosis through Fas/FasL interaction. Int Rev Immunol 2000; 18:485-513. [PMID: 10672498 DOI: 10.3109/08830189909088495] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Fas (CD95) and Fas ligand (FasL) are a receptor/ligand pair critically involved in lymphocyte homeostasis and peripheral tolerance such that genetic defect in either Fas or FasL results in an autoimmune lymphoproliferative syndrome. Fas is a type I transmembrane protein and a member of the tumor necrosis factor receptor (TNFR) family whereas FasL is a type II transmembrane protein and a member of TNF family. Binding of Fas by FasL induces apoptosis of the Fas-expressing cells. In the past few years, Fas/FasL interaction has been connected to a series of important phenomena previously viewed as independent immune processes. The activation-induced T cell death (AICD) and the FasL-mediated cytotoxicity by activated T cells are two critical mechanisms that can account for most of these phenomena. It is in the context of the two mechanisms that we discuss in this review the molecular and cellular events that occur during T/T and T/B interactions that account for the down-regulation of the immune response. We have also discussed recent advances in the areas of FasL gene regulation, lymphokine regulation of AICD, and regulation of B cell susceptibility to FasL. Investigation in these areas should help elucidate the role of Fas/FasL in the complex network of regulatory mechanisms that control immune response and autoimmunity.
Collapse
Affiliation(s)
- S T Ju
- Department of Medicine, Boston University School of Medicine, MA 02118, USA
| | | | | |
Collapse
|
174
|
Lee MO, Han SY, Jiang S, Park JH, Kim SJ. Differential effects of retinoic acid on growth and apoptosis in human colon cancer cell lines associated with the induction of retinoic acid receptor beta. Biochem Pharmacol 2000; 59:485-96. [PMID: 10660115 DOI: 10.1016/s0006-2952(99)00355-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Retinoids are well known as potential chemopreventive and chemotherapeutic agents against a variety of human cancers. Here, we report that retinoic acid (RA) induced differential growth inhibition in human colon cancer cell lines: while DLD-1, HT-29, and WiDr were relatively resistant, HCT-15 and Colo201 were relatively sensitive. All-trans-retinoic acid caused morphological and biochemical changes such as membrane shrinkage, chromatin condensation, and DNA cleavage, which are typical features of cells undergoing apoptosis in sensitive cell lines. Although retinoic acid receptor (RAR)alpha, beta, gamma and retinoid X receptor alpha were expressed in all cell lines examined, a significant induction of RARbeta by all-trans-RA was observed only in sensitive cell lines, suggesting important roles of RARbeta in RA sensitivity. When a vector containing the RARbeta gene was introduced into a relatively resistant cell line, DLD-1, the cells acquired RA sensitivity. Further, we found that the RARbeta transfectants of DLD-1 expressed an enhanced level of c-Myc and Bax proteins, which may result in the increased susceptibility of the cells to all-trans-RA-induced apoptosis. In summary, our data demonstrated that RA induced growth inhibition and apoptosis in human colon cancer cells and that the induction of RAR3 may mediate the retinoid action.
Collapse
Affiliation(s)
- M O Lee
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
175
|
Minami R, Muta K, Ilseung C, Abe Y, Nishimura J, Nawata H. Interleukin-6 sensitizes multiple myeloma cell lines for apoptosis induced by interferon-alpha. Exp Hematol 2000; 28:244-55. [PMID: 10720689 DOI: 10.1016/s0301-472x(99)00156-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
OBJECTIVE Interleukin-6 (IL-6) is a multifunctional cytokine affecting growth and survival of normal B cell lineage and multiple myeloma cells. To test the hypothesis that IL-6, as well as other hematopoietic growth factors, may enhance apoptosis of target cells, we investigated the effect of IL-6 on myeloma cells in the presence of IFN-alpha, which is prescribed for patients with multiple myeloma. MATERIALS AND METHODS Four myeloma cell lines, PCM6, NOP-2, U266, RPMI8226 were tested. We determined the induction of apoptosis by flow cytometry, using an FITC-Annexin V. RESULTS IFN-alpha induced apoptosis on myeloma cell lines, and this apoptosis was further enhanced in the presence of IL-6, via activation of caspase 3. During induction of this apoptosis, the expression of c-Myc and Fas increased. The addition of IL-6 further increased the expression of Fas, but not that of c-Myc. Bcl-2, Bcl-x, and p53 were not affected by the addition of IL-6 and/or IFN-alpha. Addition of a PI-3-K inhibitor interfered with the enhancing effect of IL-6 on the apoptosis induced by IFN-alpha. CONCLUSION We propose that IL-6 has the death signal, as well as growth promoting effects, and that PI-3-K may play a key role in the induction of apoptosis by IL-6.
Collapse
Affiliation(s)
- R Minami
- Third Department of Internal Medicine, Faculty of Medicine, Kyushu University, Fukuoka, Japan.
| | | | | | | | | | | |
Collapse
|
176
|
Brás A, Albar JP, Leonardo E, de Buitrago GG, Martínez-A C. Ceramide-induced cell death is independent of the Fas/Fas ligand pathway and is prevented by Nur77 overexpression in A20 B cells. Cell Death Differ 2000; 7:262-71. [PMID: 10745271 DOI: 10.1038/sj.cdd.4400653] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The role of ceramide in triggering apoptosis is still a matter of debate. While in some experimental systems, ceramide was shown to mediate Fas-induced cell death, in other instances it was claimed to induce the expression of Fas ligand (FasL), killing cells in a caspase-dependent fashion. We found that, in mature A20 B cells, ceramide-induced apoptosis is independent of the caspase pathway, since we observed no ICE-like, CPP32-like and Mch2 activities and no PARP proteolysis. Moreover, we were unable to protect these cells from ceramide-induced apoptosis using caspase inhibitors, while they blocked Fas-induced apoptosis and no FasL induction could be detected following ceramide treatment. These results suggest that ceramide does not induce apoptosis through the Fas/FasL pathway. We also found that overexpression of Nur77, a zinc-finger transcription factor described to upregulate FasL, antagonizes ceramide-induced apoptosis, but not Fas-induced apoptosis. This further supports the hypothesis that Fas and ceramide death pathways are independent in A20 cells. Ceramide-induced cell death was associated with increased c-myc, p53, Bax and p27kip1 levels; in contrast, cells transfected with Nur77 (A20Nur77), resistant to ceramide-induced apoptosis, showed a marked downregulation of p53 after ceramide treatment, with neither Bax nor p27kip1 induction. In conclusion, our results suggest that, in the A20 B cell line, Fas and ceramide trigger two distinct pathways and that Nur77 overexpression confers protection against ceramide-mediated apoptosis which correlates with inhibition of p53, Bax and p27kip1 induction.
Collapse
Affiliation(s)
- A Brás
- Departamento de Microbiologia e Imunologia, Centro de Citologia Experimental, Universidade do Porto, 4100 Porto, Portugal
| | | | | | | | | |
Collapse
|
177
|
Apoptosis or plasma cell differentiation of CD38-positive B-chronic lymphocytic leukemia cells induced by cross-linking of surface IgM or IgD. Blood 2000. [DOI: 10.1182/blood.v95.4.1199.004k21_1199_1206] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Previously, we demonstrated that B-chronic lymphocytic leukemia (B-CLL) cells could be divided into 2 groups depending on the expression of CD38 by the malignant cells. The 2 groups differed in their signal-transducing capacities initiated by cross-linking of surface IgM; only in CD38-positive cells was an efficient signal delivered, invariably resulting in cell apoptosis. In this study, we investigated the effect of surface IgD cross-linking in 10 patients with CD38-positive B-CLL. Exposure of the malignant cells to goat antihuman δ-chain antibodies (Gaδ-ab) caused [Ca++]i mobilization and tyrosine kinase phosphorylation in a manner not different from that observed after goat antihuman μ-chain antibody (Gaμ-ab) treatment in vitro. However, Gaδ-ab-treated cells failed to undergo apoptosis and instead displayed prolonged survival in culture and differentiated into plasma cells when rIL2 was concomitantly present. Cross-linking of surface IgD failed to induce proliferation of the malignant cells in vitro. Moreover, treatment with Gaδ-ab did not prevent apoptosis of B-CLL cells induced by Gaμ-ab. Collectively, these experiments demonstrated that IgM and IgD expressed by the same cell may deliver opposite signals under particular circumstances and provide some clues for the understanding of the pathophysiology of B-CLL.
Collapse
|
178
|
Blyth K, Stewart M, Bell M, James C, Evan G, Neil JC, Cameron ER. Sensitivity to myc-induced apoptosis is retained in spontaneous and transplanted lymphomas of CD2-mycER mice. Oncogene 2000; 19:773-82. [PMID: 10698495 DOI: 10.1038/sj.onc.1203321] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
To study the effects of the Myc oncoprotein in a regulatable in vivo system, we generated lines of transgenic mice in which a tamoxifen inducible Myc fusion protein (c-mycER) is expressed under the control of the CD2 locus control region. Activation of the Myc oncoprotein resulted in both proliferation and apoptosis in vivo. Lines with a high transgene copy number developed spontaneous lymphomas at low frequency, but the tumour incidence was significantly increased with tamoxifen treatment. Surprisingly, we found that cellular sensitivity to Myc-induced apoptosis was retained in tumours from these mice and in most lymphoma cell lines, even when null for p53. Resistance to Myc-induced apoptosis could be conferred on these cells by co-expression of Bcl-2. However, acquired resistance is clearly not an obligatory progression event as sensitivity to apoptosis was retained in transplanted tumours in athymic mice. In conclusion, lymphomas arising in CD2-mycER mice retain the capacity to undergo apoptosis in response to Myc activation and show no phenotypic evidence of the presence of an active dominant inhibitor.
Collapse
Affiliation(s)
- K Blyth
- Molecular Oncology Laboratory, University of Glasgow Veterinary School, Bearsden
| | | | | | | | | | | | | |
Collapse
|
179
|
Abstract
CD95 and CD95-ligand (CD95L) are physiological mediators of apoptosis required for the control of cell numbers in the human immune system. Discoveries in CD95-dependent mechanisms of immune evasion by tumours suggest regulation by oncogene expression. Clonal contraction of lymphocytes by a CD95/CD95L-independent mechanism has been reported and new evidence supports a role for CD95-dependent peripheral lymphocyte deletion by non-lymphoid tissue. Additionally, factors affecting the pro- and anti-inflammatory effects of CD95L point to a balance of cytokines and growth factors.
Collapse
Affiliation(s)
- M J Pinkoski
- La Jolla Institute for Allergy & Immunology, San Diego, California 92121, USA.
| | | |
Collapse
|
180
|
Stoneley M, Chappell SA, Jopling CL, Dickens M, MacFarlane M, Willis AE. c-Myc protein synthesis is initiated from the internal ribosome entry segment during apoptosis. Mol Cell Biol 2000; 20:1162-9. [PMID: 10648601 PMCID: PMC85234 DOI: 10.1128/mcb.20.4.1162-1169.2000] [Citation(s) in RCA: 175] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Recent studies have shown that during apoptosis protein synthesis is inhibited and that this is in part due to the proteolytic cleavage of eukaryotic initiation factor 4G (eIF4G). Initiation of translation can occur either by a cap-dependent mechanism or by internal ribosome entry. The latter mechanism is dependent on a complex structural element located in the 5' untranslated region of the mRNA which is termed an internal ribosome entry segment (IRES). In general, IRES-mediated translation does not require eIF4E or full-length eIF4G. In order to investigate whether cap-dependent and cap-independent translation are reduced during apoptosis, we examined the expression of c-Myc during this process, since we have shown previously that the 5' untranslated region of the c-myc proto-oncogene contains an IRES. c-Myc expression was determined in HeLa cells during apoptosis induced by tumor necrosis factor-related apoptosis-inducing ligand. We have demonstrated that the c-Myc protein is still expressed when more than 90% of the cells are apoptotic. The presence of the protein in apoptotic cells does not result from either an increase in protein stability or an increase in expression of c-myc mRNA. Furthermore, we show that during apoptosis initiation of c-myc translation occurs by internal ribosome entry. We have investigated the signaling pathways that are involved in this response, and cotransfection with plasmids which harbor either wild-type or constitutively active MKK6, a specific immediate upstream activator of p38 mitogen-activated protein kinase (MAPK), increases IRES-mediated translation. In addition, the c-myc IRES is inhibited by SB203580, a specific inhibitor of p38 MAPK. Our data, therefore, strongly suggest that the initiation of translation via the c-myc IRES during apoptosis is mediated by the p38 MAPK pathway.
Collapse
Affiliation(s)
- M Stoneley
- Department of Biochemistry, University of Leicester, Leicester LE1 7RH, United Kingdom
| | | | | | | | | | | |
Collapse
|
181
|
Lackey BR, Gray SL, Henricks DM. Actions and interactions of the IGF system in Alzheimer's disease: review and hypotheses. Growth Horm IGF Res 2000; 10:1-13. [PMID: 10753587 DOI: 10.1054/ghir.1999.0129] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Insulin-like growth factors (IGF) are pleiotrophic polypeptides affecting all aspects of growth and development. The IGF system, including ligands, receptors, binding proteins and proteases is also involved in pathophysiological conditions, such as cancer and degenerative conditions. In this review, the actions and interactions of the IGF system as it relates to Alzheimer's disease will be investigated.
Collapse
Affiliation(s)
- B R Lackey
- Endocrine Physiology Laboratory, Department of Animal and Veterinary Sciences, Clemson University, Clemson, SC 29634, USA.
| | | | | |
Collapse
|
182
|
Affiliation(s)
- D Hanahan
- Department of Biochemistry, Hormone Research Institute, University of California at San Francisco, 94143, USA
| | | |
Collapse
|
183
|
Noguchi K, Yamana H, Kitanaka C, Mochizuki T, Kokubu A, Kuchino Y. Differential role of the JNK and p38 MAPK pathway in c-Myc- and s-Myc-mediated apoptosis. Biochem Biophys Res Commun 2000; 267:221-7. [PMID: 10623602 DOI: 10.1006/bbrc.1999.1952] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The s-Myc is similar to c-Myc in its ability to induce apoptosis requiring caspase activation. However, s-Myc is distinct from c-Myc in that it has activity to suppress tumor growth and does not require wild-type p53 to induce apoptosis. These facts suggest differential regulation between s-Myc and c-Myc. Here we showed that s-Myc-mediated apoptosis triggered by UV was not inhibited by the inactive form mutant JNK (APF), though c-Myc-mediated apoptosis was. Moreover, we found that JNK did not affect the transactivation activity of s-Myc, but stimulated that of c-Myc. In contrast, both Myc-mediated apoptosis and caspase-3-like protease activation were suppressed by kinase-negative MKK6 and an inactive form mutant p38(AGF). Our results indicate that s-Myc does not require the JNK signaling unlike c-Myc during UV-triggered apoptosis, but the MKK6/p38MAPK pathway might regulate common apoptotic machinery for both s-Myc and c-Myc upstream of caspase.
Collapse
Affiliation(s)
- K Noguchi
- Biophysics Division, National Cancer Center Research Institute, 1-1, Tsukiji 5-chome, Chuo-ku, Tokyo, 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
184
|
Lee C, Janulis L, Ilio K, Shah A, Park I, Kim S, Cryns V, Pins M, Bergan R. In vitro models of prostate apoptosis: Clusterin as an antiapoptotic mediator. Prostate 2000. [DOI: 10.1002/1097-0045(2000)45:9+<21::aid-pros5>3.0.co;2-c] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
185
|
Cameron ER, Morton J, Johnston CJ, Irvine J, Bell M, Onions DE, Neil JC, Campbell M, Blyth K. Fas-independent apoptosis in T-cell tumours induced by the CD2-myc transgene. Cell Death Differ 2000; 7:80-8. [PMID: 10713723 DOI: 10.1038/sj.cdd.4400630] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Depending on the cellular context, the Myc oncoprotein is capable of promoting cell proliferation or death by apoptosis. These observations suggest that apoptosis in response to deregulated gene expression may represent a natural brake to tumour development. The pathways by which Myc induces apoptosis are as yet poorly characterised although recent observations on rat fibroblasts over-expressing Myc have demonstrated a requirement for the Fas pathway. To investigate the role of Fas in Myc-induced lymphomagenesis we backcrossed CD2-myc mice onto an lpr background. Rates of tumour development and phenotypic properties, including levels of apoptosis were indistinguishable from CD2-myc controls. Further, tumour cell lines derived from mice expressing a regulatable form of Myc showed inducible apoptosis at similar rates regardless of their lpr genotype. These results show that activation of c-myc and loss of Fas do not collaborate in T lymphoma development and that Myc-induced apoptosis in T-cells occurs by Fas-independent pathways.
Collapse
Affiliation(s)
- E R Cameron
- Molecular Oncology Laboratory, Glasgow University Veterinary School, Bearsden Road, Glasgow, G61 1QH, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
186
|
Fadeel B, Orrenius S, Zhivotovsky B. Apoptosis in human disease: a new skin for the old ceremony? Biochem Biophys Res Commun 1999; 266:699-717. [PMID: 10603308 DOI: 10.1006/bbrc.1999.1888] [Citation(s) in RCA: 149] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Naturally occurring cell death or apoptosis is essential for the maintenance of tissue homeostasis and serves to remove extraneous or dangerous cells in a swift and unobtrusive manner. Recent studies have indicated a role for apoptosis in a plethora of human diseases. Hence, dysregulation of apoptosis has been implicated in autoimmune disease, acquired immune deficiency syndrome, and other viral (and bacterial) infections, as well as in neurodegenerative disorders and cancer. Furthermore, dysregulated apoptosis signaling may impinge on other age-related disorders such as osteoporosis and atherosclerosis and perhaps on the process of aging itself. The present review provides an overview of human diseases, which are associated with defective or inadvertent apoptosis, with examples of pathological conditions in which putative apoptosis defects have been elucidated at the molecular level. Novel apoptosis-modulating therapeutic strategies are also discussed.
Collapse
Affiliation(s)
- B Fadeel
- Institute of Environmental Medicine, Division of Toxicology, Karolinska Institutet, Stockholm, S-171 77, Sweden
| | | | | |
Collapse
|
187
|
Gonin S, Diaz-Latoud C, Richard MJ, Ursini MV, Imbo A, Manero F, Arrigo AP. p53/T-antigen complex disruption in T-antigen transformed NIH3T3 fibroblasts exposed to oxidative stress: correlation with the appearance of a Fas/APO-1/CD95 dependent, caspase independent, necrotic pathway. Oncogene 1999; 18:8011-23. [PMID: 10637512 DOI: 10.1038/sj.onc.1203319] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Simian Virus 40 Large T-antigen expressed in NIH3T3 cells increases p53 level and interacts with this tumor suppressor to form large nuclear complexes. We show here that T-antigen sensitizes NIH3T3 cells to low doses of the oxidative stress inducer menadione. This oxidant increased p53 accumulation and disrupted p53/T-antigen interaction, but not T-antigen/pRb, T-antigen/Hsc70 and p53/Hsc70 complexes; a phenomenon inhibited by the anti-oxidant N-acetyl-cysteine. Analysis of several p53 downstream gene products revealed that the level of Fas receptor, which was sharply reduced by T-antigen expression, was drastically increased in response to menadione treatment. Menadione also induced a T-antigen dependent cleavage of Fas ligand. Analysis performed with Fas receptor antagonist antibody and metalloproteinases inhibitor revealed that menadione triggers a Fas-dependent death of a fraction of T-antigen expressing cells. This Fas pathway does not activate caspase 8 or 3, probably because of the inhibition induced by T-antigen, and leads to a necrotic cell death which contributes at least in part to the hypersensitivity of T-antigen transformed cells to oxidative stress.
Collapse
Affiliation(s)
- S Gonin
- Centre de Génétique Moléculaire et Cellulaire, CNRS-UMR-5534, Université Claude Bernard LYON1, Villeurbanne, France
| | | | | | | | | | | | | |
Collapse
|
188
|
Abstract
Cell proliferation and cell death are essential yet opposing cellular processes. Crosstalk between these processes promotes a balance between proliferation and death, and it limits the growth and survival of cells with oncogenic mutations. New insights into the mechanisms by which strong signals to proliferate and activation of cyclin-dependent kinases promote apoptosis have recently been published, and a novel cell cycle regulated caspase inhibitor, Survivin, has been described.
Collapse
Affiliation(s)
- M Guo
- Department of Neurology, University of California in Los Angeles (UCLA) Medical Center, C-128 RNRC, Los Angeles, CA 90095, USA.
| | | |
Collapse
|
189
|
Dang CV, Resar LM, Emison E, Kim S, Li Q, Prescott JE, Wonsey D, Zeller K. Function of the c-Myc oncogenic transcription factor. Exp Cell Res 1999; 253:63-77. [PMID: 10579912 DOI: 10.1006/excr.1999.4686] [Citation(s) in RCA: 280] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The c-myc gene and the expression of the c-Myc protein are frequently altered in human cancers. The c-myc gene encodes the transcription factor c-Myc, which heterodimerizes with a partner protein, termed Max, to regulate gene expression. Max also heterodimerizes with the Mad family of proteins to repress transcription, antagonize c-Myc, and promote cellular differentiation. The constitutive activation of c-myc expression is key to the genesis of many cancers, and hence the understanding of c-Myc function depends on our understanding of its target genes. In this review, we attempt to place the putative target genes of c-Myc in the context of c-Myc-mediated phenotypes. From this perspective, c-Myc emerges as an oncogenic transcription factor that integrates the cell cycle machinery with cell adhesion, cellular metabolism, and the apoptotic pathways.
Collapse
Affiliation(s)
- C V Dang
- Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, Maryland, 21205, USA.
| | | | | | | | | | | | | | | |
Collapse
|
190
|
Noguchi K, Kitanaka C, Yamana H, Kokubu A, Mochizuki T, Kuchino Y. Regulation of c-Myc through phosphorylation at Ser-62 and Ser-71 by c-Jun N-terminal kinase. J Biol Chem 1999; 274:32580-7. [PMID: 10551811 DOI: 10.1074/jbc.274.46.32580] [Citation(s) in RCA: 151] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The expression of c-myc promotes cell proliferation and also sensitizes cells to various extracellular apoptotic stimuli. However, signal pathways regulating the function of Myc proteins during apoptosis are unknown. c-Jun N-terminal kinase (JNK) is activated by various apoptotic stimuli, but neither the target molecule(s) or the action of JNK has been identified in Myc-mediated apoptosis. Here, we found that JNK selectively interacted with, and phosphorylated, c-Myc at Ser-62 and Ser-71 as confirmed with phospho-c-Myc-specific antibodies. Interestingly, dominant negative mutant JNK(APF) impaired the c-Myc-dependent apoptosis, but not mutated c-Myc (S62A/S71A)-dependent apoptosis triggered by UV irradiation. Furthermore, c-Myc (S62A/S71A)-expressing NIH3T3 cells were not sensitized like wild type c-Myc-expressing NIH3T3 cells to JNK-activating apoptotic stimuli, such as UV and Taxol. These results indicate that the JNK pathway is selectively involved in the c-Myc-mediated apoptosis and that the apoptotic function of c-Myc is directly regulated by JNK pathway through phosphorylation at Ser-62 and Ser-71.
Collapse
Affiliation(s)
- K Noguchi
- Biophysics Division, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | | | | | | | | | | |
Collapse
|
191
|
Abstract
The p53 tumor suppressor protein plays a crucial role in regulating cell growth following exposure to various stress stimuli. p53 induces either growth arrest, which prevents the replication of damaged DNA, or programmed cell death (apoptosis), which is important for eliminating defective cells. Whether the cell enters growth arrest or undergoes apoptosis, depends on the final integration of incoming signals with antagonistic effects on cell growth. Many factors affect the cellular response to activated p53. These include the cell type, the oncogenic status of the cell with emphasis on the Rb/E2F balance, the extracellular growth and survival stimuli, the intensity of the stress signals, the level of p53 expression and the interaction of p53 with specific proteins. p53 is regulated both at the levels of protein stability and biochemical activities. This complex regulation is mediated by a range of viral and cellular proteins. This review discusses this intriguing complexity which affects the cell response to p53 activation.
Collapse
Affiliation(s)
- R V Sionov
- Lautenberg Center for General and Tumor Immunology, The Hebrew University Hadassah Medical School, Jerusalem, 91120, Israel
| | | |
Collapse
|
192
|
Ruiz-Ruiz C, Robledo G, Font J, Izquierdo M, López-Rivas A. Protein Kinase C Inhibits CD95 (Fas/APO-1)-Mediated Apoptosis by at Least Two Different Mechanisms in Jurkat T Cells. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.9.4737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Abstract
We have recently reported that activation of protein kinase C (PKC) plays a negative role in CD95-mediated apoptosis in human T cell lines. Here we present data indicating that although the PKC-induced mitogen-activated protein kinase pathway could be partially implicated in the abrogation of CD95-mediated apoptosis by phorbol esters in Jurkat T cells, the major inhibitory effect is exerted through a PKC-dependent, mitogen-activated protein kinase-independent signaling pathway. Furthermore, we demonstrate that activation of PKC diminishes CD95 receptor aggregation elicited by agonistic CD95 Abs. On the other hand, it has been reported that UV radiation-induced apoptosis is mediated at least in part by the induction of CD95 oligomerization at the cell surface. Here we show that activation of PKC also inhibits UVB light-induced CD95 aggregation and apoptosis in Jurkat T cells. These results reveal a novel mechanism by which T cells may restrain their sensitivity to CD95-induced cell death through PKC-mediated regulation of CD95 receptor oligomerization at the cell membrane.
Collapse
Affiliation(s)
- Carmen Ruiz-Ruiz
- *Instituto de Parasitología y Biomedicina, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Gema Robledo
- *Instituto de Parasitología y Biomedicina, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| | - Jovita Font
- †Departamento de Genética, Facultad de Biologia, Universidad de Barcelona, Barcelona, Spain; and
| | - Manuel Izquierdo
- ‡Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Cientificas, Madrid, Spain
| | - Abelardo López-Rivas
- *Instituto de Parasitología y Biomedicina, Consejo Superior de Investigaciones Cientificas, Granada, Spain
| |
Collapse
|
193
|
Fuhrmann G, Rosenberger G, Grusch M, Klein N, Hofmann J, Krupitza G. The MYC dualism in growth and death. Mutat Res 1999; 437:205-17. [PMID: 10592328 DOI: 10.1016/s1383-5742(99)00084-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Over-expression of the transcription factor c-Myc immortalizes primary cells and transforms in co-operation with activated ras. Therefore, c-myc is considered a proto-oncogene. Since its discovery c-Myc has been shown to render cells growth factor independent, accelerates passage through G1 of the cell cycle, inhibits differentiation and elicits apoptosis. Whereas the effects on immortalization, proliferation and inhibition of differentiation are in conceivable accordance with gain of function, as it is defined for a proto-oncogene, its pro-apoptotic activity disables a straight forward explanation of the physiological role of c-Myc and suggests a highly complex contribution during development. The recent accomplishments in c-Myc research shed some light on the difficile regulatory network which keeps check on c-Myc activity such as by binding to proteins some of which are transcription factors for non-c-Myc targets. Moreover, it was shown that genes are targeted by c-Myc depending on the sequence of flanking regions adjacent to the E-box or in dependence on the availability of binding partners which is most probably specific to the cellular context. Cdc25A and ornithine decarboxylase, both described to be c-Myc targets, have been brought forward as downstream effectors in the induction of proliferation under serum rich conditions, or in the induction of apoptosis when serum factors are limited. These genes seem to be regulated by c-Myc in a cell type-specific manner. H-ferritin, IRP2 and telomerase are the most recently discovered direct targets of c-Myc. The regulation of H-ferritin and IRP2 might explain the potential of c-Myc to promote proliferation and the regulation of telomerase could be responsible for the immortalizing properties of c-Myc. In the future, H-ferritin and telomerase have to be analyzed whether or not these genes are also Myc targets in other cell systems. Although the intense research efforts regarding the function of c-Myc last already two decades the role of this gene is still enigmatic.
Collapse
Affiliation(s)
- G Fuhrmann
- Institute of Clinical Pathology, University of Vienna, Währinger Gürtel 18-20, A-1090, Vienna, Austria
| | | | | | | | | | | |
Collapse
|
194
|
Phillips AC, Ernst MK, Bates S, Rice NR, Vousden KH. E2F-1 potentiates cell death by blocking antiapoptotic signaling pathways. Mol Cell 1999; 4:771-81. [PMID: 10619024 DOI: 10.1016/s1097-2765(00)80387-1] [Citation(s) in RCA: 177] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The E2F family of transcription factors plays an essential role in promoting cell cycle progression, and one member of the family, E2F-1, is also capable of inducing apoptosis. We show here that E2F-1 can induce apoptosis by a death receptor-dependent mechanism, by downregulating TRAF2 protein levels and inhibiting activation of antiapoptotic signals including NF-kappa B. In this way, E2F-1 expression can lead to the sensitization of cells to apoptosis by a number of agents independently of p53. Deregulation of E2F-1 activity occurs in the majority of human tumors, and the ability of E2F-1 to inhibit antiapoptotic signaling may contribute to the enhanced sensitivity of transformed cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- A C Phillips
- ABL Basic Research Program, National Cancer Institute-Frederick Cancer Research and Development Center, Maryland 21702, USA
| | | | | | | | | |
Collapse
|
195
|
Jacobs JJ, Scheijen B, Voncken JW, Kieboom K, Berns A, van Lohuizen M. Bmi-1 collaborates with c-Myc in tumorigenesis by inhibiting c-Myc-induced apoptosis via INK4a/ARF. Genes Dev 1999; 13:2678-90. [PMID: 10541554 PMCID: PMC317101 DOI: 10.1101/gad.13.20.2678] [Citation(s) in RCA: 494] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
The bmi-1 and myc oncogenes collaborate strongly in murine lymphomagenesis, but the basis for this collaboration was not understood. We recently identified the ink4a-ARF tumor suppressor locus as a critical downstream target of the Polycomb-group transcriptional repressor Bmi-1. Others have shown that part of Myc's ability to induce apoptosis depends on induction of p19arf. Here we demonstrate that down-regulation of ink4a-ARF by Bmi-1 underlies its ability to cooperate with Myc in tumorigenesis. Heterozygosity for bmi-1 inhibits lymphomagenesis in Emu-myc mice by enhancing c-Myc-induced apoptosis. We observe increased apoptosis in bmi-1(-/-) lymphoid organs, which can be rescued by deletion of ink4a-ARF or overexpression of bcl2. Furthermore, Bmi-1 collaborates with Myc in enhancing proliferation and transformation of primary embryo fibroblasts (MEFs) in an ink4a-ARF dependent manner, by prohibiting Myc-mediated induction of p19arf and apoptosis. We observe strong collaboration between the Emu-myc transgene and heterozygosity for ink4a-ARF, which is accompanied by loss of the wild-type ink4a-ARF allele and formation of highly aggressive B-cell lymphomas. Together, these results reinforce the critical role of Bmi-1 as a dose-dependent regulator of ink4a-ARF, which on its turn acts to prevent tumorigenesis on activation of oncogenes such as c-myc.
Collapse
MESH Headings
- Animals
- Apoptosis/genetics
- Cell Transformation, Neoplastic/genetics
- Cells, Cultured
- Cocarcinogenesis
- Down-Regulation
- Female
- Gene Expression
- Genes, bcl-2
- Genes, myc
- Genes, p16
- Heterozygote
- Lymphoma, B-Cell/etiology
- Lymphoma, B-Cell/genetics
- Lymphoma, B-Cell/pathology
- Male
- Mice
- Mice, Knockout
- Mice, Mutant Strains
- Nuclear Proteins/genetics
- Polycomb Repressive Complex 1
- Proteins/genetics
- Proto-Oncogene Proteins/genetics
- Repressor Proteins
- Tumor Suppressor Protein p14ARF
Collapse
Affiliation(s)
- J J Jacobs
- Division of Molecular Carcinogenesis, The Netherlands Cancer Institute, 1066 CX Amsterdam, The Netherlands
| | | | | | | | | | | |
Collapse
|
196
|
Jensen NA, West MJ, Celis JE. Oligodendrocyte programmed cell death and central myelination deficiency induced in transgenic mice by synergism between c-Myc and Oct-6. J Biol Chem 1999; 274:29921-6. [PMID: 10514474 DOI: 10.1074/jbc.274.42.29921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The basic helix-loop-helix transcription factor c-Myc is a potent trigger of programmed cell death when overexpressed during late oligodendrocyte development in transgenic mice. Here we provide evidence that c-Myc can act synergistically with the Pit, Oct, Unc homeodomain transcription factor Oct-6 to produce myelin disease pathogenesis in transgenic mice. More than 70% of c-myc/Oct-6 bitransgenic mice, obtained from crosses between phenotypically normal heterozygous mice of various My (c-Myc) and Oc (Oct-6) transgenic strains that express c-myc and oct-6 transgenes under transcriptional control of the myelin basic protein gene, developed severe neurological disturbances characterized by action tremors, recurrent seizures, and premature death. Affected bitransgenic mice exhibited multiple hypomyelinated lesions in the white matter that did not stain with myelin-specific antibodies against myelin basic protein, proteolipid protein, CNPase, and myelin-associated glycoprotein. The mice also exhibited a larger number of terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end-labeling positive cells in the white matter as well as ultrastructural evidence of glial cell death and astrogliosis. These observations indicate that the myelin lesions observed in the c-myc/oct-6 bitransgenic mice result from the untimely programmed cell death of oligodendroglia and that the c-myc and oct-6 transgenes act synergistically in producing the lesions.
Collapse
Affiliation(s)
- N A Jensen
- Department of Medical Biochemistry, University of Aarhus, DK-8000 Aarhus C, Denmark.
| | | | | |
Collapse
|
197
|
Caricchio R, Kovalenko D, Kaufmann WK, Cohen PL. Apoptosis provoked by the oxidative stress inducer menadione (Vitamin K(3)) is mediated by the Fas/Fas ligand system. Clin Immunol 1999; 93:65-74. [PMID: 10497012 DOI: 10.1006/clim.1999.4757] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Menadione, or vitamin K(3) (VK(3)), a potent oxidative stress inducer, has been recently used as an effective and remarkably safe cytotoxic drug for treatment of several human tumors. VK(3) induces apoptotic cell death through a poorly understood mechanism. Here we show for the first time that VK(3)-induced apoptosis requires the Fas/FasL system. Spleen cells from both Fas- and FasL-deficient mice (C57BL/6-lpr and C57BL/6-gld, respectively) had much lower levels of VK(3) apoptosis in vitro compared to cells from control C57BL/6 mice. VK(3) cytotoxicity toward mouse splenocytes was also blocked with a Fas-Fc fusion protein. VK(3) induced apoptosis in Jurkat cells, coincident with an increase in both Fas and FasL expression. A FasL-resistant variant of these Jurkat cells was also resistant to VK(3)-induced apoptosis. Furthermore, because VK(3) effects were inhibited by glutathione, a potent antioxidant, oxidative stress was linked to the Fas/FasL system. Moreover, since the Jurkat cell lines were p53 null, the activation of Fas/FasL system after oxidative stress apparently acted through a p53-independent pathway. The therapeutic relevance of the K vitamins has been growing in recent years; our findings offer new insight for improving and expanding their applications.
Collapse
Affiliation(s)
- R Caricchio
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, 27514, USA
| | | | | | | |
Collapse
|
198
|
Reddy Avula CP, Muthukumar A, Fernandes G. Calorie restriction increases Fas/Fas-ligand expression and apoptosis in murine splenic lymphocytes. FEBS Lett 1999; 458:231-5. [PMID: 10481071 DOI: 10.1016/s0014-5793(99)01163-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
One-month-old male ICR mice were fed a nutritionally adequate, semipurified diet, either ad libitum (AL) or calorie restricted (CR) (40% less food) for 6 months and were killed to obtain spleens. Flow cytometric analysis revealed increased proportions of both CD4+ and CD8+ T cells in CR-fed mice compared to AL-fed mice. The T cell subsets of CR-fed mice were also found to have higher levels of plasma membrane Fas receptor expression. Similarly, Fas-ligand (Fas-L) expression was higher in anti-CD3-stimulated CD4+ and CD8+ T cells. CR-fed mice also had increased numbers of annexin V-positive CD4+ and CD8+ T cells in stimulated splenic lymphocytes suggesting an increased potential for apoptosis. Fas and Fas-L gene expression in splenic lymphocytes, which correlated closely with the observed increased rate of apoptosis, was significantly increased in CR-fed mice compared to AL-fed mice. In conclusion, these results indicate that CR increases the expression of Fas and Fas-L which may contribute to the known beneficial effects of CR such as prolongation of life span by activating chronic physiologically mediated apoptosis.
Collapse
Affiliation(s)
- C P Reddy Avula
- Division of Clinical Immunology, Department of Medicine, The University of Texas Health Science Center at San Antonio 78229-3900, USA
| | | | | |
Collapse
|
199
|
Dai Z, Arakelov A, Wagener M, Konieczny BT, Lakkis FG. The Role of the Common Cytokine Receptor γ-Chain in Regulating IL-2-Dependent, Activation-Induced CD8+ T Cell Death. THE JOURNAL OF IMMUNOLOGY 1999. [DOI: 10.4049/jimmunol.163.6.3131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Abstract
IL-2-dependent, activation-induced T cell death (AICD) plays an important role in peripheral tolerance. Using CD8+ TCR-transgenic lymphocytes (2C), we investigated the mechanisms by which IL-2 prepares CD8+ T cells for AICD. We found that both Fas and TNFR death pathways mediate the AICD of 2C cells. Neutralizing IL-2, IL-2Rα, or IL-2Rβ inhibited AICD. In contrast, blocking the common cytokine receptor γ-chain (γc) prevented Bcl-2 induction and augmented AICD. IL-2 up-regulated Fas ligand (FasL) and down-regulated γc expression on activated 2C cells in vitro and in vivo. Adult IL-2 gene-knockout mice displayed exaggerated γc expression on their CD8+, but not on their CD4+, T cells. IL-4, IL-7, and IL-15, which do not promote AICD, did not influence FasL or γc expression. These data provide evidence that IL-2 prepares CD8+ T lymphocytes for AICD by at least two mechanisms: 1) by up-regulating a pro-apoptotic molecule, FasL, and 2) by down-regulating a survival molecule, γc.
Collapse
Affiliation(s)
- Zhenhua Dai
- The Carlos and Marguerite Mason Transplantation Research Center, Renal Division, Department of Medicine, Veterans Affairs Medical Center and Emory University, Atlanta, GA 30033
| | - Alexandr Arakelov
- The Carlos and Marguerite Mason Transplantation Research Center, Renal Division, Department of Medicine, Veterans Affairs Medical Center and Emory University, Atlanta, GA 30033
| | - Maylene Wagener
- The Carlos and Marguerite Mason Transplantation Research Center, Renal Division, Department of Medicine, Veterans Affairs Medical Center and Emory University, Atlanta, GA 30033
| | - Bogumila T. Konieczny
- The Carlos and Marguerite Mason Transplantation Research Center, Renal Division, Department of Medicine, Veterans Affairs Medical Center and Emory University, Atlanta, GA 30033
| | - Fadi G. Lakkis
- The Carlos and Marguerite Mason Transplantation Research Center, Renal Division, Department of Medicine, Veterans Affairs Medical Center and Emory University, Atlanta, GA 30033
| |
Collapse
|
200
|
Avula CP, Zaman AK, Lawrence R, Fernandes G. Induction of apoptosis and apoptotic mediators in Balb/C splenic lymphocytes by dietary n-3 and n-6 fatty acids. Lipids 1999; 34:921-7. [PMID: 10574656 DOI: 10.1007/s11745-999-0441-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The present study was designed to investigate the effect of dietary n-6 and n-3 polyunsaturated fatty acids (PUFA) on anti-CD3 and anti-Fas antibody-induced apoptosis and its mediators in mouse spleen cells. Nutritionally adequate semipurified diets containing either 5% w/w corn oil (n-6 PUFA) or fish oil (n-3 PUFA) were fed to weanling female Balb/C mice, and 24 wk later mice were sacrificed. In n-3 PUFA-fed mice, serum and splenocyte lipid peroxides were increased by 20 and 28.3% respectively, compared to n-6 PUFA-fed mice. Further, serum vitamin E levels were decreased by 50% in the n-3 PUFA-fed group, whereas higher anti-Fas- and anti-CD3-induced apoptosis (65 and 66%) and necrosis (17 and 25%), compared to the n-6 PUFA-fed group, were found when measured with Annexin V and propidium iodide staining, respectively. In addition, decreased Bcl-2 and increased Fas-ligand (Fas-L) also were observed in the n-3 PUFA-fed group compared to the n-6 PUFA-fed group. No difference in the ratio of splenocyte subsets nor their Fas expression was observed between the n-3 PUFA-fed and n-6 PUFA-fed groups, whereas decreased proliferation of splenocytes was found in n-3 PUFA-fed mice compared to n-6 PUFA-fed mice. In conclusion, our results indicate that dietary n-3 PUFA induces higher apoptosis by increasing the generation of lipid peroxides and elevating Fas-L expression along with decreasing Bcl-2 expression. A reduced proliferative response of immune cells also was observed in n-3 PUFA-fed mice.
Collapse
Affiliation(s)
- C P Avula
- Department of Medicine, The University of Texas Health Science Center at San Antonio, 78289-7879, USA
| | | | | | | |
Collapse
|