151
|
Levi L, Toyooka T, Patarroyo M, Frisan T. Bacterial genotoxins promote inside-out integrin β1 activation, formation of focal adhesion complexes and cell spreading. PLoS One 2015; 10:e0124119. [PMID: 25874996 PMCID: PMC4395369 DOI: 10.1371/journal.pone.0124119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Accepted: 03/02/2015] [Indexed: 01/03/2023] Open
Abstract
Integrins are membrane bound receptors that regulate several cellular processes, such as cell adhesion, migration, survival and proliferation, and may contribute to tumor initiation/progression in cells exposed to genotoxic stress. The extent of integrin activation and its role in cell survival upon intoxication with bacterial genotoxins are still poorly characterized. These toxins induce DNA strand breaks in the target cells and activate the DNA damage response (DDR), coordinated by the Ataxia Telangectasia Mutated (ATM) kinase. In the present study, we demonstrate that induction of DNA damage by two bacterial genotoxins promotes activation of integrin β1, leading to enhanced assembly of focal adhesions and cell spreading on fibronectin, but not on vitronectin. This phenotype is mediated by an ATM-dependent inside-out integrin signaling, and requires the actin cytoskeleton remodeler NET1. The toxin-mediated cell spreading and anchorage-independent survival further relies on ALIX and TSG101, two components of the endosomal sorting complex required for transport (ESCRT), known to regulate integrin intracellular trafficking. These data reveal a novel aspect of the cellular response to bacterial genotoxins, and provide new tools to understand the carcinogenic potential of these effectors in the context of chronic intoxication and infection.
Collapse
Affiliation(s)
- Laura Levi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Tatsushi Toyooka
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Manuel Patarroyo
- Department of Dental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Teresa Frisan
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
- * E-mail:
| |
Collapse
|
152
|
Nakano T, Takahashi-Nakaguchi A, Yamamoto M, Watanabe M. Pierisins and CARP-1: ADP-ribosylation of DNA by ARTCs in butterflies and shellfish. Curr Top Microbiol Immunol 2015; 384:127-49. [PMID: 25033755 DOI: 10.1007/82_2014_416] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The cabbage butterfly, Pieris rapae, and related species possess a previously unknown ADP-ribosylating toxin, guanine specific ADP-ribosyltransferase. This enzyme toxin, known as pierisin, consists of enzymatic N-terminal domain and receptor-binding C-terminal domain, or typical AB-toxin structure. Pierisin efficiently transfers an ADP-ribosyl moiety to the N(2) position of the guanine base of dsDNA. Receptors for pierisin are suggested to be the neutral glycosphingolipids, globotriaosylceramide (Gb3), and globotetraosylceramide (Gb4). This DNA-modifying toxin exhibits strong cytotoxicity and induces apoptosis in various human cell lines, which can be blocked by Bcl-2. Pierisin also produces detrimental effects on the eggs and larvae of the non-habitual parasitoids. In contrast, a natural parasitoid of the cabbage butterfly, Cotesia glomerata, was resistant to this toxin. The physiological role of pierisin in the butterfly is suggested to be a defense factor against parasitization by wasps. Other type of DNA ADP-ribosyltransferase is present in certain kinds of edible clams. For example, the CARP-1 protein found in Meretrix lamarckii consists of an enzymatic domain without a possible receptor-binding domain. Pierisin and CARP-1 are almost fully non-homologous at the amino acid sequence level, but other ADP-ribosyltransferases homologous to pierisin are present in different biological species such as eubacterium Streptomyces. Possible diverse physiological roles of the DNA ADP-ribosyltransferases are discussed.
Collapse
Affiliation(s)
- Tsuyoshi Nakano
- Division of Cancer Development System, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo, 104-0045, Japan,
| | | | | | | |
Collapse
|
153
|
Williams K, Gokulan K, Shelman D, Akiyama T, Khan A, Khare S. Cytotoxic Mechanism ofCytolethal Distending Toxinin NontyphoidalSalmonellaSerovar (SalmonellaJaviana) During Macrophage Infection. DNA Cell Biol 2015; 34:113-24. [DOI: 10.1089/dna.2014.2602] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Affiliation(s)
- Katherine Williams
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Kuppan Gokulan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Diamond Shelman
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Tatsuya Akiyama
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Ashraf Khan
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| | - Sangeeta Khare
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, Arkansas
| |
Collapse
|
154
|
Abstract
Oral cancer appears to be increasing in incidence, and mortality has hardly improved over the past 25 years. Better understanding of the etiopathogenesis should lead to more accurate and earlier diagnosis and more effective treatments with fewer adverse effects. Despite increasing interest in the possible relationships between bacteria and the different stages of cancer development, the association of bacteria with cancer of the oral cavity has yet to be adequately examined. Different bacteria have been proposed to induce carcinogenesis, either through induction of chronic inflammation or by interference, either directly or indirectly, with eukaryotic cell cycle and signaling pathways or by metabolism of potentially carcinogenic substances like acetaldehyde, causing mutagenesis. This review presents the possible carcinogenesis pathway involved in bacterial carcinogenesis, commonly implicated bacteria in oral carcinogenesis and their role in cancer therapeutics as well.
Collapse
Affiliation(s)
- Nidhi Khajuria
- Department of Oral and Maxillofacial Pathology, Pacific Dental College and Hospital, Udaipur, Rajasthan, India
| | - Rashmi Metgud
- Department of Oral and Maxillofacial Pathology, Pacific Dental College and Hospital, Udaipur, Rajasthan, India
| |
Collapse
|
155
|
DiRienzo JM. Uptake and processing of the cytolethal distending toxin by mammalian cells. Toxins (Basel) 2014; 6:3098-116. [PMID: 25365527 PMCID: PMC4247254 DOI: 10.3390/toxins6113098] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/10/2014] [Accepted: 10/10/2014] [Indexed: 11/16/2022] Open
Abstract
The cytolethal distending toxin (Cdt) is a heterotrimeric holotoxin produced by a diverse group of Gram-negative pathogenic bacteria. The Cdts expressed by the members of this group comprise a subclass of the AB toxin superfamily. Some AB toxins have hijacked the retrograde transport pathway, carried out by the Golgi apparatus and endoplasmic reticulum (ER), to translocate to cytosolic targets. Those toxins have been used as tools to decipher the roles of the Golgi and ER in intracellular transport and to develop medically useful delivery reagents. In comparison to the other AB toxins, the Cdt exhibits unique properties, such as translocation to the nucleus, that present specific challenges in understanding the precise molecular details of the trafficking pathway in mammalian cells. The purpose of this review is to present current information about the mechanisms of uptake and translocation of the Cdt in relation to standard concepts of endocytosis and retrograde transport. Studies of the Cdt intoxication process to date have led to the discovery of new translocation pathways and components and most likely will continue to reveal unknown features about the mechanisms by which bacterial proteins target the mammalian cell nucleus. Insight gained from these studies has the potential to contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Joseph M DiRienzo
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, 240 South 40th Street, Philadelphia, PA 19104, USA.
| |
Collapse
|
156
|
Samba-Louaka A, Pereira JM, Nahori MA, Villiers V, Deriano L, Hamon MA, Cossart P. Listeria monocytogenes dampens the DNA damage response. PLoS Pathog 2014; 10:e1004470. [PMID: 25340842 PMCID: PMC4207825 DOI: 10.1371/journal.ppat.1004470] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 09/14/2014] [Indexed: 12/17/2022] Open
Abstract
The DNA damage response (DDR) is an essential signaling pathway that detects DNA lesions, which constantly occur upon either endogenous or exogenous assaults, and maintains genetic integrity. An infection by an invading pathogen is one such assault, but how bacteria impact the cellular DDR is poorly documented. Here, we report that infection with Listeria monocytogenes induces host DNA breaks. Strikingly, the signature response to these breaks is only moderately activated. We uncover the role of the listerial toxin listeriolysin O (LLO) in blocking the signaling response to DNA breaks through degradation of the sensor Mre11. Knocking out or inactivating proteins involved in the DDR promotes bacterial replication showing the importance of this mechanism for the control of infection. Together, our data highlight that bacterial dampening of the DDR is critical for a successful listerial infection. In eukaryotic cells both normal metabolic activities and environmental factors such as UV radiation can cause DNA lesions or mutations. The ability of a cell to restore integrity to its genome is vital, and depends on a signaling cascade called the DNA damage response (DDR) that both senses and responds to the assaults. Bacterial infection is one such assault, but its effect on the DDR of the invaded cell remains elusive. Here we used the bacterial pathogen Listeria monocytogenes to study its effect on host DNA damage and its impact on the DDR. Our results show that although Listeria is able to induce DNA damage, the ensuing response is surprisingly low, demonstrating that this bacterium is able to dampen the DDR. We have also shown that the listerial toxin listeriolysin O (LLO) is responsible for the observed block in the DDR. In fact, we find that LLO induces protein degradation of the main DNA damage sensor, Mre11, thereby blocking downstream signaling. Furthermore, we have studied the impact of mutating the DDR on the infectious process and find that it negatively regulates infection with Listeria. In conclusion, our findings reveal that dampening of the DDR is crucial for a productive infection.
Collapse
Affiliation(s)
- Ascel Samba-Louaka
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
| | - Jorge M. Pereira
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
| | - Marie-Anne Nahori
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
| | - Veronique Villiers
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
| | - Ludovic Deriano
- Institut Pasteur, Laboratoire développement Lymphocytaire et Oncogénèse, Paris, France
- Centre National de la Recherche Scientifique (CNRS) Paris, France
| | - Mélanie A. Hamon
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
- * E-mail: (MAH); (PC)
| | - Pascale Cossart
- Institut Pasteur, Unité des interactions Bactéries-Cellules, Paris, France
- The French National Institute of Health and Medical Research (Inserm), Paris, France
- The French National Institute for Agricultural Research (INRA), Paris, France
- * E-mail: (MAH); (PC)
| |
Collapse
|
157
|
Abstract
Some of the most potent toxins produced by plants and bacteria are members of a large family known as the AB toxins. AB toxins are generally characterized by a heterogenous complex consisting of two protein chains arranged in various monomeric or polymeric configurations. The newest class within this superfamily is the cytolethal distending toxin (Cdt). The Cdt is represented by a subfamily of toxins produced by a group of taxonomically distinct Gram negative bacteria. Members of this subfamily have a related AB-type chain or subunit configuration and properties distinctive to the AB paradigm. In this review, the unique structural and cytotoxic properties of the Cdt subfamily, target cell specificities, intoxication pathway, modes of action, and relationship to the AB toxin superfamily are compared and contrasted.
Collapse
|
158
|
|
159
|
Haubek D, Johansson A. Pathogenicity of the highly leukotoxic JP2 clone of Aggregatibacter actinomycetemcomitans and its geographic dissemination and role in aggressive periodontitis. J Oral Microbiol 2014; 6:23980. [PMID: 25206940 PMCID: PMC4139931 DOI: 10.3402/jom.v6.23980] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 07/03/2014] [Accepted: 07/07/2014] [Indexed: 02/01/2023] Open
Abstract
For decades, Aggregatibacter actinomycetemcomitans has been associated with aggressive forms of periodontitis in adolescents. In the middle of the 1990s, a specific JP2 clone of A. actinomycetemcomitans, belonging to the cluster of serotype b strains of A. actinomycetemcomitans and having a number of other characteristics, was found to be strongly associated with aggressive forms of periodontitis, particularly in North Africa. Although several longitudinal studies still point to the bacterial species, A. actinomycetemcomitans as a risk factor of aggressive periodontitis, it is now also widely accepted that the highly leukotoxic JP2 clone of A. actinomycetemcomitans is implicated in rapidly progressing forms of aggressive periodontitis. The JP2 clone strains are highly prevalent in human populations living in Northern and Western parts of Africa. These strains are also prevalent in geographically widespread populations that have originated from the Northwest Africa. Only sporadic signs of a dissemination of the JP2 clone strains to non-African populations have been found despite Africans living geographically widespread for hundreds of years. It remains an unanswered question if a particular host tropism exists as a possible explanation for the frequent colonization of the Northwest African population with the JP2 clone. Two exotoxins of A. actinomycetemcomitans are known, leukotoxin (LtxA) and cytolethal distending toxin (Cdt). LtxA is able to kill human immune cells, and Cdt can block cell cycle progression in eukaryotic cells and thus induce cell cycle arrest. Whereas the leukotoxin production is enhanced in JP2 clone strains thus increasing the virulence potential of A. actinomycetemcomitans, it has not been possible so far to demonstrate such a role for Cdt. Lines of evidence have led to the understanding of the highly leukotoxic JP2 clone of A. actinomycetemcomitans as an aetiological factor of aggressive periodontitis. Patients, who are colonized with the JP2 clone, are likely to share this clone with several family members because the clone is transmitted through close contacts. This is a challenge to the clinicians. The patients need intense monitoring of their periodontal status as the risk for developing severely progressing periodontal lesions are relatively high. Furthermore, timely periodontal treatment, in some cases including periodontal surgery supplemented by the use of antibiotics, is warranted. Preferably, periodontal attachment loss should be prevented by early detection of the JP2 clone of A. actinomycetemcomitans by microbial diagnostic testing and/or by preventive means.
Collapse
Affiliation(s)
- Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | - Anders Johansson
- Department of Molecular Periodontology, Umea University, Umea, Sweden
| |
Collapse
|
160
|
Eshraghi A, Dixon SD, Tamilselvam B, Kim EJK, Gargi A, Kulik JC, Damoiseaux R, Blanke SR, Bradley KA. Cytolethal distending toxins require components of the ER-associated degradation pathway for host cell entry. PLoS Pathog 2014; 10:e1004295. [PMID: 25078082 PMCID: PMC4117610 DOI: 10.1371/journal.ppat.1004295] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 06/23/2014] [Indexed: 11/18/2022] Open
Abstract
Intracellular acting protein exotoxins produced by bacteria and plants are important molecular determinants that drive numerous human diseases. A subset of these toxins, the cytolethal distending toxins (CDTs), are encoded by several Gram-negative pathogens and have been proposed to enhance virulence by allowing evasion of the immune system. CDTs are trafficked in a retrograde manner from the cell surface through the Golgi apparatus and into the endoplasmic reticulum (ER) before ultimately reaching the host cell nucleus. However, the mechanism by which CDTs exit the ER is not known. Here we show that three central components of the host ER associated degradation (ERAD) machinery, Derlin-2 (Derl2), the E3 ubiquitin-protein ligase Hrd1, and the AAA ATPase p97, are required for intoxication by some CDTs. Complementation of Derl2-deficient cells with Derl2:Derl1 chimeras identified two previously uncharacterized functional domains in Derl2, the N-terminal 88 amino acids and the second ER-luminal loop, as required for intoxication by the CDT encoded by Haemophilus ducreyi (Hd-CDT). In contrast, two motifs required for Derlin-dependent retrotranslocation of ERAD substrates, a conserved WR motif and an SHP box that mediates interaction with the AAA ATPase p97, were found to be dispensable for Hd-CDT intoxication. Interestingly, this previously undescribed mechanism is shared with the plant toxin ricin. These data reveal a requirement for multiple components of the ERAD pathway for CDT intoxication and provide insight into a Derl2-dependent pathway exploited by retrograde trafficking toxins.
Collapse
Affiliation(s)
- Aria Eshraghi
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Shandee D. Dixon
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Batcha Tamilselvam
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Urbana, Illinois, United States of America
| | - Emily Jin-Kyung Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Amandeep Gargi
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Urbana, Illinois, United States of America
| | - Julia C. Kulik
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, United States of America
| | - Steven R. Blanke
- Department of Microbiology, Institute for Genomic Biology, University of Illinois, Urbana, Urbana, Illinois, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, California, United States of America
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
161
|
Mezal EH, Bae D, Khan AA. Detection and functionality of the CdtB, PltA, and PltB from Salmonella enterica serovar Javiana. Pathog Dis 2014; 72:95-103. [PMID: 24891290 DOI: 10.1111/2049-632x.12191] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/23/2014] [Accepted: 05/23/2014] [Indexed: 11/27/2022] Open
Abstract
Salmonella infection is one of the major foodborne illnesses in the United States. Several Gram-negative bacterial pathogens, including Salmonella Typhi, produce cytolethal distending toxin (CDT), which arrests growth, induces apoptosis of infected host cells and extends persistence of pathogenic bacteria in the host. The aim of this study was to characterize the functionality of CDT (cdtB, pltA and pltB) from nontyphoidal Salmonella isolates. Fifty Salmonella enterica serovar Javiana isolates from food, environmental, and clinical samples were screened for cdtB, pltA, and pltB genes by PCR, and all were positive for all three genes. Nucleotide sequence analysis of all amplified PCR products showed 100% identity to S. Typhi cdtB. To understand the roles of CdtB, PltA, and PltB in S. Javiana, cdtB, pltA, and pltB deletion mutants were constructed using a lambda Red-based recombination system. In vitro-cultured HeLa cell lines were infected with a wild-type strain and its isogenic ∆cdtB, ∆pltA, and ∆pltB to determine whether the strains of S. Javiana are responsible for invasion and cytolethal distending intoxication, including cell cycle arrest, cytoplasmic distension, and nuclear enlargement of host target cells. The results showed that HeLa cells infected with S. Javiana wild type were arrested in G2 /M and had distended cytoplasm and nuclei that were larger than those infected with S. Javiana ∆cdtB and ∆pltA strains. The S. Javiana ∆pltB strain retained the ability to induce cytoplasmic distension and cell cycle arrest, whereas the complemented ∆cdtB and ∆pltA S. Javiana strains showed activity like the wild-type strains. CdtB and pltA from S. Javiana had apparent effects on the distension of both cytoplasm and nucleus as well as cell cycle arrest of HeLa cell lines after 72 h of infection. Our data show a significant difference between the wild-type cdtB strain and its isogenic ∆cdtB for invasion of the cell lines. Therefore, CdtB produced from S. Javiana strains may play an important role in pathogenesis in host cells.
Collapse
Affiliation(s)
- Ezat H Mezal
- Division of Microbiology, National Center for Toxicological Research, U. S. Food and Drug Administration, Jefferson, AR, USA; University of Arkansas at Little Rock, Little Rock, AR, USA; University of Thi-Qar, Thi-Qar, Iraq
| | | | | |
Collapse
|
162
|
Abstract
Oral cancer is the most common cancer diagnosed in Indian men and is the leading cause of cancer deaths. It is considered as a multistep and multifactorial disease. Besides accumulation of genetic mutations, numerous other carcinogens are involved. In this category, viral and chemical carcinogens are well studied and documented. However, in the oral cavity, the role of microbiota in carcinogenesis is not known. Microbial populations on mouth mucosa differ between healthy and malignant sites, and certain oral bacterial species have been linked with malignancies, but the evidence is still weak in this respect. Nevertheless, oral microorganisms inevitably up-regulate cytokines and other inflammatory mediators that affect the complex metabolic pathways, and may thus be involved in carcinogenesis. Poor oral health associates statistically with prevalence of many types of cancer such as pancreatic and gastrointestinal cancer. This review presents possible carcinogenesis pathway involved in bacterial carcinogenesis, commonly implicated bacteria in oral carcinogenesis, and their role in cancer therapeutics as well.
Collapse
Affiliation(s)
- R Rajeev
- Department of Oral Pathology and Microbiology, Government Dental College, Trivandrum, Kerala, India
| | - Kanaram Choudhary
- Department of Oral Pathology and Microbiology, Government Dental College, Trivandrum, Kerala, India
| | | | - Neha Gandhi
- Oral Pathology and Microbiology, Government Dental College, Ahmedabad, Gujarat, India
| |
Collapse
|
163
|
Bezine E, Vignard J, Mirey G. The cytolethal distending toxin effects on Mammalian cells: a DNA damage perspective. Cells 2014; 3:592-615. [PMID: 24921185 PMCID: PMC4092857 DOI: 10.3390/cells3020592] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Revised: 05/28/2014] [Accepted: 05/28/2014] [Indexed: 12/27/2022] Open
Abstract
The cytolethal distending toxin (CDT) is produced by many pathogenic Gram-negative bacteria and is considered as a virulence factor. In human cells, CDT exposure leads to a unique cytotoxicity associated with a characteristic cell distension and induces a cell cycle arrest dependent on the DNA damage response (DDR) triggered by DNA double-strand breaks (DSBs). CDT has thus been classified as a cyclomodulin and a genotoxin. Whereas unrepaired damage can lead to cell death, effective, but improper repair may be detrimental. Indeed, improper repair of DNA damage may allow cells to resume the cell cycle and induce genetic instability, a hallmark in cancer. In vivo, CDT has been shown to induce the development of dysplastic nodules and to lead to genetic instability, defining CDT as a potential carcinogen. It is therefore important to characterize the outcome of the CDT-induced DNA damage and the consequences for intoxicated cells and organisms. Here, we review the latest results regarding the host cell response to CDT intoxication and focus on DNA damage characteristics, cell cycle modulation and cell outcomes.
Collapse
Affiliation(s)
- Elisabeth Bezine
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France.
| | - Julien Vignard
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France.
| | - Gladys Mirey
- INRA, UMR1331, Toxalim, Research Centre in Food Toxicology, F-31027 Toulouse, France.
| |
Collapse
|
164
|
Breaking the Gingival Epithelial Barrier: Role of the Aggregatibacter actinomycetemcomitans Cytolethal Distending Toxin in Oral Infectious Disease. Cells 2014; 3:476-99. [PMID: 24861975 PMCID: PMC4092858 DOI: 10.3390/cells3020476] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 05/08/2014] [Accepted: 05/15/2014] [Indexed: 12/17/2022] Open
Abstract
The Gram-negative bacterium Aggregatibacter actinomycetemcomitans is part of the HACEK group that causes infective endocarditis, a constituent of the oral flora that promotes some forms of periodontal disease and a member of the family of species that secrete a cytolethal distending toxin (Cdt). The family of bacteria that express the cdt genes participate in diseases that involve the disruption of a mucosal or epithelial layer. In vitro studies have shown that human gingival epithelial cells (HGEC) are native targets of the Cdt that typically induces DNA damage that signals growth arrest at the G2/M interphase of the cell cycle. The gingival epithelium is an early line of defense in the oral cavity against microbial assault. When damaged, bacteria collectively gain entry into the underlying connective tissue where microbial products can affect processes and pathways in infiltrating inflammatory cells culminating in the destruction of the attachment apparatus of the tooth. One approach has been the use of an ex vivo gingival explant model to assess the effects of the Cdt on the morphology and integrity of the tissue. The goal of this review is to provide an overview of these studies and to critically examine the potential contribution of the Cdt to the breakdown of the protective gingival barrier.
Collapse
|
165
|
Wang X, Li L, Yang M, Geng Y, Chen H, Xu Y, Sun Y. Prevalence and distribution of Aggregatibacter actinomycetemcomitans and its cdtB gene in subgingival plaque of Chinese periodontitis patients. BMC Oral Health 2014; 14:37. [PMID: 24725913 PMCID: PMC4002197 DOI: 10.1186/1472-6831-14-37] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/27/2014] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Aggregatibacter actinomycetemcomitans (A.actinomycetemcomitans) is an important periodontal pathogen that can participate in periodontitis and other non-oral infections. The cytolethal distending toxin (Cdt) is among the virulence factors produced by this bacterium. This study was to elucidate the distribution of A.actinomycetemcomitans and the prevalence of its cdtB gene in Chinese subjects. METHODS A total of 255 subgingival samples were obtained from 30 subjects. Samples were collected from periodontal healthy sites as well as shallow, moderate and deep pockets. The absolute quantity of A.actinomycetemcomitans and cdtB gene were determined by real-time polymerase chain reaction. RESULTS A.actinomycetemcomitans was detected in 92 of 105 (87.6%) samples of aggressive periodontitis (AgP) patients, in 73 of 79 (92.4%) samples of chronic periodontitis ( CP) patients and in 5 of 71 (7.0%) samples of periodontal healthy subjects. The cdtB gene was detected in 72 sites (78.3%) with AgP infected with A.actinomycetemcomitans, 54 sites (74.0%) with CP infected with A.actinomycetemcomitans and none in healthy sites infected with A.actinomycetemcomitans. In addition, quantity of A.actinomycetemcomitans and cdt gene in samples from deep pockets were significant larger than moderate, shallow and healthy sites (P < 0.05). In comparison to CP, AgP patients were infected with increased numbers of cdt genotype in deep pockets (P < 0.05). CONCLUSION This study suggests that the cdtB gene are prevalent in A.actinomycetemcomitans, and the distribution of cdt genotype strain may be correlated with AgP and serious periodontal inflammation.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Xu
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, Jiang Su, China.
| | | |
Collapse
|
166
|
Cytolethal distending toxin (CDT) is a radiomimetic agent and induces persistent levels of DNA double-strand breaks in human fibroblasts. DNA Repair (Amst) 2014; 18:31-43. [PMID: 24680221 DOI: 10.1016/j.dnarep.2014.03.002] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2013] [Revised: 02/07/2014] [Accepted: 03/03/2014] [Indexed: 11/22/2022]
Abstract
Cytolethal distending toxin (CDT) is a unique genotoxin produced by several pathogenic bacteria. The tripartite protein toxin is internalized into mammalian cells via endocytosis followed by retrograde transport to the ER. Upon translocation into the nucleus, CDT catalyzes the formation of DNA double-strand breaks (DSBs) due to its intrinsic endonuclease activity. In the present study, we compared the DNA damage response (DDR) in human fibroblasts triggered by recombinant CDT to that of ionizing radiation (IR), a well-known DSB inducer. Furthermore, we dissected the pathways involved in the detection and repair of CDT-induced DNA lesions. qRT-PCR array-based mRNA and western blot analyses showed a partial overlap in the DDR pattern elicited by CDT and IR, with strong activation of both the ATM-Chk2 and the ATR-Chk1 axis. In line with its in vitro DNase I-like activity on plasmid DNA, neutral and alkaline Comet assay revealed predominant induction of DSBs in CDT-treated fibroblasts, whereas irradiation of cells generated higher amounts of SSBs and alkali-labile sites. Using confocal microscopy, the dynamics of the DSB surrogate marker γ-H2AX was monitored after pulse treatment with CDT or IR. In contrast to the fast induction and disappearance of γ-H2AX-foci observed in irradiated cells, the number of γ-H2AX-foci induced by CDT were formed with a delay and persisted. 53BP1 foci were also generated following CDT treatment and co-localized with γ-H2AX foci. We further demonstrated that ATM-deficient cells are very sensitive to CDT-induced DNA damage as reflected by increased cell death rates with concomitant cleavage of caspase-3 and PARP-1. Finally, we provided novel evidence that both homologous recombination (HR) and non-homologous end joining (NHEJ) protect against CDT-elicited DSBs. In conclusion, the findings suggest that CDT functions as a radiomimetic agent and, therefore, is an attractive tool for selectively inducing persistent levels of DSBs and unveiling the associated cellular responses.
Collapse
|
167
|
Kovalchuk O, Walz P, Kovalchuk I. Does bacterial infection cause genome instability and cancer in the host cell? Mutat Res 2014; 761:1-14. [PMID: 24472301 DOI: 10.1016/j.mrfmmm.2014.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/08/2013] [Accepted: 01/16/2014] [Indexed: 06/03/2023]
Abstract
Research of the past several decades suggests that bacterial infection can lead to genome instability of the host cell often resulting in cancer development. However, there is still a substantial lack of knowledge regarding possible mechanisms involved in the development of genomic instability. Several questions remain unanswered, namely: Why has the causative relationship between the bacterial infection and cancer been established only for a small number of cancers? What is the mechanism responsible for the induction of genome instability and cancer? Is the infection process required to cause genome instability and cancer? In this review, we present a hypothesis that the bacterial infection, exposure to heat-killed bacteria or even some bacterial determinants may trigger genome instability of exposed and distal cells, and thus may cause cancer. We will discuss the mechanisms of host responses to the bacterial infection and present the possible pathways leading to genome instability and cancer through exposure to bacteria.
Collapse
Affiliation(s)
- Olga Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada.
| | - Paul Walz
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada.
| | - Igor Kovalchuk
- Department of Biological Sciences, University of Lethbridge, Lethbridge T1K 3M4, Alberta, Canada.
| |
Collapse
|
168
|
Varon C, Mocan I, Mihi B, Péré-Védrenne C, Aboubacar A, Moraté C, Oleastro M, Doignon F, Laharie D, Mégraud F, Ménard A. Helicobacter pullorum Cytolethal Distending Toxin Targets Vinculin and Cortactin and Triggers Formation of Lamellipodia in Intestinal Epithelial Cells. J Infect Dis 2014; 209:588-99. [DOI: 10.1093/infdis/jit539] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
|
169
|
Leitão E, Costa AC, Brito C, Costa L, Pombinho R, Cabanes D, Sousa S. Listeria monocytogenes induces host DNA damage and delays the host cell cycle to promote infection. Cell Cycle 2014; 13:928-40. [PMID: 24552813 DOI: 10.4161/cc.27780] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Listeria monocytogenes (Lm) is a human intracellular pathogen widely used to uncover the mechanisms evolved by pathogens to establish infection. However, its capacity to perturb the host cell cycle was never reported. We show that Lm infection affects the host cell cycle progression, increasing its overall duration but allowing consecutive rounds of division. A complete Lm infectious cycle induces a S-phase delay accompanied by a slower rate of DNA synthesis and increased levels of host DNA strand breaks. Additionally, DNA damage/replication checkpoint responses are triggered in an Lm dose-dependent manner through the phosphorylation of DNA-PK, H2A.X, and CDC25A and independently from ATM/ATR. While host DNA damage induced exogenously favors Lm dissemination, the override of checkpoint pathways limits infection. We propose that host DNA replication disturbed by Lm infection culminates in DNA strand breaks, triggering DNA damage/replication responses, and ensuring a cell cycle delay that favors Lm propagation.
Collapse
Affiliation(s)
- Elsa Leitão
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Ana Catarina Costa
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Cláudia Brito
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Lionel Costa
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Rita Pombinho
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Didier Cabanes
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| | - Sandra Sousa
- Group of Molecular Microbiology, Infection and Immunity; IBMC - Instituto de Biologia Molecular e Celular; Universidade do Porto; Porto, Portugal
| |
Collapse
|
170
|
Chen YC, Tan DH, Shien JH, Hsieh MK, Yen TY, Chang PC. Identification and functional analysis of the cytolethal distending toxin gene from Avibacterium paragallinarum. Avian Pathol 2013; 43:43-50. [PMID: 24188584 DOI: 10.1080/03079457.2013.861895] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Avibacterium paragallinarum is the causative agent of infectious coryza, an important respiratory disease of chickens. Cytolethal distending toxins (CDTs) are a family of protein cytotoxins that cause cell cycle arrest and apoptosis in eukaryotic cells. Whole-genome sequencing analysis showed that Av. paragallinarum contains cdtABC genes. Filter-sterilized lysates prepared from Av. paragallinarum or from recombinant Escherichia coli expressing cdtABC genes exhibited CDT activity on HeLa cells and chicken embryo fibroblast (DF-1) cells. In vitro DNase assays showed that purified recombinant CdtB has DNase activity. Polymerase chain reaction and sequencing analysis revealed that the cdtABC genes are present in all strains of Av. paragallinarum examined in this study. This is the first report of the identification and functional analysis of cdtABC genes from Av. paragallinarum. The gene products of cdtABC genes may be involved in the pathogenesis of the disease caused by Av. paragallinarum.
Collapse
Affiliation(s)
- Y-C Chen
- a Graduate Institute of Microbiology and Public Health, National Chung Hsing University , Taichung , Taiwan
| | | | | | | | | | | |
Collapse
|
171
|
Liyanage NP, Dassanayake RP, Kuszynski CA, Duhamel GE. Contribution of Helicobacter hepaticus cytolethal distending toxin subunits to human epithelial cell cycle arrest and apoptotic death in vitro. Helicobacter 2013; 18:433-43. [PMID: 23895367 PMCID: PMC3808484 DOI: 10.1111/hel.12084] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
BACKGROUND Cytolethal distending toxin (CDT) is the only known virulence factor found in H. hepaticus, the cause of chronic typhlocolitis and hepatitis leading to colonic and hepatocellular carcinomas in mice. Interaction of the tripartite polypeptide CdtA, CdtB, and CdtC subunits produced by H. hepaticus CDT (HhepCDT) causes cell cycle arrest and apoptotic death of cultured cells; however, the contribution of individual subunit to these processes has not been investigated. MATERIALS AND METHODS The temporal relationship between cell cycle and apoptotic death of human epithelial HeLa and INT407 cells intoxicated with HhepCDT holotoxin or reconstituted recombinant HhepCDT was compared by flow cytometry. The genotoxic activity of individual and combinations of recombinant HhepCDT protein subunits or increasing concentrations of individual recombinant HhepCDT protein subunits transfected into HeLa cells was assessed at 72 hours post-treatment by flow cytometry. RESULTS Similar time course of HhepCDT-induced G2 /M cell cycle arrest and apoptotic death was found with both cell lines which reached a maximum at 72 hours. The presence of all three HhepCDT subunits was required for maximum cell cycle arrest and apoptosis of both cell lines. Transfection of HeLa cells with HhepCdtB, but not with HhepCdtA or HhepCdtC, resulted in a dose-dependent G2 /M arrest and apoptotic death. CONCLUSION All three subunits of HhepCDT are required for maximum epithelial cell cycle arrest and progression to apoptotic death, and HhepCdtB subunit alone is necessary and sufficient for epithelial cell genotoxicity.
Collapse
Affiliation(s)
- Namal P.M. Liyanage
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, U.S.A
| | - Rohana P. Dassanayake
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, U.S.A
| | - Charles A. Kuszynski
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198, U.S.A
| | - Gerald E. Duhamel
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, U.S.A
| |
Collapse
|
172
|
Selective inhibitor of endosomal trafficking pathways exploited by multiple toxins and viruses. Proc Natl Acad Sci U S A 2013; 110:E4904-12. [PMID: 24191014 DOI: 10.1073/pnas.1302334110] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Pathogenic microorganisms and toxins have evolved a variety of mechanisms to gain access to the host-cell cytosol and thereby exert virulent effects upon the host. One common mechanism of cellular entry requires trafficking to an acidified endosome, which promotes translocation across the host membrane. To identify small-molecule inhibitors that block this process, a library of 30,000 small molecules was screened for inhibitors of anthrax lethal toxin. Here we report that 4-bromobenzaldehyde N-(2,6-dimethylphenyl)semicarbazone, the most active compound identified in the screen, inhibits intoxication by lethal toxin and blocks the entry of multiple other acid-dependent bacterial toxins and viruses into mammalian cells. This compound, which we named EGA, also delays lysosomal targeting and degradation of the EGF receptor, indicating that it targets host-membrane trafficking. In contrast, EGA does not block endosomal recycling of transferrin, retrograde trafficking of ricin, phagolysosomal trafficking, or phagosome permeabilization by Franciscella tularensis. Furthermore, EGA does not neutralize acidic organelles, demonstrating that its mechanism of action is distinct from pH-raising agents such as ammonium chloride and bafilomycin A1. EGA is a powerful tool for the study of membrane trafficking and represents a class of host-targeted compounds for therapeutic development to treat infectious disease.
Collapse
|
173
|
Elsen S, Collin-Faure V, Gidrol X, Lemercier C. The opportunistic pathogen Pseudomonas aeruginosa activates the DNA double-strand break signaling and repair pathway in infected cells. Cell Mol Life Sci 2013; 70:4385-97. [PMID: 23760206 PMCID: PMC11113669 DOI: 10.1007/s00018-013-1392-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 05/24/2013] [Accepted: 05/29/2013] [Indexed: 11/30/2022]
Abstract
Highly hazardous DNA double-strand breaks can be induced in eukaryotic cells by a number of agents including pathogenic bacterial strains. We have investigated the genotoxic potential of Pseudomonas aeruginosa, an opportunistic pathogen causing devastating nosocomial infections in cystic fibrosis or immunocompromised patients. Our data revealed that infection of immune or epithelial cells by P. aeruginosa triggered DNA strand breaks and phosphorylation of histone H2AX (γH2AX), a marker of DNA double-strand breaks. Moreover, it induced formation of discrete nuclear repair foci similar to gamma-irradiation-induced foci, and containing γH2AX and 53BP1, an adaptor protein mediating the DNA-damage response pathway. Gene deletion, mutagenesis, and complementation in P. aeruginosa identified ExoS bacterial toxin as the major factor involved in γH2AX induction. Chemical inhibition of several kinases known to phosphorylate H2AX demonstrated that Ataxia Telangiectasia Mutated (ATM) was the principal kinase in P. aeruginosa-induced H2AX phosphorylation. Finally, infection led to ATM kinase activation by an auto-phosphorylation mechanism. Together, these data show for the first time that infection by P. aeruginosa activates the DNA double-strand break repair machinery of the host cells. This novel information sheds new light on the consequences of P. aeruginosa infection in mammalian cells. As pathogenic Escherichia coli or carcinogenic Helicobacter pylori can alter genome integrity through DNA double-strand breaks, leading to chromosomal instability and eventually cancer, our findings highlight possible new routes for further investigations of P. aeruginosa in cancer biology and they identify ATM as a potential target molecule for drug design.
Collapse
Affiliation(s)
- Sylvie Elsen
- CEA, DSV, iRTSV-BCI, INSERM, UMR-S 1036, Biologie Du Cancer Et de L’Infection, CNRS, ERL 5261, Bacterial Pathogenesis and Cellular Responses, UJF-Grenoble 1, Grenoble, France
| | | | - Xavier Gidrol
- CEA, DSV, iRTSV-BGE, INSERM, Unit 1038, Biologie à Grande Echelle, UJF-Grenoble 1, Grenoble, France
| | - Claudie Lemercier
- CEA, DSV, iRTSV-BGE, INSERM, Unit 1038, Biologie à Grande Echelle, UJF-Grenoble 1, Grenoble, France
- INSERM Unit 1038, CEA, DSV, iRTSV-BGE, 17 Rue Des Martyrs, 38054 Grenoble Cedex 9, France
| |
Collapse
|
174
|
Lai CK, Lu YL, Hsieh JT, Tsai SC, Feng CL, Tsai YS, Tsai PC, Su HL, Lin YH, Lai CH. Development of chitosan/heparin nanoparticle-encapsulated cytolethal distending toxin for gastric cancer therapy. Nanomedicine (Lond) 2013; 9:803-17. [PMID: 24024568 DOI: 10.2217/nnm.13.54] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
AIM The aim of this work was to develop pH-responsive nanoparticles encapsulating CdtB and to demonstrate that these particles represent a potential therapeutic agent for gastric cancer. MATERIALS & METHODS Chitosan/heparin nanoparticle-encapsulated CdtB was prepared and the delivery efficiency was monitored by confocal laser scanning microscopy. The molecular basis of the nanoparticle-encapsulated CdtB-mediated p53 activation pathway was explored by immunoblot analysis. Antitumoral activities were investigated by analyzing the cell cycle and apoptosis. RESULTS Chitosan/heparin nanoparticle-encapsulated CdtB preferentially inhibited the proliferation of cells derived from gastric cancer, but not in primary gastric epithelial cells. Treatment of cells with nanoparticle-encapsulated CdtB enhanced cell-cycle arrest at G2/M, followed by apoptosis. Moreover, our data showed that the mechanism for nanoparticle-encapsulated CdtB-induced cell death was mediated by ATM-dependent DNA damage checkpoint responses. CONCLUSION These findings indicate that chitosan/heparin nanoparticle-encapsulated CdtB could represent a new CdtB delivery strategy for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Cheng-Kuo Lai
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
175
|
Nipič D, Podlesek Z, Budič M, črnigoj M, Žgur-Bertok D. Escherichia coli Uropathogenic-Specific Protein, Usp, Is a Bacteriocin-Like Genotoxin. J Infect Dis 2013; 208:1545-52. [DOI: 10.1093/infdis/jit480] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
176
|
Guidi R, Levi L, Rouf SF, Puiac S, Rhen M, Frisan T. Salmonella enterica delivers its genotoxin through outer membrane vesicles secreted from infected cells. Cell Microbiol 2013; 15:2034-50. [PMID: 23869968 DOI: 10.1111/cmi.12172] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/19/2013] [Accepted: 07/10/2013] [Indexed: 02/06/2023]
Abstract
Cytolethal-distending toxins (CDTs) belong to a family of DNA damage inducing exotoxins that are produced by several Gram-negative bacteria. Salmonella enterica serovar Typhi expresses its CDT (named as Typhoid toxin) only in the Salmonella-containing vacuole (SCV) of infected cells, which requires its export for cell intoxication. The mechanisms of secretion, release in the extracellular space and uptake by bystander cells are poorly understood. We have addressed these issues using a recombinant S. Typhimurium strain, MC71-CDT, where the genes encoding for the PltA, PltB and CdtB subunits of the Typhoid toxin are expressed under control of the endogenous promoters. MC71-CDT grown under conditions that mimic the SCV secreted the holotoxin in outer membrane vesicles (OMVs). Epithelial cells infected with MC71-CDT also secreted OMVs-like vesicles. The release of these extracellular vesicles required an intact SCV and relied on anterograde transport towards the cellular cortex on microtubule and actin tracks. Paracrine internalization of Typhoid toxin-loaded OMVs by bystander cells was dependent on dynamin-1, indicating active endocytosis. The subsequent induction of DNA damage required retrograde transport of the toxin through the Golgi complex. These data provide new insights on the mode of secretion of exotoxins by cells infected with intracellular bacteria.
Collapse
Affiliation(s)
- Riccardo Guidi
- Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | | | | | | | | | | |
Collapse
|
177
|
Song J, Gao X, Galán JE. Structure and function of the Salmonella Typhi chimaeric A(2)B(5) typhoid toxin. Nature 2013; 499:350-4. [PMID: 23842500 PMCID: PMC4144355 DOI: 10.1038/nature12377] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 06/12/2013] [Indexed: 11/19/2022]
Abstract
Salmonella enterica serovar Typhi (S. Typhi) differs from most other salmonellae in that it causes a life-threatening systemic infection known as typhoid fever. The molecular bases for its unique clinical presentation are unknown. Here we find that the systemic administration of typhoid toxin, a unique virulence factor of S. Typhi, reproduces many of the acute symptoms of typhoid fever in an animal model. We identify specific carbohydrate moieties on specific surface glycoproteins that serve as receptors for typhoid toxin, which explains its broad cell target specificity. We present the atomic structure of typhoid toxin, which shows an unprecedented A2B5 organization with two covalently linked A subunits non-covalently associated to a pentameric B subunit. The structure provides insight into the toxin's receptor-binding specificity and delivery mechanisms and reveals how the activities of two powerful toxins have been co-opted into a single, unique toxin that can induce many of the symptoms characteristic of typhoid fever. These findings may lead to the development of potentially life-saving therapeutics against typhoid fever.
Collapse
Affiliation(s)
| | | | - Jorge E. Galán
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT 06536
| |
Collapse
|
178
|
Höglund Åberg C, Antonoglou G, Haubek D, Kwamin F, Claesson R, Johansson A. Cytolethal distending toxin in isolates of Aggregatibacter actinomycetemcomitans from Ghanaian adolescents and association with serotype and disease progression. PLoS One 2013; 8:e65781. [PMID: 23922633 PMCID: PMC3683020 DOI: 10.1371/journal.pone.0065781] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/28/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND AND OBJECTIVES The cytolethal distending toxin (Cdt) is a highly conserved exotoxin that are produced by a number of Gram negative bacteria, including Aggregatibacter actinomycetemcomitans, and affects mammalian cells by inhibiting cell division and causing apoptosis. A complete cdt-operon is present in the majority of A. actinomycetemcomitans, but the proportion of isolates that lack cdt-encoding genes (A, B and C) varies according to the population studied. The objectives of this study were to examine serotype, Cdt-genotype, and Cdt-activity in isolates of A. actinomycetemcomitans collected from an adolescent West African population and to examine the association between the carrier status of A. actinomycetemcomitans and the progression of attachment loss (AL). MATERIALS AND METHODS A total of 249 A. actinomycetemcomitans isolates from 200 Ghanaian adolescents were examined for serotype and cdt-genotype by PCR. The activity of the Cdt-toxin was examined by DNA-staining of exposed cultured cells and documented with flow cytometry. The periodontal status of the participants was examined at baseline and at a two-year follow-up. RESULTS Presence of all three cdt-encoding genes was detected in 79% of the examined A. actinomycetemcomitans isolates. All these isolates showed a substantial Cdt-activity. The two different cdt-genotypes (with and without presence of all three cdt-encoding genes) showed a serotype-dependent distribution pattern. Presence of A. actinomycetemcomitans was significantly associated with progression of AL (OR = 5.126; 95% CI = [2.994-8.779], p<0.001). CONCLUSION A. actinomycetemcomitans isolated from the Ghanaian adolescents showed a distribution of serotype and cdt-genotype in line with results based on other previously studied populations. Presence of A. actinomycetemcomitans was significantly associated with disease progression, in particular the b serotype, whereas the association with disease progression was not particularly related to cdt-genotype, and Cdt-activity.
Collapse
Affiliation(s)
- Carola Höglund Åberg
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Georgios Antonoglou
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Dorte Haubek
- Section for Pediatric Dentistry, Department of Dentistry, Health, Aarhus University, Aarhus, Denmark
| | | | - Rolf Claesson
- Division of Oral Microbiology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
| | - Anders Johansson
- Division of Molecular Periodontology, Department of Odontology, Faculty of Medicine, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
179
|
Lai CH, Lai CK, Lin YJ, Hung CL, Chu CH, Feng CL, Chang CS, Su HL. Characterization of putative cholesterol recognition/interaction amino acid consensus-like motif of Campylobacter jejuni cytolethal distending toxin C. PLoS One 2013; 8:e66202. [PMID: 23762481 PMCID: PMC3675143 DOI: 10.1371/journal.pone.0066202] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 05/02/2013] [Indexed: 12/17/2022] Open
Abstract
Cytolethal distending toxin (CDT) produced by Campylobacter jejuni comprises a heterotrimeric complex formed by CdtA, CdtB, and CdtC. Among these toxin subunits, CdtA and CdtC function as essential proteins that mediate toxin binding to cytoplasmic membranes followed by delivery of CdtB into the nucleus. The binding of CdtA/CdtC to the cell surface is mediated by cholesterol, a major component in lipid rafts. Although the putative cholesterol recognition/interaction amino acid consensus (CRAC) domain of CDT has been reported from several bacterial pathogens, the protein regions contributing to CDT binding to cholesterol in C. jejuni remain unclear. Here, we selected a potential CRAC-like region present in the CdtC from C. jejuni for analysis. Molecular modeling showed that the predicted functional domain had the shape of a hydrophobic groove, facilitating cholesterol localization to this domain. Mutation of a tyrosine residue in the CRAC-like region decreased direct binding of CdtC to cholesterol rather than toxin intermolecular interactions and led to impaired CDT intoxication. These results provide a molecular link between C. jejuni CdtC and membrane-lipid rafts through the CRAC-like region, which contributes to toxin recognition and interaction with cholesterol.
Collapse
Affiliation(s)
- Chih-Ho Lai
- Department of Microbiology, School of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- * E-mail: (CHL); (HLS)
| | - Cheng-Kuo Lai
- Department of Microbiology, School of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Ju Lin
- School of Chinese Medicine, China Medical University, Taichung, Taiwan
| | - Chiu-Lien Hung
- Department of Biochemistry and Molecular Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, California, United States of America
| | - Chia-Han Chu
- Biomedical Science and Engineering Center, National Tsing Hua University, Hsinchu, Taiwan
| | - Chun-Lung Feng
- Department of Internal Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Shuo Chang
- Department of Microbiology, School of Medicine, Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Hong-Lin Su
- Department of Life Sciences, Agricultural Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
- Department of Physical Therapy, China Medical University, Taichung, Taiwan
- * E-mail: (CHL); (HLS)
| |
Collapse
|
180
|
Li L, Ding C, Duan JL, Yang MF, Sun Y, Wang XQ, Xu Y. A new functional site W115 in CdtA is critical for Aggregatibacter actinomycetemcomitans cytolethal distending toxin. PLoS One 2013; 8:e65729. [PMID: 23755273 PMCID: PMC3670888 DOI: 10.1371/journal.pone.0065729] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2011] [Accepted: 05/03/2013] [Indexed: 11/18/2022] Open
Abstract
Aggregatibacter actinomycetemcomitans, a specific pathogen of localized aggressive periodontitis, produces a cytolethal distending toxin (CDT) that arrests eukaryotic cells irreversibly in G0/G1 or G2/M phase of the cell cycle. Although structural studies show that the aromatic patch region of CdtA plays an important role in its biological activity, the functional sites of CdtA have not been firmly established. In this study, site-specific mutagenesis strategy was employed for cdtA point mutations construction so as to examine the contributions of individual amino acids to receptor binding and the biological activity of holotoxin. The binding ability was reduced in CdtAY181ABC holotoxin and the biological function of CDT was not weaken in CdtAY105ABC, CdtAY125ABC, CdtAF109ABC and CdtAS106NBC holotoxin suggesting that these sites were not critical to CDT. But the binding activity and cell cycle arrest ability of holotoxin complexes were inhibited in CdtAW115GBC. And this site did not affect the holotoxin assembly by size exclusion chromatography. Therefore, W115 might be a critical site of CdtA binding ability. These findings suggest that the functional sites of CdtA are not only in the aromatic patch region. W115, the new functional site is critical for receptor binding and cell cycle arrest, which provides potential targets for pharmacological disruption of CDT activity.
Collapse
Affiliation(s)
- Lu Li
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Cheng Ding
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Jun-lan Duan
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Mi-fang Yang
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
| | - Ying Sun
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Xiao-qian Wang
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
| | - Yan Xu
- Laboratory of Oral Infection and Immunology, Institute of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Periodontology, School of Stomatology, Nanjing Medical University, Nanjing, China
- * E-mail:
| |
Collapse
|
181
|
Dugar G, Herbig A, Förstner KU, Heidrich N, Reinhardt R, Nieselt K, Sharma CM. High-resolution transcriptome maps reveal strain-specific regulatory features of multiple Campylobacter jejuni isolates. PLoS Genet 2013; 9:e1003495. [PMID: 23696746 PMCID: PMC3656092 DOI: 10.1371/journal.pgen.1003495] [Citation(s) in RCA: 202] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
Campylobacter jejuni is currently the leading cause of bacterial gastroenteritis in humans. Comparison of multiple Campylobacter strains revealed a high genetic and phenotypic diversity. However, little is known about differences in transcriptome organization, gene expression, and small RNA (sRNA) repertoires. Here we present the first comparative primary transcriptome analysis based on the differential RNA-seq (dRNA-seq) of four C. jejuni isolates. Our approach includes a novel, generic method for the automated annotation of transcriptional start sites (TSS), which allowed us to provide genome-wide promoter maps in the analyzed strains. These global TSS maps are refined through the integration of a SuperGenome approach that allows for a comparative TSS annotation by mapping RNA-seq data of multiple strains into a common coordinate system derived from a whole-genome alignment. Considering the steadily increasing amount of RNA-seq studies, our automated TSS annotation will not only facilitate transcriptome annotation for a wider range of pro- and eukaryotes but can also be adapted for the analysis among different growth or stress conditions. Our comparative dRNA-seq analysis revealed conservation of most TSS, but also single-nucleotide-polymorphisms (SNP) in promoter regions, which lead to strain-specific transcriptional output. Furthermore, we identified strain-specific sRNA repertoires that could contribute to differential gene regulation among strains. In addition, we identified a novel minimal CRISPR-system in Campylobacter of the type-II CRISPR subtype, which relies on the host factor RNase III and a trans-encoded sRNA for maturation of crRNAs. This minimal system of Campylobacter, which seems active in only some strains, employs a unique maturation pathway, since the crRNAs are transcribed from individual promoters in the upstream repeats and thereby minimize the requirements for the maturation machinery. Overall, our study provides new insights into strain-specific transcriptome organization and sRNAs, and reveals genes that could modulate phenotypic variation among strains despite high conservation at the DNA level.
Collapse
Affiliation(s)
- Gaurav Dugar
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
| | - Alexander Herbig
- Integrative Transcriptomics, ZBIT (Center for Bioinformatics Tübingen), University of Tübingen, Tübingen, Germany
| | - Konrad U. Förstner
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Nadja Heidrich
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | | | - Kay Nieselt
- Integrative Transcriptomics, ZBIT (Center for Bioinformatics Tübingen), University of Tübingen, Tübingen, Germany
| | - Cynthia M. Sharma
- Research Center for Infectious Diseases (ZINF), University of Würzburg, Würzburg, Germany
- * E-mail:
| |
Collapse
|
182
|
Wahasugui TC, Nakano V, Piazza RM, Avila-Campos MJ. Phenotypic and genotypic features of Aggregatibacter actinomycetemcomitans isolated from patients with periodontal disease. Diagn Microbiol Infect Dis 2013; 75:366-72. [DOI: 10.1016/j.diagmicrobio.2012.12.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Revised: 12/17/2012] [Accepted: 12/19/2012] [Indexed: 12/15/2022]
|
183
|
Lemichez E, Barbieri JT. General aspects and recent advances on bacterial protein toxins. Cold Spring Harb Perspect Med 2013; 3:a013573. [PMID: 23378599 DOI: 10.1101/cshperspect.a013573] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Bacterial pathogens produce protein toxins to influence host-pathogen interactions and tip the outcome of these encounters toward the benefit of the pathogen. Protein toxins modify host-specific targets through posttranslational modifications (PTMs) or noncovalent interactions that may inhibit or activate host cell physiology to benefit the pathogen. Recent advances have identified new PTMs and host targets for toxin action. Understanding the mechanisms of toxin action provides a basis to develop vaccines and therapies to combat bacterial pathogens and to develop new strategies to use toxin derivatives for the treatment of human disease.
Collapse
Affiliation(s)
- Emmanuel Lemichez
- INSERM, U1065, Centre Méditerranéen de Médecine Moléculaire, Microbial Toxins in Host-Pathogen Interactions, C3M, Université de Nice-Sophia-Antipolis, UFR Médecine, 06204 Nice, France.
| | | |
Collapse
|
184
|
Gargi A, Tamilselvam B, Powers B, Prouty MG, Lincecum T, Eshraghi A, Maldonado-Arocho FJ, Wilson BA, Bradley KA, Blanke SR. Cellular interactions of the cytolethal distending toxins from Escherichia coli and Haemophilus ducreyi. J Biol Chem 2013; 288:7492-7505. [PMID: 23306199 DOI: 10.1074/jbc.m112.448118] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The cytolethal distending toxins (CDTs) compose a subclass of intracellularly acting genotoxins produced by many Gram-negative pathogenic bacteria that disrupt the normal progression of the eukaryotic cell cycle. Here, the intoxication mechanisms of CDTs from Escherichia coli (Ec-CDT) and Haemophilus ducreyi (Hd-CDT), which share limited amino acid sequence homology, were directly compared. Ec-CDT and Hd-CDT shared comparable in vitro DNase activities of the CdtB subunits, saturable cell surface binding with comparable affinities, and the requirement for an intact Golgi complex to induce cell cycle arrest. In contrast, disruption of endosome acidification blocked Hd-CDT-mediated cell cycle arrest and toxin transport to the endoplasmic reticulum and nucleus, while having no effects on Ec-CDT. Phosphorylation of the histone protein H2AX, as well as nuclear localization, was inhibited for Hd-CdtB, but not Ec-CdtB, in cells expressing dominant negative Rab7 (T22N), suggesting that Hd-CDT, but not Ec-CDT, is trafficked through late endosomal vesicles. In support of this idea, significantly more Hd-CdtB than Ec-CdtB co-localized with Rab9, which is enriched in late endosomal compartments. Competitive binding studies suggested that Ec-CDT and Hd-CDT bind to discrete cell surface determinants. These results suggest that Ec-CDT and Hd-CDT are transported within cells by distinct pathways, possibly mediated by their interaction with different receptors at the cell surface.
Collapse
Affiliation(s)
- Amandeep Gargi
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| | - Batcha Tamilselvam
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| | - Brendan Powers
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| | - Michael G Prouty
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801
| | - Tommie Lincecum
- Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204
| | - Aria Eshraghi
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095
| | | | - Brenda A Wilson
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
| | - Kenneth A Bradley
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, California 90095
| | - Steven R Blanke
- Department of Microbiology, University of Illinois, Urbana, Illinois 61801; Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801.
| |
Collapse
|
185
|
Bell JA, Jerome J, Plovanich-Jones AE, Smith EJ, Gettings JR, Kim HY, Landgraf JR, Lefébure T, Kopper JJ, Rathinam VA, St. Charles JL, Buffa BA, Brooks AP, Poe SA, Eaton KA, Stanhope MJ, Mansfield LS. Outcome of infection of C57BL/6 IL-10(-/-) mice with Campylobacter jejuni strains is correlated with genome content of open reading frames up- and down-regulated in vivo. Microb Pathog 2013; 54:1-19. [PMID: 22960579 PMCID: PMC4118490 DOI: 10.1016/j.micpath.2012.08.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2012] [Accepted: 08/07/2012] [Indexed: 12/12/2022]
Abstract
Human Campylobacter jejuni infection can result in an asymptomatic carrier state, watery or bloody diarrhea, bacteremia, meningitis, or autoimmune neurological sequelae. Infection outcomes of C57BL/6 IL-10(-/-) mice orally infected with twenty-two phylogenetically diverse C. jejuni strains were evaluated to correlate colonization and disease phenotypes with genetic composition of the strains. Variation between strains was observed in colonization, timing of development of clinical signs, and occurrence of enteric lesions. Five pathotypes of C. jejuni in C57BL/6 IL-10(-/-) mice were delineated: little or no colonization, colonization without disease, colonization with enteritis, colonization with hemorrhagic enteritis, and colonization with neurological signs with or without enteritis. Virulence gene content of ten sequenced strains was compared in silico; virulence gene content of twelve additional strains was compared using a C. jejuni pan-genome microarray. Neither total nor virulence gene content predicted pathotype; nor was pathotype correlated with multilocus sequence type. Each strain was unique with regard to absences of known virulence-related loci and/or possession of point mutations and indels, including phase variation, in virulence-related genes. An experiment in C. jejuni 11168-infected germ-free mice showed that expression levels of ninety open reading frames (ORFs) were significantly up- or down-regulated in the mouse cecum at least two-fold compared to in vitro growth. Genomic content of these ninety C. jejuni 11168 ORFs was significantly correlated with the capacity to colonize and cause enteritis in C57BL/6 IL-10(-/-) mice. Differences in gene expression levels and patterns are thus an important determinant of pathotype in C. jejuni strains in this mouse model.
Collapse
Affiliation(s)
- J. A. Bell
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J.P. Jerome
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Department of Microbiology and Molecular Genetics, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - A. E. Plovanich-Jones
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - E. J. Smith
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. R. Gettings
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - H. Y. Kim
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. R. Landgraf
- Research Technology Support Facility, Michigan State University, East Lansing, MI 48824
| | - T. Lefébure
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - J. J. Kopper
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Cell and Molecular Biology Program, College of Natural Sciences, Michigan State University, East Lansing, MI 48824
| | - V. A. Rathinam
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - J. L. St. Charles
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - B. A. Buffa
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - A. P. Brooks
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| | - S. A. Poe
- Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109; Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109
| | - K. A. Eaton
- Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109; Laboratory Animal Medicine Unit, University of Michigan Medical School, Ann Arbor, MI 48109
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - M. J. Stanhope
- Department of Population Medicine and Diagnostic Science, College of Veterinary Medicine, Cornell University, Ithaca, NY 14853
| | - L. S. Mansfield
- Comparative Enteric Diseases Laboratory, Department of Large Animal Clinical Sciences, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
- Comparative Medicine and Integrative Biology Program, College of Veterinary Medicine, Michigan State University, East Lansing, MI 48824
| |
Collapse
|
186
|
Guidi R, Guerra L, Levi L, Stenerlöw B, Fox JG, Josenhans C, Masucci MG, Frisan T. Chronic exposure to the cytolethal distending toxins of Gram-negative bacteria promotes genomic instability and altered DNA damage response. Cell Microbiol 2012; 15:98-113. [PMID: 22998585 DOI: 10.1111/cmi.12034] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 09/03/2012] [Accepted: 09/16/2012] [Indexed: 12/17/2022]
Abstract
Epidemiological evidence links chronic bacterial infections to the increased incidence of certain types of cancer but the molecular mechanisms by which bacteria contribute to tumour initiation and progression are still poorly characterized. Here we show that chronic exposure to the genotoxin cytolethal distending toxin (CDT) of Gram-negative bacteria promotes genomic instability and acquisition of phenotypic properties of malignancy in fibroblasts and colon epithelial cells. Cells grown for more than 30 weeks in the presence of sublethal doses of CDT showed increased mutation frequency, and accumulation of chromatin and chromosomal aberrations in the absence of significant alterations of cell cycle distribution, decreased viability or senescence. Cell survival was dependent on sustained activity of the p38 MAP kinase. The ongoing genomic instability was associated with impaired activation of the DNA damage response and failure to efficiently activate cell cycle checkpoints upon exposure to genotoxic stress. Independently selected sublines showed enhanced anchorage-independent growth as assessed by the formation of colonies in semisolid agarose. These findings support the notion that chronic infection by CDT-producing bacteria may promote malignant transformation, and point to the impairment of cellular control mechanisms associated with the detection and repair of DNA damage as critical events in the process.
Collapse
Affiliation(s)
- Riccardo Guidi
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | | | | | | | | | | | | | | |
Collapse
|
187
|
Prediction and screening of nuclear targeting proteins with nuclear localization signals in Helicobacter pylori. J Microbiol Methods 2012; 91:490-6. [PMID: 23079023 DOI: 10.1016/j.mimet.2012.10.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/05/2012] [Accepted: 10/09/2012] [Indexed: 01/26/2023]
Abstract
Host cell pathology induced by nuclear targeting of bacterial proteins has recently been identified as a pathogenic mechanism of bacteria. However, very few bacterial proteins were identified to target the nuclei of host cells. This study was designed to screen nuclear targeting proteins with nuclear localization signals (NLSs) in Helicobacter pylori using a combination of bioinformatic analysis and the Gateway recombinational cloning system. Forty-nine functional or hypothetical proteins were predicted to carry the putative NLSs among 1570 open reading frames (ORFs) of H. pylori 26695. Entire sets of 49 H. pylori ORFs were cloned for the generation of green fluorescent protein-tagged proteins using the Gateway recombinational cloning system. Twenty-six H. pylori proteins with the putative NLSs were found to target in the nuclei of COS-7 cells, whereas 23 were localized in the cytoplasm of host cells. Deletion of NLS sequences from four selected nuclear targeting proteins, urease subunit A, Omp18, secreted protein involved in flagellar motility, and response regulator, resulted in cytoplasmic localization of these mutant proteins. In conclusion, a combination of bioinformatic analysis and the Gateway cloning system was shown to be a useful tool for large-scale screening of nuclear targeting proteins with NLSs in H. pylori, which can be used to better understand the H. pylori-directed host cell pathology.
Collapse
|
188
|
Fedor Y, Vignard J, Nicolau-Travers ML, Boutet-Robinet E, Watrin C, Salles B, Mirey G. From single-strand breaks to double-strand breaks during S-phase: a new mode of action of theEscherichia coli Cytolethal Distending Toxin. Cell Microbiol 2012; 15:1-15. [DOI: 10.1111/cmi.12028] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 09/04/2012] [Accepted: 09/05/2012] [Indexed: 12/12/2022]
Affiliation(s)
- Y. Fedor
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| | - J. Vignard
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| | - M.-L. Nicolau-Travers
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| | - E. Boutet-Robinet
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| | - C. Watrin
- INRA; USC 1360; F-31300 Toulouse France
- Université de Toulouse; UPS; Centre de Physiopathologie de Toulouse Purpan (CPTP); F-31400 Toulouse France
- Inserm; UMR1043; F-31300 Toulouse France
- CNRS; UMR5282; F-31400 Toulouse France
| | - B. Salles
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| | - G. Mirey
- INRA; UMR1331; Toxalim; Research Centre in Food Toxicology; F-31027 Toulouse France
- Université de Toulouse; UPS, UMR1331, Toxalim; F-31062 Toulouse France
| |
Collapse
|
189
|
Gargi A, Reno M, Blanke SR. Bacterial toxin modulation of the eukaryotic cell cycle: are all cytolethal distending toxins created equally? Front Cell Infect Microbiol 2012; 2:124. [PMID: 23061054 PMCID: PMC3465861 DOI: 10.3389/fcimb.2012.00124] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2012] [Accepted: 09/17/2012] [Indexed: 01/08/2023] Open
Abstract
The cytolethal distending toxins (CDTs) comprise a family of intracellular-acting bacterial protein toxins whose actions upon eukaryotic cells result in several consequences, the most characteristic of which is the induction of G(2)/M cell cycle arrest. Most CDTs are hetero-tripartite assemblies of CdtA, CdtB, and CdtC, with CdtB required for CDT-mediated cell cycle arrest. Several lines of evidence indicate that CdtA and CdtC are required for the optimal intracellular activity of CdtB, although the exact functional roles of CdtA and CdtC remain poorly understood. The genes encoding the CDTs have been identified in a diverse array of Gram-negative pathogenic bacteria. More recently, the genes encoding several CdtB subunits have been associated with alternatively linked subunits resembling the B-subunits of pertussis toxin. Although the CDTs are generally considered to all function as bacterial genotoxins, the extent to which individual members of the CDTs employ similar mechanisms of cell surface binding, uptake, and trafficking within sensitive cells is poorly understood. Recently, data have begun to emerge suggesting differences in the molecular basis by which individual CDTs interact with and enter host cells, suggesting the possibility that CDTs possess properties reflecting the specific niches idiosyncratic to those CDT bacterial pathogens that produce them. The extent to which functional differences between individual CDTs reflect the specific requirements for intoxicating cells and tissues within the diverse range of host microenvironments colonized by CDT-producing pathogenic bacteria remains to be experimentally explored.
Collapse
Affiliation(s)
| | | | - Steven R. Blanke
- Department of Microbiology, Institute for Genomic Biology, University of IllinoisUrbana, IL, USA
| |
Collapse
|
190
|
Chen Y, Jiang S, Jin Y, Yin Y, Yu G, Lan X, Cui M, Liang Y, Wong BHC, Guo L, Sun H. Purification and characterization of an antitumor protein with deoxyribonuclease activity from edible mushroom Agrocybe aegerita. Mol Nutr Food Res 2012; 56:1729-38. [DOI: 10.1002/mnfr.201200316] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2012] [Revised: 08/01/2012] [Accepted: 08/15/2012] [Indexed: 11/12/2022]
Affiliation(s)
- Yijie Chen
- College of Life Sciences; Wuhan University; Wuhan; Hubei Province; P. R. China
| | - Shuai Jiang
- College of Life Sciences; Wuhan University; Wuhan; Hubei Province; P. R. China
| | - Yanxia Jin
- College of Life Sciences; Wuhan University; Wuhan; Hubei Province; P. R. China
| | - Yalin Yin
- College of Life Sciences; Wuhan University; Wuhan; Hubei Province; P. R. China
| | - Guojun Yu
- College of Life Sciences; Wuhan University; Wuhan; Hubei Province; P. R. China
| | - Xianqing Lan
- College of Life Sciences; Wuhan University; Wuhan; Hubei Province; P. R. China
| | - Mingyao Cui
- College of Life Sciences; Wuhan University; Wuhan; Hubei Province; P. R. China
| | - Yi Liang
- Department of Clinical Immunology; Guangdong Medical College; Dongguan; P. R. China
| | | | - Lin Guo
- College of Life Sciences; Wuhan University; Wuhan; Hubei Province; P. R. China
| | | |
Collapse
|
191
|
Pokkunuri V, Pimentel M, Morales W, Jee SR, Alpern J, Weitsman S, Marsh Z, Low K, Hwang L, Khoshini R, Barlow GM, Wang H, Chang C. Role of Cytolethal Distending Toxin in Altered Stool Form and Bowel Phenotypes in a Rat Model of Post-infectious Irritable Bowel Syndrome. J Neurogastroenterol Motil 2012; 18:434-42. [PMID: 23106005 PMCID: PMC3479258 DOI: 10.5056/jnm.2012.18.4.434] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 08/16/2012] [Accepted: 08/21/2012] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND/AIMS Campylobacter jejuni infection is a leading cause of acute gastroenteritis, which is a trigger for post-infectious irritable bowel syndrome (PI-IBS). Cytolethal distending toxin (CDT) is expressed by enteric pathogens that cause PI-IBS. We used a rat model of PI-IBS to investigate the role of CDT in long-term altered stool form and bowel phenotypes. METHODS Adult Sprague-Dawley rats were gavaged with wildtype C. jejuni (C+), a C. jejunicdtB knockout (CDT-) or saline vehicle (controls). Four months after gavage, stool from 3 consecutive days was assessed for stool form and percent wet weight. Rectal tissue was analyzed for intraepithelial lymphocytes, and small intestinal tissue was stained with anti-c-kit for deep muscular plexus interstitial cells of Cajal (DMP-ICC). RESULTS All 3 groups showed similar colonization and clearance parameters. Average 3-day stool dry weights were similar in all 3 groups, but day-to-day variability in stool form and stool dry weight were significantly different in the C+ group vs both controls (P < 0.01) and the CDT- roup (P < 0.01), but were not different in the CDT- vs controls. Similarly, rectal lymphocytes were significantly higher after C. jejuni (C+) infection vs both controls (P < 0.01) and CDT-exposed rats (P < 0.05). The counts in the latter 2 groups were not significantly different. Finally, c-kit staining revealed that DMP-ICC were reduced only in rats exposed to wildtype C. jejuni. CONCLUSIONS In this rat model of PI-IBS, CDT appears to play a role in the development of chronic altered bowel patterns, mild chronic rectal inflammation and reduction in DMP-ICC.
Collapse
Affiliation(s)
- Venkata Pokkunuri
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Mark Pimentel
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Walter Morales
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Sam-Ryong Jee
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Joel Alpern
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Stacy Weitsman
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Zachary Marsh
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Kimberly Low
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Laura Hwang
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Reza Khoshini
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Gillian M Barlow
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Hanlin Wang
- Department of Pathology, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Christopher Chang
- GI Motility Program, Cedars-Sinai Medical Center, Los Angeles, California, USA
| |
Collapse
|
192
|
Zijnge V, Kieselbach T, Oscarsson J. Proteomics of protein secretion by Aggregatibacter actinomycetemcomitans. PLoS One 2012; 7:e41662. [PMID: 22848560 PMCID: PMC3405016 DOI: 10.1371/journal.pone.0041662] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2012] [Accepted: 06/25/2012] [Indexed: 01/18/2023] Open
Abstract
The extracellular proteome (secretome) of periodontitis-associated bacteria may constitute a major link between periodontitis and systemic diseases. To obtain an overview of the virulence potential of Aggregatibacter actinomycetemcomitans, an oral and systemic human pathogen implicated in aggressive periodontitis, we used a combined LC-MS/MS and bioinformatics approach to characterize the secretome and protein secretion pathways of the rough-colony serotype a strain D7S. LC-MS/MS revealed 179 proteins secreted during biofilm growth. Further to confirming the release of established virulence factors (e.g. cytolethal distending toxin [CDT], and leukotoxin [LtxA]), we identified additional putative virulence determinants in the secretome. These included DegQ, fHbp, LppC, Macrophage infectivity protein (MIP), NlpB, Pcp, PotD, TolB, and TolC. This finding indicates that the number of extracellular virulence-related proteins is much larger than previously demonstrated, which was also supported by in silico analysis of the strain D7S genome. Moreover, our LC-MS/MS and in silico data revealed that at least Type I, II, and V secretion are actively used to excrete proteins directly into the extracellular space, or via two-step pathways involving the Sec/Tat systems for transport across the inner membrane, and outer membrane factors, secretins and auto-transporters, respectively for delivery across the outer membrane. Taken together, our results provide a molecular basis for further elucidating the role of A. actinomycetemcomitans in periodontal and systemic diseases.
Collapse
Affiliation(s)
- Vincent Zijnge
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
| | | | - Jan Oscarsson
- Oral Microbiology, Department of Odontology, Umeå University, Umeå, Sweden
- * E-mail:
| |
Collapse
|
193
|
Moon DC, Choi CH, Lee SM, Lee JH, Kim SI, Kim DS, Lee JC. Nuclear translocation of Acinetobacter baumannii transposase induces DNA methylation of CpG regions in the promoters of E-cadherin gene. PLoS One 2012; 7:e38974. [PMID: 22685614 PMCID: PMC3369853 DOI: 10.1371/journal.pone.0038974] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2012] [Accepted: 05/14/2012] [Indexed: 12/18/2022] Open
Abstract
Nuclear targeting of bacterial proteins has emerged as a pathogenic mechanism whereby bacterial proteins induce host cell pathology. In this study, we examined nuclear targeting of Acinetobacter baumannii transposase (Tnp) and subsequent epigenetic changes in host cells. Tnp of A. baumannii ATCC 17978 possesses nuclear localization signals (NLSs), 225RKRKRK230. Transient expression of A. baumannii Tnp fused with green fluorescent protein (GFP) resulted in the nuclear localization of these proteins in COS-7 cells, whereas the truncated Tnp without NLSs fused with GFP were exclusively localized in the cytoplasm. A. baumannii Tnp was found in outer membrane vesicles, which delivered this protein to the nucleus of host cells. Nuclear expression of A. baumannii Tnp fused with GFP in A549 cells induced DNA methylation of CpG regions in the promoters of E-cadherin (CDH1) gene, whereas the cytoplasmic localization of the truncated Tnp without NLSs fused with GFP did not induce DNA methylation. DNA methylation in the promoters of E-cadherin gene induced by nuclear targeting of A. baumannii Tnp resulted in down-regulation of gene expression. In conclusion, our data show that nuclear traffic of A. baumannii Tnp induces DNA methylation of CpG regions in the promoters of E-cadherin gene, which subsequently down-regulates gene expression. This study provides a new insight into the epigenetic control of host genes by bacterial proteins.
Collapse
Affiliation(s)
- Dong Chan Moon
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Chul Hee Choi
- Department of Periodontology, University of Florida, Gainesville, Florida, United States of America
| | - Su Man Lee
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jung Hwa Lee
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Seung Il Kim
- Division of Life Science, Korea Basic Science Institute, Daejeon, Korea
| | - Dong Sun Kim
- Department of Anatomy, Kyungpook National University School of Medicine, Daegu, Korea
- * E-mail: (JCL); (DSK)
| | - Je Chul Lee
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu, Korea
- * E-mail: (JCL); (DSK)
| |
Collapse
|
194
|
Localization of Aggregatibacter actinomycetemcomitans cytolethal distending toxin subunits during intoxication of live cells. Infect Immun 2012; 80:2761-70. [PMID: 22645284 DOI: 10.1128/iai.00385-12] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The cytolethal distending toxin (Cdt), produced by some clinically important Gram-negative bacterial species, is related to the family of AB-type toxins. Three heterologous proteins (CdtA, CdtB, and CdtC) and a genotoxin mode of action distinguish the Cdt from others in this toxin class. Crystal structures of several species-specific Cdts have provided a basis for predicting subunit interactions and functions. In addition, empirical studies have yielded significant insights into the in vivo interactions of the Cdt subunits. However, there are still critical gaps in information about the intoxication process. In this study, a novel protein tagging technology was used to localize the subunits in Chinese hamster ovary cells (CHO-K1). A tetracysteine motif was engineered in each subunit, and in subunits with mutations in predicted functional domains, to permit detection with the fluorescein arsenical hairpin binding (FlAsH) dye Lumio green. Live-cell imaging, in conjunction with confocal microscopy, was used to capture the locations of the individual subunits in cells intoxicated, under various conditions, with hybrid heterotrimers. Using this approach, we observed the following. (i) The CdtA subunit remains on the cell surface of CHO cells in association with cholesterol-containing and cholesterol-depleted membrane. (ii) The CdtB subunit is exclusively in the cytosol and, after longer exposure times, localizes to the nucleus. (iii) The CdtC subunit is present on the cell surface and, to a greater extent, in the cytosol. These observations suggest that CdtC, but not CdtA, functions as a chaperone for CdtB entry into cells.
Collapse
|
195
|
Sprenger H, Zechner EL, Gorkiewicz G. So close and yet so far - Molecular Microbiology of Campylobacter fetus subspecies. Eur J Microbiol Immunol (Bp) 2012; 2:66-75. [PMID: 24611123 DOI: 10.1556/eujmi.2.2012.1.10] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 01/13/2012] [Accepted: 01/14/2012] [Indexed: 11/19/2022] Open
Abstract
Campylobacter fetus comprises two subspecies, C. fetus subsp. fetus and C. fetus subsp. venerealis, which are considered emerging pathogens in humans and animals. Comparisons at the genome level have revealed modest subspecies-specific variation; nevertheless, these two subspecies show distinct host and niche preferences. C. fetus subsp. fetus is a commensal and pathogen of domesticated animals that can be transmitted to humans via contaminated food. The clinical features of human infection can be severe, especially in impaired hosts. In contrast, C. fetus subsp. venerealis is a sexually transmitted pathogen essentially restricted to cattle. Infections leading to bovine venereal campylobacteriosis cause substantial economic losses due to abortion and infertility. Recent genome sequencing of the two subspecies has advanced our understanding of C. fetus adaptations through comparative genomics and the identification of subspecies-specific gene regions predicted to be involved in pathogenesis. The most striking difference between the subspecies is the highly subspecies-specific association of a pathogenicity island in the C. fetus subsp. venerealis chromosome. The inserted region encodes a Type 4 secretion system, which contributes to virulence properties of this organism in vitro. This review describes the main differences in epidemiological, phenotypic, and molecular characteristics of the two subspecies and summarizes recent advances towards understanding the molecular mechanisms of C. fetus pathogenesis.
Collapse
|
196
|
O Cróinín T, Backert S. Host epithelial cell invasion by Campylobacter jejuni: trigger or zipper mechanism? Front Cell Infect Microbiol 2012; 2:25. [PMID: 22919617 PMCID: PMC3417527 DOI: 10.3389/fcimb.2012.00025] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2011] [Accepted: 02/17/2012] [Indexed: 11/18/2022] Open
Abstract
Campylobacter jejuni, a spiral-shaped Gram-negative pathogen, is a highly frequent cause of gastrointestinal foodborne illness in humans worldwide. Clinical outcome of C. jejuni infections ranges from mild to severe diarrheal disease, and some other complications including reactive arthritis and Guillain–Barré syndrome. This review article highlights various C. jejuni pathogenicity factors, host cell determinants, and proposed signaling mechanisms involved in human host cell invasion and their potential role in the development of C. jejuni-mediated disease. A model is presented which outlines the various important interactions of C. jejuni with the intestinal epithelium, and we discuss the pro’s and con’s for the “zipper” over the “trigger” mechanism of invasion. Future work should clarify the contradictory role of some previously identified factors, and should identify and characterize novel virulence determinants, which are crucial to provide fresh insights into the diversity of strategies employed by this pathogen to cause disease.
Collapse
Affiliation(s)
- Tadhg O Cróinín
- UCD School of Biomolecular and Biomedical Sciences, University College Dublin Dublin, Ireland
| | | |
Collapse
|
197
|
Szymanski CM, Gaynor E. How a sugary bug gets through the day: recent developments in understanding fundamental processes impacting Campylobacter jejuni pathogenesis. Gut Microbes 2012; 3:135-44. [PMID: 22555465 PMCID: PMC3370946 DOI: 10.4161/gmic.19488] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Campylobacter jejuni is a highly prevalent yet fastidious bacterial pathogen that poses a significant health burden worldwide. Lacking many hallmark virulence factors, it is becoming increasingly clear that C. jejuni pathogenesis involves different strategies compared with other well-characterized enteric organisms. This includes the involvement of basic biological processes and cell envelope glycans in a number of aspects related to pathogenesis. The past few years have seen significant progress in the understanding of these pathways and how they relate to C. jejuni fundamental biology, stress survival, colonization, and virulence attributes. This review focuses on recent studies in three general areas where "pathogenesis" and "basic biology" overlap: physiology, stress responses and glycobiology.
Collapse
Affiliation(s)
- Christine M. Szymanski
- Alberta Glycomics Centre and Department of Biological Sciences; University of Alberta; Edmonton, Canada,Correspondence to: Christine M. Szymanski, or Erin Gaynor,
| | - Erin Gaynor
- Department of Microbiology and Immunology; University of British Columbia; Vancouver, Canada,Correspondence to: Christine M. Szymanski, or Erin Gaynor,
| |
Collapse
|
198
|
Abstract
The nucleus, at the heart of the eukaryotic cell, hosts and protects the genetic material, governs gene expression and regulates the whole cell physiology, including cell division. A growing number of studies indicate that various animal and plant pathogenic bacteria can deliver factors to this central organelle to subvert host defences by directly interfering with transcription, chromatin-remodelling, RNA splicing or DNA replication and repair. Such bacterial molecules entering the nucleus, which we propose to term 'nucleomodulins', use diverse strategies to hijack nuclear processes by targeting host DNA or an array of nuclear proteins. In some cases, bacteria can even enter the nucleus. These bacterial 'nuclear attacks' might have permanent genetic or long-term epigenetic effects on the host. Studying nucleomodulins and endonuclear bacteria can thus generate new insights into long-term impacts of infectious diseases and create novel tools for biotechnological applications and for deciphering the regulation of nuclear dynamics.
Collapse
Affiliation(s)
- Hélène Bierne
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris, F-75015, France.
| | | |
Collapse
|
199
|
Nakajima T, Hirayama J, Tazumi A, Hayashi K, Tasaki E, Asakura M, Yamasaki S, Moore JE, Millar BC, Matsuda M. Comparative analysis of Campylobacter lari cytolethal distending toxin (CDT) effect on HeLa cells. J Basic Microbiol 2012; 52:559-65. [PMID: 22359318 DOI: 10.1002/jobm.201100297] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 10/07/2011] [Indexed: 11/06/2022]
Abstract
We aimed to clarify if Campylobacter lari exerts a cytolethal distending toxin (CDT) effect on HeLa cells. Campylobacter cell lysates (CCLys) from C. jejuni 81-176 and urease-positive thermophilic Campylobacter (UPTC) CF89-12 and UPTC NCTC12893 isolates were shown to exert a CDT effect on HeLa cells with morphological changes examined by Giemsa staining and microscopy. However, Campylobacter lari JCM2530(T) isolate showed no effect. In addition, Campylobacter cell culture supernatant wash gave low or absent toxic effects with both C. jejuni and C. lari organisms. When western blot analysis was carried out to clarify if there was a CDTB effect in the CCLys and soluble fractions from Campylobacter isolates, which had a CDT effect on HeLa cells or did not have any effect, anti-recombinant CjCDTB antibodies identified an immunoreactively positive signal at around approximately 25 kDa on all the C. lari isolates examined, as well as the C. jejuni 81116 strain. Thus, all the Campylobacter isolates including those without any CDT effect were shown to express CDTB at the translational level.
Collapse
Affiliation(s)
- T Nakajima
- Laboratory of Molecular Biology Graduate School of Environmental Health Sciences, Azabu University, Fuchinobe, Chuo-ku Sagamihara, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
200
|
Moon DC, Gurung M, Lee JH, Lee YS, Choi CW, Kim SI, Lee JC. Screening of nuclear targeting proteins in Acinetobacter baumannii based on nuclear localization signals. Res Microbiol 2012; 163:279-85. [PMID: 22366694 DOI: 10.1016/j.resmic.2012.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2011] [Accepted: 02/01/2012] [Indexed: 12/13/2022]
Abstract
Nuclear targeting of bacterial proteins is an emerging pathogenic mechanism in bacteria. However, due to the absence of an appropriate screening system for nuclear targeting proteins, systematic approaches to nuclear targeting of bacterial proteins and subsequent host cell pathology are limited. In this study, we developed a screening system for nuclear targeting proteins in Acinetobacter baumannii using a combination of bioinformatic analysis based on nuclear localization signal (NLS) and the Gateway(®) recombinational cloning system. Among 3367 open reading frames of A. baumannii ATCC 17978, 34 functional or hypothetical proteins were predicted to carry the putative NLS sequences. Of the 29 clones generated by the Gateway(®) recombinational cloning system, 14 proteins tagged with green fluorescent protein (GFP) were targeted to nuclei of host cells. Among the 14 nuclear targeting proteins, S21, L20, and L32 ribosomal proteins and transposase carried putative nuclear export signal (NES) sequences, but only transposase harbored the functional NES. After translocation to nuclei of host cells, four A. baumannii proteins induced cytotoxicity. In conclusion, we have developed a screening system for nuclear targeting proteins in A. baumannii. This system may open the way to a new field of bacterial pathogenesis.
Collapse
Affiliation(s)
- Dong Chan Moon
- Department of Microbiology, Kyungpook National University School of Medicine, Daegu 700 422, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|