151
|
Pasqualetti F, Trippa F, Aristei C, Borghesi S, Colosimo C, Cantarella M, Mazzola R, Ingrosso G. Stereotactic radiotherapy for oligometastases in the lymph nodes. Rep Pract Oncol Radiother 2022; 27:46-51. [PMID: 35402021 PMCID: PMC8989441 DOI: 10.5603/rpor.a2022.0007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/27/2021] [Indexed: 11/25/2022] Open
Abstract
Even though systemic therapy is standard treatment for lymph node metastases, metastasis-directed stereotactic radiotherapy (SRT ) seems to be a valid option in oligometastatic patients with a low disease burden. Positron emission tomography-computed tomography (PET-CT ) is the gold standard for assessing metastases to the lymph nodes; co-registration of PET-CT images and planning CT images are the basis for gross tumor volume (GTV ) delineation. Appropriate techniques are needed to overcome target motion. SRT schedules depend on the irradiation site, target volume and dose constraints to the organs at risk (OARs) of toxicity. Although several fractionation schemes were reported, total doses of 48–60 Gy in 4–8 fractions were proposed for mediastinal lymph node SRT, with the spinal cord, esophagus, heart and proximal bronchial tree being the dose limiting OAR s. Total doses ranged from 30 to 45 Gy, with daily fractions of 7–12 Gy for abdominal lymph nodes, with dose limiting OARs being the liver, kidneys, bowel and bladder. SRT on lymph node metastases is safe; late side effects, particularly severe, are rare.
Collapse
Affiliation(s)
- Francesco Pasqualetti
- Department of Radiation Oncology, Azienda Ospedaliera Universitaria Pisana, University of Pisa, Italy
| | - Fabio Trippa
- Radiation Oncology Centre, S. Maria Hospital, Terni, Italy
| | - Cynthia Aristei
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| | - Simona Borghesi
- Radiation Oncology Unit of Arezzo-Valdarno, Azienda USL Toscana Sud Est, Italy
| | - Caterina Colosimo
- Operative Unit of Radiotherapy, Department of Oncology, San Luca Hospital, Lucca, Italy
| | | | - Rosario Mazzola
- Radiation Oncology Department, IRCCS Sacro Cuore Don Calabria Hospital, Negrar-Verona, Italy
| | - Gianluca Ingrosso
- Radiation Oncology Section, University of Perugia and Perugia General Hospital, Italy
| |
Collapse
|
152
|
Nicoś M, Krawczyk P. Genetic Clonality as the Hallmark Driving Evolution of Non-Small Cell Lung Cancer. Cancers (Basel) 2022; 14:1813. [PMID: 35406585 PMCID: PMC8998004 DOI: 10.3390/cancers14071813] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 12/12/2022] Open
Abstract
Data indicate that many driver alterations from the primary tumor of non-small cell lung cancer (NSCLC) are predominantly shared across all metastases; however, disseminating cells may also acquire a new genetic landscape across their journey. By comparing the constituent subclonal mutations between pairs of primary and metastatic samples, it is possible to derive the ancestral relationships between tumor clones, rather than between tumor samples. Current treatment strategies mostly rely on the theory that metastases are genetically similar to the primary lesions from which they arise. However, intratumor heterogeneity (ITH) affects accurate diagnosis and treatment decisions and it is considered the main hallmark of anticancer therapy failure. Understanding the genetic changes that drive the metastatic process is critical for improving the treatment strategies of this deadly condition. Application of next generation sequencing (NGS) techniques has already created knowledge about tumorigenesis and cancer evolution; however, further NGS implementation may also allow to reconstruct phylogenetic clonal lineages and clonal expansion. In this review, we discuss how the clonality of genetic alterations influence the seeding of primary and metastatic lesions of NSCLC. We highlight that wide genetic analyses may reveal the phylogenetic trajectories of NSCLC evolution, and may pave the way to better management of follow-up and treatment.
Collapse
Affiliation(s)
- Marcin Nicoś
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, 20-954 Lublin, Poland;
| | | |
Collapse
|
153
|
Alwhaibi A, Parvathagiri V, Verma A, Artham S, Adil MS, Somanath PR. Regulation of Let-7a-5p and miR-199a-5p Expression by Akt1 Modulates Prostate Cancer Epithelial-to-Mesenchymal Transition via the Transforming Growth Factor-β Pathway. Cancers (Basel) 2022; 14:cancers14071625. [PMID: 35406397 PMCID: PMC8996869 DOI: 10.3390/cancers14071625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/07/2022] [Accepted: 03/21/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary The molecular mechanisms regulating the switch from the growth of tumor cells to invasive phenotype for metastasis is largely unknown. Molecules such as Akt1 and TGFβ have been demonstrated to play reciprocal roles in the early and advanced stages of cancers, and epithelial-to-mesenchymal transition has been identified as a common link in the process. Advancing our knowledge on the direct association between these two pathways and how their effects are reconciled in the advanced stages of cancers such as prostate cancer will have therapeutic benefits. Identifying the role of microRNAs in the process will also benefit the scientific community. Abstract Akt1 suppression in advanced cancers has been indicated to promote metastasis. Our understanding of how Akt1 orchestrates this is incomplete. Using the NanoString®-based miRNA and mRNA profiling of PC3 and DU145 cells, and subsequent data analysis using the DIANA-mirPath, dbEMT, nCounter, and Ingenuity® databases, we identified the miRNAs and associated genes responsible for Akt1-mediated prostate cancer (PCa) epithelial-to-mesenchymal transition (EMT). Akt1 loss in PC3 and DU145 cells primarily induced changes in the miRNAs and mRNAs regulating EMT genes. These include increased miR-199a-5p and decreased let-7a-5p expression associated with increased TGFβ-R1 expression. Treatment with locked nucleic acid (LNA) miR-199a-5p inhibitor and/or let-7a-5p mimic induced expression changes in EMT genes correlating to their anticipated effects on PC3 and DU145 cell motility, invasion, and TGFβ-R1 expression. A correlation between increased miR-199a-5p and TGFβ-R1 expression with reduced let-7a-5p was also observed in high Gleason score PCa patients in the cBioportal database analysis. Collectively, our studies show the effect of Akt1 suppression in advanced PCa on EMT modulating miRNA and mRNA expression changes and highlight the potential benefits of miR-199a-5p and let-7a-5p in therapy and/or early screening of mPCa.
Collapse
Affiliation(s)
- Abdulrahman Alwhaibi
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Clinical Pharmacy Department, College of Pharmacy at King Saud University, Riyadh 11451, Saudi Arabia
| | - Varun Parvathagiri
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Arti Verma
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Sandeep Artham
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Mir S. Adil
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
| | - Payaningal R. Somanath
- Clinical and Experimental Therapeutics, University of Georgia, Augusta, GA 30912, USA; (A.A.); (V.P.); (A.V.); (S.A.); (M.S.A.)
- Charlie Norwood VA Medical Center, Augusta, GA 30912, USA
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA
- Georgia Cancer Center, Augusta University, Augusta, GA 30912, USA
- Correspondence:
| |
Collapse
|
154
|
Single-cell transcriptomics links malignant T cells to the tumor immune landscape in cutaneous T cell lymphoma. Nat Commun 2022; 13:1158. [PMID: 35241665 PMCID: PMC8894386 DOI: 10.1038/s41467-022-28799-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 02/14/2022] [Indexed: 02/06/2023] Open
Abstract
Cutaneous T cell lymphoma (CTCL) represents a heterogeneous group of non-Hodgkin lymphoma distinguished by the presence of clonal malignant T cells. The heterogeneity of malignant T cells and the complex tumor microenvironment remain poorly characterized. With single-cell RNA analysis and bulk whole-exome sequencing on 19 skin lesions from 15 CTCL patients, we decipher the intra-tumor and inter-lesion diversity of CTCL patients and propose a multi-step tumor evolution model. We further establish a subtyping scheme based on the molecular features of malignant T cells and their pro-tumorigenic microenvironments: the TCyEM group, demonstrating a cytotoxic effector memory T cell phenotype, shows more M2 macrophages infiltration, while the TCM group, featured by a central memory T cell phenotype and adverse patient outcome, is infiltrated by highly exhausted CD8+ reactive T cells, B cells and Tregs with suppressive activities. Our results establish a solid basis for understanding the nature of CTCL and pave the way for future precision medicine for CTCL patients.
Collapse
|
155
|
Zhang C, Yang J, Chen Y, Jiang F, Liao H, Liu X, Wang Y, Kong G, Zhang X, Li J, Gao J, Shen L. miRNAs derived from plasma small extracellular vesicles predict organo-tropic metastasis of gastric cancer. Gastric Cancer 2022; 25:360-374. [PMID: 35031872 DOI: 10.1007/s10120-021-01267-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Peritoneum, liver and lymph node are the most common metastatic sites of gastric cancer (GC). Biomarkers for GC's organo-tropic metastasis remained largely unknown, which was investigated in this study from the perspective of small extracellular vesicle (sEV)-derived miRNAs. METHODS Plasma from treatment-naïve GC patients including no metastasis (M0), peritoneal metastasis (PM), hepatic metastasis (HM) and distant lymph node metastasis (dLNM)) were divided into one discovery (N = 40), one training (N = 40) and one validating cohort (N = 86), then assessed by sEV-miRNA-sequencing and sEV-miRNA-qPCR. Functional explorations were also performed for verification. RESULTS The expression profiles of sEV-miRNAs varied greatly across different metastatic patterns. Based on logistic regression models, we constructed signatures for M0 (hsa-miR-186-5p/hsa-miR-200c-3p/hsa-miR-429/hsa-miR-5187-5p/hsa-miR-548ae-5p), PM (hsa-miR-200c-3p/hsa-miR-429), HM (hsa-miR-200c-3p/hsa-miR-429) and dLNM (hsa-miR-324-5p/hsa-miR-374a-5p/hsa-miR-429/hsa-miR-548ae-5p). These signatures vigorously characterized organo-tropic metastasis (all displaying AUC > 0.8, consistency ≥ 75%), and effectively conjectured the risk of future metastasis within 5 years (accuracy 45.5% for occurrence, 70% for organotropism, P = 0.002 for prognostic diversity). Additionally, we explored these seven biomarker miRNAs' impact on GC's in vitro motility and discussed their potential involvement in cancer-related biological processes and pathways. CONCLUSIONS Our work highlighted that plasma sEV-miRNAs powerfully characterized and predicted the organo-tropic metastasis of GC and provided new insight into the applications of sEV-based liquid biopsy in clinical practice.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jing Yang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Yang Chen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Fangli Jiang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Haiyan Liao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Xiang Liu
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Yuan Wang
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Guanyi Kong
- Department of R&D, Echo Biotech Co., Ltd, Beijing, People's Republic of China
| | - Xiaotian Zhang
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jian Li
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China
| | - Jing Gao
- National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Shenzhen, 518116, China
| | - Lin Shen
- Department of Gastrointestinal Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, 52 Fucheng Road, Hai-Dian District, Beijing, 100142, China.
| |
Collapse
|
156
|
Lim SM, Yang SD, Lim S, Heo SG, Daniel S, Markovets A, Minoo R, Pyo KH, Yun MR, Hong MH, Kim HR, Cho BC. Molecular landscape of osimertinib resistance in patients and patient-derived preclinical models. Ther Adv Med Oncol 2022; 14:17588359221079125. [PMID: 35251316 PMCID: PMC8891830 DOI: 10.1177/17588359221079125] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 01/21/2022] [Indexed: 01/04/2023] Open
Abstract
Introduction: Osimertinib is a third-generation EGFR tyrosine kinase inhibitor (TKI) that is approved for the use of EGFR-mutant non-small cell lung cancer (NSCLC) patients. In this study, we investigated the acquired resistance mechanisms in NSCLC patients and patient-derived preclinical models. Methods: Formalin-fixed paraffin-embedded tumor samples and plasma samples from 55 NSCLC patients who were treated with osimertinib were collected at baseline and at progressive disease (PD). Next-generation sequencing was performed in tumor and plasma samples using a 600-gene hybrid capture panel designed by AstraZeneca. Osimertinib-resistant cell lines and patient-derived xenografts and cells were generated and whole exome sequencing and RNA sequencing were performed. In vitro experiments were performed to functionally study the acquired mutations identified. Results: A total of 55 patients and a total of 149 samples (57 tumor samples and 92 plasma samples) were analyzed, and among them 36 patients had matched pre- and post-treatment samples. EGFR C797S (14%) mutation was the most frequent EGFR-dependent mechanism identified in all available progression samples, followed by EGFR G824D (6%), V726M (3%), and V843I (3%). Matched pre- and post-treatment sample analysis revealed in-depth acquired mechanisms of resistance. EGFR C797S was still most frequent (11%) among EGFR-dependent mechanism, while among EGFR-independent mechanisms, PIK3CA, ALK, BRAF, EP300, KRAS, and RAF1 mutations were detected. Among Osimertinib-resistant cell lines and patient-derived models, we noted acquired mutations which were potentially targetable such as NRAS p.Q61K, in which resistance could be overcome with combination of osimertinib and trametinib. A patient-derived xenograft established from osimertinib-resistant patient revealed KRAS p.G12D mutation which could be overcome with combination of osimertinib, trametinib, and buparlisib. Conclusion: In this study, we explored the genetic profiles of osimertinib-resistant NSCLC patient samples using targeted deep sequencing. In vitro and in vivo models harboring osimertinib resistance revealed potential novel treatment strategies after osimertinib failure.
Collapse
Affiliation(s)
- Sun Min Lim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - San-Duk Yang
- Department of Cyber Security & AI Technology, Kyung Hee Cyber University, Seoul, Republic of Korea
| | - Sangbin Lim
- Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Seong Gu Heo
- Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Stetson Daniel
- Translational Science, Oncology R&D, AstraZeneca, Boston, MA, USA
| | | | - Rafati Minoo
- Translational Science, Oncology R&D, AstraZeneca, Boston, MA, USA
| | - Kyoung-Ho Pyo
- Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Ran Yun
- Yonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Min Hee Hong
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hye Ryun Kim
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Byoung Chul Cho
- Division of Medical Oncology, Department of Internal Medicine, Yonsei Cancer Center, Yonsei University College of Medicine, Seoul, 03722, Republic of KoreaYonsei Cancer Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
157
|
Chen HN, Shu Y, Liao F, Liao X, Zhang H, Qin Y, Wang Z, Luo M, Liu Q, Xue Z, Cao M, Zhang S, Zhang WH, Hou Q, Xia X, Luo H, Zhang Y, Yang L, Hu JK, Fu X, Liu B, Hu H, Huang C, Peng Y, Cheng W, Dai L, Yang L, Zhang W, Dong B, Li Y, Wei Y, Xu H, Zhou ZG. Genomic evolution and diverse models of systemic metastases in colorectal cancer. Gut 2022; 71:322-332. [PMID: 33632712 PMCID: PMC8762014 DOI: 10.1136/gutjnl-2020-323703] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The systemic spread of colorectal cancer (CRC) is dominated by the portal system and exhibits diverse patterns of metastasis without systematical genomic investigation. Here, we evaluated the genomic evolution of CRC with multiorgan metastases using multiregion sequencing. DESIGN Whole-exome sequencing was performed on multiple regions (n=74) of matched primary tumour, adjacent non-cancerous mucosa, liver metastasis and lung metastasis from six patients with CRC. Phylogenetic reconstruction and evolutionary analyses were used to investigate the metastatic seeding pattern and clonal origin. Recurrent driver gene mutations were analysed across patients and validated in two independent cohorts. Metastatic assays were performed to examine the effect of the novel driver gene on the malignant behaviour of CRC cells. RESULTS Based on the migration patterns and clonal origins, three models were revealed (sequential, branch-off and diaspora), which not only supported the anatomic assumption that CRC cells spread to lung after clonally expanding in the liver, but also illustrated the direct seeding of extrahepatic metastases from primary tumours independently. Unlike other cancer types, polyphyletic seeding occurs in CRC, which may result in late metastases with intermetastatic driver gene heterogeneity. In cases with rapid dissemination, we found recurrent trunk loss-of-function mutations in ZFP36L2, which is enriched in metastatic CRC and associated with poor overall survival. CRISPR/Cas9-mediated knockout of ZFP36L2 enhances the metastatic potential of CRC cells. CONCLUSION Our results provide genomic evidence for metastatic evolution and indicate that biopsy/sequencing of metastases may be considered for patients with CRC with multiorgan or late postoperative metastasis.
Collapse
Affiliation(s)
- Hai-Ning Chen
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yang Shu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China,State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xue Liao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongying Zhang
- Department of Pathology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yun Qin
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhu Wang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Maochao Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qiuluo Liu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zhinan Xue
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Minyuan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shouyue Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei-Han Zhang
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qianqian Hou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuyang Xia
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Han Luo
- Department of Thyroid and Parathyroid Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lie Yang
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Jian-Kun Hu
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xianghui Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Bo Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hongbo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Canhua Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yong Peng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Cheng
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Lunzhi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital Central South University, Changsha, Hunan, China
| | - Biao Dong
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuan Li
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuquan Wei
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China .,Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Zong-Guang Zhou
- Department of Gastrointestinal Surgery, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
158
|
Liu J, Shen J, Mu C, Liu Y, He D, Luo H, Wu W, Zheng X, Liu Y, Chen S, Pan Q, Hu Y, Ni Y, Wang Y, Liu Y, Li Z. High-dose vitamin D metabolite delivery inhibits breast cancer metastasis. Bioeng Transl Med 2022; 7:e10263. [PMID: 35111955 PMCID: PMC8780911 DOI: 10.1002/btm2.10263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 02/05/2023] Open
Abstract
Besides its well-known benefits on human health, calcitriol, the hormonally active form of vitamin D3, has been being evaluated in clinical trials as an anticancer agent. However, currently available results are contradictory and not fundamentally deciphered. To the best of our knowledge, hypercalcemia caused by high-dose calcitriol administration and its low bioavailability limit its anticancer investigations and translations. Here, we show that the one-step self-assembly of calcitriol and amphiphilic cholesterol-based conjugates leads to the formation of a stable minimalist micellar nanosystem. When administered to mice, this nanosystem demonstrates high calcitriol doses in breast tumor cells, significant tumor growth inhibition and antimetastasis capability, as well as good biocompatibility. We further reveal that the underlying molecular antimetastatic mechanisms involve downregulation of proteins facilitating metastasis and upregulation of paxillin, the key protein of focal adhesion, in primary tumors.
Collapse
Affiliation(s)
- Jiaye Liu
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduChina
- Respiratory Health InstituteFrontiers Science Center for Disease Molecular Network, West China Hospital, Sichuan UniversityChengduChina
| | - Junyi Shen
- Department of Liver Surgery & Liver Transplantation CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Chunyang Mu
- Department of Liver Surgery & Liver Transplantation CenterWest China Hospital, Sichuan UniversityChengduChina
| | - Yang Liu
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Dongsheng He
- Department of Pharmaceutics, School of PharmacyChina Pharmaceutical UniversityNanjingChina
| | - Han Luo
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Wenshuang Wu
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Xun Zheng
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| | - Yi Liu
- Department of Rheumatology and Immunology, Rare Disease Center, West China HospitalSichuan UniversityChengduChina
| | | | - Qiuwei Pan
- Department of Gastroenterology and HepatologyErasmus MC‐University Medical CenterRotterdamThe Netherlands
| | - Yiguo Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China HospitalSichuan University and Collaborative Innovation CenterChengduChina
| | - Yinyun Ni
- Respiratory Health InstituteFrontiers Science Center for Disease Molecular Network, West China Hospital, Sichuan UniversityChengduChina
| | - Yang Wang
- Department of Medical Biochemistry and BiophysicsKarolinska InstituteStockholmSweden
| | - Yong Liu
- Department of Gastroenterological SurgeryWest China Hospital, Sichuan UniversityChengduChina
| | - Zhihui Li
- Department of Thyroid and Parathyroid SurgeryWest China Hospital, Sichuan UniversityChengduChina
- Laboratory of Thyroid and Parathyroid diseases, Frontiers Science Center for Disease‐Related Molecular Network, West China HospitalSichuan UniversityChengduChina
| |
Collapse
|
159
|
Kang M, Na HY, Ahn S, Kim JW, Lee S, Ahn S, Lee JH, Youk J, Kim HT, Kim KJ, Suh KJ, Lee JS, Kim SH, Kim JW, Kim YJ, Lee KW, Yoon YS, Kim JH, Chung JH, Han HS, Lee JS. Gallbladder adenocarcinomas undergo subclonal diversification and selection from precancerous lesions to metastatic tumors. eLife 2022; 11:78636. [PMID: 36476508 PMCID: PMC9771369 DOI: 10.7554/elife.78636] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
We aimed to elucidate the evolutionary trajectories of gallbladder adenocarcinoma (GBAC) using multi-regional and longitudinal tumor samples. Using whole-exome sequencing data, we constructed phylogenetic trees in each patient and analyzed mutational signatures. A total of 11 patients including 2 rapid autopsy cases were enrolled. The most frequently altered gene in primary tumors was ERBB2 and TP53 (54.5%), followed by FBXW7 (27.3%). Most mutations in frequently altered genes in primary tumors were detectable in concurrent precancerous lesions (biliary intraepithelial neoplasia [BilIN]), but a substantial proportion was subclonal. Subclonal diversity was common in BilIN (n=4). However, among subclones in BilIN, a certain subclone commonly shrank in concurrent primary tumors. In addition, selected subclones underwent linear and branching evolution, maintaining subclonal diversity. Combined analysis with metastatic tumors (n=11) identified branching evolution in nine patients (81.8%). Of these, eight patients (88.9%) had a total of 11 subclones expanded at least sevenfold during metastasis. These subclones harbored putative metastasis-driving mutations in cancer-related genes such as SMAD4, ROBO1, and DICER1. In mutational signature analysis, six mutational signatures were identified: 1, 3, 7, 13, 22, and 24 (cosine similarity >0.9). Signatures 1 (age) and 13 (APOBEC) decreased during metastasis while signatures 22 (aristolochic acid) and 24 (aflatoxin) were relatively highlighted. Subclonal diversity arose early in precancerous lesions and clonal selection was a common event during malignant transformation in GBAC. However, selected cancer clones continued to evolve and thus maintained subclonal diversity in metastatic tumors.
Collapse
Affiliation(s)
- Minsu Kang
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Hee Young Na
- Department of Pathology, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Soomin Ahn
- Department of Pathology and Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of MedicineSeoulRepublic of Korea
| | - Ji-Won Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea,Genealogy IncSeoulRepublic of Korea
| | - Sejoon Lee
- Center for Precision Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Soyeon Ahn
- Medical Research Collaboration Center, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Ju Hyun Lee
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jeonghwan Youk
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Haesook T Kim
- Department of Data Science, Dana Farber Cancer Institute, Harvard T.H. Chan School of Public HealthBostonUnited States
| | - Kui-Jin Kim
- Biomedical Research Institute, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Koung Jin Suh
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jun Suh Lee
- Department of Surgery, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Se Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jin Won Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Yu Jung Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Keun-Wook Lee
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Yoo-Seok Yoon
- Department of Surgery, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jee Hyun Kim
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jin-Haeng Chung
- Department of Pathology, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Ho-Seong Han
- Department of Surgery, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| | - Jong Seok Lee
- Department of Internal Medicine, Seoul National University Bundang HospitalSeongnamRepublic of Korea
| |
Collapse
|
160
|
Gu S, Xu J, Teng W, Huang X, Mei H, Chen X, Nie G, Cui Z, Liu X, Zhang Y, Wang K. Local delivery of biocompatible lentinan/chitosan composite for prolonged inhibition of postoperative breast cancer recurrence. Int J Biol Macromol 2022; 194:233-245. [PMID: 34871653 DOI: 10.1016/j.ijbiomac.2021.11.186] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/26/2021] [Accepted: 11/27/2021] [Indexed: 12/25/2022]
Abstract
Postsurgical localized chemotherapy for breast cancer recurrence (BCR) still faces many problems which dampen researchers' enthusiasm and discounted prognosis. Simple strategies with controllable toxicities are expected to address these hurdles. Lentinan (LNT) has excellent biocompatibility and notable antitumor activity but rather low bioavailability after intravenous or oral administration. Here, a sponge-like LNT/chitosan composite (LNT/CS sponge) was prepared for efficient local delivery to prevent postoperative BCR. The obtained sponges exhibit uniform porosity and sustained release of LNT in vitro and in vivo. Furthermore, the sponges were implanted and showed significant reduction of postsurgical recurrence and suppression of long-term tumor regrowth with favorable biocompatibility in a subcutaneous postsurgical recurrence mouse model. Subsequent studies revealed that LNT can restrain the stemness of breast cancer cells, which may account for the long-term inhibition of tumor relapse. Therefore, LNT/CS sponge has a great potential as a promising alternative for postsurgical BCR.
Collapse
Affiliation(s)
- Saisai Gu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Jingya Xu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Wangtianzi Teng
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Xiao Huang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Hao Mei
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Xinting Chen
- Hwa Mei Hospital, University of Chinese Academy of Science, 315010 Ningbo, China
| | - Gang Nie
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China
| | - Zheng Cui
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China
| | - Xiqiu Liu
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| | - Yu Zhang
- Department of Pharmacy, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 430030 Wuhan, China; Hubei Province Clinical Research Center for Precision Medicine for Critical Illness, 430030 Wuhan, China.
| | - Kaiping Wang
- Hubei Key Laboratory of Nature Medicinal Chemistry and Resource Evaluation, Tongji Medical College of Pharmacy, Huazhong University of Science and Technology, 430030 Wuhan, China.
| |
Collapse
|
161
|
Gui P, Bivona TG. Evolution of metastasis: new tools and insights. Trends Cancer 2021; 8:98-109. [PMID: 34872888 DOI: 10.1016/j.trecan.2021.11.002] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/01/2021] [Accepted: 11/05/2021] [Indexed: 02/07/2023]
Abstract
Metastasis is an evolutionary process occurring across multiple organs and timescales. Due to its continuous and dynamic nature, this multifaceted process has been challenging to investigate and remains incompletely understood, in part due to the lack of tools capable of probing genomic evolution at high enough resolution. However, technological advances in genetic sequencing and editing have provided new and powerful methods to refine our understanding of the complex series of events that lead to metastatic dissemination. In this review, we summarize the latest genetic and lineage-tracing approaches developed to unravel the genetic evolution of metastasis. The findings that have emerged have enhanced our comprehension of the mechanistic trajectories and timescales of metastasis and could provide new strategies for therapy.
Collapse
Affiliation(s)
- Philippe Gui
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| | - Trever G Bivona
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
162
|
Abstract
Cyclic di-nucleotides (CDNs) are widespread second messenger signalling molecules that regulate fundamental biological processes across the tree of life. These molecules are also potent modulators of the immune system, inducing a Type I interferon response upon binding to the eukaryotic receptor STING. Such a response in tumours induces potent immune anti-cancer responses and thus CDNs are being developed as a novel cancer immunotherapy. In this review, I will highlight the use, challenges and advantages of using naturally occurring CDNs to treat cancer.
Collapse
Affiliation(s)
- Christopher M. Waters
- Department of Microbiology and Molecular Genetics, Michigan State University, 5180 Biomedical and Physical Sciences, 567 Wilson Road, East Lansing, MI 48824, USA
| |
Collapse
|
163
|
Current status of intratumour microbiome in cancer and engineered exogenous microbiota as a promising therapeutic strategy. Biomed Pharmacother 2021; 145:112443. [PMID: 34847476 DOI: 10.1016/j.biopha.2021.112443] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023] Open
Abstract
Research on the relationship between microbiome and cancer has made significant progress in the past few decades. It is now known that the gut microbiome has multiple effects on tumour biology. However, the relationship between intratumoral bacteria and cancers remains unclear. Growing evidence suggests that intratumoral bacteria are important components of the microenvironment in several types of cancers. Furthermore, several studies have demonstrated that intratumoral bacteria may directly influence tumorigenesis, progression and responses to treatment. Limited studies have been conducted on intratumoral bacteria, and using intratumoral bacteria to treat tumours remains a challenge. Bacteria have been studied as anticancer therapeutics since the 19th century when William B. Coley successfully treated patients with inoperable sarcomas using Streptococcus pyogenes. With the development of synthetic biological approaches, several bacterial species have been genetically engineered to increase their applicability for cancer treatment. Genetically engineered bacteria for cancer therapy have unique properties compared to other treatment methods. They can specifically accumulate within tumours and inhibit cancer growth. In addition, genetically engineered bacteria may be used as a vector to deliver antitumour agents or combined with radiation and chemotherapy to synergise the effectiveness of cancer treatment. However, various problems in treating tumours with genetically engineered bacteria need to be addressed. In this review, we focus on the role of intratumoral bacteria on tumour initiation, progression and responses to chemotherapy or immunotherapy. Moreover, we summarised the recent progress in the treatment of tumours with genetically engineered bacteria.
Collapse
|
164
|
Liu M, Yang J, Xu B, Zhang X. Tumor metastasis: Mechanistic insights and therapeutic interventions. MedComm (Beijing) 2021; 2:587-617. [PMID: 34977870 PMCID: PMC8706758 DOI: 10.1002/mco2.100] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/18/2022] Open
Abstract
Cancer metastasis is responsible for the vast majority of cancer-related deaths worldwide. In contrast to numerous discoveries that reveal the detailed mechanisms leading to the formation of the primary tumor, the biological underpinnings of the metastatic disease remain poorly understood. Cancer metastasis is a complex process in which cancer cells escape from the primary tumor, settle, and grow at other parts of the body. Epithelial-mesenchymal transition and anoikis resistance of tumor cells are the main forces to promote metastasis, and multiple components in the tumor microenvironment and their complicated crosstalk with cancer cells are closely involved in distant metastasis. In addition to the three cornerstones of tumor treatment, surgery, chemotherapy, and radiotherapy, novel treatment approaches including targeted therapy and immunotherapy have been established in patients with metastatic cancer. Although the cancer survival rate has been greatly improved over the years, it is still far from satisfactory. In this review, we provided an overview of the metastasis process, summarized the cellular and molecular mechanisms involved in the dissemination and distant metastasis of cancer cells, and reviewed the important advances in interventions for cancer metastasis.
Collapse
Affiliation(s)
- Mengmeng Liu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Jing Yang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Bushu Xu
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
- State Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xing Zhang
- Melanoma and Sarcoma Medical Oncology UnitState Key Laboratory of Oncology in South ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐sen University Cancer CenterGuangzhouChina
| |
Collapse
|
165
|
Wörmann SM, Zhang A, Thege FI, Cowan RW, Rupani DN, Wang R, Manning SL, Gates C, Wu W, Levin-Klein R, Rajapakshe KI, Yu M, Multani AS, Kang Y, Taniguchi CM, Schlacher K, Bellin MD, Katz MHG, Kim MP, Fleming JB, Gallinger S, Maddipati R, Harris RS, Notta F, Ross SR, Maitra A, Rhim AD. APOBEC3A drives deaminase domain-independent chromosomal instability to promote pancreatic cancer metastasis. NATURE CANCER 2021; 2:1338-1356. [PMID: 35121902 DOI: 10.1038/s43018-021-00268-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 09/14/2021] [Indexed: 02/06/2023]
Abstract
Despite efforts in understanding its underlying mechanisms, the etiology of chromosomal instability (CIN) remains unclear for many tumor types. Here, we identify CIN initiation as a previously undescribed function for APOBEC3A (A3A), a cytidine deaminase upregulated across cancer types. Using genetic mouse models of pancreatic ductal adenocarcinoma (PDA) and genomics analyses in human tumor cells we show that A3A-induced CIN leads to aggressive tumors characterized by enhanced early dissemination and metastasis in a STING-dependent manner and independently of the canonical deaminase functions of A3A. We show that A3A upregulation recapitulates numerous copy number alterations commonly observed in patients with PDA, including co-deletions in DNA repair pathway genes, which in turn render these tumors susceptible to poly (ADP-ribose) polymerase inhibition. Overall, our results demonstrate that A3A plays an unexpected role in PDA as a specific driver of CIN, with significant effects on disease progression and treatment.
Collapse
Affiliation(s)
- Sonja M Wörmann
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA.
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA.
| | - Amy Zhang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Fredrik I Thege
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Robert W Cowan
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Dhwani N Rupani
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Runsheng Wang
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Sara L Manning
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Chris Gates
- BRCF Bioinformatics Core, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Weisheng Wu
- BRCF Bioinformatics Core, University of Michigan, School of Medicine, Ann Arbor, MI, USA
| | - Rena Levin-Klein
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
| | - Kimal I Rajapakshe
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Meifang Yu
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Asha S Multani
- Department of Genetics, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Ya'an Kang
- Department of Surgical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Cullen M Taniguchi
- Department of Experimental Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Katharina Schlacher
- Department of Cancer Biology, Division of Basic Science Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Melena D Bellin
- University of Minnesota Medical Center, Schulze Diabetes Institute, Minneapolis, MN, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Michael P Kim
- Department of Surgical Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Jason B Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center, Tampa, FL, USA
| | | | - Ravikanth Maddipati
- Department of Internal Medicine and Hamon Center for Therapeutic Oncology Research and Children's Research Institute, UT Southwestern Medical Center, Dallas, TX, USA
| | - Reuben S Harris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Institute for Molecular Virology, University of Minnesota, Minneapolis, MN, USA
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, Minnesota, USA
| | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Susan R Ross
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology and Immunology, College of Medicine, University of Illinois at Chicago, Chicago, IL, USA
| | - Anirban Maitra
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Andrew D Rhim
- Ahmed Cancer Center for Pancreatic Cancer Research, MD Anderson Cancer Center, University of Texas, Houston, TX, USA.
- Department of Gastroenterology, Hepatology & Nutrition, MD Anderson Cancer Center, University of Texas, Houston, TX, USA.
| |
Collapse
|
166
|
Tang WF, Fu R, Liang Y, Lin JS, Qiu ZB, Wu YL, Zhong WZ. Genomic Evolution of Lung Cancer Metastasis: Current Status and Perspectives. Cancer Commun (Lond) 2021; 41:1252-1256. [PMID: 34841730 PMCID: PMC8696231 DOI: 10.1002/cac2.12237] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 10/26/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Affiliation(s)
- Wen-Fang Tang
- Department of Cardiothoracic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, P. R. China
| | - Rui Fu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Yi Liang
- Department of Cardiothoracic Surgery, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, P. R. China
| | - Jie-Shan Lin
- Department of Nephrology, Blood Purification Center, Zhongshan City People's Hospital, Zhongshan, Guangdong, 528403, P. R. China
| | - Zhen-Bin Qiu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Yi-Long Wu
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China
| | - Wen-Zhao Zhong
- Guangdong Lung Cancer Institute, Guangdong Provincial Key Laboratory of Translational Medicine in Lung Cancer, Guangdong Provincial People's Hospital & Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, P. R. China.,Southern Medical University, Guangzhou, Guangdong, 510515, P. R. China
| |
Collapse
|
167
|
Lue KH, Chu SC, Wang LY, Chen YC, Li MH, Chang BS, Chan SC, Chen YH, Lin CB, Liu SH. Tumor glycolytic heterogeneity improves detection of regional nodal metastasis in patients with lung adenocarcinoma. Ann Nucl Med 2021; 36:256-266. [PMID: 34817824 DOI: 10.1007/s12149-021-01698-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022]
Abstract
OBJECTIVE The diagnostic performance of 18F-FDG PET for detecting regional lymph node metastasis in resectable lung cancer is variable, and its sensitivity for adenocarcinoma is even lower. We aimed to evaluate the value of 18F-FDG PET-derived features in predicting pathological lymph node metastasis in patients with lung adenocarcinoma. METHODS We retrospectively analyzed pretreatment 18F-FDG PET-derived features of 126 lung adenocarcinoma patients who underwent curative surgery. A logistic regression model was used to analyze the association between study variables and pathological regional lymph node status obtained from the curative surgery. Furthermore, Cox regression analysis was used to test the effect of the study variables on survival outcomes, including disease-free survival (DFS) and overall survival (OS). RESULTS The primary tumor entropy (OR = 1.7, p = 0.014) and visual interpretation of regional nodes via 18F-FDG PET (OR = 2.5, p = 0.026) independently predicted pathological regional lymph node metastasis. The areas under the receiver-operating-characteristic curves were 0.631, 0.671, and 0.711 for visual interpretation, primary tumor entropy, and their combination, respectively. Based on visual interpretation, a primary tumor entropy ≥ 3.0 improved the positive predictive value of positive visual interpretation from 51.2% to 63.0%, whereas an entropy < 3.0 improved the negative predictive value of negative visual interpretation from 75.3% to 82.6%. In cases with positive visual interpretation and low entropy, or negative visual interpretation and high entropy, the nodal metastasis rates were approximately 30%. In the survival analyses, the primary tumor entropy was also independently associated with DFS (HR = 2.7, p = 0.001) and OS (HR = 4.8, p = 0.001). CONCLUSIONS Our preliminary results show that the primary tumor entropy may improve 18F-FDG PET visual interpretation in predicting pathological nodal metastasis in lung adenocarcinoma, and may also show a survival prognostic value. This versatile biomarker may facilitate tailored therapeutic strategies for patients with resectable lung adenocarcinoma.
Collapse
Affiliation(s)
- Kun-Han Lue
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Sung-Chao Chu
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Hematology and Oncology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ling-Yi Wang
- Epidemiology and Biostatistics Consulting Center, Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.,Department of Pharmacy, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yen-Chang Chen
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Ming-Hsun Li
- Department of Anatomical Pathology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Bee-Song Chang
- Department of Cardiothoracic Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Sheng-Chieh Chan
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yu-Hung Chen
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan. .,Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan.
| | - Chih-Bin Lin
- School of Medicine, College of Medicine, Tzu Chi University, Hualien, Taiwan.,Department of Internal Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shu-Hsin Liu
- Department of Medical Imaging and Radiological Sciences, Tzu Chi University of Science and Technology, Hualien, Taiwan.,Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| |
Collapse
|
168
|
Radiotherapy at oligoprogression for metastatic castration-resistant prostate cancer patients: a multi-institutional analysis. Radiol Med 2021; 127:108-116. [PMID: 34748151 DOI: 10.1007/s11547-021-01424-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 10/22/2021] [Indexed: 10/19/2022]
Abstract
PURPOSE To retrospectively estimate the impact of radiotherapy as a progression-directed therapy (PDT) in oligoprogressive metastatic castration-resistant prostate cancer (mCRPC) patients under androgen receptor-target therapy (ARTT). MATERIALS AND METHODS mCRPC patients are treated with PDT. End-points were time to next-line systemic treatment (NEST), radiological progression-free survival (r-PFS) and overall survival (OS). Toxicity was registered according to Common Terminology Criteria for Adverse Events v4.0. Survival analysis was performed using the Kaplan-Meier method; univariate and multivariate analyses were performed. RESULTS Fifty-seven patients were analyzed. The median follow-up after PDT was 25.2 months (interquartile, 17.1-44.5). One-year NEST-free survival, r-PFS and OS were 49.8%, 50.4% and 82.1%, respectively. At multivariate analysis, polymetastatic condition at diagnosis of metastatic hormone-sensitive prostate cancer (mHSPC) (HR 2.82, p = 0.004) and PSA doubling time at diagnosis of mCRPC (HR 2.76, p = 0.006) were associated with NEST-free survival. The same variables were associated with r-PFS (HR 2.32, p = 0.021; HR 2.24, p = 0.021). One patient developed late grade ≥ 2 toxicity. CONCLUSION Our study shows that radiotherapy in oligoprogressive mCRPC is safe, is effective and seems to prolong the efficacy of ARTT in patients who otherwise would have gone systemic treatment switch, positively affecting disease progression. Prospective trials are needed.
Collapse
|
169
|
Godet I, Mamo M, Thurnheer A, Rosen DM, Gilkes DM. Post-Hypoxic Cells Promote Metastatic Recurrence after Chemotherapy Treatment in TNBC. Cancers (Basel) 2021; 13:cancers13215509. [PMID: 34771673 PMCID: PMC8583122 DOI: 10.3390/cancers13215509] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/25/2021] [Accepted: 10/29/2021] [Indexed: 01/16/2023] Open
Abstract
Simple Summary Intratumoral hypoxia is a negative prognostic factor in breast cancer progression and recurrence. By implementing a hypoxia fate-mapping system, we followed cells that experience intratumoral hypoxia in vivo and determined that these cells have an increased ability to metastasize compared to cells that were never exposed to hypoxia. In this work, we investigate whether cells that experienced intratumoral hypoxia are also resistant to chemotherapy. By utilizing both in vivo and ex vivo models, we conclude that metastatic cells found in the lung and liver, that were exposed to hypoxia in the primary tumor, are less sensitive to doxorubicin and paclitaxel and drive recurrence after treatment. Our studies also suggest that chemoresistance is associated with a cancer stem cell-like phenotype that is maintained in post-hypoxic cells. Abstract Hypoxia occurs in 90% of solid tumors and is associated with treatment failure, relapse, and mortality. HIF-1α signaling promotes resistance to chemotherapy in cancer cell lines and murine models via multiple mechanisms including the enrichment of breast cancer stem cells (BCSCs). In this work, we utilize a hypoxia fate-mapping system to determine whether triple-negative breast cancer (TNBC) cells that experience hypoxia in the primary tumor are resistant to chemotherapy at sites of metastasis. Using two orthotopic mouse models of TNBC, we demonstrate that cells that experience intratumoral hypoxia and metastasize to the lung and liver have decreased sensitivity to doxorubicin and paclitaxel but not cisplatin or 5-FU. Resistance to therapy leads to metastatic recurrence caused by post-hypoxic cells. We further determined that the post-hypoxic cells that metastasize are enriched in pathways related to cancer stem cell gene expression. Overall, our results show that even when hypoxic cancer cells are reoxygenated in the bloodstream they retain a hypoxia-induced cancer stem cell-like phenotype that persists and promotes resistance and eventually recurrence.
Collapse
Affiliation(s)
- Inês Godet
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (I.G.); (M.M.); (D.M.R.)
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA;
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Mahelet Mamo
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (I.G.); (M.M.); (D.M.R.)
| | - Andrea Thurnheer
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA;
| | - D. Marc Rosen
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (I.G.); (M.M.); (D.M.R.)
| | - Daniele M. Gilkes
- Department of Oncology, The Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; (I.G.); (M.M.); (D.M.R.)
- Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA;
- Johns Hopkins Institute for NanoBioTechnology, The Johns Hopkins University, Baltimore, MD 21218, USA
- Cellular and Molecular Medicine Program, The Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Correspondence:
| |
Collapse
|
170
|
Yu T, Gao X, Zheng Z, Zhao X, Zhang S, Li C, Liu G. Intratumor Heterogeneity as a Prognostic Factor in Solid Tumors: A Systematic Review and Meta-Analysis. Front Oncol 2021; 11:744064. [PMID: 34722299 PMCID: PMC8554141 DOI: 10.3389/fonc.2021.744064] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/17/2021] [Indexed: 11/13/2022] Open
Abstract
Background The landscape of intratumor heterogeneity (ITH) is present from the tumor evolution. ITH is a promising clinical indicator, but the association between ITH and prognosis remains controversial. Therefore, a meta-analysis was performed to explore whether ITH can serve as a valuable prognostic indicator in solid tumors. Methods All included studies were from PubMed, Embase, Cochrane, and Web of Science databases up to October 10, 2020. Studies based on ITH with available prognostic information were included. Three researchers independently completed study selection and data extraction following PRISMA guidelines. The random-effect model was used for synthesis. Hazard ratio (HR) and 95% confidence intervals (CI) were used with the endpoint defined by overall survival (OS), disease-specific survival (DFS), and progression-free survival (PFS). Results A total of 9,804 solid tumor patients from 21 studies were included. Analysis of specific cancers in the TCGA database showed similar results based on different ITH assessment methods, which provided the logical support for data consolidation. Available evidence revealed a negative relationship between ITH and prognosis for a specific cancer (such as lung cancer). However, the OS results from 14 tumor types showed that high ITH associated with shorter survival time [HR 1.65 (95% CI, 1.42-1.91)]. PFS and DFS analyses showed similar results [HR 1.89 (95% CI, 1.41-2.54) and HR 1.87 (95% CI, 1.15-3.04)] in general. The status of tumor metastasis and sampling models were not the confounding factors. Conclusions High ITH is associated with worse prognosis in many solid tumors in general although this association was absent for some cancers. ITH is expected to be a promising clinical prognostic factor for the improvement of assessment, treatment, and surveillance strategy.
Collapse
Affiliation(s)
- Tao Yu
- Department of Oncology, Tianjin Medical University General Hospital, Tianjin, China
| | - Xin Gao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Institute of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Zicheng Zheng
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Institute of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Xinyu Zhao
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Institute of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyao Zhang
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Institute of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Chunqiang Li
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Institute of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| | - Gang Liu
- Department of General Surgery, Tianjin Medical University General Hospital, Tianjin, China.,Institute of General Surgery, Tianjin Medical University General Hospital, Tianjin, China
| |
Collapse
|
171
|
Antitumor Immune Response Triggered by Metal-Based Photosensitizers for Photodynamic Therapy: Where Are We? Pharmaceutics 2021; 13:pharmaceutics13111788. [PMID: 34834202 PMCID: PMC8620627 DOI: 10.3390/pharmaceutics13111788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
Metal complexes based on transition metals have rich photochemical and photophysical properties that are derived from a variety of excited state electronic configurations triggered by visible and near-infrared light. These properties can be exploited to produce powerful energy and electron transfer processes that can lead to oxygen-(in)dependent photobiological activity. These principles are the basis of photodynamic therapy (PDT), which is a clinically approved treatment that offers a promising, effective, and noninvasive complementary treatment or even an alternative to treat several types of cancers. PDT is based on a reaction involving a photosensitizer (PS), light, and oxygen, which ultimately generates cytotoxic reactive oxygen species (ROS). However, skin photosensitivity, due to the accumulation of PSs in skin cells, has hampered, among other elements, its clinical development and application. Therefore, these is an increasing interest in the use of (metal-based) PSs that are more specific to tumor cells. This may increase efficacy and corollary decrease side-effects. To this end, metal-containing nanoparticles with photosensitizing properties have recently been developed. In addition, several studies have reported that the use of immunogenic/immunomodulatory metal-based nanoparticles increases the antitumor efficacy of immune-checkpoint inhibitor-based immunotherapy mediated by anti-PD-(L)1 or CTLA-4 antibodies. In this review, we discuss the main metal complexes used as PDT PSs. Lastly, we review the preclinical studies associated with metal-based PDT PSs and immunotherapies. This therapeutic association could stimulate PDT.
Collapse
|
172
|
Genomic comparison between cerebrospinal fluid and primary tumor revealed the genetic events associated with brain metastasis in lung adenocarcinoma. Cell Death Dis 2021; 12:935. [PMID: 34642306 PMCID: PMC8511004 DOI: 10.1038/s41419-021-04223-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 09/03/2021] [Accepted: 09/15/2021] [Indexed: 12/26/2022]
Abstract
Lung adenocarcinoma (LUAD) is most common pathological type of lung cancer. LUAD with brain metastases (BMs) usually have poor prognosis. To identify the potential genetic factors associated with BM, a genomic comparison for BM cerebrospinal fluid (CSF) and primary lung tumor samples obtained from 1082 early- and late-stage LUAD patients was performed. We found that single nucleotide variation (SNV) of EGFR was highly enriched in CSF (87% of samples). Compared with the other primary lung tissues, copy number gain of EGFR (27%), CDK4 (11%), PMS2 (11%), MET (10%), IL7R (8%), RICTOR (7%), FLT4 (5%), and FGFR4 (4%), and copy number loss of CDKN2A (28%) and CDKN2B (18%) were remarkably more frequent in CSF samples. CSF had significantly lower tumor mutation burden (TMB) level but more abundant copy number variant. It was also found that the relationships among co-occurrent and mutually exclusive genes were dynamically changing with LUAD development. Additionally, CSF (97% of samples) harbored more abundant targeted drugs related driver and fusion genes. The signature 15 associated with defective DNA mismatch repair (dMMR) was only identified in the CSF group. Cancer associated pathway analysis further revealed that ErbB (95%) and cell cycle (84%) were unique pathways in CSF samples. The tumor evolution analysis showed that CSF carried significantly fewer clusters, but subclonal proportion of EGFR was remarkably increased with tumor progression. Collectively, CSF sequencing showed unique genomic characteristics and the intense copy number instability associated with cell cycle disorder and dMMR might be the crucial genetic factors in BM of LUAD.
Collapse
|
173
|
Determinants of renal cell carcinoma invasion and metastatic competence. Nat Commun 2021; 12:5760. [PMID: 34608135 PMCID: PMC8490399 DOI: 10.1038/s41467-021-25918-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 08/30/2021] [Indexed: 01/06/2023] Open
Abstract
Metastasis is the principal cause of cancer related deaths. Tumor invasion is essential for metastatic spread. However, determinants of invasion are poorly understood. We addressed this knowledge gap by leveraging a unique attribute of kidney cancer. Renal tumors invade into large vessels forming tumor thrombi (TT) that migrate extending sometimes into the heart. Over a decade, we prospectively enrolled 83 ethnically-diverse patients undergoing surgical resection for grossly invasive tumors at UT Southwestern Kidney Cancer Program. In this study, we perform comprehensive histological analyses, integrate multi-region genomic studies, generate in vivo models, and execute functional studies to define tumor invasion and metastatic competence. We find that invasion is not always associated with the most aggressive clone. Driven by immediate early genes, invasion appears to be an opportunistic trait attained by subclones with diverse oncogenomic status in geospatial proximity to vasculature. We show that not all invasive tumors metastasize and identify determinants of metastatic competency. TT associated with metastases are characterized by higher grade, mTOR activation and a particular immune contexture. Moreover, TT grade is a better predictor of metastasis than overall tumor grade, which may have implications for clinical practice.
Collapse
|
174
|
Kwong GA, Ghosh S, Gamboa L, Patriotis C, Srivastava S, Bhatia SN. Synthetic biomarkers: a twenty-first century path to early cancer detection. Nat Rev Cancer 2021; 21:655-668. [PMID: 34489588 PMCID: PMC8791024 DOI: 10.1038/s41568-021-00389-3] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/14/2021] [Indexed: 02/08/2023]
Abstract
Detection of cancer at an early stage when it is still localized improves patient response to medical interventions for most cancer types. The success of screening tools such as cervical cytology to reduce mortality has spurred significant interest in new methods for early detection (for example, using non-invasive blood-based or biofluid-based biomarkers). Yet biomarkers shed from early lesions are limited by fundamental biological and mass transport barriers - such as short circulation times and blood dilution - that limit early detection. To address this issue, synthetic biomarkers are being developed. These represent an emerging class of diagnostics that deploy bioengineered sensors inside the body to query early-stage tumours and amplify disease signals to levels that could potentially exceed those of shed biomarkers. These strategies leverage design principles and advances from chemistry, synthetic biology and cell engineering. In this Review, we discuss the rationale for development of biofluid-based synthetic biomarkers. We examine how these strategies harness dysregulated features of tumours to amplify detection signals, use tumour-selective activation to increase specificity and leverage natural processing of bodily fluids (for example, blood, urine and proximal fluids) for easy detection. Finally, we highlight the challenges that exist for preclinical development and clinical translation of synthetic biomarker diagnostics.
Collapse
Affiliation(s)
- Gabriel A Kwong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA.
- Parker H. Petit Institute of Bioengineering and Bioscience, Atlanta, GA, USA.
- Institute for Electronics and Nanotechnology, Georgia Tech, Atlanta, GA, USA.
- The Georgia Immunoengineering Consortium, Emory University and Georgia Tech, Atlanta, GA, USA.
- Winship Cancer Institute, Emory University, Atlanta, GA, USA.
| | - Sharmistha Ghosh
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Lena Gamboa
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA
| | - Christos Patriotis
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Sudhir Srivastava
- Division of Cancer Prevention, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.
| | - Sangeeta N Bhatia
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
175
|
Abstract
Aging has provided fruitful challenges for evolutionary theory, and evolutionary theory has deepened our understanding of aging. A great deal of genetic and molecular data now exists concerning mortality regulation and there is a growing body of knowledge concerning the life histories of diverse species. Assimilating all relevant data into a framework for the evolution of aging promises to significantly advance the field. We propose extensions of some key concepts to provide greater precision when applying these concepts to age-structured contexts. Secondary or byproduct effects of mutations are proposed as an important factor affecting survival patterns, including effects that may operate in small populations subject to genetic drift, widening the possibilities for mutation accumulation and pleiotropy. Molecular and genetic studies have indicated a diverse array of mechanisms that can modify aging and mortality rates, while transcriptome data indicate a high level of tissue and species specificity for genes affected by aging. The diversity of mechanisms and gene effects that can contribute to the pattern of aging in different organisms may mirror the complex evolutionary processes behind aging.
Collapse
Affiliation(s)
- Stewart Frankel
- Biology Department, University of Hartford, West Hartford, CT, United States
| | - Blanka Rogina
- Genetics and Genome Sciences, Institute for Systems Genomics, School of Medicine, University of Connecticut Health Center, Farmington, CT, United States
| |
Collapse
|
176
|
Wu Y, Han X, Zheng R, Cheng H, Yan J, Wu X, Hu Y, Li B, Wang Z, Li X, Zhang H. Neutrophil mediated postoperative photoimmunotherapy against melanoma skin cancer. NANOSCALE 2021; 13:14825-14836. [PMID: 34533171 DOI: 10.1039/d1nr04002b] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surgery is the primary treatment option for most melanoma; however, high tumor recurrence rate after surgical resection becomes the main cause of death in cancer patients. The development of efficient drug delivery nanosystems to inhibit postoperative tumor recurrence becomes very necessary. In the present study, IR780 molecules and TRP-2 peptide were encapsulated in the hydrophobic shell and hydrophilic interior of TAT peptide functionalized liposomes to form TLipIT NPs, which were further internalized into neutrophils (NEs) to achieve TLipIT/NEs. After being intravenously injected into postoperative B16F10-bearing mice, TLipIT/NEs could actively migrate toward the inflamed residual tumor and release TLipIT through neutrophil extracellular traps (NETs). Under NIR laser irradiation, the TLipIT exhibited both photothermal and photodynamic effects to induce immunogenic cell death for maturation of DCs, and simultaneously, to release TRP-2 peptide as a melanoma associated antigen to further strengthen the maturation of DCs, both of which prompts the activation of T cells and induces potent immune responses. TLipIT/NEs hold great potential for the inhibition of postoperative tumor recurrence.
Collapse
Affiliation(s)
- Yunyun Wu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P.R. China
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, China.
| | - Xiaoqing Han
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, China.
| | - Runxiao Zheng
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, China.
| | - Hongda Cheng
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, China
| | - Jiao Yan
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, China.
| | - Xiaqing Wu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, China.
| | - Yaqing Hu
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P.R. China
| | - Bing Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P.R. China
| | - Zhenxin Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, China
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Xi Li
- School of Chemistry and Life Science, Changchun University of Technology, Changchun 130012, P.R. China
| | - Haiyuan Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Science, Changchun, 130022, China.
- University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
177
|
Lukow DA, Sausville EL, Suri P, Chunduri NK, Wieland A, Leu J, Smith JC, Girish V, Kumar AA, Kendall J, Wang Z, Storchova Z, Sheltzer JM. Chromosomal instability accelerates the evolution of resistance to anti-cancer therapies. Dev Cell 2021; 56:2427-2439.e4. [PMID: 34352222 PMCID: PMC8933054 DOI: 10.1016/j.devcel.2021.07.009] [Citation(s) in RCA: 137] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 05/09/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
Aneuploidy is a ubiquitous feature of human tumors, but the acquisition of aneuploidy typically antagonizes cellular fitness. To investigate how aneuploidy could contribute to tumor growth, we triggered periods of chromosomal instability (CIN) in human cells and then exposed them to different culture environments. We discovered that transient CIN reproducibly accelerates the acquisition of resistance to anti-cancer therapies. Single-cell sequencing revealed that these resistant populations develop recurrent aneuploidies, and independently deriving one chromosome-loss event that was frequently observed in paclitaxel-resistant cells was sufficient to decrease paclitaxel sensitivity. Finally, we demonstrated that intrinsic levels of CIN correlate with poor responses to numerous therapies in human tumors. Our results show that, although CIN generally decreases cancer cell fitness, it also provides phenotypic plasticity to cancer cells that can allow them to adapt to diverse stressful environments. Moreover, our findings suggest that aneuploidy may function as an under-explored cause of therapy failure.
Collapse
Affiliation(s)
- Devon A Lukow
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Stony Brook University, Stony Brook, NY 11794, USA
| | - Erin L Sausville
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Pavit Suri
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Narendra Kumar Chunduri
- European Research Institute for the Biology of Aging, 9713 AV Groningen, the Netherlands; Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Angela Wieland
- Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Justin Leu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Joan C Smith
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Google, Inc., New York, NY 10011, USA
| | - Vishruth Girish
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Ankith A Kumar
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Jude Kendall
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zihua Wang
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| | - Zuzana Storchova
- Department of Molecular Genetics, TU Kaiserslautern, Paul-Ehrlich Str. 24, 67663 Kaiserslautern, Germany
| | - Jason M Sheltzer
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA.
| |
Collapse
|
178
|
Chen G, Chen Z, Wang Z, Obenchain R, Wen D, Li H, Wirz RE, Gu Z. Portable air-fed cold atmospheric plasma device for postsurgical cancer treatment. SCIENCE ADVANCES 2021; 7:eabg5686. [PMID: 34516919 PMCID: PMC8442862 DOI: 10.1126/sciadv.abg5686] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Surgery represents the major option for treating most solid tumors. Despite continuous improvements in surgical techniques, cancer recurrence after surgical resection remains the most common cause of treatment failure. Here, we report cold atmospheric plasma (CAP)–mediated postsurgical cancer treatment, using a portable air-fed CAP (aCAP) device. The aCAP device we developed uses the local ambient air as the source gas to generate cold plasma discharge with only joule energy level electrical input, thus providing a device that is simple and highly tunable for a wide range of biomedical applications. We demonstrate that local aCAP treatment on residual tumor cells at the surgical cavities effectively induces cancer immunogenic cell death in situ and evokes strong T cell–mediated immune responses to combat the residual tumor cells. In both 4T1 breast tumor and B16F10 melanoma models, aCAP treatment after incomplete tumor resection contributes to inhibiting tumor growth and prolonging survival.
Collapse
Affiliation(s)
- Guojun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Biomedical Engineering and the Rosalind & Morris Goodman Cancer Research Centre, McGill University, Montreal, QC H3A 1A3, Canada
| | - Zhitong Chen
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- National Innovation Center for Advanced Medical Devices, Shenzhen 518000, China
| | - Zejun Wang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Richard Obenchain
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Di Wen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hongjun Li
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Richard E. Wirz
- Department of Mechanical and Aerospace Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Corresponding author. (Z.G.); (R.E.W.)
| | - Zhen Gu
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Zhejiang Laboratory of Systems and Precision Medicine, Zhejiang University Medical Center, Hangzhou, China
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, China
- Corresponding author. (Z.G.); (R.E.W.)
| |
Collapse
|
179
|
Zhang D, Liu X, Li Y, Sun L, Liu SS, Ma Y, Zhang H, Wang X, Yu Y. LINC01189-miR-586-ZEB1 feedback loop regulates breast cancer progression through Wnt/β-catenin signaling pathway. MOLECULAR THERAPY-NUCLEIC ACIDS 2021; 25:455-467. [PMID: 34513288 PMCID: PMC8408558 DOI: 10.1016/j.omtn.2021.06.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 06/09/2021] [Indexed: 01/12/2023]
Abstract
Non-coding RNAs play essential roles in breast cancer progression by regulating proliferation, differentiation, invasion, and metastasis. However, our understanding of most microRNAs (miRNAs) and long noncoding RNAs (lncRNAs) in breast cancer is still limited. miR-586 has been identified as an important factor in the progression of some types of cancer, but its exact function and relative regulation mechanisms in breast cancer development need to be further investigated. In this study, we showed miR-586 functioned as an oncogene by promoting breast cancer proliferation and metastasis both in vitro and in vivo. Meanwhile, miR-586 induced Wnt/β-catenin activation by directly targeting Wnt/β-catenin signaling antagonists SFRP1 and DKK2/3. Moreover, we demonstrated that LINC01189 functioned as a tumor suppressor and inhibited breast cancer progression through inhibiting an epithelial-mesenchymal transition (EMT)-like phenotype by sponging miR-586. In addition, β-catenin/TCF4 transactivated ZEB1, resulting in a transcriptional repression of LINC01189 expression. In conclusion, our data uncovered the LINC01189-miR-586-ZEB1 feedback loop and provided a novel mechanism participating in the regulation of Wnt/β-catenin signaling in breast cancer progression.
Collapse
Affiliation(s)
- Di Zhang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Xiaofeng Liu
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Yun Li
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Li Sun
- Department of Breast Surgery, the Affiliated Changzhou No. 2 People’s Hospital, Nanjing Medical University, Changzhou 213003, China
| | - Shu-Shu Liu
- Department of Breast Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei 430000, China
- Hubei Provincial Clinical Research Center for Breast Cancer, Hubei 430000, China
| | - Yue Ma
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
| | - Huan Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Cancer Prevention Center, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
| | - Xin Wang
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Corresponding author: Xin Wang, The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China.
| | - Yue Yu
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Cancer Prevention and Therapy, Tianjin 300060, China
- Tianjin’s Clinical Research Center for Cancer, Tianjin 300060, China
- Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin 300060, China
- Corresponding author: Yue Yu, The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huan-Hu-Xi Road, He-Xi District, Tianjin 300060, China.
| |
Collapse
|
180
|
Kisling SG, Natarajan G, Pothuraju R, Shah A, Batra SK, Kaur S. Implications of prognosis-associated genes in pancreatic tumor metastasis: lessons from global studies in bioinformatics. Cancer Metastasis Rev 2021; 40:721-738. [PMID: 34591244 PMCID: PMC8556170 DOI: 10.1007/s10555-021-09991-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/31/2021] [Indexed: 12/13/2022]
Abstract
Pancreatic cancer (PC) is a highly lethal malignancy with a 5-year survival rate of 10%. The occurrence of metastasis, among other hallmarks, is the main contributor to its poor prognosis. Consequently, the elucidation of metastatic genes involved in the aggressive nature of the disease and its poor prognosis will result in the development of new treatment modalities for improved management of PC. There is a deep interest in understanding underlying disease pathology, identifying key prognostic genes, and genes associated with metastasis. Computational approaches, which have become increasingly relevant over the last decade, are commonly used to explore such interests. This review aims to address global studies that have employed global approaches to identify prognostic and metastatic genes, while highlighting their methods and limitations. A panel of 48 prognostic genes were identified across these studies, but only five, including ANLN, ARNTL2, PLAU, TOP2A, and VCAN, were validated in multiple studies and associated with metastasis. Their association with metastasis has been further explored here, and the implications of these genes in the metastatic cascade have been interpreted.
Collapse
Affiliation(s)
- Sophia G Kisling
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Gopalakrishnan Natarajan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ramesh Pothuraju
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Ashu Shah
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA
| | - Surinder K Batra
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, USA.
- Fred and Pamela Buffet Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA.
| | - Sukhwinder Kaur
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, NE, 68198-5870, USA.
| |
Collapse
|
181
|
Tjong MC, Louie AV, Iyengar P, Solomon BJ, Palma DA, Siva S. Local ablative therapies in oligometastatic NSCLC-upfront or outback?-a narrative review. Transl Lung Cancer Res 2021; 10:3446-3456. [PMID: 34430379 PMCID: PMC8350079 DOI: 10.21037/tlcr-20-994] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 03/17/2021] [Indexed: 12/14/2022]
Abstract
Patients with oligometastatic (OM) non-small cell lung cancer (NSCLC) have favorable outcomes compared to patients presenting with diffuse metastatic disease. Recent randomized trials have demonstrated safety and efficacy signals for local ablative therapies with radiotherapy, surgery, or radiofrequency ablation for OM-NSCLC patients alongside systemic therapies. However, it remains unclear whether local ablative therapy (LAT) should be offered either upfront preceding systemic therapies or following initial systemic therapies as local consolidative therapy (LCT). Establishing optimal timing of RT and systemic therapy combinations is essential to maximize efficacy while maintaining safety. Most published randomized trial evidence surrounding the benefits of LAT and systemic therapies were generated from OM-NSCLC patients receiving cytotoxic chemotherapy agents. With increasing use of novel agents such as targeted therapies (i.e., tyrosine kinase inhibitors) and immune checkpoint inhibitors in management of metastatic NSCLC patients, LAT timing may need to be modulated based on the use of specific agents. This narrative review will discuss the current evidence on either upfront LAT or LCT for OM-NSCLC based on published trials and cohort studies. We briefly explored the possible biological mechanisms of the potential clinical advantages of either approach. This review also summarized the ongoing trials incorporating both upfront LAT and LCT, and considerations for future LAT strategies.
Collapse
Affiliation(s)
- Michael C Tjong
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Alexander V Louie
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, Ontario, Canada
| | - Puneeth Iyengar
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center at the University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin J Solomon
- Division of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - David A Palma
- Department of Radiation Oncology, London Health Sciences Centre, London, Ontario, Canada
| | - Shankar Siva
- Division of Radiation Oncology and Cancer Imaging, Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| |
Collapse
|
182
|
Simeonov KP, Byrns CN, Clark ML, Norgard RJ, Martin B, Stanger BZ, Shendure J, McKenna A, Lengner CJ. Single-cell lineage tracing of metastatic cancer reveals selection of hybrid EMT states. Cancer Cell 2021; 39:1150-1162.e9. [PMID: 34115987 PMCID: PMC8782207 DOI: 10.1016/j.ccell.2021.05.005] [Citation(s) in RCA: 197] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 04/01/2021] [Accepted: 05/13/2021] [Indexed: 12/20/2022]
Abstract
The underpinnings of cancer metastasis remain poorly understood, in part due to a lack of tools for probing their emergence at high resolution. Here we present macsGESTALT, an inducible CRISPR-Cas9-based lineage recorder with highly efficient single-cell capture of both transcriptional and phylogenetic information. Applying macsGESTALT to a mouse model of metastatic pancreatic cancer, we recover ∼380,000 CRISPR target sites and reconstruct dissemination of ∼28,000 single cells across multiple metastatic sites. We find that cells occupy a continuum of epithelial-to-mesenchymal transition (EMT) states. Metastatic potential peaks in rare, late-hybrid EMT states, which are aggressively selected from a predominately epithelial ancestral pool. The gene signatures of these late-hybrid EMT states are predictive of reduced survival in both human pancreatic and lung cancer patients, highlighting their relevance to clinical disease progression. Finally, we observe evidence for in vivo propagation of S100 family gene expression across clonally distinct metastatic subpopulations.
Collapse
Affiliation(s)
- Kamen P Simeonov
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| | - China N Byrns
- Medical Scientist Training Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA, USA
| | - Megan L Clark
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert J Norgard
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Ben Z Stanger
- Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA; Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA; Brotman Baty Institute for Precision Medicine, Seattle, WA, USA; Howard Hughes Medical Institute, Seattle, WA, USA.
| | - Aaron McKenna
- Department of Molecular & Systems Biology, Dartmouth Geisel School of Medicine, Lebanon, NH, USA.
| | - Christopher J Lengner
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Cell & Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Regenerative Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
183
|
Pierce SE, Granja JM, Corces MR, Brady JJ, Tsai MK, Pierce AB, Tang R, Chu P, Feldser DM, Chang HY, Bassik MC, Greenleaf WJ, Winslow MM. LKB1 inactivation modulates chromatin accessibility to drive metastatic progression. Nat Cell Biol 2021; 23:915-924. [PMID: 34341533 PMCID: PMC8355205 DOI: 10.1038/s41556-021-00728-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 07/05/2021] [Indexed: 12/11/2022]
Abstract
Metastasis is the leading cause of cancer-related deaths and enables cancer cells to compromise organ function by expanding in secondary sites. Since primary tumours and metastases often share the same constellation of driver mutations, the mechanisms that drive their distinct phenotypes are unclear. Here we show that inactivation of the frequently mutated tumour suppressor gene LKB1 (encoding liver kinase B1) has evolving effects throughout the progression of lung cancer, which leads to the differential epigenetic re-programming of early-stage primary tumours compared with late-stage metastases. By integrating genome-scale CRISPR-Cas9 screening with bulk and single-cell multi-omic analyses, we unexpectedly identify LKB1 as a master regulator of chromatin accessibility in lung adenocarcinoma primary tumours. Using an in vivo model of metastatic progression, we further show that loss of LKB1 activates the early endoderm transcription factor SOX17 in metastases and a metastatic-like sub-population of cancer cells within primary tumours. The expression of SOX17 is necessary and sufficient to drive a second wave of epigenetic changes in LKB1-deficient cells that enhances metastatic ability. Overall, our study demonstrates how the downstream effects of an individual driver mutation can change throughout cancer development, with implications for stage-specific therapeutic resistance mechanisms and the gene regulatory underpinnings of metastatic evolution.
Collapse
Affiliation(s)
- Sarah E Pierce
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
| | - Jeffrey M Granja
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
| | - Jennifer J Brady
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Min K Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Aubrey B Pierce
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Tang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Pauline Chu
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - David M Feldser
- Department of Cancer Biology and Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Howard Y Chang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA
- HHMI, Stanford University School of Medicine, Stanford, CA, USA
| | - Michael C Bassik
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Center for Personal and Dynamic Regulomes, Stanford University School of Medicine, Stanford, CA, USA.
| | - Monte M Winslow
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Chemistry, Engineering, and Medicine for Human Health (ChEM-H), Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
184
|
Chen H, Chengalvala V, Hu H, Sun D. Tumor-derived exosomes: Nanovesicles made by cancer cells to promote cancer metastasis. Acta Pharm Sin B 2021; 11:2136-2149. [PMID: 34522581 PMCID: PMC8424275 DOI: 10.1016/j.apsb.2021.04.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 12/12/2022] Open
Abstract
Nanomedicine usually refers to nanoparticles that deliver the functional drugs and siRNAs to treat cancer. Recent research has suggested that cancer cells can also make nanoparticles that also deliver functional molecules in promoting cancer metastasis, which is the leading cause of various cancer mortalities. This nanoparticle is called tumor-derived vesicles, or better-known as tumor-derived exosomes (TEXs). TEXs are nanoscale membrane vesicles (30-140 nm) that are released continuously by various types of cancer cells and contain tumor-derived functional biomolecules, including lipids, proteins, and genetic molecules. These endogenous TEXs can interact with host immune cells and epithelial cells locally and systemically. More importantly, they can reprogram the recipient cells in favor of promoting metastasis through facilitating tumor cell local invasion, intravasation, immune evasion, extravasation, and survival and growth in distant organs. Growing evidence suggests that TEXs play a key role in cancer metastasis. Here, we will review the most recent findings of how cancer cells harness TEXs to promote cancer metastasis through modulating vascular permeability, suppressing systemic immune surveillance, and creating metastatic niches. We will also summarize recent research in targeting TEXs to treat cancer metastasis.
Collapse
Affiliation(s)
- Hongwei Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Venkata Chengalvala
- College of Literature, Science, and the Arts, University of Michigan, Ann Arbor, MI 48109, USA
| | - Hongxiang Hu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Duxin Sun
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
185
|
Zimmermann M, Kuhl CK, Engelke H, Bettermann G, Keil S. Factors That Drive Heterogeneity of Response-to-Treatment of Different Metastatic Deposits Within the Same Patients as Measured by RECIST 1.1 Analyses. Acad Radiol 2021; 28:e235-e239. [PMID: 32616417 DOI: 10.1016/j.acra.2020.05.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 05/12/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
RATIONALE AND OBJECTIVE This study uses the rate of between-reader variability under Response Evaluation Criteria for Solid Tumors (RECIST) 1.1 as a metric to estimate the prevalence of biologic heterogeneity of individual metastases, and to determine whether this prevalence is modulated by the type of primary tumor, or type of treatment administered. MATERIALS AND METHODS Three radiologists independently used dedicated oncologic response-assessment software (MintLesion) to prospectively determine RECIST1.1 treatment response in contrast-enhanced computed tomography studies of 355 patients with metastatic disease of different primaries between 07/2015 and 12/2017. In 200 patients, readers had chosen different sets of target lesions; these cases were used for further analysis. Clinically significant heterogeneity of response was considered to be present when RECIST1.1 results differed regarding the distinction of progressive versus non-progressive disease. Rates of response heterogeneity were compared for different types of primary cancers, and different types of systemic treatment. RESULTS Heterogeneous treatment response was observed in 67 of 200 (34%) patients. Breast cancer was the only primary tumor associated with statistically significantly increased odds for heterogeneity of treatment response (Odds Ratio: 3.972, 0.95 Confidence Interval: 1.275-12.376, p = 0.017). No association was found between type of systemic treatment and rate of biologic heterogeneity. CONCLUSION Clinically significant heterogeneity of response-to-treatment is a frequent phenomenon, observed in about one-third of patients undergoing contemporary systemic therapies. Patients with breast cancer are more likely to exhibit such heterogeneity. Type of systemic treatment did not modulate the likelihood of exhibiting metastases with diverging treatment response.
Collapse
|
186
|
Laruelle A, Manini C, Iñarra E, López JI. Metastasis, an Example of Evolvability. Cancers (Basel) 2021; 13:3653. [PMID: 34359555 PMCID: PMC8345027 DOI: 10.3390/cancers13153653] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/20/2021] [Accepted: 07/20/2021] [Indexed: 12/11/2022] Open
Abstract
This overview focuses on two different perspectives to analyze the metastatic process taking clear cell renal cell carcinoma as a model, molecular and ecological. On the one hand, genomic analyses have demonstrated up to seven different constrained routes of tumor evolution and two different metastatic patterns. On the other hand, game theory applied to cell encounters within a tumor provides a sociological perspective of the possible behaviors of individuals (cells) in a collectivity. This combined approach provides a more comprehensive understanding of the complex rules governing a neoplasm.
Collapse
Affiliation(s)
- Annick Laruelle
- Department of Economic Analysis, University of the Basque Country (UPV/EHU), 48015 Bilbao, Spain; (A.L.); (E.I.)
- IKERBASQUE, Basque Foundation of Science, 48011 Bilbao, Spain
| | - Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, 10154 Turin, Italy;
| | - Elena Iñarra
- Department of Economic Analysis, University of the Basque Country (UPV/EHU), 48015 Bilbao, Spain; (A.L.); (E.I.)
- Public Economic Institute, University of the Basque Country (UPV/EHU), 48015 Bilbao, Spain
| | - José I. López
- Department of Pathology, Cruces University Hospital, 48903 Barakaldo, Spain
- Biocruces-Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
187
|
Giacobbe A, Abate-Shen C. Modeling metastasis in mice: a closer look. Trends Cancer 2021; 7:916-929. [PMID: 34303648 DOI: 10.1016/j.trecan.2021.06.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/27/2021] [Accepted: 06/29/2021] [Indexed: 02/07/2023]
Abstract
Unraveling the multifaceted cellular and physiological processes associated with metastasis is best achieved by using in vivo models that recapitulate the requisite tumor cell-intrinsic and -extrinsic mechanisms at the organismal level. We discuss the current status of mouse models of metastasis. We consider how mouse models can refine our understanding of the underlying biological and molecular processes that promote metastasis, and we envisage how the application of new technologies will further enhance investigations of metastasis at single-cell resolution in the context of the whole organism. Our view is that investigations based on state-of-the-art mouse models can propel a holistic understanding of the biology of metastasis, which will ultimately lead to the discovery of new therapeutic opportunities.
Collapse
Affiliation(s)
- Arianna Giacobbe
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Cory Abate-Shen
- Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Urology, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Medicine, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Department of Systems Biology, Columbia University Irving Medical Center, 1130 Saint Nicholas Avenue, New York, NY10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, 630 West 168th Street, New York, NY 10032, USA; Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, 1130 Saint Nicholas Avenue, New York, NY 10032, USA.
| |
Collapse
|
188
|
Wang J, Shao X, Liu Y, Shi R, Yang B, Xiao J, Liu Y, Qu X, Li Z. Mutations of key driver genes in gastric cancer metastasis risk: a systematic review and meta-analysis. Expert Rev Mol Diagn 2021; 21:963-972. [PMID: 34196586 DOI: 10.1080/14737159.2021.1946394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: Associations between gene mutations and metastasis in gastric cancer (GC) remain contradictory, resulting in the inaccurate estimation of the magnitude of the risk associated with specific genotypes.Methods: In this study, we first screened out four key driver genes (TP53, PIK3CA, APC and ARID1A) by jointly analyzing the mutation levels and searching the literature for genes associated with GC metastasis. We then performed a meta-analysis to demonstrate the relationship between these key driver gene mutations and GC metastasis, including lymphatic and distance metastasis.Results: We found out four key driver genes (TP53, PIK3CA, APC and ARID1A), associated with risk of GC metastasis. The results showed that TP53 (OR 1.39, 95% CI 1.12-1.72) and APC mutations (OR 0.58, 95% CI 0.38-0.89) were associated with lymph node metastasis and distant metastasis in GC. And TP53 mutations (OR 1.65, 95% CI 1.25-2.18) were significantly related to GC metastasis in the Asian population. APC mutations (OR 0.54, 95% CI 0.29-1.00) were also related to GC metastasis in the European and American populations. There was no significant association with GC metastasis in PIK3CA or ARID1A mutations.Expert opinion:Mutations of TP53 and APC play important roles in lymph node metastasis and distant metastasis of GC and may be potential important biomarkers of progression and therapeutic targets. These observations should be further prospectively verified.
Collapse
Affiliation(s)
- Jin Wang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xinye Shao
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Yang Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Ruichuan Shi
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Bowen Yang
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Jiawen Xiao
- Department of Medical Oncology, Shenyang Fifth People Hospital, Shenyang, China
| | - Yunpeng Liu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Xiujuan Qu
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| | - Zhi Li
- Department of Medical Oncology, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Anticancer Drugs and Biotherapy of Liaoning Province, The First Hospital of China Medical University, Shenyang, China.,Liaoning Province Clinical Research Center for Cancer, The First Hospital of China Medical University, Shenyang, China.,Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, The First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
189
|
Zhang Y, Wang T, Tian Y, Zhang C, Ge K, Zhang J, Chang J, Wang H. Gold nanorods-mediated efficient synergistic immunotherapy for detection and inhibition of postoperative tumor recurrence. Acta Pharm Sin B 2021; 11:1978-1992. [PMID: 34386332 PMCID: PMC8343192 DOI: 10.1016/j.apsb.2021.03.035] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor recurrence after surgery is the main cause of treatment failure. However, the initial stage of recurrence is not easy to detect, and it is difficult to cure in the late stage. In order to improve the life quality of postoperative patients, an efficient synergistic immunotherapy was developed to achieve early diagnosis and treatment of post-surgical tumor recurrence, simultaneously. In this paper, two kinds of theranostic agents based on gold nanorods (AuNRs) platform were prepared. AuNRs and quantum dots (QDs) in one agent was used for the detection of carcinoembryonic antigen (CEA), using fluorescence resonance energy transfer (FRET) technology to indicate the occurrence of in situ recurrence, while AuNRs in the other agent was used for photothermal therapy (PTT), together with anti-PDL1 mediated immunotherapy to alleviate the process of tumor metastasis. A series of assays indicated that this synergistic immunotherapy could induce tumor cell death and the increased generation of CD3+/CD4+ T-lymphocytes and CD3+/CD8+ T-lymphocytes. Besides, more immune factors (IL-2, IL-6, and IFN-γ) produced by synergistic immunotherapy were secreted than mono-immunotherapy. This cooperative immunotherapy strategy could be utilized for diagnosis and treatment of postoperative tumor recurrence at the same time, providing a new perspective for basic and clinical research.
Collapse
Key Words
- AFP, alpha fetoprotein
- AP1-QDs, CEA aptamer-modified CdTe QDs
- AP2-AuNRs, CEA aptamer-modified AuNRs
- AP2-AuNRs, and interferon-γ
- AgNO3, silver nitrate
- AuNRs, gold nanorods
- CA, cancer antigen
- CEA, carcinoembryonic antigen
- CTAB, cetrimonium bromide
- CTCs, circulating tumor cells
- Carcinoembryonic antigen
- CdCl2, cadmium chloride
- CdTe QDs, CdTe quantum dots
- DC, dendritic cells
- DLS, dynamic light scattering
- EDC, 1-ethyl-3-(3′-dimethylaminopropyl) carbodiimide
- FBS, fetal bovine serum
- FRET, fluorescence resonance energy transfer
- Fluorescence resonance energy transfer
- GSH, glutathione
- Gold nanorods
- HAuCl4, gold chloride
- Helf, human embryonic lung fibroblasts lines
- Hydrogel+IFN-γ+QA, thermal responsive hydrogels co-loaded with AP1-QDs
- Hydrogel+IFN-γ, thermal responsive hydrogels loaded with interferon-γ
- ICG, indocyanine green
- IFN-γ, interferon-γ
- IR, infrared
- LA+NIR, liposomes encapsulated AuNRs with near-infrared irradiation
- LA, liposomes encapsulated AuNRs
- LAI, liposomes loaded with ICG and encapsulated AuNRs
- LLC, murine lung cancer cells
- Lung metastasis
- MTT, 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
- NHS, N-hydroxysuccinimide
- NIR, near-infrared irradiation
- NaBH4, sodium borohydride
- NaHTe, sodium hydrogen telluride
- PD1, programmed cell death protein 1
- PDL1, programmed cell death-ligand 1
- PI, propidium iodide
- PLGA-PEG-PLGA, thermal responsive hydrogel
- PTT, photothermal therapy
- Phototherapy
- Post-surgical tumor recurrence
- QDs, quantum dots
- Synergistic immunotherapy
- TEM, transmission electron microscope
- Theranostics
- aPDL1-LA+NIR, anti-PDL1-modified liposomes encapsulated AuNRs with near-infrared irradiation
- aPDL1-LA, anti-PDL1-modified liposomes encapsulated AuNRs
- aPDL1-LAI, anti-PDL1-modified liposomes loaded with ICG and encapsulated AuNRs
- anti-PDL1, anti-programmed cell death-ligand 1
Collapse
Affiliation(s)
- Yingying Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Tiange Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Yu Tian
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Chaonan Zhang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
| | - Kun Ge
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jinchao Zhang
- College of Chemistry & Environmental Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Chemical Biology Key Laboratory of Hebei Province, Hebei University, Baoding 071002, China
| | - Jin Chang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
- Corresponding authors.
| | - Hanjie Wang
- School of Life Sciences, Tianjin University, Tianjin 300072, China
- Tianjin Engineering Center of Micro-Nano Biomaterials and Detection-Treatment Technology, Tianjin Key Laboratory of Function and Application of Biological Macromolecular Structures, Tianjin 300072, China
- Corresponding authors.
| |
Collapse
|
190
|
Ying W, Zheng K, Wu Y, Wang O. Pannexin 1 Mediates Gastric Cancer Cell Epithelial-Mesenchymal Transition via Aquaporin 5. Biol Pharm Bull 2021; 44:1111-1119. [PMID: 34135208 DOI: 10.1248/bpb.b21-00292] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pannexin 1 (PANX1) has been implicated in cancer emergence and progression. However, its roles in gastric cancer remain unclear. In the present study, the function and molecular mechanisms of PANX1 in gastric cancer were investigated in vitro. Two gastric cancer cell lines exhibiting low and high PANX1 expression (SNU-16 and HCG-27, respectively) were transfected using a PANX1-containing plasmid or PANX1 transcript-targeting short hairpin (sh)RNA. In addition, HCG-27 cells and PANX1-overexpressing SNU-16 cells were subjected to short interfering (si)RNA-mediated aquaporin 5 (AQP5) knockdown. In vitro cell migration (scratch) and transwell invasion assays were performed to evaluate the cell migratory and invasive abilities. Real-time fluorescence quantitative PCR was used to detect transcripts encoding epithelial-mesenchymal transition markers. Immunofluorescence and Western blotting were conducted to quantify corresponding proteins. In SNU-16 cells, PANX1 overexpression induced conversion from round (cobblestone-like) to elongated (spindle-like) morphologies and enhanced the cell migratory and invasive abilities. PANX1 knockdown had the opposite effect in HGC-27 cells. In PANX1-overexpressing SNU-16 cells, expression of SLUG, vimentin, and AQP5 was significantly upregulated, whereas expression of E-cadherin was downregulated. In HGC-27 cells, PANX1 knockdown showed the opposite effect. In both PANX1-overexpressing SNU-16 cells and untransfected HGC-27 cells, silencing of AQP5 expression significantly inhibited PANX1-induced upregulation of SLUG and vimentin expression, as well as downregulation of E-cadherin expression and enhanced migratory and invasive abilities. In summary, elevated PANX1 expression induces gastric cancer cell epithelial-mesenchymal transition and the associated promotion of migratory and invasive abilities by inducing expression of AQP5, which facilitates SLUG-mediated regulation of vimentin and E-cadherin expression.
Collapse
Affiliation(s)
- Wenbing Ying
- Department of Oncology, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University
| | - Kesi Zheng
- Department of Oncology, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University
| | - Yuanzhao Wu
- Department of Oncology, Wenzhou People's Hospital, The Third Clinical Institute Affiliated to Wenzhou Medical University
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University
| |
Collapse
|
191
|
Roles for growth factors and mutations in metastatic dissemination. Biochem Soc Trans 2021; 49:1409-1423. [PMID: 34100888 PMCID: PMC8286841 DOI: 10.1042/bst20210048] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/09/2021] [Accepted: 05/14/2021] [Indexed: 12/17/2022]
Abstract
Cancer is initiated largely by specific cohorts of genetic aberrations, which are generated by mutagens and often mimic active growth factor receptors, or downstream effectors. Once initiated cells outgrow and attract blood vessels, a multi-step process, called metastasis, disseminates cancer cells primarily through vascular routes. The major steps of the metastatic cascade comprise intravasation into blood vessels, circulation as single or collectives of cells, and eventual colonization of distant organs. Herein, we consider metastasis as a multi-step process that seized principles and molecular players employed by physiological processes, such as tissue regeneration and migration of neural crest progenitors. Our discussion contrasts the irreversible nature of mutagenesis, which establishes primary tumors, and the reversible epigenetic processes (e.g. epithelial-mesenchymal transition) underlying the establishment of micro-metastases and secondary tumors. Interestingly, analyses of sequencing data from untreated metastases inferred depletion of putative driver mutations among metastases, in line with the pivotal role played by growth factors and epigenetic processes in metastasis. Conceivably, driver mutations may not confer the same advantage in the microenvironment of the primary tumor and of the colonization site, hence phenotypic plasticity rather than rigid cellular states hardwired by mutations becomes advantageous during metastasis. We review the latest reported examples of growth factors harnessed by the metastatic cascade, with the goal of identifying opportunities for anti-metastasis interventions. In summary, because the overwhelming majority of cancer-associated deaths are caused by metastatic disease, understanding the complexity of metastasis, especially the roles played by growth factors, is vital for preventing, diagnosing and treating metastasis.
Collapse
|
192
|
Breast Cancer Cell Re-Dissemination from Lung Metastases-A Mechanism for Enhancing Metastatic Burden. J Clin Med 2021; 10:jcm10112340. [PMID: 34071839 PMCID: PMC8199463 DOI: 10.3390/jcm10112340] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 12/17/2022] Open
Abstract
Although metastatic disease is the primary cause of mortality in cancer patients, the mechanisms leading to overwhelming metastatic burden are still incompletely understood. Metastases are the endpoint of a series of multi-step events involving cancer cell intravasation, dissemination to distant organs, and outgrowth to metastatic colonies. Here we show, for the first-time, that breast cancer cells do not solely disseminate to distant organs from primary tumors and metastatic nodules in the lymph nodes, but also do so from lung metastases. Thus, our findings indicate that metastatic dissemination could continue even after the removal of the primary tumor. Provided that the re-disseminated cancer cells initiate growth upon arrival to distant sites, cancer cell re-dissemination from metastatic foci could be one of the crucial mechanisms leading to overt metastases and patient demise. Therefore, the development of new therapeutic strategies to block cancer cell re-dissemination would be crucial to improving survival of patients with metastatic disease.
Collapse
|
193
|
Hapach LA, Carey SP, Schwager SC, Taufalele PV, Wang W, Mosier JA, Ortiz-Otero N, McArdle TJ, Goldblatt ZE, Lampi MC, Bordeleau F, Marshall JR, Richardson IM, Li J, King MR, Reinhart-King CA. Phenotypic Heterogeneity and Metastasis of Breast Cancer Cells. Cancer Res 2021; 81:3649-3663. [PMID: 33975882 DOI: 10.1158/0008-5472.can-20-1799] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 02/02/2021] [Accepted: 05/05/2021] [Indexed: 11/16/2022]
Abstract
Although intratumoral genomic heterogeneity can impede cancer research and treatment, less is known about the effects of phenotypic heterogeneities. To investigate the role of cell migration heterogeneities in metastasis, we phenotypically sorted metastatic breast cancer cells into two subpopulations based on migration ability. Although migration is typically considered to be associated with metastasis, when injected orthotopically in vivo, the weakly migratory subpopulation metastasized significantly more than the highly migratory subpopulation. To investigate the mechanism behind this observation, both subpopulations were assessed at each stage of the metastatic cascade, including dissemination from the primary tumor, survival in the circulation, extravasation, and colonization. Although both subpopulations performed each step successfully, weakly migratory cells presented as circulating tumor cell (CTC) clusters in the circulation, suggesting clustering as one potential mechanism behind the increased metastasis of weakly migratory cells. RNA sequencing revealed weakly migratory subpopulations to be more epithelial and highly migratory subpopulations to be more mesenchymal. Depletion of E-cadherin expression from weakly migratory cells abrogated metastasis. Conversely, induction of E-cadherin expression in highly migratory cells increased metastasis. Clinical patient data and blood samples showed that CTC clustering and E-cadherin expression are both associated with worsened patient outcome. This study demonstrates that deconvolving phenotypic heterogeneities can reveal fundamental insights into metastatic progression. More specifically, these results indicate that migratory ability does not necessarily correlate with metastatic potential and that E-cadherin promotes metastasis in phenotypically sorted breast cancer cell subpopulations by enabling CTC clustering. SIGNIFICANCE: This study employs phenotypic cell sorting for migration to reveal a weakly migratory, highly metastatic breast cancer cell subpopulation regulated by E-cadherin, highlighting the dichotomy between cancer cell migration and metastasis.
Collapse
Affiliation(s)
- Lauren A Hapach
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York.,Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Shawn P Carey
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Samantha C Schwager
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Paul V Taufalele
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Wenjun Wang
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Jenna A Mosier
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Nerymar Ortiz-Otero
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | | | - Zachary E Goldblatt
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Marsha C Lampi
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Francois Bordeleau
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee.,CHU de Québec-Université Laval Research Center, Université Laval Cancer Research Center, Québec, Canada
| | - Jocelyn R Marshall
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Isaac M Richardson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | - Jiahe Li
- Nancy E. and Peter C. Meinig School of Biomedical Engineering, Cornell University, Ithaca, New York
| | - Michael R King
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| | | |
Collapse
|
194
|
Cocktail strategy for 'cold' tumors therapy via active recruitment of CD8+ T cells and enhancing their function. J Control Release 2021; 334:413-426. [PMID: 33964366 DOI: 10.1016/j.jconrel.2021.05.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 02/07/2023]
Abstract
In immunotherapy, 'cold' tumors, with low T cells infiltration, hardly benefit from the treatment of immune checkpoint inhibitors (ICIs). To address this issue, we screened two 'cold' tumor models for mice with high expression of galectin-3 (Gal-3) and designed a cocktail strategy to actively recruit CD8+ T cells into the tumor microenvironment (TME), which reversed 'cold' tumors into 'hot' and remarkably elevated their ICIs-responsiveness. Gal-3, an important driving force of tumorigenesis, inhibits T cell infiltration into tumor tissue that shapes 'cold' tumor phenotype, and promotes tumor metastasis. In this respect, Gal-3 antagonist G3-C12 peptide was chosen and further loaded into poly(lactic-co-glycolic acid) (PLGA) microspheres, with the prepared G3-C12@PLGA playing a dual role of antitumor, namely, killing two birds with one stone. Specifically, G3-C12@PLGA actively recruit T cells into 'cold' tumors by rescuing IFN-γ, and simultaneously inhibit tumor metastasis induced by Gal-3. Moreover, when combined with chemotherapeutic agent (Oxaliplatin) and anti-PD-1 peptide (APP), the immunopotentiating effect of dendritic cells (DCs) was extremely improved, with T-cell depletion dramatically reversed. In vivo experiments showed that such cocktail therapy exerted remarkable antitumor effect on 'cold' breast cancer (BC) and ovarian serous cancer (OSC). These results indicated that our strategy might be promising in treating 'cold' tumors with high expression of Gal-3, which not only enhance cancer treatment outcome, but provide a new platform for the prevention of postoperative tumor recurrence/metastasis.
Collapse
|
195
|
Carvalho Â, Ferreira G, Seixas D, Guimarães-Teixeira C, Henrique R, Monteiro FJ, Jerónimo C. Emerging Lab-on-a-Chip Approaches for Liquid Biopsy in Lung Cancer: Status in CTCs and ctDNA Research and Clinical Validation. Cancers (Basel) 2021; 13:cancers13092101. [PMID: 33925308 PMCID: PMC8123575 DOI: 10.3390/cancers13092101] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 04/16/2021] [Accepted: 04/25/2021] [Indexed: 01/31/2023] Open
Abstract
Simple Summary Lung cancer (LCa) remains the leading cause of cancer-related mortality worldwide, with late diagnosis and limited therapeutic approaches still constraining patient’s outcome. In recent years, liquid biopsies have significantly improved the disease characterization and brought new insights into LCa diagnosis and management. The integration of microfluidic devices in liquid biopsies have shown promising results regarding circulating biomarkers isolation and analysis and these tools are expected to establish automatized and standardized results for liquid biopsies in the near future. Herein, we review the status of lab-on-a-chip approaches for liquid biopsies in LCa and highlight their current applications for circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) research and clinical validation studies. Abstract Despite the intensive efforts dedicated to cancer diagnosis and treatment, lung cancer (LCa) remains the leading cause of cancer-related mortality, worldwide. The poor survival rate among lung cancer patients commonly results from diagnosis at late-stage, limitations in characterizing tumor heterogeneity and the lack of non-invasive tools for detection of residual disease and early recurrence. Henceforth, research on liquid biopsies has been increasingly devoted to overcoming these major limitations and improving management of LCa patients. Liquid biopsy is an emerging field that has evolved significantly in recent years due its minimally invasive nature and potential to assess various disease biomarkers. Several strategies for characterization of circulating tumor cells (CTCs) and circulating tumor DNA (ctDNA) have been developed. With the aim of standardizing diagnostic and follow-up practices, microfluidic devices have been introduced to improve biomarkers isolation efficiency and specificity. Nonetheless, implementation of lab-on-a-chip platforms in clinical practice may face some challenges, considering its recent application to liquid biopsies. In this review, recent advances and strategies for the use of liquid biopsies in LCa management are discussed, focusing on high-throughput microfluidic devices applied for CTCs and ctDNA isolation and detection, current clinical validation studies and potential clinical utility.
Collapse
Affiliation(s)
- Ângela Carvalho
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Correspondence: ; Tel.: +351-226-074-900
| | - Gabriela Ferreira
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
| | - Duarte Seixas
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Catarina Guimarães-Teixeira
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
| | - Rui Henrique
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| | - Fernando J. Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal; (G.F.); (D.S.); (F.J.M.)
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Faculdade de Engenharia, Departamento de Engenharia Metalúrgica e Materiais, Universidade do Porto, Rua Dr Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Carmen Jerónimo
- Porto Comprehensive Cancer Center (P.CCC), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal; (C.G.-T.); (R.H.); (C.J.)
- Cancer Biology and Epigenetics Group, IPO Porto Research Center (GEBC CI-IPOP), Portuguese Oncology Institute of Porto (IPO Porto), R. Dr. António Bernardino de Almeida, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto (ICBAS-UP), Rua Jorge Viterbo Ferreira 228, 4050-513 Porto, Portugal
| |
Collapse
|
196
|
Asiry S, Kim G, Filippou PS, Sanchez LR, Entenberg D, Marks DK, Oktay MH, Karagiannis GS. The Cancer Cell Dissemination Machinery as an Immunosuppressive Niche: A New Obstacle Towards the Era of Cancer Immunotherapy. Front Immunol 2021; 12:654877. [PMID: 33927723 PMCID: PMC8076861 DOI: 10.3389/fimmu.2021.654877] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Although cancer immunotherapy has resulted in unpreceded survival benefits to subsets of oncology patients, accumulating evidence from preclinical animal models suggests that the immunosuppressive tumor microenvironment remains a detrimental factor limiting benefit for many patient subgroups. Recent efforts on lymphocyte-mediated immunotherapies are primarily focused on eliminating cancer foci at primary and metastatic sites, but few studies have investigated the impact of these therapies on the highly complex process of cancer cell dissemination. The metastatic cascade involves the directional streaming of invasive/migratory tumor cells toward specialized blood vessel intravasation gateways, called TMEM doorways, to the peripheral circulation. Importantly, this process occurs under the auspices of a specialized tumor microenvironment, herewith referred to as "Dissemination Trajectory", which is supported by an ample array of tumor-associated macrophages (TAMs), skewed towards an M2-like polarization spectrum, and which is also vital for providing microenvironmental cues for cancer cell invasion, migration and stemness. Based on pre-existing evidence from preclinical animal models, this article outlines the hypothesis that dissemination trajectories do not only support the metastatic cascade, but also embody immunosuppressive niches, capable of providing transient and localized immunosubversion cues to the migratory/invasive cancer cell subpopulation while in the act of departing from a primary tumor. So long as these dissemination trajectories function as "immune deserts", the migratory tumor cell subpopulation remains efficient in evading immunological destruction and seeding metastatic sites, despite administration of cancer immunotherapy and/or other cytotoxic treatments. A deeper understanding of the molecular and cellular composition, as well as the signaling circuitries governing the function of these dissemination trajectories will further our overall understanding on TAM-mediated immunosuppression and will be paramount for the development of new therapeutic strategies for the advancement of optimal cancer chemotherapies, immunotherapies, and targeted therapies.
Collapse
Affiliation(s)
- Saeed Asiry
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Gina Kim
- Department of Surgery, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
| | - Panagiota S. Filippou
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Teesside University, Darlington, United Kingdom
| | - Luis Rivera Sanchez
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
| | - David Entenberg
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - Douglas K. Marks
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY, United States
| | - Maja H. Oktay
- Department of Pathology, Montefiore Medical Center, Albert Einstein College of Medicine, New York City, NY, United States
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| | - George S. Karagiannis
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, New York City, NY, United States
- Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, New York City, NY, United States
- Integrated Imaging Program, Albert Einstein College of Medicine, New York City, NY, United States
| |
Collapse
|
197
|
miR-371b-5p promotes cell proliferation, migration and invasion in non-small cell lung cancer via SCAI. Biosci Rep 2021; 40:226779. [PMID: 33103723 PMCID: PMC7672804 DOI: 10.1042/bsr20200163] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 10/23/2020] [Accepted: 10/23/2020] [Indexed: 12/11/2022] Open
Abstract
Objective: Multiple gene targets have been reported for treatment of non-small cell lung cancer (NSCLC), however, the accompanying genetic tolerance was reported increasingly. Therefore, it is important to find new biomarkers or therapeutic targets in treatment of NSCLC. Methods: The expression levels of miR-371b-5p were detected by qRT-PCR in NSCLC tissues and cell lines. To evaluate the effect of miR-371b-5p on NSCLC progression, we first transfected the miR-371b-5p inhibitor for construction of the miR-371b-5p down-regulated cell model. Then the cell proliferation, migration, invasion and cell apoptosis were detected. In addition, the expression levels of adhesion factors were detected. The target gene of miR-371b-5p was identified by bioinformatics analysis, and rescue experiment was conducted to validate the effect of miR-371b-5p on proliferation, migration and invasion of NSCLC. Results: Our findings revealed that the miR-371b-5p was overexpressed in NSCLC and could markedly promote the cell proliferation, migration and invasion. Expression levels of both intercellular adhesion molecule 1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1) were significantly down-regulated when treated by miR-371b-5p inhibitor. Moreover, dual-luciferase reporter assay showed that the miR-371b-5p targeted SCAI in regulation of cell proliferation, migration and invasion, and the expression of miR-371b-5p was negatively associated with SCAI in NSCLC tissues and cell lines. Rescue experiment revealed that the miR-371b-5p could rescue the effect of SCAI on cell proliferation, migration and invasion. Conclusion: Our results suggest that the miR-371b-5p and SCAI may serve as novel prognostic biomarkers and therapeutic targets for NSCLC.
Collapse
|
198
|
Shrestha RL, Rossi A, Wangsa D, Hogan AK, Zaldana KS, Suva E, Chung YJ, Sanders CL, Difilippantonio S, Karpova TS, Karim B, Foltz DR, Fachinetti D, Aplan PD, Ried T, Basrai MA. CENP-A overexpression promotes aneuploidy with karyotypic heterogeneity. J Cell Biol 2021; 220:211820. [PMID: 33620383 PMCID: PMC7905998 DOI: 10.1083/jcb.202007195] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/15/2020] [Accepted: 01/26/2021] [Indexed: 02/07/2023] Open
Abstract
Chromosomal instability (CIN) is a hallmark of many cancers. Restricting the localization of centromeric histone H3 variant CENP-A to centromeres prevents CIN. CENP-A overexpression (OE) and mislocalization have been observed in cancers and correlate with poor prognosis; however, the molecular consequences of CENP-A OE on CIN and aneuploidy have not been defined. Here, we show that CENP-A OE leads to its mislocalization and CIN with lagging chromosomes and micronuclei in pseudodiploid DLD1 cells and xenograft mouse model. CIN is due to reduced localization of proteins to the kinetochore, resulting in defects in kinetochore integrity and unstable kinetochore–microtubule attachments. CENP-A OE contributes to reduced expression of cell adhesion genes and higher invasion of DLD1 cells. We show that CENP-A OE contributes to aneuploidy with karyotypic heterogeneity in human cells and xenograft mouse model. In summary, our results provide a molecular link between CENP-A OE and aneuploidy, and suggest that karyotypic heterogeneity may contribute to the aggressive phenotype of CENP-A–overexpressing cancers.
Collapse
Affiliation(s)
- Roshan L Shrestha
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Austin Rossi
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Darawalee Wangsa
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Ann K Hogan
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL
| | - Kimberly S Zaldana
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Evelyn Suva
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Yang Jo Chung
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Chelsea L Sanders
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Simone Difilippantonio
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Tatiana S Karpova
- Laboratory of Receptor Biology and Gene Expression, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Baktiar Karim
- Laboratory Animal Sciences Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Frederick, MD
| | - Daniel R Foltz
- Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL
| | - Daniele Fachinetti
- Institut Curie, PSL Research University, Centre National de la Recherche Scientifique, Unité Mixte de Recherche 144, Paris, France
| | - Peter D Aplan
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Thomas Ried
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Munira A Basrai
- Genetics Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| |
Collapse
|
199
|
The Prognostic Impact of HER2 Genetic and Protein Expression in Pancreatic Carcinoma-HER2 Protein and Gene in Pancreatic Cancer. Diagnostics (Basel) 2021; 11:diagnostics11040653. [PMID: 33916543 PMCID: PMC8065582 DOI: 10.3390/diagnostics11040653] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 04/02/2021] [Accepted: 04/02/2021] [Indexed: 12/20/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a lethal and clinically heterogeneous disease with a limited benefit from human epidermal growth factor receptor 2 (HER2)-targeted therapy. Recently, some studies have addressed the antitumoral effect of novel anti-HER2 drugs in HER2 low-expressing tumors. However, there have been few studies on the significance of low HER2 expression and genetic heterogeneity in PDAC. Using immunohistochemistry and dual-color silver-enhanced in situ hybridization based on the Trastuzumab for a gastric cancer scoring scheme, we evaluated HER2 protein expression, gene amplification, and genetic heterogeneity in three groups (HER2-neg, HER2-low, HER2-pos) of 55 patients. Among the 55 cases, 41.8% (23/55) showed HER2 expression of any intensity. HER2 amplification independent of HER2 expression was 25.5% (14/55). Patients in both these groups had a shorter overall survival than did patients in the HER2-neg group. HER2 genetic heterogeneity was identified in 37 (70.9%) of the 55 cases, mainly in HER2-neg and HER2-low groups. HER2 genetic heterogeneity significantly correlated with worse survival in the HER2-low and HER2-neg groups of PDAC. These findings support the hypothesis that low-level HER2 expression and heterogeneity have significant clinical implications in PDAC. HER2 heterogeneity might indicate the best strategies of combination therapies to prevent the development of subdominant clones with resistance potential.
Collapse
|
200
|
Massagué J, Ganesh K. Metastasis-Initiating Cells and Ecosystems. Cancer Discov 2021; 11:971-994. [PMID: 33811127 PMCID: PMC8030695 DOI: 10.1158/2159-8290.cd-21-0010] [Citation(s) in RCA: 207] [Impact Index Per Article: 51.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022]
Abstract
Metastasis is initiated and sustained through therapy by cancer cells with stem-like and immune-evasive properties, termed metastasis-initiating cells (MIC). Recent progress suggests that MICs result from the adoption of a normal regenerative progenitor phenotype by malignant cells, a phenotype with intrinsic programs to survive the stresses of the metastatic process, undergo epithelial-mesenchymal transitions, enter slow-cycling states for dormancy, evade immune surveillance, establish supportive interactions with organ-specific niches, and co-opt systemic factors for growth and recurrence after therapy. Mechanistic understanding of the molecular mediators of MIC phenotypes and host tissue ecosystems could yield cancer therapeutics to improve patient outcomes. SIGNIFICANCE: Understanding the origins, traits, and vulnerabilities of progenitor cancer cells with the capacity to initiate metastasis in distant organs, and the host microenvironments that support the ability of these cells to evade immune surveillance and regenerate the tumor, is critical for developing strategies to improve the prevention and treatment of advanced cancer. Leveraging recent progress in our understanding of the metastatic process, here we review the nature of MICs and their ecosystems and offer a perspective on how this knowledge is informing innovative treatments of metastatic cancers.
Collapse
Affiliation(s)
- Joan Massagué
- Cancer Biology and Genetics Program, Sloan Kettering Institute, New York, New York.
| | - Karuna Ganesh
- Molecular Pharmacology Program, Sloan Kettering Institute, New York, New York.
- Department of Medicine, Memorial Hospital, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|