151
|
Zhao Z, Zhu L, Luo Y, Xu H, Zhang Y. Collateral lethality: A unique type of synthetic lethality in cancers. Pharmacol Ther 2025; 265:108755. [PMID: 39581504 DOI: 10.1016/j.pharmthera.2024.108755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 10/31/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Genetic interactions play crucial roles in cell-essential functions. Intrinsic genetic defects in tumors typically involve gain-of- and loss-of-function mutations in tumor suppressor genes (TSGs) and oncogenes, respectively, providing potential antitumor vulnerabilities. Moreover, tumor cells with TSG deficiencies exhibit heightened sensitivity to the inhibition of compensatory pathways. Synthetic and collateral lethality are two strategies used for exploiting novel drug targets in multiple types of cancer. Collateral lethality is a unique type of synthetic lethality that occurs when passenger genes are co-deleted in neighboring TSGs. Although synthetic lethality has already been successfully demonstrated in clinical practice, antitumor therapeutics based on collateral lethality are predominantly still in the preclinical phase. Therefore, screening for potential genetic interactions within the cancer genome has emerged as a promising approach for drug development. Here, the two conceptual therapeutic strategies that involve the deletion or inactivation of cancer-specific TSGs are discussed. Moreover, existing approaches for screening and identifying potential gene partners are also discussed. Particularly, this review highlights the current advances of "collateral lethality" in the preclinical phase and addresses the challenges involved in translating them into therapeutic applications. This review provides insights into these strategies as new opportunities for the development of personalized antitumor therapies.
Collapse
Affiliation(s)
- Zichen Zhao
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China
| | - Yu Luo
- Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Heng Xu
- Institute of General Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China; Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China; Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
152
|
Bullock E, Brunton VG. E-Cadherin-Mediated Cell-Cell Adhesion and Invasive Lobular Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1464:259-275. [PMID: 39821030 DOI: 10.1007/978-3-031-70875-6_14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
E-cadherin is a transmembrane protein and central component of adherens junctions (AJs). The extracellular domain of E-cadherin forms homotypic interactions with E-cadherin on adjacent cells, facilitating the formation of cell-cell adhesions, known as AJs, between neighbouring cells. The intracellular domain of E-cadherin interacts with α-, β- and p120-catenins, linking the AJs to the actin cytoskeleton. Functional AJs maintain epithelial tissue identity and integrity. Transcriptional downregulation of E-cadherin is the first step in epithelial-to-mesenchymal transition (EMT), a process essential in development and tissue repair, which, in breast cancer, can contribute to tumour progression and metastasis. In addition, loss-of-function mutations in E-cadherin are a defining feature of invasive lobular breast cancer (also known as invasive lobular carcinoma (ILC)), the second most common histological subtype of breast cancer. ILC displays a discohesive, single-file invasive growth pattern due to the loss of functional AJs. Despite being so prevalent, until recently there has been limited ILC-focused research and historically ILC patients have often been excluded from clinical trials. Despite displaying a number of good prognostic indicators, such as low grade and high rates of estrogen receptor positivity, ILC patients tend to have similar or poorer outcomes relative to the most common subtype of breast cancer, invasive ductal carcinoma (IDC). In ILC, E-cadherin loss promotes hyperactivation of growth factor receptors, in particular insulin-like growth factor 1 receptor, anoikis resistance and synthetic lethality with ROS1 inhibition. These features introduce clinical vulnerabilities that could potentially be exploited to improve outcomes for ILC patients, for whom there are currently limited tailored treatments available.
Collapse
Affiliation(s)
- Esme Bullock
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK
| | - Valerie G Brunton
- Cancer Research UK Scotland Centre (Edinburgh), Institute of Genetics & Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
153
|
Gai M, Zhao L, Li H, Jin G, Li W, Wang F, Liu M. LCP1 promotes ovarian cancer cell resistance to olaparib by activating the JAK2/STAT3 signalling pathway. Cancer Biol Ther 2024; 25:2432117. [PMID: 39588922 PMCID: PMC11601053 DOI: 10.1080/15384047.2024.2432117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/16/2024] [Accepted: 11/17/2024] [Indexed: 11/27/2024] Open
Abstract
BACKGROUND Resistance to poly (ADP-ribose) polymerase (PARP) inhibitors (PARPis) remain a major challenge in ovarian cancer (OC) treatment. However, the underlying mechanism of PARPi resistance is still poorly characterized. Increasing evidence has proven that lymphocyte cytosolic protein 1 (LCP1) promotes tumor progression. The JAK2/STAT3 signaling pathway plays an important role in increasing tumor metastatic ability and chemoresistance in cancer by promoting epithelial - mesenchymal transition (EMT). METHODS We established an olaparib-resistant OC cell line and studied its toxicologic effects through cell survival, Transwell, colony formation, western blotting and flow cytometry assays. RNA sequencing and screening were then performed to identify genes associated with olaparib resistance. Lymphocyte cytosolic protein 1 (LCP1) was found to be overexpressed in olaparib-resistant OC cells. RESULTS The inhibition of cell survival and promotion of cell apoptosis induced by olaparib in parental cells were significantly attenuated in olaparib-resistant cells. LCP1 was upregulated in olaparib-resistant cells compared with parental OC cells. Moreover, we found that the protein levels of JAK2/STAT3 signaling pathway components and EMT markers were increased in olaparib-resistant cells. Overexpression of LCP1 increased olaparib resistance in OC cells, and knockdown of LCP1 attenuated olaparib resistance. The changes in the protein levels of JAK2/STAT3 signaling pathway members and EMT markers between the cell types were similar to the changes in the levels of LCP1. CONCLUSIONS These findings indicate that LCP1 expression may play an important role in the resistance of OC to olaparib by activating the JAK2/STAT3 signaling pathway and EMT. LCP1 could be a potential therapeutic target for patients with OC who are resistant to olaparib. Our study provides a new mechanism of olaparib resistance.
Collapse
Affiliation(s)
- Minxue Gai
- Medical Integration and Practice Center, Shandong University, Jinan, Shandong, China
| | - Lanlan Zhao
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Hongqi Li
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Guoyu Jin
- Department of Gynecology, Shandong Traditional Chinese Medicine University, Jinan, Shandong, China
| | - Wei Li
- Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Fei Wang
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Ming Liu
- Department of Gynecology, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| |
Collapse
|
154
|
Tsilingiri K, Chalari A, Christopoulou G, Voutsina A, Constantoulakis P, Potaris Κ, Vamvakaris I, Hatzidaki D, Zachou G, Vatsellas G, Georgoulias V, Kotsakis A, Klinakis A. Genomic scarring score predicts the response to PARP inhibitors in non-small cell lung cancer. NPJ Precis Oncol 2024; 8:291. [PMID: 39725687 DOI: 10.1038/s41698-024-00777-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 12/06/2024] [Indexed: 12/28/2024] Open
Abstract
PARP inhibitors (PARPi) have shown efficacy in tumours harbouring mutations in homologous recombination repair (HRR) genes. Somatic HRR mutations have been described in patients with Non-Small Cell Lung Cancer (NSCLC), but PARP inhibitors (PARPi) are not yet a therapeutic option. Here we assessed the homologous recombination status of early-stage NSCLC and explored the therapeutic benefit of PARPi in preclinical models. The Genomic Scarring Score GSS (GSS) and HRR mutation profile of 136 patients were assessed. High GSS (h-GSS) was observed in 39 (28.7%) patients half of which carried pathogenic/likely pathogenic somatic HRR mutations. TP53 mutations were significantly enriched in h-GSS tumours (p < 0.001). Olaparib significantly delayed tumour growth in h-GSS but not l-GSS Patient-derived Xenografts (PDXs), while patients with h-GSS/TP53mut tumours respond favourably to adjuvant platinum-based chemotherapy. Our functional data clearly support the idea that the use of GSS rather than the mutational status of HRR genes could select patients for administration of PARPi.
Collapse
Affiliation(s)
| | - Anna Chalari
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | - Georgia Christopoulou
- Genotypos MSA, Private Molecular Biology and Cytogenetics Diagnostic Center, Athens, Greece
| | - Alexandra Voutsina
- Institute of Chemical Biology, National Hellenic Research Foundation, Athens, Greece
| | | | | | | | | | | | - Giannis Vatsellas
- Greek Genome Centre, Biomedical Research Foundation of the Academy of Athens, Athens, Greece
| | | | - Athanasios Kotsakis
- Department of Medical Oncology, University General Hospital of Larisa, Larisa, Greece
| | - Apostolos Klinakis
- Biomedical Research Foundation of the Academy of Athens, Athens, Greece.
| |
Collapse
|
155
|
Johannes JW, Balazs AYS, Barratt D, Bista M, Chuba MD, Cosulich S, Critchlow SE, Degorce SL, Di Fruscia P, Edmondson SD, Embrey KJ, Fawell S, Ghosh A, Gill SJ, Gunnarsson A, Hande SM, Heightman TD, Hemsley P, Illuzzi G, Lane J, Larner CJB, Leo E, Liu L, Madin A, McWilliams L, O'Connor MJ, Orme JP, Pachl F, Packer MJ, Pei X, Pike A, Schimpl M, She H, Staniszewska AD, Talbot V, Underwood E, Varnes JG, Xue L, Yao T, Zhang K, Zhang AX, Zheng X. Discovery of 6-Fluoro-5-{4-[(5-fluoro-2-methyl-3-oxo-3,4-dihydroquinoxalin-6-yl)methyl]piperazin-1-yl}- N-methylpyridine-2-carboxamide (AZD9574): A CNS-Penetrant, PARP1-Selective Inhibitor. J Med Chem 2024; 67:21717-21728. [PMID: 39655996 DOI: 10.1021/acs.jmedchem.4c01725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
PARP inhibitors have attracted considerable interest in drug discovery due to the clinical success of first-generation agents such as olaparib, niraparib, rucaparib, and talazoparib. Their success lies in their ability to trap PARP to DNA; however, first-generation PARP inhibitors were not strictly optimized for trapping nor for selectivity among the PARP enzyme family. Previously we described the discovery of the second-generation PARP inhibitor AZD5305, a selective PARP1-DNA trapper. AZD5305 maintained the antitumor efficacy of first-generation PARP inhibitors while exhibiting lower hematological toxicity. Recently, there has been interest in central nervous system (CNS)-penetrant PARP inhibitors for CNS malignancies and other neurological conditions; however, AZD5305 is not CNS penetrant. Herein we describe the discovery and optimization of a series of CNS-penetrant, PARP1-selective inhibitors and PARP1-DNA trappers, culminating in the discovery of AZD9574, a compound that maintains the PARP1 selectivity of AZD5305 with improved permeability, reduced efflux, and increased CNS penetration.
Collapse
Affiliation(s)
- Jeffrey W Johannes
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Amber Y S Balazs
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Derek Barratt
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Michal Bista
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Matthew D Chuba
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sabina Cosulich
- Oncology Projects, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - Sébastien L Degorce
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | | | - Scott D Edmondson
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Kevin J Embrey
- New Modalities & Parenteral Development, Pharmaceutical Technology & Development, Operations, AstraZeneca, Macclesfield SK10 2NA, U.K
| | - Stephen Fawell
- Oncology Discovery, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Avipsa Ghosh
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Sonja J Gill
- Safety Sciences, Clinical Pharmacology and Safety Sciences R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Anders Gunnarsson
- Discovery Sciences, R&D Gothenburg, AstraZeneca, Pepparedsleden 1, SE-431 83 Mölndal, Sweden
| | - Sudhir M Hande
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Tom D Heightman
- Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Paul Hemsley
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - Jordan Lane
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Carrie J B Larner
- Safety Sciences, Clinical Pharmacology and Safety Sciences R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Elisabetta Leo
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lina Liu
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Andrew Madin
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Lisa McWilliams
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Mark J O'Connor
- Bioscience, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Jonathan P Orme
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Fiona Pachl
- Discovery Sciences, R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Martin J Packer
- Computational Chemistry, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | - Xiaohui Pei
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Andy Pike
- DMPK, Oncology R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - Hongyao She
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | | | - Verity Talbot
- Discovery Sciences, R&D, AstraZeneca, Cambridge CB2 0AA, U.K
| | | | - Jeffrey G Varnes
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Lin Xue
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Tieguang Yao
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Ke Zhang
- Pharmaron Beijing Co., Ltd., 6 Taihe Road, BDA, Beijing 100176, P. R. China
| | - Andrew X Zhang
- Discovery Sciences, R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| | - Xiaolan Zheng
- Chemistry, Oncology R&D, AstraZeneca, 35 Gatehouse Drive, Waltham, Massachusetts 02451, United States
| |
Collapse
|
156
|
Gonzalez A, Kistenfeger Q, Cosgrove CM. Patient Selection for the Use of Niraparib in Advanced Ovarian Cancer: A Review. Int J Womens Health 2024; 16:2239-2246. [PMID: 39720673 PMCID: PMC11668310 DOI: 10.2147/ijwh.s466250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 12/26/2024] Open
Abstract
The advent of poly(ADP-ribose) polymerase (PARP) inhibitors has resulted in a significant paradigm shift in ovarian cancer treatment. Niraparib, a potent PARP inhibitor, has demonstrated substantial efficacy in both first-line and recurrent disease settings. By targeting homologous recombination DNA repair, a pathway frequently disrupted in ovarian cancer, particularly in the context of BRCA mutations, niraparib induces synthetic lethality. Pivotal clinical trials, including PRIMA, ENGOT-OV16/NOVA, and QUADRA, have solidified niraparib's role in the treatment paradigm. While sharing a common mechanism of action with other PARP inhibitors, niraparib exhibits a distinct toxicity profile. Notably, hematologic toxicities, particularly thrombocytopenia, and hypertension have been observed at Grade 3-4 levels. A comprehensive understanding of niraparib's efficacy and safety is essential for optimal patient selection and management.
Collapse
Affiliation(s)
- Anna Gonzalez
- Division of Gynecologic Oncology; The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| | - Quinn Kistenfeger
- Division of Obstetrics & Gynecology; The Ohio State University, Columbus, OH, USA
| | - Casey M Cosgrove
- Division of Gynecologic Oncology; The Ohio State University Comprehensive Cancer Center – James Cancer Hospital and Solove Research Institute, Columbus, OH, USA
| |
Collapse
|
157
|
Zhong Y, Shuai Y, Yang J, Zhang M, He T, Zheng L, Yang S, Peng S. LOC730101 improves ovarian cancer drug sensitivity by inhibiting autophagy-mediated DNA damage repair via BECN1. Cell Death Dis 2024; 15:893. [PMID: 39695078 DOI: 10.1038/s41419-024-07278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024]
Abstract
Drug resistance and recurrence are still the bottlenecks in the clinical treatment of ovarian cancer (OC), seriously affecting patients' prognosis. Therefore, it is an urgent challenge for OC to be overcome towards precision therapy by studying the mechanism of OC drug resistance, finding new drug resistance targets and developing new effective treatment strategies. In this study, we found that lncRNA LOC730101 played an essential role in attenuating drug resistance in OC. LOC730101 was significantly down-regulated in platinum-resistant ovarian cancer tissues, and ectopic overexpression of LOC730101 substantially increased chemotherapy-induced apoptosis. Mechanistically, LOC730101 specifically binds to BECN1 and inhibits the formation of autophagosome BECN1/VPS34 by reducing phosphorylation of BECN1, thereby inhibiting autophagy and promoting drug sensitivity in ovarian cancer cells following treatment with cisplatin and PARP inhibitors. Moreover, LOC730101 inhibits the expression and activity of RNF168 via p62, which in turn affects H2A ubiquitination-mediated DNA damage repair and promotes drug sensitivity in ovarian cancer cells. Our findings demonstrated that LOC730101 played an important role in regulating the formation of the autophagic complex and that inhibition of autophagy significantly enhances the drug sensitivity of OC. And LOC730101 may be used as a prognostic marker to predict the sensitivity of OC to platinum and PARP inhibitors.
Collapse
Affiliation(s)
- Yancheng Zhong
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Hunan Key laboratory of Vascular Biology and Translational Medicine, Medical School, Hunan University of Chinese Medicine, Changsha, China
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Yang Shuai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Juan Yang
- Department of Gynecologic Oncology Ward 5, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Mojian Zhang
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Tiantian He
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Leliang Zheng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan, China
- Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Sheng Yang
- The Reproductive Medicine Center, The Third Affiliated Hospital of ShenZhen University, Shenzhen Luohu Hospital Group, Shenzhen, China.
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital and School of Basic Medical Science, Central South University, Changsha, Hunan, China.
- Cancer Research Institute, Central South University, Changsha, Hunan, China.
| |
Collapse
|
158
|
Gao S, Hou Y, Xu Y, Li J, Zhang C, Jiang S, Yu S, Liu L, Li L, Tu W, Yu B, Zhang Y. Discovery of Pyrazolo[1,5,4-de]quinoxalin-2(3 H)-one Derivatives as Highly Potent and Selective PARP1 Inhibitors. J Med Chem 2024; 67:21380-21399. [PMID: 39571073 DOI: 10.1021/acs.jmedchem.4c02276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Poly-ADP-ribose-polymerase 1/2 (PARP1/2) inhibitors have been approved for cancers with homologous recombination deficiency (HRD). However, their narrow therapeutic indexes largely due to hematologic toxicities have limited their clinical usefulness. Developing selective PARP1 inhibitors has emerged as an attractive strategy to achieve equivalent antitumor activity while alleviating the hematological toxicity caused by PARP2 inhibition. Herein, we report the discovery of pyrazolo[1,5,4-de]quinoxalin-2(3H)-one 30 as a novel selective PARP1 inhibitor. 30 formed tighter PARP1-DNA trapping than AZD9574, leading to better potency in inhibiting cancer cell proliferation. 30 achieved tumor regression in the BRCA1-mutated MDA-MB-436 xenograft model and showed synergistic efficacy in combination with carboplatin in the SUM149PT xenograft model. In the rat hematological toxicity study, 30 exhibited minimal impact on hematological parameters at 25 mg/kg, while AZD5305 at 1 mg/kg caused 56.5% reduction of reticulocyte. Taken together, we discovered compound 30 with a therapeutic index superior to that of PARP1 inhibitors AZD5305 and AZD9574 in the preclinical setting.
Collapse
Affiliation(s)
- Shanyun Gao
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Yingjie Hou
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Yanxiao Xu
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Jingjing Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Chaobo Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Shujuan Jiang
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Songda Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Lei Liu
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Leping Li
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Wangyang Tu
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Bing Yu
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| | - Yixiang Zhang
- Discovery & Early Development, Haihe Biopharma Co., Ltd, Shanghai 201203, China
| |
Collapse
|
159
|
Xu Y, Li C, Yin H, Nowsheen S, Xu X, Kang W, Liu X, Chen L, Lou Z, Yi J, Deng M. STK39-mediated amplification of γ-H2A.X promotes homologous recombination and contributes to PARP inhibitor resistance. Nucleic Acids Res 2024; 52:13881-13895. [PMID: 39588777 DOI: 10.1093/nar/gkae1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 11/27/2024] Open
Abstract
The phosphorylation of histone H2A.X into γH2A.X is a crucial early event in the DNA damage response, marking DNA damage sites and initiating repair processes. While ATM kinase is traditionally recognized as the primary mediator of H2A.X phosphorylation, our study identifies serine/threonine kinase 39 (STK39) as a novel enhancer of this critical signaling pathway. We demonstrate that after DNA damage, STK39 undergoes phosphorylation by the ATM kinase, facilitating its interaction with the Mre11-Rad50-Nbs1 complex and subsequent recruitment to chromatin. This recruitment enables STK39 to further phosphorylate H2A.X, thus amplifying γH2A.X production and promoting homologous recombination repair. Notably, we observe a significant upregulation of STK39 in pancreatic adenocarcinoma (PAAD) tissues, correlating with heightened resistance to PARPi therapy. Furthermore, we demonstrate the synergistic efficacy of combining STK39 inhibition with PARP inhibitors in suppressing and reversing PAAD growth. This study not only provides new insights into the molecular dynamics of H2A.X phosphorylation but also highlights the therapeutic potential of targeting STK39 to enhance PARPi sensitivity in PAAD (created with BioRender).
Collapse
Affiliation(s)
- Yi Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli No17, Chaoyang District, Beijing 100021, China
| | - Changying Li
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli No17, Chaoyang District, Beijing 100021, China
| | - Huan Yin
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli No17, Chaoyang District, Beijing 100021, China
| | - Somaira Nowsheen
- Department of Dermatology, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92122, USA
| | - Xin Xu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli No17, Chaoyang District, Beijing 100021, China
| | - Wenjuan Kang
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli No17, Chaoyang District, Beijing 100021, China
| | - Xin Liu
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli No17, Chaoyang District, Beijing 100021, China
| | - Lifeng Chen
- Department of Gynecology, the First Affiliated Hospital, School of Medicine, Zhejiang University, No.79 Qingchun Road, Shangcheng District, Hangzhou 310003, China
| | - Zhenkun Lou
- Department of Oncology, Mayo Clinic, 200 First St SW, Rochester, MN 55905, USA
| | - Junlin Yi
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli No17, Chaoyang District, Beijing 100021, China
| | - Min Deng
- State Key Laboratory of Molecular Oncology and Department of Radiation Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Panjiayuan Nanli No17, Chaoyang District, Beijing 100021, China
| |
Collapse
|
160
|
Kutz J, Schmietendorf H, Rahman SA, Opel F, Pospiech H. HROB Is Implicated in DNA Replication. Genes (Basel) 2024; 15:1587. [PMID: 39766854 PMCID: PMC11675949 DOI: 10.3390/genes15121587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/29/2024] [Accepted: 12/05/2024] [Indexed: 01/11/2025] Open
Abstract
DNA replication represents a series of precisely regulated events performed by a complex protein machinery that guarantees accurate duplication of the genetic information. Since DNA replication is permanently faced by a variety of exogenous and endogenous stressors, DNA damage response, repair and replication must be closely coordinated to maintain genomic integrity. HROB has been identified recently as a binding partner and activator of the Mcm8/9 helicase involved in DNA interstrand crosslink (ICL) repair. We identified HROB independently as a nuclear protein whose expression is co-regulated with various DNA replication factors. Accordingly, the HROB protein level showed a maximum in S phase and a downregulation in quiescence. Structural prediction and homology searches revealed that HROB is a largely intrinsically disordered protein bearing a helix-rich region and a canonical oligonucleotide/oligosaccharide-binding-fold motif that originated early in eukaryotic evolution. Employing a flow cytometry Förster resonance energy transfer (FRET) assay, we detected associations between HROB and proteins of the DNA replication machinery. Moreover, ectopic expression of HROB protein led to an almost complete shutdown of DNA replication. The available data imply a function for HROB during DNA replication across barriers such as ICLs.
Collapse
Affiliation(s)
- Julia Kutz
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Hannes Schmietendorf
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Sheikh Anika Rahman
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
| | - Franz Opel
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Department of Medical Engineering and Biotechnology, Ernst-Abbe University of Applied Sciences, D-07745 Jena, Germany
| | - Helmut Pospiech
- Project Group Biochemistry, Leibniz Institute on Aging—Fritz Lipmann Institute, D-07745 Jena, Germany; (J.K.); (H.S.); (S.A.R.); (F.O.)
- Institute of Biochemistry and Biophysics, Faculty of Biological Sciences, Friedrich Schiller University, D-07745 Jena, Germany
- Department of Obstetrics and Gynecology, University Hospital Düsseldorf and Heinrich-Heine University, D-40225 Düsseldorf, Germany
| |
Collapse
|
161
|
Guo A, Wu C, Cao J, Zhu K, Ding S. Real-world efficacy and safety of combined first-line treatment with PARP inhibitors and novel hormonal therapy in mCRPC patients with HRR gene mutations. Front Genet 2024; 15:1505163. [PMID: 39712485 PMCID: PMC11659292 DOI: 10.3389/fgene.2024.1505163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
Objective This study evaluated the real-world efficacy and safety of combining PARP inhibitors with novel hormonal therapy (NHT) as a first-line treatment in Chinese patients with metastatic castration-resistant prostate cancer (mCRPC) harboring homologous recombination repair (HRR) gene mutations. Methods We enrolled 41 mCRPC patients who received at least 1 month of combined treatment with PARP inhibitors and NHT. Patients were divided into two groups: Cohort A (mutations in BRCA1, BRCA2, or ATM genes) and Cohort B (mutations in other HRR genes). The primary endpoint was imaging-based progression-free survival (PFS), with secondary endpoints including objective response rate (ORR), disease control rate (DCR), overall survival (OS), PSA50 response, and adverse events (AEs). To ensure accurate research results and control confounding factors, we will employ multivariate Cox proportional hazards models to evaluate key variables affecting mCRPC patient survival outcomes. Results This study enrolled 41 patients, 22 in Cohort A and 19 in Cohort B. The median PFS for all patients was 21.8 months, and the median OS had yet to be reached. The overall ORR was 48.8%, and the DCR was 61.0%. Specifically, the median PFS for Cohort A was 21.8 months compared to 14.5 months for Cohort B. The median OS had yet to be reached for either cohort. Regarding efficacy, 81.8% of patients in Cohort A and 73.7% in Cohort B achieved a PSA50 response. Imaging assessments showed ORRs of 54.6% for Cohort A and 42.1% for Cohort B, with DCRs of 72.7% and 47.4%, respectively. 85.4% of patients experienced grade 1 or 2 adverse events, and 51.2% encountered grade 3 or 4. In the multivariate Cox regression analysis focusing on PFS, the Gleason score was identified as a significant predictor (HR = 5.8, 95% CI: 1.65-20.2, p = 0.006). Conclusion Combined first-line treatment with PARP inhibitors and NHT is effective and well-tolerated in mCRPC patients with HRR gene mutations, particularly those with BRCA1, BRCA2, or ATM mutations. These findings underscore the potential of this therapeutic combination in managing mCRPC in the Chinese population, suggesting a favorable outcome for those with specific genetic backgrounds.
Collapse
Affiliation(s)
- Andong Guo
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chenrui Wu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jishuang Cao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Kejia Zhu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Sentai Ding
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
162
|
Malik U, Pal D. Isoxazole compounds: Unveiling the synthetic strategy, in-silico SAR & toxicity studies and future perspective as PARP inhibitor in cancer therapy. Eur J Med Chem 2024; 279:116898. [PMID: 39353240 DOI: 10.1016/j.ejmech.2024.116898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/04/2024]
Abstract
Latest developments in cancer treatment have shed a light on the crucial role of PARP inhibitors that enhance the treatment effectiveness by modifying abnormal repair pathways. PARP inhibitors, such as Olaparib, Rucaparib, Niraparib, and Talazoparib have been approved in a number of cancers including BRCA 1/BRCA2 associated malignancies although there are many difficulties as therapeutical resistance. Besides the conventional synthetic drugs, natural compounds such as flavones and flavonoids have been found to be PARP inhibitors but only in preclinical studies. Isoxazole is very important class of potential candidates for medicinal chemistry with anti-cancer and other pharmacological activities. At present, there are no approved PARP inhibitors of isoxazole origin but their ability to hit many pathways inside the cancer cells points out on its importance for future treatments design. In drug development, isoxazoles are helpful because of the molecular design flexibility that may be enhanced using various synthetic approaches. This review highlights the molecular mechanisms of PARP inhibition, importance of isoxazole compounds and present advances in their synthetic strategies that demonstrate promise for these agents as new anticancer drugs. It emphasizes that isoxazole-based PARP inhibitors compounds could be novel anti-cancer drugs. Through this review, we hope to grow a curiosity in additional explorations of isoxazole-based PARP inhibitors and their applications in the trends of novel insights towards precision cancer therapy.
Collapse
Affiliation(s)
- Udita Malik
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India
| | - Dilipkumar Pal
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur, C.G., 495009, India.
| |
Collapse
|
163
|
Nguyen LL, Watson ZL, Ortega R, Woodruff ER, Jordan KR, Iwanaga R, Yamamoto TM, Bailey CA, To F, Lin S, Villagomez FR, Jeong AD, Guntupalli SR, Behbakht K, Gibaja V, Arnoult N, Chuong EB, Bitler BG. EHMT1/2 Inhibition Promotes Regression of Therapy-Resistant Ovarian Cancer Tumors in a CD8 T-cell-Dependent Manner. Mol Cancer Res 2024; 22:1117-1127. [PMID: 39136655 PMCID: PMC11614706 DOI: 10.1158/1541-7786.mcr-24-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/29/2024] [Accepted: 08/08/2024] [Indexed: 09/18/2024]
Abstract
Poly ADP-ribose polymerase inhibitors (PARPi) are first-line maintenance therapy for ovarian cancer and an alternative therapy for several other cancer types. However, PARPi-resistance is rising, and there is currently an unmet need to combat PARPi-resistant tumors. Here, we created an immunocompetent, PARPi-resistant mouse model to test the efficacy of combinatory PARPi and euchromatic histone methyltransferase 1/2 inhibitor (EHMTi) in the treatment of PARPi-resistant ovarian cancer. We discovered that inhibition of EHMT1/2 resensitizes cells to PARPi. Markedly, we show that single EHMTi and combinatory EHMTi/PARPi significantly reduced PARPi-resistant tumor burden and that this reduction is partially dependent on CD8 T cells. Altogether, our results show a low-toxicity drug that effectively treats PARPi-resistant ovarian cancer in an immune-dependent manner, supporting its entry into clinical development and potential incorporation of immunotherapy. Implications: Targeting the epigenome of therapy-resistant ovarian cancer induces an antitumor response mediated in part through an antitumor immune response.
Collapse
Affiliation(s)
- Lily L. Nguyen
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Zachary L. Watson
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Raquel Ortega
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Elizabeth R. Woodruff
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Kimberly R. Jordan
- Department of Immunology and Microbiology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ritsuko Iwanaga
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Tomomi M. Yamamoto
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Courtney A. Bailey
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Francis To
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Shujian Lin
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Fabian R. Villagomez
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| | - Abigail D. Jeong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Saketh R. Guntupalli
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kian Behbakht
- Department of Obstetrics & Gynecology, Division of Gynecologic Oncology, The University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | | | - Nausica Arnoult
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Edward B. Chuong
- Molecular Cellular Developmental Biology, The University of Colorado Boulder, Boulder, CO 80309, USA
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, University of Colorado School of Medicine, Aurora, CO, 80045
| |
Collapse
|
164
|
Chou J, Robinson TM, Egusa EA, Lodha R, Zhang M, Badura M, Mikayelyan M, Delavan H, Swinderman J, Wilson C, Zhu J, Das R, Nguyen M, Loehr A, Golsorkhi T, Simmons A, Abida W, Chinnaiyan AM, Arkin MR, Small EJ, Quigley DA, Yang L, Kim M, Ashworth A, Feng FY. Synthetic Lethal Targeting of CDK12-Deficient Prostate Cancer with PARP Inhibitors. Clin Cancer Res 2024; 30:5445-5458. [PMID: 39321214 PMCID: PMC11611633 DOI: 10.1158/1078-0432.ccr-23-3785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 07/03/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
PURPOSE The cyclin-dependent kinase (CDK), CDK12, is mutated or amplified in multiple cancers. We previously described a subtype of prostate cancer characterized predominantly by frameshift, loss-of-function mutations in CDK12. This subtype exhibits aggressive clinical features. EXPERIMENTAL DESIGN Using isogenic prostate cancer models generated by CRISPR/Cas9-mediated inactivation of CDK12, we conducted a chemical library screen of ∼1,800 FDA-approved drugs. We inhibited cyclin K and CDK13 and evaluated the effects on PARP inhibitor (PARPi) sensitivity. CDK12 truncation and kinase domain mutations were expressed in cell lines to determine the effects on PARPi sensitivity. Mice bearing control and CDK12-mutant prostate tumors were treated with rucaparib. Finally, we evaluated PSA responses in patients with CDK12 mutations treated with rucaparib on the TRITON2 trial. RESULTS Cancer cells lacking CDK12 are more sensitive to PARPi than isogenic wild-type cells, and sensitivity depends on the degree of CDK12 inhibition. Inhibiting cyclin K, but not CDK13, also led to PARPi sensitivity and suppressed homologous recombination. CDK12 truncation mutants remained sensitive to PARPi, whereas kinase domain mutants exhibited intermediate sensitivity. The PARPi rucaparib suppressed tumor growth in mice bearing CDK12-mutated tumors. Finally, 6 of 11 (55%) patients with prostate cancer with biallelic CDK12 mutations had reductions in serum PSA levels when treated with rucaparib on the TRITON2 clinical trial. CONCLUSIONS In prostate cancer, sensitivity to PARPi is dependent on the specific type and zygosity of the CDK12 mutation. PARPi monotherapy may have some activity in patients with prostate cancer with biallelic inactivating CDK12 alterations.
Collapse
Affiliation(s)
- Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Troy M. Robinson
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Emily A. Egusa
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Roshan Lodha
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Michelle Badura
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Mane Mikayelyan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Henry Delavan
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Jason Swinderman
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Chris Wilson
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA
| | - Jun Zhu
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Rajdeep Das
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | | | | | | | | | - Wassim Abida
- Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Arul M. Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor MI, USA 12
- Howard Hughes Medical Institute, University of Michigan, Ann Arbor MI, USA 12
| | - Michelle R. Arkin
- Department of Pharmaceutical Chemistry and the Small Molecule Discovery Center, University of California San Francisco, San Francisco, CA, USA
| | - Eric J. Small
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Lixing Yang
- Ben May Department for Cancer Research, University of Chicago, Chicago, IL, USA
- Department of Human Genetics, University of Chicago, Chicago, IL, USA
| | - Minkyu Kim
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Cellular Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center, San Antonio, TX, USA
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Felix Y. Feng
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
- Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Urology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
165
|
Shen W, Lyu Q, Yi R, Sun Y, Zhang W, Wei T, Zhang Y, Shi J, Zhang J. HMGB1 promotes chemoresistance in small cell lung cancer by inducing PARP1-related nucleophagy. J Adv Res 2024; 66:165-180. [PMID: 38159843 PMCID: PMC11674788 DOI: 10.1016/j.jare.2023.12.020] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/24/2023] [Accepted: 12/27/2023] [Indexed: 01/03/2024] Open
Abstract
INTRODUCTION Small cell lung cancer (SCLC) is prone to chemoresistance, which is closely related to genome homeostasis-related processes, such as DNA damage and repair. Nucleophagy is the elimination of specific nuclear substances by cells themselves and is responsible for maintaining genome and chromosome stability. However, the roles of nucleophagy in tumour chemoresistance have not been investigated. OBJECTIVES The aim of this work was to elucidate the mechanism of chemoresistance in SCLC and reverse this chemoresistance. METHODS RNA-seq data from SCLC cohorts, chemosensitive SCLC cells and the corresponding chemoresistant cells were used to discover genes associated with chemoresistance and patient prognosis. In vitro and in vivo experiments were performed to verify the effect of high-mobility group box 1 (HMGB1) knockdown or overexpression on the chemotherapeutic response in SCLC. The regulatory effect of HMGB1 on nucleophagy was then investigated by coimmunoprecipitation (co-IP) and mass spectrometry (MS), and the underlying mechanism was explored using pharmacological inhibitors and mutant proteins. RESULTS HMGB1 is a factor indicating poor prognosis and promotes chemoresistance in SCLC. Mechanistically, HMGB1 significantly increases PARP1-LC3 binding to promote nucleophagy via PARP1 PARylation, which leads to PARP1 turnover from DNA lesions and chemoresistance. Furthermore, chemoresistance in SCLC can be attenuated by blockade of the PARP1-LC3 interaction or PARP1 inhibitor (PARPi) treatment. CONCLUSIONS HMGB1 can induce PARP1 self-modification, which promotes the interaction of PARP1 with LC3 to promote nucleophagy and thus chemoresistance in SCLC. HMGB1 could be a predictive biomarker for the PARPi response in patients with SCLC. Combining chemotherapy with PARPi treatment is an effective therapeutic strategy for overcoming SCLC chemoresistance.
Collapse
Affiliation(s)
- Weitao Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Qiong Lyu
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ruibin Yi
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yueqin Sun
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Wei Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Yueming Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China
| | - Jian Shi
- Department of Pathology, School of Basic Medical Science, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
166
|
Pu C, Liu Y, Lan S, Fan H, Liu L, Liu J, Guo Y. Enhancing therapeutic efficacy in homologous recombination-proficient pancreatic cancer via the combination of PARP1-PROTAC and a BRD4 inhibitor. Bioorg Med Chem 2024; 115:117970. [PMID: 39476572 DOI: 10.1016/j.bmc.2024.117970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 10/10/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
Currently, poly (ADP-ribose) polymerase inhibitors (PARPi) have been approved by U.S. Food and Drug Administration for BRCA-mutated pancreatic cancer therapy. However, limited indications hinder their further application. Repression of bromodomain-containing protein 4 (BRD4) can block the homologous recombination (HR) repair pathway and has the potential to enhance the response to PARPi in HR-proficient pancreatic cancer therapy. In addition, proteolysis targeting chimeras (PROTACs) can hijack E3 ligase within the cell to ubiquitinate degradation-targeted proteins effectively and quickly, thus enhancing the therapeutic effect on tumors. In the present study, the LB23 compound, which induces PARP1 degradation, was employed in combination with the BRD4 inhibitor JQ1, confirming their synergistic effect in HR-proficient pancreatic cancer through various methods. Moreover, compared to the JQ1 and PARPi olaparib combination, PARP1-PROTAC and JQ1 had more notable synergistic effects. Further research into the synergistic mechanism demonstrated that combination therapy enhanced DNA damage and suppressed DNA repair by inducing cell cycle arrest and cell apoptosis. The present study therefore provides the experimental data for this type of combination therapy, which is expected to be an innovative approach for the treatment of HR-proficient pancreatic cancer.
Collapse
Affiliation(s)
- Chunlan Pu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China
| | - Yuanyuan Liu
- Sichuan Technical Inspection Center for Medical Products, Sichuan Technical Inspection Center for Vaccine, Chengdu, Sichuan 610015, China
| | - Suke Lan
- College of Chemistry & Environment Protection Engineering, Southwest Minzu University, Chengdu, Sichuan 610041, China
| | - Hengrui Fan
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China
| | - Lvye Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China
| | - Jianyu Liu
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China.
| | - Yuanbiao Guo
- Medical Research Center, The Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan 610031, China.
| |
Collapse
|
167
|
Zhang J, Zhao Y, Liang R, Zhou X, Wang Z, Yang C, Gao L, Zheng Y, Shao H, Su Y, Cui W, Jia L, Yang J, Wu C, Wang L. DNMT3A loss drives a HIF-1-dependent synthetic lethality to HDAC6 inhibition in non-small cell lung cancer. Acta Pharm Sin B 2024; 14:5219-5234. [PMID: 39807333 PMCID: PMC11725086 DOI: 10.1016/j.apsb.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/18/2024] [Accepted: 07/26/2024] [Indexed: 01/16/2025] Open
Abstract
DNMT3A encodes a DNA methyltransferase involved in development, cell differentiation, and gene transcription, which is mutated and aberrant-expressed in cancers. Here, we revealed that loss of DNMT3A promotes malignant phenotypes in lung cancer. Based on the epigenetic inhibitor library synthetic lethal screening, we found that small-molecule HDAC6 inhibitors selectively killed DNMT3A-defective NSCLC cells. Knockdown of HDAC6 by siRNAs reduced cell growth and induced apoptosis in DNMT3A-defective NSCLC cells. However, sensitive cells became resistant when DNMT3A was rescued. Furthermore, the selectivity to HDAC6 inhibition was recapitulated in mice, where an HDAC6 inhibitor retarded tumor growth established from DNMT3A-defective but not DNMT3A parental NSCLC cells. Mechanistically, DNMT3A loss resulted in the upregulation of HDAC6 through decreasing its promoter CpG methylation and enhancing transcription factor RUNX1 binding. Notably, our results indicated that HIF-1 pathway was activated in DNMT3A-defective cells whereas inactivated by HDAC6 inhibition. Knockout of HIF-1 contributed to the elimination of synthetic lethality between DNMT3A and HDAC6. Interestingly, HIF-1 pathway inhibitors could mimic the selective efficacy of HDAC6 inhibition in DNMT3A-defective cells. These results demonstrated HDAC6 as a HIF-1-dependent vulnerability of DNMT3A-defective cancers. Together, our findings identify HDAC6 as a potential HIF-1-dependent therapeutic target for the treatment of DNMT3A-defective cancers like NSCLC.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yingxi Zhao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ruijuan Liang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xue Zhou
- Department of Biochemistry and Molecular Biology, School of Medical Devices, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonghua Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cheng Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lingyue Gao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yonghao Zheng
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hui Shao
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yang Su
- Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Wei Cui
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
168
|
Liu J, Geng Y, Jiang S, Guan L, Gao J, Niu MM, Li J. Discovery of novel PARP1/NRP1 dual-targeting inhibitors with strong antitumor potency. Front Pharmacol 2024; 15:1454957. [PMID: 39679370 PMCID: PMC11637875 DOI: 10.3389/fphar.2024.1454957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Given that overexpression of Poly (ADP-ribose) polymerase-1 (PARP1) and Neuropilin-1 (NRP1) is implicated in the pathogenesis of human breast cancer, the design of dual PARP1/NRP1 inhibitors has wide therapeutic prospect. However, there have been no reports of such inhibitors so far. Herein, we discovered novel small molecule inhibitors that simultaneously target PARP1 and NRP1 using structure-based virtual screening for the treatment of breast cancer. Notably, PPNR-4 was the most potent inhibitor targeting PARP1 (IC50 = 7.71 ± 0.39 nM) and NRP1 (IC50 = 24.48 ± 2.16 nM). PPNR-4 showed high affinity and binding stability to PARP1 and NRP1. The cytotoxicity assays showed that PPNR-4 demonstrated significant antiproliferative activity on MDA-MB-231 cells (IC50 = 0.21 μM) without effect on normal human cells. In vivo experiments exhibited that PPNR-4 showed more effective than the positive controls in inhibiting the growth of tumors. Overall, these data suggest that PPNR-4 is an effective antitumor candidate and deserves further research.
Collapse
Affiliation(s)
- Juanjuan Liu
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Yifei Geng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Su Jiang
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Lixia Guan
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Junyi Gao
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| | - Miao-Miao Niu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, Nanjing, China
| | - Jindong Li
- Department of Pharmacy, Taizhou School of Clinical Medicine, The Affiliated Taizhou People’s Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
169
|
Parola S, Oing C, Rescigno P, Feliciano S, Carlino F, Pompella L, Marretta AL, De Santo I, Viggiani M, Muratore M, Facchini BA, Orefice J, Cioli E, Sparano F, Mallardo D, De Giorgi U, Palmieri G, Ascierto PA, Ottaviano M. PARP inhibitors in testicular germ cell tumors: what we know and what we are looking for. Front Genet 2024; 15:1480417. [PMID: 39678373 PMCID: PMC11638157 DOI: 10.3389/fgene.2024.1480417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/12/2024] [Indexed: 12/17/2024] Open
Abstract
Testicular germ cell tumors (TGCTs), the most common malignancies affecting young men, are characterized by high sensitivity to cisplatin-based chemotherapy, which leads to high cure rates even in metastatic disease. However, approximately 30% of patients with metastatic TGCTs relapse after first-line treatment and those who can be defined as platinum-refractory patients face a very dismal prognosis with only limited chemotherapy-based treatment options and an overall survival of few months. Hence, to understand the mechanisms underlying cisplatin resistance is crucial for developing new treatment strategies. This narrative review explores the potential role of PARP inhibitors (PARPis) in overcoming cisplatin resistance in TGCTs, starting from the rationale of their ability to induce DNA damage in cells with homologous recombination repair (HRR). Thus far, PARPis have failed to show meaningful clinical activity in platinum-refractory TGCT patients, either alone or in combination with chemotherapy. However, few responses to PARPis in TGCTs have been detected in patients with BRCA1/2, ATM or CHEK2 mutations, reinforcing the idea that patients should be optimally selected for tailored treatments in the era of personalized medicine. Future preclinical and clinical research is needed to further investigate the molecular mechanisms of cisplatin resistance and to identify novel therapeutic strategies in resistant/refractory TGCTs patients.
Collapse
Affiliation(s)
- Sara Parola
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Christoph Oing
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Pasquale Rescigno
- Translational and Clinical Research Institute, Centre for Cancer, Newcastle University, Newcastle Upon Tyne, United Kingdom
| | - Salvatore Feliciano
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Francesca Carlino
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Luca Pompella
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | | | - Irene De Santo
- Medical Oncology Unit, Ospedale Ave Gratia Plena, ASL Caserta, San Felice a Cancello, Italy
| | - Martina Viggiani
- Medical Oncology Unit, Ospedale San Giuseppe Moscati, ASL Caserta, Aversa, Italy
| | - Margherita Muratore
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | - Bianca Arianna Facchini
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Jessica Orefice
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Eleonora Cioli
- Department of Precision Medicine, Università degli Studi della Campania “Luigi Vanvitelli”, Naples, Italy
| | - Francesca Sparano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Domenico Mallardo
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Ugo De Giorgi
- Department of Medical Oncology, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) “Dino Amadori”, Meldola, Italy
| | | | - Paolo Antonio Ascierto
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| | - Margaret Ottaviano
- Department of Melanoma, Cancer Immunotherapy and Development Therapeutics, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Naples, Italy
| |
Collapse
|
170
|
Kozłowska E, Haltia UM, Puszynski K, Färkkilä A. Mathematical modeling framework enhances clinical trial design for maintenance treatment in oncology. Sci Rep 2024; 14:29721. [PMID: 39613825 DOI: 10.1038/s41598-024-80768-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/21/2024] [Indexed: 12/01/2024] Open
Abstract
Clinical trials are costly and time-intensive endeavors, with a high rate of drug candidate failures. Moreover, the standard approaches often evaluate drugs under a limited number of protocols. In oncology, where multiple treatment protocols can yield divergent outcomes, addressing this issue is crucial. Here, we present a computational framework that simulates clinical trials through a combination of mathematical and statistical models. This approach offers a means to explore diverse treatment protocols efficiently and identify optimal strategies for oncological drug administration. We developed a computational framework with a stochastic mathematical model as its core, capable of simulating virtual clinical trials closely recapitulating the clinical scenarios. Testing our framework on the landmark SOLO-1 clinical trial investigating Poly-ADP-Ribose Polymerase maintenance treatment in high-grade serous ovarian cancer, we demonstrate that managing toxicity through treatment interruptions or dose reductions does not compromise treatment's clinical benefits. Additionally, we provide evidence suggesting that further reduction of hematological toxicity could significantly improve the clinical outcomes. The value of this computational framework lies in its ability to expedite the exploration of new treatment protocols, delivering critical insights pivotal to shaping the landscape of upcoming clinical trials.
Collapse
Affiliation(s)
- Emilia Kozłowska
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland
| | - Ulla-Maija Haltia
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Krzysztof Puszynski
- Department of Systems Biology and Engineering, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland.
| | - Anniina Färkkilä
- Research Program in Systems Oncology, Research Programs Unit, Faculty of Medicine, University of Helsinki, 00014, Helsinki, Finland.
- Department of Obstetrics and Gynecology, Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland.
- Institute for Molecular Medicine Finland, Helsinki Institute of Life Sciences, University of Helsinki, Helsinki, Finland.
- iCAN Digital Precision Cancer Medicine, Helsinki, Finland.
| |
Collapse
|
171
|
Gronauer R, Madersbacher L, Monfort-Lanzas P, Floriani G, Sprung S, Zeimet AG, Marth C, Fiegl H, Hackl H. Integrated immunogenomic analyses of high-grade serous ovarian cancer reveal vulnerability to combination immunotherapy. Front Immunol 2024; 15:1489235. [PMID: 39669575 PMCID: PMC11634877 DOI: 10.3389/fimmu.2024.1489235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Accepted: 11/11/2024] [Indexed: 12/14/2024] Open
Abstract
Background The efficacy of immunotherapies in high-grade serous ovarian cancer (HGSOC) is limited, but clinical trials investigating the potential of combination immunotherapy including poly-ADP-ribose polymerase inhibitors (PARPis) are ongoing. Homologous recombination repair deficiency or BRCAness and the composition of the tumor microenvironment appear to play a critical role in determining the therapeutic response. Methods We conducted comprehensive immunogenomic analyses of HGSOC using data from several patient cohorts. Machine learning methods were used to develop a classification model for BRCAness from gene expression data. Integrated analysis of bulk and single-cell RNA sequencing data was used to delineate the tumor immune microenvironment and was validated by immunohistochemistry. The impact of PARPi and BRCA1 mutations on the activation of immune-related pathways was studied using ovarian cancer cell lines, RNA sequencing, and immunofluorescence analysis. Results We identified a 24-gene signature that predicts BRCAness. Comprehensive immunogenomic analyses across patient cohorts identified samples with BRCAness and high immune infiltration. Further characterization of these samples revealed increased infiltration of immunosuppressive cells, including tumor-associated macrophages expressing TREM2, C1QA, and LILRB4, as specified by single-cell RNA sequencing data and gene expression analysis of samples from patients receiving combination therapy with PARPi and anti-PD-1. Our findings show also that genomic instability and PARPi activated the cGAS-STING signaling pathway in vitro and the downstream innate immune response in a similar manner to HGSOC patients with BRCAness status. Finally, we have developed a web application (https://ovrseq.icbi.at) and an associated R package OvRSeq, which allow for comprehensive characterization of ovarian cancer patient samples and assessment of a vulnerability score that enables stratification of patients to predict response to the combination immunotherapy. Conclusions Genomic instability in HGSOC affects the tumor immune environment, and TAMs play a crucial role in modulating the immune response. Based on various datasets, we have developed a diagnostic application that uses RNA sequencing data not only to comprehensively characterize HGSOC but also to predict vulnerability and response to combination immunotherapy.
Collapse
Affiliation(s)
- Raphael Gronauer
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Leonie Madersbacher
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Pablo Monfort-Lanzas
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
- Institute of Medical Biochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Gabriel Floriani
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Susanne Sprung
- Institute of Pathology, Innpath GmbH, Innsbruck, Austria
| | - Alain Gustave Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Hubert Hackl
- Institute of Bioinformatics, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
172
|
Fiegl H, Schnaiter S, Reimer DU, Leitner K, Nardelli P, Tsibulak I, Wieser V, Wimmer K, Schamschula E, Marth C, Zeimet AG. BRCA loss of function including BRCA1 DNA-methylation, but not BRCA-unrelated homologous recombination deficiency, is associated with platinum hypersensitivity in high-grade ovarian cancer. Clin Epigenetics 2024; 16:171. [PMID: 39605059 PMCID: PMC11603837 DOI: 10.1186/s13148-024-01781-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024] Open
Abstract
BACKGROUND In high-grade ovarian cancer (HGOC), determination of homologous recombination deficiency (HRD) status is commonly used in routine practice to predict response to platinum-based therapy or poly (ADP-ribose) polymerase inhibitors (PARPi). Here we tested the hypothesis that BRCA loss of function (LOF) due to epigenetic or genetic aberrations is a better predictor for the clinical outcome than HRD. One hundred thirty-one HGOC tissues were tested for BRCA DNA-methylation, BRCA mutations, HRD and BRCA1 mRNA expression, followed by a comprehensive survival analysis. RESULTS BRCA1-methylation was detected in 11% of the tumors, exclusively in BRCA1-wild-type (wt) HGOCs. BRCA1-methylated tumors (BRCA1-meth) had HRD-scores similar to those of BRCA-mutated (mut) tumors, and higher compared to unmethylated-BRCA-wt tumors (BRCA-wt-unmeth; P < 0.001). Platinum-refractory or -resistant HGOCs at first recurrence were all BRCA-unmeth cancers. Only one of the BRCA-mut cancers had a platinum-resistant recurrence. Thus, 99% of relapses in cancers with epigenetic or genetic BRCA-alterations were platinum-sensitive. Multivariate analysis confirmed BRCA-LOF as an independent predictor of progression-free survival (PFS) and overall survival (OS), whereas HRD-status had no predictive value for PFS and OS. Patients with BRCA-wt-unmeth cancers had the worst outcome compared to patients with cancers harboring epigenetic or genetic BRCA-alterations (PFS: P = 0.007; OS: P = 0.022). Most importantly, the BRCA-wt-unmeth subfraction of HRD-positive HGOCs exhibited the same poor survival as the entire HRD-negative cohort. CONCLUSION In HGOC BRCA mutational status together with BRCA1-methylation exhibit the best predictive power for favorable clinical outcome and thus high sensitivity to platinum-based therapy, whereas BRCA-unrelated HRD positivity was not associated with improved platinum sensitivity.
Collapse
Affiliation(s)
- Heidelinde Fiegl
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria.
| | - Simon Schnaiter
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Daniel U Reimer
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Leitner
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Petra Nardelli
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Irina Tsibulak
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Verena Wieser
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Katharina Wimmer
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Esther Schamschula
- Institute of Human Genetics, Medical University of Innsbruck, Innsbruck, Austria
| | - Christian Marth
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria
| | - Alain G Zeimet
- Department of Obstetrics and Gynecology, Medical University of Innsbruck, Innsbruck, Austria.
| |
Collapse
|
173
|
Park J, Kim J. CRISPR/Cas9 Technology Providing the Therapeutic Landscape of Metastatic Prostate Cancer. Pharmaceuticals (Basel) 2024; 17:1589. [PMID: 39770431 PMCID: PMC11676443 DOI: 10.3390/ph17121589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Prostate cancer (PCa) is the most prevalent malignancy and the second leading cause of cancer-related death in men. Although current therapies can effectively manage the primary tumor, most patients with late-stage disease manifest with metastasis in different organs. From surgery to treatment intensification (TI), several combinations of therapies are administered to improve the prognosis of patients with metastatic PCa. Due to the high frequency of the mutation during the metastatic phase, the clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (Cas9) genetic engineering tool can accelerate the effects of TI by enhancing targeted gene therapy or immunotherapy. This review describes the genetic background of metastatic PCa and how CRISPR/Cas9 technology can contribute to the field of PCa treatment development. It also discusses the current limitations of conventional PCa therapy and the potential of CRISPR-based PCa therapy.
Collapse
Affiliation(s)
- Jieun Park
- Department of Neurology, College of Medicine, Dongguk University, Ilsan, Goyang 10326, Republic of Korea;
| | - Jaehong Kim
- Department of Biochemistry, College of Medicine, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
174
|
Mi L, Zhang H. Myriad factors and pathways influencing tumor radiotherapy resistance. Open Life Sci 2024; 19:20220992. [PMID: 39655194 PMCID: PMC11627069 DOI: 10.1515/biol-2022-0992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 12/12/2024] Open
Abstract
Radiotherapy is a cornerstone in the treatment of various tumors, yet radioresistance often leads to treatment failure and tumor recurrence. Several factors contribute to this resistance, including hypoxia, DNA repair mechanisms, and cancer stem cells. This review explores the diverse elements that drive tumor radiotherapy resistance. Historically, resistance has been attributed to cellular repair and tumor repopulation, but recent research has expanded this understanding. The tumor microenvironment - characterized by hypoxia, immune evasion, and stromal interactions - further complicates treatment. Additionally, molecular mechanisms such as aberrant signaling pathways, epigenetic modifications, and non-B-DNA structures play significant roles in mediating resistance. This review synthesizes current knowledge, highlighting the interplay of these factors and their clinical implications. Understanding these mechanisms is crucial for developing strategies to overcome resistance and improve therapeutic outcomes in cancer patients.
Collapse
Affiliation(s)
- Lanjuan Mi
- School of Life and Health Sciences, Huzhou College, Hu Zhou, China
| | - Hongquan Zhang
- The First Affiliated Hospital of Huzhou University, Hu Zhou, China
| |
Collapse
|
175
|
Bedia JS, Huang YW, Gonzalez AD, Gonzalez VD, Funingana IG, Rahil Z, Mike A, Lowber A, Vias M, Ashworth A, Brenton JD, Fantl WJ. Coordinated protein modules define DNA damage responses to carboplatin at single cell resolution in human ovarian carcinoma models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624591. [PMID: 39605494 PMCID: PMC11601625 DOI: 10.1101/2024.11.21.624591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Tubo-ovarian high-grade serous carcinoma (HGSC) is the most lethal gynecological malignancy and frequently responds to platinum-based chemotherapy because of common genetic and somatic impairment of DNA damage repair (DDR) pathways. The mechanisms of clinical platinum resistance are diverse and poorly molecularly defined. Consequently, there are no biomarkers or medicines that improve patient outcomes. Herein we use single cell mass cytometry (CyTOF) to systematically evaluate the phosphorylation and abundance of proteins known to participate in the DNA damage response (DDR). Single cell analyses of highly characterized HGSC cell lines that phenocopy human patients show that cells with comparable levels of intranuclear platinum, a proxy for carboplatin uptake, undergo different cell fates. Unsupervised analyses revealed a continuum of DDR responses. Decompositional methods were used to identify eight distinct protein modules of carboplatin resistance and sensitivity at single cell resolution. CyTOF profiling of primary and secondary platinum-resistance patient models shows that a complex DDR sensitivity module is strongly associated with response, suggesting it as a potential tool to clinically characterize complex drug resistance phenotypes.
Collapse
Affiliation(s)
- Jacob S. Bedia
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ying-Wen Huang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | | - Veronica D. Gonzalez
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ionut-Gabriel Funingana
- Department of Oncology, University of Cambridge, Cambridgeshire, UK
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
- Department of Oncology, Addenbrooke’s Hospital, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Zainab Rahil
- Baxter Laboratory for Stem Cell Biology, Department of Microbiology & Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alyssa Mike
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alexis Lowber
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Maria Vias
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, 1450 Third Street, San Francisco, CA 94158, USA
| | - James D. Brenton
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, Cambridgeshire, CB2 0RE, UK
- Department of Oncology, Addenbrooke’s Hospital, Cambridge University Hospitals, NHS Foundation Trust, Cambridge, UK
| | - Wendy J. Fantl
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Comprehensive Cancer Institute
- Department of Obstetrics and Gynecology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
176
|
Zainulabidin AA, Sufyan AJ, Thirunavukkarasu MK. Triple-Action Therapy: Combining Machine Learning, Docking, and Dynamics to Combat BRCA1-Mutated Breast Cancer. Mol Biotechnol 2024:10.1007/s12033-024-01328-x. [PMID: 39589461 DOI: 10.1007/s12033-024-01328-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024]
Abstract
Breast cancer dominates women's mortality, and among other factors, mutations in the BRCA1 gene are significant risk factors. Several approaches are followed to treat the BRCA1 affected cancer patients. However, specific BRCA1 inhibitors are not available till date due to its structural complexity. In addition, there are several limitations associated with the existing drugs used to treat BRCA1-related breast cancer and some side effects. The side effects include symptoms such as hot flashes, joint pain, nausea, fatigue, hair loss, diarrhea, chills, fever, and others. Therefore, advanced approaches needed that can overcome all the limitations and side effects of the current inhibitors. In this study, we adopted a multistep approach to identify potential inhibitors for BRCA1-mutated breast cancer. We used our developed machine learning models to screen potential inhibitors. Molecular docking approach was carried out for the screened hit compounds with BRCA1 and its mutated forms. Two ligands, β-amyrin and Narirutin, has shown significant performance in multiple scoring schemes such as molecular docking and RF score calculations. Molecular dynamics simulations demonstrated the stability of the complexes formed by β-amyrin and Narirutin with BRCA1, with lower RMSD values and less RMSF fluctuations at the binding site locations. Principal component analysis (PCA) and free energy landscape (FEL) further confirmed the compactness and favorable binding of β-Amyrin and Narirutin to BRCA1. These findings suggest that β-amyrin and Narirutin have potential as therapeutic agents against BRCA1-mutated breast cancer.
Collapse
Affiliation(s)
| | - Aminu Jibril Sufyan
- School of Sciences and Humanities, SR University, Warangal, Telangana, 506371, India
| | | |
Collapse
|
177
|
Helbling-Leclerc A, Falampin M, Heddar A, Guerrini-Rousseau L, Marchand M, Cavadias I, Auger N, Bressac-de Paillerets B, Brugieres L, Lopez BS, Polak M, Rosselli F, Misrahi M. Biallelic Germline BRCA1 Frameshift Mutations Associated with Isolated Diminished Ovarian Reserve. Int J Mol Sci 2024; 25:12460. [PMID: 39596525 PMCID: PMC11594631 DOI: 10.3390/ijms252212460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/28/2024] Open
Abstract
The use of next-generation sequencing (NGS) has recently enabled the discovery of genetic causes of primary ovarian insufficiency (POI) with high genetic heterogeneity. In contrast, the causes of diminished ovarian reserve (DOR) remain poorly understood. Here, we identified by NGS and whole exome sequencing (WES) the cause of isolated DOR in a 14-year-old patient. Two frameshift mutations in BRCA1 (NM_007294.4) were found: in exon 8 (c.470_471del; p.Ser157Ter) and in exon 11 (c.791_794del, p.Ser264MetfsTer33). Unexpectedly, the patient presented no signs of Fanconi anemia (FA), i.e., no developmental abnormalities or indications of bone marrow failure. However, high chromosomal fragility was found in the patient's cells, consistent with an FA diagnosis. RT-PCR and Western-blot analysis support the fact that the c. 791_794del BRCA1 allele is transcribed and translated into a shorter protein (del11q), while no expression of the full-length BRCA1 protein was found. DNA damage response (DDR) studies after genotoxic agents demonstrate normal activation of the early stages of the DDR and FANC/BRCA pathway. This is consistent with the maintenance of residual repair activity for the del11q BRCA1 isoform. Our observation is the first implication of bi-allelic BRCA1 mutations in isolated ovarian dysfunction or infertility in humans, without clinical signs of FA, and highlights the importance of BRCA1 in ovarian development and function.
Collapse
Affiliation(s)
- Anne Helbling-Leclerc
- Genome Integrity and Cancer, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; (A.H.-L.); (F.R.)
| | - Marie Falampin
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
| | - Abdelkader Heddar
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Laboratoire de Référence Pour les Infertilités Génétiques, APHP Hôpitaux Universitaires Paris-Saclay, Faculté de Médecine Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre, France;
| | - Léa Guerrini-Rousseau
- Département de Cancérologie de L’enfant et de L’adolescent, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (L.G.-R.); (L.B.)
| | - Maud Marchand
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
| | - Iphigenie Cavadias
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
| | - Nathalie Auger
- Département de Biologie et de Pathologie Médicales, Gustave Roussy, 94805 Villejuif, France;
| | - Brigitte Bressac-de Paillerets
- Département de Biologie et Pathologies Médicales et U1279 INSERM, Gustave Roussy, Université Paris-Saclay, 94805 Villejuif, France;
| | - Laurence Brugieres
- Département de Cancérologie de L’enfant et de L’adolescent, Gustave Roussy, Université Paris Saclay, 94805 Villejuif, France; (L.G.-R.); (L.B.)
| | - Bernard S. Lopez
- Faculte de Medecine, INSERM 1016, UMR 80104 CNRS, Institut Cochin, Université de Paris-Cité, 24 Rue du Faubourg ST Jacques, 75014 Paris, France;
| | - Michel Polak
- Service d’Endocrinologie, Gynécologie et Diabétologie Pédiatrique, APHP Hôpital Universitaire Necker Enfants Malades, 75743 Paris, France; (M.F.); (M.M.); (I.C.); (M.P.)
- Centre de Référence Maladies Rares-CRMR des Pathologies Gynécologiques Rares, 75743 Paris, France
- Faculté de Santé, Université de Paris, 75006 Paris, France
- Groupement de Coopération Sanitaire-GCS SeqOIA, Référent Clinicien Préindication Insuffisance Ovarienne Primitive and Plan France Médecine Génomique 2025, 78 rue du Général Leclerc, 94270 Le Kremlin-Bicêtre, France
| | - Filippo Rosselli
- Genome Integrity and Cancer, CNRS UMR9019, Université Paris-Saclay, Gustave Roussy, 94805 Villejuif, France; (A.H.-L.); (F.R.)
| | - Micheline Misrahi
- Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Laboratoire de Référence Pour les Infertilités Génétiques, APHP Hôpitaux Universitaires Paris-Saclay, Faculté de Médecine Paris Saclay, Hôpital Bicêtre, 94275 Le Kremlin-Bicêtre, France;
| |
Collapse
|
178
|
Roszkowska M. Multilevel Mechanisms of Cancer Drug Resistance. Int J Mol Sci 2024; 25:12402. [PMID: 39596466 PMCID: PMC11594576 DOI: 10.3390/ijms252212402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/14/2024] [Accepted: 11/17/2024] [Indexed: 11/28/2024] Open
Abstract
Cancer drug resistance represents one of the most significant challenges in oncology and manifests through multiple interconnected molecular and cellular mechanisms. Objective: To provide a comprehensive analysis of multilevel processes driving treatment resistance by integrating recent advances in understanding genetic, epigenetic, and microenvironmental factors. This is a systematic review of the recent literature focusing on the mechanisms of cancer drug resistance, including genomic studies, clinical trials, and experimental research. Key findings include the following: (1) Up to 63% of somatic mutations can be heterogeneous within individual tumors, contributing to resistance development; (2) cancer stem cells demonstrate enhanced DNA repair capacity and altered metabolic profiles; (3) the tumor microenvironment, including cancer-associated fibroblasts and immune cell populations, plays a crucial role in promoting resistance; and (4) selective pressure from radiotherapy drives the emergence of radioresistant phenotypes through multiple adaptive mechanisms. Understanding the complex interplay between various resistance mechanisms is essential for developing effective treatment strategies. Future therapeutic approaches should focus on combination strategies that target multiple resistance pathways simultaneously, guided by specific biomarkers.
Collapse
Affiliation(s)
- Malgorzata Roszkowska
- Department of Clinical Neuropsychology, Collegium Medicum, Nicolaus Copernicus University, 85-067 Bydgoszcz, Poland
| |
Collapse
|
179
|
Nespolo A, Stefenatti L, Pellarin I, Gambelli A, Rampioni Vinciguerra GL, Karimbayli J, Barozzi S, Orsenigo F, Spizzo R, Nicoloso MS, Segatto I, D’Andrea S, Bartoletti M, Lucia E, Giorda G, Canzonieri V, Puglisi F, Belletti B, Schiappacassi M, Baldassarre G, Sonego M. USP1 deubiquitinates PARP1 to regulate its trapping and PARylation activity. SCIENCE ADVANCES 2024; 10:eadp6567. [PMID: 39536107 PMCID: PMC11559621 DOI: 10.1126/sciadv.adp6567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
PARP inhibitors (PARPi) represent a game-changing treatment for patients with ovarian cancer with tumors deficient for the homologous recombination (HR) pathway treated with platinum (Pt)-based therapy. PARPi exert their cytotoxic effect by both trapping PARP1 on the damaged DNA and by restraining its enzymatic activity (PARylation). How PARP1 is recruited and trapped at the DNA damage sites and how resistance to PARPi could be overcome are still matters of investigation. Here, we described PARP1 as a substrate of the deubiquitinase USP1. At molecular level, USP1 binds PARP1 to remove its K63-linked polyubiquitination and controls PARP1 chromatin trapping and PARylation activity, regulating sensitivity to PARPi. In both Pt/PARPi-sensitive and -resistant cells, USP1/PARP1 combined blockade enhances replicative stress, DNA damage, and cell death. Our work dissected the biological interaction between USP1 and PARP1 and recommended this axis as a promising and powerful therapeutic choice for not only sensitive but also chemoresistant patients with ovarian cancer irrespective of their HR status.
Collapse
Affiliation(s)
- Anna Nespolo
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Linda Stefenatti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Ilenia Pellarin
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Alice Gambelli
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Gian Luca Rampioni Vinciguerra
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Javad Karimbayli
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Sara Barozzi
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan (MI), Italy
| | - Fabrizio Orsenigo
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan (MI), Italy
| | - Riccardo Spizzo
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Milena S. Nicoloso
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Ilenia Segatto
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Sara D’Andrea
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Michele Bartoletti
- Deparment of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Emilio Lucia
- Gynecological Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Giorgio Giorda
- Gynecological Surgery Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Vincenzo Canzonieri
- Pathology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
- Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste (TS), Italy
| | - Fabio Puglisi
- Deparment of Medical Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
- Department of Medicine, University of Udine, Udine (UD), Italy
| | - Barbara Belletti
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Monica Schiappacassi
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Gustavo Baldassarre
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| | - Maura Sonego
- Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano (PN), Italy
| |
Collapse
|
180
|
Luo J, Li Y, Zhang Y, Wu D, Ren Y, Liu J, Wang C, Zhang J. An update on small molecule compounds targeting synthetic lethality for cancer therapy. Eur J Med Chem 2024; 278:116804. [PMID: 39241482 DOI: 10.1016/j.ejmech.2024.116804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/19/2024] [Accepted: 08/26/2024] [Indexed: 09/09/2024]
Abstract
Targeting cancer-specific vulnerabilities through synthetic lethality (SL) is an emerging paradigm in precision oncology. A SL strategy based on PARP inhibitors has demonstrated clinical efficacy. Advances in DNA damage response (DDR) uncover novel SL gene pairs. Beyond BRCA-PARP, emerging SL targets like ATR, ATM, DNA-PK, CHK1, WEE1, CDK12, RAD51, and RAD52 show clinical promise. Selective and bioavailable small molecule inhibitors have been developed to induce SL, but optimization for potency, specificity, and drug-like properties remains challenging. This article illuminated recent progress in the field of medicinal chemistry centered on the rational design of agents capable of eliciting SL specifically in neoplastic cells. It is envisioned that innovative strategies harnessing SL for small molecule design may unlock novel prospects for targeted cancer therapeutics going forward.
Collapse
Affiliation(s)
- Jiaxiang Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yang Li
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yiwen Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Defa Wu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yijiu Ren
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China
| | - Jie Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Chengdi Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Jifa Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy and Department of Pulmonary and Critical Care Medicine, Institute of Respiratory Health and Frontiers Science Center for Disease-related Molecular Network and Laboratory of Neuro-system and Multimorbidity, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
181
|
Shanmugam N, Chatterjee S, Cisneros GA. Impact of a Cancer-Associated Mutation on Poly(ADP-ribose) Polymerase1 Inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623412. [PMID: 39605557 PMCID: PMC11601374 DOI: 10.1101/2024.11.13.623412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Poly(ADP-ribose) polymerase1 (PARP1) plays a vital role in DNA repair and its inhibition in cancer cells may cause cell apoptosis. In this study, we investigated the effects of a PARP1 variant, V762A, which is strongly associated with several cancers in humans, on the inhibition of PARP1 by three FDA approved inhibitors: niraparib, rucaparib and talazoparib. Our work suggests that these inhibitors bind to the V762A mutant more effectively than to the wild-type (WT), with similar binding free energies between them. Talazoparib inhibition uniquely lowers the average residue fluctuations in the mutant than the WT including lower fluctuations of mutant's N- and C-terminal residues, conserved H-Y-E traid residues and donor loop (D-loop) residues which important for catalysis more effectively than other inhibitions. However, talazoparib also enhances destabilizing interactions between the mutation site in the HD domain in the mutant than WT. Further, talazoparib inhibition significantly disrupts the functional fluctuations of terminal regions in the mutant, which are otherwise present in the WT. Lastly, the mutation and inhibition do not significantly affect PARP1's essential dynamics.
Collapse
Affiliation(s)
- Neel Shanmugam
- Department of Chemistry, University of North Texas, Denton, TX 76201, USA
| | - Shubham Chatterjee
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
| | - G. Andrés Cisneros
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, 75080, USA
- Department of Physics, University of Texas at Dallas, Richardson, TX, 75080, USA
| |
Collapse
|
182
|
Roggia M, Natale B, Amendola G, Grasso N, Di Maro S, Taliani S, Castellano S, Reina SCR, Salvati E, Amato J, Cosconati S. Discovering Dually Active Anti-cancer Compounds with a Hybrid AI-structure-based Approach. J Chem Inf Model 2024; 64:8299-8309. [PMID: 39276072 DOI: 10.1021/acs.jcim.4c01132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/16/2024]
Abstract
Cancer's persistent growth often relies on its ability to maintain telomere length and tolerate the accumulation of DNA damage. This study explores a computational approach to identify compounds that can simultaneously target both G-quadruplex (G4) structures and poly(ADP-ribose) polymerase (PARP)1 enzyme, offering a potential multipronged attack on cancer cells. We employed a hybrid virtual screening (VS) protocol, combining the power of machine learning with traditional structure-based methods. PyRMD, our AI-powered tool, was first used to analyze vast chemical libraries and to identify potential PARP1 inhibitors based on known bioactivity data. Subsequently, a structure-based VS approach selected compounds from these identified inhibitors for their G4 stabilization potential. This two-step process yielded 50 promising candidates, which were then experimentally validated for their ability to inhibit PARP1 and stabilize G4 structures. Ultimately, four lead compounds emerged as promising candidates with the desired dual activity and demonstrated antiproliferative effects against specific cancer cell lines. This study highlights the potential of combining Artificial Intelligence and structure-based methods for the discovery of multitarget anticancer compounds, offering a valuable approach for future drug development efforts.
Collapse
Affiliation(s)
- Michele Roggia
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| | - Benito Natale
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| | - Giorgio Amendola
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| | - Nicola Grasso
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Salvatore Di Maro
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| | - Sabrina Taliani
- Department of Pharmacy, University of Pisa, Via Bonanno 6, Pisa 56126, Italy
| | - Sabrina Castellano
- Dipartimento di Farmacia, Università di Salerno, Via Giovanni Paolo II 132, 84084 Fisciano Salerno, Italy
| | | | - Erica Salvati
- Institute of Molecular Biology and Pathology, National Research Council, Rome, Italy
| | - Jussara Amato
- Department of Pharmacy, University of Naples Federico II, Via D. Montesano 49, Naples 80131, Italy
| | - Sandro Cosconati
- DiSTABiF, Università della Campania Luigi Vanvitelli, Via Vivaldi 43, Caserta 81100, Italy
| |
Collapse
|
183
|
Marín-Blázquez M, Rovira J, Ramírez-Bajo MJ, Zapata-Pérez R, Rabadán-Ros R. NAD + enhancers as therapeutic agents in the cardiorenal axis. Cell Commun Signal 2024; 22:537. [PMID: 39516787 PMCID: PMC11546376 DOI: 10.1186/s12964-024-01903-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Cardiorenal diseases represent a complex interplay between heart failure and renal dysfunction, being clinically classified as cardiorenal syndromes (CRS). Recently, the contributions of altered nicotinamide adenine dinucleotide (NAD+) metabolism, through deficient NAD+ synthesis and/or elevated consumption, have proved to be decisive in the onset and progress of cardiorenal disease. NAD+ is a pivotal coenzyme in cellular metabolism, being significant in various signaling pathways, such as energy metabolism, DNA damage repair, gene expression, and stress response. Convincing evidence suggests that strategies designed to boost cellular NAD+ levels are a promising therapeutic option to address cardiovascular and renal disorders. Here, we review and discuss the implications of NAD+ metabolism in cardiorenal diseases, focusing on the propitious NAD+ boosting therapeutic strategies, based on the use of NAD+ precursors, poly(ADP-ribose) polymerase inhibitors, sirtuin activators, and other alternative approaches, such as CD38 blockade, nicotinamide phosphoribosyltransferase activation and combined interventions.
Collapse
Affiliation(s)
- Mariano Marín-Blázquez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain
| | - Jordi Rovira
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - María José Ramírez-Bajo
- Laboratori Experimental de Nefrologia i Trasplantament (LENIT), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Casanova 143 CRB CELLEX sector 2B, Barcelona, 08036, Spain
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS 2040), Madrid, Spain
| | - Rubén Zapata-Pérez
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| | - Rubén Rabadán-Ros
- Group of Metabolism and Genetic Regulation of Disease, UCAM HiTech Sport & Health Innovation Hub, Universidad Católica de Murcia, 30107 Guadalupe de Maciascoque, Murcia, Spain.
| |
Collapse
|
184
|
Gui F, Jiang B, Jiang J, He Z, Tsujino T, Takai T, Arai S, Pana C, Köllermann J, Bradshaw GA, Eisert R, Kalocsay M, Fassl A, Balk SP, Kibel AS, Jia L. Acute BRCAness Induction and AR Signaling Blockage through CDK12/7/9 Degradation Enhances PARP Inhibitor Sensitivity in Prostate Cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.09.602803. [PMID: 39026842 PMCID: PMC11257538 DOI: 10.1101/2024.07.09.602803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Current treatments for advanced prostate cancer (PCa) primarily target the androgen receptor (AR) pathway. However, the emergence of castration-resistant prostate cancer (CRPC) and resistance to AR pathway inhibitors (APSIs) remains ongoing challenges. Here, we present BSJ-5-63, a novel proteolysis-targeting chimera (PROTAC) targeting cyclin-dependent kinases (CDKs) CDK12, CDK7, and CDK9, offering a multi-pronged approach to CRPC therapy. BSJ-5-63 degrades CDK12, diminishing BRCA1 and BRCA2 expression and inducing a sustained "BRCAness" state. This sensitizes cancer cells to PARP inhibitors (PARPis) regardless of their homologous recombination repair (HRR) status. Furthermore, CDK7 and CDK9 degradation attenuates AR signaling, enhancing its therapeutic efficacy. Preclinical studies, including both in vitro and in vivo CRPC models, demonstrate that BSJ-5-63 exerts potent anti-tumor activity in both AR-positive and AR-negative setting. This study introduces BSJ-5-63 as a promising therapeutic agent that addresses both DNA repair and AR signaling mechanisms, with potential benefits for a board patient population.
Collapse
|
185
|
Lu G, Zou Z, Xin M, Meng Y, Cheng Z, Du Z, Gu J, Zhang X, Zou Y. Carbamoylation at C-8 position of natural 3-arylcoumarin scaffold for the discovery of novel PARP-1 inhibitors with potent anticancer activity. Eur J Med Chem 2024; 277:116726. [PMID: 39116535 DOI: 10.1016/j.ejmech.2024.116726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/21/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024]
Abstract
Structural modification based on natural privileged scaffolds has proven to be an attractive approach to generate potential antitumor candidates with high potency and specific targeting. As a continuation of our efforts to identify potent PARP-1 inhibitors, natural 3-arylcoumarin scaffold was served as the starting point for the construction of novel structural unit for PARP-1 inhibition. Herein, a series of novel 8-carbamyl-3-arylcoumarin derivatives were designed and synthesized. The antiproliferative activities of target compounds against four BRCA-mutated cancer cells (SUM149PT, HCC1937, MDA-MB-436 and Capan-1) were evaluated. Among them, compound 9b exhibited excellent antiproliferative effects against SUM149PT, HCC1937 and Capan-1 cells with IC50 values of 0.62, 1.91 and 4.26 μM, respectively. Moreover, 9b could significantly inhibit the intracellular PARP-1/2 activity in SUM149PT cells with IC50 values of 2.53 nM and 6.45 nM, respectively. Further mechanism studies revealed that 9b could aggravate DNA double-strand breaks, increase ROS production, decrease mitochondrial membrane potential, arrest cell cycle at G2/M phase and ultimately induce apoptosis in SUM149PT cells. In addition, molecular docking study demonstrated that the binding mode of 9b with PARP-1 was similar to that of niraparib, forming multiple hydrogen bond interactions with the active site of PARP-1. Taken together, these findings suggest that 8-carbamyl-3-arylcoumarin scaffold could serve as an effective structural unit for PARP-1 inhibition and offer a valuable paradigm for the structural modification of natural products.
Collapse
Affiliation(s)
- Guoqing Lu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhiru Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Meixiu Xin
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yingfen Meng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhuo Cheng
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Zhibo Du
- Zhongshan Wanhan Pharmaceuticals Co., Ltd., Zhongshan, 528451, PR China
| | - Jiayi Gu
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Xuejing Zhang
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Yong Zou
- State Key Laboratory of Anti-Infective Drug Discovery and Development, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China.
| |
Collapse
|
186
|
Almohdar D, Kamble P, Basavannacharya C, Gulkis M, Calbay O, Huang S, Narayan S, Çağlayan M. Impact of DNA ligase inhibition on the nick sealing of polβ nucleotide insertion products at the downstream steps of base excision repair pathway. Mutagenesis 2024; 39:263-279. [PMID: 38736258 PMCID: PMC11529620 DOI: 10.1093/mutage/geae013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024] Open
Abstract
DNA ligase (LIG) I and IIIα finalize base excision repair (BER) by sealing a nick product after nucleotide insertion by DNA polymerase (pol) β at the downstream steps. We previously demonstrated that a functional interplay between polβ and BER ligases is critical for efficient repair, and polβ mismatch or oxidized nucleotide insertions confound the final ligation step. Yet, how targeting downstream enzymes with small molecule inhibitors could affect this coordination remains unknown. Here, we report that DNA ligase inhibitors, L67 and L82-G17, slightly enhance hypersensitivity to oxidative stress-inducing agent, KBrO3, in polβ+/+ cells more than polβ-/- null cells. We showed less efficient ligation after polβ nucleotide insertions in the presence of the DNA ligase inhibitors. Furthermore, the mutations at the ligase inhibitor binding sites (G448, R451, A455) of LIG1 significantly affect nick DNA binding affinity and nick sealing efficiency. Finally, our results demonstrated that the BER ligases seal a gap repair intermediate by the effect of polβ inhibitor that diminishes gap filling activity. Overall, our results contribute to understand how the BER inhibitors against downstream enzymes, polβ, LIG1, and LIGIIIα, could impact the efficiency of gap filling and subsequent nick sealing at the final steps leading to the formation of deleterious repair intermediates.
Collapse
Affiliation(s)
- Danah Almohdar
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Pradnya Kamble
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Chandrakala Basavannacharya
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Mitchell Gulkis
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| | - Ozlem Calbay
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, United States
| | - Shuang Huang
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, United States
| | - Satya Narayan
- Department of Anatomy and Cell Biology, University of Florida, Gainesville, FL 32610, United States
| | - Melike Çağlayan
- Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, FL 32610, United States
| |
Collapse
|
187
|
Peng Y, Liu D, Huang D, Inuzuka H, Liu J. PROTAC as a novel anti-cancer strategy by targeting aging-related signaling. Semin Cancer Biol 2024; 106-107:143-155. [PMID: 39368654 DOI: 10.1016/j.semcancer.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/07/2024]
Abstract
Aging and cancer share common cellular hallmarks, including cellular senescence, genomic instability, and abnormal cell death and proliferation, highlighting potential areas for therapeutic interventions. Recent advancements in targeted protein degradation technologies, notably Proteolysis-Targeting Chimeras (PROTACs), offer a promising approach to address these shared pathways. PROTACs leverage the ubiquitin-proteasome system to specifically degrade pathogenic proteins involved in cancer and aging, thus offering potential solutions to key oncogenic drivers and aging-related cellular dysfunction. This abstract summarizes the recent progress of PROTACs in targeting critical proteins implicated in both cancer progression and aging, and explores future perspectives in integrating these technologies for more effective cancer treatments.
Collapse
Affiliation(s)
- Yunhua Peng
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China
| | - Donghua Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China
| | - Daoyuan Huang
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States
| | - Hiroyuki Inuzuka
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory for Tumor Precision Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China; Key Laboratory of Environment and Genes Related to Diseases, Ministry of Education, Xi'an 710061, China.
| |
Collapse
|
188
|
Fu XL, Guo SM, Ma JQ, Ma FY, Wang X, Tang YX, Li Y, Zhang WY, Ye LH. HBXIP induces PARP1 via WTAP-mediated m 6A modification and CEBPA-activated transcription in cisplatin resistance to hepatoma. Acta Pharmacol Sin 2024; 45:2405-2419. [PMID: 38871923 PMCID: PMC11489769 DOI: 10.1038/s41401-024-01309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/08/2024] [Indexed: 06/15/2024]
Abstract
Poly (ADP-ribose) polymerase 1 (PARP1) is a DNA-binding protein that is involved in various biological functions, including DNA damage repair and transcription regulation. It plays a crucial role in cisplatin resistance. Nevertheless, the exact regulatory pathways governing PARP1 have not yet been fully elucidated. In this study, we present evidence suggesting that the hepatitis B X-interacting protein (HBXIP) may exert regulatory control over PARP1. HBXIP functions as a transcriptional coactivator and is positively associated with PARP1 expression in tissues obtained from hepatoma patients in clinical settings, and its high expression promotes cisplatin resistance in hepatoma. We discovered that the oncogene HBXIP increases the level of PARP1 m6A modification by upregulating the RNA methyltransferase WTAP, leading to the accumulation of the PARP1 protein. In this process, on the one hand, HBXIP jointly activates the transcription factor ETV5, promoting the activation of the WTAP promoter and further facilitating the promotion of the m6A modification of PARP1 by WTAP methyltransferase, enhancing the RNA stability of PARP1. On the other hand, HBXIP can also jointly activate the transcription factor CEBPA, enhance the activity of the PARP1 promoter, and promote the upregulation of PARP1 expression, ultimately leading to enhanced DNA damage repair capability and promoting cisplatin resistance in hepatoma. Notably, aspirin inhibits HBXIP, thereby reducing the expression of PARP1. Overall, our research revealed a novel mechanism for increasing PARP1 abundance, and aspirin therapy could overcome cisplatin resistance in hepatoma.
Collapse
Affiliation(s)
- Xue-Li Fu
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Shi-Man Guo
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jia-Qi Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Fang-Yuan Ma
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Xue Wang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Yan-Xin Tang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Ye Li
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei-Ying Zhang
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Li-Hong Ye
- State Key Laboratory of Medicinal Chemical Biology, Tianjin Key Laboratory of Protein Sciences, Department of Biochemistry and Molecular Biology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
189
|
Ivarsdottir EV, Gudmundsson J, Tragante V, Sveinbjornsson G, Kristmundsdottir S, Stacey SN, Halldorsson GH, Magnusson MI, Oddsson A, Walters GB, Sigurdsson A, Saevarsdottir S, Beyter D, Thorleifsson G, Halldorsson BV, Melsted P, Stefansson H, Jonsdottir I, Sørensen E, Pedersen OB, Erikstrup C, Bøgsted M, Pøhl M, Røder A, Stroomberg HV, Gögenur I, Hillingsø J, Bojesen SE, Lassen U, Høgdall E, Ullum H, Brunak S, Ostrowski SR, Sonderby IE, Frei O, Djurovic S, Havdahl A, Moller P, Dominguez-Valentin M, Haavik J, Andreassen OA, Hovig E, Agnarsson BA, Hilmarsson R, Johannsson OT, Valdimarsson T, Jonsson S, Moller PH, Olafsson JH, Sigurgeirsson B, Jonasson JG, Tryggvason G, Holm H, Sulem P, Rafnar T, Gudbjartsson DF, Stefansson K. Gene-based burden tests of rare germline variants identify six cancer susceptibility genes. Nat Genet 2024; 56:2422-2433. [PMID: 39472694 DOI: 10.1038/s41588-024-01966-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/30/2024] [Indexed: 11/10/2024]
Abstract
Discovery of cancer risk variants in the sequence of the germline genome can shed light on carcinogenesis. Here we describe gene burden association analyses, aggregating rare missense and loss of function variants, at 22 cancer sites, including 130,991 cancer cases and 733,486 controls from Iceland, Norway and the United Kingdom. We identified four genes associated with increased cancer risk; the pro-apoptotic BIK for prostate cancer, the autophagy involved ATG12 for colorectal cancer, TG for thyroid cancer and CMTR2 for both lung cancer and cutaneous melanoma. Further, we found genes with rare variants that associate with decreased risk of cancer; AURKB for any cancer, irrespective of site, and PPP1R15A for breast cancer, suggesting that inhibition of PPP1R15A may be a preventive strategy for breast cancer. Our findings pinpoint several new cancer risk genes and emphasize autophagy, apoptosis and cell stress response as a focus point for developing new therapeutics.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Saedis Saevarsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | | | | | - Bjarni V Halldorsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Technology, Reykjavik University, Reykjavik, Iceland
| | - Pall Melsted
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | | | - Ingileif Jonsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Immunology, Landspitali University Hospital, Reykjavik, Iceland
| | - Erik Sørensen
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ole B Pedersen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Koege, Denmark
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Martin Bøgsted
- Center for Clinical Data Science, Aalborg University and Aalborg University Hospital, Aalborg, Denmark
| | - Mette Pøhl
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Andreas Røder
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Hein Vincent Stroomberg
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Urology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ismail Gögenur
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Center for Surgical Science, Zealand University Hospital, Køge, Denmark
| | - Jens Hillingsø
- Department of Transplantation, Digestive Diseases and General Surgery, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Stig E Bojesen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Herlev Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Ulrik Lassen
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Estrid Høgdall
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Pathology, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark
| | | | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ida Elken Sonderby
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Oleksandr Frei
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital and University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Alexandra Havdahl
- Center for Genetic Epidemiology and Mental Health, Norwegian Institute of Public Health, Oslo, Norway
- Nic Waals Institute, Lovisenberg Diaconal Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Pal Moller
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Mev Dominguez-Valentin
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jan Haavik
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Division of Psychiatry, Bergen Center of Brain Plasticity, Haukeland University Hospital, Bergen, Norway
| | - Ole A Andreassen
- Division of Mental Health and Addiction, Centre for Precision Psychiatry, University of Oslo and Oslo University Hospital, Oslo, Norway
- K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Eivind Hovig
- Department of Informatics, Centre for Bioinformatics, University of Oslo, Oslo, Norway
- Department of Tumor Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Bjarni A Agnarsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Rafn Hilmarsson
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | | | - Trausti Valdimarsson
- The Medical Center, Glaesibae, Reykjavik, Iceland
- Department of Medicine, West Iceland Healthcare Centre, Akranes, Iceland
| | - Steinn Jonsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Medicine, Landspitali University Hospital, Reykjavik, Iceland
| | - Pall H Moller
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of General Surgery, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon H Olafsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Bardur Sigurgeirsson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Dermatology Oncology, Landspitali University Hospital, Reykjavik, Iceland
| | - Jon G Jonasson
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Pathology, Landspitali University Hospital, Reykjavik, Iceland
| | - Geir Tryggvason
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland
- Department of Otorhinolaryngology, Landspitali University Hospital, Reykjavik, Iceland
| | - Hilma Holm
- deCODE genetics/Amgen, Reykjavik, Iceland
| | | | | | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland.
- Faculty of Medicine, School of Health Sciences, University of Iceland, Reykjavik, Iceland.
| |
Collapse
|
190
|
Yang Y, Mou Y, Wan LX, Zhu S, Wang G, Gao H, Liu B. Rethinking therapeutic strategies of dual-target drugs: An update on pharmacological small-molecule compounds in cancer. Med Res Rev 2024; 44:2600-2623. [PMID: 38769656 DOI: 10.1002/med.22057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 06/06/2023] [Accepted: 05/09/2024] [Indexed: 05/22/2024]
Abstract
Oncogenes and tumor suppressors are well-known to orchestrate several signaling cascades, regulate extracellular and intracellular stimuli, and ultimately control the fate of cancer cells. Accumulating evidence has recently revealed that perturbation of these key modulators by mutations or abnormal protein expressions are closely associated with drug resistance in cancer therapy; however, the inherent drug resistance or compensatory mechanism remains to be clarified for targeted drug discovery. Thus, dual-target drug development has been widely reported to be a promising therapeutic strategy for improving drug efficiency or overcoming resistance mechanisms. In this review, we provide an overview of the therapeutic strategies of dual-target drugs, especially focusing on pharmacological small-molecule compounds in cancer, including small molecules targeting mutation resistance, compensatory mechanisms, synthetic lethality, synergistic effects, and other new emerging strategies. Together, these therapeutic strategies of dual-target drugs would shed light on discovering more novel candidate small-molecule drugs for the future cancer treatment.
Collapse
Affiliation(s)
- Yiren Yang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Yi Mou
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Lin-Xi Wan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China
| | - Shiou Zhu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Guan Wang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| | - Huiyuan Gao
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Liu
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, and Department of Gastroenterology and Hepatology, West China Hospital, Sichuan University/West China School of Nursing, Sichuan University, Chengdu, China
| |
Collapse
|
191
|
Williams KB, Larsson AT, Keller BJ, Chaney KE, Williams RL, Bhunia MM, Draper GM, Jubenville TA, Hudson WA, Moertel CL, Ratner N, Largaespada DA. Pharmacogenomic synthetic lethal screens reveal hidden vulnerabilities and new therapeutic approaches for treatment of NF1-associated tumors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.25.585959. [PMID: 38585724 PMCID: PMC10996510 DOI: 10.1101/2024.03.25.585959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Neurofibromatosis Type 1 (NF1) is a common cancer predisposition syndrome, caused by heterozygous loss of function mutations in the tumor suppressor gene NF1. Individuals with NF1 develop benign tumors of the peripheral nervous system (neurofibromas), originating from the Schwann cell linage after somatic loss of the wild type NF1 allele, some of which progress further to malignant peripheral nerve sheath tumors (MPNST). There is only one FDA approved targeted therapy for symptomatic plexiform neurofibromas and none approved for MPNST. The genetic basis of NF1 syndrome makes associated tumors ideal for using synthetic drug sensitivity approaches to uncover therapeutic vulnerabilities. We developed a drug discovery pipeline to identify therapeutics for NF1-related tumors using isogeneic pairs of NF1-proficient and deficient immortalized human Schwann cells. We utilized these in a large-scale high throughput screen (HTS) for drugs that preferentially kill NF1-deficient cells, through which we identified 23 compounds capable of killing NF1-deficient Schwann cells with selectivity. Multiple hits from this screen clustered into classes defined by method of action. Four clinically interesting drugs from these classes were tested in vivo using both a genetically engineered mouse model of high-grade peripheral nerve sheath tumors and human MPNST xenografts. All drugs tested showed single agent efficacy in these models as well as significant synergy when used in combination with the MEK inhibitor Selumetinib. This HTS platform yielded novel therapeutically relevant compounds for the treatment of NF1-associated tumors and can serve as a tool to rapidly evaluate new compounds and combinations in the future.
Collapse
Affiliation(s)
- Kyle B Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Alex T Larsson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Bryant J Keller
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Katherine E Chaney
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229-0713, USA
| | - Rory L Williams
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Minu M Bhunia
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| | - Garrett M Draper
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Tyler A Jubenville
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wendy A Hudson
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Christopher L Moertel
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital, Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, 45229-0713, USA
| | - David A Largaespada
- Department of Pediatrics, Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Twin Cities, Minneapolis, Minnesota 55455, USA
| |
Collapse
|
192
|
Bi R, Chen L, Huang M, Qiao Z, Li Z, Fan G, Wang Y. Emerging strategies to overcome PARP inhibitors' resistance in ovarian cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189221. [PMID: 39571765 DOI: 10.1016/j.bbcan.2024.189221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 10/28/2024] [Accepted: 11/11/2024] [Indexed: 11/29/2024]
Abstract
The utilization of PARP inhibitors (PARPis) has significantly improved the prognosis for ovarian cancer patients. However, as the use of PARPis increases, the issue of PARPi resistance has become more prominent. Prolonged usage of PARPis can lead to the development of resistance in ovarian cancer, often mediated by mechanisms such as homologous recombination (HR) recovery, ultimately resulting in cancer relapse. Overcoming PARPi resistance in ovarian cancer is a pressing concern, aiming to enhance the clinical benefits of PARPi treatment and delay disease recurrence. Here, we summarize the mechanisms underlying PARPi resistance, methods for analyzing resistance, and strategies for overcoming it. Our goal is to inspire the development of more cost-effective and convenient methods for analyzing resistance mechanisms, as well as safer and more effective strategies to overcome resistance. These advancements can contribute to developing personalized approaches for treating ovarian cancer.
Collapse
Affiliation(s)
- Ruomeng Bi
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Li Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Mei Huang
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhi Qiao
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Zhen Li
- Clinical Research Unit, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| | - Gaofeng Fan
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; Shanghai Clinical Research and Trial Center, Shanghai 201210, China.
| | - Yu Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China; Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China.
| |
Collapse
|
193
|
Tang J, Weiser NE, Wang G, Chowdhry S, Curtis EJ, Zhao Y, Wong ITL, Marinov GK, Li R, Hanoian P, Tse E, Mojica SG, Hansen R, Plum J, Steffy A, Milutinovic S, Meyer ST, Luebeck J, Wang Y, Zhang S, Altemose N, Curtis C, Greenleaf WJ, Bafna V, Benkovic SJ, Pinkerton AB, Kasibhatla S, Hassig CA, Mischel PS, Chang HY. Enhancing transcription-replication conflict targets ecDNA-positive cancers. Nature 2024; 635:210-218. [PMID: 39506153 PMCID: PMC11540844 DOI: 10.1038/s41586-024-07802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 07/09/2024] [Indexed: 11/08/2024]
Abstract
Extrachromosomal DNA (ecDNA) presents a major challenge for cancer patients. ecDNA renders tumours treatment resistant by facilitating massive oncogene transcription and rapid genome evolution, contributing to poor patient survival1-7. At present, there are no ecDNA-specific treatments. Here we show that enhancing transcription-replication conflict enables targeted elimination of ecDNA-containing cancers. Stepwise analyses of ecDNA transcription reveal pervasive RNA transcription and associated single-stranded DNA, leading to excessive transcription-replication conflicts and replication stress compared with chromosomal loci. Nucleotide incorporation on ecDNA is markedly slower, and replication stress is significantly higher in ecDNA-containing tumours regardless of cancer type or oncogene cargo. pRPA2-S33, a mediator of DNA damage repair that binds single-stranded DNA, shows elevated localization on ecDNA in a transcription-dependent manner, along with increased DNA double strand breaks, and activation of the S-phase checkpoint kinase, CHK1. Genetic or pharmacological CHK1 inhibition causes extensive and preferential tumour cell death in ecDNA-containing tumours. We advance a highly selective, potent and bioavailable oral CHK1 inhibitor, BBI-2779, that preferentially kills ecDNA-containing tumour cells. In a gastric cancer model containing FGFR2 amplified on ecDNA, BBI-2779 suppresses tumour growth and prevents ecDNA-mediated acquired resistance to the pan-FGFR inhibitor infigratinib, resulting in potent and sustained tumour regression in mice. Transcription-replication conflict emerges as a target for ecDNA-directed therapy, exploiting a synthetic lethality of excess to treat cancer.
Collapse
Affiliation(s)
- Jun Tang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Natasha E Weiser
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Guiping Wang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | | | - Ellis J Curtis
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Medical Scientist Training Program, University of California, San Diego, La Jolla, CA, USA
| | - Yanding Zhao
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA
| | - Ivy Tsz-Lo Wong
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - Georgi K Marinov
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Rui Li
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Philip Hanoian
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | | | | | | | | | | | | | | | - Jens Luebeck
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Yanbo Wang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Shu Zhang
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
| | - Nicolas Altemose
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Christina Curtis
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Vineet Bafna
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Stephen J Benkovic
- Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | | | | | | | - Paul S Mischel
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.
- Sarafan ChEM-H, Stanford University, Stanford, CA, USA.
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA.
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Dermatology, Stanford University School of Medicine, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
194
|
Du J, Zhang J, Liu D, Gao L, Liao H, Chu L, Lin J, Li W, Meng X, Zou F, Cai S, Zou M, Dong H. 1G6-D7 Inhibits Homologous Recombination Repair by Targeting Extracellular HSP90α to Promote Apoptosis in Non-Small Cell Lung Cancer. ENVIRONMENTAL TOXICOLOGY 2024; 39:4884-4898. [PMID: 38899512 DOI: 10.1002/tox.24356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024]
Abstract
Despite recent advances in treatment, non-small cell lung cancer (NSCLC) continues to have a high mortality rate. Currently, NSCLC pathogenesis requires further investigation, and therapeutic drugs are still under development. Homologous recombination repair (HRR) repairs severe DNA double-strand breaks. Homologous recombination repair deficiency (HRD) occurs when HRR is impaired and causes irreparable double-strand DNA damage, leading to genomic instability and increasing the risk of cancer development. Poly(ADP-ribose) polymerase (PARP) inhibitors can effectively treat HRD-positive tumors. Extracellular heat shock protein 90α (eHSP90α) is highly expressed in hypoxic environments and inhibits apoptosis, thereby increasing cellular tolerance. Here, we investigated the relationship between eHSP90α and HRR in NSCLC. DNA damage models were established in NSCLC cell lines (A549 and H1299). The activation of DNA damage and HRR markers, apoptosis, proliferation, and migration were investigated. In vivo tumor models were established using BALB/c nude mice and A549 cells. We found that human recombinant HSP90α stimulation further activated HRR and reduced DNA damage extent; however, eHSP90α monoclonal antibody, 1G6-D7, effectively inhibited HRR. HRR inhibition and increased apoptosis were observed after LRP1 knockdown; this effect could not be reversed with hrHSP90α addition. The combined use of 1G6-D7 and olaparib caused significant apoptosis and HRR inhibition in vitro and demonstrated promising anti-tumor effects in vivo. Extracellular HSP90α may be involved in HRR in NSCLC through LRP1. The combined use of 1G6-D7 and PARP inhibitors may exert anti-tumor effects by inhibiting DNA repair and further inducing apoptosis of NSCLC cells.
Collapse
Affiliation(s)
- Jiangzhou Du
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jinming Zhang
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Dongyu Liu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lin Gao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hua Liao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Lanhe Chu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jie Lin
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wei Li
- Department of Dermatology, The USC-Norris Comprehensive Cancer Center, University of Southern California Keck Medical Center, California, Los Angeles, USA
| | - Xiaojing Meng
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Fei Zou
- Department of Occupational Health and Occupational Medicine, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, China
| | - Shaoxi Cai
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Mengchen Zou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Hangming Dong
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
195
|
Kang F, Niu M, Zhou Z, Zhang M, Xiong H, Zeng F, Wang J, Chen X. Spatiotemporal Concurrent PARP Inhibitor Sensitization Based on Radiation-Responsive Nanovesicles for Lung Cancer Chemoradiotherapy. Adv Healthc Mater 2024; 13:e2400908. [PMID: 38598819 DOI: 10.1002/adhm.202400908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 04/07/2024] [Indexed: 04/12/2024]
Abstract
The implementation of chemoradiation combinations has gained great momentum in clinical practices. However, the full utility of this paradigm is often restricted by the discordant tempos of action of chemotherapy and radiotherapy. Here, a gold nanoparticle-based radiation-responsive nanovesicle system loaded with cisplatin and veliparib, denoted as CV-Au NVs, is developed to augment the concurrent chemoradiation effect in a spatiotemporally controllable manner of drug release. Upon irradiation, the in situ generation of •OH induces the oxidation of polyphenylene sulfide from being hydrophobic to hydrophilic, resulting in the disintegration of the nanovesicles and the rapid release of the entrapped cisplatin and veliparib (the poly ADP-ribose polymerase (PARP) inhibitor). Cisplatin-induced DNA damage and the impairment of the DNA repair mechanism mediated by veliparib synergistically elicit potent pro-apoptotic effects. In vivo studies suggest that one-dose injection of the CV-Au NVs and one-time X-ray irradiation paradigm effectively inhibit tumor growth in the A549 lung cancer model. This study provides new insight into designing nanomedicine platforms in chemoradiation therapy from a vantage point of synergizing both chemotherapy and radiation therapy in a spatiotemporally concurrent manner.
Collapse
Affiliation(s)
- Fei Kang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Meng Niu
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Zijian Zhou
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Mingru Zhang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Hehe Xiong
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Fantian Zeng
- State Key Laboratory of Vaccines for Infectious Diseases Center for Molecular Imaging and Translational Medicine, Xiang'An Biomedicine Laboratory, School of Public Health, Xiamen University, Xiamen, 361102, P. R. China
| | - Jing Wang
- Department of Nuclear Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, P. R. China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Nanomedicine Translational Research Program, NUS Center for Nanomedicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Proteos, Singapore, 138673, Singapore
| |
Collapse
|
196
|
Ren X, Sun P, Wang Y. PARP inhibitor-related acute renal failure: a real-world study based on the FDA adverse event reporting system database. Expert Opin Drug Saf 2024; 23:1463-1471. [PMID: 38967020 DOI: 10.1080/14740338.2024.2376690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/22/2024] [Indexed: 07/06/2024]
Abstract
BACKGROUND Current clinical trial data on PARP inhibitors (PARPis)-related acute renal failure (ARF) are not entirely representative of real-world situations. Therefore, in this study, the US Food and Drug Administration Adverse Event Reporting System (FAERS) was used to evaluate PARPis-related ARF. RESEARCH DESIGN AND METHODS Data were obtained from 1 January 2015, to 30 September 2023. ARF event reports were analyzed based on four algorithms. The time-to-onset (TTO) and clinical outcomes of PARPis-associated ARF were assessed. RESULTS The total included cases were 2726. Significant signals were observed for olaparib, niraparib, and rucaparib (reporting odds ratio (ROR): 1.62, 95% confidence interval (CI): 1.49-1.78, 1.25, 95% CI: 1.19-1.32 and 1.59, 95% CI: 1.47-1.72 respectively). The median TTO of ARF onset was 57, 36, and 85 days for olaparib, niraparib, and rucaparib, respectively. The proportion of deaths with olaparib (9.88%) was significantly higher than for niraparib (2.52%) and rucaparib (2.94%) (p < 0.005). The proportion of life-threatening adverse events associated with niraparib (4.89%) was significantly higher than for rucaparib (0.98%) (p < 0.005). CONCLUSIONS ARF and PARPi were related, with the exception of talazoparib. More emphasis should be given to PARPis-related ARF due to the high proportion of serious AEs and delayed adverse reactions.
Collapse
Affiliation(s)
- Xiayang Ren
- Department of Pharmacy, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ping Sun
- Department of Cancer Prevention, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanfeng Wang
- Department of Comprehensive Oncology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
197
|
Liu Y, Fang S, Wang P, Zhang J, Liu F. Olaparib Enhances the Efficacy of Third-Generation Oncolytic Adenoviruses Against Glioblastoma by Modulating DNA Damage Response and p66shc-Induced Apoptosis. CNS Neurosci Ther 2024; 30:e70124. [PMID: 39552450 PMCID: PMC11570871 DOI: 10.1111/cns.70124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/19/2024] Open
Abstract
AIMS Patients with glioblastoma multiforme (GBM) do not benefit from current cancer treatments, and their prognosis is dismal. This study aimed to investigate the potential synergistic effects of TS-2021, a third-generation oncolytic adenovirus, combined with the PARP inhibitor olaparib in GBM. METHODS TS-2021's impact on p66shc-induced apoptosis, DNA damage response, and poly (ADP-ribose) polymerase (PARP) activation was evaluated in GBM cells. The synergistic effect of TS-2021 and olaparib was examined in GBM cell lines and an immunocompetent mouse model of GBM. Mechanistic studies focused on the role of p66shc phosphorylation in the observed effects. RESULTS TS-2021 triggered p66shc-induced apoptosis, DNA damage response, and PARP activation. The combination of TS-2021 and olaparib synergistically increased cell apoptosis and DNA damage and reduced PARP expression compared to monotherapy. Olaparib promoted TS-2021 replication and release in GBM cells. Mechanistically, olaparib combined with TS-2021 upregulated p66shc phosphorylation, enhancing tumor cell apoptosis. In vivo, the combination therapy inhibited tumor growth and prolonged survival, confirming the synergistic effect. CONCLUSION This study is the first to suggest that TS-2021 sensitizes GBM cells with wild-type BRCA1/2 to olaparib. The combination of TS-2021 and olaparib shows a synergistic therapeutic effect against GBM, providing a promising treatment strategy.
Collapse
Affiliation(s)
- Yida Liu
- Brain Tumor Research Center, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Laboratory of Biomedical MaterialsBeijingChina
| | - Sheng Fang
- Brain Tumor Research Center, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Laboratory of Biomedical MaterialsBeijingChina
| | - Peiwen Wang
- Brain Tumor Research Center, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Laboratory of Biomedical MaterialsBeijingChina
| | - Junwen Zhang
- Brain Tumor Research Center, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Laboratory of Biomedical MaterialsBeijingChina
| | - Fusheng Liu
- Brain Tumor Research Center, Beijing Neurosurgical InstituteCapital Medical UniversityBeijingChina
- Department of NeurosurgeryBeijing Tiantan Hospital Affiliated to Capital Medical UniversityBeijingChina
- Beijing Laboratory of Biomedical MaterialsBeijingChina
| |
Collapse
|
198
|
Valenza C, Marsicano RM, Trapani D, Curigliano G. PARP inhibitor resistant BRCA-mutated advanced breast cancer: current landscape and emerging treatments. Curr Opin Oncol 2024; 36:474-479. [PMID: 39246166 DOI: 10.1097/cco.0000000000001092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
PURPOSE OF REVIEW Patients with advanced breast cancer (aBC) treated with PARP inhibitors (PARPi) can eventually experience disease progression for emerging treatment resistance. This review aims to depict the treatment the molecular landscape, and the innovative therapies for patients with PARPi-resistant BRCA-mutated aBC. RECENT FINDINGS No specific therapy is specifically available in the setting post-PARPi-failure, with antibody-drug conjugates or nonplatinum-based chemotherapy (PBC) representing the best treatment options in this setting. Mechanisms of on-target PARPi resistance can be classified in reversions (60%) and nonreversion (40%); reverse mutations restore PARP functions. According to the first evidence of clinical validity, these alterations are associated with lower efficacy of PARPi and PBC. However, their clinical utility needs to be assessed. SUMMARY PARPi-resistant aBC represents a clinical unmet need due to the lack of specific targeted therapies and validated prognostic and predictive biomarkers. Constant efforts are required to better define the mechanisms of PARPi resistance and, consequently, develop biomarker-based treatment approach to prevent or overcame resistance.
Collapse
Affiliation(s)
- Carmine Valenza
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Renato Maria Marsicano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Dario Trapani
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppe Curigliano
- Division of New Drugs and Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| |
Collapse
|
199
|
Federica G, Michela C, Giovanna D. Targeting the DNA damage response in cancer. MedComm (Beijing) 2024; 5:e788. [PMID: 39492835 PMCID: PMC11527828 DOI: 10.1002/mco2.788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 09/26/2024] [Accepted: 09/26/2024] [Indexed: 11/05/2024] Open
Abstract
DNA damage response (DDR) pathway is the coordinated cellular network dealing with the identification, signaling, and repair of DNA damage. It tightly regulates cell cycle progression and promotes DNA repair to minimize DNA damage to daughter cells. Key proteins involved in DDR are frequently mutated/inactivated in human cancers and promote genomic instability, a recognized hallmark of cancer. Besides being an intrinsic property of tumors, DDR also represents a unique therapeutic opportunity. Indeed, inhibition of DDR is expected to delay repair, causing persistent unrepaired breaks, to interfere with cell cycle progression, and to sensitize cancer cells to several DNA-damaging agents, such as radiotherapy and chemotherapy. In addition, DDR defects in cancer cells have been shown to render these cells more dependent on the remaining pathways, which could be targeted very specifically (synthetic lethal approach). Research over the past two decades has led to the synthesis and testing of hundreds of small inhibitors against key DDR proteins, some of which have shown antitumor activity in human cancers. In parallel, the search for synthetic lethality interaction is broadening the use of DDR inhibitors. In this review, we discuss the state-of-art of ataxia-telangiectasia mutated, ataxia-telangiectasia-and-Rad3-related protein, checkpoint kinase 1, Wee1 and Polθ inhibitors, highlighting the results obtained in the ongoing clinical trials both in monotherapy and in combination with chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Guffanti Federica
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Chiappa Michela
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| | - Damia Giovanna
- Laboratory of Preclinical Gynecological OncologyDepartment of Experimental OncologyIstituto di Ricerche Farmacologiche Mario Negri IRCCSMilanItaly
| |
Collapse
|
200
|
Fukumoto W, Okamura S, Tamai M, Arima J, Kawahara I, Fukuda I, Mitsuke A, Sakaguchi T, Sugita S, Matsushita R, Tatarano S, Yamada Y, Nakagawa M, Enokida H, Yoshino H. Development of a novel treatment based on PKMYT1 inhibition for cisplatin-resistant bladder cancer with miR-424-5p-dependent cyclin E1 amplification. BMC Cancer 2024; 24:1333. [PMID: 39472827 PMCID: PMC11523841 DOI: 10.1186/s12885-024-13109-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/25/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND Chemotherapy including cisplatin is recommended for the treatment of advanced bladder cancer, but its effectiveness is limited due to the acquisition of drug resistance. Although several mechanisms of cisplatin resistance have been reported, there are still many unknowns, and treatment of cisplatin-resistant bladder cancer remains difficult. Accordingly, in this study, we aimed to identify and characterize microRNAs involved in cisplatin resistance. METHODS Small RNA sequencing analysis was performed to search for microRNAs related to cisplatin resistance. The identified microRNAs were then characterized using gain-of-function studies, sensitivity analysis, target gene analysis, and cellular assays. RESULTS We identified miR-424-5p as a candidate microRNA that was downregulated in cisplatin-resistant strains compared with parental strains. Notably, in gain-of-function studies, miR-424-5p suppressed the proliferative ability of cisplatin-resistant bladder cancer (CDDP-R BC). Furthermore, miR-424-5p restored sensitivity to cisplatin. RNA sequence analysis revealed seven candidate genes targeted by this microRNA. Among them, cyclin E1 (CCNE1) was chosen for subsequent analyses because its expression was upregulated in cisplatin-resistant cells compared with parental cells and because recent studies have shown that CCNE1 amplification is synthetic lethal with PKMYT1 kinase inhibition. Therefore, we performed functional analysis using the PKMYT1 inhibitor RP-6306 and demonstrated that RP-6306 inhibited cell growth through suppression of mitotic entry and restored cisplatin sensitivity in CDDP-R BC. CONCLUSIONS Overall, our findings provided insights into the development of novel therapeutic strategies for CDDP-R BC.
Collapse
Affiliation(s)
- Wataru Fukumoto
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shunsuke Okamura
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Motoki Tamai
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Junya Arima
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Ichiro Kawahara
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Ikumi Fukuda
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Akihiko Mitsuke
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Takashi Sakaguchi
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Satoshi Sugita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Ryosuke Matsushita
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Shuichi Tatarano
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Yasutoshi Yamada
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Masayuki Nakagawa
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hideki Enokida
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan
| | - Hirofumi Yoshino
- Department of Urology, Graduate School of Medical and Dental Sciences, Kagoshima University, 8-35-1 Sakuragaoka, Kagoshima, 890-8520, Japan.
| |
Collapse
|